Reverse replay of behavioural sequences in hippocampa

Nature 440, 680-683 DOI: 10.1038/nature04587

Citation Report

#	Article	IF	CITATIONS
2	Rediscovering the Scottish Philosophers. , 2001, , 15-23.		0
3	IMPERSONAL EXCHANGE: THE EXTENDED ORDER OF THE MARKET. , 2001, , 43-44.		0
4	Relating the Two Concepts of a Rational Order. , 2001, , 45-60.		0
5	Market Institutions and Performance. , 2001, , 61-93.		0
6	Asymmetric Information and Equilibrium without Process. , 2001, , 94-114.		0
7	FCC Spectrum Auctions and Combinatorial Designs: Theory and Experiment. , 2001, , 115-148.		0
8	Psychology and Markets. , 2001, , 149-167.		1
9	What Is Rationality?. , 2001, , 168-188.		2
10	PERSONAL EXCHANGE: THE EXTERNAL ORDER OF SOCIAL EXCHANGE. , 2001, , 189-191.		0
11	Emergent Order without the Law. , 2001, , 192-198.		0
12	The Effects of Context on Behavior. , 2001, , 199-233.		0
13	Investment Trust Games: Effects of Gains from Exchange in Dictator Giving. , 2001, , 234-244.		0
14	Reciprocity in Trust Games. , 2001, , 245-280.		0
15	ORDER AND RATIONALITY IN METHOD AND MIND. , 2001, , 281-282.		0
16	Rationality in Science. , 2001, , 283-311.		1
17	Neuroeconomics: The Internal Order of the Mind. , 2001, , 312-321.		0
18	A Summary. , 2001, , 322-328.		0
21	RATIONALITY, MARKETS, AND INSTITUTIONS. , 2001, , 13-14.		0

ATION RED

#	Article	IF	CITATIONS
22	On Two Forms of Rationality. , 2001, , 24-42.		0
23	Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10046-10051.	3.3	1,843
24	Biological time-keeping mechanisms: A need for broader perspectives?. Medical Hypotheses, 2006, 67, 1358-1362.	0.8	1
25	Gradual Translocation of Spatial Correlates of Neuronal Firing in the Hippocampus toward Prospective Reward Locations. Neuron, 2006, 51, 639-650.	3.8	156
26	Backward Shift of Head Direction Tuning Curves of the Anterior Thalamus: Comparison with CA1 Place Fields. Neuron, 2006, 52, 717-729.	3.8	21
27	Rewinding the memory record. Nature, 2006, 440, 615-616.	13.7	40
28	Size isn't everything. Nature, 2006, 440, 617-618.	13.7	7
29	Keeping the memories flowing. Nature Neuroscience, 2006, 9, 1199-1200.	7.1	1
30	A clustered plasticity model of long-term memory engrams. Nature Reviews Neuroscience, 2006, 7, 575-583.	4.9	307
32	Representing episodes in the mammalian brain. Current Opinion in Neurobiology, 2006, 16, 701-709.	2.0	63
33	The role of sleep in declarative memory consolidation: passive, permissive, active or none?. Current Opinion in Neurobiology, 2006, 16, 716-722.	2.0	273
34	Functional Imaging: Is the Resting Brain Resting?. Current Biology, 2006, 16, R998-R1000.	1.8	81
35	Hippocampal place cells: The "where―of episodic memory?. Hippocampus, 2006, 16, 743-754.	0.9	26
36	Dissociating the past from the present in the activity of place cells. Hippocampus, 2006, 16, 704-715.	0.9	74
37	Hippocampal place fields: A neural code for episodic memory?. Hippocampus, 2006, 16, 685-690.	0.9	18
38	Elevated Sleep Spindle Density after Learning or after Retrieval in Rats. Journal of Neuroscience, 2006, 26, 12914-12920.	1.7	228
39	Hippocampal Sharp Waves and Reactivation during Awake States Depend on Repeated Sequential Experience. Journal of Neuroscience, 2006, 26, 12415-12426.	1.7	115
40	Coherent Spontaneous Activity Identifies a Hippocampal-Parietal Memory Network. Journal of Neurophysiology, 2006, 96, 3517-3531.	0.9	924

#	Article	IF	CITATIONS
41	Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations <i>In Vivo</i> . Journal of Neuroscience, 2007, 27, 8184-8189.	1.7	273
42	Statistical Properties of Pauses of the High-Frequency Discharge Neurons in the External Segment of the Globus Pallidus. Journal of Neuroscience, 2007, 27, 2525-2538.	1.7	89
43	Context Learning in the Rodent Hippocampus. Neural Computation, 2007, 19, 3173-3215.	1.3	46
44	Structural network heterogeneities and network dynamics: A possible dynamical mechanism for hippocampal memory reactivation. Physical Review E, 2007, 75, 011912.	0.8	6
45	A reversing buffer mechanism that enables instances of retrospective activity in hippocampal regions CA3 and CA1. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	2
46	Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity. Physical Review E, 2007, 75, 051917.	0.8	12
47	Replay, Working Memory and Action Selection in Temporal Credit Assignment - a Simple Neural Network Model. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	1
48	Remodeling of hippocampal mossy fibers is selectively induced seven days after the acquisition of a spatial but not a cued reference memory task. Learning and Memory, 2007, 14, 416-421.	0.5	55
49	Affect, Anticipation, and Adaptation: Affect-Controlled Selection of Anticipatory Simulation in Artificial Adaptive Agents. Adaptive Behavior, 2007, 15, 397-422.	1.1	42
50	Memory, imagination, and the asymmetry between past and future. Behavioral and Brain Sciences, 2007, 30, 325-326.	0.4	2
51	On the constructive episodic simulation of past and future events. Behavioral and Brain Sciences, 2007, 30, 331-332.	0.4	96
52	The costs of mental time travel. Behavioral and Brain Sciences, 2007, 30, 317-318.	0.4	4
53	Has mental time travel really affected human culture?. Behavioral and Brain Sciences, 2007, 30, 326-327.	0.4	1
54	Mental time travel across the disciplines: The future looks bright. Behavioral and Brain Sciences, 2007, 30, 335-345.	0.4	53
55	The meaning of "time―in episodic memory and mental time travel. Behavioral and Brain Sciences, 2007, 30, 323-323.	0.4	17
56	Is mental time travel a frame-of-reference issue?. Behavioral and Brain Sciences, 2007, 30, 316-317.	0.4	12
57	Mental time travel in the rat: Dissociation of recall and familiarity. Behavioral and Brain Sciences, 2007, 30, 322-323.	0.4	2
58	Prospection and the brain. Behavioral and Brain Sciences, 2007, 30, 318-319.	0.4	8

#	Article	IF	CITATIONS
59	The continuum of "looking forward,―and paradoxical requirements from memory. Behavioral and Brain Sciences, 2007, 30, 315-316.	0.4	8
60	How developmental science contributes to theories of future thinking. Behavioral and Brain Sciences, 2007, 30, 314-315.	0.4	6
61	A unique role for the hippocampus in recollecting the past and remembering the future. Behavioral and Brain Sciences, 2007, 30, 319-320.	0.4	1
62	Storing events to retell them. Behavioral and Brain Sciences, 2007, 30, 321-322.	0.4	51
63	Mental time travel sickness and a Bayesian remedy. Behavioral and Brain Sciences, 2007, 30, 323-324.	0.4	10
64	Past and future, human and nonhuman, semantic/procedural and episodic. Behavioral and Brain Sciences, 2007, 30, 324-325.	0.4	0
65	Prospection or projection: Neurobiological basis of stimulus-independent mental traveling. Behavioral and Brain Sciences, 2007, 30, 328-329.	0.4	4
66	What are the evolutionary causes of mental time travel?. Behavioral and Brain Sciences, 2007, 30, 329-330.	0.4	1
67	Empirical evaluation of mental time travel. Behavioral and Brain Sciences, 2007, 30, 330-331.	0.4	10
68	Studying mental states is not a research program for comparative cognition. Behavioral and Brain Sciences, 2007, 30, 332-333.	0.4	8
69	First test, then judge future-oriented behaviour in animals. Behavioral and Brain Sciences, 2007, 30, 333-334.	0.4	5
71	Memory retrieval time and memory capacity of the CA3 network: Role of gamma frequency oscillations. Learning and Memory, 2007, 14, 795-806.	0.5	68
72	Developing past and future selves for time travel narratives. Behavioral and Brain Sciences, 2007, 30, 327-328.	0.4	5
73	The medium and the message of mental time travel. Behavioral and Brain Sciences, 2007, 30, 334-335.	0.4	18
74	Emotional aspects of mental time travel. Behavioral and Brain Sciences, 2007, 30, 320-321.	0.4	27
75	The evolution of foresight: What is mental time travel, and is it unique to humans?. Behavioral and Brain Sciences, 2007, 30, 299-313.	0.4	1,751
76	Foresight has to pay off in the present moment. Behavioral and Brain Sciences, 2007, 30, 313-314.	0.4	73
77	Changes in goal selection induced by cue conflicts are in register with predictions from changes in place cell field locations Behavioral Neuroscience, 2007, 121, 751-763.	0.6	15

