The putative oncogene GASC1 demethylates tri- and dir

Nature

442, 307-311

DOI: 10.1038/nature04837

Citation Report

#	Article	IF	CITATIONS
1	PTMs on H3 Variants before Chromatin Assembly Potentiate Their Final Epigenetic State. Molecular Cell, 2006, 24, 309-316.	4.5	361
2	Purification of histone demethylases from HeLa cells. Methods, 2006, 40, 318-326.	1.9	30
3	Isolation and characterization of histone H3 lysine 4 demethylase-containing complexes. Methods, 2006, 40, 327-330.	1.9	10
4	JmjC-domain-containing proteins and histone demethylation. Nature Reviews Genetics, 2006, 7, 715-727.	7.7	1,096
7	Thoracic skeletal defects and cardiac malformations: A common epigenetic link?. Birth Defects Research Part C: Embryo Today Reviews, 2006, 78, 354-370.	3.6	17
8	Molecular genetic studies of the memory of winter. Journal of Experimental Botany, 2006, 57, 3369-3377.	2.4	61
9	Polycomb Group and SCF Ubiquitin Ligases Are Found in a Novel BCOR Complex That Is Recruited to BCL6 Targets. Molecular and Cellular Biology, 2006, 26, 6880-6889.	1.1	303
10	Crystal structure of human histone lysine-specific demethylase 1 (LSD1). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13956-13961.	3.3	248
11	The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Research, 2007, 17, 691-707.	2.4	353
12	Demethylation of Histone H3K36 and H3K9 by Rph1: a Vestige of an H3K9 Methylation System in Saccharomyces cerevisiae?. Molecular and Cellular Biology, 2007, 27, 3951-3961.	1.1	79
13	Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8023-8028.	3.3	279
14	JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19226-19231.	3.3	347
15	Functional Analysis of the Transcription Repressor PLU-1/JARID1B. Molecular and Cellular Biology, 2007, 27, 7220-7235.	1.1	119
16	The Histone Demethylase, Jmjd1a, Interacts With the Myocardin Factors to Regulate SMC Differentiation Marker Gene Expression. Circulation Research, 2007, 101, e115-23.	2.0	93
17	Epigenetic control of cellular senescence in disease: opportunities for therapeutic intervention. Expert Reviews in Molecular Medicine, 2007, 9, 1-26.	1.6	10
18	Identification of Histone Demethylases in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2007, 282, 14262-14271.	1.6	96
19	Genome-Wide Analysis of KAP1 Binding Suggests Autoregulation of KRAB-ZNFs. PLoS Genetics, 2007, 3, e89.	1.5	166
20	The Fission Yeast Jmj2 Reverses Histone H3 Lysine 4 Trimethylation. Journal of Biological Chemistry, 2007, 282, 21662-21670.	1.6	28

#	Article	IF	CITATIONS
21	Histone H3 K4 Demethylation during Activation and Attenuation of <i>GAL1</i> Transcription in <i>Saccharomyces cerevisiae</i> Molecular and Cellular Biology, 2007, 27, 7856-7864.	1.1	40
22	Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction, 2007, 133, 597-608.	1.1	49
23	EHA Scientific Workshop Report: The Role of Epigenetics in Hematological Malignancies. Epigenetics, 2007, 2, 71-79.	1.3	10
24	Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes and Development, 2007, 21, 2545-2557.	2.7	447
25	Histone Modification Pattern of the T-Cellular Herpesvirus Saimiri Genome in Latency. Journal of Virology, 2007, 81, 2524-2530.	1.5	14
26	Structural basis of the recognition of a methylated histone tail by JMJD2A. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10818-10823.	3.3	131
27	The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes and Development, 2007, 21, 537-551.	2.7	245
28	Cancer genetics of epigenetic genes. Human Molecular Genetics, 2007, 16, R28-R49.	1.4	223
29	Knockdown of ALR (MLL2) Reveals ALR Target Genes and Leads to Alterations in Cell Adhesion and Growth. Molecular and Cellular Biology, 2007, 27, 1889-1903.	1.1	347
30	Formation of Îμ-Formyllysine on Silver-stained Proteins. Molecular and Cellular Proteomics, 2007, 6, 181-192.	2.5	20
31	The Saccharomyces cerevisiae Histone Demethylase Jhd1 Fine-Tunes the Distribution of H3K36me2. Molecular and Cellular Biology, 2007, 27, 5055-5065.	1.1	32
32	Evaluation in mammalian oocytes of gene transcripts linked to epigenetic reprogramming. Reproduction, 2007, 134, 549-558.	1.1	28
33	Non-mammalian models for epigenetic analyses in cancer. Human Molecular Genetics, 2007, 16, R1-R6.	1.4	11
34	Functions of a jumonji–cyclin D1 pathway in the coordination of cell cycle exit and migration during neurogenesis in the mouse hindbrain. Developmental Biology, 2007, 303, 549-560.	0.9	21
35	Small Molecule Inhibitors of Histone Arginine Methyltransferases:  Homology Modeling, Molecular Docking, Binding Mode Analysis, and Biological Evaluations. Journal of Medicinal Chemistry, 2007, 50, 1241-1253.	2.9	98
36	Diversity within the JMJD2 histone demethylase family. Biochemical and Biophysical Research Communications, 2007, 353, 973-977.	1.0	129
37	Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochemical and Biophysical Research Communications, 2007, 359, 742-746.	1.0	186
38	RBP2 Belongs to a Family of Demethylases, Specific for Tri-and Dimethylated Lysine 4 on Histone 3. Cell, 2007, 128, 1063-1076.	13.5	485

#	ARTICLE	IF	Citations
39	Physical and Functional Association of a Trimethyl H3K4 Demethylase and Ring6a/MBLR, a Polycomb-like Protein. Cell, 2007, 128, 877-887.	13.5	220
40	Chromatin Modifications and Their Function. Cell, 2007, 128, 693-705.	13.5	9,258
41	The Retinoblastoma Binding Protein RBP2 Is an H3K4 Demethylase. Cell, 2007, 128, 889-900.	13.5	399
42	The X-Linked Mental Retardation Gene SMCX/JARID1C Defines a Family of Histone H3 Lysine 4 Demethylases. Cell, 2007, 128, 1077-1088.	13.5	624
43	The control of histone lysine methylation in epigenetic regulation. Biochimie, 2007, 89, 1-20.	1.3	160
44	Methylation of Arginine Residues Interferes with Citrullination by Peptidylarginine Deiminases in vitro. Journal of Molecular Biology, 2007, 367, 1118-1129.	2.0	138
45	Dynamic Regulation of Histone Lysine Methylation by Demethylases. Molecular Cell, 2007, 25, 1-14.	4.5	608
46	PLU-1 Is an H3K4 Demethylase Involved in Transcriptional Repression and Breast Cancer Cell Proliferation. Molecular Cell, 2007, 25, 801-812.	4.5	431
47	Chromatin remodeling and cancer, part I: covalent histone modifications. Trends in Molecular Medicine, 2007, 13, 363-372.	3.5	369
48	Comparative Genomics of Protists: New Insights into the Evolution of Eukaryotic Signal Transduction and Gene Regulation. Annual Review of Microbiology, 2007, 61, 453-475.	2.9	55
49	Demethylation of H3K27 Regulates Polycomb Recruitment and H2A Ubiquitination. Science, 2007, 318, 447-450.	6.0	678
50	Spectroscopic and Computational Evaluation of the Structure of the High-Spin Fe(IV)-Oxo Intermediates in Taurine: α-Ketoglutarate Dioxygenase fromEscherichia coliand Its His99Ala Ligand Variant. Journal of the American Chemical Society, 2007, 129, 6168-6179.	6.6	191
51	trans-2-Phenylcyclopropylamine Is a Mechanism-Based Inactivator of the Histone Demethylase LSD1. Biochemistry, 2007, 46, 4408-4416.	1.2	286
52	Non-Heme Fe(IV)–Oxo Intermediates. Accounts of Chemical Research, 2007, 40, 484-492.	7.6	866
53	Epigenetics in development. Developmental Dynamics, 2007, 236, 1144-1156.	0.8	227
54	Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus, 2007, 17, 679-691.	0.9	123
55	LSD1 and the chemistry of histone demethylation. Current Opinion in Chemical Biology, 2007, 11, 561-568.	2.8	128
56	Metal ligand substitution and evidence for quinone formation in taurine/l±-ketoglutarate dioxygenase. Journal of Inorganic Biochemistry, 2007, 101, 797-808.	1.5	39

#	Article	IF	CITATIONS
57	Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nature Cell Biology, 2007, 9, 347-353.	4.6	546
58	Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one?. Nature Chemical Biology, 2007, 3, 144-153.	3.9	201
59	Histone lysine demethylases: emerging roles in development, physiology and disease. Nature Reviews Genetics, 2007, 8, 829-833.	7.7	527
60	Regulation of histone methylation by demethylimination and demethylation. Nature Reviews Molecular Cell Biology, 2007, 8, 307-318.	16.1	764
61	Suv39H1 and HP1 \hat{l}^3 are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO Journal, 2007, 26, 424-435.	3.5	281
62	The expanding world of histone lysine demethylases. Nature Structural and Molecular Biology, 2007, 14, 252-254.	3.6	31
63	How HIV-1 hijacks ALIX. Nature Structural and Molecular Biology, 2007, 14, 254-256.	3.6	17
64	Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins. Nature Structural and Molecular Biology, 2007, 14, 240-242.	3.6	154
65	The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase. Nature Structural and Molecular Biology, 2007, 14, 341-343.	3.6	100
66	Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nature Structural and Molecular Biology, 2007, 14, 689-695.	3.6	247
67	JMJD3 is a histone H3K27 demethylase. Cell Research, 2007, 17, 850-857.	5.7	269
68	The complex language of chromatin regulation during transcription. Nature, 2007, 447, 407-412.	13.7	2,432
69	UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature, 2007, 449, 731-734.	13.7	1,183
70	JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature, 2007, 450, 309-313.	13.7	259
71	Epigenetic events in malignant melanoma. Pigment Cell & Melanoma Research, 2007, 20, 92-111.	4.0	77
72	Epigenetic changes in cancer. Apmis, 2007, 115, 1039-1059.	0.9	320
73	Chromatinâ€modifying proteins in cancer. Apmis, 2007, 115, 1060-1089.	0.9	33
74	The <i>Drosophila jumonji</i> gene encodes a JmjCâ€containing nuclear protein that is required for metamorphosis. FEBS Journal, 2007, 274, 6139-6151.	2.2	24

#	Article	IF	CITATIONS
75	Current Perspectives on Histone Demethylases. Acta Biochimica Et Biophysica Sinica, 2007, 39, 81-88.	0.9	46
76	Cellular senescence and cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 5-20.	3.3	134
77	DNA hypomethylation and human diseases. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 138-162.	3.3	469
78	A new paradigm in toxicology and teratology: Altering gene activity in the absence of DNA sequence variation. Reproductive Toxicology, 2007, 24, 20-30.	1.3	70
79	The JMJD2 members of histone demethylase revisited. Molecular Biology Reports, 2008, 35, 551-556.	1.0	15
80	Chemical regulation of epigenetic modifications: Opportunities for new cancer therapy. Medicinal Research Reviews, 2008, 28, 645-687.	5.0	107
81	Intersection of nuclear receptors and the proteasome on the epigenetic landscape. Environmental and Molecular Mutagenesis, 2008, 49, 83-95.	0.9	22
82	Facile synthesis of substituted trans-2-arylcyclopropylamine inhibitors of the human histone demethylase LSD1 and monoamine oxidases A and B. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3047-3051.	1.0	70
83	Comparative Analysis of JmjC Domainâ€containing Proteins Reveals the Potential Histone Demethylases in <i>Arabidopsis</i> and Rice. Journal of Integrative Plant Biology, 2008, 50, 886-896.	4.1	178
84	Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation, 2008, 76, 3-14.	1.0	52
85	Evolutionary history of histone demethylase families: distinct evolutionary patterns suggest functional divergence. BMC Evolutionary Biology, 2008, 8, 294.	3.2	82
86	Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins. BMC Genomics, 2008, 9, 293.	1.2	40
87	Mechanisms involved in the regulation of histone lysine demethylases. Current Opinion in Cell Biology, 2008, 20, 316-325.	2.6	232
88	Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. International Journal for Parasitology, 2008, 38, 1-31.	1.3	226
89	Canonical and non-canonical JAK–STAT signaling. Trends in Cell Biology, 2008, 18, 545-551.	3.6	260
90	Chromatin, cancer and drug therapies. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 647, 44-51.	0.4	68
91	Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 647, 13-20.	0.4	126
92	Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies. Chemical Society Reviews, 2008, 37, 2716.	18.7	461

