Microfluidic diagnostic technologies for global public he

Nature 442, 412-418 DOI: 10.1038/nature05064

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	The evolution of technology: scientific method, engineering design, and translational research. , 0, , 149-185.		0
2	Process integration of a direct-on-metal, non-etchback, κ=2.5 spin-on polymer for the 0.18 μm CMOS technology node. , 0, , .		0
3	Adaptive blind multiuser separation criterion based on log-likelihood maximisation. Electronics Letters, 2002, 38, 1231.	0.5	15
4	From manufacturing scheduling to supply chain coordination: the control of complexity and uncertainty. , 0, , .		0
5	Essay: Can we ensure health is within reach for everyone?. Lancet, The, 2006, 368, S40-S41.	6.3	10
6	Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5268-5273.	3.3	351
7	Chemical Sensors and Actuators. , 0, , 359-401.		0
8	Modeling Fluorescence Detection for Microfluidic Card. International Journal of Optomechatronics, 2007, 1, 154-167.	3.3	0
9	Time-Resolved Fluorescence Detection on Microfluidic Chip for HIV-1 Virus Assay. , 2007, , .		1
10	Microfluidic chip for fast bioassays—evaluation of binding parameters. Biomicrofluidics, 2007, 1, 024101.	1.2	5
11	Microchip-Based Immunoassay. Bunseki Kagaku, 2007, 56, 521-534.	0.1	5
12	Liquid Crystal Biosensors: A New Approach to Medical Diagnostic Devices. , 2007, , 241-296.		1
13	The MicroActive project: automatic detection of disease-related molecular cell activity. , 2007, , .		0
14	Electroosmotic flow-switchable poly(dimethylsiloxane) microfluidic channel modified with cysteine based on gold nanoparticles. Talanta, 2007, 73, 534-539.	2.9	19
15	Microfluidic platforms for lab-on-a-chip applications. Lab on A Chip, 2007, 7, 1094.	3.1	925
16	Cell-based high content screening using an integrated microfluidic device. Lab on A Chip, 2007, 7, 1696.	3.1	227
17	Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels. Lab on A Chip, 2007, 7, 1546.	3.1	62
18	Gravity-Driven Microfluidic Particle Sorting Device with Hydrodynamic Separation Amplification. Analytical Chemistry, 2007, 79, 1369-1376.	3.2	272

#	Article	IF	CITATIONS
19	Bioluminescence DNA Hybridization Assay for Plasmodium falciparum Based on the Photoprotein Aequorin. Analytical Chemistry, 2007, 79, 4149-4153.	3.2	35
20	Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter, 2007, 3, 1223.	1.2	180
21	Concentration Gradient Immunoassay. 2. Computational Modeling for Analysis and Optimization. Analytical Chemistry, 2007, 79, 3549-3553.	3.2	33
22	A cancer protein microarray platform using antibody fragments and its clinical applications. Molecular BioSystems, 2007, 3, 151-158.	2.9	25
23	Microfluidics at the crossroad with point-of-care diagnostics. Analyst, The, 2007, 132, 1186.	1.7	57
24	Density-Based Diamagnetic Separation:  Devices for Detecting Binding Events and for Collecting Unlabeled Diamagnetic Particles in Paramagnetic Solutions. Analytical Chemistry, 2007, 79, 6542-6550.	3.2	81
25	Concentration Gradient Immunoassay. 1. An Immunoassay Based on Interdiffusion and Surface Binding in a Microchannel. Analytical Chemistry, 2007, 79, 3542-3548.	3.2	34
26	Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip. Analytical Chemistry, 2007, 79, 7644-7653.	3.2	220
27	Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst, The, 2007, 132, 1193.	1.7	145
28	One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab on A Chip, 2007, 7, 565.	3.1	294
29	Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab on A Chip, 2007, 7, 1171.	3.1	124
30	Convergence of Quantum Dot Barcodes with Microfluidics and Signal Processing for Multiplexed High-Throughput Infectious Disease Diagnostics. Nano Letters, 2007, 7, 2812-2818.	4.5	198
32	Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angewandte Chemie - International Edition, 2007, 46, 1318-1320.	7.2	2,442
33	Fluorescence-Lifetime Imaging of DNA–Dye Interactions within Continuous-Flow Microfluidic Systems. Angewandte Chemie - International Edition, 2007, 46, 2228-2231.	7.2	24
34	A Pocket-Sized Convective PCR Thermocycler. Angewandte Chemie - International Edition, 2007, 46, 4316-4319.	7.2	76
38	Mass spectrometryâ€based "omics―technologies in cancer diagnostics. Mass Spectrometry Reviews, 2007, 26, 403-431.	2.8	98
39	Microfluidic conductimetric bioreactor. Biosensors and Bioelectronics, 2007, 22, 3064-3071.	5.3	21
40	Capture of genomic DNA on glass microscope slides. Analytical Biochemistry, 2007, 365, 240-245.	1.1	20

# 42	ARTICLE Catching bird flu in a droplet. Nature Medicine, 2007, 13, 1259-1263.	IF 15.2	Citations 195
43	Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature, 2007, 446, 1066-1069.	13.7	1,089
44	Taking the Lab to the Field: Monitoring Reproductive Hormones in Population Research. Population and Development Review, 2007, 33, 525-542.	1.2	13
45	Biomechanics approaches to studying human diseases. Trends in Biotechnology, 2007, 25, 111-118.	4.9	430
46	Moving cancer diagnostics from bench to bedside. Trends in Biotechnology, 2007, 25, 166-173.	4.9	49
47	SPR Imaging-Based Salivary Diagnostics System for the Detection of Small Molecule Analytes. Annals of the New York Academy of Sciences, 2007, 1098, 335-344.	1.8	40
48	Point-of-Care Diagnostics Enter the Mouth. Annals of the New York Academy of Sciences, 2007, 1098, 7-14.	1.8	48
49	Miniaturizing chemistry and biology in microdroplets. Chemical Communications, 2007, , 1773.	2.2	165
50	Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on A Chip, 2007, 7, 41-57.	3.1	700
51	Astrophysics in 2006. Space Science Reviews, 2007, 132, 1-182.	3.7	9
52	Polymeric nanofiber web-based artificial renal microfluidic chip. Biomedical Microdevices, 2007, 9, 435-442.	1.4	45
53	Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip. Biomedical Microdevices, 2007, 9, 413-419.	1.4	40
54	Electrokinetic mixing in microfluidic systems. Microfluidics and Nanofluidics, 2007, 3, 501-525.	1.0	258
55	Demonstration of multi-analyte patterning using piezoelectric inkjet printing of multiple layers. Analytica Chimica Acta, 2008, 611, 80-88.	2.6	45
56	Microfluidic ion-sensing devices. Analytica Chimica Acta, 2008, 613, 20-30.	2.6	32
57	Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing. Biomedical Microdevices, 2008, 10, 221-231.	1.4	61
58	Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 2008, 390, 89-111.	1.9	887
59	Fluorescent sensor array in a microfluidic chip. Analytical and Bioanalytical Chemistry, 2008, 390, 307-315.	1.9	24

#	Article	IF	CITATIONS
60	Gravitation-driven stress-reduced cell handling. Analytical and Bioanalytical Chemistry, 2008, 390, 857-863.	1.9	12
61	Applications of Microfluidic Devices in Food Engineering. Food Biophysics, 2008, 3, 1-15.	1.4	119
62	Valves for autonomous capillary systems. Microfluidics and Nanofluidics, 2008, 5, 395-402.	1.0	140
63	RNA amplification chip with parallel microchannels and droplet positioning using capillary valves. Microsystem Technologies, 2008, 14, 673-681.	1.2	25
64	Microfluidic Synthesis of Nanomaterials. Small, 2008, 4, 698-711.	5.2	402
65	Rapid saliva processing techniques for near realâ€ŧime analysis of salivary steroids and protein. Journal of Clinical Laboratory Analysis, 2008, 22, 395-402.	0.9	23
66	Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes. Electrophoresis, 2008, 29, 1237-1244.	1.3	15
67	Recent advances in surfaceâ€enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis, 2008, 29, 1815-1828.	1.3	206
68	Clinically relevant advances in onâ€chip affinityâ€based electrophoresis and electrochromatography. Electrophoresis, 2008, 29, 3306-3319.	1.3	29
69	Electrospun Nanofibrous Membranes: A Novel Solid Substrate for Microfluidic Immunoassays for HIV. Advanced Materials, 2008, 20, 4770-4775.	11.1	149
70	Fabrication of 1D nanofluidic channels on glass substrate by wet etching and room-temperature bonding. Analytica Chimica Acta, 2008, 628, 1-8.	2.6	32
71	Microfluidics in biology and genosensor construction. Nanotechnologies in Russia, 2008, 3, 622-632.	0.7	3
72	Toward a PCR-Independent Molecular Diagnosis of Veterinary and Medically Relevant Pathogenic Organisms. Annals of the New York Academy of Sciences, 2008, 1149, 391-393.	1.8	0
73	Salivary diagnostics: enhancing disease detection and making medicine better. European Journal of Dental Education, 2008, 12, 22-29.	1.0	119
74	Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discovery Today, 2008, 13, 1-13.	3.2	290
75	Crossing microfluidic streamlines to lyse, label and wash cells. Lab on A Chip, 2008, 8, 1448.	3.1	101
76	Dynamics of single-file water chains inside nanoscale channels: physics, biological significance and applications. Journal Physics D: Applied Physics, 2008, 41, 103002.	1.3	72
77	The use of gold nanoparticles in diagnostics and detection. Chemical Society Reviews, 2008, 37, 2028.	18.7	625

#	ARTICLE Lab on paper. Lab on A Chip, 2008, 8, 1988.	IF 3.1	Citations
79	Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab on A Chip, 2008, 8, 1999.	3.1	232
80	Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper. Analytical Chemistry, 2008, 80, 6928-6934.	3.2	680
81	Microfluidic Mixing via Acoustically Driven Chaotic Advection. Physical Review Letters, 2008, 100, 034502.	2.9	212
82	An inexpensive and portable microchip-based platform for integrated RT–PCR and capillary electrophoresis. Analyst, The, 2008, 133, 331.	1.7	99
83	Assembling Amperometric Biosensors for Clinical Diagnostics. Sensors, 2008, 8, 1366-1399.	2.1	120
84	Silicon Photonic Applications. , 0, , 297-325.		3
85	Micro Total Analysis Systems: Latest Achievements. Analytical Chemistry, 2008, 80, 4403-4419.	3.2	397
86	Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper. Analytical Chemistry, 2008, 80, 3387-3392.	3.2	535
87	Conditioning saliva for use in a microfluidic biosensor. Lab on A Chip, 2008, 8, 1847.	3.1	40
88	Non-instrumented nucleic acid amplification assay. Proceedings of SPIE, 2008, , .	0.8	8
89	Tailored Magnetic Nanoparticles for Direct and Sensitive Detection of Biomolecules in Biological Samples. Nano Letters, 2008, 8, 3423-3428.	4.5	99
90	Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab on A Chip, 2008, 8, 2015.	3.1	418
91	Point-of-Care Diagnostics for Global Health. Annual Review of Biomedical Engineering, 2008, 10, 107-144.	5.7	976
92	Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis. Analytical Chemistry, 2008, 80, 3699-3707.	3.2	1,287
93	Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel. Lab on A Chip, 2008, 8, 557.	3.1	26
94	An integrated CMOS high voltage supply for lab-on-a-chip systems. Lab on A Chip, 2008, 8, 1524.	3.1	30
95	Point-of-care monitoring and diagnostics for autoimmune diseases. , 2008, , .		0

#	Article	IF	Citations
96	Enabling a microfluidic immunoassay for the developing world by integration of on-card dry reagent storage. Lab on A Chip, 2008, 8, 2038.	3.1	95
97	Gaps and Challenges of Point-of-Care Technology. IEEE Sensors Journal, 2008, 8, 593-600.	2.4	25
98	A fast, high throughput, and low-cost microfluidic bioassays for detecting HIV. , 2008, , .		0
99	Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4+ T cell counts at the point-of-need. Lab on A Chip, 2008, 8, 2079.	3.1	62
100	Real-Time PCR in a Plastic Chip Based on Solid State FRET. Langmuir, 2008, 24, 13266-13269.	1.6	18
101	The future of microfluidic assays in drug development. Expert Opinion on Drug Discovery, 2008, 3, 1237-1253.	2.5	32
102	Nanotechnology and the Developing World. Bulletin of Science, Technology and Society, 2008, 28, 400-407.	1.1	7
103	Design and Fabrication of a Roller Imprinting Device for Microfluidic Device Manufacturing. , 2008, , .		2
104	Readily integrated, electrically controlled microvalves. Journal of Micromechanics and Microengineering, 2008, 18, 045009.	1.5	5
105	Evolving 'omics' technologies for diagnostics of head and neck cancer. Briefings in Functional Genomics & Proteomics, 2008, 8, 49-59.	3.8	24
106	Designing patterned substrates to regulate the movement of capsules in microchannels. Journal of Chemical Physics, 2008, 128, 235102.	1.2	7
107	Microfluidic Diagnostic Systems for the Rapid Detection and Quantification of Pathogens. , 2008, , 271-322.		7
108	Rapid Determination of Monozygous Twinning with a Microfabricated Capillary Array Electrophoresis Genetic-Analysis Device1. Clinical Chemistry, 2008, 54, 1080-1084.	1.5	8
109	Nanomechanical and electrical characterization of a new cellular electret sensor–actuator. Nanotechnology, 2008, 19, 035506.	1.3	22
110	Microchip DNA electrophoresis with automated whole-gel scanning detection. Lab on A Chip, 2008, 8, 2135.	3.1	21
111	Conformation and trapping rate of DNA at a convergent stagnation point. Physical Review E, 2008, 77, 030801.	0.8	9
113	Integrated optical sensor for liquid control in micro-fluidic channel systems. Proceedings of SPIE, 2008, , .	0.8	1
114	An optofluidic microscope on a chip driven by DC electrokinetics. , 2008, , .		0

#	Article	IF	CITATIONS
115	Design of a test suite for NCAP-to-NCAP communication based on IEEE 1451. , 2008, , .		5
116	HPM Sources: The DoD Perspective. , 2009, , .		4
117	Deterministic Annealing for Clustering, Compression, Classification, Regression, and Speech Recognition. , 2009, , .		0
118	The Electromagnetic Torque. , 2009, , .		0
119	Biomedical Informatics and the Convergence of Nano-Bio-Info-Cogno (NBIC) Technologies. Yearbook of Medical Informatics, 2009, 18, 134-142.	0.8	3
120	Methods for pumping fluids on biomedical lab-on-a-chip. Frontiers in Bioscience - Landmark, 2009, Volume, 3913.	3.0	9
121	A simple three-dimensional vortex micromixer. Applied Physics Letters, 2009, 94, .	1.5	48
122	Thrombin generation test in microfluidic systems. Journal of Applied Physics, 2009, 105, 102012.	1.1	6
123	Microfluidic point-of-care diagnostics for resource-poor environments. , 2009, 2009, 1057-9.		7
124	Lensless imaging for point-of-care testing. , 2009, 2009, 6376-9.		5
126	Liquid reagent storage and release for centrifugally operated Lab-on-a-Chip systems based on a burstable seal. , 2009, , .		3
127	Simulation and Calculation of Temperature in a Portable Real-Time PCR Instrument. , 2009, , .		0
128	Three Dimensional Simulation of Rayleigh-Be´nard Convection for Rapid Microscale Polymerase Chain Reaction. , 2009, , .		0
129	Concentration of Samples in Microfluidic Structure Using Joule Heating Effects. , 2009, , .		0
130	Packaging of silicon sensors for microfluidic bio-analytical applications. Journal of Micromechanics and Microengineering, 2009, 19, 015015.	1.5	16
131	Perspectives on Utilizing Unique Features of Microfluidics Technology for Particle and Cell Sorting. Journal of the Association for Laboratory Automation, 2009, 14, 331-340.	2.8	17
132	Portable integrated capillary-electrophoresis system using disposable polymer chips with capacitively coupled contactless conductivity detection for on-site analysis of foodstuff. , 2009, , .		3
133	Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine. FASEB Journal, 2009, 23, 3309-3314.	0.2	84

#	Article	IF	CITATIONS
134	Micro- and nanofluidic systems for high-throughput biological screening. Drug Discovery Today, 2009, 14, 134-146.	3.2	190
136	Highly Fluorescent Poly(dimethylsiloxane) for Onâ€Chip Temperature Measurements. Advanced Functional Materials, 2009, 19, 324-329.	7.8	37
137	Fabrication of Advanced Functional Devices Combining Soft Chemistry with Xâ€ray Lithography in One Step. Advanced Materials, 2009, 21, 4932-4936.	11.1	63
139	Low cost, portable detection of gold nanoparticle″abeled microfluidic immunoassay with camera cell phone. Electrophoresis, 2009, 30, 579-582.	1.3	82
140	Microvalves actuated sandwich immunoassay on an integrated microfluidic system. Electrophoresis, 2009, 30, 2481-2487.	1.3	14
141	Integrated electrochemical DNA biosensors for labâ€onâ€aâ€chip devices. Electrophoresis, 2009, 30, 3386-3397.	1.3	93
142	Towards an Integrated Chemical Circuit. Angewandte Chemie - International Edition, 2009, 48, 3736-3737.	7.2	40
143	Biofabrication of antibodies and antigens via IgGâ€binding domain engineered with activatable pentatyrosine proâ€ŧag. Biotechnology and Bioengineering, 2009, 103, 231-240.	1.7	30
144	Microinjection molded disposable microfluidic lab-on-a-chip for efficient detection of agglutination. Microsystem Technologies, 2009, 15, 309-316.	1.2	23
145	Electrokinetic motion of particles and cells in microchannels. Microfluidics and Nanofluidics, 2009, 6, 431-460.	1.0	171
146	Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates. Sensors and Actuators B: Chemical, 2009, 139, 13-21.	4.0	91
147	Integrating microfluidics and lensless imaging for point-of-care testing. Biosensors and Bioelectronics, 2009, 24, 3208-3214.	5.3	162
148	Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications. Biosensors and Bioelectronics, 2009, 24, 3677-3682.	5.3	36
149	Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochimica Acta, 2009, 54, 1715-1720.	2.6	113
150	Autonomous capillary system for one-step immunoassays. Biomedical Microdevices, 2009, 11, 1-8.	1.4	39
151	The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts. Biomedical Microdevices, 2009, 11, 951-958.	1.4	41
152	Disposable plastic microreactors for genomic analyses. Biomedical Microdevices, 2009, 11, 1289-1295.	1.4	3
153	Optical sensing in microfluidic lab-on-a-chip by femtosecond-laser-written waveguides. Analytical and Bioanalytical Chemistry, 2009, 393, 1209-1216.	1.9	26

#	Article	IF	CITATIONS
154	Fabrication of microlens arrays in photosensitive glass byÂfemtosecond laser direct writing. Applied Physics A: Materials Science and Processing, 2009, 97, 751-757.	1.1	59
155	Nanointersticeâ€Driven Microflow. Small, 2009, 5, 609-613.	5.2	30
156	Saliva as a diagnostic tool for periodontal disease: current state and future directions. Periodontology 2000, 2009, 50, 52-64.	6.3	282
157	Spiropyran modified micro-fluidic chip channels as photonically controlled self-indicating system for metal ion accumulation and release. Sensors and Actuators B: Chemical, 2009, 140, 295-303.	4.0	38
158	Magnetic separations: From steel plants to biotechnology. Chemical Engineering Science, 2009, 64, 2510-2521.	1.9	310
159	"Macromolecules to PDMS transfer―as a general route for PDMS biochips. Biosensors and Bioelectronics, 2009, 24, 1146-1152.	5.3	18
160	On-chip detection of myoglobin based on fluorescence. Biosensors and Bioelectronics, 2009, 24, 1744-1750.	5.3	83
161	Review: Microfluidic applications in metabolomics and metabolic profiling. Analytica Chimica Acta, 2009, 653, 23-35.	2.6	116
162	Superhydrophobic surface structures in thermoplastic polymers by interference lithography and thermal imprinting. Applied Surface Science, 2009, 255, 9305-9310.	3.1	60
163	Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy. Lab on A Chip, 2009, 9, 966-971.	3.1	48
164	The use of selfâ€interaction chromatography in stable formulation and crystallization of proteins. Biotechnology Journal, 2009, 4, 1266-1277.	1.8	5
165	Reagentless Bidirectional Lateral Flow Bioactive Paper Sensors for Detection of Pesticides in Beverage and Food Samples. Analytical Chemistry, 2009, 81, 9055-9064.	3.2	285
166	Development of novel integrated bio/chemical sensor systems using chalcogenide glass materials. International Journal of Nanotechnology, 2009, 6, 799.	0.1	8
167	Straightforward Protein Immobilization Using Redox-Initiated Poly(methyl methacrylate) Polymerization. Langmuir, 2009, 25, 661-664.	1.6	5
168	Directional Locking and the Role of Irreversible Interactions in Deterministic Hydrodynamics Separations in Microfluidic Devices. Physical Review Letters, 2009, 103, 078301.	2.9	87
169	Simultaneous Separation, Metering, and Dilution of Plasma from Human Whole Blood in a Microfluidic System. Analytical Chemistry, 2009, 81, 3194-3198.	3.2	80
170	In vitro diagnostic platforms of the future; technological possibilities and challenges. , 2009, , .		1
171	Integration of electrochemistry in micro-total analysis systems for biochemical assays: Recent developments. Talanta, 2009, 80, 8-18.	2.9	109

#	Article	IF	CITATIONS
172	Integration of femtosecond laser written optical waveguides in a lab-on-chip. Lab on A Chip, 2009, 9, 91-96.	3.1	119
173	Introduction to Microfluidics. , 2008, , 1-34.		11
174	Tiny Medicine: Nanomaterial-Based Biosensors. Sensors, 2009, 9, 9275-9299.	2.1	68
175	Microfluidic Systems for Pathogen Sensing: A Review. Sensors, 2009, 9, 4804-4823.	2.1	239
176	Modeling of a Competitive Microfluidic Heterogeneous Immunoassay: Sensitivity of the Assay Response to Varying System Parameters. Analytical Chemistry, 2009, 81, 3407-3413.	3.2	26
177	Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab on A Chip, 2009, 9, 3504.	3.1	194
178	A disposable, self-contained PCR chip. Lab on A Chip, 2009, 9, 606-612.	3.1	80
179	Microwave dielectric heating of drops in microfluidic devices. Lab on A Chip, 2009, 9, 1701.	3.1	86
180	High speed nanofluidic protein accumulator. Lab on A Chip, 2009, 9, 1890.	3.1	62
181	Identification of Pathogen and Hostâ€Response Markers Correlated With Periodontal Disease. Journal of Periodontology, 2009, 80, 436-446.	1.7	302
182	Rapid protein depletion from complex samples using a bead-based microfluidic device for the point of care. Lab on A Chip, 2009, 9, 3543.	3.1	25
183	Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab on A Chip, 2009, 9, 3549.	3.1	89
184	Protein self-interaction chromatography on a microchip. Lab on A Chip, 2009, 9, 600-605.	3.1	18
185	Lab-on-a-chip for botulinum neurotoxin a (BoNT-A) activity analysis. Lab on A Chip, 2009, 9, 3275.	3.1	55
186	A timer-actuated immunoassay cassette for detecting molecular markers in oral fluids. Lab on A Chip, 2009, 9, 768-776.	3.1	93
187	Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab on A Chip, 2009, 9, 2698.	3.1	102
188	Manufacturable plastic microfluidic valves using thermal actuation. Lab on A Chip, 2009, 9, 3082.	3.1	38
189	Femtosecond laser fabrication of optical sensors integrated in a lab-on-a-chip. , 2009, , .		1

#	Article	IF	CITATIONS
190	Label-Free Photonic Crystal Biosensor Integrated Microfluidic Chip for Determination of Kinetic Reaction Rate Constants. IEEE Sensors Journal, 2009, 9, 1697-1704.	2.4	36
191	DNA methylation analysis on a droplet-in-oil PCR array. Lab on A Chip, 2009, 9, 1059.	3.1	41
192	Simplicity of use: a critical feature for widespread adoption of diagnostic technologies in low-resource settings. Expert Review of Medical Devices, 2009, 6, 461-464.	1.4	22
193	Thin, lightweight, foldable thermochromic displays on paper. Lab on A Chip, 2009, 9, 2775.	3.1	167
194	High performance immunoassay using immobilized enzyme in nanoporous carbon. Analyst, The, 2009, 134, 926.	1.7	22
195	Low-Cost Microfluidic Single-Use Valves and On-Board Reagent Storage using Laser-Printer Technology. , 2009, , .		7
196	Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator. IEEE Photonics Journal, 2009, 1, 197-204.	1.0	353
197	Nanotechnology in Drug Delivery: Past, Present, and Future. , 2009, , 581-596.		5
198	Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab on A Chip, 2009, 9, 3330.	3.1	302
199	Integration of micro-optics and microfluidics in a glass chip by fs-laser for optofluidic applications. Proceedings of SPIE, 2009, , .	0.8	1
200	Microfluidic point-of-care diagnostics for resource-poor environments. , 2009, , .		3
201	Microchip-based Homogeneous Immunoassay Using a Cloned Enzyme Donor. Analytical Sciences, 2009, 25, 149-151.	0.8	11
202	Active integrated components for fluid control in automatic analytical chip-based systems. Proceedings of SPIE, 2009, , .	0.8	1
203	Integration of electronics and photonics in active material by femtosecond laser for functional microdevice fabrication. , 2010, , .		0
204	A microflow cytometer on a chip. , 2010, , .		0
206	Biomimetic membranes and biomolecule immobilisation strategies for nanobiotechnology applications. International Journal of Nanotechnology, 2010, 7, 753.	0.1	8
207	A Self-Contained Microfluidic Cassette for the Detection of Nucleic Acids at the Point-of-Care. , 2010, ,		0
208	Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Advanced Drug Delivery Reviews, 2010, 62, 378-393.	6.6	123

#	Article	IF	CITATIONS
209	Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Advanced Drug Delivery Reviews, 2010, 62, 438-448.	6.6	147
210	Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Advanced Drug Delivery Reviews, 2010, 62, 449-457.	6.6	305
211	Inkjet-printed paperfluidic immuno-chemical sensing device. Analytical and Bioanalytical Chemistry, 2010, 398, 885-893.	1.9	220
212	Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix. Analytical and Bioanalytical Chemistry, 2010, 398, 2693-2700.	1.9	34
213	Immobilization of biomolecules on nanostructured films for biosensing. Biosensors and Bioelectronics, 2010, 25, 1254-1263.	5.3	195
214	Rapid fabrication of microfluidic chip with three-dimensional structures using natural lotus leaf template. Microfluidics and Nanofluidics, 2010, 9, 923-931.	1.0	34
215	Print-and-Peel Fabrication for Microfluidics: What's in it for Biomedical Applications?. Annals of Biomedical Engineering, 2010, 38, 21-32.	1.3	68
216	Bonding of planar poly (methyl methacrylate) (PMMA) nanofluidic channels using thermal assisted ultrasonic bonding method. Microsystem Technologies, 2010, 16, 2043-2048.	1.2	12
217	Generation of Janus droplets for enhanced mixing in microfluidics. International Journal of Precision Engineering and Manufacturing, 2010, 11, 799-802.	1.1	6
218	An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomedical Microdevices, 2010, 12, 705-719.	1.4	183
219	Weak solvent based chip lamination and characterization of on-chip valve and pump. Biomedical Microdevices, 2010, 12, 821-832.	1.4	28
220	An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer. Biomedical Microdevices, 2010, 12, 949-957.	1.4	58
221	Integrated circuit-based instrumentation for microchip capillary electrophoresis. IET Nanobiotechnology, 2010, 4, 91.	1.9	10
222	Wireless Sensor Networks for Healthcare. Proceedings of the IEEE, 2010, 98, 1947-1960.	16.4	516
223	Nanotechnologies for pathogen detection: Future alternatives?. Biologicals, 2010, 38, 9-13.	0.5	32
224	Electrically Programmable Nematofluidics with a High Level of Selectivity in a Hierarchically Branched Architecture. ChemPhysChem, 2010, 11, 101-104.	1.0	19
225	Fabrication of a microfluidic Ag/AgCl reference electrode and its application for portable and disposable electrochemical microchips. Electrophoresis, 2010, 31, 3083-3089.	1.3	59
226	Highâ€resolution electrophoretic separation and integratedâ€waveguide excitation of fluorescent DNA molecules in a lab on a chip. Electrophoresis, 2010, 31, 2584-2588.	1.3	17

#	Article	IF	CITATIONS
227	Polymerâ€based dense fluidic networks for high throughput screening with ultrasensitive fluorescence detection. Electrophoresis, 2010, 31, 3074-3082.	1.3	8
228	Bioâ€microfluidics: Biomaterials and Biomimetic Designs. Advanced Materials, 2010, 22, 249-260.	11.1	178
230	Norland optical adhesive (NOA81) microchannels with adjustable surface properties and high chemical resistance against IR-transparent organic solvents. Procedia Engineering, 2010, 5, 460-463.	1.2	18
231	Integrated microfluidic magnetic immunosensor for quantification of human serum IgG antibodies to Helicobacter pylori. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 253-257.	1.2	35
232	Concentration enhancement of sample solutes in a sudden expansion microchannel with Joule heating. International Journal of Heat and Mass Transfer, 2010, 53, 2722-2731.	2.5	30
233	Water transportation across narrow channel of nanometer dimension. Solid State Communications, 2010, 150, 968-975.	0.9	8
234	On-chip integrated multi-thermo-actuated microvalves of poly(N-isopropylacrylamide) for microflow injection analysis. Analytica Chimica Acta, 2010, 665, 107-112.	2.6	26
235	Use of multiple colorimetric indicators for paper-based microfluidic devices. Analytica Chimica Acta, 2010, 674, 227-233.	2.6	314
236	Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. Journal of Chromatography A, 2010, 1217, 3896-3899.	1.8	128
237	Polyshrinkâ"¢ based microfluidic chips and protein microarrays. Biosensors and Bioelectronics, 2010, 26, 1218-1224.	5.3	7
238	A hard–soft microfluidic-based biosensor flow cell for SPR imaging application. Biosensors and Bioelectronics, 2010, 26, 255-261.	5.3	40
239	Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: A review. Biosensors and Bioelectronics, 2010, 26, 1195-1204.	5.3	82
240	Photopatterning and degradation study of dextranâ€glycidyl methacrylate hydrogels. Polymer Engineering and Science, 2010, 50, 232-239.	1.5	16
241	Detection of bloodâ€transmissible agents: can screening be miniaturized?. Transfusion, 2010, 50, 2032-2045.	0.8	14
242	Static control logic for microfluidic devices using pressure-gain valves. Nature Physics, 2010, 6, 218-223.	6.5	114
243	Automated microfluidic protein immunoblotting. Nature Protocols, 2010, 5, 1844-1856.	5.5	83
245	Surface Engineering and Patterning Using Parylene for Biological Applications. Materials, 2010, 3, 1803-1832.	1.3	133
246	The Lab-on-a-Chip Approach for Molecular Diagnostics. , 2010, , 21-34.		2

ARTICLE IF CITATIONS # Optothermal Analyte Manipulation With Temperature Gradient Focusing., 2010,,. 247 1 248 Microfluidic diagnostics for low-resource settings., 2010,,. 14 New Approaches to Preventing, Diagnosing, and Treating Neonatal Sepsis. PLoS Medicine, 2010, 7, 249 3.9 131 e1000213. Joule Heating Induced Temperature Gradient Focusing for Microfluidic Concentration of Samples., 2010, , . Sub Micron Poly-Dimethyl Siloxane (PDMS) Replication Using Proton Beam Fabricated Nickel Moulds. 251 0.4 2 Key Engineering Materials, 0, 447-448, 452-455. Advances in microfluidics for drug discovery. Expert Opinion on Drug Discovery, 2010, 5, 1081-1094. 2.5 49 253 FORMATION OF NANOLITER BUBBLES IN MICROFLUIDIC T-JUNCTIONS. Nano, 2010, 05, 175-184. 0.5 4 Fluorescence Based Sensor Arrays. Topics in Current Chemistry, 2010, 300, 139-174. 4.0 254 A system of parallel and selective microchannels for biosensor sample delivery and containment. , 256 2 2010,,. Portable audio electronics for impedance-based measurements in microfluidics. Journal of 1.5 Micromechanics and Microengineering, 2010, 20, 087001. Experimental Analysis of Microchannel Entrance Length Characteristics Using Microparticle Image 258 0.8 48 Velocimetry. Journal of Fluids Engineering, Transactions of the ASME, 2010, 132, . Microflow Cytometer: Hydrodynamic Focusing and Separation of Sample Stream., 2010,,. HIV diagnostics: challenges and opportunities. HIV Therapy, 2010, 4, 399-412. 260 0.6 8 Translational research needed in microfluidics and immunoaffinity separations. Bioanalysis, 2010, 2, 1667-1669. Single-Molecule DNA Amplification and Analysis Using Microfluidics. Chemical Reviews, 2010, 110, 262 23.0 132 4910-4947. "Smart―Diblock Copolymers as Templates for Magnetic-Core Gold-Shell Nanoparticle Synthesis. Nano 64 Letters, 2010, 10, 85-91. An Electrochemical Microfluidic Platform for Human P450 Drug Metabolism Profiling. Analytical 264 3.2 48 Chemistry, 2010, 82, 10222-10227. Packaging for Bio-micro-electro-mechanical Systems (BioMEMS) and Microfluidic Chips., 2010,, 505-563.