#	Article	IF	Citations
78	Self-projection and the brain. Trends in Cognitive Sciences, 2007, 11, 49-57.	4.0	2,338
79	Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 2007, 11, 299-306.	4.0	995
80	Simple dynamical system model of selective cue responding cell development. International Congress Series, 2007, 1301, 294-297.	0.2	0
81	Does the brain have a baseline? Why we should be resisting a rest. NeuroImage, 2007, 37, 1073-1082.	2.1	310
82	Unrest at rest: Default activity and spontaneous network correlations. NeuroImage, 2007, 37, 1091-1096.	2.1	496
83	A default mode of brain function: A brief history of an evolving idea. NeuroImage, 2007, 37, 1083-1090.	2.1	1,887
84	Cognitive neuroscience: The case for design rather than default. NeuroImage, 2007, 37, 1097-1099.	2.1	464
85	Sleep's function in the spontaneous recovery and consolidation of memories Journal of Experimental Psychology: General, 2007, 136, 169-183.	1.5	173
86	Role of the dual entorhinal inputs to hippocampus: a hypothesis based on cue/action (non-self/self) couplets. Progress in Brain Research, 2007, 163, 615-818.	0.9	61
87	Goal-Related Activity in Hippocampal Place Cells. Journal of Neuroscience, 2007, 27, 472-482.	1.7	197
89	Hippocampal and neocortical interactions during context discrimination: Electrophysiological evidence from the rat. Hippocampus, 2007, 17, 851-862.	0.9	22
90	Which computational mechanisms operate in the hippocampus during novelty detection?. Hippocampus, 2007, 17, 735-748.	0.9	167
91	Hippocampal theta sequences. Hippocampus, 2007, 17, 1093-1099.	0.9	263
92	The physics of living neural networks. Physics Reports, 2007, 449, 54-76.	10.3	110
93	Improved version of the printed circuit board (PCB) modular multi-channel microdrive for extracellular electrophysiological recordings. Journal of Neuroscience Methods, 2007, 159, 51-56.	1.3	9
94	Implementation of a miniature sized, battery powered electrophysiological signal-generator for testing multi-channel recording equipments. Journal of Neuroscience Methods, 2007, 165, 1-8.	1.3	2
95	Rapid learning in cortical coding of visual scenes. Nature Neuroscience, 2007, 10, 772-778.	7.1	105
96	Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience, 2007, 10, 1241-1242.	7.1	934

#	Article	IF	CITATIONS
97	Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 2007, 8, 700-711.	4.9	5,936
98	Long-term synaptic plasticity in hippocampal interneurons. Nature Reviews Neuroscience, 2007, 8, 687-699.	4.9	270
99	Neurons and networks in daily rhythms. Nature Reviews Neuroscience, 2007, 8, 790-802.	4.9	259
100	Effects of the GABAAreceptor antagonists bicuculline and gabazine on stimulus-induced sharp wave-ripple complexes in adult rat hippocampusin vitro. European Journal of Neuroscience, 2007, 25, 2170-2181.	1.2	82
101	Placeâ€selective firing contributes to the reverseâ€order reactivation of CA1 pyramidal cells during sharp waves in openâ€field exploration. European Journal of Neuroscience, 2007, 26, 704-716.	1.2	126
102	Effect of Interictal Spikes on Single-Cell Firing Patterns in the Hippocampus. Epilepsia, 2007, 48, 720-731.	2.6	60
103	At clinically relevant concentrations the anaesthetic/amnesic thiopental but not the anticonvulsant phenobarbital interferes with hippocampal sharp wave-ripple complexes. BMC Neuroscience, 2007, 8, 60.	0.8	17
104	A simple model of cued T-Maze learning based on basal ganglia anatomy and sequence replay. BMC Neuroscience, 2007, 8, .	0.8	0
105	Maintaining memories by reactivation. Current Opinion in Neurobiology, 2007, 17, 698-703.	2.0	195
106	Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point. Journal of Neuroscience, 2007, 27, 12176-12189.	1.7	831
107	Dynamics of Hippocampal-Cortical Interactions During Memory Consolidation: Insights from Functional Brain Imaging. Research and Perspectives in Neurosciences, 2007, , 19-39.	0.4	2
108	The rodent hippocampus and spatial memory: from synapses to systems. Cellular and Molecular Life Sciences, 2007, 64, 401-431.	2.4	143
109	Technologies of sleep research. Cellular and Molecular Life Sciences, 2007, 64, 1227-1235.	2.4	22
110	Learning with incomplete information and the mathematical structure behind it. Biological Cybernetics, 2007, 97, 99-112.	0.6	4
111	Modeling the role of working memory and episodic memory in behavioral tasks. Hippocampus, 2008, 18, 193-209.	0.9	95
112	A synaptic reinforcementâ€based model for transient amnesia following disruptions of memory consolidation and reconsolidation. Hippocampus, 2008, 18, 584-601.	0.9	40
113	Transient 23–30 Hz oscillations in mouse hippocampus during exploration of novel environments. Hippocampus, 2008, 18, 519-529.	0.9	93
114	Implementation of a galvanically isolated low-noise power supply board for multi-channel headstage preamplifiers. Journal of Neuroscience Methods, 2008, 171, 13-18.	1.3	5

#	Article	IF	CITATIONS
115	Reversed and forward buffering of behavioral spike sequences enables retrospective and prospective retrieval in hippocampal regions CA3 and CA1. Neural Networks, 2008, 21, 276-288.	3.3	26
116	Place Cells, Grid Cells, and the Brain's Spatial Representation System. Annual Review of Neuroscience, 2008, 31, 69-89.	5.0	1,601
117	<i>Episodic Simulation of Future Events</i> . Annals of the New York Academy of Sciences, 2008, 1124, 39-60.	1.8	647
118	Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum. European Journal of Neuroscience, 2008, 28, 1301-1315.	1.2	34
119	Consequences of parameter differences in a model of short-term persistent spiking buffers provided by pyramidal cells in entorhinal cortex. Brain Research, 2008, 1202, 54-67.	1.1	6
120	A Principle for Learning Egocentric-Allocentric Transformation. Neural Computation, 2008, 20, 709-737.	1.3	26
121	Cognition enhancers between treating and doping the mind. Pharmacological Research, 2008, 57, 196-213.	3.1	114
122	Internally Generated Reactivation of Single Neurons in Human Hippocampus During Free Recall. Science, 2008, 322, 96-101.	6.0	394
123	Learning and Representation. , 2008, , 227-242.		20
124	Connectionist Memory Models of Hippocampal Function. , 2008, , 681-700.		1
125	Preferential Reactivation of Motivationally Relevant Information in the Ventral Striatum. Journal of Neuroscience, 2008, 28, 6372-6382.	1.7	149
126	Dopamine D ₁ Receptor Modulates Hippocampal Representation Plasticity to Spatial Novelty. Journal of Neuroscience, 2008, 28, 13390-13400.	1.7	51
127	Sleep and Memory Consolidation in Audition. , 2008, , 895-911.		3
128	A network mechanism underlying hippocampal seizure-like synchronous oscillations. Neuroscience Research, 2008, 61, 227-233.	1.0	38
129	New Experiences Enhance Coordinated Neural Activity in the Hippocampus. Neuron, 2008, 57, 303-313.	3.8	242
130	Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity. Neuron, 2008, 57, 917-929.	3.8	221
131	All My Circuits: Using Multiple Electrodes to Understand Functioning Neural Networks. Neuron, 2008, 60, 483-488.	3.8	66
132	What is the mammalian dentate gyrus good for?. Neuroscience, 2008, 154, 1155-1172.	1.1	246

#	Article	IF	CITATIONS
133	Networks of neurons, networks of genes: An integrated view of memory consolidation. Neurobiology of Learning and Memory, 2008, 89, 269-284.	1.0	139
134	BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory?. Neurobiology of Learning and Memory, 2008, 89, 312-323.	1.0	646
135	Is a bird in the hand worth two in the future? The neuroeconomics of intertemporal decision-making. Progress in Neurobiology, 2008, 84, 284-315.	2.8	186
136	Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations. Science, 2008, 321, 53-57.	6.0	1,764
137	Frequency of network synchronization in the hippocampus marks learning. European Journal of Neuroscience, 2008, 27, 3035-3042.	1.2	31
138	Reactivation of experience-dependent cell assembly patterns in the hippocampus. Nature Neuroscience, 2008, 11, 209-215.	7.1	254
139	The Role of Sleep in Declarative Memory Consolidation—Direct Evidence by Intracranial EEG. Cerebral Cortex, 2008, 18, 500-507.	1.6	38
141	Different CA1 and CA3 Representations of Novel Routes in a Shortcut Situation. Journal of Neuroscience, 2008, 28, 7324-7333.	1.7	66
142	Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain, 2008, 131, 1806-1817.	3.7	332
143	THE ROLE OF THE HIPPOCAMPUS IN LONG-TERM MEMORY: IS IT MEMORY STORE OR COMPARATOR?. Journal of Integrative Neuroscience, 2008, 07, 117-184.	0.8	21
144	Nonperiodic Synchronization in Heterogeneous Networks of Spiking Neurons. Journal of Neuroscience, 2008, 28, 7968-7978.	1.7	57
145	Temporal compression mediated by short-term synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4417-4422.	3.3	23
146	Medial temporal lobe BOLD activity at rest predicts individual differences in memory ability in healthy young adults. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18555-18560.	3.3	56
147	Visual–Procedural Memory Consolidation during Sleep Blocked by Glutamatergic Receptor Antagonists. Journal of Neuroscience, 2008, 28, 5513-5518.	1.7	41
148	Activity of human hippocampal and amygdala neurons during retrieval of declarative memories. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 329-334.	3.3	90
149	Measuring distributed properties of neural representations beyond the decoding of local variables: implications for cognition. , 2008, , 95-119.		8
150	Chapter 4.3 Hippocampal neuronal activity and episodic memory. Handbook of Behavioral Neuroscience, 2008, , 439-628.	0.7	1
151	They Should Have Thought About the Consequences: The Crisis of Cognitivism and a Second Chance for Behavior Analysis. Psychological Record, 2008, 58, 131-151.	0.6	27