#	Article	IF	CITATIONS
93	Tumor Promoting or Tumor Suppressing of NF-κ B, a Matter of Cell Context Dependency. International Reviews of Immunology, 2008, 27, 183-204.	1.5	30
94	TRANSCRIPTION FACTORS AND HUMAN DISEASE. , 2008, , 373-VII.		4
95	Heterochromatin Protein 1a Stimulates Histone H3 Lysine 36 Demethylation by the Drosophila KDM4A Demethylase. Molecular Cell, 2008, 32, 696-706.	4.5	97
96	The emerging functions of histone demethylases. Current Opinion in Genetics and Development, 2008, 18, 159-168.	1.5	201
97	Epigenetics in Cancer. New England Journal of Medicine, 2008, 358, 1148-1159.	13.9	3,251
99	Arsenite alters global histone H3 methylation. Carcinogenesis, 2008, 29, 1831-1836.	1.3	209
100	Lineage-Specific Transition of Histone Signatures in the Killer Cell Ig-Like Receptor Locus from Hematopoietic Progenitor to NK Cells. Journal of Immunology, 2008, 180, 418-425.	0.4	51
101	2007: Signaling Breakthroughs of the Year. Science Signaling, 2008, 1, eg1.	1.6	2
102	Epigenetics of cancer progression. Pharmacogenomics, 2008, 9, 215-234.	0.6	79
103	The Histone Demethylases JMJD1A and JMJD2B Are Transcriptional Targets of Hypoxia-inducible Factor HIF. Journal of Biological Chemistry, 2008, 283, 36542-36552.	1.6	306
104	Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1907-1912.	3.3	116
105	ICBP90, a Novel Methyl K9 H3 Binding Protein Linking Protein Ubiquitination with Heterochromatin Formation. Molecular and Cellular Biology, 2008, 28, 705-717.	1.1	211
106	Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. Journal of Clinical Investigation, 2008, 118, 2316-24.	3.9	515
107	A Misexpression Screen to Identify Regulators of Drosophila Larval Hemocyte Development. Genetics, 2008, 180, 253-267.	1.2	77
108	Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes and Development, 2008, 22, 1115-1140.	2.7	581
109	Epigenetic markers in human gliomas: prospects for therapeutic intervention. Expert Review of Neurotherapeutics, 2008, 8, 1475-1496.	1.4	5
110	Coordinated Regulation of Intestinal Functions in C. elegans by LIN-35/Rb and SLR-2. PLoS Genetics, 2008, 4, e1000059.	1.5	23
111	Chapter 4 Histone Demethylases and Cancer. Advances in Cancer Research, 2009, 102, 103-169.	1.9	57

#	ARTICLE	IF	CITATIONS
112	Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4260-4265.	3.3	366
113	Genetic Associations of 115 Polymorphisms with Cancers of the Upper Aerodigestive Tract across 10 European Countries: The ARCAGE Project. Cancer Research, 2009, 69, 2956-2965.	0.4	94
114	Dynamic Histone H1 Isotype 4 Methylation and Demethylation by Histone Lysine Methyltransferase G9a/KMT1C and the Jumonji Domain-containing JMJD2/KDM4 Proteins. Journal of Biological Chemistry, 2009, 284, 8395-8405.	1.6	171
115	G2 histone methylation is required for the proper segregation of chromosomes. Journal of Cell Science, 2009, 122, 2957-2968.	1.2	33
116	Transcription Factor CTF1 Acts as a Chromatin Domain Boundary That Shields Human Telomeric Genes from Silencing. Molecular and Cellular Biology, 2009, 29, 2409-2418.	1.1	15
117	Epigenetics and cancer without genomic instability. Cell Cycle, 2009, 8, 23-26.	1.3	43
118	Lung cancer-associated JmjC domain protein mdig suppresses formation of tri-methyl lysine 9 of histone H3. Cell Cycle, 2009, 8, 2101-2109.	1.3	82
119	Minireview: Role of Protein Methylation and Demethylation in Nuclear Hormone Signaling. Molecular Endocrinology, 2009, 23, 1323-1334.	3.7	41
120	The Human Epigenome: Implications for the Understanding of Human Disease., 2009,, 151-163.		1
121	Metabolic defects provide a spark for the epigenetic switch in cancer. Free Radical Biology and Medicine, 2009, 47, 115-127.	1.3	7 5
124	The Emerging Therapeutic Potential of Histone Methyltransferase and Demethylase Inhibitors. ChemMedChem, 2009, 4, 1568-1582.	1.6	160
125	Temporal and Spatial Expression Patterns of Nine Arabidopsis Genes Encoding Jumonji C-Domain Proteins. Molecules and Cells, 2009, 27, 481-490.	1.0	26
126	Freeze-quench 57Fe-Mössbauer spectroscopy: trapping reactive intermediates. Photosynthesis Research, 2009, 102, 295-304.	1.6	12
127	Dynamic protein methylation in chromatin biology. Cellular and Molecular Life Sciences, 2009, 66, 407-22.	2.4	185
128	Chromatin maps, histone modifications and leukemia. Leukemia, 2009, 23, 1243-1251.	3.3	54
129	Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nature Genetics, 2009, 41, 465-472.	9.4	391
130	Generating specificity and diversity in the transcriptional response to hypoxia. Nature Reviews Genetics, 2009, 10, 821-832.	7.7	310
131	Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene, 2009, 28, 4491-4500.	2.6	201

#	Article	IF	CITATIONS
132	Role of Hypoxiaâ€Inducible Factors in Epigenetic Regulation via Histone Demethylases. Annals of the New York Academy of Sciences, 2009, 1177, 185-197.	1.8	98
133	Synthesis and activity of N-oxalylglycine and its derivatives as Jumonji C-domain-containing histone lysine demethylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2852-2855.	1.0	116
134	Gene expression profiling differentiates autism case–controls and phenotypic variants of autism spectrum disorders: evidence for circadian rhythm dysfunction in severe autism. Autism Research, 2009, 2, 78-97.	2.1	184
135	Cancer treatment of the future: Inhibitors of histone methyltransferases. International Journal of Biochemistry and Cell Biology, 2009, 41, 4-11.	1.2	84
136	Marking time: The dynamic role of chromatin and covalent modification in transcription. International Journal of Biochemistry and Cell Biology, 2009, 41, 155-163.	1.2	60
137	Histone modifying enzymes: Structures, mechanisms, and specificities. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 58-68.	0.9	272
138	Jmjd2c histone demethylase enhances the expression of Mdm2 oncogene. Biochemical and Biophysical Research Communications, 2009, 389, 366-371.	1.0	55
139	Identification of non-histone substrates for JMJD2A–C histone demethylases. Biochemical and Biophysical Research Communications, 2009, 390, 280-284.	1.0	53
140	Epigenetic approaches to cancer therapy. Drug Discovery Today: Therapeutic Strategies, 2009, 6, 71-79.	0.5	8
141	Chromatin Protocols. Methods in Molecular Biology, 2009, , .	0.4	1
142	Inhibition of the histone lysine demethylase JMJD2A by ejection of structural Zn(ii). Chemical Communications, 2009, , 6376.	2.2	77
143	Epigenetic Dysregulation in Cancer. American Journal of Pathology, 2009, 175, 1353-1361.	1.9	70
144	Developmental Origins of Diabetes: Interventional Strategies. , 2009, , 174-183.		0
145	Reversing Aberrant Methylation Patterns in Cancer. Current Medicinal Chemistry, 2010, 17, 1246-1254.	1.2	16
146	Computational Methods for De novo Protein Design and its Applications to the Human Immunodeficiency Virus 1, Purine Nucleoside Phosphorylase, Ubiquitin Specific Protease 7, and Histone Demethylases. Current Drug Targets, 2010, 11, 264-278.	1.0	18
147	Epigenetic regulation of androgen receptor signaling in prostate cancer. Epigenetics, 2010, 5, 100-104.	1.3	63
148	microRNA-dependent modulation of histone acetylation in Waldenström macroglobulinemia. Blood, 2010, 116, 1506-1514.	0.6	114
149	Reversal of Histone Methylation: Biochemical and Molecular Mechanisms of Histone Demethylases. Annual Review of Biochemistry, 2010, 79, 155-179.	5.0	513

#	Article	IF	CITATIONS
150	Design, Synthesis, Enzyme-Inhibitory Activity, and Effect on Human Cancer Cells of a Novel Series of Jumonji Domain-Containing Protein 2 Histone Demethylase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 5629-5638.	2.9	156
151	The Role of Histone Modifications and Variants in Regulating Gene Expression in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 19-33.	1.0	51
152	Histone demethylases in development and disease. Trends in Cell Biology, 2010, 20, 662-671.	3.6	329
153	Cooperative Epigenetic Modulation by Cancer Amplicon Genes. Cancer Cell, 2010, 18, 590-605.	7.7	263
154	Partners in Crime: Genes within an Amplicon Collude to Globally Deregulate Chromatin in Lymphoma. Cancer Cell, 2010, 18, 539-541.	7.7	4
155	Epigenetic regulation of cancer growth by histone demethylases. International Journal of Cancer, 2010, 127, 1991-1998.	2.3	80
157	Analysis of arginine and lysine methylation utilizing peptide separations at neutral pH and electron transfer dissociation mass spectrometry. Journal of the American Society for Mass Spectrometry, 2010, 21, 88-96.	1.2	39
158	A Novel Enzymatic Rearrangement. Chemistry and Biology, 2010, 17, 1269-1270.	6.2	O
159	Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate, 2010, 70, 889-898.	1.2	61
160	Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Research, 2010, 20, 154-165.	5.7	106
161	Structural insights into a novel histone demethylase PHF8. Cell Research, 2010, 20, 166-173.	5.7	67
162	Coordinated regulation of active and repressive histone methylations by a dual-specificity histone demethylase ceKDM7A from Caenorhabditis elegans. Cell Research, 2010, 20, 899-907.	5.7	29
163	Structural insights into a dual-specificity histone demethylase ceKDM7A from Caenorhabditis elegans. Cell Research, 2010, 20, 886-898.	5.7	49
164	Epigenetic modifications as therapeutic targets. Nature Biotechnology, 2010, 28, 1069-1078.	9.4	686
165	Tools and landscapes of epigenetics. Nature Immunology, 2010, 11, 565-568.	7.0	63
166	New cancer targets emerging from studies of the Von Hippelâ€Lindau tumor suppressor protein. Annals of the New York Academy of Sciences, 2010, 1210, 1-7.	1.8	11
168	Cellular Senescence: Many Roads, One Final Destination. Scientific World Journal, The, 2010, 10, 727-741.	0.8	11
169	Histone Methylation. , 2010, , 2389-2397.		3