#	Article	IF	CITATIONS
266	Optoelectrofluidic Sandwich Immunoassays for Detection of Human Tumor Marker Using Surface-Enhanced Raman Scattering. Analytical Chemistry, 2010, 82, 7603-7610.	3.2	61
267	Analytical connotations of point-of-care testing. Analyst, The, 2010, 135, 2220.	1.7	34
268	Fluidic Timers for Time-Dependent, Point-of-Care Assays on Paper. Analytical Chemistry, 2010, 82, 8071-8078.	3.2	169
269	On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip. Journal of Micromechanics and Microengineering, 2010, 20, 065010.	1.5	12
270	Electrofluidic Gating of a Chemically Reactive Surface. Langmuir, 2010, 26, 8161-8173.	1.6	66
271	Programmable nano-bio-chips: multifunctional clinical tools for use at the point-of-care. Nanomedicine, 2010, 5, 143-155.	1.7	41
272	NanomedicineNanomedicine. , 2010, , 615-735.		1
273	Paper Disk on Screen Printed Electrode for One-Step Sensing with an Internal Standard. Analytical Chemistry, 2010, 82, 8844-8847.	3.2	63
274	Real-Space Transmission Electron Microscopy Investigations of Attachment of Functionalized Magnetic Nanoparticles to DNA-Coils Acting as a Biosensor. Journal of Physical Chemistry B, 2010, 114, 13255-13262.	1.2	24
275	Simple Fluidic System for Purifying and Concentrating Diagnostic Biomarkers Using Stimuli-Responsive Antibody Conjugates and Membranes. Bioconjugate Chemistry, 2010, 21, 1820-1826.	1.8	49
276	Thermoswitchable Electrokinetic Ion-Enrichment/Elution Based on a Poly(<i>N</i> -isopropylacrylamide) Hydrogel Plug in a Microchannel. Analytical Chemistry, 2010, 82, 10030-10036.	3.2	14
277	Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 2010, 82, 3-10.	3.2	2,268
278	Multi-angle lensless digital holography for depth resolved imaging on a chip. Optics Express, 2010, 18, 9690.	1.7	68
279	Holographic opto-fluidic microscopy. Optics Express, 2010, 18, 27499.	1.7	138
280	Polymerase chain reaction (PCR) and sequence specific oligonucleotide probes (SSOP) genotyping assay for detection of genes associated with rheumatoid arthritis and multiple sclerosis. , 2010, 2010, 6202-5.		0
281	A lateral flow protein microarray for rapid determination of contagious bovine pleuropneumonia status in bovine serum. Journal of Microbiological Methods, 2010, 82, 11-18.	0.7	28
282	Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society Reviews, 2010, 39, 1153.	18.7	1,366
283	Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab on A Chip, 2010, 10, 2659.	3.1	296

#	Article	IF	Citations
284	Non-instrumented nucleic acid amplification (NINA): Instrument-free molecular malaria diagnostics for low-resource settings. , 2010, 2010, 1097-9.		32
285	Thread as a Matrix for Biomedical Assays. ACS Applied Materials & amp; Interfaces, 2010, 2, 1722-1728.	4.0	224
286	Nano-Bio- Electronic, Photonic and MEMS Packaging. , 2010, , .		38
287	Zooming In on Microscopic Flow by Remotely Detected MRI. Science, 2010, 330, 1078-1081.	6.0	50
288	Bio-Microfluidics: Overview. , 2010, , 131-179.		6
289	A scalable and modular lab-on-a-chip genetic analysis instrument. Analyst, The, 2010, 135, 1606.	1.7	23
291	Microfluidic CD4+ T-Cell Counting Device Using Chemiluminescence-Based Detection. Analytical Chemistry, 2010, 82, 36-40.	3.2	80
292	Programmable Nano-Bio-Chip Sensors: Analytical Meets Clinical. Analytical Chemistry, 2010, 82, 1571-1579.	3.2	60
293	PROGRESS ON THE FABRICATION OF ON-CHIP, INTEGRATED CHALCOGENIDE GLASS (CHG)-BASED SENSORS. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 75-99.	1.1	43
294	Metering the Capillary-Driven Flow of Fluids in Paper-Based Microfluidic Devices. Analytical Chemistry, 2010, 82, 4181-4187.	3.2	173
295	Lab-on-a-chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Lab on A Chip, 2010, 10, 1011.	3.1	68
296	Lab-on-a-Foil: microfluidics on thin and flexible films. Lab on A Chip, 2010, 10, 1365.	3.1	228
297	Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab on A Chip, 2010, 10, 1509.	3.1	104
298	Microfluidic Systems for Biosensing. Sensors, 2010, 10, 6623-6661.	2.1	95
299	A helical flow, circular microreactor for separating and enriching "smart―polymer–antibody capture reagents. Lab on A Chip, 2010, 10, 3130.	3.1	33
300	A simple method of fabricating mask-free microfluidic devices for biological analysis. Biomicrofluidics, 2010, 4, .	1.2	21
301	Microfluidic Western Blot. Analytical Chemistry, 2010, 82, 3974-3976.	3.2	66
302	Better shrinkage than Shrinky-Dinks. Lab on A Chip, 2010, 10, 1623.	3.1	46

щ		IF	CITATIONS
#	ARTICLE Dynamic reversibility of hydrodynamic focusing for recycling sheath fluid. Lab on A Chip, 2010, 10,	IF	CITATIONS
303	1952.	3.1	31
304	Ultra-sensitive cytometric detection of rare particle on microfluidic device. , 2010, , .		0
305	A portable device for temperature control along microchannels. Lab on A Chip, 2010, 10, 795.	3.1	37
306	A self-heating cartridge for molecular diagnostics. Lab on A Chip, 2011, 11, 2686.	3.1	79
307	A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification. Lab on A Chip, 2011, 11, 398-406.	3.1	155
308	Finger-powered microdroplet generator. , 2011, , .		2
309	Towards a point-of-care diagnostic system. , 2011, , .		18
310	Fabrication of monolithic 3D micro-systems. Lab on A Chip, 2011, 11, 288-295.	3.1	16
311	An isothermal amplification reactor with an integrated isolation membrane for point-of-care detection of infectious diseases. Analyst, The, 2011, 136, 2069.	1.7	164
312	Superlocalization of Single Molecules and Nanoparticles in High-Fidelity Optical Imaging Microfluidic Devices. Analytical Chemistry, 2011, 83, 5073-5077.	3.2	13
313	Homogeneous Immunosubtraction Integrated with Sample Preparation Enabled by a Microfluidic Format. Analytical Chemistry, 2011, 83, 2691-2698.	3.2	24
314	Translational and Clinical Applications of Salivary Diagnostics. Advances in Dental Research, 2011, 23, 375-380.	3.6	75
315	Microfluidic Devices Constructed by a Marker Pen on a Silica Gel Plate for Multiplex Assays. Analytical Chemistry, 2011, 83, 3596-3599.	3.2	23
316	Microfluidic Characterization and Continuous Separation of Cells and Particles Using Conducting Poly(dimethyl siloxane) Electrode Induced Alternating Current-Dielectrophoresis. Analytical Chemistry, 2011, 83, 9579-9585.	3.2	115
317	Frequency-Selective Rotation of Two-Particle Nanoactuators for Rapid and Sensitive Detection of Biomolecules. Nano Letters, 2011, 11, 2017-2022.	4.5	53
318	Highly Sensitive Elemental Analysis for Cd and Pb by Liquid Electrode Plasma Atomic Emission Spectrometry with Quartz Class Chip and Sample Flow. Analytical Chemistry, 2011, 83, 9424-9430.	3.2	70
319	Genetic Analysis of H1N1 Influenza Virus from Throat Swab Samples in a Microfluidic System for Point-of-Care Diagnostics. Journal of the American Chemical Society, 2011, 133, 9129-9135.	6.6	178
320	Cell analysis using a multiple internal reflection photonic lab-on-a-chip. Nature Protocols, 2011, 6, 1642-1655.	5.5	41

#	Article	IF	CITATIONS
321	Microfluidics made of yarns and knots: from fundamental properties to simple networks and operations. Lab on A Chip, 2011, 11, 2618.	3.1	100
322	Perspective on Diagnostics for Global Health. IEEE Pulse, 2011, 2, 40-50.	0.1	48
323	Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication, 2011, 3, 034101.	3.7	89
324	On-chip real-time nucleic acid sequence-based amplification for RNA detection and amplification. Analytical Methods, 2011, 3, 2127.	1.3	16
325	Photothermal nano-cavities for ultra-sensitive chem-bio detection. Proceedings of SPIE, 2011, , .	0.8	2
326	Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab on A Chip, 2011, 11, 1286.	3.1	296
327	Sustainable fabrication of micro-structured lab-on-a-chip. Lab on A Chip, 2011, 11, 3999.	3.1	14
328	Predicting Viruses Accurately by a Multiplex Microfluidic Loop-Mediated Isothermal Amplification Chip. Analytical Chemistry, 2011, 83, 690-695.	3.2	133
329	Nanochromatography Driven by the Coffee Ring Effect. Analytical Chemistry, 2011, 83, 1871-1873.	3.2	277
330	Finger-powered, pressure-driven microfluidic pump. , 2011, , .		6
330 331	Finger-powered, pressure-driven microfluidic pump. , 2011, , . Luminescence Applied in Sensor Science. Topics in Current Chemistry, 2011, , .	4.0	6 9
		4.0 4.0	
331	Luminescence Applied in Sensor Science. Topics in Current Chemistry, 2011, , .		9
331 332	Luminescence Applied in Sensor Science. Topics in Current Chemistry, 2011, , . Microfluidics. Topics in Current Chemistry, 2011, , . Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview. Sensors, 2011, 11,	4.0	9 37
331 332 333	Luminescence Applied in Sensor Science. Topics in Current Chemistry, 2011, , . Microfluidics. Topics in Current Chemistry, 2011, , . Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview. Sensors, 2011, 11, 5754-5768.	4.0 2.1	9 37 92
331 332 333 334	Luminescence Applied in Sensor Science. Topics in Current Chemistry, 2011, , . Microfluidics. Topics in Current Chemistry, 2011, , . Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview. Sensors, 2011, 11, 5754-5768. Optoelectrofluidic platforms for chemistry and biology. Lab on A Chip, 2011, 11, 33-47. Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip. Lab on A	4.0 2.1 3.1	9 37 92 92
331 332 333 334 335	Luminescence Applied in Sensor Science. Topics in Current Chemistry, 2011, , . Microfluidics. Topics in Current Chemistry, 2011, , . Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview. Sensors, 2011, 11, 5754-5768. Optoelectrofluidic platforms for chemistry and biology. Lab on A Chip, 2011, 11, 33-47. Modulation-frequency encoded multi-color fluorescent DNA analysis in an optofluidic chip. Lab on A Chip, 2011, 11, 679-683. Microparticle and cell counting with digital microfluidic compact disc using standard CD drive. Lab	4.0 2.1 3.1 3.1	9 37 92 92 29

	CITATION R	EPORT	
#	Article	IF	CITATIONS
339	Flow control concepts for thread-based microfluidic devices. Biomicrofluidics, 2011, 5, 14105.	1.2	81
340	Wavefront Velocity Oscillations of Carbon-Nanotube-Guided Thermopower Waves: Nanoscale Alternating Current Sources. ACS Nano, 2011, 5, 367-375.	7.3	40
341	nanoLAB: An ultraportable, handheld diagnostic laboratory for global health. Lab on A Chip, 2011, 11, 950.	3.1	77
342	Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Review of Molecular Diagnostics, 2011, 11, 393-407.	1.5	114
343	Biosensors in Microfluidic Chips. Topics in Current Chemistry, 2011, 304, 117-152.	4.0	21
344	A simple and smart telemedicine device for developing regions: a pocket-sized colorimetric reader. Lab on A Chip, 2011, 11, 120-126.	3.1	102
345	A pocket-sized colorimetric urine reader for telemedicine in the developing countries. , 2011, , .		3
346	Rapid Microfluidics-Based Measurement of CO ₂ Diffusivity in Bitumen. Energy & Fuels, 2011, 25, 4829-4835.	2.5	82
347	From Cleanroom to Desktop: Emerging Micro-Nanofabrication Technology for Biomedical Applications. Annals of Biomedical Engineering, 2011, 39, 600-620.	1.3	62
348	Ultrasensitive fluorescence-based methods for nucleic acid detection: towards amplification-free genetic analysis. Chemical Communications, 2011, 47, 3717.	2.2	54
349	Development of chipscale chalcogenide glass based infrared chemical sensors. Proceedings of SPIE, 2011, , .	0.8	8
350	Nanoparticles in Molecular Diagnostics. Progress in Molecular Biology and Translational Science, 2011, 104, 427-488.	0.9	47
351	A simple device for multiplex ELISA made from melt-extruded plastic microcapillary film. Lab on A Chip, 2011, 11, 4267.	3.1	34
352	Integrated immunoassay using tuneable surface acoustic waves and lensfree detection. Lab on A Chip, 2011, 11, 2725.	3.1	61
353	Printing: Printed sensor and electric field assisted wetting on a natural fibre based substrate. Nordic Pulp and Paper Research Journal, 2011, 26, 133-141.	0.3	6
354	International Efforts in Nanoinformatics Research Applied to Nanomedicine. Methods of Information in Medicine, 2011, 50, 84-95.	0.7	20
355	Peripheral Blood Stem Cells. , 2011, , 383-401.		1
356	Optoelectrofluidic Manipulation of Nanoparticles and Biomolecules. Advances in OptoElectronics, 2011, 2011, 1-13.	0.6	7

#	Article	IF	CITATIONS
357	FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection. PLoS ONE, 2011, 6, e26047.	1.1	320
358	Enumeration of CD4+ T-Cells Using a Portable Microchip Count Platform in Tanzanian HIV-Infected Patients. PLoS ONE, 2011, 6, e21409.	1.1	74
359	Plasmon-based light enhancement from a hybrid copper-gold planar structure. Proceedings of SPIE, 2011, , .	0.8	1
360	Bifunctional Tri(ethylene glycol) Alkanethiol Monolayer Modified Gold Electrode for On-Chip Electrochemical Immunoassay of pg Level Leptin. Analytical Sciences, 2011, 27, 465-469.	0.8	3
361	Integrated lab-on-a-chip: a combined sample preparation and PCR system as an ultrafast analytical tool for pathogen detection. Proceedings of SPIE, 2011, , .	0.8	0
362	An optical-coding method to measure particle distribution in microfluidic devices. AIP Advances, 2011, 1, 22155.	0.6	17
363	Towards High Concentration Enhancement of Microfluidic Temperature Gradient Focusing of Sample Solutes. , 2011, , .		0
364	Towards a point-of-care test for active tuberculosis: obstacles and opportunities. Nature Reviews Microbiology, 2011, 9, 204-213.	13.6	178
365	A disposable bio-nano-chip using agarose beads for high performance immunoassays. Biosensors and Bioelectronics, 2011, 28, 251-256.	5.3	15
366	Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosensors and Bioelectronics, 2011, 30, 145-150.	5.3	163
367	Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnology Advances, 2011, 29, 830-839.	6.0	256
368	Rapid Screening of Genetic Biomarkers of Infectious Agents Using Quantum Dot Barcodes. ACS Nano, 2011, 5, 1580-1587.	7.3	107
369	Miniaturized lensless imaging systems for cell and microorganism visualization in pointâ€ofâ€care testing. Biotechnology Journal, 2011, 6, 138-149.	1.8	84
370	Direct PCR analysis of biological samples in disposable plastic microreactors for biochip applications. Journal of Analytical Chemistry, 2011, 66, 528-534.	0.4	2
371	Microfluidics-based diagnostics of infectious diseases in the developing world. Nature Medicine, 2011, 17, 1015-1019.	15.2	654
372	Characterization of MEMS Devices for the Study ofÂSuperfluid Helium Films. Journal of Low Temperature Physics, 2011, 162, 661-668.	0.6	13
373	A blocking-free microfluidic fluorescence heterogeneous immunoassay for point-of-care diagnostics. Biomedical Microdevices, 2011, 13, 475-483.	1.4	9
374	A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge. Biomedical Microdevices, 2011, 13, 877-883.	1.4	43

	CITATION	Report	
# 375	ARTICLE Proton beam writing a platform technology for high quality three-dimensional metal mold fabrication for nanofluidic applications. Microsystem Technologies, 2011, 17, 1519-1527.	IF 1.2	CITATIONS 29
376	Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. Microfluidics and Nanofluidics, 2011, 10, 231-247.	1.0	211
377	Microfluidic whole-blood immunoassays. Microfluidics and Nanofluidics, 2011, 10, 941-964.	1.0	101
378	A disposable, integrated loop-mediated isothermal amplification cassette with thermally actuated valves. Microfluidics and Nanofluidics, 2011, 11, 209-220.	1.0	43
379	Unconventional Low-Cost Fabrication and Patterning Techniques for Point of Care Diagnostics. Annals of Biomedical Engineering, 2011, 39, 1313-1327.	1.3	63
380	A clinical trial for therapeutic drug monitoring using microchip-based fluorescence polarization immunoassay. Analytical and Bioanalytical Chemistry, 2011, 401, 2301-2305.	1.9	20
381	Microfluidic-enzymatic biosensor with immobilized tyrosinase for electrochemical detection of pipemidic acid in pharmaceutical samples. Journal of Electroanalytical Chemistry, 2011, 651, 204-210.	1.9	20
382	Compartmented microfluidic device for positioning and chemotactic migration of cells. Biochip Journal, 2011, 5, 129-136.	2.5	2
383	System Integration - A Major Step toward Lab on a Chip. Journal of Biological Engineering, 2011, 5, 6.	2.0	76
384	Fish-on-a-chip: a sensitive detection microfluidic system for alzheimer's disease. Journal of Biomedical Science, 2011, 18, 33.	2.6	25
385	Microfluidic Devices for Bioapplications. Small, 2011, 7, 12-48.	5.2	455
386	Location of Biomarkers and Reagents within Agarose Beads of a Programmable Bioâ€nanoâ€chip. Small, 2011, 7, 613-624.	5.2	56
387	Femtosecond laser microstructuring: an enabling tool for optofluidic labâ€onâ€chips. Laser and Photonics Reviews, 2011, 5, 442-463.	4.4	250
388	Biomimetic Smart Interface Materials for Biological Applications. Advanced Materials, 2011, 23, H57-77.	11.1	242
389	Metamaterials on Paper as a Sensing Platform. Advanced Materials, 2011, 23, 3197-3201.	11,1	210
390	Microfluidics for medical diagnostics and biosensors. Chemical Engineering Science, 2011, 66, 1490-1507.	1.9	272
391	Lab-on-a-chip technologies for massive parallel data generation in the life sciences: A review. Chemometrics and Intelligent Laboratory Systems, 2011, 108, 64-75.	1.8	52
392	Polymer waveguide sensor for early diagnostic and wellness monitoring. Biosensors and Bioelectronics, 2011, 26, 3666-3669.	5.3	11

#	Article	IF	CITATIONS
393	Sensitive and high-fidelity electrochemical immunoassay using carbon nanotubes coated with enzymes and magnetic nanoparticles. Biosensors and Bioelectronics, 2011, 26, 3192-3199.	5.3	37
394	Development of robust biocompatible silicone with high resistance to protein adsorption and bacterial adhesion. Acta Biomaterialia, 2011, 7, 2053-2059.	4.1	44
395	An integrated microfluidic system for fast, automatic detection of C-reactive protein. Sensors and Actuators B: Chemical, 2011, 157, 710-721.	4.0	91
396	Inertial microfluidics for continuous separation of cells and particles. Proceedings of SPIE, 2011, , .	0.8	2
397	Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 06F801.	0.6	28
398	Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst, The, 2011, 136, 1288.	1.7	60
399	Applying an optical space-time coding method to enhance light scattering signals in microfluidic devices. Biomicrofluidics, 2011, 5, 034116.	1.2	12
400	Micro-Total-Analysis Systems Based on a Laser Valve for Single Cells Auto Injection and Analysis. , 2011, , .		0
401	Nanoslit biosensor with single-pixel resolved kinetics capability: Finite element method and experimental results. , 2011, , .		0
402	A parallel microfluidic channel fixture fabricated using laser ablated plastic laminates for electrochemical and chemiluminescent biodetection of DNA. Biomicrofluidics, 2011, 5, 44115-4411514.	1.2	14
403	Shrink-film microfluidic education modules: Complete devices within minutes. Biomicrofluidics, 2011, 5, 22209.	1.2	30
404	Supernatant decanting on a centrifugal platform. Biomicrofluidics, 2011, 5, 13414.	1.2	10
405	Fabrication of a gel particle array in a microfluidic device for bioassays of protein and glucose in human urine samples. Biomicrofluidics, 2011, 5, 034112.	1.2	7
406	Point-of-Care Diagnostic Tools in Canadian Urban Mobile Health Clinic Contexts. Point of Care, 2011, 10, 40-44.	0.5	1
407	Immobilization of oligonucleotide-functionalized magnetic nanobeads in DNA-coils studied by electron microscopy and atomic force microscopy. Materials Research Society Symposia Proceedings, 2011, 1355, 1.	0.1	1
408	A non-contact method for spatially localized sedimentation of particles from liquid suspensions using Marangoni forces. Journal of Micromechanics and Microengineering, 2011, 21, 115028.	1.5	6
409	Microfluidic sensing: state of the art fabrication and detection techniques. Journal of Biomedical Optics, 2011, 16, 080901.	1.4	154

#	ARTICLE	IF	CITATIONS
411	An epidemiology of care approach to lab-on-a-chip systems in individualized medicine?. Personalized Medicine, 2011, 8, 587-590.	0.8	5
412	Lubrication of Highly Viscous Core-Annular Flows in Microfluidic Chambers. Journal of Fluids Engineering, Transactions of the ASME, 2011, 133, .	0.8	7
413	Development of a nanoparticle microfluidic colour device for point-of-care diagnostics. International Journal of Design Engineering, 2011, 4, 159.	0.3	1
414	Microfluidic Components, Devices and Integrated Lab-on-a-Chip Systems. , 2011, , 199-233.		0
415	Passive Fluidic Chip Composed of Integrated Vertical Capillary Tubes Developed for On-Site SPR Immunoassay Analysis Targeting Real Samples. Sensors, 2012, 12, 7095-7108.	2.1	12
416	Embedded Adaptive Optics for Ubiquitous Lab-on-a-Chip Readout on Intact Cell Phones. Sensors, 2012, 12, 8586-8600.	2.1	14
417	Porous Bead-Based Diagnostic Platforms: Bridging the Gaps in Healthcare. Sensors, 2012, 12, 15467-15499.	2.1	31
418	Adapting collaborative radiological practice to low-resource environments. , 2012, , .		13
419	A high sensitivity and low-cost polycarbonate (PC)-based biosensor. , 2012, , .		2
420	Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 2269-2303.	1.6	82
421	Comparison of the Idaho Technology FilmArray System to Real-Time PCR for Detection of Respiratory Pathogens in Children. Journal of Clinical Microbiology, 2012, 50, 364-371.	1.8	130
422	Microfluidics and the Life Sciences. Science Progress, 2012, 95, 175-198.	1.0	16
423	Smart rapid diagnostics test reader running on a cell-phone for real-time mapping of epidemics. , 2012, ,		5
424	Plasmon interferometers for high-throughput sensing. Optics Letters, 2012, 37, 3396.	1.7	17
425	Platform Technologies for Molecular Diagnostics Near the Patient's Bedside. Advances in Biochemical Engineering/Biotechnology, 2012, 133, 75-87.	0.6	6
426	Development and validation of a low cost blood filtration element separating plasma from undiluted whole blood. Biomicrofluidics, 2012, 6, 12804-128049.	1.2	51
427	<i>p</i> H controlled staining of CD4+ and CD19+ cells within functionalized microfluidic channel. Biomicrofluidics, 2012, 6, 44107.	1.2	6
428	Lamination and mixing in three fundamental flow sequences driven by electromagnetic body forces. Physical Review E, 2012, 86, 026313.	0.8	10

#	Article	IF	Citations
429	Microfluidic Technology for Molecular Diagnostics. Advances in Biochemical Engineering/Biotechnology, 2012, 133, 89-114.	0.6	8
430	Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15162-15167.	3.3	171
431	Opportunities for Improved Serodiagnosis of Human Tuberculosis, Bovine Tuberculosis, and Paratuberculosis. Veterinary Medicine International, 2012, 2012, 1-13.	0.6	33
432	Temperature and humidity trends in a health centre in the Gambia: implications for back up battery-life in tropical settings. , 2012, , .		1
433	Comparison of the GenMark Diagnostics eSensor Respiratory Viral Panel to Real-Time PCR for Detection of Respiratory Viruses in Children. Journal of Clinical Microbiology, 2012, 50, 3458-3465.	1.8	92
434	Direct quantitative analysis of HCV RNA by atomic force microscopy without labeling or amplification. Nucleic Acids Research, 2012, 40, 11728-11736.	6.5	20
435	2.自律駆動ãfžã, ¤ ,⁻ãfãfẽffãf—ã«ã,ˆã,‹ã,¤fãfžã,¢ãffã,»ã,¤Electrochemistry, 2012, 80, 429-433.	0.6	1
437	Emerging Nanotechnology for Efficient Capture of Circulating Tumor Cells. , 2012, , 172-190.		0
438	"Fluidic batteries―as low-cost sources of power in paper-based microfluidic devices. Lab on A Chip, 2012, 12, 1768.	3.1	157
439	An on-chip whole blood/plasma separator using hetero-packed beads at the inlet of a microchannel. Lab on A Chip, 2012, 12, 863.	3.1	40
440	Integrated rapid-diagnostic-test reader platform on a cellphone. Lab on A Chip, 2012, 12, 2678.	3.1	371
441	Point-of-care colorimetric detection with a smartphone. Lab on A Chip, 2012, 12, 4240.	3.1	507
442	A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab on A Chip, 2012, 12, 1052-1059.	3.1	129
443	Identification of Nonlinear Lateral Flow Immunoassay State-Space Models via Particle Filter Approach. IEEE Nanotechnology Magazine, 2012, 11, 321-327.	1.1	33
444	Microfluidic chips for biological and medical research. Russian Journal of General Chemistry, 2012, 82, 2132-2145.	0.3	9
445	A miniature gas analyzer made by integrating a chemoresistor with a microchannel. Lab on A Chip, 2012, 12, 1874.	3.1	43
448	Surface Plasmon Resonance Chemical Sensing on Cell Phones. Angewandte Chemie - International Edition, 2012, 51, 11585-11588.	7.2	179
449	Using Smell To Triage Samples in Pointâ€ofâ€Care Assays. Angewandte Chemie - International Edition, 2012, 51, 11145-11148.	7.2	34

#	Article	IF	CITATIONS
450	Millimeter scale separation of <scp>DNA</scp> with a replaceable polymer matrix. Electrophoresis, 2012, 33, 3213-3221.	1.3	9
451	Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluidics and Nanofluidics, 2012, 13, 769-787.	1.0	142
452	Surface Functionalized Nanofibrillar Cellulose (NFC) Film as a Platform for Immunoassays and Diagnostics. Biointerphases, 2012, 7, 61.	0.6	138
453	Fluorescent magnetic bead and cell differentiation/counting using a CMOS SPAD matrix. Sensors and Actuators B: Chemical, 2012, 174, 609-615.	4.0	14
454	Vapor Phase Deposition of Functional Polymers onto Paper-Based Microfluidic Devices for Advanced Unit Operations. Analytical Chemistry, 2012, 84, 10129-10135.	3.2	59
455	Controlled Release of Drugs from Gradient Hydrogels for High-Throughput Analysis of Cell–Drug Interactions. Analytical Chemistry, 2012, 84, 1302-1309.	3.2	36
456	Fabrication of Lateral Porous Silicon Membranes for Planar Microfluidic Devices. Procedia Engineering, 2012, 47, 801-804.	1.2	13
457	Atmospheric Pressure Plasma Hydrophilic Modification of a Silicone Surface. Journal of Adhesion, 2012, 88, 321-336.	1.8	27
458	Crowd-sourced BioGames: managing the big data problem for next-generation lab-on-a-chip platforms. Lab on A Chip, 2012, 12, 4102.	3.1	39
459	Engineering of polarized tubular structures in a microfluidic device to study calcium phosphate stone formation. Lab on A Chip, 2012, 12, 4037.	3.1	37
460	PDMS–glass bonding using grafted polymeric adhesive – alternative process flow for compatibility with patterned biological molecules. Lab on A Chip, 2012, 12, 4120.	3.1	24
461	An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst, The, 2012, 137, 519-525.	1.7	19
462	Microfluidic Apps for off-the-shelf instruments. Lab on A Chip, 2012, 12, 2464.	3.1	37
463	Modelling and design of polygon-shaped kinesin substrates for molecular communication. , 2012, , .		11
464	Campylobacter jejuni infection and virulence-associated genes in children with moderate to severe diarrhoea admitted to emergency rooms in northeastern Brazil. Journal of Medical Microbiology, 2012, 61, 507-513.	0.7	31
465	Velocity distributions in a micromixer measured by NMR imaging. Lab on A Chip, 2012, 12, 1823.	3.1	8
466	Quantitative modeling of the behaviour of microfluidic autoregulatory devices. Lab on A Chip, 2012, 12, 1890.	3.1	16
467	Design of small molecule reagents that enable signal amplification via an autocatalytic, base-mediated cascade elimination reaction. Chemical Communications, 2012, 48, 3018.	2.2	34