#	Article	IF	Citations
152	Effects of 4-aminopyridine on sharp wave-ripples in rat hippocampal slices. NeuroReport, 2008, 19, 491-496.	0.6	5
153	Cell Groups Reveal Structure of Stimulus Space. PLoS Computational Biology, 2008, 4, e1000205.	1.5	106
154	Navigation and Episodic-Like Memory in Mammals. , 2008, , 385-417.		2
155	Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory. Neural Plasticity, 2008, 2008, 1-12.	1.0	56
156	Sleep and Sleep States: Hippocampus–Neocortex Dialog. , 2009, , 911-917.		0
157	Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load. PLoS ONE, 2009, 4, e5743.	1.1	290
158	Hippocampal Sharp Wave/Ripples during Sleep for Consolidation of Associative Memory. PLoS ONE, 2009, 4, e6697.	1.1	131
159	Characterizing the Frequency Structure of Fast Oscillations in the Rodent Hippocampus. Frontiers in Integrative Neuroscience, 2009, 3, 11.	1.0	22
160	Functional clustering algorithm for the analysis of dynamic network data. Physical Review E, 2009, 79, 056104.	0.8	50
161	Autoregressive model of the hippocampal representation of events. , 2009, , .		2
162	Learning of Spatiotemporal Patterns in Ising-Spin Neural Networks: Analysis of Storage Capacity by Path Integral Methods. Physical Review Letters, 2009, 102, 158102.	2.9	5
163	An Oscillatory Hebbian Network Model of Short-Term Memory. Neural Computation, 2009, 21, 741-761.	1.3	9
164	Parallel Hopfield Networks. Neural Computation, 2009, 21, 831-850.	1.3	3
165	From Creation to Consolidation: A Novel Framework for Memory Processing. PLoS Biology, 2009, 7, e1000019.	2.6	178
166	Early Deficits in Spatial Memory and Theta Rhythm in Experimental Temporal Lobe Epilepsy. Journal of Neuroscience, 2009, 29, 5402-5410.	1.7	189
167	Synaptic Noise and Physiological Coupling Generate High-Frequency Oscillations in a Hippocampal Computational Model. Journal of Neurophysiology, 2009, 102, 2342-2357.	0.9	54
168	Sleep and rest facilitate implicit memory in a visual search task. Vision Research, 2009, 49, 2557-2565.	0.7	58
169	Cognitive Ecology: Environmental Dependence of the Fitness Costs of Learning. Current Biology, 2009, 19, R486-R488.	1.8	7

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
170	Learning and Memory: While You Rest, Your Brain Keeps Working. Current Biology, 2009, 19, R484-R486.	1.8	12
171	Adaptation and learning: Characteristic time scales of performance dynamics. Human Movement Science, 2009, 28, 655-687.	0.6	53
172	Correlates of rewardâ€predictive value in learningâ€related hippocampal neural activity. Hippocampus, 2009, 19, 487-506.	0.9	13
173	Disruption of rippleâ€essociated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 2010, 20, 1-10.	0.9	613
174	Learning with incomplete information in the committee machine. Biological Cybernetics, 2009, 101, 401-410.	0.6	2
175	Forward shift from reverse replay. Cognitive Neurodynamics, 2009, 3, 39-46.	2.3	0
176	Behavioral state-dependent episodic representations in rat CA1 neuronal activity during spatial alternation. Cognitive Neurodynamics, 2009, 3, 165-175.	2.3	13
177	Memory processes during sleep: beyond the standard consolidation theory. Cellular and Molecular Life Sciences, 2009, 66, 2285-2297.	2.4	59
178	Depression and antidepressants: molecular and cellular aspects. Cellular and Molecular Life Sciences, 2009, 66, 2985-3008.	2.4	70
179	What is remembered? Role of attention on the encoding and retrieval of hippocampal representations. Journal of Physiology, 2009, 587, 2837-2854.	1.3	103
180	Awake replay of remote experiences in the hippocampus. Nature Neuroscience, 2009, 12, 913-918.	7.1	614
181	GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. European Journal of Neuroscience, 2009, 30, 947-957.	1.2	203
182	Goal-directed control and its antipodes. Neural Networks, 2009, 22, 213-219.	3.3	76
183	Measuring instantaneous frequency of local field potential oscillations using the Kalman smoother. Journal of Neuroscience Methods, 2009, 184, 365-374.	1.3	23
184	Spiking neural network models for memorizing sequences with forward and backward recall. BMC Neuroscience, 2009, 10, .	0.8	1
185	Hippocampus and Neural Representations. , 2009, , 1129-1136.		6
186	A Code for Spatial Alternation During Fixation in Rat Hippocampal CA1 Neurons. Journal of Neurophysiology, 2009, 102, 556-567.	0.9	20
188	The whats and whens of sleep-dependent memory consolidation. Sleep Medicine Reviews, 2009, 13, 309-321.	3.8	463

		CITATION RE	PORT	
#	Article		IF	CITATIONS
189	Looking for cognition in the structure within the noise. Trends in Cognitive Sciences, 2	009, 13, 55-64.	4.0	57
190	Hippocampal CA3 Output Is Crucial for Ripple-Associated Reactivation and Consolidati Neuron, 2009, 62, 781-787.	on of Memory.	3.8	239
191	Hippocampal Replay of Extended Experience. Neuron, 2009, 63, 497-507.		3.8	670
192	Imagining the Possibilities: Ripples, Routes, and Reactivation. Neuron, 2009, 63, 421-4	23.	3.8	7
193	Harnessing Chaos in Recurrent Neural Networks. Neuron, 2009, 63, 423-425.		3.8	15
194	Rewarded Outcomes Enhance Reactivation of Experience in the Hippocampus. Neuron	, 2009, 64, 910-921.	3.8	307
195	A model of episodic memory: Mental time travel along encoded trajectories using grid Neurobiology of Learning and Memory, 2009, 92, 559-573.	cells.	1.0	134
196	A New Hypothesis for Sleep: Tuning for Criticality. Neural Computation, 2009, 21, 162	2-1641.	1.3	42
197	Single-Trial Phase Precession in the Hippocampus. Journal of Neuroscience, 2009, 29, 1	3232-13241.	1.7	118
198	Robust Conjunctive Item–Place Coding by Hippocampal Neurons Parallels Learning V Where. Journal of Neuroscience, 2009, 29, 9918-9929.	Vhat Happens	1.7	323
200	Memory formation: from network structure to neural dynamics. Philosophical Transact Mathematical, Physical, and Engineering Sciences, 2010, 368, 2251-2267.	ions Series A,	1.6	4
201	Evidence for the Default Network's Role in Spontaneous Cognition. Journal of Neuroph 104, 322-335.	ysiology, 2010,	0.9	561
202	Shifting the Spotlight of Attention: Evidence for Discrete Computations in Cognition. F Human Neuroscience, 2010, 4, 194.	rontiers in	1.0	64
203	The relation of ongoing brain activity, evoked neural responses, and cognition. Frontier Neuroscience, 2010, 4, 20.	s in Systems	1.2	184
204	Contribution of sleep to memory consolidation. Future Neurology, 2010, 5, 325-338.		0.9	1
205	Influence of different positive emotions on persuasion processing: A functional evolution approach Emotion, 2010, 10, 190-206.	bnary	1.5	244
206	Contribution of hippocampal region CA3 to consciousness and schizophrenic hallucina Neuroscience and Biobehavioral Reviews, 2010, 34, 1121-1136.	tions.	2.9	69
207	Network dynamics of encoding and retrieval of behavioural spike sequences during the in a CA1 model of the hippocampus. BMC Neuroscience, 2010, 11, .	ta and ripples	0.8	0