#	Article	IF	Citations
170	A case study in cross-talk: the histone lysine methyltransferases G9a and GLP. Nucleic Acids Research, 2010, 38, 3503-3511.	6.5	56
171	Inhibition of Histone Deacetylase 3 Produces Mitotic Defects Independent of Alterations in Histone H3 Lysine 9 Acetylation and Methylation. Molecular Pharmacology, 2010, 78, 384-393.	1.0	17
172	PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an $N\hat{l}\mu$ -dimethyl lysine demethylase. Human Molecular Genetics, 2010, 19, 217-222.	1.4	153
173	Nickel Ions Inhibit Histone Demethylase JMJD1A and DNA Repair Enzyme ABH2 by Replacing the Ferrous Iron in the Catalytic Centers. Journal of Biological Chemistry, 2010, 285, 7374-7383.	1.6	130
174	Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development (Cambridge), 2010, 137, 2483-2492.	1.2	102
175	The Histone Demethylase JMJD2B Is Regulated by Estrogen Receptor \hat{l}_{\pm} and Hypoxia, and Is a Key Mediator of Estrogen Induced Growth. Cancer Research, 2010, 70, 6456-6466.	0.4	167
176	On Getting There from Here. Science, 2010, 330, 1338-1339.	6.0	104
177	The Histone Demethylase JMJD2C Is Stage-Specifically Expressed in Preimplantation Mouse Embryos and Is Required for Embryonic Development1. Biology of Reproduction, 2010, 82, 105-111.	1.2	74
178	Deciphering the cancer imprintome. Briefings in Functional Genomics, 2010, 9, 329-339.	1.3	38
179	Histone Demethylase LSD1 Regulates Neural Stem Cell Proliferation. Molecular and Cellular Biology, 2010, 30, 1997-2005.	1.1	198
180	H3K9 Histone Methyltransferase G9a Promotes Lung Cancer Invasion and Metastasis by Silencing the Cell Adhesion Molecule Ep-CAM. Cancer Research, 2010, 70, 7830-7840.	0.4	327
181	Epigenetics in Waldenström's macroglobulinemia. Epigenomics, 2010, 2, 691-696.	1.0	2
182	Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells. Carcinogenesis, 2010, 31, 2136-2144.	1.3	90
183	Effect of formaldehyde on cell proliferation and death. Cell Biology International, 2010, 34, 1273-1282.	1.4	55
184	Histone Modification Therapy of Cancer. Advances in Genetics, 2010, 70, 341-386.	0.8	63
185	Epigenetics of prostate cancer and the prospect of identification of novel drug targets by RNAi screening of epigenetic enzymes. Epigenomics, 2010, 2, 683-689.	1.0	6
186	Expression of Mina53, a novel c-Myc target gene, is a favorable prognostic marker in early stage lung cancer. Lung Cancer, 2010, 69, 232-238.	0.9	30
187	Epigenetic modifications as key regulators of Waldenstrom's Macroglobulinemia biology. Journal of Hematology and Oncology, 2010, 3, 38.	6.9	12

#	Article	IF	Citations
188	The Histone Demethylase RBP2 Is Overexpressed in Gastric Cancer and Its Inhibition Triggers Senescence of Cancer Cells. Gastroenterology, 2010, 138, 981-992.	0.6	150
189	Cryoreduction of the NO-Adduct of Taurine:α-Ketoglutarate Dioxygenase (TauD) Yields an Elusive {FeNO} ⁸ Species. Journal of the American Chemical Society, 2010, 132, 4739-4751.	6.6	66
190	Selective Inhibitors of the JMJD2 Histone Demethylases: Combined Nondenaturing Mass Spectrometric Screening and Crystallographic Approaches. Journal of Medicinal Chemistry, 2010, 53, 1810-1818.	2.9	146
191	Histone Demethylase JmjD2A Regulates Neural Crest Specification. Developmental Cell, 2010, 19, 460-468.	3.1	115
192	Aberrant Epigenetic Landscape in Cancer: How Cellular Identity Goes Awry. Developmental Cell, 2010, 19, 698-711.	3.1	529
193	An Omics Perspective on Cancer Research. , 2010, , .		20
194	Factors Controlling the Reactivity of Zinc Finger Cores. Journal of the American Chemical Society, 2011, 133, 8691-8703.	6.6	51
195	Errors in Erasure: Links Between Histone Lysine Methylation Removal and Disease., 2011, 67, 69-90.		18
196	Chromatin and the DNA damage response: The cancer connection. Molecular Oncology, 2011, 5, 349-367.	2.1	107
197	Key Role of MicroRNAs in Waldenström's Macroglobulinemia Pathogenesis. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 109-111.	0.2	2
198	The Role of Histone Demethylases in Disease. , 2011, , 75-93.		2
199	Epigenetic Aspects of Chronic Diseases. , 2011, , .		3
200	Epigenetics and Disease. , 2011, , .		5
201	Inhibition of 2-oxoglutarate dependent oxygenases. Chemical Society Reviews, 2011, 40, 4364.	18.7	336
202	ncRNA- and Pc2 Methylation-Dependent Gene Relocation between Nuclear Structures Mediates Gene Activation Programs. Cell, 2011, 147, 773-788.	13.5	567
203	Histone demethylase JMJD2B is required for tumor cell proliferation and survival and is overexpressed in gastric cancer. Biochemical and Biophysical Research Communications, 2011, 416, 372-378.	1.0	69
204	Ontological hypothesis of the cancer etiology: Discord between cells' survival determinism and their disposition to biological altruism. Medical Hypotheses, 2011, 77, 389-400.	0.8	2
205	Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Molecular and Cellular Neurosciences, 2011, 46, 614-624.	1.0	105

#	Article	IF	CITATIONS
206	Mutant Genetic Background Affects the Functional Rearrangement and Kinetic Properties of JMJD2b Histone Demethylase. Journal of Molecular Biology, 2011, 405, 679-695.	2.0	10
207	Cancer and Altered Metabolism: Potential Importance of Hypoxia-Inducible Factor and 2-Oxoglutarate-Dependent Dioxygenases. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 335-345.	2.0	143
208	Epigenetic Therapies for Cancer., 2011,,.		1
209	Genetic, Epigenetic and Molecular Changes in Melanoma: A New Paradigm for Biological Classification. , 0, , .		1
210	Methylation of Lysine 9 of Histone H3., 2011,, 149-157.		6
211	The molecular pathogenesis of primary mediastinal large B-cell lymphoma. Blood, 2011, 118, 2659-2669.	0.6	189
212	Histone onco-modifications. Oncogene, 2011, 30, 3391-3403.	2.6	261
213	Inactive yet indispensable: the tale of Jarid2. Trends in Cell Biology, 2011, 21, 74-80.	3.6	81
214	Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends in Biochemical Sciences, 2011, 36, 7-18.	3.7	260
215	Preconceptional paternal glycidamide exposure affects embryonic gene expression: Single embryo gene expression study following in vitro fertilization. Reproductive Toxicology, 2011, 32, 463-471.	1.3	10
216	Histone demethylases in chromatin crossâ€talks. Biology of the Cell, 2011, 103, 381-401.	0.7	38
217	Enzyme kinetic studies of histone demethylases KDM4C and KDM6A: Towards understanding selectivity of inhibitors targeting oncogenic histone demethylases. FEBS Letters, 2011, 585, 1951-1956.	1.3	17
218	Histone lysine methylation and demethylation pathways in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2011, 1815, 75-89.	3.3	214
219	Jailbreak: Oncogene-induced senescence and its evasion. Cellular Signalling, 2011, 23, 6-13.	1.7	46
220	Lysine Demethylases Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 8236-8250.	2.9	140
221	A Selective Inhibitor and Probe of the Cellular Functions of Jumonji C Domain-Containing Histone Demethylases. Journal of the American Chemical Society, 2011, 133, 9451-9456.	6.6	137
222	Crystallization and preliminary crystallographic analysis of a PHD domain of human JARID1B. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 907-910.	0.7	8
223	Inhibition of Histone Demethylases by 4â€Carboxyâ€2,2′â€Bipyridyl Compounds. ChemMedChem, 2011, 6, 7	591 7 64.	76

#	ARTICLE	IF	CITATIONS
225	Targeting Histone Lysine Demethylases by Truncating the Histoneâ€3 Tail to Obtain Selective Substrateâ€Based Inhibitors. Angewandte Chemie - International Edition, 2011, 50, 9100-9103.	7.2	39
226	Structure and Function of Histone H3 Lysine 9 Methyltransferases and Demethylases. ChemBioChem, 2011, 12, 254-263.	1.3	75
227	Inhibitors of histone demethylases. Bioorganic and Medicinal Chemistry, 2011, 19, 3625-3636.	1.4	91
228	SCF ^{FBXO22} Regulates Histone H3 Lysine 9 and 36 Methylation Levels by Targeting Histone Demethylase KDM4A for Ubiquitin-Mediated Proteasomal Degradation. Molecular and Cellular Biology, 2011, 31, 3687-3699.	1.1	81
229	Cancer Epigenetics for the 21st Century: What's Next?. Genes and Cancer, 2011, 2, 604-606.	0.6	59
230	MassSQUIRM. Epigenetics, 2011, 6, 490-499.	1.3	15
231	Structural and Evolutionary Basis for the Dual Substrate Selectivity of Human KDM4 Histone Demethylase Family. Journal of Biological Chemistry, 2011, 286, 41616-41625.	1.6	143
232	Mechanisms of Histone Modifications. , 2011, , 25-45.		7
233	A New Isoform of the Histone Demethylase JMJD2A/KDM4A Is Required for Skeletal Muscle Differentiation. PLoS Genetics, 2011, 7, e1001390.	1.5	59
234	Physiological Roles of Class I HDAC Complex and Histone Demethylase. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	128
235	Targeting Histone Demethylases: A New Avenue for the Fight against Cancer. Genes and Cancer, 2011, 2, 663-679.	0.6	177
236	Targeting protein lysine methylation and demethylation in cancers. Acta Biochimica Et Biophysica Sinica, 2012, 44, 70-79.	0.9	58
237	The C. elegans H3K27 Demethylase UTX-1 Is Essential for Normal Development, Independent of Its Enzymatic Activity. PLoS Genetics, 2012, 8, e1002647.	1.5	59
238	A Companion Cell–Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression. PLoS Genetics, 2012, 8, e1002664.	1.5	87
239	Triptolide induces cell-cycle arrest and apoptosis of human multiple myeloma cells in vitro via altering expression of histone demethylase LSD1 and JMJD2B. Acta Pharmacologica Sinica, 2012, 33, 109-119.	2.8	34
240	Regulation of <i>A Disintegrin And Metalloprotease-33</i> Expression by Transforming Growth Factor-Î ² . American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 633-640.	1.4	19
241	High-Throughput TR-FRET Assays for Identifying Inhibitors of LSD1 and JMJD2C Histone Lysine Demethylases. Journal of Biomolecular Screening, 2012, 17, 27-38.	2.6	33
242	Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3367-76.	3.3	196

#	ARTICLE	IF	Citations
243	The Histone Demethylase Jhdm1a Regulates Hepatic Gluconeogenesis. PLoS Genetics, 2012, 8, e1002761.	1.5	20
244	KDM3B Is the H3K9 Demethylase Involved in Transcriptional Activation of <i>lmo2</i> in Leukemia. Molecular and Cellular Biology, 2012, 32, 2917-2933.	1.1	99
245	Enabling Lead Discovery for Histone Lysine Demethylases by High-Throughput RapidFire Mass Spectrometry. Journal of Biomolecular Screening, 2012, 17, 39-48.	2.6	89
246	Epigenetic Control and Cancer: The Potential of Histone Demethylases as Therapeutic Targets. Pharmaceuticals, 2012, 5, 963-990.	1.7	18
247	2-Deoxy <scp>d</scp> -Glucose Prevents Cell Surface Expression of NKG2D Ligands through Inhibition of <i>N</i> -Linked Glycosylation. Journal of Immunology, 2012, 188, 1847-1855.	0.4	54
248	Oncogenic features of the JMJD2A histone demethylase in breast cancer. International Journal of Oncology, 2012, 41, 1701-1706.	1.4	112
249	Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Molecular Cell, 2012, 48, 491-507.	4.5	975
250	Inhibitor scaffold for the histone lysine demethylase KDM4C (JMJD2C). Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5811-5813.	1.0	17
251	JMJD2A Promotes Cellular Transformation by Blocking Cellular Senescence through Transcriptional Repression of the Tumor Suppressor CHD5. Cell Reports, 2012, 2, 1233-1243.	2.9	106
252	Cycloaddition reactivity studies of first-row transition metal–azide complexes and alkynes: an inorganic click reaction for metalloenzyme inhibitor synthesis. Dalton Transactions, 2012, 41, 8010.	1.6	42
253	O ₂ -Evolving Chlorite Dismutase as a Tool for Studying O ₂ -Utilizing Enzymes. Biochemistry, 2012, 51, 1607-1616.	1.2	39
254	Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion. Oncogene, 2012, 31, 3444-3456.	2.6	112
255	Histone Demethylases KDM4B and KDM6B Promotes Osteogenic Differentiation of Human MSCs. Cell Stem Cell, 2012, 11, 50-61.	5.2	264
256	Nuclear Functions of the Janus Kinases. , 2012, , 27-46.		0
257	JAK/STAT and Chromatin Regulation in Drosophila. , 2012, , 115-131.		1
258	Development of second generation epigenetic agents. MedChemComm, 2012, 3, 135-161.	3.5	16
259	Chromosomal Distribution and Functional Interpretation of Epigenetic Histone Marks in Plants. , 2012, , 231-253.		19
260	Specific changes in the expression of imprinted genes in prostate cancerâ€"implications for cancer progression and epigenetic regulation. Asian Journal of Andrology, 2012, 14, 436-450.	0.8	25