		ITATION REPORT	
#	Article	IF	CITATIONS
468	Non-emissive plastic colour filters for fluorescence detection. Lab on A Chip, 2012, 12, 4313.	3.1	13
469	An integrated chip for immunofluorescence and its application to analyze lysosomal storage disorders. Lab on A Chip, 2012, 12, 317-324.	3.1	25
470	Photoinduced Carbene Generation from Diazirine Modified Task Specific Phosphonium Salts To Prepare Robust Hydrophobic Coatings. Langmuir, 2012, 28, 12326-12333.	1.6	17
471	Counting leukocytes from whole blood using a lab-on-a-chip Coulter counter. , 2012, 2012, 6277-80.		2
472	Genomic DNA Extraction from Cells by Electroporation on an Integrated Microfluidic Platform. Analytical Chemistry, 2012, 84, 9632-9639.	3.2	45
473	Measuring Binding of Protein to Gel-Bound Ligands Using Magnetic Levitation. Journal of the American Chemical Society, 2012, 134, 5637-5646.	6.6	61
474	Salivary diagnostics for periodontal diseases. Journal of the American Dental Association, 2012, 143, 6S-11S.	0.7	69
475	Low-Resource Method for Extracting the Malarial Biomarker Histidine-Rich Protein II To Enhance Diagnostic Test Performance. Analytical Chemistry, 2012, 84, 6136-6142.	3.2	32
476	A fast and sensitive immunoassay of avian influenza virus based on label-free quantum dot probe and lateral flow test strip. Talanta, 2012, 100, 1-6.	2.9	101
477	A microfluidic gas analyzer for selective detection of biomarker gases. , 2012, , .		7
478	A microfluidic platform for rapid, stress-induced antibiotic susceptibility testing of Staphylococcus aureus. Lab on A Chip, 2012, 12, 4523.	3.1	59
479	Electrochemical immunoassay of cotinine in serum based on nanoparticle probe and immunochromatographic strip. Analytica Chimica Acta, 2012, 713, 50-55.	2.6	39
480	Fabrication of metallic stamps for injection moulding applications by combining proton beam writing and UV lithography. Applied Surface Science, 2012, 258, 4191-4194.	3.1	4
481	Translational research in the developing world: molecular medicine goes global. Trends in Molecular Medicine, 2012, 18, 135-137.	3.5	2
482	Diffusion Split-Flow Thin Cell (SPLITT) system for protein separations. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 902, 78-83.	1.2	10
483	Electrochemical DNA detection using Hoechst dyes in microfluidic chips. Current Applied Physics, 2012, 12, 1493-1496.	1.1	9
484	Biofunctional Paper via the Covalent Modification of Cellulose. Langmuir, 2012, 28, 11265-11273.	1.6	72
486	Eggshellâ€Inspired Biomineralization Generates Vaccines that Do Not Require Refrigeration. Angewandte Chemie - International Edition, 2012, 51, 10576-10579.	7.2	50

		CITATION RE	PORT	
#	Article		IF	CITATIONS
487	Spintronic platforms for biomedical applications. Lab on A Chip, 2012, 12, 546-557.		3.1	112
488	One-Step Homogeneous Magnetic Nanoparticle Immunoassay for Biomarker Detectio Blood Plasma. ACS Nano, 2012, 6, 3134-3141.	n Directly in	7.3	117
489	Formation of lipid bilayers inside microfluidic channel array for monitoring membrane- nanopores of phi29 DNA packaging nanomotor. Biomedical Microdevices, 2012, 14, 9	≥mbedded 21-928.	1.4	14
491	A low-cost, label-free DNA detection method in lab-on-chip format based on electrohyc instabilities, with application to long-range PCR. Lab on A Chip, 2012, 12, 4738.	Irodynamic	3.1	15
492	Commercialization of microfluidic point-of-care diagnostic devices. Lab on A Chip, 201	2, 12, 2118.	3.1	1,105
493	Selenium Nanoparticles as a Carrier of 5-Fluorouracil to Achieve Anticancer Synergism. 2012, 6, 6578-6591.	ACS Nano,	7.3	287
494	A microfluidic toolbox approach to CBRNE sensing. , 2012, , .			0
495	Polymeric Microfluidic Devices for High Performance Optical Imaging and Detection M Bioanalytics. Springer Series on Chemical Sensors and Biosensors, 2012, , 271-288.	ethods in	0.5	2
496	Diversification of Microfluidic Chip for Applications in Cell-Based Bioanalysis. Chinese J Analytical Chemistry, 2012, 40, 24-31.	ournal of	0.9	13
497	Rapid detection of avian influenza H5N1 virus using impedance measurement of immu coupled with RBC amplification. Biosensors and Bioelectronics, 2012, 38, 67-73.	ino-reaction	5.3	80
498	Miniaturized immunoassays: moving beyond the microplate. Bioanalysis, 2012, 4, 177	-188.	0.6	24
499	Rapid and highly sensitive detection of mercury ions using a fluorescence-based paper an N-alkylaminopyrazole ligand as a receptor. Journal of Materials Chemistry, 2012, 22	test strip with , 5978.	6.7	47
500	CHAPTER 2. Fluorophore Conjugates for Single Molecule Work. RSC Biomolecular Scie 34-74.	nces, 2012, ,	0.4	0
501	Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous Proceedings of SPIE, 2012, , .	flow PCR.	0.8	1
502	Lab-on-a-chip platforms from sample preparation via continuous-flow PCR to an ultrafa B-agents. , 2012, , .	ist detection of		0
503	Microfluidic diagnostics for the developing world. Lab on A Chip, 2012, 12, 1412.		3.1	201
504	Microfluidic Platforms for Lab-On-A-Chip Applications. , 2012, , 853-895.			17
506	Uniform mixing in paper-based microfluidic systems using surface acoustic waves. Lab 12, 773-779.	on A Chip, 2012,	3.1	153

#	Article	IF	CITATIONS
507	A Hybrid EKF and Switching PSO Algorithm for Joint State and Parameter Estimation of Lateral Flow Immunoassay Models. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 321-329.	1.9	100
508	Detection of allergies using a silver nanoparticle modified nanostructured biosensor. Sensors and Actuators B: Chemical, 2012, 171-172, 1095-1100.	4.0	19
509	Medical Devices and Biomaterials for the Developing World. SpringerBriefs in Public Health, 2012, , .	0.2	3
510	Chip Scale Optical Microresonator Sensors Integrated With Embedded Thin Film Photodetectors on Electrowetting Digital Microfluidics Platforms. IEEE Sensors Journal, 2012, 12, 1794-1800.	2.4	46
512	Capillary-Driven Toner-Based Microfluidic Devices for Clinical Diagnostics with Colorimetric Detection. Analytical Chemistry, 2012, 84, 9002-9007.	3.2	49
513	Review: Recent Developments in Enzyme-Based Biosensors for Biomedical Analysis. Analytical Letters, 2012, 45, 168-186.	1.0	148
514	Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance genemecA in bacteria. Lab on A Chip, 2012, 12, 333-339.	3.1	53
515	Optofluidic differential spectroscopy for absorbance detection of sub-nanolitre liquid samples. Lab on A Chip, 2012, 12, 1251.	3.1	16
516	Squeeze-chip: a finger-controlled microfluidic flow network device and its application to biochemical assays. Lab on A Chip, 2012, 12, 1587.	3.1	83
517	Tropical Bacterial Gastrointestinal Infections. Infectious Disease Clinics of North America, 2012, 26, 437-453.	1.9	11
518	Nanotechnology in Drug Delivery. , 0, , .		18
519	Towards a "Sample-In, Answer-Out―Point-of-Care Platform for Nucleic Acid Extraction and Amplification: Using an HPV E6/E7 mRNA Model System. Journal of Oncology, 2012, 2012, 1-12.	0.6	24
520	Electrochemical impedimetric biosensor based on a nanostructured polycarbonate substrate. International Journal of Nanomedicine, 2012, 7, 133.	3.3	7
522	In-Vitro Allergy Detection Using a Silver Nanoparticle Modified Nanostructured Biosensor. , 2012, , .		0
523	Microfluidic device for fast on-site biomedical diagnostic on the example of lithium analysis in blood. Biomedizinische Technik, 2012, 57, .	0.9	7
524	Recent Studies and Patents in Salivary Protein Biomarkers for Diabetes. Recent Patents on Biomarkers, 2012, 2, 1-5.	0.3	3
525	Neuroscience goes on a chip. Biosensors and Bioelectronics, 2012, 35, 1-13.	5.3	61
526	Antigen-responsive, microfluidic valves for single use diagnostics. Lab on A Chip, 2012, 12, 708.	3.1	16

#	Article	IF	CITATIONS
527	Microchip-based immunoassays with application of silicon dioxide nanoparticle film. Analytical and Bioanalytical Chemistry, 2012, 403, 2449-2457.	1.9	10
528	Point of Care Diagnostics: Status and Future. Analytical Chemistry, 2012, 84, 487-515.	3.2	962
529	Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature Chemistry, 2012, 4, 349-354.	6.6	541
530	Multiplexed Enrichment and Detection of Malarial Biomarkers Using a Stimuli-Responsive Iron Oxide and Gold Nanoparticle Reagent System. ACS Nano, 2012, 6, 6776-6785.	7.3	115
531	Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis, 2012, 33, 2253-2265.	1.3	45
532	Sameâ€day prenatal diagnosis of common chromosomal aneuploidies using microfluidicsâ€fluorescence in situ hybridization. Prenatal Diagnosis, 2012, 32, 321-328.	1.1	23
533	Femtosecond laser microstructuring for polymeric labâ€onâ€chips. Journal of Biophotonics, 2012, 5, 687-702.	1.1	56
534	Enhancement of Immunoassay's Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array. Analytical Chemistry, 2012, 84, 4489-4495.	3.2	132
535	Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing. Lab on A Chip, 2012, 12, 4168.	3.1	56
536	Optofluidic device for label-free cell classification from whole blood. Lab on A Chip, 2012, 12, 3791.	3.1	18
537	Critical Issues in Sensor Science To Aid Food and Water Safety. ACS Nano, 2012, 6, 4548-4556.	7.3	99
538	A portable and integrated nucleic acid amplification microfluidic chip for identifying bacteria. Lab on A Chip, 2012, 12, 1495.	3.1	76
541	Fully Integrated Thermoplastic Genosensor for the Highly Sensitive Detection and Identification of Multiâ€Ðrugâ€Resistant Tuberculosis. Angewandte Chemie - International Edition, 2012, 51, 4349-4353.	7.2	40
542	Significantly Improved Analytical Sensitivity of Lateral Flow Immunoassays by Using Thermal Contrast. Angewandte Chemie - International Edition, 2012, 51, 4358-4361.	7.2	155
543	Leukocyte counting from a small amount of whole blood using a sizeâ€controlled microcavity array. Biotechnology and Bioengineering, 2012, 109, 2017-2024.	1.7	34
544	Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab on A Chip, 2012, 12, 3249.	3.1	404
545	Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11981-11986.	3.3	148
546	Electrochemical detection of high-sensitivity CRP inside a microfluidic device by numerical and experimental studies. Biomedical Microdevices, 2012, 14, 375-384.	1.4	12

#	Article	IF	CITATIONS
547	Microfluidic assay without blocking for rapid HIV screening and confirmation. Biomedical Microdevices, 2012, 14, 631-640.	1.4	12
548	A passive microfluidic valve fabricated from a hydrogel filled with carbon nanotubes. Carbon, 2012, 50, 1417-1421.	5.4	17
549	Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization. Journal of Colloid and Interface Science, 2012, 365, 289-295.	5.0	16
550	Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosensors and Bioelectronics, 2012, 31, 212-218.	5.3	396
551	Biosensor-compatible encapsulation for pre-functionalized nanofluidic channels using asymmetric plasma treatment. Sensors and Actuators B: Chemical, 2012, 161, 805-810.	4.0	25
552	Ultrafast laser machining of tapered microchannels in glass and PDMS. Optics and Lasers in Engineering, 2012, 50, 210-214.	2.0	71
553	Recent developments in microfluidic devices for in vitro cell culture for cell-biology research. TrAC - Trends in Analytical Chemistry, 2012, 35, 150-164.	5.8	75
554	Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules. Analytical and Bioanalytical Chemistry, 2012, 402, 1601-1609.	1.9	41
555	Fast detection of genetic information by an optimized PCR in an interchangeable chip. Biomedical Microdevices, 2012, 14, 179-186.	1.4	34
556	Optothermal sample preconcentration and manipulation with temperature gradient focusing. Microfluidics and Nanofluidics, 2012, 12, 221-228.	1.0	16
557	Surface infusion micropatterning of elastomeric substrates. Microfluidics and Nanofluidics, 2012, 12, 451-464.	1.0	5
558	Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria. Journal of Nanobiotechnology, 2013, 11, 12.	4.2	33
559	Predictive, preventive, personalised and participatory periodontology: â€~the 5Ps age' has already started. EPMA Journal, 2013, 4, 16.	3.3	29
560	Quantifying the fluid volumes in paper microfluidic devices for dry eye test. Macromolecular Research, 2013, 21, 788-792.	1.0	4
561	Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab on A Chip, 2013, 13, 4015.	3.1	103
563	DNA Nanotechnology. , 2013, , .		5
564	Label-free optofluidic cell classifier utilizing support vector machines. Sensors and Actuators B: Chemical, 2013, 186, 327-332.	4.0	8
565	Lab-on-a-Chip, Micro- and Nanoscale Immunoassay Systems, and Microarrays. , 2013, , 175-202.		6

#	Article	IF	CITATIONS
566	Chemistry for Sustainable Development in Africa. , 2013, , .		3
567	Reagents in microfluidics: an â€~in' and â€~out' challenge. Chemical Society Reviews, 2013, 42, 8494.	18.7	71
568	Present Technology and Future Trends in Point-of-Care Microfluidic Diagnostics. Methods in Molecular Biology, 2013, 949, 3-23.	0.4	33
569	Theoretical analysis of a magnetophoresis-diffusion T-sensor immunoassay. Lab on A Chip, 2013, 13, 3935.	3.1	4
570	Colorimetric microchip assay using our own whole blood collected by a painless needle for home medical care. Analyst, The, 2013, 138, 6469.	1.7	3
571	Multiplexed Salivary Protein Profiling for Patients with Respiratory Diseases Using Fiber-Optic Bundles and Fluorescent Antibody-Based Microarrays. Analytical Chemistry, 2013, 85, 9272-9280.	3.2	26
572	Point-of-care nucleic acid detection using nanotechnology. Nanoscale, 2013, 5, 10141.	2.8	79
573	Programming paper networks for point of care diagnostics. , 2013, , .		21
574	Reagents and assay strategies for quantifying active enzyme analytes using a personal glucose meter. Chemical Communications, 2013, 49, 6134.	2.2	38
575	Medical Biosensors. , 2013, , 996-1006.		3
576	Carbon Nanotube-Patterned Surface-Based Recognition of Carcinoembryonic Antigens in Tumor Cells for Cancer Diagnosis. Journal of Physical Chemistry Letters, 2013, 4, 1126-1130.	2.1	14
577	Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems. Biomicrofluidics, 2013, 7, 54108.	1.2	32
578	Serial dilution via surface energy trap-assisted magnetic droplet manipulation. Lab on A Chip, 2013, 13, 4827.	3.1	31
579	Microfluidic devices with three-dimensional gold nanostructure for surface enhanced Raman scattering. , 2013, , .		0
580	Point-of-Care Assay Platform for Quantifying Active Enzymes to Femtomolar Levels Using Measurements of Time as the Readout. Analytical Chemistry, 2013, 85, 10432-10439.	3.2	89
581	Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab on A Chip, 2013, 13, 4352.	3.1	157
582	Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Science Translational Medicine, 2013, 5, 213ra165.	5.8	291
583	Optimization of a Paper-Based ELISA for a Human Performance Biomarker. Analytical Chemistry, 2013, 85, 11634-11642.	3.2	160

#	Article	IF	CITATIONS
584	High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18425-18430.	3.3	64
585	Increased Robustness of Single-Molecule Counting with Microfluidics, Digital Isothermal Amplification, and a Mobile Phone versus Real-Time Kinetic Measurements. Analytical Chemistry, 2013, 85, 11129-11136.	3.2	69
586	Point-of-Care Diagnostics on a Chip. Biological and Medical Physics Series, 2013, , .	0.3	22
587	Synthesis and antiprotozoal activity of nitazoxanide–N-methylbenzimidazole hybrids. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6838-6841.	1.0	29
588	Effect of wetting on capillary pumping in microchannels. Scientific Reports, 2013, 3, 1412.	1.6	24
589	Fullâ€Range Magnetic Manipulation of Droplets via Surface Energy Traps Enables Complex Bioassays. Advanced Materials, 2013, 25, 2903-2908.	11.1	118
590	Fast quantification of amino acids by microchip electrophoresis–mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 8131-8136.	1.9	14
591	The cell engineering construction and function evaluation of multi-layer biochip dialyzer. Biomedical Microdevices, 2013, 15, 781-791.	1.4	8
592	A handheld, cell phone-based electrochemical biodetector. , 2013, , .		3
593	Bioinspired Layered Nanoclays for Nutraceutical Delivery System. ACS Symposium Series, 2013, , 207-220.	0.5	12
594	Smartphone-based detection of unlabeled DNA via electrochemical dissolution. Analyst, The, 2013, 138, 2522.	1.7	15
595	Measurement of microchannel fluidic resistance with a standard voltage meter. Analytica Chimica Acta, 2013, 758, 101-107.	2.6	24
596	Flockâ€Based Microfluidics. Advanced Materials, 2013, 25, 2672-2676.	11.1	20
597	A nanochannel based on-line universal logic ion sensing platform. Nanoscale, 2013, 5, 8221.	2.8	6
598	Microfluidic devices for drug discovery and analysis. , 2013, , 231-280.		5
599	Real-time isothermal RNA amplification of toxic marine microalgae using preserved reagents on an integrated microfluidic platform. Analyst, The, 2013, 138, 593-602.	1.7	19
600	Dual-wavelength fluorescent detection of particles on a novel microfluidic chip. Lab on A Chip, 2013, 13, 843.	3.1	12
601	Identification of methicillin-resistant Staphylococcus aureus using an integrated and modular microfluidic system. Analyst, The, 2013, 138, 1075.	1.7	17

# 602	ARTICLE Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst, The, 2013, 138, 1450.	IF 1.7	CITATIONS
603	Electrolyte-free amperometric immunosensor using a dendritic nanotip. RSC Advances, 2013, 3, 4281.	1.7	15
604	Paper-based electroanalytical sensing platforms. Analytical Methods, 2013, 5, 103-110.	1.3	85
605	Optical imaging techniques for point-of-care diagnostics. Lab on A Chip, 2013, 13, 51-67.	3.1	320
606	Development of paper-based analytical kit for point-of-care testing. Expert Review of Molecular Diagnostics, 2013, 13, 83-91.	1.5	59
607	Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosensors and Bioelectronics, 2013, 40, 412-416.	5.3	263
608	Breast cancer stem cell enrichment and isolation by mammosphere culture and its potential diagnostic applications. Expert Review of Molecular Diagnostics, 2013, 13, 49-60.	1.5	30
609	Lab-on-a-Chip Biosensors. , 2013, , 225-256.		0
610	Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7, 13-23.	15.6	2,155
611	Paper-based nanobiosensors for diagnostics. Chemical Society Reviews, 2013, 42, 450-457.	18.7	481
612	Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab on A Chip, 2013, 13, 386-390.	3.1	111
613	Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators. Microfluidics and Nanofluidics, 2013, 14, 345-358.	1.0	37
614	DNA diagnosis in a microseparator based on particle aggregation. Biosensors and Bioelectronics, 2013, 50, 8-13.	5.3	5
615	Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water. Talanta, 2013, 114, 291-296.	2.9	80
616	Concave porosity non-polar beads by a modified microbubble fabrication. Materials Letters, 2013, 98, 105-107.	1.3	0
617	Manufacturing all-polymer laminar flow-based fuel cells. Journal of Power Sources, 2013, 240, 486-493.	4.0	25
618	Bio-inspired mammalian hair-fabricated microfluidics. Materials Letters, 2013, 106, 208-212.	1.3	5
619	Ultrahigh-Throughput Approach for Analyzing Single-Cell Genomic Damage with an Agarose-Based Microfluidic Comet Array. Analytical Chemistry, 2013, 85, 4066-4073.	3.2	30

#	ARTICLE	IF	CITATIONS
620	Pre-storage of gelified reagents in a lab-on-a-foil system for rapid nucleic acid analysis. Lab on A Chip, 2013, 13, 1509.	3.1	25
621	Cyclic Denaturation and Renaturation of Double-Stranded DNA by Redox-State Switching of DNA Intercalators. Journal of the American Chemical Society, 2013, 135, 5399-5407.	6.6	21
622	Peripheral Blood Stem Cells. , 2013, , 573-586.		1
623	Applications of Microfluidics for Molecular Diagnostics. Methods in Molecular Biology, 2013, 949, 305-334.	0.4	33
624	Bubble gate for in-plane flow control. Lab on A Chip, 2013, 13, 2519.	3.1	19
625	A deep-blue OLED-based biochip for protein microarray fluorescence detection. Biosensors and Bioelectronics, 2013, 46, 44-47.	5.3	36
626	Mobile Device for Disease Diagnosis and Data Tracking in Resource-Limited Settings. Clinical Chemistry, 2013, 59, 629-640.	1.5	70
627	Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab on A Chip, 2013, 13, 1677.	3.1	168
628	Time Series Modeling of Nano-Gold Immunochromatographic Assay via Expectation Maximization Algorithm. IEEE Transactions on Biomedical Engineering, 2013, 60, 3418-3424.	2.5	27
629	High Performance of Cyclic Olefin Copolymer-Based Capillary Electrophoretic Chips. ACS Applied Materials & Interfaces, 2013, 5, 5683-5689.	4.0	21
630	Target-Responsive "Sweet―Hydrogel with Glucometer Readout for Portable and Quantitative Detection of Non-Glucose Targets. Journal of the American Chemical Society, 2013, 135, 3748-3751.	6.6	303
631	Advances in materials that enable quantitative point-of-care assays. MRS Bulletin, 2013, 38, 315-319.	1.7	17
632	Phase-Switching Depolymerizable Poly(carbamate) Oligomers for Signal Amplification in Quantitative Time-Based Assays. Macromolecules, 2013, 46, 5177-5183.	2.2	52
633	Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors. Analytica Chimica Acta, 2013, 759, 74-80.	2.6	38
634	A fluorescence based method for the quantification of surface functional groups in closed micro- and nanofluidic channels. Biomicrofluidics, 2013, 7, 026503.	1.2	4
635	Fluid transport in thin liquid films using traveling thermal waves. Physics of Fluids, 2013, 25, 072101.	1.6	11
637	Simple replica micromolding of biocompatible styrenic elastomers. Lab on A Chip, 2013, 13, 2773.	3.1	54
638	Paper-based microfluidic point-of-care diagnostic devices. Lab on A Chip, 2013, 13, 2210.	3.1	1,615

# 639	ARTICLE Rapid electrochemical detection on a mobile phone. Lab on A Chip, 2013, 13, 2950.	IF 3.1	Citations 236
640	Microfluidic Tools for DNA Analysis. , 2013, , 113-153.		1
641	Low-Cost Microdevices for Point-of-Care Testing. Biological and Medical Physics Series, 2013, , 3-21.	0.3	32
642	One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst, The, 2013, 138, 671-676.	1.7	133
643	Microfluidic Amperometric Sensor for Analysis of Nitric Oxide in Whole Blood. Analytical Chemistry, 2013, 85, 6066-6072.	3.2	47
644	Monitoring of benzene-induced hematotoxicity in mice by serial leukocyte counting using a microcavity array. Biosensors and Bioelectronics, 2013, 40, 110-114.	5.3	8
645	Automated processing integrated with a microflow cytometer for pathogen detection in clinical matrices. Biosensors and Bioelectronics, 2013, 40, 10-16.	5.3	22
646	Crystallization of the Large Membrane Protein Complex Photosystem I in a Microfluidic Channel. ACS Nano, 2013, 7, 10534-10543.	7.3	16
647	Catch and Release: Integrated System for Multiplexed Detection of Bacteria. Analytical Chemistry, 2013, 85, 4944-4950.	3.2	34
648	Simple, Low-Cost Styrene-Ethylene/Butylene-Styrene Microdevices for Electrokinetic Applications. Analytical Chemistry, 2013, 85, 11700-11704.	3.2	18
649	Bitumen–Toluene Mutual Diffusion Coefficients Using Microfluidics. Energy & Fuels, 2013, 27, 2042-2048.	2.5	64
650	Fuel Cell Virus Sensor Using Virus Capture within Antibody-Coated Nanochannels. Analytical Chemistry, 2013, 85, 1350-1357.	3.2	12
651	Lightâ€Governed Capillary Flow in Microfluidic Systems. Small, 2013, 9, 107-114.	5.2	14
652	Antibody-based Blood Bioparticle Capture and Separation Using Microfluidics for Global Health. , 2013, , 417-450.		0
653	A Rapid, Multiplexed, High-Throughput Flow-Through Membrane Immunoassay: A Convenient Alternative to ELISA. Diagnostics, 2013, 3, 244-260.	1.3	30
654	Behaviour of Zinc Complexes and Zinc Sulphide Nanoparticles Revealed by Using Screen Printed Electrodes and Spectrometry. Sensors, 2013, 13, 14417-14437.	2.1	15
655	Microfluidic devices for viral detection. , 2013, , 527-556.		5
656	Instrument-free exothermic heating with phase change temperature control for paper microfluidic devices. Proceedings of SPIE, 2013, 8615, 86150R.	0.8	18

щ	Article	IF	Citations
# 657	Integrated optical microfluidic biosensor using a polycarbazole photodetector for point-of-care	ır 1.4	53
037	detection of hormonal compounds. Journal of Biomédical Optics, 2013, 18, 097001.	1,4	55
658	Gold Immunochromatography Assay - A Newly Rapid Detection Technique for Aquatic Products. Advanced Materials Research, 0, 690-693, 1449-1454.	0.3	Ο
659	Development of microfluidic-based telemedicine for diabetes care and screening. Transactions of the Institute of Measurement and Control, 2013, 35, 893-900.	1.1	8
660	Performance Evaluation of Fast Microfluidic Thermal Lysis of Bacteria for Diagnostic Sample Preparation. Diagnostics, 2013, 3, 105-116.	1.3	40
661	The future of microfluidic point-of-care diagnostic devices. Bioanalysis, 2013, 5, 1-3.	0.6	69
662	An effective splitting-and-recombination micromixer with self-rotated contact surface for wide Reynolds number range applications. Biomicrofluidics, 2013, 7, 54121.	1.2	56
663	Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation. Biomicrofluidics, 2013, 7, 44109.	1.2	23
664	Surface coatings for microfluidic-based biomedical devices. , 2013, , 63-99.		11
665	Two dimensional barcode-inspired automatic analysis for arrayed microfluidic immunoassays. Biomicrofluidics, 2013, 7, 34110.	1.2	12
666	Optofluidic Devices with Surface-Enhanced Raman Scattering Active Three-Dimensional Gold Nanostructure. Japanese Journal of Applied Physics, 2013, 52, 06GK12.	0.8	18
667	Microfluidic Chip-Based Detection and Intraspecies Strain Discrimination of Salmonella Serovars Derived from Whole Blood of Septic Mice. Applied and Environmental Microbiology, 2013, 79, 2302-2311.	1.4	40
669	Application areas of molecular communication. , 0, , 152-168.		0
670	Metabolic viability of <i><scp>E</scp>scherichia coli</i> trapped by dielectrophoresis in microfluidics. Electrophoresis, 2013, 34, 575-582.	1.3	18
671	Emerging Requirements for Technology Management: A Sector-based Scenario Planning Approach. Journal of Technology Management and Innovation, 2013, 8, 7-8.	0.5	3
672	Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis. PLoS ONE, 2013, 8, e60059.	1.1	60
673	Neonatal Sepsis due to Coagulase-Negative Staphylococci. Clinical and Developmental Immunology, 2013, 2013, 1-10.	3.3	143
674	Electrochemiluminescence of peroxydisulfate using flower-like Ag@Au-paper electrode and Pd@Au-assisted multiple enzymatic labels. Electrochimica Acta, 2014, 141, 391-397.	2.6	8
675	Molecular diagnosis of infectious diarrhea: focus on enteric protozoa. Expert Review of Molecular Diagnostics, 2014, 14, 935-946.	1.5	10