#	Article	IF	CITATIONS
208	CaMKIV over-expression boosts cortical 4-7 Hz oscillations during learning and 1-4 Hz delta oscillations during sleep. Molecular Brain, 2010, 3, 16.	1.3	20
209	Brain oscillations and memory. Current Opinion in Neurobiology, 2010, 20, 143-149.	2.0	289
210	The Hippocampus Plays a Selective Role in the Retrieval of Detailed Contextual Memories. Current Biology, 2010, 20, 1336-1344.	1.8	229
211	Mapping resting-state brain networks in conscious animals. Journal of Neuroscience Methods, 2010, 189, 186-196.	1.3	119
212	The memory function of sleep. Nature Reviews Neuroscience, 2010, 11, 114-126.	4.9	2,917
213	Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nature Neuroscience, 2010, 13, 501-506.	7.1	202
214	Sequential reinstatement of neocortical activity during slow oscillations depends on cells' global activity. Frontiers in Systems Neuroscience, 2010, 3, 18.	1.2	22
215	Neural protein synthesis during aging: effects on plasticity and memory. Frontiers in Aging Neuroscience, 2010, 2, .	1.7	26
216	The many tunes of perisomatic targeting interneurons in the hippocampal network. Frontiers in Cellular Neuroscience, 2010, 4, .	1.8	16
217	Storage of phase-coded patterns via STDP in fully-connected and sparse network: a study of the network capacity. Frontiers in Synaptic Neuroscience, 2010, 2, 32.	1.3	15
218	Cognitive Replay of Visuomotor Learning at Sleep Onset: Temporal Dynamics and Relationship to Task Performance. Sleep, 2010, 33, 59-68.	0.6	99
219	Synaptic tagging, evaluation of memories, and the distal reward problem. Learning and Memory, 2011, 18, 58-70.	0.5	30
220	The ecological relevance of sleep: the trade-off between sleep, memory and energy conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 945-959.	1.8	69
221	Sleep and Synaptic Renormalization: A Computational Study. Journal of Neurophysiology, 2010, 104, 3476-3493.	0.9	87
222	Priming of Hippocampal Population Bursts by Individual Perisomatic-Targeting Interneurons. Journal of Neuroscience, 2010, 30, 5979-5991.	1.7	119
223	Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17839-17844.	3.3	242
224	A neural substrate in the human hippocampus for linking successive events. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6046-6051.	3.3	93
225	Field Potential Signature of Distinct Multicellular Activity Patterns in the Mouse Hippocampus. Journal of Neuroscience, 2010, 30, 15441-15449.	1.7	52

#	Article	IF	CITATIONS
226	Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7550-7555.	3.3	383
227	Establishing the Boundaries: The Hippocampal Contribution to Imagining Scenes. Journal of Neuroscience, 2010, 30, 11688-11695.	1.7	93
228	A Robust and Biologically Plausible Spike Pattern Recognition Network. Journal of Neuroscience, 2010, 30, 15566-15572.	1.7	18
229	Cognitive neuroscience of sleep. Progress in Brain Research, 2010, 185, 1-19.	0.9	135
230	Probability of Repeating Patterns in Simultaneous Neural Data. Neural Computation, 2010, 22, 2522-2536.	1.3	4
232	Self-Organizing Sensorimotor Maps Plus Internal Motivations Yield Animal-Like Behavior. Adaptive Behavior, 2010, 18, 315-337.	1.1	23
233	Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory. Behavioural Brain Research, 2010, 215, 261-274.	1.2	38
234	The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward Progress in Neurobiology, 2010, 90, 385-417.	2.8	326
235	Enhanced Brain Correlations during Rest Are Related to Memory for Recent Experiences. Neuron, 2010, 65, 280-290.	3.8	487
236	Hippocampal Replay Is Not a Simple Function of Experience. Neuron, 2010, 65, 695-705.	3.8	622
236 237	Hippocampal Replay Is Not a Simple Function of Experience. Neuron, 2010, 65, 695-705. A Dual Role for Hippocampal Replay. Neuron, 2010, 65, 582-584.	3.8 3.8	622 26
236 237 238	Hippocampal Replay Is Not a Simple Function of Experience. Neuron, 2010, 65, 695-705. A Dual Role for Hippocampal Replay. Neuron, 2010, 65, 582-584. Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron, 2010, 68, 362-385.	3.8 3.8 3.8	622 26 1,023
236 237 238 239	Hippocampal Replay Is Not a Simple Function of Experience. Neuron, 2010, 65, 695-705.A Dual Role for Hippocampal Replay. Neuron, 2010, 65, 582-584.Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron, 2010, 68, 362-385.Patterned activation of hippocampal network (â~¼10 Hz) during in vitro sharp wave-ripples. Neuroscience, 2010, 168, 429-442.	3.8 3.8 3.8 1.1	622 26 1,023 18
236 237 238 239 240	Hippocampal Replay Is Not a Simple Function of Experience. Neuron, 2010, 65, 695-705.A Dual Role for Hippocampal Replay. Neuron, 2010, 65, 582-584.Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron, 2010, 68, 362-385.Patterned activation of hippocampal network (â^1/410 Hz) during in vitro sharp wave-ripples. Neuroscience, 2010, 168, 429-442.Experience-dependent alterations in conscious resting state activity following perceptuomotor learning. Neurobiology of Learning and Memory, 2010, 93, 422-427.	3.8 3.8 3.8 1.1 1.0	622 26 1,023 18
2336 2337 2338 2339 240 241	Hippocampal Replay Is Not a Simple Function of Experience. Neuron, 2010, 65, 695-705. A Dual Role for Hippocampal Replay. Neuron, 2010, 65, 582-584. Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron, 2010, 68, 362-385. Patterned activation of hippocampal network (â ⁻¹ / ₄ 10 Hz) during in vitro sharp wave-ripples. Neuroscience, 2010, 168, 429-442. Experience-dependent alterations in conscious resting state activity following perceptuomotor learning. Neurobiology of Learning and Memory, 2010, 93, 422-427. Play it again: reactivation of waking experience and memory. Trends in Neurosciences, 2010, 33, 220-229.	 3.8 3.8 3.8 1.1 1.0 4.2 	 622 26 1,023 18 15 361
2336 2337 2338 2339 2440 2441	Hippocampal Replay Is Not a Simple Function of Experience. Neuron, 2010, 65, 695-705. A Dual Role for Hippocampal Replay. Neuron, 2010, 65, 582-584. Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron, 2010, 68, 362-385. Patterned activation of hippocampal network (â ⁻¹ /410 Hz) during in vitro sharp wave-ripples. Neuroscience, 2010, 168, 429-442. Experience-dependent alterations in conscious resting state activity following perceptuomotor learning. Neurobiology of Learning and Memory, 2010, 93, 422-427. Play it again: reactivation of waking experience and memory. Trends in Neurosciences, 2010, 33, 220-229. Greater Neural Pattern Similarity Across Repetitions Is Associated with Better Memory. Science, 2010, 330, 97-101.	 3.8 3.8 3.8 1.1 1.0 4.2 6.0 	 622 26 1,023 18 15 361 299
2336 2337 2339 2340 2410 2412 2423	Hippocampal Replay Is Not a Simple Function of Experience. Neuron, 2010, 65, 695-705. A Dual Role for Hippocampal Replay. Neuron, 2010, 65, 582-584. Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron, 2010, 68, 362-385. Patterned activation of hippocampal network (â ⁻¹ / ₄ 10 Hz) during in vitro sharp wave-ripples. Neuroscience, 2010, 168, 429-442. Experience-dependent alterations in conscious resting state activity following perceptuomotor learning. Neurobiology of Learning and Memory, 2010, 93, 422-427. Play it again: reactivation of waking experience and memory. Trends in Neurosciences, 2010, 33, 220-229. Greater Neural Pattern Similarity Across Repetitions Is Associated with Better Memory. Science, 2010, 33, 97-101. The Role of the Hippocampus in Prediction and Imagination. Annual Review of Psychology, 2010, 61, 27-48.	 3.8 3.8 3.8 1.1 1.0 4.2 6.0 9.9 	 622 26 1,023 18 15 361 299 330