#	Article	IF	CITATIONS
261	Honokiol inhibits HIF pathway and hypoxia-induced expression of histone lysine demethylases. Biochemical and Biophysical Research Communications, 2012, 422, 369-374.	1.0	25
262	Histone demethylase GASC1 - a potential prognostic and predictive marker in invasive breast cancer. BMC Cancer, 2012, 12, 516.	1.1	26
263	The emerging role of histone lysine demethylases in prostate cancer. Molecular Cancer, 2012, 11, 52.	7.9	72
264	Hypoxia and hypoxia mimetics inhibit TNF-dependent VCAM1 induction in the 5A32 endothelial cell line via a hypoxia inducible factor dependent mechanism. Journal of Dermatological Science, 2012, 65, 86-94.	1.0	10
265	Oncoepigenomics: Making histone lysine methylation count. European Journal of Medicinal Chemistry, 2012, 56, 179-194.	2.6	16
266	The role of histone demethylases in cancer therapy. Molecular Oncology, 2012, 6, 683-703.	2.1	98
267	Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene, 2012, 31, 333-341.	2.6	77
268	Alterations of Histone Modifications in Cancer. , 2012, , 53-87.		5
269	Targeting the epigenome for treatment of cancer. Oncogene, 2012, 31, 3827-3844.	2.6	52
270	Plant Cytogenetics., 2012, , .		4
270	Plant Cytogenetics., 2012, , . Kinetic Analysis of Iron-Dependent Histone Demethylases: α-Ketoglutarate Substrate Inhibition and Potential Relevance to the Regulation of Histone Demethylation in Cancer Cells. Biochemistry, 2012, 51, 8699-8701.	1.2	4
	Kinetic Analysis of Iron-Dependent Histone Demethylases: α-Ketoglutarate Substrate Inhibition and Potential Relevance to the Regulation of Histone Demethylation in Cancer Cells. Biochemistry, 2012,	1.2	
271	Kinetic Analysis of Iron-Dependent Histone Demethylases: α-Ketoglutarate Substrate Inhibition and Potential Relevance to the Regulation of Histone Demethylation in Cancer Cells. Biochemistry, 2012, 51, 8699-8701. Regulation of Tumor Suppressor p53 and HCT116 Cell Physiology by Histone Demethylase		47
271	Kinetic Analysis of Iron-Dependent Histone Demethylases: α-Ketoglutarate Substrate Inhibition and Potential Relevance to the Regulation of Histone Demethylation in Cancer Cells. Biochemistry, 2012, 51, 8699-8701. Regulation of Tumor Suppressor p53 and HCT116 Cell Physiology by Histone Demethylase JMJD2D/KDM4D. PLoS ONE, 2012, 7, e34618. Molecular mechanisms and potential functions of histone demethylases. Nature Reviews Molecular	1.1	47 67
271 272 274	Kinetic Analysis of Iron-Dependent Histone Demethylases: α-Ketoglutarate Substrate Inhibition and Potential Relevance to the Regulation of Histone Demethylation in Cancer Cells. Biochemistry, 2012, 51, 8699-8701. Regulation of Tumor Suppressor p53 and HCT116 Cell Physiology by Histone Demethylase JMJD2D/KDM4D. PLoS ONE, 2012, 7, e34618. Molecular mechanisms and potential functions of histone demethylases. Nature Reviews Molecular Cell Biology, 2012, 13, 297-311. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 2012,	1.1	47 67 708
271 272 274 275	Kinetic Analysis of Iron-Dependent Histone Demethylases: α-Ketoglutarate Substrate Inhibition and Potential Relevance to the Regulation of Histone Demethylation in Cancer Cells. Biochemistry, 2012, 51, 8699-8701. Regulation of Tumor Suppressor p53 and HCT116 Cell Physiology by Histone Demethylase JMJD2D/KDM4D. PLoS ONE, 2012, 7, e34618. Molecular mechanisms and potential functions of histone demethylases. Nature Reviews Molecular Cell Biology, 2012, 13, 297-311. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 2012, 13, 343-357. Quaternary Ammonium Oxidative Demethylation: X-ray Crystallographic, Resonance Raman, and UVâ€"Visible Spectroscopic Analysis of a Rieske-Type Demethylase. Journal of the American Chemical	1.1 16.1 7.7	47 67 708 1,728
271 272 274 275 276	Kinetic Analysis of Iron-Dependent Histone Demethylases: α-Ketoglutarate Substrate Inhibition and Potential Relevance to the Regulation of Histone Demethylation in Cancer Cells. Biochemistry, 2012, 51, 8699-8701. Regulation of Tumor Suppressor p53 and HCT116 Cell Physiology by Histone Demethylase JMJD2D/KDM4D. PLoS ONE, 2012, 7, e34618. Molecular mechanisms and potential functions of histone demethylases. Nature Reviews Molecular Cell Biology, 2012, 13, 297-311. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 2012, 13, 343-357. Quaternary Ammonium Oxidative Demethylation: X-ray Crystallographic, Resonance Raman, and UNã€"Visible Spectroscopic Analysis of a Rieske-Type Demethylase. Journal of the American Chemical Society, 2012, 134, 2823-2834. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage	1.1 16.1 7.7 6.6	47 67 708 1,728

#	Article	IF	CITATIONS
281	Electronic Structure Analysis of the Oxygenâ€Activation Mechanism by Fe ^{II} ―and αâ€Ketoglutarate (αKG)â€Dependent Dioxygenases. Chemistry - A European Journal, 2012, 18, 6555-6567.	1.7	89
282	Pathogenesis of Human B Cell Lymphomas. Annual Review of Immunology, 2012, 30, 565-610.	9.5	371
283	Epigenetic control on cell fate choice in neural stem cells. Protein and Cell, 2012, 3, 278-290.	4.8	38
284	Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis. Plant Cell Reports, 2012, 31, 1297-1308.	2.8	76
285	Chromatin as an oxygen sensor and active player in the hypoxia response. Cellular Signalling, 2012, 24, 35-43.	1.7	109
286	ldentification of catechols as histone–lysine demethylase inhibitors. FEBS Letters, 2012, 586, 1190-1194.	1.3	34
287	Histone demethylation and steroid receptor function in cancer. Molecular and Cellular Endocrinology, 2012, 348, 12-20.	1.6	13
288	The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. Journal of Cellular Biochemistry, 2012, 113, 1368-1376.	1.2	95
289	Linking of 2â€Oxoglutarate and Substrate Binding Sites Enables Potent and Highly Selective Inhibition of JmjC Histone Demethylases. Angewandte Chemie - International Edition, 2012, 51, 1631-1634.	7.2	64
290	Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome. Molecular BioSystems, 2013, 9, 2231.	2.9	141
291	Dissecting the role of H3K64me3 in mouse pericentromeric heterochromatin. Nature Communications, 2013, 4, 2233.	5.8	30
292	Gene copy number variations in breast cancer of Sub-Saharan African women. Breast, 2013, 22, 295-300.	0.9	8
293	The Discovery of Histone Demethylases. Cold Spring Harbor Perspectives in Biology, 2013, 5, a017947-a017947.	2.3	76
294	Histone lysine demethylases as targets for anticancer therapy. Nature Reviews Drug Discovery, 2013, 12, 917-930.	21.5	413
295	Small molecule epigenetic inhibitors targeted to histone lysine methyltransferases and demethylases. Quarterly Reviews of Biophysics, 2013, 46, 349-373.	2.4	28
296	Base Excision Repair Facilitates a Functional Relationship Between Guanine Oxidation and Histone Demethylation. Antioxidants and Redox Signaling, 2013, 18, 2429-2443.	2.5	36
297	The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression. Biochemistry and Cell Biology, 2013, 91, 369-377.	0.9	68
298	Berberine Modulates Epigenetics via Inhibition of Hypoxiaâ€Induced Histone Lysine Demethylases Expression. Drug Development Research, 2013, 74, 15-22.	1.4	1

#	Article	IF	CITATIONS
299	Novel approaches for the accumulation of oxygenated intermediates to multi-millimolar concentrations. Coordination Chemistry Reviews, 2013, 257, 234-243.	9.5	15
300	Structural and Functional Analysis of JMJD2D Reveals Molecular Basis for Site-Specific Demethylation among JMJD2 Demethylases. Structure, 2013, 21, 98-108.	1.6	62
301	Tipping the lysine methylation balance in disease. Biopolymers, 2013, 99, 127-135.	1.2	36
302	Like a rolling histone: Epigenetic regulation of neural stem cells and brain development by factors controlling histone acetylation and methylation. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2354-2360.	1.1	58
303	Functional Analysis of Histone Demethylase Jmjd2b on Lipopolysaccharide-Treated Murine Neural Stem Cells (NSCs). Neurotoxicity Research, 2013, 23, 154-165.	1.3	15
304	Small-molecular modulators of cancer-associated epigenetic mechanisms. Molecular BioSystems, 2013, 9, 873.	2.9	42
305	Breathingâ€in epigenetic change with vitamin C. EMBO Reports, 2013, 14, 337-346.	2.0	118
306	Interplay between the Cancer Genome and Epigenome. Cell, 2013, 153, 38-55.	13.5	733
307	Role of Epigenetics in Inflammation-Associated Diseases. Sub-Cellular Biochemistry, 2013, 61, 627-657.	1.0	107
308	The Role of DNA Methylation and Histone Modifications in Transcriptional Regulation in Humans. Sub-Cellular Biochemistry, 2013, 61, 289-317.	1.0	168
309	Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G1/S transition. Cancer Letters, 2013, 336, 76-84.	3.2	59
310	Reconstitution of Nucleosome Demethylation and Catalytic Properties of a Jumonji Histone Demethylase. Chemistry and Biology, 2013, 20, 494-499.	6.2	27
311	A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth. Nature Communications, 2013, 4, 2035.	5.8	252
312	Epigenetic Activation of AP1 Promotes Squamous Cell Carcinoma Metastasis. Science Signaling, 2013, 6, ra28.1-13, S0-15.	1.6	91
313	Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein- 1^3 in reprogramming to pluripotency. Nature Cell Biology, 2013, 15, 872-882.	4.6	205
315	Structural Investigations of the Nickel-Induced Inhibition of Truncated Constructs of the JMJD2 Family of Histone Demethylases Using X-ray Absorption Spectroscopy. Biochemistry, 2013, 52, 4168-4183.	1.2	18
316	Overexpression of Jumonji AT-rich interactive domain 1B and PHD finger protein 2 is involved in the progression of esophageal squamous cell carcinoma. Acta Histochemica, 2013, 115, 56-62.	0.9	27
317	JMJD2B Promotes Epithelial–Mesenchymal Transition by Cooperating with β-Catenin and Enhances Gastric Cancer Metastasis. Clinical Cancer Research, 2013, 19, 6419-6429.	3.2	96