#	Article	IF	CITATIONS
676	Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nature Communications, 2014, 5, 3908.	5.8	58
677	A centrifugal microfluidic platform for point-of-care diagnostic applications. South African Journal of Science, 2014, 110, 1-7.	0.3	23
678	Miniaturized Detection Systems. , 2014, , 319-348.		1
679	Bioactive Paper Sensor Based on the Acetylcholinesterase for the Rapid Detection of Organophosphate and Carbamate Pesticides. International Journal of Analytical Chemistry, 2014, 2014, 1-8.	0.4	55
680	High performance magnesium anode in paper-based microfluidic battery, powering on-chip fluorescence assay. Biomicrofluidics, 2014, 8, 054104.	1.2	29
681	A highly sensitive microfluidics system for multiplexed surface-enhanced Raman scattering (SERS) detection based on Ag nanodot arrays. RSC Advances, 2014, 4, 54434-54440.	1.7	37
682	Au@Pt Nanoparticle Encapsulated Targetâ€Responsive Hydrogel with Volumetric Barâ€Chart Chip Readout for Quantitative Pointâ€ofâ€Care Testing. Angewandte Chemie - International Edition, 2014, 53, 12503-12507.	7.2	205
683	Emerging microengineered tools for functional analysis and phenotyping of blood cells. Trends in Biotechnology, 2014, 32, 586-594.	4.9	18
684	Improving the binding efficiency of quartz crystal microbalance biosensors by applying the electrothermal effect. Biomicrofluidics, 2014, 8, 054116.	1.2	11
685	A Bubbleâ€Mediated Intelligent Microscale Electrochemical Device for Singleâ€Step Quantitative Bioassays. Advanced Materials, 2014, 26, 4671-4676.	11.1	99
686	Rareâ€Cell Enrichment by a Rapid, Labelâ€Free, Ultrasonic Isopycnic Technique for Medical Diagnostics. Angewandte Chemie - International Edition, 2014, 53, 5587-5590.	7.2	51
687	Effect of the crossing-structure sequence on mixing performance within three-dimensional micromixers. Biomicrofluidics, 2014, 8, 034106.	1.2	23
688	3D-Printed Paper Spray Ionization Cartridge with Fast Wetting and Continuous Solvent Supply Features. Analytical Chemistry, 2014, 86, 11657-11665.	3.2	71
689	Mesoscale 3D manufacturing: varying focusing conditions for efficient direct laser writing of polymers. , 2014, , .		2
690	A microfluidic platform with integrated arrays for immunologic assays for biological pathogen detection. Proceedings of SPIE, 2014, , .	0.8	4
691	Heterogeneous integration of gels into microfluidics using a mesh carrier. Biomedical Microdevices, 2014, 16, 829-835.	1.4	4
692	Evaluation of Optical Detection Platforms for Multiplexed Detection of Proteins and the Need for Point-of-Care Biosensors for Clinical Use. Sensors, 2014, 14, 22313-22341.	2.1	67
693	Opportunities and risks of diagnostic lab-on-a-chip systems in healthcare from a health system stakeholder's perspective. Personalized Medicine, 2014, 11, 273-283.	0.8	3

#	Article	IF	CITATIONS
694	Hydrogel-based capillary flow pumping in a hydrophobic microfluidic channel. Japanese Journal of Applied Physics, 2014, 53, 067201.	0.8	8
695	An emerging interface between life science and nanotechnology: present status and prospects of reproductive healthcare aided by nano-biotechnology. Nano Reviews, 2014, 5, 22762.	3.7	53
696	Development of a microchip Europium nanoparticle immunoassay for sensitive point-of-care HIV detection. Biosensors and Bioelectronics, 2014, 61, 177-183.	5.3	41
697	Characterization of Leaf-Inspired Microfluidic Chips for Pumpless Fluid Transport. Journal of Bionic Engineering, 2014, 11, 109-114.	2.7	25
698	Celluloseâ€Based Diagnostic Devices for Diagnosing Serotypeâ€2 Dengue Fever in Human Serum. Advanced Healthcare Materials, 2014, 3, 187-196.	3.9	41
699	Hydroxypropyl Cellulose Methacrylate as a Photoâ€Patternable and Biodegradable Hybrid Paper Substrate for Cell Culture and Other Bioapplications. Advanced Healthcare Materials, 2014, 3, 543-554.	3.9	25
700	Microfluidics for particle synthesis from photocrosslinkable materials. Microfluidics and Nanofluidics, 2014, 17, 431-455.	1.0	37
701	Automating fluid delivery in a capillary microfluidic device using low-voltage electrowetting valves. Microfluidics and Nanofluidics, 2014, 16, 879-886.	1.0	13
702	The transformation of common office supplies into a low-cost optical biosensing platform. Biosensors and Bioelectronics, 2014, 59, 259-268.	5.3	24
703	Biosensor design based on Marangoni flow in an evaporating drop. Lab on A Chip, 2014, 14, 315-324.	3.1	72
704	The present and future role of microfluidics in biomedical research. Nature, 2014, 507, 181-189.	13.7	2,259
705	Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics, 2014, 54, 585-597.	5.3	826
706	Integration of sample pretreatment, μPCR, and detection for a total genetic analysis microsystem. Mikrochimica Acta, 2014, 181, 1655-1668.	2.5	14
707	Omniphobic "R ^F Paper―Produced by Silanization of Paper with Fluoroalkyltrichlorosilanes. Advanced Functional Materials, 2014, 24, 60-70.	7.8	169
708	Characterizing asthma from a drop of blood using neutrophil chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5813-5818.	3.3	64
709	Immunochromatographic Diagnostic Test Analysis Using Google Glass. ACS Nano, 2014, 8, 3069-3079.	7.3	171
710	Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles. International Journal of Pharmaceutics, 2014, 467, 60-69.	2.6	39
711	Image-Based Quantitative Analysis of Gold Immunochromatographic Strip via Cellular Neural Network Approach. IEEE Transactions on Medical Imaging, 2014, 33, 1129-1136.	5.4	138

#	Article	IF	CITATIONS
712	Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3671-3676.	3.3	167
713	Toward Integrated Molecular Diagnostic System (<formula formulatype="inline"><tex) 0.784<="" 1="" etqq1="" td="" tj=""><td>314 rgBT 2.5</td><td>Overlock 10/ 17</td></tex)></formula>	314 rgBT 2.5	Overlock 10/ 17
/10	on Biomedical Engineering, 2014, 61, 1506-1521.	2.0	17
714	The evolving engineer. AICHE Journal, 2014, 60, 1956-1963.	1.8	5
715	Application of microfluidics in waterborne pathogen monitoring: A review. Water Research, 2014, 55, 256-271.	5.3	73
716	Immunology on chip: Promises and opportunities. Biotechnology Advances, 2014, 32, 333-346.	6.0	40
717	Composite graphene/semiconductor nanostructures for energy storage. , 2014, , 213-266.		2
718	Particle manipulation by phase-shifting of surface acoustic waves. Sensors and Actuators A: Physical, 2014, 207, 39-42.	2.0	22
719	High-Pressure Open-Channel On-Chip Electroosmotic Pump for Nanoflow High Performance Liquid Chromatography. Analytical Chemistry, 2014, 86, 1958-1964.	3.2	39
720	A Biocompatible Low Temperature Coâ€fired Ceramic Substrate for Biosensors. International Journal of Applied Ceramic Technology, 2014, 11, 436-442.	1.1	7
721	A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors and Actuators B: Chemical, 2014, 196, 156-160.	4.0	244
722	Paperâ€Based Electrochemical Biosensors: From Test Strips to Paperâ€Based Microfluidics. Electroanalysis, 2014, 26, 1214-1223.	1.5	107
723	Recent advances in Iowâ€cost microfluidic platforms for diagnostic applications. Electrophoresis, 2014, 35, 2309-2324.	1.3	124
724	A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection. Analyst, The, 2014, 139, 482-487.	1.7	92
725	The LabTube – a novel microfluidic platform for assay automation in laboratory centrifuges. Lab on A Chip, 2014, 14, 1527-1537.	3.1	31
726	Lab-in-a-pen: a diagnostics format familiar to patients for low-resource settings. Lab on A Chip, 2014, 14, 957.	3.1	24
727	Agarose-Based Microfluidic Device for Point-of-Care Concentration and Detection of Pathogen. Analytical Chemistry, 2014, 86, 10653-10659.	3.2	33
728	Folding Analytical Devices for Electrochemical ELISA in Hydrophobic R ^H Paper. Analytical Chemistry, 2014, 86, 11999-12007.	3.2	127
729	The use of polyurethane as an elastomer in thermoplastic microfluidic devices and the study of its creep properties. Electrophoresis, 2014, 35, 289-297.	1.3	23

#	Article	IF	CITATIONS
730	High-throughput microfluidic systems for disease detection. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2014, 37, 670-675.	0.6	1
731	An integrated microfluidic device utilizing dielectrophoresis and multiplex array PCR for point-of-care detection of pathogens. Lab on A Chip, 2014, 14, 3917-3924.	3.1	64
732	Paper-Based Microfluidics: Fabrication Technique and Dynamics of Capillary-Driven Surface Flow. ACS Applied Materials & Interfaces, 2014, 6, 20060-20066.	4.0	107
733	Laser-induced photo-polymerisation for creation of paper-based fluidic devices. Lab on A Chip, 2014, 14, 4567-4574.	3.1	72
734	Online monodisperse droplets based liquid–liquid extraction on a continuously flowing system by using microfluidic devices. RSC Advances, 2014, 4, 11919.	1.7	19
735	Moving towards individualized medicine with microfluidics technology. RSC Advances, 2014, 4, 11499.	1.7	29
736	Membraneless hydrogen peroxide micro semi-fuel cell for portable applications. RSC Advances, 2014, 4, 37284-37287.	1.7	21
737	A Markov Chain Channel Model for Active Transport Molecular Communication. IEEE Transactions on Signal Processing, 2014, 62, 2424-2436.	3.2	86
738	A hybrid paper and microfluidic chip with electrowetting valves and colorimetric detection. Analyst, The, 2014, 139, 3002.	1.7	19
739	Self-assembly of size-tunable supramolecular nanoparticle clusters in a microfluidic channel. Materials Horizons, 2014, 1, 595-601.	6.4	6
740	Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab on A Chip, 2014, 14, 3790.	3.1	121
741	Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab on A Chip, 2014, 14, 3187-3194.	3.1	306
742	Site-specific immobilization of proteins on non-conventional substrates via solvent-free initiated chemical vapour deposition (iCVD) process. Polymer Chemistry, 2014, 5, 4459.	1.9	20
743	Cotton fabric as an immobilization matrix for low-cost and quick colorimetric enzyme-linked immunosorbent assay (ELISA). Analytical Methods, 2014, 6, 7175-7180.	1.3	42
745	Investigation of Laplace Barriers for Arrayed Electrowetting Lab-on-a-Chip. Langmuir, 2014, 30, 5349-5356.	1.6	16
746	The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications. Lab on A Chip, 2014, 14, 4616-4628.	3.1	95
747	A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 2223-2230.	1.3	24
748	Three-dimensional, sharp-tipped electrodes concentrate applied fields to enable direct electrical release of intact biomarkers from cells. Lab on A Chip, 2014, 14, 1785.	3.1	26

#	Article	IF	CITATIONS
749	In Situ Functionalization of Stable 3D Nest‣ike Networks in Confined Channels for Microfluidic Enrichment and Detection. Advanced Functional Materials, 2014, 24, 1017-1026.	7.8	37
750	A paper-based amperometric glucose biosensor developed with Prussian Blue-modified screen-printed electrodes. Sensors and Actuators B: Chemical, 2014, 204, 414-420.	4.0	69
751	Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices. Analytical Chemistry, 2014, 86, 9554-9562.	3.2	348
752	Nanoparticle approaches against bacterial infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 532-547.	3.3	225
753	A nanostructured aluminum oxide-based microfluidic device for enhancing immunoassay's fluorescence and detection sensitivity. Biomedical Microdevices, 2014, 16, 771-777.	1.4	11
754	An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate. International Journal of Advanced Manufacturing Technology, 2014, 71, 1623-1630.	1.5	74
756	Future of portable devices for plant pathogen diagnosis. Lab on A Chip, 2014, 14, 2887-2904.	3.1	81
757	Chemiluminescence immunoassay based on microfluidic chips for α-fetoprotein. Clinica Chimica Acta, 2014, 431, 113-117.	0.5	44
758	Simultaneous concentration and detection of biomarkers on paper. Lab on A Chip, 2014, 14, 3021-3028.	3.1	44
759	Microfluidic Platform for Direct Capture and Analysis of Airborne <i>Mycobacterium tuberculosis</i> . Analytical Chemistry, 2014, 86, 5815-5821.	3.2	53
760	CMOS Based Lab-on-a-Chip: Applications, Challenges and Future Trends. IEEE Circuits and Systems Magazine, 2014, 14, 27-47.	2.6	34
761	A device architecture for three-dimensional, patterned paper immunoassays. Lab on A Chip, 2014, 14, 4653-4658.	3.1	72
762	Enzyme Biofuel Cells: Thermodynamics, Kinetics and Challenges in Applicability. ChemElectroChem, 2014, 1, 1751-1777.	1.7	104
763	Nanoshuttles propelled by motor proteins sequentially assemble molecular cargo in a microfluidic device. Lab on A Chip, 2014, 14, 3729-3738.	3.1	18
764	Molecular Communication Among Biological Nanomachines: A Layered Architecture and Research Issues. IEEE Transactions on Nanobioscience, 2014, 13, 169-197.	2.2	202
765	Evaluation of Curetis Unyvero, a Multiplex PCR-Based Testing System, for Rapid Detection of Bacteria and Antibiotic Resistance and Impact of the Assay on Management of Severe Nosocomial Pneumonia. Journal of Clinical Microbiology, 2014, 52, 2487-2492.	1.8	70
766	Bubble-free and pulse-free fluid delivery into microfluidic devices. Biomicrofluidics, 2014, 8, 014102.	1.2	17
767	Labâ€onâ€aâ€Chip Reactor Imaging with Unprecedented Chemical Resolution by Hadamardâ€Encoded Remote Detection NMR. Angewandte Chemie - International Edition, 2014, 53, 11289-11293.	7.2	15

#	Article	IF	CITATIONS
768	Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone. RSC Advances, 2014, 4, 1334-1340.	1.7	95
769	Microscale immobilized enzyme reactors in proteomics: Latest developments. Journal of Chromatography A, 2014, 1324, 1-10.	1.8	77
770	Simulation on the coalescence of the moving liquid column and droplet in a hydrophilic microchannel by volume of fluid method. Applied Thermal Engineering, 2014, 64, 129-138.	3.0	18
771	Sensitive, rapid and quantitative detection of substance P in serum samples using an integrated microfluidic immunochip. Biosensors and Bioelectronics, 2014, 58, 186-192.	5.3	19
772	A disposable dry film photoresist-based microcapillary immunosensor chip for rapid detection of Epstein–Barr virus infection. Sensors and Actuators B: Chemical, 2014, 191, 813-820.	4.0	19
773	An automatic enzyme immunoassay based on a chemiluminescent lateral flow immunosensor. Biosensors and Bioelectronics, 2014, 53, 330-335.	5.3	78
774	Advances in Plasmonic Technologies for Point of Care Applications. Chemical Reviews, 2014, 114, 5728-5752.	23.0	337
775	Zinc oxide nanoparticles based microfluidic immunosensor applied in congenital hypothyroidism screening. Analytical and Bioanalytical Chemistry, 2014, 406, 4677-4684.	1.9	8
776	Hemolysis-free blood plasma separation. Lab on A Chip, 2014, 14, 2287-2292.	3.1	74
777	Miniaturization of electrochemical flow devices. Electrochemistry Communications, 2014, 45, 91-94.	2.3	31
778	Blood plasma separation microfluidic chip with gradual filtration. Microelectronic Engineering, 2014, 128, 36-41.	1.1	34
779	A versatile-deployable bacterial detection system for food and environmental safety based on LabTube-automated DNA purification, LabReader-integrated amplification, readout and analysis. Analyst, The, 2014, 139, 2788-2798.	1.7	7
780	Cellulose Paper Sensors Modified with Zwitterionic Poly(carboxybetaine) for Sensing and Detection in Complex Media. Analytical Chemistry, 2014, 86, 2871-2875.	3.2	71
781	Recent advances in molecular diagnostics of hepatitis B virus. World Journal of Gastroenterology, 2014, 20, 14615.	1.4	34
782	Stress-induced Antibiotic Susceptibility Testing on a Chip. Journal of Visualized Experiments, 2014, , e50828.	0.2	4
783	A water-based molecular flip-flop. EPJ Applied Physics, 2014, 68, 30403.	0.3	3
785	Next-generation confirmatory disease diagnostics. , 2014, , .		0
786	Rareâ€Cell Enrichment by a Rapid, Labelâ€Free, Ultrasonic Isopycnic Technique for Medical Diagnostics. Angewandte Chemie, 2014, 126, 5693-5696.	1.6	11

#	Article	IF	CITATIONS
787	Laser Machined Plastic Laminates: Towards Portable Diagnostic Devices for Use in Low Resource Environments. Electroanalysis, 2015, 27, 2503-2512.	1.5	1
788	Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface. Scientific Reports, 2015, 5, 12326.	1.6	65
789	Detection of Proteins and Nucleic Acids with Laminar Flow-Assisted Dendritic Amplification on Power-Free Microfluidic Chip. Bunseki Kagaku, 2015, 64, 319-328.	0.1	2
790	Diagnostic lab-on-a-chip systems at the doctor's office: a survey amongst German physicians in routine medical care. Personalized Medicine, 2015, 12, 453-462.	0.8	0
791	Analytic structure of a drag-driven confined dust vortex flow in plasma. Physical Review E, 2015, 91, 063110.	0.8	11
792	Design of a Pneumatic Flow Rate Control Microvalve Driven by a Stepper-Motor. Applied Mechanics and Materials, 2015, 779, 244-249.	0.2	0
793	Oscillation and collective conveyance of water-in-oil droplets by microfluidic bolus flow. Applied Physics Letters, 2015, 107, .	1.5	6
794	Cotton-based Diagnostic Devices. Scientific Reports, 2014, 4, 6976.	1.6	29
795	On-chip Extraction of Intracellular Molecules in White Blood Cells from Whole Blood. Scientific Reports, 2015, 5, 15167.	1.6	36
796	Printed Flexible Plastic Microchip for Viral Load Measurement through Quantitative Detection of Viruses in Plasma and Saliva. Scientific Reports, 2015, 5, 9919.	1.6	25
797	A novel cell weighing method based on the minimum immobilization pressure for biological applications. Journal of Applied Physics, 2015, 118, .	1.1	9
798	Microfluidic size separation of cells and particles using a swinging bucket centrifuge. Biomicrofluidics, 2015, 9, 054114.	1.2	7
799	Biofunctionalized nanoslits for wash-free and spatially resolved real-time sensing with full target capture. Biomicrofluidics, 2015, 9, 034103.	1.2	13
800	A Streaming Potential/Currentâ€Based Microfluidic Direct Current Generator for Selfâ€Powered Nanosystems. Advanced Materials, 2015, 27, 6482-6487.	11.1	104
801	Surface Tension Triggered Wetting and Point of Care Sensor Design. Advanced Healthcare Materials, 2015, 4, 1654-1657.	3.9	4
803	Microbubble Fabrication of Concave-porosity PDMS Beads. Journal of Visualized Experiments, 2015, , e53440.	0.2	2
804	Phenylalanine Ammonia‣yase atalyzed Deamination of an Acyclic Amino Acid: Enzyme Mechanistic Studies Aided by a Novel Microreactor Filled with Magnetic Nanoparticles. ChemBioChem, 2015, 16, 2283-2288.	1.3	46
805	Electrochemical hematocrit determination in a direct current microfluidic device. Electrophoresis, 2015, 36, 978-985.	1.3	19

#	Article	IF	CITATIONS
806	Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis, 2015, 36, 1744-1753.	1.3	62
807	PMMA Platform Based Micro Fluidic Mixer for the Detection of MicroRNA- 18a from Retinoblastoma Serum. Journal of Analytical & Bioanalytical Techniques, 2015, 6, .	0.6	1
808	Isothermal Amplification and Quantification of Nucleic Acids and its Use in Microsystems. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	11
809	Next Generation Programmable Bio-Nano-Chip System for On-Site Quantitative Drug Detection in Oral Fluids. Journal of Drug Abuse, 2015, 01, .	0.2	4
810	Paper-based smart microfluidics for education and low-cost diagnostics. South African Journal of Science, 2015, 111, 10.	0.3	18
811	Nanotechnology in dentistry: prevention, diagnosis, and therapy. International Journal of Nanomedicine, 2015, 10, 6371.	3.3	85
812	Single Cell Electrical Characterization Techniques. International Journal of Molecular Sciences, 2015, 16, 12686-12712.	1.8	70
813	Surface and Electrical Characterization of Ag/AgCl Pseudo-Reference Electrodes Manufactured with Commercially Available PCB Technologies. Sensors, 2015, 15, 18102-18113.	2.1	38
814	A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings. PLoS ONE, 2015, 10, e0131701.	1.1	51
815	Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics. Biosensors, 2015, 5, 577-601.	2.3	259
816	AMPFLUID: Aggregation Magnified Post-Assay Fluorescence for Ultrasensitive Immunodetection on Digital Microfluidics. Proceedings of the IEEE, 2015, 103, 225-235.	16.4	15
817	A novel fluidic control method for nanofluidics by solvent–solvent interaction in a hybrid chip. Lab on A Chip, 2015, 15, 1004-1008.	3.1	3
818	A low cost design and fabrication method for developing a leak proof paper based microfluidic device with customized test zone. Biomicrofluidics, 2015, 9, 026502.	1.2	9
819	PDMS based micro-optics and microchannels for lab-on-a-chip application. Proceedings of SPIE, 2015, , .	0.8	Ο
820	Imaging and Visualization in The Modern Operating Room. , 2015, , .		7
821	Mixing analysis in a three-dimensional serpentine split-and-recombine micromixer. Chemical Engineering Research and Design, 2015, 100, 95-103.	2.7	68
822	Suspended microflows between vertical parallel walls. Microfluidics and Nanofluidics, 2015, 18, 919-929.	1.0	26
823	Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Research, 2015, 70, 360-369.	5.3	176

#	ARTICLE	IF	CITATIONS
824	Recent advances in SPR and SERS for sensitive translational medical diagnostics. Photonics & Lasers in Medicine, 2015, 4, .	0.3	6
826	Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Science Translational Medicine, 2015, 7, 289ra83.	5.8	199
827	Ion concentration polarization on paper-based microfluidic devices and its application to preconcentrate dilute sample solutions. Biomicrofluidics, 2015, 9, 014122.	1.2	63
828	Portable wireless device for hemoglobin level monitoring. , 2015, , .		0
829	Fabrication of High-Performance Magnetic Lysozyme-Imprinted Microsphere and Its NIR-Responsive Controlled Release Property. ACS Applied Materials & Interfaces, 2015, 7, 28606-28615.	4.0	53
830	Optical integrated chips with micro and nanostructures for refractive index and SERS-based optical label-free sensing. Nanophotonics, 2015, 4, 419-436.	2.9	11
831	A hybrid actuator system for single particle manipulation on a microfluidic chip. , 2015, , .		5
832	Personalized Oral Health Care. , 2015, , .		8
833	Microfluidic concentration of sample solutes using Joule heating effects under a combined AC and DC electric field. International Journal of Heat and Mass Transfer, 2015, 85, 158-165.	2.5	11
834	Simple and rapid CD4 testing based on large-field imaging system composed of microcavity array and two-dimensional photosensor. Biosensors and Bioelectronics, 2015, 67, 350-355.	5.3	6
835	NAIL: Nucleic Acid detection using Isotachophoresis and Loop-mediated isothermal amplification. Lab on A Chip, 2015, 15, 1697-1707.	3.1	42
836	A lateral electrophoretic flow diagnostic assay. Lab on A Chip, 2015, 15, 1488-1496.	3.1	28
837	Plasma separation and preparation on centrifugal microfluidic disk for blood assays. Microsystem Technologies, 2015, 21, 2485-2494.	1.2	27
838	Coalescence with Droplets Caused Acceleration of the Liquid Movement in Microchannels. Industrial & Engineering Chemistry Research, 2015, 54, 1161-1169.	1.8	3
839	Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resource-poor settings. Chemical Communications, 2015, 51, 5828-5831.	2.2	50
840	Surface-enhanced Raman spectroscopy using a coffee-ring-type three-dimensional silver nanostructure. RSC Advances, 2015, 5, 1378-1384.	1.7	33
841	Paper-based enzyme-free immunoassay for rapid detection and subtyping of influenza A H1N1 and H3N2 viruses. Analytica Chimica Acta, 2015, 883, 37-44.	2.6	63
842	Microengineering in cardiovascular research: new developments and translational applications. Cardiovascular Research, 2015, 106, 9-18.	1.8	9

#	Article	IF	Citations
843	Challenges in the diagnosis and management of neonatal sepsis. Journal of Tropical Pediatrics, 2015, 61, 1-13.	0.7	236
844	A review of biosensing techniques for detection of trace carcinogen contamination in food products. Analytical and Bioanalytical Chemistry, 2015, 407, 2711-2726.	1.9	30
845	A fast and switchable microfluidic mixer based on ultrasound-induced vaporization of perfluorocarbon. Lab on A Chip, 2015, 15, 2025-2029.	3.1	19
846	Microchip-Based Surface Enhanced Raman Spectroscopy for the Determination of Sodium Thiocyanate in Milk. Analytical Letters, 2015, 48, 1930-1940.	1.0	15
847	Implementation of in situ SAXS/WAXS characterization into silicon/glass microreactors. Lab on A Chip, 2015, 15, 2002-2008.	3.1	29
848	Multisense chip: continuously working air monitoring system: An integrated system for the detection of airborne biological pathogens on molecular and immunological level. , 2015, , .		2
849	Epithelial cancer biomarker EpCAM determination in peripheral blood samples using a microfluidic immunosensor based in silver nanoparticles as platform. Sensors and Actuators B: Chemical, 2015, 221, 248-256.	4.0	45
850	Fabrication of PDMS passive micromixer by lost-wax casting. International Journal of Precision Engineering and Manufacturing, 2015, 16, 2033-2039.	1.1	29
851	Innovating for Healthy Urbanization. , 2015, , .		9
852	Chemotaxis assay of plant-parasitic nematodes on a gel-filled microchannel device. Sensors and Actuators B: Chemical, 2015, 221, 1483-1491.	4.0	19
853	Integrated OLED as excitation light source in fluorescent lateral flow immunoassays. Biosensors and Bioelectronics, 2015, 74, 150-155.	5.3	30
854	Quantification of pollen tube attraction in response to guidance by female gametophyte tissue using artificial microscale pathway. Journal of Bioscience and Bioengineering, 2015, 120, 697-700.	1.1	10
855	Optical detection enhancement in porous volumetric microfluidic capture elements using refractive index matching fluids. Analyst, The, 2015, 140, 5724-5731.	1.7	13
856	UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection. Lab on A Chip, 2015, 15, 3086-3094.	3.1	78
857	Design and Optimizing of On-Chip Kinesin Substrates for Molecular Communication. IEEE Nanotechnology Magazine, 2015, 14, 699-708.	1.1	11
858	Approximating the objective function× ³ s gradient using perceptrons for constrained minimization with application in drag reduction. Computers and Operations Research, 2015, 64, 139-158.	2.4	4
859	An investigation of paper based microfluidic devices for size based separation and extraction applications. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1000, 41-48.	1.2	14
860	Diagnosing dengue virus infection: rapid tests and the role of micro/nanotechnologies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1745-1761.	1.7	38

#	Article	IF	CITATIONS
861	Resistance of Healthcare Information Technologies; Literature Review, Analysis, and Gaps. , 2015, , .		12
862	Nuclemeter: A Reaction-Diffusion Based Method for Quantifying Nucleic Acids Undergoing Enzymatic Amplification. Scientific Reports, 2014, 4, 7335.	1.6	19
863	Noninvasive and Real-Time Plasmon Waveguide Resonance Thermometry. Sensors, 2015, 15, 8481-8498.	2.1	6
864	Performance characterization of passive micromixer with dual opposing strips on microchannel walls. Chemical Engineering and Processing: Process Intensification, 2015, 93, 27-33.	1.8	10
865	Establishment of a finite element model for extracting chemical reaction kinetics in a micro-flow injection system with high throughput sampling. Talanta, 2015, 140, 176-182.	2.9	5
866	ALA-induced fluorescence detection with photoresist-based microfluidic cell sorter for bladder cancer diagnosis. Sensors and Actuators B: Chemical, 2015, 213, 547-557.	4.0	13
867	Hydrogel-driven paper-based microfluidics. Lab on A Chip, 2015, 15, 2452-2459.	3.1	64
868	Portable Microfluidic Integrated Plasmonic Platform for Pathogen Detection. Scientific Reports, 2015, 5, 9152.	1.6	165
869	Evaluation of non-instrumented nucleic acid amplification by loop-mediated isothermal amplification (NINA-LAMP) for the diagnosis of malaria in Northwest Ethiopia. Malaria Journal, 2015, 14, 44.	0.8	78
870	Electrochemistry, biosensors and microfluidics: a convergence of fields. Chemical Society Reviews, 2015, 44, 5320-5340.	18.7	279
871	A Multiplexed Device Based on Tunable Nanoshearing for Specific Detection of Multiple Protein Biomarkers in Serum. Scientific Reports, 2015, 5, 9756.	1.6	22
873	Google glass based immunochromatographic diagnostic test analysis. , 2015, , .		0
874	Paper and Flexible Substrates as Materials for Biosensing Platforms to Detect Multiple Biotargets. Scientific Reports, 2015, 5, 8719.	1.6	148
875	Nanobiosensors and Nanobioanalyses. , 2015, , .		10
876	A multi-functional bubble-based microfluidic system. Scientific Reports, 2015, 5, 9942.	1.6	45
877	Precise Three-Dimensional Scan-Free Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions. Nano Letters, 2015, 15, 4194-4199.	4.5	210
878	Paperâ€Based Inkjetâ€Printed Microfluidic Analytical Devices. Angewandte Chemie - International Edition, 2015, 54, 5294-5310.	7.2	419
879	A wireless bio-sensing microfluidic chip based on resonating  1¼-divers'. Lab on A Chip, 2015, 15, 2318-23	263.1	8

#	ARTICLE Development of a dry-reagent-based nucleic acid-sensing platform by coupling thermostabilised	IF	CITATIONS
880	LATE-PCR assay to an oligonucleotide-modified lateral flow biosensor. Journal of Microbiological Methods, 2015, 118, 99-105.	0.7	17
881	Modelling and characterization of circular microplate electrostatic actuators for micropump applications. , 2015, , .		6
882	A Simple Weighing Method for Spherical Cells. Journal of the Association for Laboratory Automation, 2015, 20, 471-480.	2.8	5
883	Microfluidic devices in diagnostics: what does the future hold?. Bioanalysis, 2015, 7, 2677-2680.	0.6	9
884	Reusable acoustic tweezers for disposable devices. Lab on A Chip, 2015, 15, 4517-4523.	3.1	60
885	PACOR., 2015,,.		33
886	Precision chemical heating for diagnostic devices. Lab on A Chip, 2015, 15, 4423-4432.	3.1	26
887	Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: A numerical study. Medical Engineering and Physics, 2015, 37, 845-854.	0.8	20
888	Design, Synthesis, and Characterization of Small-Molecule Reagents That Cooperatively Provide Dual Readouts for Triaging and, When Necessary, Quantifying Point-of-Need Enzyme Assays. Journal of Organic Chemistry, 2015, 80, 10437-10445.	1.7	11
889	Rapid absolute determination platform of nucleic acid for point-of-care testing. Chemical Research in Chinese Universities, 2015, 31, 519-525.	1.3	3
890	Programmable bio-nano-chip system: a flexible point-of-care platform for bioscience and clinical measurements. Lab on A Chip, 2015, 15, 4020-4031.	3.1	36
891	Disposable microfluidic immuno-biochip for rapid electrochemical detection of tumor necrosis factor alpha biomarker. Sensors and Actuators B: Chemical, 2015, 221, 1406-1411.	4.0	40
892	SVM-Based Routability-Driven Chip-Level Design for Voltage-Aware Pin-Constrained EWOD Chips. , 2015, , .		10
893	Reliability-aware synthesis for flow-based microfluidic biochips by dynamic-device mapping. , 2015, , .		33
894	An integrated slidable and valveless microdevice with solid phase extraction, polymerase chain reaction, and immunochromatographic strip parts for multiplex colorimetric pathogen detection. Lab on A Chip, 2015, 15, 4148-4155.	3.1	13
895	On-chip integration of novel Au electrode with a higher order three-dimensional layer stack nanostructure for surface-enhanced Raman spectroscopy. RSC Advances, 2015, 5, 73194-73201.	1.7	9
896	Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup. Optics Express, 2015, 23, 27724.	1.7	11
897	Flow-Layer Physical Design for Microchips Based on Monolithic Membrane Valves. IEEE Design and Test, 2015, 32, 51-59.	1.1	10

#	Article	IF	CITATIONS
898	Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Advances, 2015, 5, 5638-5646.	1.7	51
899	Microfluidic vapor-diffusion barrier for pressure reduction in fully closed PCR modules. Lab on A Chip, 2015, 15, 1084-1091.	3.1	19
900	Paper – a potential platform in pharmaceutical development. Trends in Biotechnology, 2015, 33, 4-9.	4.9	49
901	Photoinduced synthesis of Ag nanoparticles on ZnO nanowires for real-time SERS systems. RSC Advances, 2015, 5, 51-57.	1.7	17
902	Holographic Sensors. Springer Theses, 2015, , .	0.0	12
903	Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin–avidin binding interaction. Talanta, 2015, 134, 264-270.	2.9	40
904	Micro-a-fluidics ELISA for Rapid CD4 Cell Count at the Point-of-Care. Scientific Reports, 2014, 4, 3796.	1.6	85
905	Integration of lateral porous silicon membranes into planar microfluidics. Lab on A Chip, 2015, 15, 833-838.	3.1	23
906	An integrated microspectrometer for localised multiplexing measurements. Lab on A Chip, 2015, 15, 283-289.	3.1	9
907	One-dimensional angular surface plasmon resonance imaging based array thermometer. Sensors and Actuators B: Chemical, 2015, 207, 254-261.	4.0	14
908	Designs, formats and applications of lateral flow assay: A literature review. Journal of Saudi Chemical Society, 2015, 19, 689-705.	2.4	545
909	Multi-color microfluidic organic light-emitting diodes based on on-demand emitting layers of pyrene-based liquid organic semiconductors with fluorescent guest dopants. Sensors and Actuators B: Chemical, 2015, 207, 481-489.	4.0	60
910	A siphonage flow and thread-based low-cost platform enables quantitative and sensitive assays. Lab on A Chip, 2015, 15, 495-503.	3.1	20
911	Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a SlipChip platform. Analyst, The, 2015, 140, 258-264.	1.7	47
912	A cost-effective Z-folding controlled liquid handling microfluidic paper analysis device for pathogen detection via ATP quantification. Biosensors and Bioelectronics, 2015, 63, 379-383.	5.3	56
913	Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sensors and Actuators B: Chemical, 2015, 206, 258-267.	4.0	49
914	Microfluidic biosensors for high throughput screening of pathogens in food. , 2015, , 327-357.		10

CMOS Circuits and Systems for Labâ€onâ€aâ€Chip Applications. , 2016, , .