#	Article	IF	CITATIONS
245	The Many Shades of Rose-Colored Glasses: An Evolutionary Approach to the Influence of Different Positive Emotions. Journal of Consumer Research, 2010, 37, 238-250.	3.5	175
246	Relationships between Hippocampal Sharp Waves, Ripples, and Fast Gamma Oscillation: Influence of Dentate and Entorhinal Cortical Activity. Journal of Neuroscience, 2011, 31, 8605-8616.	1.7	237
247	A Molecular Basis for Interactions Between Sleep and Memory. Sleep Medicine Clinics, 2011, 6, 71-84.	1.2	29
248	Electrophysiological Approaches for Studying Neuronal Circuits In Vivo. Neuromethods, 2011, , 191-203.	0.2	0
249	Analysis of Hippocampal Memory Replay Using Neural Population Decoding. Neuromethods, 2011, , 259-282.	0.2	9
250	Coupling between spontaneous (resting state) fMRI fluctuations and human oculo-motor activity. NeuroImage, 2011, 58, 213-225.	2.1	33
251	Olfactory Cortex Generates Synchronized Top-Down Inputs to the Olfactory Bulb during Slow-Wave Sleep. Journal of Neuroscience, 2011, 31, 8123-8133.	1.7	59
252	The hippocampus: hub of brain network communication for memory. Trends in Cognitive Sciences, 2011, 15, 310-8.	4.0	259
253	Overlapping memory replay during sleep builds cognitive schemata. Trends in Cognitive Sciences, 2011, 15, 343-351.	4.0	428
254	An opportunistic theory of cellular and systems consolidation. Trends in Neurosciences, 2011, 34, 504-514.	4.2	207
255	Synaptic plasticity in sleep: learning, homeostasis and disease. Trends in Neurosciences, 2011, 34, 452-463.	4.2	143
256	Model-Based Influences on Humans' Choices and Striatal Prediction Errors. Neuron, 2011, 69, 1204-1215.	3.8	1,388
257	Hippocampal "Time Cells―Bridge the Gap in Memory for Discontiguous Events. Neuron, 2011, 71, 737-749.	3.8	927
258	Mu opioid receptor activation normalizes temporo-ammonic pathway driven inhibition in hippocampal CA1. Neuropharmacology, 2011, 60, 472-479.	2.0	18
259	Preferential Arc transcription at rest in the active ensemble during associative learning. Neurobiology of Learning and Memory, 2011, 95, 498-504.	1.0	17
260	Spontaneous fMRI activity during resting wakefulness and sleep. Progress in Brain Research, 2011, 193, 295-305.	0.9	21
261	Post-learning molecular reactivation underlies taste memory consolidation. Frontiers in Systems Neuroscience, 2011, 5, 79.	1.2	14
262	Network recruitment to coherent oscillations in a hippocampal computer model. Journal of Neurophysiology, 2011, 105, 1464-1481.	0.9	21

щ	Apticip	IE	CITATIONS
#	Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biological	IF	CHATIONS
263	Reviews, 2011, 86, 658-691.	4.7	103
264	Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nature Neuroscience, 2011, 14, 147-153.	7.1	745
265	Preplay of future place cell sequences by hippocampal cellular assemblies. Nature, 2011, 469, 397-401.	13.7	541
266	Seeing into the future. Nature, 2011, 469, 303-304.	13.7	17
267	Hippocampal ripples and memory consolidation. Current Opinion in Neurobiology, 2011, 21, 452-459.	2.0	244
268	Multiplicity of control in the basal ganglia: computational roles of striatal subregions. Current Opinion in Neurobiology, 2011, 21, 374-380.	2.0	89
269	Reactivation, Replay, and Preplay: How It Might All Fit Together. Neural Plasticity, 2011, 2011, 1-11.	1.0	91
270	Spiking neurons that keep the rhythm. Journal of Computational Neuroscience, 2011, 30, 589-605.	0.6	4
271	A computational model of the hippocampus that represents environmental structure and goal location, and guides movement. Biological Cybernetics, 2011, 105, 139-152.	0.6	3
272	Spatial Memory Sequence Encoding and Replay During Modeled Theta and Ripple Oscillations. Cognitive Computation, 2011, 3, 554-574.	3.6	27
273	The temporal unraveling of autobiographical memory narratives in patients with temporal lobe epilepsy or excisions. Hippocampus, 2011, 21, 409-421.	0.9	42
274	GABA inhibition modulates NMDA-R mediated spike timing dependent plasticity (STDP) in a biophysical model. Neural Networks, 2011, 24, 29-42.	3.3	23
275	Bio-inspired models of memory capacity, recall performance and theta phase precession in the hippocampus. , 2011, , .		6
276	Spike-Train Communities: Finding Groups of Similar Spike Trains. Journal of Neuroscience, 2011, 31, 2321-2336.	1.7	73
277	Constructing Realistic Engrams: Poststimulus Activity of Hippocampus and Dorsal Striatum Predicts Subsequent Episodic Memory. Journal of Neuroscience, 2011, 31, 9032-9042.	1.7	173
278	Distances between Real-World Locations Are Represented in the Human Hippocampus. Journal of Neuroscience, 2011, 31, 1238-1245.	1.7	181
279	A stable hippocampal representation of a space requires its direct experience. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14654-14658.	3.3	30
280	Grid Cells, Place Cells, and Geodesic Generalization for Spatial Reinforcement Learning. PLoS Computational Biology, 2011, 7, e1002235.	1.5	50

#	Article	IF	CITATIONS
281	Ripples Make Waves: Binding Structured Activity and Plasticity in Hippocampal Networks. Neural Plasticity, 2011, 2011, 1-11.	1.0	35
282	Sleep and Learning in Birds. , 2012, , 109-146.		3
283	Generalization through the recurrent interaction of episodic memories: A model of the hippocampal system Psychological Review, 2012, 119, 573-616.	2.7	257
284	Image sequence reactivation in awake V4 networks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19450-19455.	3.3	42
285	Functional Network Changes in Hippocampal CA1 after Status Epilepticus Predict Spatial Memory Deficits in Rats. Journal of Neuroscience, 2012, 32, 11365-11376.	1.7	26
286	Increased local synchronization of resting-state fMRI signal after episodic memory encoding reflects off-line memory consolidation. NeuroReport, 2012, 23, 873-878.	0.6	17
287	Route repetition and route retracing: effects of cognitive aging. Frontiers in Aging Neuroscience, 2012, 4, 7.	1.7	79
288	High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research. Progress in Neurobiology, 2012, 98, 279-301.	2.8	383
289	Hippocampal Place Cells Can Encode Multiple Trial-Dependent Features through Rate Remapping. Journal of Neuroscience, 2012, 32, 14752-14766.	1.7	53
290	Running just to stand still. Nature Neuroscience, 2012, 15, 1175-1176.	7.1	0
291	Uncovering spatial topology represented by rat hippocampal population neuronal codes. Journal of Computational Neuroscience, 2012, 33, 227-255.	0.6	42
292	"Ectopic―theta oscillations and interictal activity during slow-wave state in the R6/1 mouse model of Huntington's disease. Neurobiology of Disease, 2012, 48, 409-417.	2.1	29
293	Slow Gamma Takes the Reins in Replay. Neuron, 2012, 75, 549-550.	3.8	9
294	Spontaneous High-Gamma Band Activity Reflects Functional Organization of Auditory Cortex in the Awake Macaque. Neuron, 2012, 74, 899-910.	3.8	69
295	Neural systems analysis of decision making during goal-directed navigation. Progress in Neurobiology, 2012, 96, 96-135.	2.8	70
296	Hippocampal sequences link past, present, and future. Trends in Cognitive Sciences, 2012, 16, 361-362.	4.0	12
297	Biasing the content of hippocampal replay during sleep. Nature Neuroscience, 2012, 15, 1439-1444.	7.1	306
298	Offâ€line <i>Arc</i> transcription in active ensembles during fear memory retrieval. European Journal of Neuroscience, 2012, 36, 3451-3457.	1.2	7

#	Article	IF	CITATIONS
299	Preference by Association: How Memory Mechanisms in the Hippocampus Bias Decisions. Science, 2012, 338, 270-273.	6.0	416
300	Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory. Science, 2012, 336, 1454-1458.	6.0	724
301	Distributed Adaptive Control: A theory of the Mind, Brain, Body Nexus. Biologically Inspired Cognitive Architectures, 2012, 1, 55-72.	0.9	88
302	Evaluative and generative modes of thought during the creative process. NeuroImage, 2012, 59, 1783-1794.	2.1	496
303	Memory coding in plastic neuronal subpopulations within the amygdala. NeuroImage, 2012, 60, 153-161.	2.1	21
304	High frequency oscillations in the intact brain. Progress in Neurobiology, 2012, 98, 241-249.	2.8	195
305	Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Frontiers in Behavioral Neuroscience, 2012, 6, 79.	1.0	72
306	Segmentation of spatial experience by hippocampal theta sequences. Nature Neuroscience, 2012, 15, 1032-1039.	7.1	282
307	Neuromodulation of Brain States. Neuron, 2012, 76, 209-222.	3.8	515
308	Transient Slow Gamma Synchrony Underlies Hippocampal Memory Replay. Neuron, 2012, 75, 700-713.	3.8	222
309	The Complex Mind. , 2012, , .		1
310	From Cells to Systems. Neuroscientist, 2012, 18, 556-566.	2.6	8
311	Computational Neuroscience of Drug Addiction. , 2012, , .		8
312	Effects of Apolipoprotein E Genotype on the Off-Line Memory Consolidation. PLoS ONE, 2012, 7, e51617.	1.1	5
313	Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Frontiers in Behavioral Neuroscience, 2012, 6, 84.	1.0	62
314	Cholinergic modulation of the CAN current may adjust neural dynamics for active memory maintenance, spatial navigation and time-compressed replay. Frontiers in Neural Circuits, 2012, 6, 10.	1.4	25
315	The Hippocampus and Imagining the Future: Where Do We Stand?. Frontiers in Human Neuroscience, 2011, 5, 173.	1.0	207
316	Putting Plasticity in Its Place. Frontiers in Neuroscience, 2012, 6, 110.	1.4	0