#	ARTICLE	IF	CITATIONS
318	Identification of the KDM2/7 Histone Lysine Demethylase Subfamily Inhibitor and its Antiproliferative Activity. Journal of Medicinal Chemistry, 2013, 56, 7222-7231.	2.9	77
319	The Role of Histone Demethylase GASC1 in Cancer and its Therapeutic Potential. Current Cancer Therapy Reviews, 2013, 9, 78-85.	0.2	2
320	Histone demethylase KDM4C regulates sphere formation by mediating the cross talk between Wnt and Notch pathways in colonic cancer cells. Carcinogenesis, 2013, 34, 2380-2388.	1.3	40
321	KDM4/JMJD2 Histone Demethylases: Epigenetic Regulators in Cancer Cells. Cancer Research, 2013, 73, 2936-2942.	0.4	353
322	Inositol pyrophosphates regulate JMJD2C-dependent histone demethylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18970-18975.	3.3	57
323	The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Research, 2013, 41, 4433-4446.	6.5	109
324	The emerging roles for histone demethylases in the modulation of signaling pathways. Biomolecular Concepts, 2013, 4, 13-27.	1.0	5
325	Neuroinflammation on the Epigenetics of Neural Stem Cells. , 2013, , .		0
326	Histone Demethylase RBP2 Promotes Lung Tumorigenesis and Cancer Metastasis. Cancer Research, 2013, 73, 4711-4721.	0.4	138
327	Heat Shock Protein 90 (Hsp90) Selectively Regulates the Stability of KDM4B/JMJD2B Histone Demethylase. Journal of Biological Chemistry, 2013, 288, 14681-14687.	1.6	36
328	Cancer Epigenetics: New Therapies and New Challenges. Journal of Drug Delivery, 2013, 2013, 1-9.	2.5	66
329	Roles of histone methylâ€modifying enzymes in development and progression of cancer. Cancer Science, 2013, 104, 795-800.	1.7	25
330	Nitric Oxide Modifies Global Histone Methylation by Inhibiting Jumonji C Domain-containing Demethylases. Journal of Biological Chemistry, 2013, 288, 16004-16015.	1.6	89
331	Phosphorylation of KRAB-associated Protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by Nuclear Tyrosine Kinases Inhibits the Association of KAP1 and Heterochromatin Protein $1\hat{1}$ ± (HP1 $\hat{1}$ ±) with Heterochromatin. Journal of Biological Chemistry, 2013, 288, 17871-17883.	1.6	38
332	Regulation and Function of DNA and Histone Methylations. Current Pharmaceutical Design, 2013, 19, 719-733.	0.9	8
333	Posttranslational Modifications of the Histone 3 Tail and Their Impact on the Activity of Histone Lysine Demethylases In Vitro. PLoS ONE, 2013, 8, e67653.	1.1	23
334	Molecular Mechanisms of Cellular Senescence. , 2013, , .		5
335	The Histone Demethylase Activity of Rph1 is Not Essential for Its Role in the Transcriptional Response to Nutrient Signaling. PLoS ONE, 2014, 9, e95078.	1.1	3

#	Article	IF	CITATIONS
336	Phospho-Î"Np63α/microRNA network modulates epigenetic regulatory enzymes in squamous cell carcinomas. Cell Cycle, 2014, 13, 749-761.	1.3	21
337	LEO1 Is Regulated by PRL-3 and Mediates Its Oncogenic Properties in Acute Myelogenous Leukemia. Cancer Research, 2014, 74, 3043-3053.	0.4	29
338	The PHD1 finger of KDM5B recognizes unmodified H3K4 during the demethylation of histone H3K4me2/3 by KDM5B. Protein and Cell, 2014, 5, 837-850.	4.8	62
339	Chem-seq permits identification of genomic targets of drugs against androgen receptor regulation selected by functional phenotypic screens. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9235-9240.	3.3	60
340	KDM4C (GASC1) lysine demethylase is associated with mitotic chromatin and regulates chromosome segregation during mitosis. Nucleic Acids Research, 2014, 42, 6168-6182.	6.5	36
341	Vitamin D and the epigenome. Frontiers in Physiology, 2014, 5, 164.	1.3	222
342	The roles of Jumonji-type oxygenases in human disease. Epigenomics, 2014, 6, 89-120.	1.0	141
343	The Jumonji family: past, present and future of histone demethylases in cancer. Biomolecular Concepts, 2014, 5, 209-224.	1.0	33
344	Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: <scp>IUPHAR</scp> Review 11. British Journal of Pharmacology, 2014, 171, 4981-5010.	2.7	23
345	Epigenetic Therapy of Cancer. , 2014, , .		1
346	Histone Methyltransferases: Opportunities in Cancer Drug Discovery. , 2014, , 189-226.		1
347	Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochemical Journal, 2014, 462, 385-395.	1.7	85
348	Natural variation in the histone demethylase, <i>KDM4C</i> , influences expression levels of specific genes including those that affect cell growth. Genome Research, 2014, 24, 52-63.	2.4	29
349	The promise and failures of epigenetic therapies for cancer treatment. Cancer Treatment Reviews, 2014, 40, 153-169.	3.4	76
351	JMJD5 Regulates Cell Cycle and Pluripotency in Human Embryonic Stem Cells. Stem Cells, 2014, 32, 2098-2110.	1.4	40
352	Spatiotemporal Expression of DNA Demethylation Enzymes and Histone Demethylases in Bovine Embryos. Cellular Reprogramming, 2014, 16, 40-53.	0.5	23
353	Distinct and Combinatorial Functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in Mouse Embryonic Stem Cell Identity. Molecular Cell, 2014, 53, 32-48.	4.5	112
354	Fumonisin B1 induces global DNA hypomethylation in HepG2 cells – An alternative mechanism of action. Toxicology, 2014, 315, 65-69.	2.0	62

#	Article	IF	CITATIONS
355	Quantum Chemical Studies of Mechanisms for Metalloenzymes. Chemical Reviews, 2014, 114, 3601-3658.	23.0	494
356	The chemistry and biology of the \hat{l} ±-ketoglutarate-dependent histone <i>N</i> ^{\hat{l}µ} -methyl-lysine demethylases. MedChemComm, 2014, 5, 297-313.	3.5	10
357	The Demethylase JMJD2C Localizes to H3K4me3-Positive Transcription Start Sites and Is Dispensable for Embryonic Development. Molecular and Cellular Biology, 2014, 34, 1031-1045.	1.1	62
358	Management of Castration Resistant Prostate Cancer. Current Clinical Urology, 2014, , .	0.0	2
359	A molecular threading mechanism underlies Jumonji lysine demethylase KDM2A regulation of methylated H3K36. Genes and Development, 2014, 28, 1758-1771.	2.7	83
360	Molecular basis for substrate recognition by lysine methyltransferases and demethylases. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1404-1415.	0.9	58
361	Substrate- and Cofactor-independent Inhibition of Histone Demethylase KDM4C. ACS Chemical Biology, 2014, 9, 2131-2138.	1.6	25
362	PARP1-dependent recruitment of KDM4D histone demethylase to DNA damage sites promotes double-strand break repair. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E728-37.	3.3	120
363	Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo. Animal Reproduction Science, 2014, 149, 67-79.	0.5	15
364	Gene-Specific Methylation Control of H3K9 and H3K36 on Neurotrophic BDNF versus Astroglial GFAP Genes by KDM4A/C Regulates Neural Stem Cell Differentiation. Journal of Molecular Biology, 2014, 426, 3467-3477.	2.0	47
365	Hitting the â€~mark': Interpreting lysine methylation in the context of active transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1353-1361.	0.9	74
366	Context-specific regulation of cancer epigenomes by histone and transcription factor methylation. Oncogene, 2014, 33, 1207-1217.	2.6	26
367	Regulation of Histone Acyltransferases and Deacetylases by Bioactive Food Compounds for the Prevention of Chronic Diseases., 2014,, 382-409.		0
368	Stimulation of \hat{l}^2 -catenin and colon cancer cell growth by the KDM4B histone demethylase. International Journal of Oncology, 2014, 44, 1341-1348.	1.4	43
369	<scp>K</scp> dm <scp>A</scp> , a histone <scp>H</scp> 3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in <scp><i>A</i></scp> <i>spergillus nidulansMolecular Microbiology, 2015, 96, 839-860.</i>	1.2	43
370	A threeâ€gene signature and clinical outcome in esophageal squamous cell carcinoma. International Journal of Cancer, 2015, 136, E569-77.	2.3	36
371	Genome-Wide Loss of Heterozygosity and DNA Copy Number Aberration in HPV-Negative Oral Squamous Cell Carcinoma and Their Associations with Disease-Specific Survival. PLoS ONE, 2015, 10, e0135074.	1.1	15
372	Emerging Roles of JmjC Domain-Containing Proteins. International Review of Cell and Molecular Biology, 2015, 319, 165-220.	1.6	70

#	Article	IF	CITATIONS
373	Identification of Jumonji AT-Rich Interactive Domain 1A Inhibitors and Their Effect on Cancer Cells. ACS Medicinal Chemistry Letters, 2015, 6, 665-670.	1.3	46
374	Histone Demethylases., 2015,, 425-446.		0
375	OH, the Places You'll Go! Hydroxylation, Gene Expression, and Cancer. Molecular Cell, 2015, 58, 729-741.	4.5	67
376	Methyllysine Recognition by the Royal Family Modules: Chromo, Tudor, MBT, Chromo Barrel, and PWWP Domains., 2015,, 49-82.		3
377	Structural definitions of Jumonji family demethylase selectivity. Drug Discovery Today, 2015, 20, 743-749.	3.2	36
378	Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases. Journal of Biological Chemistry, 2015, 290, 20712-20722.	1.6	124
379	Targeting histone lysine methylation in cancer. , 2015, 150, 1-22.		164
380	The histone demethylase KDM4B interacts with MyoD to regulate myogenic differentiation in C2C12 myoblast cells. Biochemical and Biophysical Research Communications, 2015, 456, 872-878.	1.0	15
381	Inhibition of H3K27me3-Specific Histone Demethylases JMJD3 and UTX Blocks Reactivation of Herpes Simplex Virus 1 in Trigeminal Ganglion Neurons. Journal of Virology, 2015, 89, 3417-3420.	1.5	45
382	Chromatin methylation and cardiovascular aging. Journal of Molecular and Cellular Cardiology, 2015, 83, 21-31.	0.9	18
383	Experimental Correlation of Substrate Position with Reaction Outcome in the Aliphatic Halogenase, SyrB2. Journal of the American Chemical Society, 2015, 137, 6912-6919.	6.6	78
384	Inhibitors of Jumonji C-Domain Histone Demethylases. , 2015, , 439-469.		1
385	A novel effect of DMOG on cell metabolism: direct inhibition of mitochondrial function precedes HIF target gene expression. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1254-1266.	0.5	89
386	A High-Throughput Mass Spectrometry Assay Coupled with Redox Activity Testing Reduces Artifacts and False Positives in Lysine Demethylase Screening. Journal of Biomolecular Screening, 2015, 20, 810-820.	2.6	38
387	Histone Demethylases KDM4A and KDM4C Regulate Differentiation of Embryonic Stem Cells to Endothelial Cells. Stem Cell Reports, 2015, 5, 10-21.	2.3	40
388	Biochemical Diversity of 2-Oxoglutarate-Dependent Oxygenases. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 1-58.	0.8	31
389	Histone Demethylases in Cancer. Current Pharmacology Reports, 2015, 1, 234-244.	1.5	11
390	Hypoxia and Predicting Radiation Response. Seminars in Radiation Oncology, 2015, 25, 260-272.	1.0	73

#	Article	IF	Citations
391	In Vitro Histone Demethylase Assays. Methods in Molecular Biology, 2015, 1288, 109-122.	0.4	3
392	Epigenetic regulation by histone demethylases in hypoxia. Epigenomics, 2015, 7, 791-811.	1.0	124
393	Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. , 2015, 151, 121-140.		35
394	Overexpression of KDM4 lysine demethylases disrupts the integrity of the DNA mismatch repair pathway. Biology Open, 2015, 4, 498-504.	0.6	30
395	The oncogenic role of GASC1 in chemically induced mouse skin cancer. Mammalian Genome, 2015, 26, 591-597.	1.0	10
396	Tumor suppressor ASXL1 is essential for the activation of INK4B expression in response to oncogene activity and anti-proliferative signals. Cell Research, 2015, 25, 1205-1218.	5.7	41
397	An Aza-Cope Reactivity-Based Fluorescent Probe for Imaging Formaldehyde in Living Cells. Journal of the American Chemical Society, 2015, 137, 10886-10889.	6.6	219
398	Hepatitis B virus X protein induces the histone H3 lysine 9 trimethylation on the promoter of p16 gene in hepatocarcinogenesis. Experimental and Molecular Pathology, 2015, 99, 399-408.	0.9	13
400	Deregulated JAK/STAT signalling in lymphomagenesis, and its implications for the development of new targeted therapies. Blood Reviews, 2015, 29, 405-415.	2.8	38
401	Metabolism and Epigenetics. Annual Review of Cell and Developmental Biology, 2015, 31, 473-496.	4.0	147
402	Jmjd2C increases MyoD transcriptional activity through inhibiting G9a-dependent MyoD degradation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1081-1094.	0.9	34
403	Epigenetic Reprogramming in Cancer. Epigenetics and Human Health, 2015, , 193-223.	0.2	4
404	Epigenetic Mechanisms in Cellular Reprogramming. Epigenetics and Human Health, 2015, , .	0.2	2
405	KDM4 histone demethylase inhibitors for anti-cancer agents: a patent review. Expert Opinion on Therapeutic Patents, 2015, 25, 135-144.	2.4	28
406	Targeting the histone orthography of cancer: drugs for writers, erasers and readers. British Journal of Pharmacology, 2015, 172, 2716-2732.	2.7	95
407	Jumonji family histone demethylases in neural development. Cell and Tissue Research, 2015, 359, 87-98.	1.5	27
408	9. The biology of primary mediastinal large B-cell lymphoma. , 2016, , 171-192.		0
409	Histone Methylation Modifiers in Medical Therapeutics. , 2016, , 705-729.		1