#	Article	IF	CITATIONS
917	Microfluidics and Artificial Blood Vessels as Vascular Prostheses: One Small Step for Vascular Research, One Giant Leap for Patient-Kind. Journal of Biomolecular Research & Therapeutics, 2016, 05, .	0.2	0
918	A Novel Automatic Rapid Diagnostic Test Reader Platform. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-10.	0.7	12
919	A Handy Field-Portable ELISA System for Rapid Onsite Diagnosis of Infectious Diseases. Japanese Journal of Infectious Diseases, 2016, 69, 435-438.	0.5	7
920	Rapid, Portable, Multiplexed Detection of Bacterial Pathogens Directly from Clinical Sample Matrices. Biosensors, 2016, 6, 49.	2.3	13
921	Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health. Diagnostics, 2016, 6, 19.	1.3	14
922	Fully-Programmable, Low-Cost, "Do-lt-Yourself―Pressure Source for General Purpose Use in the Microfluidic Laboratory. Inventions, 2016, 1, 13.	1.3	14
923	CD-Based Microfluidics for Primary Care in Extreme Point-of-Care Settings. Micromachines, 2016, 7, 22.	1.4	88
924	Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms. Sensors, 2016, 16, 1514.	2.1	38
925	A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection. Sensors, 2016, 16, 2086.	2.1	100
926	Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection. PLoS ONE, 2016, 11, e0158502.	1.1	43
927	A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics. PLoS ONE, 2016, 11, e0149150.	1.1	39
928	Solar-thermal complex sample processing for nucleic acid based diagnostics in limited resource settings. Biomedical Optics Express, 2016, 7, 1974.	1.5	8
929	Microfluidic components, devices and integrated lab-on-a-chip systems. , 2016, , 181-214.		0
930	Influence of Ultra-Violet Radiation on Sublimation Energy of Silver Chloride (AgCl). Key Engineering Materials, 2016, 685, 735-738.	0.4	7
931	Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses. International Neurourology Journal, 2016, 20, S38-48.	0.5	28
932	Semi-contact-writing of polymer molds for prototyping PDMS chips with low surface roughness, sharp edges and locally varying channel heights. Journal of Micromechanics and Microengineering, 2016, 26, 045018.	1.5	7
933	Conducting paper based sensor for cancer biomarker detection. Journal of Physics: Conference Series, 2016, 704, 012010.	0.3	19
934	A quantitative model for lateral flow assays. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	38

#	Article	IF	CITATIONS
935	Discriminating dengueâ€infected hepatic cells (WRLâ€68) using dielectrophoresis. Electrophoresis, 2016, 37, 511-518.	1.3	13
936	Evaluation of Adeno-Rota virus tests via tablet computer. , 2016, , .		0
937	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie, 2016, 128, 2759-2763.	1.6	38
938	Programmable Bio-nanochip Platform: A Point-of-Care Biosensor System with the Capacity To Learn. Accounts of Chemical Research, 2016, 49, 1359-1368.	7.6	49
939	Protein biomarkers and microbial profiles in periâ€implantitis. Clinical Oral Implants Research, 2016, 27, 1129-1136.	1.9	75
940	Integrated NFC power source for zero on-board power in fluorescent paper-based lateral flow immunoassays. Flexible and Printed Electronics, 2016, 1, 044001.	1.5	6
941	Effective Cell and Particle Sorting and Separation in Screen-Printed Continuous-Flow Microfluidic Devices with 3D Sidewall Electrodes. Industrial & Engineering Chemistry Research, 2016, 55, 13085-13093.	1.8	10
942	Paper-based CRP Monitoring Devices. Scientific Reports, 2016, 6, 38171.	1.6	19
943	Blister pouches for effective reagent storage on microfluidic chips for blood cell counting. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	25
944	Distributed Cooperative Detection for Multi-Receiver Molecular Communication. , 2016, , .		13
945	Rapid X-ray Fabrication of Microstructured Polytetrafluoroethylene Substrates by Anisotropic, Pyrochemical Microetching. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 403-407.	0.1	7
946	Anisotropic pyrochemical microetching of poly(tetrafluoroethylene) initiated by synchrotron radiation-induced scission of molecule bonds. Applied Physics Letters, 2016, 108, .	1.5	22
947	Modular Microfluidic Filters Based on Transparent Membranes. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.2	1
948	Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria. Biosensors and Bioelectronics, 2016, 82, 14-19.	5.3	46
949	Modular microfluidic cartridge-based universal diagnostic system for global health applications. Proceedings of SPIE, 2016, , .	0.8	4
950	Development of graphene-based sensors on paper substrate for the measurement of pH value of analyte. Biochip Journal, 2016, 10, 182-188.	2.5	28
951	Ultraminiaturized assay for rapid, low cost detection and quantification of clinical and biochemical samples. Biomedical Microdevices, 2016, 18, 33.	1.4	5
952	Spatiotemporally controllable acoustothermal heating and its application to disposable thermochromic displays. RSC Advances, 2016, 6, 33937-33944.	1.7	24

#		IF	CITATIONS
953	Reliability-Aware Synthesis With Dynamic Device Mapping and Fluid Routing for Flow-Based Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35, 1981-1994.	1.9	28
954	Optical fiber temperature sensor based on a microcavity with polymer overlay. Optics Express, 2016, 24, 5654.	1.7	100
955	Total Sample Conditioning and Preparation of Nanoliter Volumes for Electron Microscopy. ACS Nano, 2016, 10, 4981-4988.	7.3	23
956	Alumina-encapsulated vaccine formulation with improved thermostability and immunogenicity. Chemical Communications, 2016, 52, 6447-6450.	2.2	18
957	Deep Belief Networks for Quantitative Analysis of a Gold Immunochromatographic Strip. Cognitive Computation, 2016, 8, 684-692.	3.6	146
958	2D wax-printed paper substrates with extended solvent supply capabilities allow enhanced ion signal in paper spray ionization. Analyst, The, 2016, 141, 3866-3873.	1.7	69
959	Computational cell analysis for label-free detection of cell properties in a microfluidic laminar flow. Analyst, The, 2016, 141, 4142-4150.	1.7	10
960	A portable sample concentrator on paper-based microfluidic devices. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	25
961	Random design of microfluidics. Lab on A Chip, 2016, 16, 4212-4219.	3.1	41
962	Magnetic-adhesive based valves for microfluidic devices used in low-resource settings. Lab on A Chip, 2016, 16, 4142-4151.	3.1	12
963	Synthesis of nanoparticles through x-ray radiolysis using synchrotron radiation. , 2016, , .		1
964	Integrated On-Chip Microfluidic Immunoassay for Rapid Biomarker Detection. Procedia Engineering, 2016, 159, 53-57.	1.2	13
965	Brownian and advective dynamics in microflow studied by coherent X-ray scattering experiments. Journal of Synchrotron Radiation, 2016, 23, 1401-1408.	1.0	5
966	Temperature-Switch Cytometry—Releasing Antibody on Demand from Inkjet-Printed Gelatin for On-Chip Immunostaining. ACS Applied Materials & Interfaces, 2016, 8, 27539-27545.	4.0	8
967	Amperometric IFN-Î ³ immunosensors with commercially fabricated PCB sensing electrodes. Biosensors and Bioelectronics, 2016, 86, 805-810.	5.3	41
968	Tetrazine-based chemistry for nitrite determination in a paper microfluidic device. Talanta, 2016, 160, 721-728.	2.9	40
969	Rapid Optical Cavity PCR. Advanced Healthcare Materials, 2016, 5, 167-174.	3.9	41
970	Smart Materials for DNA-Based Nanoconstructions. , 2016, , 21-60.		0

#	Article	IF	CITATIONS
971	Designed miniaturization of microfluidic biosensor platforms using the stop-flow technique. Analyst, The, 2016, 141, 6073-6079.	1.7	25
972	Development and evaluation of an up-converting phosphor technology-based lateral flow assay for rapid and quantitative detection of aflatoxin B1 in crops. Talanta, 2016, 161, 297-303.	2.9	69
973	Inkjet printing on transparency films for reagent storage with polyester–toner microdevices. Analytical Methods, 2016, 8, 7061-7068.	1.3	11
974	Immobilized Biocatalyst for Detection and Destruction of the Insensitive Explosive, 2,4-Dinitroanisole (DNAN). Environmental Science & Technology, 2016, 50, 11193-11199.	4.6	10
977	Challenges and opportunities for translating medical microdevices: insights from the programmable bio-nano-chip. Bioanalysis, 2016, 8, 905-919.	0.6	7
978	Comparison of point-of-care-compatible lysis methods for bacteria and viruses. Journal of Microbiological Methods, 2016, 128, 80-87.	0.7	27
979	Fabrication of microchannels by space-selective control of phase separation in glass. Optics Letters, 2016, 41, 3371.	1.7	5
980	Multianalyte Antibiotic Detection on an Electrochemical Microfluidic Platform. Analytical Chemistry, 2016, 88, 10036-10043.	3.2	79
981	A <inline-formula> <tex-math notation="LaTeX">\$mu \$ </tex-math> </inline-formula> NMR CMOS Transceiver Using a Butterfly-Coil Input for Integration With a Digital Microfluidic Device Inside a Portable Magnet. IEEE Journal of Solid-State Circuits, 2016, 51, 2274-2286.	3.5	22
982	Paper Microfluidics. , 2016, , 165-190.		0
983	Biological Applications of Microfluidics System. , 2016, , 191-221.		5
984	Mikrofluidische Chips und Chip-Labore. Technik Im Fokus, 2016, , 89-105.	0.2	0
985	High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Scientific Reports, 2016, 6, 19989.	1.6	58
986	Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications. , 2016, , .		0
987	Engineering long shelf life multi-layer biologically active surfaces on microfluidic devices for point of care applications. Scientific Reports, 2016, 6, 21163.	1.6	43
988	Microfluidics for Biologists. , 2016, , .		16
989	Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels. Scientific Reports, 2016, 6, 33281.	1.6	42
990	PDMS microfluidic structures for LOC applications. , 2016, , .		1

#	Article	IF	CITATIONS
992	Flexible microfluidics nanogenerator based on the electrokinetic conversion. Nano Energy, 2016, 30, 684-690.	8.2	50
993	An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays. Lab on A Chip, 2016, 16, 4560-4568.	3.1	88
994	Fabrication of higher order three-dimensional layer stack nanostructure for molecular detection and electrode. , 2016, , .		0
995	Urine-powered (galvanic) electric cell and sensor on paper substrate. Flexible and Printed Electronics, 2016, 1, 044002.	1.5	2
996	Controllable liquid colour-changing lenses with microfluidic channels for vision protection, camouflage and optical filtering based on soft lithography fabrication. SpringerPlus, 2016, 5, 580.	1.2	12
997	Acoustically-driven thread-based tuneable gradient generators. Lab on A Chip, 2016, 16, 2820-2828.	3.1	28
998	Engineering bacteriophage for a pragmatic low-resource setting bacterial diagnostic platform. Bioengineered, 2016, 7, 132-136.	1.4	1
999	Comparison of three indirect immunoassay formats on a common paper-based microfluidic device architecture. Analytical Methods, 2016, 8, 5204-5211.	1.3	15
1000	A Microfluidic Paperâ€Based Origami Nanobiosensor for Labelâ€Free, Ultrasensitive Immunoassays. Advanced Healthcare Materials, 2016, 5, 1326-1335.	3.9	69
1001	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie - International Edition, 2016, 55, 2709-2713.	7.2	113
1002	Decanting and mixing of supernatant human blood plasma on centrifugal microfluidic platform. Microsystem Technologies, 2016, 22, 861-869.	1.2	12
1003	Status and perspective of lab-on-a-chip systems for common diseases: a systematic review from 2003 to 2013. Personalized Medicine, 2016, 13, 71-91.	0.8	10
1004	A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples. Lab on A Chip, 2016, 16, 753-763.	3.1	224
1005	Smart cup: A minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sensors and Actuators B: Chemical, 2016, 229, 232-238.	4.0	148
1006	Systems Approaches to Understanding Aging. , 2016, , 241-261.		1
1007	Choked cavitation in micro-orifices: An experimental study. Experimental Thermal and Fluid Science, 2016, 74, 49-57.	1.5	42
1008	Microfluidic chip for rapid mixing and uniform distribution of multiple reagents using commercial pipettes. Microelectronic Engineering, 2016, 150, 57-63.	1.1	4
1009	Powering point-of-care diagnostic devices. Biotechnology Advances, 2016, 34, 321-330.	6.0	97

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1010	Cellular flow in paper-based microfluidics. Sensors and Actuators B: Chemical, 2016, 23	57, 1021-1026.	4.0	12
1011	Fabrication of a Microfluidic Device with Boron-doped Diamond Electrodes for Electroc Analysis. Electrochimica Acta, 2016, 197, 159-166.	hemical	2.6	16
1012	A reagent-ready-on-chip microfluidic immunoassay system for rapid detection of influer H3N2 viruses. Biochip Journal, 2016, 10, 34-41.	ıza A H1N1 and	2.5	9
1013	Dielectrophoresis-enabled surface enhanced Raman scattering on gold-decorated polys microparticle in micro-optofluidic devices for high-sensitive detection. Sensors and Acte Chemical, 2016, 230, 94-100.	tyrene uators B:	4.0	27
1014	Polythiophene nanofilms for sensitive fluorescence detection of viruses in drinking wat Biosensors and Bioelectronics, 2016, 82, 20-25.	er.	5.3	20
1015	A novel efficient ZnO/Zn(OH)F nanofiber arrays-based versatile microfluidic system for applications of photocatalysis and histidine-rich protein separation. Sensors and Actuat Chemical, 2016, 229, 281-287.		4.0	35
1016	Advances in microfluidics in combating infectious diseases. Biotechnology Advances, 2	016, 34, 404-421.	6.0	79
1017	Combining a Droplet-Based Microfluidic Tubing System with Gated Indicator Releasing for Mercury Trace Detection. ACS Sensors, 2016, 1, 334-338.	Nanoparticles	4.0	33
1018	A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface resonance (SPR) microfluidic biosensor. Lab on A Chip, 2016, 16, 1224-1233.	plasmon	3.1	49
1019	A Comprehensive Survey of Recent Advancements in Molecular Communication. IEEE C Surveys and Tutorials, 2016, 18, 1887-1919.	Communications	24.8	681
1020	Multilayered film microreactors fabricated by a one-step thermal bonding technique wir reproducibility and their applications. Lab on A Chip, 2016, 16, 977-983.	th high	3.1	13
1021	Self-assembled particle membranes for in situ concentration and chemostat-like cultiva microorganisms on a chip. Lab on A Chip, 2016, 16, 1072-1080.	tion of	3.1	12
1022	Solvent-dependent on/off valving using selectively permeable barriers in paper microflu Chip, 2016, 16, 1013-1021.	idics. Lab on A	3.1	26
1023	Novel developments in mobile sensing based on the integration of microfluidic devices smartphones. Lab on A Chip, 2016, 16, 943-958.	and	3.1	168
1024	Portable microfluidic and smartphone-based devices for monitoring of cardiovascular d point of care. Biotechnology Advances, 2016, 34, 305-320.	iseases at the	6.0	128
1025	Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanolite Unmodified Camera Phones. ACS Nano, 2016, 10, 3102-3113.	r Volumes with	7.3	110
1026	A review on the importance of surface coating of micro/nano-mold in micro/nano-moldi Journal of Micromechanics and Microengineering, 2016, 26, 013002.	ng processes.	1.5	63
1027	Lab-on-a-Chip Biosensors. , 2016, , 257-297.			5

#	Article	IF	CITATIONS
1028	Rapid detection and quantification of tumor marker carbohydrate antigen 72-4 (CA72-4) using a superparamagnetic immunochromatographic strip. Analytical and Bioanalytical Chemistry, 2016, 408, 2319-2327.	1.9	37
1029	Custom field-of-view optofluidic imaging by synthetic digital holography. Proceedings of SPIE, 2016, , .	0.8	0
1030	Lab-on-a-Drone: Toward Pinpoint Deployment of Smartphone-Enabled Nucleic Acid-Based Diagnostics for Mobile Health Care. Analytical Chemistry, 2016, 88, 4651-4660.	3.2	135
1031	A compact and integrated immunoassay with on-chip dispensing and magnetic particle handling. Biomedical Microdevices, 2016, 18, 16.	1.4	5
1032	A Prototype Biomarker Detector Combining Biomarker Extraction and Fixed Temperature PCR. Journal of the Association for Laboratory Automation, 2016, 21, 590-598.	2.8	6
1033	Direct 3D-printing of cell-laden constructs in microfluidic architectures. Lab on A Chip, 2016, 16, 1430-1438.	3.1	51
1034	An emerging micro-scale immuno-analytical diagnostic tool to see the unseen. Holding promise for precision medicine and P4 medicine. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1021, 14-29.	1.2	23
1035	A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Analytica Chimica Acta, 2016, 906, 7-21.	2.6	76
1036	Microfluidics as a new tool in radiation biology. Cancer Letters, 2016, 371, 292-300.	3.2	15
1037	Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. TrAC - Trends in Analytical Chemistry, 2016, 79, 344-362.	5.8	97
1038	Electroanalytical devices with pins and thread. Lab on A Chip, 2016, 16, 112-119.	3.1	52
1039	On-Chip Isothermal Nucleic Acid Amplification on Flow-Based Chemiluminescence Microarray Analysis Platform for the Detection of Viruses and Bacteria. Analytical Chemistry, 2016, 88, 898-905.	3.2	79
1040	3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosensors and Bioelectronics, 2016, 77, 188-193.	5.3	147
1041	Paper-based chemical and biological sensors: Engineering aspects. Biosensors and Bioelectronics, 2016, 77, 249-263.	5.3	212
1042	Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis. Lab on A Chip, 2016, 16, 120-131.	3.1	67
1043	Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosensors and Bioelectronics, 2016, 77, 774-789.	5.3	441
1044	Low-cost In Vitro Diagnostic Technologies. , 2016, , 59-91.		2
1045	Red blood cell transport mechanisms in polyester thread-based blood typing devices. Analytical and Bioanalytical Chemistry, 2016, 408, 1365-1371.	1.9	25

#	Article	IF	CITATIONS
1046	Polymeric-Based In Vitro Diagnostic Devices. , 2016, , 15-58.		1
1047	In-Vitro Diagnostic Devices. , 2016, , .		3
1048	A microfluidic system for liquid colour-changing glasses with shutter shade effect. Microsystem Technologies, 2016, 22, 2067-2075.	1.2	8
1049	Microfluidics-Enabled Diagnostic Systems: Markets, Challenges, and Examples. Methods in Molecular Biology, 2017, 1547, 3-21.	0.4	13
1050	Hand-powered ultralow-cost paper centrifuge. Nature Biomedical Engineering, 2017, 1, .	11.6	230
1051	A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst, The, 2017, 142, 858-882.	1.7	72
1052	Inelastic non-Newtonian flow over heterogeneously slippery surfaces. Physical Review E, 2017, 95, 023105.	0.8	37
1053	Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1306-E1315.	3.3	55
1054	Microsphere based continuous-flow immunoassay in a microfluidic device for determination of clinically relevant insulin levels. Mikrochimica Acta, 2017, 184, 835-841.	2.5	9
1055	3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls. Nano Convergence, 2017, 4, 4.	6.3	14
1056	Beyond Wicking: Expanding the Role of Patterned Paper as the Foundation for an Analytical Platform. Analytical Chemistry, 2017, 89, 5654-5664.	3.2	69
1057	Fabrication of NOA microfluidic devices based on sequential replica molding. Korean Journal of Chemical Engineering, 2017, 34, 1495-1499.	1.2	10
1058	Exploiting the Anti-Aggregation of Gold Nanostars for Rapid Detection of Hand, Foot, and Mouth Disease Causing Enterovirus 71 Using Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2017, 89, 5373-5381.	3.2	37
1059	Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich's ascites carcinoma bearing mice. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 346-362.	2.0	55
1060	Ensuring food safety: Quality monitoring using microfluidics. Trends in Food Science and Technology, 2017, 65, 10-22.	7.8	131
1061	Printed microfluidic filter for heparinized blood. Biomicrofluidics, 2017, 11, 034101.	1.2	9
1062	Denoising and deblurring gold immunochromatographic strip images via gradient projection algorithms. Neurocomputing, 2017, 247, 165-172.	3.5	62
1063	Continuous-flow injection microfluidic thrombin assays: The effect of binding kinetics on observed enzyme inhibition. Analytical Biochemistry, 2017, 528, 38-46.	1.1	11

#	Article	IF	CITATIONS
1064	Multiplex Biomarker Approaches to Enable Point-of-Care Testing and Personalized Medicine. Methods in Molecular Biology, 2017, 1546, 311-315.	0.4	4
1065	Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr(III) and Cr(VI) in water samples after solid phase extraction. Analytica Chimica Acta, 2017, 955, 58-66.	2.6	45
1066	Saliva diagnostics – Current views and directions. Experimental Biology and Medicine, 2017, 242, 459-472.	1.1	303
1067	Enhanced sample concentration on a three-dimensional origami paper-based analytical device with non-uniform assay channel. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	13
1068	A label-free immunoassay for Flavivirus detection by the Reflective Phantom Interface technology. Biochemical and Biophysical Research Communications, 2017, 492, 558-564.	1.0	13
1069	Simulation of the novel compact structure of an interferometric biosensor based on multimode interference waveguides. Proceedings of SPIE, 2017, , .	0.8	0
1070	Rapid fabrication of rounded microchannels via extrusion printing of molds using a thixotropic ink. Sensors and Actuators B: Chemical, 2017, 248, 613-621.	4.0	11
1071	Emerging Droplet Microfluidics. Chemical Reviews, 2017, 117, 7964-8040.	23.0	1,109
1072	A valve-free 2D concentration gradient generator. RSC Advances, 2017, 7, 27833-27839.	1.7	3
1073	Proteomic Methods in Neuropsychiatric Research. Advances in Experimental Medicine and Biology, 2017, , .	0.8	3
1074	Synergism of co-delivered nanosized antioxidants displayed enhanced anticancer efficacy in human colon cancer cell lines. Bioactive Materials, 2017, 2, 82-95.	8.6	12
1075	A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes. Talanta, 2017, 167, 544-549.	2.9	36
1076	Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC - Trends in Analytical Chemistry, 2017, 91, 26-41.	5.8	237
1077	Microdevice for continuous flow magnetic separation for bioengineering applications. Journal of Micromechanics and Microengineering, 2017, 27, 055016.	1.5	25
1078	Proteomic Approaches to Enable Point-of-Care Testing and Personalized Medicine for Psychiatric Disorders. Advances in Experimental Medicine and Biology, 2017, 974, 363-370.	0.8	0
1079	Power-free, digital and programmable dispensing of picoliter droplets using a Digit Chip. Lab on A Chip, 2017, 17, 1505-1514.	3.1	7
1080	Materials for Microfluidic Immunoassays: A Review. Advanced Healthcare Materials, 2017, 6, 1601403.	3.9	112
1081	Modular fluidic resistors to enable widely tunable flow rate and fluidic switching period in a microfluidic oscillator. Electrophoresis, 2017, 38, 977-982.	1.3	8

#	Article	IF	CITATIONS
1082	Point-of-Care Diagnostics: Recent Developments in a Connected Age. Analytical Chemistry, 2017, 89, 102-123.	3.2	386
1083	Engineered Paperâ€Based Cell Culture Platforms. Advanced Healthcare Materials, 2017, 6, 1700619.	3.9	44
1084	Hydrothermally synthesized zinc oxide nanorods incorporated on lab-on-paper device for electrochemical detection of recreational drug. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-8.	1.9	18
1085	Dry Film Photoresist-based Electrochemical Microfluidic Biosensor Platform: Device Fabrication, On-chip Assay Preparation, and System Operation. Journal of Visualized Experiments, 2017, , .	0.2	4
1086	Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials, 2017, 6, 1700306.	3.9	176
1088	Flow Boiling in Microchannels. Advances in Heat Transfer, 2017, 49, 157-224.	0.4	6
1089	Lyophilized Engineered Phages for <i>Escherichia coli</i> Detection in Food Matrices. ACS Sensors, 2017, 2, 1573-1577.	4.0	31
1090	Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing. SLAS Technology, 2017, 22, 585-608.	1.0	81
1091	Open channel deterministic lateral displacement for particle and cell sorting. Lab on A Chip, 2017, 17, 3592-3600.	3.1	44
1092	One-step trapping of droplets and surface functionalization of sensors using gold-patterned structures for multiplexing in biochips. RSC Advances, 2017, 7, 43273-43282.	1.7	2
1093	Biofluid pretreatment using gradient insulator-based dielectrophoresis: separating cells from biomarkers. Analytical and Bioanalytical Chemistry, 2017, 409, 6405-6414.	1.9	22
1094	Biosensing methods for the detection of highly pathogenic avian influenza H5N1 and H7N9 viruses. Analytical Methods, 2017, 9, 5238-5248.	1.3	10
1095	Biosensors-on-chip: a topical review. Journal of Micromechanics and Microengineering, 2017, 27, 083001.	1.5	75
1096	Towards autonomous lateral flow assays: Paper-based microfluidic fuel cell inside an HIV-test using a blood sample as fuel. International Journal of Hydrogen Energy, 2017, 42, 27979-27986.	3.8	42
1097	Synergistic Tailoring of Electrostatic and Hydrophobic Interactions for Rapid and Specific Recognition of Lysophosphatidic Acid, an Early-Stage Ovarian Cancer Biomarker. Journal of the American Chemical Society, 2017, 139, 11616-11621.	6.6	58
1098	Technologies for analysis of circulating tumour DNA: Progress and promise. TrAC - Trends in Analytical Chemistry, 2017, 97, 36-49.	5.8	20
1099	SAXS on a chip: from dynamics of phase transitions to alignment phenomena at interfaces studied with microfluidic devices. Physical Chemistry Chemical Physics, 2017, 19, 23690-23703.	1.3	27
1101	Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. Light: Science and Applications, 2017, 6, e17055-e17055.	7.7	92

#	Article	IF	CITATIONS
1102	The Role of Nanoparticle Design in Determining Analytical Performance of Lateral Flow Immunoassays. Nano Letters, 2017, 17, 7207-7212.	4.5	149
1103	Fluorescence quenching-based signal amplification on immunochromatography test strips for dual-mode sensing of two biomarkers of breast cancer. Nanoscale, 2017, 9, 18711-18722.	2.8	41
1104	High-performance PCB-based capillary pumps for affordable point-of-care diagnostics. Microfluidics and Nanofluidics, 2017, 21, 103.	1.0	18
1105	High-throughput and label-free parasitemia quantification and stage differentiation for malaria-infected red blood cells. Biosensors and Bioelectronics, 2017, 98, 408-414.	5.3	26
1106	Point-of-care testing: applications of 3D printing. Lab on A Chip, 2017, 17, 2713-2739.	3.1	122
1107	Holographic microscope slide in a spatio-temporal imaging modality for reliable 3D cell counting. Lab on A Chip, 2017, 17, 2831-2838.	3.1	53
1108	Biomolecular engineering for nanobio/bionanotechnology. Nano Convergence, 2017, 4, 9.	6.3	86
1109	Modeling microfluidic DNA extraction using superparamagnetic bead particles in COMSOL multiphysics simulation. Microsystem Technologies, 2017, 23, 4435-4440.	1.2	5
1110	Pressure free nanoimprinting lithography using ladder-type HSQ material for LSPR biosensor chip. Sensors and Actuators B: Chemical, 2017, 242, 47-55.	4.0	20
1111	Emerging technologies for salivaomics in cancer detection. Journal of Cellular and Molecular Medicine, 2017, 21, 640-647.	1.6	55
1112	Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens. Nanoscale, 2017, 9, 1852-1861.	2.8	58
1113	Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification. Talanta, 2017, 164, 432-438.	2.9	35
1114	Structural Characterization of a Capillary Microfluidic Chip Using Microreflectance. Applied Spectroscopy, 2017, 71, 1357-1362.	1.2	0
1115	A smartphone-based optical platform for colorimetric analysis of microfluidic device. Sensors and Actuators B: Chemical, 2017, 239, 52-59.	4.0	103
1116	Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosensors and Bioelectronics, 2017, 90, 459-474.	5.3	209
1117	Enhanced modelâ€based design of a highâ€throughput three dimensional micromixer driven by alternatingâ€current electrothermal flow. Electrophoresis, 2017, 38, 258-269.	1.3	26
1118	Microfluidic Cartridges for Automated, Point-of-Care Blood Cell Counting. SLAS Technology, 2017, 22, 176-185.	1.0	12
1120	A Surface Acoustic Wave Pumped Lensless Microfluidic Imaging System for Flowing Cell Detection and Counting. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1478-1487.	2.7	14