#	Article	IF	CITATIONS
317	Models of Value and Choice. , 2012, , 33-52.		6
318	Brief Wakeful Resting Boosts New Memories Over the Long Term. Psychological Science, 2012, 23, 955-960.	1.8	123
319	Functional connectivity and neurological recovery. Developmental Psychobiology, 2012, 54, 239-253.	0.9	77
320	A single microcircuit with multiple functions: state dependent information processing in the hippocampus. Current Opinion in Neurobiology, 2012, 22, 704-708.	2.0	43
321	The Restless Engram: Consolidations Never End. Annual Review of Neuroscience, 2012, 35, 227-247.	5.0	520
322	Behavior-dependent specialization of identified hippocampal interneurons. Nature Neuroscience, 2012, 15, 1265-1271.	7.1	223
323	Concept cells: the building blocks of declarative memory functions. Nature Reviews Neuroscience, 2012, 13, 587-597.	4.9	320
324	Functional imaging in freely moving animals. Current Opinion in Neurobiology, 2012, 22, 45-53.	2.0	58
325	Sequence learning and the role of the hippocampus in rodent navigation. Current Opinion in Neurobiology, 2012, 22, 294-300.	2.0	100
326	Stability and variability of place cell activity during behavior: Functional implications for dynamic coding of spatial information. Journal of Physiology (Paris), 2012, 106, 62-71.	2.1	4
327	Place, space, and taste: Combining context and spatial information in a hippocampal navigation system. Hippocampus, 2012, 22, 442-454.	0.9	3
328	Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep. Hippocampus, 2012, 22, 604-618.	0.9	25
329	Modeling sharp waveâ€ripple complexes through a CA3 A1 network model with chemical synapses. Hippocampus, 2012, 22, 995-1017.	0.9	90
330	Hippocampal thetaâ€driving cells revealed by Granger causality. Hippocampus, 2012, 22, 1781-1793.	0.9	23
331	The balance of forward and backward hippocampal sequences shifts across behavioral states. Hippocampus, 2013, 23, 22-29.	0.9	75
332	Molecular signatures and mechanisms of long-lasting memory consolidation and storage. Neurobiology of Learning and Memory, 2013, 106, 40-47.	1.0	63
333	Optimal pair of hippocampal CA1 phase response curve and spike-timing-dependent plasticity for hetero-associative memory. BMC Neuroscience, 2013, 14, .	0.8	0
334	Synaptic gating at axonal branches, and sharpâ€wave ripples with replay: a simulation study. European Journal of Neuroscience, 2013, 38, 3435-3447.	1.2	22

#	Article	IF	CITATIONS
335	Memory Consolidation by Replay of Stimulus-Specific Neural Activity. Journal of Neuroscience, 2013, 33, 19373-19383.	1.7	214
336	Interpyramid Spike Transmission Stabilizes the Sparseness of Recurrent Network Activity. Cerebral Cortex, 2013, 23, 293-304.	1.6	118
337	Goals and Habits in the Brain. Neuron, 2013, 80, 312-325.	3.8	799
338	Impaired Hippocampal Ripple-Associated Replay in a Mouse Model of Schizophrenia. Neuron, 2013, 80, 484-493.	3.8	106
339	Spiking neural network model for memorizing sequences with forward and backward recall. BioSystems, 2013, 112, 214-223.	0.9	13
340	Homeostatic regulation of memory systems and adaptive decisions. Hippocampus, 2013, 23, 1103-1124.	0.9	31
341	About Sleep's Role in Memory. Physiological Reviews, 2013, 93, 681-766.	13.1	2,026
342	The effect of sleepâ€specific brain activity versus reduced stimulus interference on declarative memory consolidation. Journal of Sleep Research, 2013, 22, 406-413.	1.7	27
343	Morning-evening variation in human brain metabolism and memory circuits. Journal of Neurophysiology, 2013, 109, 1444-1456.	0.9	96
344	Intrinsic Coupling Modes: Multiscale Interactions in Ongoing Brain Activity. Neuron, 2013, 80, 867-886.	3.8	418
345	Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory. Behavioural Brain Research, 2013, 250, 102-113.	1.2	21
346	The reuniens and rhomboid nuclei: Neuroanatomy, electrophysiological characteristics and behavioral implications. Progress in Neurobiology, 2013, 111, 34-52.	2.8	160
347	Sleep-dependent memory triage: evolving generalization through selective processing. Nature Neuroscience, 2013, 16, 139-145.	7.1	573
348	Solving the Distal Reward Problem with Rare Correlations. Neural Computation, 2013, 25, 940-978.	1.3	19
349	The Role of Memory Reactivation during Wakefulness and Sleep in Determining Which Memories Endure. Journal of Neuroscience, 2013, 33, 6672-6678.	1.7	168
350	The contribution of electrophysiology to functional connectivity mapping. NeuroImage, 2013, 80, 297-306.	2.1	79
351	Navigation with a cognitive map. Nature, 2013, 497, 42-43.	13.7	26
352	Hippocampal place-cell sequences depict future paths to remembered goals. Nature, 2013, 497, 74-79.	13.7	1,017

#	Article	IF	Citations
353	Network activity of mirror neurons depends on experience. Journal of Integrative Neuroscience, 2013, 12, 35-46.	0.8	3
354	Hippocampal SWR Activity Predicts Correct Decisions during the Initial Learning of an Alternation Task. Neuron, 2013, 77, 1163-1173.	3.8	211
355	Small differences in sameness. Nature, 2013, 497, 43-45.	13.7	4
356	Sleep for Preserving and Transforming Episodic Memory. Annual Review of Neuroscience, 2013, 36, 79-102.	5.0	190
357	Functional interactions between intrinsic brain activity and behavior. NeuroImage, 2013, 80, 379-386.	2.1	122
358	Fast network oscillations in the hippocampus. E-Neuroforum, 2013, 19, 1-10.	0.2	2
359	Mental time travel: a case for evolutionary continuity. Trends in Cognitive Sciences, 2013, 17, 5-6.	4.0	201
360	Situationally appropriate behavior: translating situations into appetitive behavior modes. Reviews in the Neurosciences, 2013, 24, 577-606.	1.4	7
361	Forward and Backward Inference in Spatial Cognition. PLoS Computational Biology, 2013, 9, e1003383.	1.5	61
362	Key Features of Human Episodic Recollection in the Cross-Episode Retrieval of Rat Hippocampus Representations of Space. PLoS Biology, 2013, 11, e1001607.	2.6	29
363	Hippocampal immediate poststimulus activity in the encoding of consecutive naturalistic episodes Journal of Experimental Psychology: General, 2013, 142, 1255-1263.	1.5	116
364	Efficient Partitioning of Memory Systems and Its Importance for Memory Consolidation. PLoS Computational Biology, 2013, 9, e1003146.	1.5	53
365	Measuring Memory Reactivation With Functional MRI. Perspectives on Psychological Science, 2013, 8, 72-78.	5.2	17
366	Persistence of hippocampal multivoxel patterns into postencoding rest is related to memory. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19591-19596.	3.3	187
367	Sleep-Dependent Synaptic Down-Selection (I): Modeling the Benefits of Sleep on Memory Consolidation and Integration. Frontiers in Neurology, 2013, 4, 143.	1.1	64
368	Complementary roles of medial temporal lobes and midâ€dorsolateral prefrontal cortex for working memory for novel and familiar trialâ€unique visual stimuli. European Journal of Neuroscience, 2013, 37, 668-678.	1.2	15
369	Distinct preplay of multiple novel spatial experiences in the rat. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9100-9105.	3.3	174
370	Local Generation and Propagation of Ripples along the Septotemporal Axis of the Hippocampus. Journal of Neuroscience, 2013, 33, 17029-17041.	1.7	155