#	ARTICLE	IF	Citations
410	Mutations of Chromatin Structure Regulating Genes in Human Malignancies. Current Protein and Peptide Science, 2016, 17, 411-437.	0.7	25
411	Tudor Domains as Methyl-Lysine and Methyl-Arginine Readers. , 2016, , 149-165.		7
412	Transforming Growth Factor- \hat{I}^2 -Induced KDM4B Promotes Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells, 2016, 34, 711-719.	1.4	52
413	Advances and challenges in understanding histone demethylase biology. Current Opinion in Chemical Biology, 2016, 33, 151-159.	2.8	28
414	Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for <scp>ESC</scp> selfâ€renewal and early development. EMBO Journal, 2016, 35, 1550-1564.	3.5	84
415	Hydroxamic acids: synthesis and adjuvant activity in combinatorial anticancer therapy. Russian Chemical Bulletin, 2016, 65, 801-805.	0.4	3
416	JMJD8 is a positive regulator of TNF-induced NF-l ^o B signaling. Scientific Reports, 2016, 6, 34125.	1.6	23
417	Is It Fe(III)-Oxyl Radical That Abstracts Hydrogen in the C–H Activation of TauD? A Theoretical Study Based on the DFT Potential Energy Surfaces. Inorganic Chemistry, 2016, 55, 3844-3852.	1.9	33
418	KDM4C and ATF4 Cooperate in Transcriptional Control of Amino Acid Metabolism. Cell Reports, 2016, 14, 506-519.	2.9	112
419	ETS transcription factor ERG cooperates with histone demethylase KDM4A. Oncology Reports, 2016, 35, 3679-3688.	1.2	25
420	Histone demethylases in physiology and cancer: a tale of two enzymes, JMJD3 and UTX. Current Opinion in Genetics and Development, 2016, 36, 59-67.	1.5	77
421	4â€Biphenylalanine―and 3â€Phenyltyrosineâ€Derived Hydroxamic Acids as Inhibitors of the JumonjiCâ€Domainâ€Containing Histone Demethylase KDM4A. ChemMedChem, 2016, 11, 2063-2083.	1.6	15
422	Design and evaluation of 1,7-naphthyridones as novel KDM5 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4492-4496.	1.0	19
423	Structure–function relationships of human JmjC oxygenases—demethylases versus hydroxylases. Current Opinion in Structural Biology, 2016, 41, 62-72.	2.6	84
424	Alteration of histone H3 lysine 9 dimethylation in peripheral white blood cells of septic patients with trauma and cancer. Molecular Medicine Reports, 2016, 14, 5467-5474.	1.1	9
425	KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis. Cell Reports, 2016, 16, 3016-3027.	2.9	70
426	Rewiring the solid tumor epigenome for cancer therapy. Expert Review of Anticancer Therapy, 2016, 16, 977-987.	1.1	7
427	Purification, Biochemical Analysis, and Structure Determination of JmjC Lysine Demethylases. Methods in Enzymology, 2016, 573, 279-301.	0.4	6

#	Article	IF	CITATIONS
428	Reader domain specificity and lysine demethylase-4 family function. Nature Communications, 2016, 7, 13387.	5.8	45
429	Structure and Function of TET Enzymes. Advances in Experimental Medicine and Biology, 2016, 945, 275-302.	0.8	32
430	The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nature Communications, 2016, 7, 12700.	5.8	134
431	KDM4C Activity Modulates Cell Proliferation and Chromosome Segregation in Triple-Negative Breast Cancer. Breast Cancer: Basic and Clinical Research, 2016, 10, BCBCR.S40182.	0.6	18
432	Increase in <scp>GFAP</scp> â€positive astrocytes in histone demethylase <scp>GASC</scp> 1/ <scp>KDM</scp> 4C/ <scp>JMJD</scp> 2C hypomorphic mutant mice. Genes To Cells, 2016, 21, 218-225.	0.5	17
433	Jmjd2/Kdm4 demethylases are required for expression of <i>Il3ra</i> and survival of acute myeloid leukemia cells. Genes and Development, 2016, 30, 1278-1288.	2.7	69
434	Opposing Chromatin Signals Direct and Regulate the Activity of Lysine Demethylase 4C (KDM4C). Journal of Biological Chemistry, 2016, 291, 6060-6070.	1.6	28
435	Different Facets of Copy Number Changes: Permanent, Transient, and Adaptive. Molecular and Cellular Biology, 2016, 36, 1050-1063.	1.1	47
436	Targeting Aberrant Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia. Cancer Cell, 2016, 29, 32-48.	7.7	153
437	Cell Penetrant Inhibitors of the KDM4 and KDM5 Families of Histone Lysine Demethylases. 1. 3-Amino-4-pyridine Carboxylate Derivatives. Journal of Medicinal Chemistry, 2016, 59, 1357-1369.	2.9	52
438	Role of Histone-Modifying Enzymes and Their Complexes in Regulation of Chromatin Biology. Biochemistry, 2016, 55, 1584-1599.	1.2	80
439	Analysis of JmjC Demethylase-Catalyzed Demethylation Using Geometrically-Constrained Lysine Analogues. ACS Chemical Biology, 2016, 11, 755-762.	1.6	15
440	Mechanism of O ₂ Activation by α-Ketoglutarate Dependent Oxygenases Revisited. A Quantum Chemical Study. Journal of Physical Chemistry A, 2016, 120, 1261-1274.	1.1	65
441	Substituted 2-(2-aminopyrimidin-4-yl)pyridine-4-carboxylates as potent inhibitors of JumonjiC domain-containing histone demethylases. Future Medicinal Chemistry, 2016, 8, 1553-1571.	1.1	16
442	The molecular and cellular origin of human prostate cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1238-1260.	1.9	92
443	Docking and Linking of Fragments To Discover Jumonji Histone Demethylase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 1580-1598.	2.9	43
444	Epigenome-based personalized medicine in human cancer. Epigenomics, 2016, 8, 119-133.	1.0	76
445	Jmjd2c/Kdm4c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development (Cambridge), 2017, 144, 567-579.	1.2	24

#	Article	IF	CITATIONS
446	KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage. Nucleic Acids Research, 2017, 45, gkw1281.	6.5	27
447	The Role of Chromatin-Associated Proteins in Cancer. Annual Review of Cancer Biology, 2017, 1, 355-377.	2.3	10
448	Interaction of a common painkiller piroxicam and copper-piroxicam with chromatin causes structural alterations accompanied by modulation at the epigenomic/genomic level. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2048-2059.	1.1	8
449	From a novel HTS hit to potent, selective, and orally bioavailable KDM5 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2974-2981.	1.0	46
450	2i Maintains a Naive Ground State in ESCs through Two Distinct Epigenetic Mechanisms. Stem Cell Reports, 2017, 8, 1312-1328.	2.3	55
451	Writing, erasing and reading histone lysine methylations. Experimental and Molecular Medicine, 2017, 49, e324-e324.	3.2	800
452	The winding path of protein methylation research: milestones and new frontiers. Nature Reviews Molecular Cell Biology, 2017, 18, 517-527.	16.1	154
453	Crosstalk between epigenetics and metabolismâ€"Yin and Yang of histone demethylases and methyltransferases in cancer. Briefings in Functional Genomics, 2017, 16, 320-325.	1.3	26
454	Phosphorylation of LSD1 by PLK1 promotes its chromatin release during mitosis. Cell and Bioscience, 2017, 7, 15.	2.1	14
455	Identification of a Novel Benzimidazole Pyrazolone Scaffold That Inhibits KDM4 Lysine Demethylases and Reduces Proliferation of Prostate Cancer Cells. SLAS Discovery, 2017, 22, 801-812.	1.4	16
456	KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels. Scientific Reports, 2017, 7, 45005.	1.6	23
457	Some nontoxic metal-based drugs for selected prevalent tropical pathogenic diseases. Journal of Biological Inorganic Chemistry, 2017, 22, 1-18.	1.1	9
458	Proteomic Identification and Analysis of Arginine-Methylated Proteins of <i>Plasmodium falciparum</i> at Asexual Blood Stages. Journal of Proteome Research, 2017, 16, 368-383.	1.8	35
459	Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes. Inorganic Chemistry, 2017, 56, 13382-13389.	1.9	19
460	Maternal expression of the JMJD2A/KDM4A histone demethylase is critical for pre-implantation development. Development (Cambridge), 2017, 144, 3264-3277.	1.2	23
461	DNA and Histone Modifications in Cancer Therapy. Cancer Drug Discovery and Development, 2017, , 585-604.	0.2	0
462	The Molecular Basis of Histone Demethylation. Cancer Drug Discovery and Development, 2017, , 151-219.	0.2	8
463	Design of KDM4 Inhibitors with Antiproliferative Effects in Cancer Models. ACS Medicinal Chemistry Letters, 2017, 8, 869-874.	1.3	50

#	Article	IF	CITATIONS
464	Systematic discovery of genetic modulation by Jumonji histone demethylases in Drosophila. Scientific Reports, 2017, 7, 5240.	1.6	38
465	JMJD8 is a novel endoplasmic reticulum protein with a JmjC domain. Scientific Reports, 2017, 7, 15407.	1.6	13
466	A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics, 2017, 9, 1123-1142.	1.0	125
467	Histone Lysine Demethylase Inhibitors. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026484.	2.9	57
468	Molecular targeting of hypoxia in radiotherapy. Advanced Drug Delivery Reviews, 2017, 109, 45-62.	6.6	146
469	Epigenomic Regulation of Androgen Receptor Signaling: Potential Role in Prostate Cancer Therapy. Cancers, 2017, 9, 9.	1.7	37
470	JMJD-5/KDM8 regulates H3K36me2 and is required for late steps of homologous recombination and genome integrity. PLoS Genetics, 2017, 13, e1006632.	1.5	29
471	Dynamics of DNA methylomes underlie oyster development. PLoS Genetics, 2017, 13, e1006807.	1.5	65
472	JMJD2A promotes the Warburg effect and nasopharyngeal carcinoma progression by transactivating LDHA expression. BMC Cancer, 2017, 17, 477.	1.1	25
473	Lysine-Specific Histone Demethylases Contribute to Cellular Differentiation and Carcinogenesis. Epigenomes, 2017, 1, 4.	0.8	4
474	Inhibitors of both the <i>N</i> -methyl lysyl- and arginyl-demethylase activities of the JmjC oxygenases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170071.	1.8	18
475	Inhibitors of the JAK/STAT Pathway, with a Focus on Ruxolitinib and Similar Agents. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 107-134.	0.1	1
476	Small molecule KDM4s inhibitors as anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 777-793.	2.5	22
477	Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma. Cancer Cell, 2018, 33, 322-336.e8.	7.7	103
478	The Human Epigenomeâ€"Implications for the Understanding of Human Disease. , 2018, , 165-182.		1
479	Systematic genetic interaction studies identify histone demethylase Utx as potential target for ameliorating Huntington's disease. Human Molecular Genetics, 2018, 27, 649-666.	1.4	15
480	Inhibitors of Protein Methyltransferases and Demethylases. Chemical Reviews, 2018, 118, 989-1068.	23.0	222
481	Eukaryotic DNA damage responses: Homologous recombination factors and ubiquitin modification. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2018, 809, 88-98.	0.4	6