# 1121	ARTICLE Fabrication of higher order nanostructure for molecular sensing. , 2017, , .	IF	CITATIONS
1122	Simplified cooperative detection for multi-receiver molecular communication. , 2017, , .		4
1123	Practical thermal control by thermo-electric actuators. , 2017, , .		2
1125	Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection. Frontiers in Plant Science, 2017, 8, 2016.	1.7	139
1126	Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Optics Express, 2017, 25, 16739.	1.7	27
1127	Microfluidic Techniques for Analytes Concentration. Micromachines, 2017, 8, 28.	1.4	42
1128	Paper-Based Microfluidic Device with a Gold Nanosensor to Detect Arsenic Contamination of Groundwater in Bangladesh. Micromachines, 2017, 8, 71.	1.4	17
1129	Advances in Single Cell Impedance Cytometry for Biomedical Applications. Micromachines, 2017, 8, 87.	1.4	82
1130	Development of Temperature Control Solutions for Non-Instrumented Nucleic Acid Amplification Tests (NINAAT). Micromachines, 2017, 8, 180.	1.4	10
1131	Rethinking the Design of Low-Cost Point-of-Care Diagnostic Devices. Micromachines, 2017, 8, 317.	1.4	15
1132	Recent Advances in Magnetic Microfluidic Biosensors. Nanomaterials, 2017, 7, 171.	1.9	45
1133	Dielectrophoresis for Biomedical Sciences Applications: A Review. Sensors, 2017, 17, 449.	2.1	147
1134	A Microfluidic pH Measurement Device with a Flowing Liquid Junction. Sensors, 2017, 17, 1563.	2.1	7
1135	Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 2017, 17, 2934.	2.1	60
1136	Microfluidic platforms for point of care (POC) medical diagnostics. , 2017, , 255-273.		4
1137	Microdevices for Non-Invasive Detection of Bladder Cancer. Chemosensors, 2017, 5, 30.	1.8	8
1138	Innovative Approaches to Increase Access to Medicines in Developing Countries. Frontiers in Medicine, 2017, 4, 218.	1.2	41
1139	Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Critical Reviews in Food Science and Nutrition, 2018, 58, 84-104.	5.4	113

# 1140	ARTICLE Gas-generating reactions for point-of-care testing. Analyst, The, 2018, 143, 1294-1304.	IF 1.7	Citations 36
1141	Droplet Translation Actuated by Photoelectrowetting. Langmuir, 2018, 34, 3177-3185.	1.6	9
1142	Integration of electropreconcentration and electrospray ionization in a microchip. Journal of Chromatography A, 2018, 1543, 67-72.	1.8	6
1143	Note: Making tens of centimeter long uniform microfluidic channels using commercial glass pipette. Review of Scientific Instruments, 2018, 89, 036101.	0.6	0
1144	Efficient Microfluidic Power Generator Based on Interaction between DI Water and Hydrophobic-Channel Surface. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 255-260.	2.7	8
1145	Microchip electrophoresis separation of a panel of preterm birth biomarkers. Electrophoresis, 2018, 39, 2300-2307.	1.3	13
1146	Hybrid Paper–Plastic Microchip for Flexible and Highâ€Performance Pointâ€ofâ€Care Diagnostics. Advanced Functional Materials, 2018, 28, 1707161.	7.8	39
1147	High-ionic-strength pre-concentration via ion concentration polarization for blood-based biofluids. Sensors and Actuators B: Chemical, 2018, 268, 485-493.	4.0	31
1148	Droplet Behavior in Open Biphasic Microfluidics. Langmuir, 2018, 34, 5358-5366.	1.6	18
1149	Lab-on-chip technology for chronic disease diagnosis. Npj Digital Medicine, 2018, 1, 7.	5.7	99
1150	Multimodal selenium nanoshell-capped Au@mSiO2 nanoplatform for NIR-responsive chemo-photothermal therapy against metastatic breast cancer. NPG Asia Materials, 2018, 10, 197-216.	3.8	91
1151	A Capillary Flow Dynamicsâ€Based Sensing Modality for Direct Environmental Pathogen Monitoring. Chemistry - A European Journal, 2018, 24, 6025-6029.	1.7	24
1152	Point-of-Care Testing and Personalized Medicine for Metabolic Disorders. Methods in Molecular Biology, 2018, 1735, 105-114.	0.4	5
1153	Microfluidics for Fast and Frugal Diagnosis of Malaria, Sepsis, and HIV/AIDS. , 2018, , 57-75.		1
1154	Frugal Innovation in Bioengineering for the Detection of Infectious Diseases. , 2018, , .		2
1155	Carbon Nanotube Paperâ€based Electrode for Electrochemical Detection of Chemicals in Rat Microdialysate. Electroanalysis, 2018, 30, 1022-1027.	1.5	13
1157	Ultrarobust Biochips with Metal–Organic Framework Coating for Point-of-Care Diagnosis. ACS Sensors, 2018, 3, 342-351.	4.0	29
1158	Recent Advances in Magnetic Levitation: A Biological Approach from Diagnostics to Tissue Engineering. ACS Biomaterials Science and Engineering, 2018, 4, 787-799.	2.6	51

#	Article	IF	CITATIONS
1159	A universal approach for irreversible bonding of rigid substrate-based microfluidic devices at room temperature. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	2
1160	Low-cost Paper Analytical Devices for Environmental and Biomedical Sensing Applications. Energy, Environment, and Sustainability, 2018, , 315-341.	0.6	10
1161	Advances in Magnetic Nanoparticles for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700845.	3.9	453
1162	Numerical prototyping of lateral flow biosensors. Sensors and Actuators B: Chemical, 2018, 259, 1099-1107.	4.0	24
1163	3D printed microfluidics and microelectronics. Microelectronic Engineering, 2018, 189, 52-68.	1.1	162
1164	Bioinspired Universal Flexible Elastomerâ€Based Microchannels. Small, 2018, 14, e1702170.	5.2	31
1165	Microfluidic separation processes using the thermodiffusion effect. International Journal of Thermal Sciences, 2018, 124, 279-287.	2.6	15
1166	Challenges in paper-based fluorogenic optical sensing with smartphones. Nano Convergence, 2018, 5, 14.	6.3	43
1167	Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-upÂlithography. Royal Society Open Science, 2018, 5, 172034.	1.1	18
1168	Signal Amplification: A Sharp Impermeableâ€Permeable Transition for Highly Sensitive Lowâ€Cost Detection. Advanced Materials Technologies, 2018, 3, 1800042.	3.0	2
1169	Magnetic nanochain integrated microfluidic biochips. Nature Communications, 2018, 9, 1743.	5.8	94
1170	Enzyme Chemotaxis on Paper-based Devices. Analytical Sciences, 2018, 34, 115-119.	0.8	11
1171	A temperature-based diagnostic approach for paper-based microfluidics. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	2
1172	Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping. Analytical Chemistry, 2018, 90, 4823-4831.	3.2	95
1173	Surface-modified cellulose paper and its application in infectious disease diagnosis. Sensors and Actuators B: Chemical, 2018, 265, 506-513.	4.0	28
1174	Finger-actuated microfluidic device for the blood cross-matching test. Lab on A Chip, 2018, 18, 1215-1222.	3.1	58
1175	Single-Particle Tracking To Probe the Local Environment in Ice-Templated Crosslinked Colloidal Assemblies. Langmuir, 2018, 34, 4603-4613.	1.6	10
1176	Protein-Metal Interactions Probed by SERS: Lysozyme on Nanostructured Gold Surface. Plasmonics, 2018, 13, 2117-2124.	1.8	10

#	Article	IF	CITATIONS
1177	Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosensors and Bioelectronics, 2018, 109, 156-163.	5.3	71
1178	AARF: Any-Angle Routing for Flow-Based Microfluidic Biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37, 3042-3055.	1.9	12
1179	Micro-orifice single-phase flow at very high Reynolds number. Experimental Thermal and Fluid Science, 2018, 91, 35-40.	1.5	16
1180	Development of a paper-based lateral flow immunoassay for simultaneous detection of lipopolysaccharides of Salmonella serovars. Analytical and Bioanalytical Chemistry, 2018, 410, 863-868.	1.9	30
1181	A disposable lab-on-a-chip platform for highly efficient RNA isolation. Sensors and Actuators B: Chemical, 2018, 255, 1491-1499.	4.0	16
1182	Acoustofluidic hematocrit determination. Analytica Chimica Acta, 2018, 1000, 199-204.	2.6	15
1183	Machine learning to detect signatures of disease in liquid biopsies – a user's guide. Lab on A Chip, 2018, 18, 395-405.	3.1	106
1184	DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification. Chemistry - A European Journal, 2018, 24, 4473-4479.	1.7	21
1185	Digital Holography, a metrological tool for quantitative analysis: Trends and future applications. Optics and Lasers in Engineering, 2018, 104, 32-47.	2.0	101
1186	Electrothermal enrichment of submicron particles in an insulatorâ€based dielectrophoretic microdevice. Electrophoresis, 2018, 39, 887-896.	1.3	31
1187	A multiplex microfluidic loop-mediated isothermal amplification array for detection of malaria-related parasites and vectors. Acta Tropica, 2018, 178, 86-92.	0.9	15
1188	Review on microfluidic paper-based analytical devices towards commercialisation. Analytica Chimica Acta, 2018, 1001, 1-17.	2.6	379
1189	Flow-through microfluidic immunosensors with refractive index-matched silica monoliths as volumetric optical detection elements. Sensors and Actuators B: Chemical, 2018, 254, 878-886.	4.0	5
1190	Low-cost and facile implementation of microfluidic colour-changing devices using dry film photoresist-based moulds. Journal of Experimental Nanoscience, 2018, 13, 221-230.	1.3	4
1191	Characterizations of Diagnostic Properties and Detection Techniques of Fentanyl and Related Synthetic Opioids. , 2018, , .		0
1192	Biosensing System for Concentration Quantification of Magnetically Labeled E. coli in Water Samples. Sensors, 2018, 18, 2250.	2.1	8
1193	Smartphone-based analytical biosensors. Analyst, The, 2018, 143, 5339-5351.	1.7	232
1194	Fast Suboptimal Multi-Layer Detection Scheme for Demodulation in Diffusion-Based Molecular Communications. , 2018, , .		0

#	Article	IF	CITATIONS
1195	A Novel Reduced Complexity Detection Scheme for ON-OFF-Keying Diffusion-Based Molecular Communications. , 2018, , .		1
1196	Optofluidic Device based on a 3D Printed Chip and a Sensing Tilted Fiber Bragg Gratings. , 2018, , .		2
1197	Reinventing (Bio)chemical Analysis with Paper. Analytical Chemistry, 2018, 90, 13815-13825.	3.2	58
1198	Theoretical analysis of non-linear Joule heating effects on an electroosmotic flow with patterned surface charges. Physics of Fluids, 2018, 30, .	1.6	25
1199	A Diffusion-Based pH Regulator in Laminar Flows with Smartphone-Based Colorimetric Analysis. Micromachines, 2018, 9, 616.	1.4	1
1200	Design, fabrication and characterisation of Siâ€based capillaryâ€driven microfluidic devices. Micro and Nano Letters, 2018, 13, 1682-1687.	0.6	3
1201	Development of Clay Nanoparticles Toward Bio and Medical Applications. , 0, , .		19
1202	Structural transition of vortices to nonlinear regimes in a dusty plasma. Physics of Plasmas, 2018, 25, 103701.	0.7	4
1203	A Passive Mixing Microfluidic Urinary Albumin Chip for Chronic Kidney Disease Assessment. ACS Sensors, 2018, 3, 2191-2197.	4.0	25
1204	Designing Efficient Low-Cost Paper-Based Sensing Plasmonic Nanoplatforms. Sensors, 2018, 18, 3035.	2.1	12
1205	Microfluidic Based Optical Microscopes on Chip. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 987-996.	1.1	53
1206	Low-Cost and Rapid-Production Microfluidic Electrochemical Double-Layer Capacitors for Fast and Sensitive Breast Cancer Diagnosis. Analytical Chemistry, 2018, 90, 12377-12384.	3.2	28
1207	Pressure-Modulated Selective Electrokinetic Trapping for Direct Enrichment, Purification, and Detection of Nucleic Acids in Human Serum. Analytical Chemistry, 2018, 90, 11366-11375.	3.2	29
1208	Characterization of Processing Artifacts in High Dynamic Range, Wide Color Gamut Video. Smpte Motion Imaging Journal, 2018, 127, 1-7.	0.2	0
1209	Unearthing the X-Streams: Visualizing Water Contamination : VAST Mini-Challenge 2 Honorable Mention: Clarity of Narrative. , 2018, , .		0
1210	Low PSNR High Fidelity Image Compression Using Surrounding Pixels. , 2018, , .		4
1211	Electrical Power Usage Prediction using A Multi Input Single Output Heuristic Network. , 2018, , .		0
1212	An Improved Version of Water-Filling Algorithm for Underground Tunnel Systems: A Comprehensive Literature Review. , 2018, , .		1

#	Article	IF	CITATIONS
1213	SMART 2018 Track III Digital India Initiative [breaker page]. , 2018, , .		0
1214	Transmission Line Fault Detection in Presence of Wind Turbine Using Wavelet Transform. , 2018, , .		3
1215	THz-Frequency Signal Sources Based on Antiferromagnetic Spin Hall Oscillators. , 2018, , .		0
1216	Experimental analysis of the influencing factors on the response of a tool for epidural space detection. , 2018, , .		2
1217	Current and Emerging mHealth Technologies. , 2018, , .		9
1218	A bead-based immunogold-silver staining assay on capillary-driven microfluidics. Biomedical Microdevices, 2018, 20, 41.	1.4	13
1219	Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 2018, 117, 112-128.	5.3	292
1220	Multiplexed antibody detection from blood sera by immobilization of in vitro expressed antigens and label-free readout via imaging reflectometric interferometry (iRlf). Biosensors and Bioelectronics, 2018, 115, 97-103.	5.3	3
1221	A novel zero-dead-volume sample loading interface for microfluidic devices: flexible hydraulic reservoir (FHR). Journal of Micromechanics and Microengineering, 2018, 28, 097001.	1.5	4
1222	Dried Blood Spheroids for Dry-State Room Temperature Stabilization of Microliter Blood Samples. Analytical Chemistry, 2018, 90, 9353-9358.	3.2	32
1224	Fabrication technology of PDMS based cylindrical and structured microchannels for LOC. , 2018, , .		1
1225	QCM mass underestimation in molecular biotechnology: Proximity ligation assay for norovirus detection as a case study. Sensors and Actuators B: Chemical, 2018, 273, 742-750.	4.0	11
1226	A Fluorescent Biosensors for Detection Vital Body Fluids' Agents. Sensors, 2018, 18, 2357.	2.1	58
1227	Perspective: Magnetoresistive sensors for biomedicine. Journal of Applied Physics, 2018, 124, .	1.1	29
1228	Study on fabrication of molecular sensing system using higherâ€order nanostructure for environmental analysis and food safety. Electronics and Communications in Japan, 2018, 101, 38-44.	0.3	3
1229	Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors. ACS Sensors, 2018, 3, 1584-1591.	4.0	9
1230	Automatic multicell identification using a compact lensless single and double random phase encoding system. Applied Optics, 2018, 57, B190.	0.9	20
1231	Understanding Cross-Cultural Requirements in mHealth Design: Findings of a Usability Study of Indian Health Professionals. , 2018, , 137-152.		1

#	Article	IF	Citations
1232	A lithium iron phosphate reference electrode for ionic liquid electrolytes. Electrochemistry Communications, 2018, 93, 148-151.	2.3	26
1233	Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment. Micromachines, 2018, 9, 123.	1.4	24
1234	Malaria and the â€~last' parasite: how can technology help?. Malaria Journal, 2018, 17, 260.	0.8	32
1235	Salivary Exosome and Cell-Free DNA for Cancer Detection. Micromachines, 2018, 9, 340.	1.4	38
1236	Ferrodrop Dose-Optimized Digital Quantification of Biomolecules in Low-Volume Samples. Analytical Chemistry, 2018, 90, 8881-8888.	3.2	7
1237	â€~Plug-and-Power' Point-of-Care diagnostics: A novel approach for self-powered electronic reader-based portable analytical devices. Biosensors and Bioelectronics, 2018, 118, 88-96.	5.3	25
1238	Nanomaterials in Biosensors. , 2018, , 1-74.		98
1239	High-frequency, dielectric spectroscopy for the detection of electrophysiological/biophysical differences in different bacteria types and concentrations. Analytica Chimica Acta, 2018, 1028, 86-95.	2.6	15
1240	Integrated LAMP and immunoassay platform for diarrheal disease detection. Biosensors and Bioelectronics, 2018, 120, 93-101.	5.3	26
1241	Free-standing liquid membranes as unusual particle separators. Science Advances, 2018, 4, eaat3276.	4.7	29
1242	Mimicking Human Pathophysiology in Organâ€onâ€Chip Devices. Advanced Biology, 2018, 2, 1800109.	3.0	48
1243	Potential Point-of-Care Microfluidic Devices to Diagnose Iron Deficiency Anemia. Sensors, 2018, 18, 2625.	2.1	10
1244	High-sensitive Mach-Zehnder interferometers based on no-core optical fiber with large lateral offset. Sensors and Actuators A: Physical, 2018, 281, 9-14.	2.0	13
1245	Highly luminescent green-emitting Au nanocluster-based multiplex lateral flow immunoassay for ultrasensitive detection of clenbuterol and ractopamine. Analytica Chimica Acta, 2018, 1040, 143-149.	2.6	43
1246	Composite Graphene/Semiconductor Nano-Structures for Energy Storage. , 2018, , 295-352.		1
1247	From Nanowarming to Thermoregulation: New Multiscale Applications of Bioheat Transfer. Annual Review of Biomedical Engineering, 2018, 20, 301-327.	5.7	22
1248	Prototype Biosensing Devices. , 2018, , 1-28.		3
1249	Biosensors Based on Microfluidic Devices Lab-on-a-Chip and Microfluidic Technology. , 2018, , 375-394.		33

#	Article	IF	Citations
1250	Design Principles for Enhancing Sensitivity in Paper-Based Diagnostics via Large-Volume Processing. Analytical Chemistry, 2018, 90, 9472-9479.	3.2	12
1251	Microscale and Nanoscale Electrophotonic Diagnostic Devices. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034249.	2.9	2
1252	An Improved Particle Filter With a Novel Hybrid Proposal Distribution for Quantitative Analysis of Gold Immunochromatographic Strips. IEEE Nanotechnology Magazine, 2019, 18, 819-829.	1.1	140
1253	Engineering Steps for Mobile Point-of-Care Diagnostic Devices. Accounts of Chemical Research, 2019, 52, 2406-2414.	7.6	43
1254	Compound micromachines powered by acoustic streaming. , 2019, , .		5
1255	Optical Temperature Control Unit and Convolutional Neural Network for Colorimetric Detection of Loop-Mediated Isothermal Amplification on a Lab-On-A-Disc Platform. Sensors, 2019, 19, 3207.	2.1	9
1256	Self-sufficient, low-cost microfluidic pumps utilising reinforced balloons. Lab on A Chip, 2019, 19, 2885-2896.	3.1	34
1257	Open Microfluidic Capillary Systems. Analytical Chemistry, 2019, 91, 8739-8750.	3.2	87
1258	Devices for promising applications. , 2019, , 247-314.		0
1259	Temperature-Induced Tunable Particle Separation. Physical Review Applied, 2019, 12, .	1.5	13
1260	A robust, hand-powered, instrument-free sample preparation system for point-of-care pathogen detection. Scientific Reports, 2019, 9, 16374.	1.6	16
1261	Current Trends of Nanobiosensors for Point-of-Care Diagnostics. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-16.	0.7	70
1262	Inspired by Nature: Efficient Piezoelectric MEMS Actuator Based on Wavelike Excitation. , 2019, , .		2
1263	Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care. Biotechnology Advances, 2019, 37, 107440.	6.0	89
1264	Progress of the discovery, application, and control technologies of chemical pesticides in China. Journal of Integrative Agriculture, 2019, 18, 840-853.	1.7	73
1265	Efficient paradigm to enhance particle separation in deterministic lateral displacement arrays. SN Applied Sciences, 2019, 1, 1.	1.5	6
1266	A novel colorimetric paper sensor based on the layer-by-layer assembled multilayers of surfactants for the sensitive and selective determination of total antioxidant capacity. RSC Advances, 2019, 9, 28598-28608.	1.7	8
1267	Flow stabilizer on a syringe tip for hand-powered microfluidic sample injection. Lab on A Chip, 2019, 19, 214-222.	3.1	34

#	Article	IF	CITATIONS
1268	Development of a microfluidic device (μPADs) for forensic serological analysis. Analytical Methods, 2019, 11, 587-595.	1.3	15
1269	Determination of sample stability for whole blood parameters using formal experimental design. Analytical Methods, 2019, 11, 930-935.	1.3	9
1270	Separation Phenomena in Tailored Micro- and Nanofluidic Environments. Annual Review of Analytical Chemistry, 2019, 12, 475-500.	2.8	22
1271	Designing Paper-Based Immunoassays for Biomedical Applications. Sensors, 2019, 19, 554.	2.1	86
1272	Analysis of Leukocyte Behaviors on Microfluidic Chips. Advanced Healthcare Materials, 2019, 8, e1801406.	3.9	13
1273	Microfluidics with new multi-stage arc-unit structures for size-based cross-flow separation of microparticles. Microelectronic Engineering, 2019, 207, 37-49.	1.1	5
1274	Sensors that Learn: The Evolution from Taste Fingerprints to Patterns of Early Disease Detection. Micromachines, 2019, 10, 251.	1.4	10
1275	Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosensors and Bioelectronics, 2019, 141, 111448.	5.3	61
1276	Full-SAW Microfluidics-Based Lab-on-a-Chip for Biosensing. IEEE Access, 2019, 7, 70901-70909.	2.6	28
1277	A homobifunctional imidoester-based microfluidic system for simultaneous DNA and protein isolation from solid or liquid biopsy samples. Lab on A Chip, 2019, 19, 2256-2264.	3.1	6
1278	Distance versus Capillary Flow Dynamicsâ€Based Detection Methods on a Microfluidic Paperâ€Based Analytical Device (μPAD). Chemistry - A European Journal, 2019, 25, 13070-13077.	1.7	21
1279	Quantum Micro–Nano Devices Fabricated in Diamond by Femtosecond Laser and Ion Irradiation. Advanced Quantum Technologies, 2019, 2, 1900006.	1.8	31
1280	The effect of protein expression on cancer cell capture using the Human Transferrin Receptor (CD71) as an affinity ligand. Analytica Chimica Acta, 2019, 1076, 154-161.	2.6	15
1281	Advances in Fs-Laser Micromachining Towards the Development of Optofluidic Devices. Springer Series in Optical Sciences, 2019, , 119-144.	0.5	0
1282	Cotton fiber-based assay with time-based microfluidic absorption sampling for point-of-care applications. Bioanalysis, 2019, 11, 855-873.	0.6	2
1283	Overreliance on Cost Reduction as a Featured Element of Sensor Design. ACS Sensors, 2019, 4, 1120-1125.	4.0	12
1284	Applications of Microfluidic Systems in Biology and Medicine. Bioanalysis, 2019, , .	0.1	7
1285	Optics, Photonics and Laser Technology 2017. Springer Series in Optical Sciences, 2019, , .	0.5	1

#	Article	IF	CITATIONS
1286	Integrating Microfabrication into Biological Investigations: the Benefits of Interdisciplinarity. Micromachines, 2019, 10, 252.	1.4	14
1287	Paper-Based Microfluidics for Point-of-Care Medical Diagnostics. Bioanalysis, 2019, , 353-382.	0.1	0
1288	Rapid Diagnostic Platform for Colorimetric Differential Detection of Dengue and Chikungunya Viral Infections. Analytical Chemistry, 2019, 91, 5415-5423.	3.2	33
1289	Scalable Methods for Device Patterning as an Outstanding Challenge in Translating Paper-Based Microfluidics from the Academic Benchtop to the Point-of-Care. Journal of Analysis and Testing, 2019, 3, 50-60.	2.5	18
1290	An Air–Liquid Interface Organ-Level Lung Microfluidics Platform for Analysis on Molecular Mechanisms of Cytotoxicity Induced by Cancer-Causing Fine Particles. ACS Sensors, 2019, 4, 907-917.	4.0	22
1291	An LC Wireless Microfluidic Sensor Based on Low Temperature Co-Fired Ceramic (LTCC) Technology. Sensors, 2019, 19, 1189.	2.1	27
1292	A passive two-way microfluidic device for low volume blood-plasma separation. Microelectronic Engineering, 2019, 209, 28-34.	1.1	13
1293	A hydrogel-driven microfluidic suction pump with a high flow rate. Lab on A Chip, 2019, 19, 1790-1796.	3.1	15
1294	Simple rolling circle amplification colorimetric assay based on pH for target DNA detection. Talanta, 2019, 201, 419-425.	2.9	30
1295	Sampling and multiplexing in lab-on-paper bioelectroanalytical devices for glucose determination. Biosensors and Bioelectronics, 2019, 135, 64-70.	5.3	27
1296	Stimuli-Responsive Microgel-Based Surface Plasmon Resonance Transducer for Glucose Detection Using a Competitive Assay with Concanavalin A. ACS Applied Polymer Materials, 2019, 1, 519-525.	2.0	27
1297	Quantitative Detection of Digoxin in Plasma Using Smallâ€Molecule Immunoassay in a Recyclable Gravityâ€Driven Microfluidic Chip. Advanced Science, 2019, 6, 1802051.	5.6	11
1298	Heterogeneous Immunoassay Using Channels and Droplets in a Digital Microfluidic Platform. Micromachines, 2019, 10, 107.	1.4	16
1299	Microencapsulated Immunoassays for Detection of Cytokines in Human Blood. ACS Sensors, 2019, 4, 578-585.	4.0	12
1300	A "time-frozen―technique in microchannel used for the thermodynamic studies of DNA origami. Biosensors and Bioelectronics, 2019, 131, 224-231.	5.3	4
1301	Development of fabric-based microfluidic devices by wax printing. Cellulose, 2019, 26, 3589-3599.	2.4	26
1302	Design and simulation of passive micromixers with ridges for enhanced efficiency. IOP Conference Series: Materials Science and Engineering, 2019, 577, 012106.	0.3	8
1303	Design of a Backstepping-Controlled Boost Converter for MPPT in PV Chains. , 2019, , .		3

	Ci	TATION REPORT	
#	Article	IF	CITATIONS
1304	Predicting the Silent Data Corruption Vulnerability of Instructions in Programs. , 2019, , .		7
1305	Educational Tool for the Teaching and Self-Learning of Mathematics and Language from Mobile Devices Aimed at Quechua-Speaking Educational Institutions of the Initial Level in Ayacucho, Peru. , 2019, , .		2
1306	Navigation Risk Decision Method Based on Pignistic Probability and Weight Optimized Neutral Network. , 2019, , .		1
1307	Climate Data Analytics Applied to Sugar Cane Crop in the French West Indies. , 2019, , .		0
1308	Modeling a Data Landscape for Intelligent Systems in Industry 4.0. , 2019, , .		0
1309	Slice Scheduling with QoS-Guarantee Towards 5G. , 2019, , .		16
1310	Estimating the effective dimension of large biological datasets using Fisher separability analysis. , 2019, , .		18
1311	Efficient and Robust Physical Layer Key Generation. , 2019, , .		5
1312	Computer Assisted Regularity Analysis for the Law on Medication of Treating Qi Deficiency Type Coronary Heart Disease by Distinguished Veteran Traditional Chinese Medicine Doctors. , 2019, , .		1
1313	Application of Improved MobileNet Network to Road Micro-Target Detection. , 2019, , .		1
1314	Face Recognition Based on Global and Local Feature Fusion. , 2019, , .		5
1315	The Application of Hydrometeor Classification Algorithm for China New Generation Doppler Radar. , 2019, , .		2
1316	Spatiotemporal Real-Time Anomaly Detection for Supercomputing Systems. , 2019, , .		1
1317	Nested Distributed Gradient Methods with Adaptive Quantized Communication. , 2019, , .		8
1318	Advanced Protection Technique for Wind Farm Collector Feeder Divided into Multi Zones. , 2019, , .		0
1319	A Study on Self-Regulated Mobile Learning Model with Real-Time Diagnosis to Students' Learning Behaviors. , 2019, , .		0
1320	Third-Party Cold Chain Medicine Logistic Provider Selection by a Rough Set-Based Gained and Lost Dominance Score Method. , 2019, , .		0
1321	Energy Efficient Scheduling for Networked IoT Device Software Update. , 2019, , .		4

#	Article	IF	Citations
1322	Frame-Wise CNN-Based View Synthesis for Light Field Camera Arrays. , 2019, , .		1
1323	Understanding and Characterizing Transmission Times for Compressed IP packets over LoRaWAN. , 2019, , .		4
1324	Effects of Impurity Hubbard Bands on the Hall Effect in n-InP. , 2019, , .		0
1325	Investigations on the Short-Circuit Degradation and its Mechanism of 1.2-KV 19-A SiC power MOSFETs. , 2019, , .		5
1326	State Modeling to Investigate the CW Pumping Behaviour of Organic Solid-State Lasers. , 2019, , .		0
1327	Design and Simulation of 90 nm Threshold Logic Carry-Look-Ahead Adder. , 2019, , .		1
1328	Generalization of Quantum Strassen Theorem. , 2019, , .		0
1329	Different Types of File Format Image Compression using Transform Domain Up-Down Conversion. , 2019, , .		0
1333	What Does Sustainability in Communications Mean?. IEEE Communications Standards Magazine, 2019, 3, 4-4.	3.6	0
1334	Open-Source Big Data Analytics Architecture for Businesses. , 2019, , .		9
1335	Class Name Recommendation Based on Graph Embedding of Program Elements. , 2019, , .		2
1336	Multicamera 3D Reconstruction of Dynamic Surgical Cavities: Non-Rigid Registration and Point Classification. , 2019, , .		5
1337	Market architecture for TSO-DSO interaction in the context of European regulation. , 2019, , .		2
1338	Deep Learning based Geometric Features for Effective Truck Selection and Classification from Highway Videos. , 2019, , .		6
1339	Switching and HTRB characteristics of Highly reliable GaN MOS-HFET. , 2019, , .		0
1340	Resource Optimization and Traffic-Aware VNF Placement in NFV-Enabled Networks. , 2019, , .		3
1341	Using SDN Strategies to Improve Resource Management On a NoC. , 2019, , .		2
1342	Study on Fast Needle Puncture to Reduce Pain. , 2019, , .		3