#	Article	IF	CITATIONS
371	The Extrinsic and Intrinsic Functional Architectures of the Human Brain Are Not Equivalent. Cerebral Cortex, 2013, 23, 223-229.	1.6	149
372	A computational model for preplay in the hippocampus. Frontiers in Computational Neuroscience, 2013, 7, 161.	1.2	52
373	Deciphering the role of CA1 inhibitory circuits in sharp wave-ripple complexes. Frontiers in Systems Neuroscience, 2013, 7, 13.	1.2	18
374	Internal operations in the hippocampus: single cell and ensemble temporal coding. Frontiers in Systems Neuroscience, 2013, 7, 46.	1.2	11
375	Development of schemas revealed by prior experience and NMDA receptor knock-out. ELife, 2013, 2, e01326.	2.8	51
376	Learning and Memory. , 2013, , 1029-1051.		1
377	Representation of Spatial Relations. , 2013, , .		0
378	Rapid and Continuous Modulation of Hippocampal Network State during Exploration of New Places. PLoS ONE, 2013, 8, e73114.	1.1	115
379	The Mixed Instrumental Controller: Using Value of Information to Combine Habitual Choice and Mental Simulation. Frontiers in Psychology, 2013, 4, 92.	1.1	125
380	The spatial representations acquired in CA3 by self-organizing recurrent connections. Frontiers in Cellular Neuroscience, 2013, 7, 112.	1.8	17
381	Multineuronal spike sequences repeat with millisecond precision. Frontiers in Neural Circuits, 2013, 7, 112.	1.4	13
382	Reorganization of neuronal circuits of the central olfactory system during postprandial sleep. Frontiers in Neural Circuits, 2013, 7, 132.	1.4	30
383	Influence of slow oscillation on hippocampal activity and ripples through cortico-hippocampal synaptic interactions, analyzed by a cortical-CA3-CA1 network model. Frontiers in Computational Neuroscience, 2013, 7, 3.	1.2	31
384	Learning and prospective recall of noisy spike pattern episodes. Frontiers in Computational Neuroscience, 2013, 7, 80.	1.2	4
385	Rapid, parallel path planning by propagating wavefronts of spiking neural activity. Frontiers in Computational Neuroscience, 2013, 7, 98.	1.2	48
386	Neurophysiological Basis of Sleep's Function on Memory and Cognition. ISRN Physiology, 2013, 2013, 1-17.	0.4	16
387	Autobiographical Thinking Interferes with Episodic Memory Consolidation. PLoS ONE, 2014, 9, e93915.	1.1	45
388	Boosting Long-Term Memory via Wakeful Rest: Intentional Rehearsal Is Not Necessary, Consolidation Is Sufficient. PLoS ONE, 2014, 9, e109542.	1.1	73

#	Article	IF	CITATIONS
389	Global timing: a conceptual framework to investigate the neural basis of rhythm perception in humans and non-human species. Frontiers in Psychology, 2014, 5, 159.	1.1	25
390	Isolating the delay component of impulsive choice in adolescent rats. Frontiers in Integrative Neuroscience, 2014, 8, 3.	1.0	52
391	Connectionist modeling of developmental changes in infancy: Approaches, challenges, and contributions Psychological Bulletin, 2014, 140, 224-255.	5.5	12
392	Retrospective revaluation in sequential decision making: A tale of two systems Journal of Experimental Psychology: General, 2014, 143, 182-194.	1.5	192
393	How Does the Brain Solve the Computational Problems of Spatial Navigation?. , 2014, , 373-407.		2
394	Estimating Location without External Cues. PLoS Computational Biology, 2014, 10, e1003927.	1.5	10
395	Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state. Hippocampus, 2014, 24, 510-515.	0.9	37
396	Excitation and Inhibition Compete to Control Spiking during Hippocampal Ripples: Intracellular Study in Behaving Mice. Journal of Neuroscience, 2014, 34, 16509-16517.	1.7	121
397	Positive Emotion Differentiation: A Functional Approach. Social and Personality Psychology Compass, 2014, 8, 104-117.	2.0	85
398	Integrating Your Experience and Opportunities to Prepare for Nurse Educator Certification. Nurse Educator, 2014, 39, 45-48.	0.6	1
399	Navigating complex decision spaces: Problems and paradigms in sequential choice Psychological Bulletin, 2014, 140, 466-486.	5.5	27
400	Metacognitive Facilitation of Spontaneous Thought Processes: When Metacognition Helps the Wandering Mind Find Its Way. , 2014, , 293-319.		32
401	Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network. Frontiers in Cellular Neuroscience, 2014, 7, 262.	1.8	88
402	Space,Time and Memory in the Hippocampal Formation. , 2014, , .		20
403	A model of hippocampal spiking responses to items during learning of a context-dependent task. Frontiers in Systems Neuroscience, 2014, 8, 178.	1.2	6
404	Neurobiomimetic constructs for intelligent unmanned systems and robotics. Proceedings of SPIE, 2014, , .	0.8	0
405	Hemodynamic and electrophysiological spontaneous low-frequency oscillations in the cortex: Directional influences revealed by Granger causality. NeuroImage, 2014, 85, 810-822.	2.1	13
406	Brain rhythms in mental time travel. NeuroImage, 2014, 85, 678-684.	2.1	7

ARTICLE IF CITATIONS Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and 407 1.2 211 the thalamic nucleus reuniens. Brain Structure and Function, 2014, 219, 911-929. The Molecular and Systems Biology of Memory. Cell, 2014, 157, 163-186. 408 13.5 The search for a hippocampal engram. Philosophical Transactions of the Royal Society B: Biological 409 1.8 38 Sciences, 2014, 369, 20130161. Sharp wave/ripple network oscillations and learning-associated hippocampal maps. Philosophical 1.8 Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120528. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philosophical Transactions of the Royal Society B: 411 1.8 112 Biological Sciences, 2014, 369, 20120518. Characterizing the dynamics of mental representations: the temporal generalization method. Trends in Cognitive Sciences, 2014, 18, 203-210. 4.0 Learning-Induced Plasticity Regulates Hippocampal Sharp Wave-Ripple Drive. Journal of Neuroscience, 413 1.7 73 2014, 34, 5176-5183. Hippocampal place cell responses to distal and proximal cue manipulations in dopamine D2 414 1.1 14 receptor-knockout mice. Brain Research, 2014, 1567, 13-27. Within-session dynamics of theta–gamma coupling and high-frequency oscillations during spatial 415 2.3 15 alternation in rat hippocampal area CA1. Cognitive Neurodynamics, 2014, 8, 363-372. Prospective Optimization. Proceedings of the IEEE, 2014, 102, 799-811. 16.4 Hippocampal Replay Captures the Unique Topological Structure of a Novel Environment. Journal of 417 1.7 165 Neuroscience, 2014, 34, 6459-6469. Sleep and Synaptic Plasticity in the Developing and Adult Brain. Current Topics in Behavioral 0.8 Neurosciences, 2014, 25, 123-149. Selection of preconfigured cell assemblies for representation of novel spatial experiences. 419 1.8 63 Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120522. Space in the brain: how the hippocampal formation supports spatial cognition. Philosophical 420 1.8 386 Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20120510. A biologically inspired hierarchical goal directed navigation model. Journal of Physiology (Paris), 421 2.1 61 2014, 108, 28-37. Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation 422 1,673 and Integration. Neuron, 2014, 81, 12-34. Principles of goal-directed spatial robot navigation in biomimetic models. Philosophical Transactions 423 1.8 25 of the Royal Society B: Biological Sciences, 2014, 369, 20130484. The algorithmic anatomy of model-based evaluation. Philosophical Transactions of the Royal Society 424 1.8 144 B: Biological Sciences, 2014, 369, 20130478.

#	Article	IF	CITATIONS
425	Back to the Future: Preserved Hippocampal Network Activity during Reverse Ambulation. Journal of Neuroscience, 2014, 34, 15022-15031.	1.7	23
426	Rationalizable Irrationalities of Choice. Topics in Cognitive Science, 2014, 6, 204-228.	1.1	24
427	Neural Representation of Spatial Topology in the Rodent Hippocampus. Neural Computation, 2014, 26, 1-39.	1.3	139
428	High frequency oscillations are associated with cognitive processing in human recognition memory. Brain, 2014, 137, 2231-2244.	3.7	149
429	Emergent Exploration via Novelty Management. Journal of Neuroscience, 2014, 34, 12646-12661.	1.7	29
430	Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations. Neuron, 2014, 83, 467-480.	3.8	367
431	Interneuron firing precedes sequential activation of neuronal ensembles in hippocampal slices. European Journal of Neuroscience, 2014, 39, 2027-2036.	1.2	14
432	Internally generated sequences in learning and executing goal-directed behavior. Trends in Cognitive Sciences, 2014, 18, 647-657.	4.0	208
433	Theta phase shift in spike timing and modulation of gamma oscillation: a dynamic code for spatial alternation during fixation in rat hippocampal area CA1. Journal of Neurophysiology, 2014, 111, 1601-1614.	0.9	38
434	Mechanisms of Sharp Wave Initiation and Ripple Generation. Journal of Neuroscience, 2014, 34, 11385-11398.	1.7	203
435	The Perirhinal Cortex. Annual Review of Neuroscience, 2014, 37, 39-53.	5.0	128
436	Ape Gestures: Interpreting Chimpanzee and Bonobo Minds. Current Biology, 2014, 24, R645-R647.	1.8	23
437	Hippocampal Neurons: Simulating the Spatial Structure of a Complex Maze. Current Biology, 2014, 24, R643-R645.	1.8	3
438	Model-based and model-free Pavlovian reward learning: Revaluation, revision, and revelation. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 473-492.	1.0	257
439	The Cognitive Neuroscience of Metacognition. , 2014, , .		45
440	How the amygdala affects emotional memory by altering brain network properties. Neurobiology of Learning and Memory, 2014, 112, 2-16.	1.0	138
441	Re-encoding of associations by recurrent plasticity increases memory capacity. Frontiers in Synaptic Neuroscience, 2014, 6, 13.	1.3	4
442	Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep. Journal of Neurophysiology, 2014, 111, 72-81.	0.9	20