#	Article	IF	CITATIONS
482	Epigenetic regulators: multifunctional proteins modulating hypoxia-inducible factor-α protein stability and activity. Cellular and Molecular Life Sciences, 2018, 75, 1043-1056.	2.4	56
483	Role of JMJD2B in colon cancer cell survival under glucose-deprived conditions and the underlying mechanisms. Oncogene, 2018, 37, 389-402.	2.6	27
484	Cooperation between ETS variant 2 and Jumonji domain†containing 2 histone demethylases. Molecular Medicine Reports, 2018, 17, 5518-5527.	1.1	14
486	Epigenetics and Infectious Pathogens: Interactions, Ploy and Perspectives. , 2018, , 359-388.		0
487	Mechanistic Elucidation of Two Catalytically Versatile Iron(II)- and α-Ketoglutarate-Dependent Enzymes: Cases Beyond Hydroxylation. Comments on Inorganic Chemistry, 2018, 38, 127-165.	3.0	4
488	α-Amine Desaturation of <scp>d</scp> -Arginine by the Iron(II)- and 2-(Oxo)glutarate-Dependent <scp>l</scp> -Arginine 3-Hydroxylase, VioC. Biochemistry, 2018, 57, 6479-6488.	1.2	30
489	Epigenetic Factors: Key Regulators Targeted in Cancers. , 0, , .		1
490	RNA-modifying proteins as anticancer drug targets. Nature Reviews Drug Discovery, 2018, 17, 435-453.	21.5	107
491	The Tumor Suppressor CIC Directly Regulates MAPK Pathway Genes via Histone Deacetylation. Cancer Research, 2018, 78, 4114-4125.	0.4	56
492	BODIPY-based fluorescent sensor for imaging of endogenous formaldehyde in living cells. Talanta, 2018, 189, 274-280.	2.9	27
493	Alterations of Histone Modifications in Cancer. , 2018, , 141-217.		10
495	Kdm4c is Recruited to Mitotic Chromosomes and Is Relevant for Chromosomal Stability, Cell Migration and Invasion of Triple Negative Breast Cancer Cells. Breast Cancer: Basic and Clinical Research, 2018, 12, 117822341877307.	0.6	4
496	KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene, 2019, 38, 17-32.	2.6	77
497	Genetic alterations of 9p24 in lymphomas and their impact for cancer (immuno-)therapy. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 497-509.	1.4	8
498	Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules, 2019, 9, 369.	1.8	67
499	KDM2 proteins constrain transcription from CpG island gene promoters independently of their histone demethylase activity. Nucleic Acids Research, 2019, 47, 9005-9023.	6.5	26
500	The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 705.	1.3	53
501	Roles and regulation of histone methylation in animal development. Nature Reviews Molecular Cell Biology, 2019, 20, 625-641.	16.1	324

#	Article	IF	CITATIONS
502	The Histone Demethylase KDM3A, Increased in Human Pancreatic Tumors, Regulates Expression of DCLK1 and Promotes Tumorigenesis in Mice. Gastroenterology, 2019, 157, 1646-1659.e11.	0.6	50
503	The KDM4/JMJD2 histone demethylases are required for hematopoietic stem cell maintenance. Blood, 2019, 134, 1154-1158.	0.6	40
504	Evidence for Modulation of Oxygen Rebound Rate in Control of Outcome by Iron(II)- and 2-Oxoglutarate-Dependent Oxygenases. Journal of the American Chemical Society, 2019, 141, 15153-15165.	6.6	28
505	A novel two-photon fluorescent probe for detecting FA based on a coumarin derivative and its applications in living cells, zebrafish and tissues. New Journal of Chemistry, 2019, 43, 11844-11850.	1.4	15
506	A CRISPR/Cas9 screen identifies the histone demethylase MINA53 as a novel HIV-1 latency-promoting gene (LPG). Nucleic Acids Research, 2019, 47, 7333-7347.	6.5	35
507	Role of Chromatin Assembly and Remodeling in Water Stress Responses in Plants. Sustainable Development and Biodiversity, 2019, , 167-182.	1.4	0
509	Targeted Treatment of Individuals With Psychosis Carrying a Copy Number Variant Containing a Genomic Triplication of the Glycine Decarboxylase Gene. Biological Psychiatry, 2019, 86, 523-535.	0.7	32
510	GASC1 Promotes Stemness of Esophageal Squamous Cell Carcinoma via NOTCH1 Promoter Demethylation. Journal of Oncology, 2019, 2019, 1-15.	0.6	10
512	Knockdown of KDM1B inhibits cell proliferation and induces apoptosis of pancreatic cancer cells. Pathology Research and Practice, 2019, 215, 1054-1060.	1.0	20
513	IL-6 and sIL-6R induces STAT3-dependent differentiation of human VSMCs into osteoblast-like cells through JMJD2B-mediated histone demethylation of RUNX2. Bone, 2019, 124, 53-61.	1.4	65
514	Identification of ortho-hydroxy anilide as a novel scaffold for lysine demethylase 5 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1173-1176.	1.0	5
515	KDM4B: A Nail for Every Hammer?. Genes, 2019, 10, 134.	1.0	35
516	Identification of novel lysine demethylase 5-selective inhibitors by inhibitor-based fragment merging strategy. Bioorganic and Medicinal Chemistry, 2019, 27, 1119-1129.	1.4	26
519	Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduction and Targeted Therapy, 2019, 4, 62.	7.1	618
520	Anti-silencing factor Epe1 associates with SAGA to regulate transcription within heterochromatin. Genes and Development, 2019, 33, 116-126.	2.7	34
521	Therapeutic targeting potential of chromatin-associated proteins in MLL-rearranged acute leukemia. Cellular Oncology (Dordrecht), 2019, 42, 117-130.	2.1	6
522	Distal-less homeobox 5 promotes the osteo-/dentinogenic differentiation potential of stem cells from apical papilla by activating histone demethylase KDM4B through a positive feedback mechanism. Experimental Cell Research, 2019, 374, 221-230.	1.2	22
523	Overview of Posttranslational Modifications of Biochemically Characterized Plasmodium falciparum Helicases., 2019,, 113-124.		1

#	Article	IF	CITATIONS
524	JMJD2A sensitizes gastric cancer to chemotherapy by cooperating with CCDC8. Gastric Cancer, 2020, 23, 426-436.	2.7	15
525	The conflicting role of E2F1 in prostate cancer: A matter of cell context or interpretational flexibility?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188336.	3.3	35
526	Wnt-Induced Stabilization of KDM4C Is Required for Wnt/ \hat{l}^2 -Catenin Target Gene Expression and Glioblastoma Tumorigenesis. Cancer Research, 2020, 80, 1049-1063.	0.4	40
527	Histone Demethylases as Counterbalance to H3K27me3 Silencing in Plants. IScience, 2020, 23, 101715.	1.9	20
528	Rare genetic variants in the gene encoding histone lysine demethylase 4C (KDM4C) and their contributions to susceptibility to schizophrenia and autism spectrum disorder. Translational Psychiatry, 2020, 10, 421.	2.4	11
529	Histone Demethylase KDM4C Is Required for Ovarian Cancer Stem Cell Maintenance. Stem Cells International, 2020, 2020, 1-7.	1.2	8
530	Catalysis by the JmjC histone demethylase KDM4A integrates substrate dynamics, correlated motions and molecular orbital control. Chemical Science, 2020, 11, 9950-9961.	3.7	23
531	Advances in Histone Demethylase KDM3A as a Cancer Therapeutic Target. Cancers, 2020, 12, 1098.	1.7	42
532	Expression profiling of the Kdm genes in scallop Patinopecten yessoensis suggests involvement of histone demethylation in regulation of early development and gametogenesis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020, 243-244, 110434.	0.7	4
533	Tudor domain of histone demethylase KDM4B is a reader of H4K20me3. Acta Biochimica Et Biophysica Sinica, 2020, 52, 901-906.	0.9	2
534	Hypoxia-driven epigenetic regulation in cancer progression: A focus on histone methylation and its modifying enzymes. Cancer Letters, 2020, 489, 41-49.	3.2	27
535	IL-6 and IL-8 are involved in JMJD2A-regulated malignancy of ovarian cancer cells. Archives of Biochemistry and Biophysics, 2020, 684, 108334.	1.4	13
536	miR24â€2 accelerates progression of liver cancer cells by activating Pim1 through triâ€methylation of Histone H3 on the ninth lysine. Journal of Cellular and Molecular Medicine, 2020, 24, 2772-2790.	1.6	17
537	H3K36 Methylation in Neural Development and Associated Diseases. Frontiers in Genetics, 2019, 10, 1291.	1.1	32
538	Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB Journal, 2020, 34, 3461-3484.	0.2	81
539	Targeting USP1â€dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Science, 2020, 111, 1567-1581.	1.7	34
540	Heme, A Metabolic Sensor, Directly Regulates the Activity of the KDM4 Histone Demethylase Family and Their Interactions with Partner Proteins. Cells, 2020, 9, 773.	1.8	2
541	IOX1 Suppresses Wnt Target Gene Transcription and Colorectal Cancer Tumorigenesis through Inhibition of KDM3 Histone Demethylases. Molecular Cancer Therapeutics, 2021, 20, 191-202.	1.9	13

#	Article	IF	CITATIONS
542	Current advances of targeting epigenetic modifications in neuroendocrine prostate cancer. Tzu Chi Medical Journal, 2021, 33, 224.	0.4	2
544	GASC1 promotes glioma progression byÂenhancing NOTCH1 signaling. Molecular Medicine Reports, 2021, 23, .	1.1	10
545	USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF- \hat{l}^2 2 transcription. Cell Death and Differentiation, 2021, 28, 2095-2111.	5.0	33
546	GASC1 promotes hepatocellular carcinoma progression by inhibiting the degradation of ROCK2. Cell Death and Disease, 2021, 12, 253.	2.7	6
547	Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology, 2021, 162 , .	1.4	7
548	Heterochromatin and Polycomb as regulators of haematopoiesis. Biochemical Society Transactions, 2021, 49, 805-814.	1.6	4
549	Nutritional Status Impacts Epigenetic Regulation in Early Embryo Development: A Scoping Review. Advances in Nutrition, 2021, 12, 1877-1892.	2.9	16
550	MicroRNA-340-5p inhibits endothelial apoptosis, inflammatory response, and pro-coagulation by targeting KDM4C in anti-neutrophil cytoplasmic antibody (ANCA)-mediated glomerulonephritis through activation of B cells. Autoimmunity, 2021, 54, 343-352.	1.2	4
551	\hat{l}^2 -Catenin Attenuation Inhibits Tumor Growth and Promotes Differentiation in a BRAFV600E-Driven Thyroid Cancer Animal Model. Molecular Cancer Therapeutics, 2021, 20, 1603-1613.	1.9	3
553	Histone methylation in pancreatic cancer and its clinical implications. World Journal of Gastroenterology, 2021, 27, 6004-6024.	1.4	12
554	Histone demethylase KDM4C controls tumorigenesis of glioblastoma by epigenetically regulating p53 and c-Myc. Cell Death and Disease, 2021, 12, 89.	2.7	23
555	Fluorogenic probes for detecting deacylase and demethylase activity towards post-translationally-modified lysine residues. Chemical Science, 2021, 12, 2498-2503.	3.7	6
556	Recent advances in selective formaldehyde detection in biological and environmental samples by fluorometric and colorimetric chemodosimeters. Analytical Methods, 2021, 13, 1084-1105.	1.3	25
557	Histone methylation modifiers in medical therapeutics. , 2021, , 693-720.		0
558	Chemical and biochemical approaches in the study of histone methylation and demethylation. Medicinal Research Reviews, 2010, 32, $n/a-n/a$.	5.0	3
559	Histone Methylation in Chromatin Signaling. , 2014, , 213-256.		4
560	In Vitro Histone Demethylase Assays. Methods in Molecular Biology, 2009, 523, 249-261.	0.4	5
561	The Epigenomics of Cancer. , 2010, , 51-67.		3