#	Article	IF	CITATIONS
1344	Timeliness Analysis of Service-Driven Collaborative Mobile Edge Computing in UAV Swarm. , 2019, , .		5
1345	Improving the Vocabulary Learning by Personalized Proficiency. , 2019, , .		1
1346	All-or-Nothing Phenomena: From Single-Letter to High Dimensions. , 2019, , .		5
1347	Heuristics for the Specific Substring Problem with Hamming Distance. , 2019, , .		0
1348	Performance Analysis of Unicasting Routing Protocols for Mobile Ad-Hoc Network. , 2019, , .		2
1349	Instance-Level Meta Normalization. , 2019, , .		15
1350	Rectification of Partitioned Covariance Intersection. , 2019, , .		6
1351	Sensitivity Estimation of JOM-4 Overhauser Magnetometer. , 2019, , .		0
1352	Learning-Based Inversion-Free Model-Data Integration to Advance Ecosystem Model Prediction. , 2019, ,		2
1353	SENTINEL-3 A, B, C, D: Development, Commissioning and Operations of an Environmental and Climate Monitoring Observation System. , 2019, , .		0
1354	Graph Matching via Multi-Scale Heat Diffusion. , 2019, , .		0
1355	Energy Management System for a Residential Microgrid in a Power Hardware-in-the-Loop Platform. , 2019, , .		1
1356	Proteus-I: A Flexible and Adaptable Low-Cost General-Purpose Micro-Robot Prototype for Swarm Robotics. , 2019, , .		2
1357	On adhesion mechanism of salivary pellicleâ€PDMS interface. Biosurface and Biotribology, 2019, 5, 93-96.	0.6	1
1358	AES-RC4 Encryption Technique to Improve File Security. , 2019, , .		6
1359	Volatility Clustering in Medical Ultrasound Imaging and System Identification Based Deconvolution. , 2019, , .		0
1360	Introduction of the amplitude probability distribution (APD) measurement in CISPR 32. , 2019, , .		3
1361	Analysis of Factors Affecting User Loyalty on Bitcoin Exchange. , 2019, , .		1

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
1362	Load Balancing for Future 5G Network Communication: Performance and Trade-off. , 2019, , .			1
1363	Performance Analysis of PV & Fuel cell based Grid Integrated Power System. , 2019, , .			5
1364	Data-Driven Generation of Synthetic Load Datasets Preserving Spatio-Temporal Features. , 2019	,,.		10
1365	A digital microfluidic platform for gaseous samples : First system and demonstration of element operations. , 2019, , .	ary		0
1366	An Innovative Load Balancing Cluster Composition of Wireless Sensor Networks. , 2019, , .			0
1367	MA ² RA - Manual Assembly Augmented Reality Assistant. , 2019, , .			6
1368	Case Study - Calculation of DGA Limit Values and Sampling Interval in Power Transformers. , 201	9,,.		6
1369	The Application of Network Structure Aanalysis in the Study of Disease Mechanisms. , 2019, , .			0
1370	Spatio-Temporal GRU for Trajectory Classification. , 2019, , .			15
1371	Application of a Combined Approach for Predicting a Peptide-Protein Binding Affinity Using Reg Regression Methods with Advance Reduction of Features. , 2019, , .	ilatory		5
1372	Integrated Cuckoo and Monkey Search Algorithm for Energy Efficient Clustering in Wireless Ser Networks. , 2019, , .	sor		1
1373	Perception-aware trajectory generation for aggressive quadrotor flight using differential flatness 2019, , .	• ,		23
1374	Dynamics of droplets on cones: self-propulsion due to curvature gradients. Soft Matter, 2019, 1 9997-10004.	5, 1.	.2	23
1375	Utility of Centrifugation-Controlled Convective (C3) Flow for Rapid On-chip ELISA. Scientific Rep 2019, 9, 20150.	orts, 1.	.6	5
1376	Single-Cell Omics in CVDs. , 2019, , 129-152.			1
1377	A portable rotating disc as blood rheometer. Biomicrofluidics, 2019, 13, 064120.	1.	.2	7
1378	Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents. Nature, 2019, 574, 2	28-232. 1	3.7	55
1379	Frontiers in Microfluidics, a Teaching Resource Review. Bioengineering, 2019, 6, 109.	1.	.6	19

# 1380	ARTICLE Electrokinetics with blood. Electrophoresis, 2019, 40, 180-189.	IF 1.3	Citations 22
1381	A paper-based chemiresistive biosensor employing single-walled carbon nanotubes for low-cost, point-of-care detection. Biosensors and Bioelectronics, 2019, 130, 367-373.	5.3	54
1382	Printable QR code paper microfluidic colorimetric assay for screening volatile biomarkers. Biosensors and Bioelectronics, 2019, 128, 97-103.	5.3	32
1383	Microfluidic techniques for tumor cell detection. Electrophoresis, 2019, 40, 1230-1244.	1.3	8
1384	Laser-Inscribed Glass Microfluidic Device for Non-Mixing Flow of Miscible Solvents. Micromachines, 2019, 10, 23.	1.4	14
1385	A study on quercetin and 5-fluorouracil drug interaction on graphyne nanosheets and solvent effects — A first-principles study. Journal of Molecular Liquids, 2019, 275, 713-722.	2.3	45
1386	A micro-dispenser for long-term storage and controlled release of liquids. Nature Communications, 2019, 10, 189.	5.8	19
1387	Magnet Patterned Superparamagnetic Fe ₃ O ₄ /Au Core–Shell Nanoplasmonic Sensing Array for Labelâ€Free High Throughput Cytokine Immunoassay. Advanced Healthcare Materials, 2019, 8, e1801478.	3.9	18
1388	Life-Saving Threads: Advances in Textile-Based Analytical Devices. ACS Combinatorial Science, 2019, 21, 229-240.	3.8	38
1389	Microfluidic technologies for local drug delivery. , 2019, , 281-305.		5
1390	3D Multilayered paper―and thread/paperâ€based microfluidic devices for bioassays. Electrophoresis, 2019, 40, 296-303.	1.3	23
1391	Plasmonic microgels of Au nanorods: Self-assembly and applications in chemophotothermo-synergistic cancer therapy. Journal of Colloid and Interface Science, 2019, 536, 728-736.	5.0	14
1392	Serological diagnosis of Toxoplasmosis disease using a fluorescent immunosensor with chitosan-ZnO-nanoparticles. Analytical Biochemistry, 2019, 564-565, 116-122.	1.1	30
1393	Reactive Inkjet Printing of Functional Silk Stirrers for Enhanced Mixing and Sensing. Small, 2019, 15, e1804213.	5.2	16
1394	Ambulatory measurement of cortisol: Where do we stand, and which way to follow?. Sensing and Bio-Sensing Research, 2019, 22, 100249.	2.2	23
1395	Point-of-care-testing of α-amylase activity in human blood serum. Biosensors and Bioelectronics, 2019, 124-125, 75-81.	5.3	31
1396	Nanoparticles and Nanocomposites With Microfluidic Technology. , 2019, , 1-33.		6
1397	A Simplified Dielectric Material Characterization Algorithm for Both Liquids and Solids. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1639-1646.	1.4	6

#	Article	IF	Citations
1398	Aggregation and dispersion of Au-nanoparticle-decorated polystyrene beads with SERS-activity using AC electric field and Brownian movement. Applied Surface Science, 2019, 465, 405-412.	3.1	9
1399	Microfluidics for Biomedical Analysis. Small Methods, 2020, 4, 1900451.	4.6	107
1400	Basics of Micro/Nano Fluidics and Biology. Microtechnology and MEMS, 2020, , 7-87.	0.2	1
1401	Effect of electrolyte nature in mass transport of a neutral solute in a microtube with porous wall. AICHE Journal, 2020, 66, e16765.	1.8	4
1402	Highly Sensitive RNAâ€Cleaving DNAzyme Sensors from Surfaceâ€toâ€Surface Product Enrichment. ChemBioChem, 2020, 21, 632-637.	1.3	8
1403	Microfluidicsâ€Implemented Biochemical Assays: From the Perspective of Readout. Small, 2020, 16, e1903388.	5.2	27
1404	Microfluidic surface-enhanced infrared spectroscopy with semiconductor plasmonics for the fingerprint region. Reaction Chemistry and Engineering, 2020, 5, 124-135.	1.9	10
1405	Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers. Analytical Chemistry, 2020, 92, 940-946.	3.2	40
1406	3D Helical Micromixer Fabricated by Micro Lostâ€Wax Casting. Advanced Materials Technologies, 2020, 5, 1900794.	3.0	12
1407	Characterization of AuNPs+rGO as a functionalized layer for LSPR sensors. Materials Letters: X, 2020, 5, 100032.	0.3	0
1408	Paperâ€Based Ratiometric Fluorescence Analytical Devices towards Pointâ€ofâ€Care Testing of Human Serum Albumin. Angewandte Chemie, 2020, 132, 3155-3160.	1.6	112
1409	Paperâ€Based Ratiometric Fluorescence Analytical Devices towards Pointâ€ofâ€Care Testing of Human Serum Albumin. Angewandte Chemie - International Edition, 2020, 59, 3131-3136.	7.2	146
1410	Tunable particle separation via deterministic absolute negative mobility. Scientific Reports, 2020, 10, 16639.	1.6	6
1411	Novel Approach toward Electrofluidic Substrates Utilizing Textile-Based Braided Structure. ACS Applied Materials & Interfaces, 2020, 12, 45618-45628.	4.0	10
1412	MEMS Biosensors and COVID-19: Missed Opportunity. ACS Sensors, 2020, 5, 3297-3305.	4.0	28
1413	Development and Characterization of a PCB-Based Microfluidic Y-Channel. , 2020, 2020, 5037-5040.		4
1414	Local photo-polymer deposition-assisted fabrication of multilayer paper-based devices. Sensors and Actuators B: Chemical, 2020, 322, 128574.	4.0	10
1415	ZnO Nanorod Integrated Flexible Carbon Fibers for Sweat Cortisol Detection. ACS Applied Electronic Materials, 2020, 2, 499-509.	2.0	69

#	Article	IF	CITATIONS
1416	Review: Applications of surface-enhanced fluorescence (SEF) spectroscopy in bio-detection and biosensing. Sensing and Bio-Sensing Research, 2020, 30, 100382.	2.2	31
1417	Facile High Throughput Wet-Chemical Synthesis Approach Using a Microfluidic-Based Composition and Temperature Controlling Platform. Frontiers in Chemistry, 2020, 8, 579828.	1.8	13
1418	Development of Microdroplet Generation Method for Organic Solvents Used in Chemical Synthesis. Molecules, 2020, 25, 5360.	1.7	9
1419	Higher Sensitivity Provided by the Combination of Two Lateral Flow Immunoassay Tests for the Detection of COVID-19 Immunoglobulins. Frontiers in Cellular and Infection Microbiology, 2020, 10, 479.	1.8	9
1420	Polymer Microchannel and Micromold Surface Polishing for Rapid, Low-Quantity Polydimethylsiloxane and Thermoplastic Microfluidic Device Fabrication. Polymers, 2020, 12, 2574.	2.0	5
1421	A Multifunctional Microfluidic Device for Blood Typing and Primary Screening of Blood Diseases. ACS Sensors, 2020, 5, 3082-3090.	4.0	18
1422	Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control. Micromachines, 2020, 11, 690.	1.4	5
1423	Era of nano-lab-on-a-chip (LOC) technology. , 2020, , 1-17.		0
1424	Thread integrated smart-phone imaging facilitates early turning point colorimetric assay for microbes. RSC Advances, 2020, 10, 26853-26861.	1.7	24
1425	Scalable COVID-19 Detection Enabled by Lab-on-Chip Biosensors. Cellular and Molecular Bioengineering, 2020, 13, 313-329.	1.0	81
1426	Global Biological Threats: Novel Tools and Multi-Disciplinary Approaches to Sustainable Development. Journal of the Indian Institute of Science, 2020, 100, 603-610.	0.9	0
1427	Dynamic dielectric properties characterization of tapered dielectrophoresis microelectrodes for selective detection and rapid manipulation of cells. Microelectronics International, 2020, 37, 189-198.	0.4	3
1428	Measuring the Refractive Index and Its Two-Dimensional Distribution of Picoliter Microfluidics With the Scanning White Light Interference Microscopy Method. IEEE Access, 2020, 8, 190553-190558.	2.6	0
1429	Development of a portable lab-on-a-valve device for making primary diagnoses based on gold-nanoparticle aggregation induced by a switchable linker. RSC Advances, 2020, 10, 31243-31250.	1.7	1
1430	Analytical Guidelines for Designing Curvature-Induced Dielectrophoretic Particle Manipulation Systems. Micromachines, 2020, 11, 707.	1.4	6
1431	Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sensors, 2020, 5, 2701-2723.	4.0	56
1432	Turning on/off satellite droplet ejection for flexible sample delivery on digital microfluidics. Lab on A Chip, 2020, 20, 3709-3719.	3.1	16
1433	3D-Printed Immunosensor Arrays for Cancer Diagnostics. Sensors, 2020, 20, 4514.	2.1	32

#	Article	IF	CITATIONS
1434	Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish. ACS Sensors, 2020, 5, 4092-4100.	4.0	47
1435	Functional design and performance evaluation of a metal handheld detector for land mines detection. Procedia CIRP, 2020, 91, 696-703.	1.0	3
1436	Measurement of red blood cell size based on a lensless imaging system. Biotechnology and Applied Biochemistry, 2020, , .	1.4	5
1437	Flow Homogenization Enables a Massively Parallel Fluidic Design for Highâ€Throughput and Multiplexed Cell Isolation. Advanced Materials Technologies, 2020, 5, 1900960.	3.0	0
1438	Printed paper-based (bio)sensors: Design, fabrication and applications. Comprehensive Analytical Chemistry, 2020, 89, 63-89.	0.7	2
1439	Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale, 2020, 12, 15512-15527.	2.8	58
1440	Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Diagnostics. Micromachines, 2020, 11, 468.	1.4	25
1442	Passive micropumping in microfluidics for point-of-care testing. Biomicrofluidics, 2020, 14, 031503.	1.2	39
1443	Continuous Label-Free Electronic Discrimination of T Cells by Activation State. ACS Nano, 2020, 14, 8646-8657.	7.3	21
1444	Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips. Lab on A Chip, 2020, 20, 2572-2579.	3.1	21
1445	The Potential Role of Smartphone-Based Microfluidic Systems for Rapid Detection of COVID-19 Using Saliva Specimen. Molecular Diagnosis and Therapy, 2020, 24, 371-373.	1.6	27
1446	Microfluidic cloth-based analytical devices: Emerging technologies and applications. Biosensors and Bioelectronics, 2020, 168, 112391.	5.3	24
1447	The Impact of Lexicon Adaptation on the Emotion Mining From Software Engineering Artifacts. IEEE Access, 2020, 8, 48742-48751.	2.6	9
1448	Comparison of Emoji Use in Names, Profiles, and Tweets. , 2020, , .		2
1449	A Nut-and-Bolt Microfluidic Mixing System for the Rapid Labeling of Immune Cells with Antibodies. Micromachines, 2020, 11, 280.	1.4	5
1450	Nanosensors for health care. , 2020, , 433-450.		10
1451	A microfluidic device for digital manipulation of gaseous samples. Lab on A Chip, 2020, 20, 1290-1297.	3.1	1
1452	High Efficient Isolation of Tumor Cells by a Three Dimensional Scaffold Chip for Diagnosis of Malignant Effusions. ACS Applied Bio Materials, 2020, 3, 2177-2184.	2.3	3

#	Article	IF	CITATIONS
1453	A Scalable Operating System Experiment Platform Supporting Learning Behavior Analysis. IEEE Transactions on Education, 2020, 63, 232-239.	2.0	9
1454	Development of a direct and visual isothermal method for meat adulteration detection in low resource settings. Food Chemistry, 2020, 319, 126542.	4.2	7
1455	Optimization of Extended Phase-Shift Control for Full-Bridge CLLC Resonant Converter With Improved Light-Load Efficiency. IEEE Transactions on Power Electronics, 2020, 35, 11129-11142.	5.4	61
1456	Continuous organic synthesis in water around micro-orifices after flows. Heliyon, 2020, 6, e03630.	1.4	2
1457	Systems Engineers' Effectiveness in an Organization: Text and Visual Analytics Approach. IEEE Systems Journal, 2020, 14, 5049-5060.	2.9	1
1458	A Single-Shot Region-Adaptive Network for Myotendinous Junction Segmentation in Muscular Ultrasound Images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2531-2542.	1.7	16
1459	Mean Field Game Guided Deep Reinforcement Learning for Task Placement in Cooperative Multiaccess Edge Computing. IEEE Internet of Things Journal, 2020, 7, 9330-9340.	5.5	34
1460	A Frequency-Agile Relativistic Magnetron With Axial Tuning. IEEE Electron Device Letters, 2020, 41, 781-783.	2.2	13
1461	Availability-Driven Design of Hairpin Fuels and Small Interfering Strands for Leakage Reduction in Autocatalytic Networks. Journal of Physical Chemistry B, 2020, 124, 3326-3335.	1.2	11
1462	Advances in High-Resolution Ultrafast Lul ₃ :Ce Scintillators for Fast Timing Applications. IEEE Transactions on Nuclear Science, 2020, 67, 969-973.	1.2	4
1463	Scan Integrity Tests for EDT Compression. IEEE Design and Test, 2020, 37, 21-26.	1.1	0
1464	Benchtop-fabricated lipid-based electrochemical sensing platform for the detection of membrane disrupting agents. Scientific Reports, 2020, 10, 4595.	1.6	9
1465	Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review. Micromachines, 2020, 11, 603.	1.4	20
1466	An inkjet-printed polysaccharide matrix for on-chip sample preparation in point-of-care cell counting chambers. RSC Advances, 2020, 10, 18062-18072.	1.7	3
1467	Ultrasonic microstreaming for complex-trajectory transport and rotation of single particles and cells. Lab on A Chip, 2020, 20, 2947-2953.	3.1	35
1468	Emerging Trends in Microfluidics Based Devices. Biotechnology Journal, 2020, 15, e1900279.	1.8	29
1469	An Approach for Radicalization Detection Based on Emotion Signals and Semantic Similarity. IEEE Access, 2020, 8, 17877-17891.	2.6	36
1470	Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chemical Society Reviews, 2020, 49, 1812-1866.	18.7	310

#	Article	IF	CITATIONS
1471	Quantitative Analysis Method of Immunochromatographic Strip Based on Reinforcement Learning. Journal of Physics: Conference Series, 2020, 1449, 012058.	0.3	0
1472	Optimal optimisationâ€based microgrid scheduling considering impacts of unexpected forecast errors due to the uncertainty of renewable generation and loads fluctuation. IET Renewable Power Generation, 2020, 14, 321-331.	1.7	15
1473	Analysis and Comparison of the Radiated Electromagnetic Interference Generated by Power Converters With Si MOSFETs and GaN HEMTs. IEEE Transactions on Power Electronics, 2020, 35, 8050-8062.	5.4	29
1474	A Grant-Free Random Access Scheme for M2M Communication in Massive MIMO Systems. IEEE Internet of Things Journal, 2020, 7, 3602-3613.	5.5	26
1475	Micro–nanoparticles magnetic trap: Toward high sensitivity and rapid microfluidic continuous flow enzyme immunoassay. Biomicrofluidics, 2020, 14, 014111.	1.2	5
1476	Challenges and perspectives in the development of paper-based lateral flow assays. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	63
1477	Fabrication of unconventional inertial microfluidic channels using wax 3D printing. Soft Matter, 2020, 16, 2448-2459.	1.2	42
1478	Real-time gene analysis based on a portable electrochemical microfluidic system. Electrochemistry Communications, 2020, 111, 106665.	2.3	12
1479	Correlation Self-Expression Shrunk for Subspace Clustering. IEEE Access, 2020, 8, 16595-16605.	2.6	4
1480	Optical nanosensors for cancer and virus detections. , 2020, , 419-432.		30
1481	Centrifugation of Microparticles Inside a Sessile Droplet on a Micromachined Silicon Chip Using Acoustic Tweezers. , 2020, , .		1
1482	Biomedical CT Image Retrieval Using 3D Local Oriented Zigzag Fused Pattern. , 2020, , .		1
1483	Spectrum Sharing in mmWave Cellular Networks Using Clustering Algorithms. IEEE/ACM Transactions on Networking, 2020, 28, 1378-1390.	2.6	2
1484	Detection of renal biomarkers in chronic kidney disease using microfluidics: progress, challenges and opportunities. Biomedical Microdevices, 2020, 22, 29.	1.4	13
1485	Eigen Vector Method with Swarm and Non Swarm Intelligence Techniques for Epileptic Seizure Classification. , 2020, , .		2
1486	Highâ€speed energy efficient process, voltage and temperature tolerant hybrid multiâ€threshold 4:2 compressor design in CNFET technology. IET Circuits, Devices and Systems, 2020, 14, 357-368.	0.9	6
1487	Short Course: Circuit Design in Advanced CMOS Technologies $\hat{a} {\mbox{\ensuremath{\in}}}^{*}$ Considerations and Solutions. , 2020, , .		0
1488	Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics. Science Advances, 2020, 6, eaay8305.	4.7	25

#	Article	IF	CITATIONS
1489	Microfluidic Point-of-Care Devices: New Trends and Future Prospects for eHealth Diagnostics. Sensors, 2020, 20, 1951.	2.1	119
1490	CMOS MEMS Thermal Flow Sensor With Enhanced Sensitivity for Heating, Ventilation, and Air Conditioning Application. IEEE Transactions on Industrial Electronics, 2021, 68, 4468-4476.	5.2	28
1491	Achieving Accountable and Efficient Data Sharing in Industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2021, 17, 1416-1427.	7.2	30
1492	Tunable flow rate in textile-based materials utilising composite fibres. Journal of the Textile Institute, 2021, 112, 568-577.	1.0	0
1493	Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification. Acta Biomaterialia, 2021, 120, 57-80.	4.1	34
1494	Dynamic Prediction of Body Temperature Monitoring Equipment. IEEE Sensors Journal, 2021, 21, 7291-7297.	2.4	0
1495	Measurement of Multiphase Flow by Tilted Optical Fiber Bragg Grating Sensor. IEEE Sensors Journal, 2021, 21, 1534-1539.	2.4	2
1496	An origami electrical biosensor for multiplexed analyte detection in body fluids. Biosensors and Bioelectronics, 2021, 171, 112721.	5.3	33
1497	A wearable microfluidics-integrated impedimetric immunosensor based on Ti3C2T MXene incorporated laser-burned graphene for noninvasive sweat cortisol detection. Sensors and Actuators B: Chemical, 2021, 329, 129206.	4.0	86
1498	All-graphene-based open fluidics for pumpless, small-scale fluid transport <i>via</i> laser-controlled wettability patterning. Nanoscale Horizons, 2021, 6, 24-32.	4.1	12
1499	Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosensors and Bioelectronics, 2021, 174, 112830.	5.3	149
1500	An overview of microfluidic devices. , 2021, , 1-22.		3
1501	Smart microfluidic analogue of Wheatstone-bridge for real-time continuous detection with ultrasensitivity and wide dynamic range. Chemical Engineering Journal, 2021, 407, 127138.	6.6	12
1502	Nucleic acid analysis on paper substrates (NAAPs): an innovative tool for Point of Care (POC) infectious disease diagnosis. Analyst, The, 2021, 146, 3422-3439.	1.7	16
1503	Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes. Lab on A Chip, 2021, 21, 2869-2880.	3.1	31
1504	Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Current Topics in Medicinal Chemistry, 2021, 21, 92-114.	1.0	16
1505	Point-of-need detection with smartphone. , 2021, , 311-362.		1
1506	Miniaturised detection systems. , 2021, , 327-364.		Ο

#	Article	IF	Citations
1507	Reagent integration and controlled release for multiplexed nucleic acid testing in disposable thermoplastic 2D microwell arrays. Biomicrofluidics, 2021, 15, 014103.	1.2	1
1508	Cellulose-based biocomposites. , 2021, , 135-195.		1
1509	Use of some cost-effective technologies for a routine clinical pathology laboratory. Lab on A Chip, 2021, 21, 4330-4351.	3.1	8
1510	Fused filament fabrication 3D printed polylactic acid electroosmotic pumps. Lab on A Chip, 2021, 21, 3338-3351.	3.1	7
1511	Functional coatings for lab-on-a-chip systems based on phospholipid polymers. , 2021, , 555-595.		4
1512	Anisotropic pyrochemical dry etching of fluorinated ethylene propylene induced by pre-irradiation with synchrotron radiation. AIP Advances, 2021, 11, .	0.6	2
1513	From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano, 2021, 15, 1960-2004.	7.3	171
1514	Deep-reinforcement-learning-based images segmentation for quantitative analysis of gold immunochromatographic strip. Neurocomputing, 2021, 425, 173-180.	3.5	100
1515	Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. Biosensors, 2021, 11, 51.	2.3	49
1516	Frequency-specific, valveless flow control in insect-mimetic microfluidic devices. Bioinspiration and Biomimetics, 2021, 16, 036004.	1.5	4
1517	High-efficient crystal particle manufacture by microscale process intensification technology. Green Chemical Engineering, 2021, 2, 57-69.	3.3	9
1518	Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Natural Product Communications, 2021, 16, 1934578X2110030.	0.2	1
1519	Enhanced Liquid Transport on a Highly Scalable, Costâ€Effective, and Flexible 3D Topological Liquid Capillary Diode. Advanced Functional Materials, 2021, 31, 2011288.	7.8	20
1520	Droplet digital PCR of viral ‎DNA/RNA, current progress, challenges, and future perspectives. Journal of Medical Virology, 2021, 93, 4182-4197.	2.5	100
1522	CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics. Biosensors and Bioelectronics, 2021, 177, 112887.	5.3	117
1523	A HiPAD Integrated with rGO/MWCNTs Nano ircuit Heater for Visual Pointâ€of are Testing of SARS oVâ€2. Advanced Functional Materials, 2021, 31, 2100801.	7.8	20
1524	The Prospects of Application of Microfluidics for Synthesis of Compounds from the Alkylene Guanidine Series. Polymer Science - Series D, 2021, 14, 305-311.	0.2	2
1525	Active Janus Droplet as a Microâ€Reactor for Automatic DNA/RNA Precipitation and Extraction. ChemistrySelect, 2021, 6, 3722-3728.	0.7	2

#	Article	IF	CITATIONS
1526	Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. Journal of Clinical Medicine, 2021, 10, 1488.	1.0	37
1527	Red blood cell recognition and posture estimation in microfluidic chip based on lensless imaging. Biomicrofluidics, 2021, 15, 034109.	1.2	5
1528	Modelling of Electrowetting-Induced Droplet Detachment and Jumping over Topographically Micro-Structured Surfaces. Micromachines, 2021, 12, 592.	1.4	6
1529	Appraisal of Heavy Metal Presence and Water Quality having Microbial Load and Associated Human Health Risk: A study on tube-well water in Nalitabari township of Sherpur district, Bangladesh. Grassroots Journal of Natural Resources, 2021, 4, 48-64.	0.4	1
1530	Influence of Surface Texture on the Variation of Electrokinetic Streaming Potentials. Langmuir, 2021, 37, 6736-6743.	1.6	4
1531	Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Nanotechnology, 2021, 32, 312001.	1.3	26
1532	A Snapshot of Microfluidics in Pointâ€ofâ€Care Diagnostics: Multifaceted Integrity with Materials and Sensors. Advanced Materials Technologies, 2021, 6, 2100049.	3.0	31
1533	Molecular diffusion analysis of dynamic blood flow and plasma separation driven by self-powered microfluidic devices. Biomicrofluidics, 2021, 15, 034106.	1.2	1
1534	Printable graphene BioFETs for DNA quantification in Lab-on-PCB microsystems. Scientific Reports, 2021, 11, 9815.	1.6	32
1535	ASSUREDâ€compliant pointâ€ofâ€care diagnostics for the detection of human viral infections. Reviews in Medical Virology, 2022, 32, e2263.	3.9	23
1536	Understanding the role of the gut in undernutrition: what can technology tell us?. Gut, 2021, 70, 1580-1594.	6.1	12
1537	Secure Air Traffic Control at the Hub of Multiplexing on the Centrifugo-Pneumatic Lab-on-a-Disc Platform. Micromachines, 2021, 12, 700.	1.4	7
1538	A Pencil-Drawn Electronic Tongue for Environmental Applications. Sensors, 2021, 21, 4471.	2.1	6
1539	Metabolic biomarker modeling for predicting clinical diagnoses through microfluidic paper-based analytical devices. Microchemical Journal, 2021, 165, 106093.	2.3	2
1540	Paper-based microfluidics: Simplified fabrication and assay methods. Sensors and Actuators B: Chemical, 2021, 336, 129681.	4.0	190
1541	Pushbutton-activated microfluidic cartridge as a user-friendly sample preparation tool for diagnostics. Biomicrofluidics, 2021, 15, 041302.	1.2	0
1542	Enhancing the Stability of COVIDâ€19 Serological Assay through Metal–Organic Framework Encapsulation. Advanced Healthcare Materials, 2021, 10, 2100410.	3.9	4
1543	Paper based analytical devices for blood grouping: a comprehensive review. Biomedical Microdevices, 2021, 23, 34.	1.4	8

ARTICLE IF CITATIONS # Numerical simulation of critical particle size in asymmetrical deterministic lateral displacement. 1.8 15 1544 Journal of Chromatography A, 2021, 1649, 462216. Quantitative Point-of-Care Colorimetric Assay Modeling Using a Handheld Colorimeter. ACS Omega, 1545 1.6 2021, 6, 22439-22446. Monolithic integration of nanorod arrays on microfluidic chips for fast and sensitive one-step 1546 3.4 11 immunoassays. Microsystems and Nanoengineering, 2021, 7, 65. Surface acoustic wave (SAW) techniques in tissue engineering. Cell and Tissue Research, 2021, 386, 1547 215-226. Glucometerâ€based Ultraâ€sensitive BRAF V600E Mutation Detection Facilitated by Magnetic Nanochains 1548 1.5 4 and a Selfâ€made Pointâ€ofâ€care (POC) Device. Electroanalysis, 0, , . What is the future of lab-on-a-chip diagnostic devices? Assessing changes in experts' expectations over 1549 1.2 time. Foresight, 2021, 23, 640-654. Functionalization of microfluidic devices by microstructures created with proton beam lithography. 1550 1.6 7 Vacuum, 2021, 190, 110295. Laser fabrication of modular superhydrophobic chips for reconfigurable assembly and self-propelled 1551 5.5 28 droplet manipulation. PhotoniX, 2021, 2, . Therapeutic potential of graphyne as a new drug-delivery system for daunorubicin to treat cancer: A 1552 2.3 48 DFT study. Journal of Molecular Liquids, 2021, 336, 116327. A self-powered pump based on gas-dissolved-in-liquid phenomenon to generate both negative and positive driving pressures. Sensors and Actuators B: Chemical, 2021, 342, 130048. Recent advances in point-of-care biosensors for the diagnosis of neglected tropical diseases. Sensors 1554 12 4.0and Actuators B: Chemical, 2021, 349, 130821. Application of microfluidic chips in anticancer drug screening. Bosnian Journal of Basic Medical 0.6 Sciences, 2021, , . A colorimetric microfluidic paper-based analytical device for sulfonamides in cow milk using 1556 4.2 18 enzymatic inhibition. Food Chemistry, 2021, 356, 129692. All-in-one pumpless portable genetic analysis microsystem for rapid naked-eye detection. Sensors and 4.0 Actuators B: Chemical, 2021, 344, 130307. Adaptive Parameter Model for Quasi-Spherical Cell Size Measurement Based on Lensless Imaging 1558 2.2 1 System. IEEE Transactions on Nanobioscience, 2021, 20, 521-529. Thermoelectric modules in mechatronic systems: Temperature-dependent modeling and control. 1559 2.0 Mechatronics, 2021, 79, 102647. A wearable, nozzleâ€'diffuser microfluidic pump based on highâ€'performance ferroelectric 1560 4.0 12 nanocomposites. Sensors and Actuators B: Chemical, 2021, 347, 130611. Sensory materials for microfluidic paper based analytical devices - A review. Talanta, 2021, 235, 122733.

#	Article	IF	CITATIONS
1562	Electrochemical biosensors based on Ti3C2Tx MXene: future perspectives for on-site analysis. Current Opinion in Electrochemistry, 2021, 30, 100782.	2.5	41
1563	Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Materials Today Nano, 2021, 16, 100136.	2.3	51
1564	Packaging for Bio-micro-electro-mechanical Systems (BioMEMS) and Microfluidic Chips. , 2021, , 253-287.		0
1565	Smartphone-based microfluidic devices. , 2021, , 275-288.		1
1566	Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening. Small, 2021, 17, 2006012.	5.2	24
1567	Microfluidic systems for drug discovery, pharmaceutical analysis, and diagnostic applications. , 2021, , 261-327.		0
1568	Surface coatings for microfluidic biomedical devices. , 2021, , 79-123.		0
1569	Microfluidic chip fabrication and performance analysis of 3D printed material for use in microfluidic nucleic acid amplification applications. Journal of Micromechanics and Microengineering, 2021, 31, 035005.	1.5	8
1571	Microinjection Molding for Microfluidics Applications. , 2015, , 2085-2101.		3
1572	Molecular Approaches to Recognize Relevant and Emerging Infectious Diseases in Animals. Methods in Molecular Biology, 2015, 1247, 109-124.	0.4	4
1573	Quantitative Point-of-Care (POC) Assays Using Measurements of Time as the Readout: A New Type of Readout for mHealth. Methods in Molecular Biology, 2015, 1256, 213-229.	0.4	1
1574	Improving Lateral-Flow Immunoassay (LFIA) Diagnostics via Biomarker Enrichment for mHealth. Methods in Molecular Biology, 2015, 1256, 71-84.	0.4	4
1575	The Application of Microfluidic Devices for Viral Diagnosis in Developing Countries. Methods in Molecular Biology, 2013, 949, 285-303.	0.4	6
1576	Bioactive Papers: A Futuristic Tool for Health, Food, and Environmental Applications. , 2020, , 155-177.		3
1577	Dielectrophoresis Field-Flow Fractionation for Continuous-Flow Separation of Particles and Cells in Microfluidic Devices. Advances in Transport Phenomena, 2014, , 29-62.	0.5	13
1578	Mobile Medical Applications. Springer Theses, 2015, , 135-148.	0.0	20
1579	Personalized Medicine Approaches to the Prevention, Diagnosis, and Treatment of Chronic Periodontitis. , 2015, , 99-112.		7
1582	Microinjection Molding for Microfluidics Applications. , 2014, , 1-18.		1

#	Article	IF	CITATIONS
1583	Cellular Neural Networks for Gold Immunochromatographic Strip Image Segmentation. Lecture Notes in Computer Science, 2012, , 110-120.	1.0	3
1584	Microfluidic Lab-on-a-Chip Platforms: Requirements, Characteristics and Applications. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 305-376.	0.5	79
1585	A Historical Perspective on Paper Microfluidic Based Point-of-Care Diagnostics. Advanced Functional Materials and Sensors, 2019, , 1-5.	1.2	2
1586	Evolution of Paper Microfluidics as an Alternate Diagnostic Platform. Advanced Functional Materials and Sensors, 2019, , 83-98.	1.2	4
1587	Temperature-Dependent Modeling of Thermoelectric Elements. IFAC-PapersOnLine, 2020, 53, 8625-8630.	0.5	1
1588	SPR Imaging for Clinical Diagnostics. , 2008, , 313-332.		3
1589	Elliptocyte detection technology based on super-resolution algorithms for a lensless imaging system. Measurement Science and Technology, 2021, 32, 025701.	1.4	6
1590	A simplified yet enhanced and versatile microfluidic platform for cyclic cell stretching on an elastic polymer. Biofabrication, 2020, 12, 045032.	3.7	20
1593	Droplet breakup driven by shear thinning solutions in a microfluidic T-junction. Physical Review Fluids, 2017, 2, .	1.0	53
1594	Effect of shear thinning on superhydrophobic slip: Perturbative corrections to the effective slip length. Physical Review Fluids, 2017, 2, .	1.0	14
1595	Why capillary flows in slender triangular grooves are so stable against disturbances. Physical Review Fluids, 2019, 4, .	1.0	7
1596	Swinging jets. Physical Review Fluids, 2020, 5, .	1.0	2
1597	Design and Two-Photon Polymerization of Complex Functional Micro-Objects for Lab-on-a-Chip: Rotating Micro-Valves. Journal of Neuroscience and Neuroengineering, 2013, 2, 48-52.	0.2	7
1598	Nanotechnology Applications for Infectious Diseases. , 2013, , 1-84.		2
1599	Impacts of Air Pollution on the Ecosystem and Human Health. , 2010, , 447-492.		3
1600	Polarization holographic microscope slide for birefringence imaging of anisotropic samples in microfluidics. Optics Express, 2020, 28, 14762.	1.7	12
1601	Imaging of Surfaces by Concurrent Surface Plasmon Resonance and Surface Plasmon Resonance-Enhanced Fluorescence. PLoS ONE, 2010, 5, e9833.	1.1	7
1602	A Simple, Inexpensive Device for Nucleic Acid Amplification without Electricity—Toward Instrument-Free Molecular Diagnostics in Low-Resource Settings. PLoS ONE, 2011, 6, e19738.	1.1	124

#	Article	IF	CITATIONS
1603	Macrophage Inflammatory Protein-1α Shows Predictive Value as a Risk Marker for Subjects and Sites Vulnerable to Bone Loss in a Longitudinal Model of Aggressive Periodontitis. PLoS ONE, 2014, 9, e98541.	1.1	37
1604	Punch Card Programmable Microfluidics. PLoS ONE, 2015, 10, e0115993.	1.1	17
1605	Optical Imaging of Paramagnetic Bead-DNA Aggregation Inhibition Allows for Low Copy Number Detection of Infectious Pathogens. PLoS ONE, 2015, 10, e0129830.	1.1	20
1606	Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication. PLoS ONE, 2016, 11, e0152023.	1.1	124
1608	Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring. Current Pharmaceutical Design, 2019, 25, 2953-2968.	0.9	4
1609	Microfluidic Hydrodynamic Cell Separation: A Review. Micro and Nanosystems, 2009, 1, 181-192.	0.3	36
1610	Polymer microfluidic devices: an overview of fabrication methods. U Porto Journal of Engineering, 2015, 1, 67-79.	0.2	29
1611	Fundamental principles and applications of microfluidic systems. Frontiers in Bioscience - Landmark, 2008, 13, 2757.	3.0	60
1613	Experiments on Liquid Flow through Non-Circular Micro-Orifices. Micromachines, 2020, 11, 510.	1.4	3
1615	Metastable capillary filaments in rectangular cross-section open microchannels. AIMS Biophysics, 2014, 1, 31-48.	0.3	20
1616	Quantitative Determination of Tear Glucose Using Paper Based Microfluidic Devices. Journal of the Korean Chemical Society, 2015, 59, 88-92.	0.2	6
1617	Recent Developments in Cell-Based Microscale Technologies and Their Potential Application in Personalised Medicine. , 0, , .		1
1618	Paper-Based Neuraminidase Assay Sensor for Detection of Influenza Viruses. Korean Chemical Engineering Research, 2016, 54, 380-386.	0.2	1
1619	Engineering Consideration for Emerging Essential Nucleic Acid Tests for Point-of-Care Diagnostics. Advances in Molecular Pathology, 2021, 4, 81-91.	0.2	0
1620	HF-free and fast fabrication of long, rectangular microchannels in fused silica: Novel femtosecond laser irradiation geometry. Optical Materials, 2021, 122, 111682.	1.7	3
1622	Carbon Nanotube-Assisted Microwave Thermal Bonding of Plastic Biochip. Mechatronic Systems and Control, 2010, 7, .	0.2	0
1624	Diarrheal Diseases. , 2010, , 121-145.		1
1625	Chapter 11. Microfluidics: Basic Concepts and Microchip Fabrication. RSC Nanoscience and Nanotechnology, 2010, , 111-149.	0.2	Ο

#	Article	IF	CITATIONS
1626	Systems Integration. , 2010, , .		0
1628	A Shape-Factor Method for Modeling Parallel and Axially-Varying Flow in Tubes and Channels of Complex Cross-Section Shapes. , 0, , .		1
1629	P1.2.11 An Integrated Electrophoresis Microchip for Label-free Detection Using Surface Plasmon Resonance Image. , 2012, , .		0
1630	^ ^ldquo;Smart^ ^rdquo; Polymer Technologies for Global Health. Kobunshi Ronbunshu, 2012, 69, 545-554.	0.2	1
1632	Relevance of Nanotechnology to Africa: Synthesis, Applications, and Safety. , 2013, , 123-158.		3
1633	Integrated Chemistries for Analytical Simplification and Point of Care Testing. RSC Detection Science, 2013, , 35-64.	0.0	0
1635	A Low Temperature Cofired Ceramic Microfluidic Calorimeter for ELISA Biosensing. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2013, 2013, 000168-000172.	0.2	0
1637	Biocompatible low temperature co-fired ceramic for biosensors. Additional Conferences (Device) Tj ETQq1 1 0.78	4314 rgBT 0.2	/8verlock 1
1638	Cell-based Microfluidic Assays in Translational Medicine. , 2014, , 927-956.		1
1640	Microfluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord. RSC Nanoscience and Nanotechnology, 2014, , 151-190.	0.2	1
1641	Can Microfluidics boost the Map of Glycome Code?. Journal of Glycomics & Lipidomics, 2014, 04, .	0.4	0
1642	Isolation and Characterization of Circulating Tumor Cells. RSC Nanoscience and Nanotechnology, 2014, , 191-212.	0.2	0
1643	Sepsis in Sub-Saharan Africa. , 0, , 223-239.		0
1644	Diagnostic Innovations in Developing Urban Settings. , 2015, , 269-291.		0
1645	Point-of-Care Diagnosis by Portable Microchip. Journal of the Institute of Electrical Engineers of Japan, 2015, 135, 558-561.	0.0	0
1646	Clinical Diagnostics and Patient Stratification for Use in the Dental Office. , 2015, , 61-72.		0
1647	Field-Effect Transistors: Current Advances and Challenges in Bringing Them to Point-of-Care. , 2015, , 353-371.		3
1648	Nouvelles unités d'enseignement autour de l'étude et de la conception de laboratoires sur puces. J3 2015, 14, 2012.	eA _{0.0}	0

#	Article	IF	CITATIONS
1649	Microfluidic Suction Pump based on Restoring Force of Elastomer for Liquid Transportation in Microfluidic System. Journal of the Korean Society of Manufacturing Technology Engineers, 2015, 24, 81-86.	0.1	0
1650	Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation. Applied Science and Convergence Technology, 2015, 24, 196-202.	0.3	0
1652	Challenges of malaria diagnosis in clinical settings and disease surveillance under reduced malaria burden in Tanzania. Asian Pacific Journal of Tropical Disease, 2017, 7, 1-7.	0.5	2
1653	Smart Microfluidic Biochips: Cyberphysical Sensor Integration for Dynamic Error Recovery. , 2017, , 23-71.		0
1654	Biomaterials to Treat Pediatric Medical Conditions. SpringerBriefs in Materials, 2018, , 15-31.	0.1	0
1655	Impact of Biomaterials on Health and Economic Development. SpringerBriefs in Materials, 2018, , 33-41.	0.1	0
1656	Pathology in a tub step 2: simple, rapid fabrication of curved, circular cross section millifluidic channels for biopsy preparation/3D imaging towards pancreatic cancer detection and diagnosis. , 2018, , .		0
1657	Point-of-Care Diagnostics for Infectious Diseases: Present and Future. Korean Journal of Medicine, 2018, 93, 181-187.	0.1	4
1658	Study on Fabrication of Molecular Sensing System using Higher-order Nanostructure for Environmental Analysis and Food Safety. IEEJ Transactions on Sensors and Micromachines, 2018, 138, 191-197.	0.0	0
1659	Analysis of phase error and cross talk for a multimode interference based multichannel biosensor. , 2018, , .		0
1660	A remote epileptic patient supervising system. Advances in Modelling and Analysis B, 2018, 61, 207-210.	0.2	0
1661	Quantitative generation of microfluidic flow by using optically driven microspheres. Mathematical Biosciences and Engineering, 2019, 16, 6696-6707.	1.0	2
1663	Advancements in Data Security and Privacy Techniques Used in IoT-Based Hospital Applications. Advances in Bioinformatics and Biomedical Engineering Book Series, 2019, , 185-207.	0.2	5
1664	Microfluidic Technologies Using Oral Factors: Saliva-Based Studies. , 2020, , 339-358.		2
1666	BioMEM's As Drug Delivery Systems- A Review. American Journal of PharmTech Research, 2019, 9, 164-175.	0.2	0
1668	Responsive Polymeric Architectures and Their Biomaterial Applications. Nanostructure Science and Technology, 2022, , 509-524.	0.1	1
1669	Frugal Science Powered by Curiosity. Industrial & Engineering Chemistry Research, 2021, 60, 15874-15884.	1.8	12
1670	Fused Deposition Modeling of Microfluidic Chips in Transparent Polystyrene. Micromachines, 2021, 12, 1348.	1.4	14

#	Article	IF	CITATIONS
1671	Potential of Sriwijaya Thermal Cycler Smart Controlling-Based as a Tool for DNA Sequence Polymerase Chain Reaction. Bioscientia Medicina Journal of Biomedicine and Translational Research, 2021, 5, 200-203.	0.0	0
1672	A frugal microfluidic pump. Lab on A Chip, 2021, 21, 4772-4778.	3.1	8
1673	Analogue Fluids for Cell Deformability Studies in Microfluidic Devices. Communications in Computer and Information Science, 2020, , 90-101.	0.4	1
1674	A Novel Multi-layer Detection Scheme for Diffusion-Based Molecular Communications. , 2020, , 1-15.		0
1675	Lateral Flow Genochromatographic Strip for Naked-Eye Detection of Mycobacterium Tuberculosis PCR Products with Gold Nanoparticles as a Reporter. , 2020, 10, 307-318.		2
1676	Simulation and experimental results of a microfluidic dipole designed for brain experiments. , 2020, , .		0
1677	Soft hydraulics: from Newtonian to complex fluid flows through compliant conduits. Journal of Physics Condensed Matter, 2022, 34, 063001.	0.7	14
1678	Organic Lightâ€Emitting Diode Based Fluorescence Sensing System for DNA Detection. Advanced Materials Technologies, 2022, 7, 2100806.	3.0	7
1679	Droplet trapping in bendotaxis caused by contact angle hysteresis. Physical Review Fluids, 2021, 6, .	1.0	4
1680	Lab-on-a-Chip Devices with Organic Semiconductor-Based Optical Detection. , 2008, , 97-140.		0
1680 1681	Lab-on-a-Chip Devices with Organic Semiconductor-Based Optical Detection. , 2008, , 97-140. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. PLoS ONE, 2020, 15, e0240237.	1,1	0
	Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for	1.1 0.1	
1681	Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. PLoS ONE, 2020, 15, e0240237. Saliva: an emerging biofluid for early detection of diseases. American Journal of Dentistry, 2009, 22,		11
1681 1683	 Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. PLoS ONE, 2020, 15, e0240237. Saliva: an emerging biofluid for early detection of diseases. American Journal of Dentistry, 2009, 22, 241-8. Salivaomics - A promising future in early diagnosis of dental diseases. Dental Research Journal, 2014, 	0.1	11 304
1681 1683 1684	 Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. PLoS ONE, 2020, 15, e0240237. Saliva: an emerging biofluid for early detection of diseases. American Journal of Dentistry, 2009, 22, 241-8. Salivaomics - A promising future in early diagnosis of dental diseases. Dental Research Journal, 2014, 11, 11-5. Next Generation Programmable Bio-Nano-Chip System for On-Site Detection in Oral Fluids. Journal of 	0.1	11 304 9
1681 1683 1684 1685	 Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. PLoS ONE, 2020, 15, e0240237. Saliva: an emerging biofluid for early detection of diseases. American Journal of Dentistry, 2009, 22, 241-8. Salivaomics - A promising future in early diagnosis of dental diseases. Dental Research Journal, 2014, 11, 11-5. Next Generation Programmable Bio-Nano-Chip System for On-Site Detection in Oral Fluids. Journal of Drug Abuse, 2015, 1, 1-6. POCT in Developing Countries. Electronic Journal of the International Federation of Clinical 	0.1 0.2 0.2	11 304 9 3
1681 1683 1684 1685 1686	Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. PLoS ONE, 2020, 15, e0240237. Saliva: an emerging biofluid for early detection of diseases. American Journal of Dentistry, 2009, 22, 241-8. Salivaomics - A promising future in early diagnosis of dental diseases. Dental Research Journal, 2014, 11, 11-5. Next Generation Programmable Bio-Nano-Chip System for On-Site Detection in Oral Fluids. Journal of Drug Abuse, 2015, 1, 1-6. POCT in Developing Countries. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine, 2021, 32, 195-199.	0.1 0.2 0.2	11 304 9 3 2

#	Article	IF	CITATIONS
1690	Optical nanosensor based on surface-enhanced Raman spectroscopy for biomedical and biomarker detection applications. , 2022, , 255-276.		1
1691	Research on liquid flow behavior in deformed microfluidic channels made of PDMS material. Journal of Physics: Conference Series, 2022, 2174, 012057.	0.3	1
1692	Microfluidics and surface-enhanced Raman spectroscopy, a win–win combination?. Lab on A Chip, 2022, 22, 665-682.	3.1	42
1693	Microfluidics technology: past, present, and future prospects for biomarker diagnostics. , 2022, , 457-485.		1
1694	Microfluidic sensors based on two-dimensional materials for chemical and biological assessments. Materials Advances, 2022, 3, 1874-1904.	2.6	24
1695	Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices. Progress in Molecular Biology and Translational Science, 2022, 186, 109-158.	0.9	6
1696	Green microfluidics in microchemical engineering for carbon neutrality. Chinese Journal of Chemical Engineering, 2023, 53, 332-345.	1.7	6
1697	An outlook on microfluidics: the promise and the challenge. Lab on A Chip, 2022, 22, 530-536.	3.1	115
1698	Microfluidic technology and its application in the point-of-care testing field. Biosensors and Bioelectronics: X, 2022, 10, 100109.	0.9	11
1700	Quantum dots enabled point-of-care diagnostics: A new dimension to the nanodiagnosis. , 2022, , 43-52.		3
1701	Integrated microfluidic devices for in vitro diagnostics at point of care. Aggregate, 2022, 3, .	5.2	11
1702	Rapid and label-free detection of Aflatoxin-B1 via microfluidic electrochemical biosensor based on manganese (III) oxide (Mn ₃ O ₄) synthesized by co-precipitation route at room temperature. Nanotechnology, 2022, 33, 285501.	1.3	7
1703	Microfluidic manipulation by spiral hollow-fibre actuators. Nature Communications, 2022, 13, 1331.	5.8	34
1704	On chip manipulation of carbon dots via gigahertz acoustic streaming for enhanced bioimaging and biosensing. Talanta, 2022, 245, 123462.	2.9	2
1705	Renal-on-Chip Microfluidic Platform with a Force-Sensitive Resistor (ROC-FS) for Molecular Pathogenesis Analysis of Hydronephrosis. Analytical Chemistry, 2022, 94, 748-757.	3.2	3
1706	Spot tests: past and present. ChemTexts, 2022, 8, 4.	1.0	7
1707	Biotechnology and global health. , 0, , 251-260.		1
1715	The microfluidic artificial lung: Mimicking nature's blood path design to solve the biocompatibility paradox. Artificial Organs, 2022, 46, 1227-1239.	1.0	7

#	Article	IF	CITATIONS
1716	Current and emerging trends in polymeric 3D printed microfluidic devices. Additive Manufacturing, 2022, 55, 102867.	1.7	29
1717	Microfluidics for High Pressure: Integration on GaAs Acoustic Biosensors with a Leakage-Free PDMS Based on Bonding Technology. Micromachines, 2022, 13, 755.	1.4	2
1718	Challenges in the Diagnosis & Management of Neonatal Sepsis. Vimshealth Science Journal, 2022, 8, 157-166.	0.0	0
1719	Structural colour enhanced microfluidics. Nature Communications, 2022, 13, 2281.	5.8	9
1721	Melt polymer drawn single and multi-capillary fibre-based electroosmotic pumps. Microfluidics and Nanofluidics, 2022, 26, .	1.0	1
1722	Nanopaper Biosensors at Point of Care. Bioconjugate Chemistry, 2022, 33, 1114-1130.	1.8	11
1724	Integration of microfluidics with biosensing technology for noncommunicable disease diagnosis. , 2022, , 179-207.		0
1725	A Raman immunosensor based on SERS and microfluidic chip for all-fiber detection of brain natriuretic peptide. Infrared Physics and Technology, 2022, 125, 104252.	1.3	7
1727	Lensless light intensity model for quasi-spherical cell size measurement. Biomedical Microdevices, 2022, 24, .	1.4	1
1728	Disposable Paper-Based Biosensors: Optimizing the Electrochemical Properties of Laser-Induced Graphene. ACS Applied Materials & amp; Interfaces, 2022, 14, 31109-31120.	4.0	16
1729	Advancing Key Gaps in the Knowledge of Plasmodium vivax Cryptic Infections Using Humanized Mouse Models and Organs-on-Chips. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
1730	Automatic alignment system device of micro–nanofluid control chip and its application. Sensor Review, 2022, 42, 537.	1.0	0
1731	Recent progress and perspectives of continuous in vivo testing device. Materials Today Bio, 2022, 16, 100341.	2.6	4
1732	Multiplexed paper-based assay for personalized antimicrobial susceptibility profiling of Carbapenem-resistant Enterobacterales performed in a rechargeable coffee mug. Scientific Reports, 2022, 12, .	1.6	1
1733	A review of microfluidic-based mixing methods. Sensors and Actuators A: Physical, 2022, 344, 113757.	2.0	26
1734	Three-Dimensional In Vitro Cell Culture Models for Efficient Drug Discovery: Progress So Far and Future Prospects. Pharmaceuticals, 2022, 15, 926.	1.7	26
1735	Size-Dependent Spontaneous Separation of Colloidal Particles in Sub-Microliter Suspension by Cations. International Journal of Molecular Sciences, 2022, 23, 8055.	1.8	1
1737	Miniaturized sensor for electroanalytical and electrochemiluminescent detection of pathogens enabled through laser-induced graphene electrodes embedded in microfluidic channels. Lab on A Chip, 2022, 22, 3721-3733.	3.1	7

#	Article	IF	CITATIONS
1738	Advancements in Data Security and Privacy Techniques Used in IoT-Based Hospital Applications. , 2022, , 662-684.		0
1739	Microfluidic synthesis as a new route to produce novel functional materials. Biomicrofluidics, 2022, 16, 041301.	1.2	1
1740	Effective Optical Image Assessment of Cellulose Paper Immunostrips for Blood Typing. International Journal of Molecular Sciences, 2022, 23, 8694.	1.8	7
1741	Unveiling the underpinnings of various non-conventional ELISA variants: a review article. Expert Review of Molecular Diagnostics, 2022, 22, 761-774.	1.5	7
1742	Integrated wireless microfluidic liquid sensors based on low temperature co-fired ceramic (LTCC) technology. Sensors and Actuators A: Physical, 2022, 346, 113840.	2.0	3
1743	An automatic whole blood analyzer for renal function analysis with a centrifugal microfluidic device. Analyst, The, 2022, 147, 4804-4814.	1.7	3
1744	Fluidic enabled bioelectronic implants: opportunities and challenges. Journal of Materials Chemistry B, 2022, 10, 7122-7131.	2.9	3
1745	Using an Ultra-Compact Optical System to Improve Lateral Flow Immunoassay Results Quantitatively. SSRN Electronic Journal, 0, , .	0.4	0
1746	A sample-to-answer, quantitative real-time PCR system with low-cost, gravity-driven microfluidic cartridge for rapid detection of SARS-CoV-2, influenza A/B, and human papillomavirus 16/18. Lab on A Chip, 2022, 22, 3436-3452.	3.1	20
1747	High-throughput and point-of-care detection of wheat fungal diseases: Potentialities of molecular and phenomics techniques toward in-field applicability. Frontiers in Agronomy, 0, 4, .	1.5	2
1748	Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications. Chemical Reviews, 2022, 122, 16752-16801.	23.0	28
1749	Immunotechnology for Plant Disease Detection. , 2022, , 145-165.		1
1750	An automated system for interrogating the evolution of microbial endosymbiosis. Lab on A Chip, 2023, 23, 671-683.	3.1	2
1751	Translating diagnostics and drug delivery technologies to low-resource settings. Science Translational Medicine, 2022, 14, .	5.8	7
1752	A short review of spiral microfluidic devices with distinct cross-sectional geometries. Microfluidics and Nanofluidics, 2022, 26, .	1.0	3
1753	Recent Progress and Challenges on the Microfluidic Assay of Pathogenic Bacteria Using Biosensor Technology. Biomimetics, 2022, 7, 175.	1.5	8
1754	Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects. Renewable and Sustainable Energy Reviews, 2023, 171, 112998.	8.2	11
1755	Field-use device for the electrochemical quantification of carbamazepine levels in a background of human saliva. Journal of Applied Electrochemistry, 2023, 53, 523-534.	1.5	1

ARTICLE IF CITATIONS # Rapid Bacterial Motility Monitoring Using Inexpensive 3D-Printed OpenFlexure Microscopy Allows 1756 1.4 5 Microfluidic Antibiotic Susceptibility Testing. Micromachines, 2022, 13, 1974. Fundamentals of Image-Based Assay (IBA) System for Affordable Point of Care Diagnostics. 2.3 Microchemical Journal, 2023, 186, 108345. Design of UVA Ultraviolet Disinfection System for Nutrient Solution Residual Liquid and Development 1758 0 1.6 of Microbial Online Monitoring System. Sustainability, 2023, 15, 173. Using an ultra-compact optical system to improve lateral flow immunoassay results quantitatively. 1.4 Heliyon, 2022, 8, e12116. Slippery Shape Memory Tube for Smart Droplet Transportation. ACS Applied Materials & amp; Interfaces, 1760 4.0 2 2022, 14, 57399-57407. A Smartphone-Based Disposable Hemoglobin Sensor Based on Colorimetric Analysis. Sensors, 2023, 23, 2.1 394. An Overview of Waste Management (Fly Ash): A Life Cycle Analysis Approach to Sustainability., 2021,, 1762 0 1-13. Magnetically localized and wash-free fluorescence immunoassay (MLFIA): proof of concept and 3.1 clinical applications. Lab on A Chip, 2023, 23, 645-658. Multilayered optofluidics for sustainable buildings. Proceedings of the National Academy of Sciences 1764 3.3 4 of the Únited States of America, 2023, 120, . Microfluidic Labelâ€Free Hydrodynamic Separation of Blood Cells: Recent Developments and Future 1765 Perspectives. Advanced Materials Technologies, 2023, 8, . Copper decorated graphyne as a promising nanocarrier for cisplatin anti-cancer drug: A DFT study. 1766 4 3.1Applied Surface Science, 2023, 622, 156885. Function of the Speech Recognition of the Smartphone to Automatically Operate a Portable Sample 4.0 Pretreatment Microfluidic System. ACS Sensors, 2023, 8, 515-521. Bionic microchannels for step lifting transpiration. International Journal of Extreme Manufacturing, 1768 6.3 11 2023, 5, 025502. Microfluidics for Rapid Detection of Live Pathogens. Advanced Functional Materials, 2023, 33, . 1769 Advancements in droplet reactor systems represent new opportunities in chemical reactor 1770 0.9 1 engineering: A perspective. Canadian Journal of Chemical Engineering, 2023, 101, 5189-5207. Microfabrication approaches for oral research and clinical dentistry. Frontiers in Dental Medicine, 0, 1771 Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From 1772 3.9 12 Conventional to Microfluidic Strategies. Advanced Healthcare Materials, 2023, 12, . Fluid interfaces laden by force dipoles: towards active matter-driven microfluidic flows. Soft Matter, 1773 1.2 2023, 19, 2241-2253.

IF ARTICLE CITATIONS # Optical Fiber Fabry–Pérot Microfluidic Sensor Based on Capillary Fiber and Side Illumination Method. 1774 2.10 Sensors, 2023, 23, 3198. An Overview of Waste Management (Fly Ash): A Life Cycle Analysis Approach to Sustainability., 2023, , 1775 705-717. Regulatory Aspects for Polymeric Micelles., 2023, , 253-266. 1776 0 A novel method for micro-nano channel alignment with automatic features based on reconstructed Hough transform theory., 2023,,. A stochastic parabolic model of MEMS driven by fractional Brownian motion. Journal of 1778 0.8 1 Mathematical Biology, 2023, 86, . Microfluidic devices and their applicability to cell studies., 2023, , 27-118. 1779 Lab-on-a-chip sensors., 2023,, 65-98. 1782 0 An exhaustive review on recent advancements in paper-based microfluidic device for malaria 1785 diagnosis., 2023,,. Polysaccharide-Based Materials for the Development of Point-of-Care Devices., 2023, , 1-31. 1791 0 New Paradigms on Microbiome Diagnostic Design and Engineering., 2023, , 265-285. Microfluidic systems for infectious disease diagnostics. Lab on A Chip, 2024, 24, 1441-1493. 1840 3.10