#	Article	IF	Citations
562	Epigenetic regulation of cancer stem cell and tumorigenesis. Advances in Cancer Research, 2020, 148, 1-26.	1.9	12
563	Mechanisms of 2-Oxoglutarate-Dependent Oxygenases: The Hydroxylation Paradigm and Beyond. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 95-122.	0.8	69
564	CHAPTER 7. JmjC Lysine Demethylases. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 210-245.	0.8	11
565	Analysis of 9p24 and 11p12-13 regions in autism spectrum disorders: rs1340513 in the JMJD2C gene is associated with ASDs in Finnish sample. Psychiatric Genetics, 2010, 20, 102-108.	0.6	35
566	Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. Journal of Clinical Investigation, 2016, 126, 706-720.	3.9	91
567	Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1. PLoS ONE, 2007, 2, e386.	1.1	44
568	HP1a Targets the Drosophila KDM4A Demethylase to a Subset of Heterochromatic Genes to Regulate H3K36me3 Levels. PLoS ONE, 2012, 7, e39758.	1.1	23
569	KDM2B Is Implicated in Bovine Lethal Multi-Organic Developmental Dysplasia. PLoS ONE, 2012, 7, e45634.	1.1	14
570	A Computational Model for Histone Mark Propagation Reproduces the Distribution of Heterochromatin in Different Human Cell Types. PLoS ONE, 2013, 8, e73818.	1.1	7
571	Histone demethylase JMJD2C: epigenetic regulators in tumors. Oncotarget, 2017, 8, 91723-91733.	0.8	9
572	A polymorphism in JMJD2C alters the cleavage by caspase-3 and the prognosis of human breast cancer. Oncotarget, 2014, 5, 4779-4787.	0.8	18
573	TGFBR-IDH1-Cav1 axis promotes TGF- \hat{l}^2 signalling in cancer-associated fibroblast. Oncotarget, 2017, 8, 83962-83974.	0.8	11
574	Prominent role of histone lysine demethylases in cancer epigenetics and therapy. Oncotarget, 2018, 9, 34429-34448.	0.8	15
575	The JmjN domain as a dimerization interface and a targeted inhibitor of KDM4 demethylase activity. Oncotarget, 2018, 9, 16861-16882.	0.8	27
576	Protein Interaction Domains and Post-Translational Modifications: Structural Features and Drug Discovery Applications. Current Medicinal Chemistry, 2020, 27, 6306-6355.	1.2	4
577	Epigenetic and Disease Targets by Polyphenols. Current Pharmaceutical Design, 2013, 19, 6156-6185.	0.9	65
578	Histone Lysine-Specific Methyltransferases and Demethylases in Carcinogenesis: New Targets for Cancer Therapy and Prevention. Current Cancer Drug Targets, 2013, 13, 558-579.	0.8	65
579	Natural compound-derived epigenetic regulators targeting epigenetic readers, writers and erasers. Current Topics in Medicinal Chemistry, 2015, 16, 697-713.	1.0	27

#	Article	IF	CITATIONS
580	Methods for Activity Analysis of the Proteins that Regulate Histone Methylation. Current Chemical Genomics, 2011, 5, 95-105.	2.0	13
581	Dysfunction of Mitochondrial ATP Production As a Target for Personalized Cancer Therapy. Current Pharmacogenomics and Personalized Medicine, 2009, 7, 27-39.	0.2	2
582	KDM4D Predicts Recurrence in Exocrine Pancreatic Cells of Resection Margins from Patients with Pancreatic Adenocarcinoma. Anticancer Research, 2018, 38, 2295-2302.	0.5	8
583	Exploiting Drug-Induced Senescence in Transgenic Mouse Models. , 2008, , 273-294.		2
584	Histone Demethylases and Their Roles in Cancer Epigenetics. , 2016, 01, .		54
585	Epigenetics: An emerging player in gastric cancer. World Journal of Gastroenterology, 2014, 20, 6433.	1.4	64
586	The chromatin signature of pluripotent cells. Stembook, 2009, , .	0.3	11
587	Modulation of cell death pathways in cancer stem cells: Targeting histone demethylases. Advances in Bioscience and Biotechnology (Print), 2012, 03, 720-730.	0.3	1
588	Expression and Effects of JMJD2A Histone Demethylase in Endometrial Carcinoma. Asian Pacific Journal of Cancer Prevention, 2014, 15, 3051-3056.	0.5	15
589	Inhibition of MEK1/2 and GSK3 (2i system) affects blastocyst quality and early differentiation of porcine parthenotes. PeerJ, 2019, 6, e5840.	0.9	4
590	Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. International Journal of Molecular Sciences, 2021, 22, 10969.	1.8	14
591	DNA Hypomethylation in Cancer., 2008,, 7-37.		2
592	Proteins That Alter Histone Modifications in Cancer., 2008, , 181-195.		0
593	Histone Modifications in Cancer Biology and Prognosis. , 2008, , 359-379.		0
594	Chromatin Remodeling and Cancer. , 2008, , 253-264.		0
595	Chapter 5. Chemical Biology of Histone Modifications. RSC Drug Discovery Series, 2010, , 151-203.	0.2	0
597	Networks of Histone Demethylases and Their Relevance to the Regulation of Chromatin Structure and Dynamics., 2014, , 1-32.		0
598	Histone Demethylases in Prostate Cancer. Cancer Drug Discovery and Development, 2014, , 373-397.	0.2	0

#	Article	IF	Citations
600	Epigenetics in Castration Resistant Prostate Cancer. Current Clinical Urology, 2014, , 277-295.	0.0	1
601	Targeting Non-Acetylation Histone Erasers. RSC Drug Discovery Series, 2015, , 168-191.	0.2	O
602	Epigenetic of Retinoic Acid Receptor Î ² 2 Gene in Breast Cancer., 2015,, 311-362.		O
603	Molecular Technology for Controlling Epigenetics: Regulation of Histone Acetylation and Methylation by Small Molecules. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 441-452.	0.0	1
604	GSK-J4-Mediated Transcriptomic Alterations in Differentiating Embryoid Bodies. Molecules and Cells, 2017, 40, 737-751.	1.0	4
608	Overview of Epigenetic Signatures and Their Regulation by Epigenetic Modification Enzymes. , 2020, , 1-33.		0
609	Role of H3K9 demethylases in DNA doublestrand break repair., 2020, 1, 10-15.		4
610	Genome-wide identification, classification, and expression analysis of the JmjC domain-containing histone demethylase gene family in birch. BMC Genomics, 2021, 22, 772.	1.2	10
611	Histone demethylase inhibitors and their potential in cancer treatment., 2020,, 143-177.		1
612	Identification of Potent and Selective Inhibitors of Fat Mass Obesity-Associated Protein Using a Fragment-Merging Approach. Journal of Medicinal Chemistry, 2021, 64, 15810-15824.	2.9	19
618	Histone demethylase GASC1, a potential prognostic and predictive marker in esophageal squamous cell carcinoma. American Journal of Cancer Research, 2013, 3, 509-17.	1.4	11
619	Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. American Journal of Translational Research (discontinued), 2013, 6, 1-15.	0.0	84
620	Pro-growth role of the JMJD2C histone demethylase in HCT-116 colon cancer cells and identification of curcuminoids as JMJD2 inhibitors. American Journal of Translational Research (discontinued), 2014, 6, 236-47.	0.0	39
621	Genetic alterations of KDM4 subfamily and therapeutic effect of novel demethylase inhibitor in breast cancer. American Journal of Cancer Research, 2015, 5, 1519-30.	1.4	30
623	Histone demethylases and their roles in cancer epigenetics. , 2016, 1, 34-40.		47
624	Upregulation of PSMD10 caused by the JMJD2A histone demethylase. International Journal of Clinical and Experimental Medicine, 2016, 9, 10123-10134.	1.3	9
625	Understanding Transcriptional Networks Regulating Initiation of Cutaneous Wound Healing. Yale Journal of Biology and Medicine, 2020, 93, 161-173.	0.2	5
626	Silencing and anti-silencing mechanisms that shape the epigenome in plants. Genes and Genetic Systems, 2021, 96, 217-228.	0.2	4

#	ARTICLE	IF	CITATIONS
627	Development of a single quantum dot-mediated FRET biosensor for amplification-free detection of ten-eleven translocation 2. Talanta, 2022, 239, 123135.	2.9	4
628	The Diverse Roles of Histone Demethylase KDM4B in Normal and Cancer Development and Progression. Frontiers in Cell and Developmental Biology, 2021, 9, 790129.	1.8	12
630	Targeting KDM4C enhances CD8 ⁺ T cell mediated antitumor immunity by activating chemokine CXCL10 transcription in lung cancer., 2022, 10, e003716.		24
632	The JMJD Family Histone Demethylases in Crosstalk Between Inflammation and Cancer. Frontiers in Immunology, 2022, 13, 881396.	2.2	3
633	Are Vanadium Intermediates Suitable Mimics in Non-Heme Iron Enzymes? An Electronic Structure Analysis. ACS Catalysis, 2022, 12, 5489-5501.	5.5	5
634	KDM4C in GC lymphoma: a new piece of the epigenetic puzzle. Haematologica, 2022, , .	1.7	1
635	The Chromatin Modifier Protein FfJMHY Plays an Important Role in Regulating the Rate of Mycelial Growth and Stipe Elongation in Flammulina filiformis. Journal of Fungi (Basel, Switzerland), 2022, 8, 477.	1.5	6
636	Focal structural variants revealed by whole genome sequencing disrupt the histone demethylase KDM4C in B-cell lymphomas. Haematologica, 2023, 108, 543-554.	1.7	2
637	The Lysine Demethylases KdmA and KdmB Differently Regulate Asexual Development, Stress Response, and Virulence in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2022, 8, 590.	1.5	2
639	A label-free and self-circulated fluorescent biosensor for sensitive detection of ten-eleven translocation 1 in cancer cells. Chemical Communications, 2022, 58, 7996-7999.	2.2	2
640	Epigenetic Control of Muscle Stem Cells: Focus on Histone Lysine Demethylases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
641	The Chromatin Landscape Channels DNA Double-Strand Breaks to Distinct Repair Pathways. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	11
642	Recent Advances with KDM4 Inhibitors and Potential Applications. Journal of Medicinal Chemistry, 2022, 65, 9564-9579.	2.9	9
643	Targeting histone demethylases as a potential cancer therapy (Review). International Journal of Oncology, 2022, 61, .	1.4	6
644	Dynamic regulation of tumour progression by phenotypeâ€switching drivers. Clinical and Translational Medicine, 2022, 12, .	1.7	1
645	Histone modification and histone modification-targeted anti-cancer drugs in breast cancer: Fundamentals and beyond. Frontiers in Pharmacology, 0, 13, .	1.6	9
646	Structure and Function of TET Enzymes. Advances in Experimental Medicine and Biology, 2022, , 239-267.	0.8	7
647	Jumonji domain-containing protein RIOX2 is overexpressed and associated with worse survival outcomes in prostate cancers. Frontiers in Oncology, 0, 13, .	1.3	0

#	Article	IF	CITATIONS
648	The role and prospect of lysineâ€specific demethylases in cancer chemoresistance. Medicinal Research Reviews, 2023, 43, 1438-1469.	5.0	5
649	The catalytic domains of all human <scp>KDM5 JmjC</scp> demethylases catalyse <i>N</i> â€methyl arginine demethylation. FEBS Letters, 2023, 597, 933-946.	1.3	2
650	Inhibitors targeting epigenetic modifications in cancer. , 2023, , 287-324.		0
652	Chemical Inhibitors Targeting the Histone Lysine Demethylase Families with Potential for Drug Discovery. Epigenomes, 2023, 7, 7.	0.8	4
653	The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes and Diseases, 2024, 11 , 645-663.	1.5	2
654	Loss of H3K9 trimethylation alters chromosome compaction and transcription factor retention during mitosis. Nature Structural and Molecular Biology, 2023, 30, 489-501.	3.6	2
655	TACH101, a first-in-class pan-inhibitor of KDM4 histone demethylase. Anti-Cancer Drugs, 2023, 34, 1122-1131.	0.7	5
658	KDM4 Demethylases: Structure, Function, and Inhibitors. Advances in Experimental Medicine and Biology, 2023, , 87-111.	0.8	0
661	Context-Dependent Functions of KDM6 Lysine Demethylases in Physiology and Disease. Advances in Experimental Medicine and Biology, 2023, , 139-165.	0.8	0
662	Epigenetic regulation: Histone modifying enzymes as targets for novel therapeutics. , 2024, , 430-452.		0
663	Lysine Demethylation in Pathogenesis. Advances in Experimental Medicine and Biology, 2023, , 1-14.	0.8	1
665	Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	O