#	Article	IF	CITATIONS
443	Dynamic Hippocampal Circuits Support Learning- and Memory-Guided Behaviors. Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 51-58.	2.0	13
444	Building animats: neurobiomimetic approach for cognitive systems. Proceedings of SPIE, 2014, , .	0.8	0
445	Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disorders, 2015, 17, 101-116.	0.7	218
446	Disordered Ripples Are a Common Feature of Genetically Distinct Mouse Models Relevant to Schizophrenia. Molecular Neuropsychiatry, 2015, 1, 52-59.	3.0	18
447	Coordinating with the "Inner <scp>GPS</scp> ― Hippocampus, 2015, 25, 763-769.	0.9	12
448	Functional connectivity of paired default mode network subregions in primary insomnia. Neuropsychiatric Disease and Treatment, 2015, 11, 3085.	1.0	78
449	Abby…Normal? a New Gold Standard for Identifying Normal High Frequency Oscillations. Epilepsy Currents, 2015, 15, 211-212.	0.4	3
450	VTA neurons coordinate with the hippocampal reactivation of spatial experience. ELife, 2015, 4, .	2.8	136
451	Is there a pilot in the brain? Contribution of the self-positioning system to spatial navigation. Frontiers in Behavioral Neuroscience, 2015, 9, 292.	1.0	15
452	Emergence of Slow-Switching Assemblies in Structured Neuronal Networks. PLoS Computational Biology, 2015, 11, e1004196.	1.5	45
453	The role of REM sleep theta activity in emotional memory. Frontiers in Psychology, 2015, 6, 1439.	1.1	151
454	Off-Line Replay and Hippocampal-Neocortical Interaction. Springer Series in Computational Neuroscience, 2015, , 313-343.	0.3	0
455	Frontal neurons modulate memory retrieval across widely varying temporal scales. Learning and Memory, 2015, 22, 299-306.	0.5	4
456	Consolidation of Associative and Item Memory Is Related to Post-Encoding Functional Connectivity between the Ventral Tegmental Area and Different Medial Temporal Lobe Subregions during an Unrelated Task. Journal of Neuroscience, 2015, 35, 7326-7331.	1.7	89
457	Pentraxins Coordinate Excitatory Synapse Maturation and Circuit Integration of Parvalbumin Interneurons. Neuron, 2015, 85, 1257-1272.	3.8	154
458	Hippocampal Sequences and the Cognitive Map. Springer Series in Computational Neuroscience, 2015, , 105-129.	0.3	2
459	Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents. Current Opinion in Neurobiology, 2015, 32, 141-147.	2.0	70
460	Excitation-Inhibition Discoordination in Rodent Models of Mental Disorders. Biological Psychiatry, 2015, 77, 1079-1088.	0.7	54

#	Article	IF	CITATIONS
461	Dynamics of Multistable States during Ongoing and Evoked Cortical Activity. Journal of Neuroscience, 2015, 35, 8214-8231.	1.7	110
462	The restless brain: how intrinsic activity organizes brain function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140172.	1.8	313
463	Associative Reactivation of Place–Reward Information in the Hippocampal–Ventral Striatal Circuitry. Springer Series in Computational Neuroscience, 2015, , 81-104.	0.3	3
464	Hippocampal sharp-wave ripples in waking and sleeping states. Current Opinion in Neurobiology, 2015, 35, 6-12.	2.0	104
465	Episodic retrieval involves early and sustained effects of reactivating information from encoding. NeuroImage, 2015, 106, 300-310.	2.1	31
466	From foraging to autonoetic consciousness: The primal self as a consequence of embodied prospective foraging. Environmental Epigenetics, 2015, 61, 368-381.	0.9	59
467	Hippocampal sharp waveâ€ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 2015, 25, 1073-1188.	0.9	1,250
468	Offline reactivation of experience-dependent neuronal firing patterns in the rat ventral tegmental area. Journal of Neurophysiology, 2015, 114, 1183-1195.	0.9	52
469	Goal-oriented robot navigation learning using a multi-scale space representation. Neural Networks, 2015, 72, 62-74.	3.3	26
470	Models and Theoretical Frameworks for Hippocampal and Entorhinal Cortex Function in Memory and Navigation. Springer Series in Computational Neuroscience, 2015, , 247-268.	0.3	3
471	Memory Consolidation, Replay, and Cortico-Hippocampal Interactions. Springer Series in Computational Neuroscience, 2015, , 207-221.	0.3	3
472	Transition between encoding and consolidation/replay dynamics via cholinergic modulation of CAN current: A modeling study. Hippocampus, 2015, 25, 1052-1070.	0.9	15
473	Place Cells, Grid Cells, and Memory. Cold Spring Harbor Perspectives in Biology, 2015, 7, a021808.	2.3	346
474	Memories as bifurcations: Realization by collective dynamics of spiking neurons under stochastic inputs. Neural Networks, 2015, 62, 25-31.	3.3	4
475	Rest boosts the long-term retention of spatial associative and temporal order information. Hippocampus, 2015, 25, 1017-1027.	0.9	46
476	Sleep, Memory & Brain Rhythms. Daedalus, 2015, 144, 67-82.	0.9	72
477	Peri-encoding predictors of memory encoding and consolidation. Neuroscience and Biobehavioral Reviews, 2015, 50, 128-142.	2.9	79
478	Electrophysiology. , 2015, , 89-115.		8

#	ARTICLE	IF	CITATIONS
479	in healthy male subjects: a resting-state fMRI study. Neuropsychiatric Disease and Treatment, 2015, 11, 761.	1.0	95
480	Reorganization of Hippocampal Place-Selective Patterns During Goal-Directed Learning and Their Reactivation During Sleep. Springer Series in Computational Neuroscience, 2015, , 131-146.	0.3	0
481	Exposure to extinction-associated contextual tone during slow-wave sleep and wakefulness differentially modulates fear expression. Neurobiology of Learning and Memory, 2015, 123, 159-167.	1.0	27
482	Local generation of multineuronal spike sequences in the hippocampal CA1 region. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10521-10526.	3.3	86
483	Neural modeling of sequential inferences and learning over episodic memory. Neurocomputing, 2015, 161, 229-242.	3.5	19
484	Modulating the map. Progress in Brain Research, 2015, 219, 187-216.	0.9	13
485	A limited positioning system for memory. Hippocampus, 2015, 25, 690-696.	0.9	4
486	Dissociation between the Experience-Dependent Development of Hippocampal Theta Sequences and Single-Trial Phase Precession. Journal of Neuroscience, 2015, 35, 4890-4902.	1.7	126
487	A Lognormal Recurrent Network Model for Burst Generation during Hippocampal Sharp Waves. Journal of Neuroscience, 2015, 35, 14585-14601.	1.7	53
488	Sharp Wave Ripples during Visual Exploration in the Primate Hippocampus. Journal of Neuroscience, 2015, 35, 14771-14782.	1.7	67
489	Trajectory events across hippocampal place cells require previous experience. Nature Neuroscience, 2015, 18, 1772-1779.	7.1	133
490	Consolidation of Complex Events via Reinstatement in Posterior Cingulate Cortex. Journal of Neuroscience, 2015, 35, 14426-14434.	1.7	121
491	Using Grid Cells for Navigation. Neuron, 2015, 87, 507-520.	3.8	210
492	Memory and Space: Towards an Understanding of the Cognitive Map. Journal of Neuroscience, 2015, 35, 13904-13911.	1.7	247
493	The Consolidation and Transformation of Memory. Neuron, 2015, 88, 20-32.	3.8	482
494	The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions. Neuron, 2015, 88, 64-77.	3.8	169
495	Synaptic Orb2A Bridges Memory Acquisition and Late Memory Consolidation in Drosophila. Cell Reports, 2015, 11, 1953-1965.	2.9	67
496	Finding the engram. Nature Reviews Neuroscience, 2015, 16, 521-534.	4.9	493

#	Article	IF	CITATIONS
497	Memory trace replay: the shaping of memory consolidation by neuromodulation. Trends in Neurosciences, 2015, 38, 560-570.	4.2	133
498	Integrating memories to guide decisions. Current Opinion in Behavioral Sciences, 2015, 5, 85-90.	2.0	97
499	Altered hippocampal information coding and network synchrony inÂAPP-PS1 mice. Neurobiology of Aging, 2015, 36, 3200-3213.	1.5	40
500	Differential participation of pyramidal cells in generation of spontaneous sharp wave-ripples in the mouse subiculum in vitro. Neurobiology of Learning and Memory, 2015, 125, 113-119.	1.0	10
501	From necessity to sufficiency in memory research: when sleep helps to understand wake experiences. Current Opinion in Neurobiology, 2015, 35, 156-162.	2.0	2
502	Diversity of sharp-wave–ripple LFP signatures reveals differentiated brain-wide dynamical events. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6379-87.	3.3	89
503	Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals. Neuron, 2015, 88, 1136-1148.	3.8	372
504	Multiple forms of metaplasticity at a single hippocampal synapse during late postnatal development. Developmental Cognitive Neuroscience, 2015, 12, 145-154.	1.9	15
505	Grid Cells and Place Cells: An Integrated View of their Navigational and Memory Function. Trends in Neurosciences, 2015, 38, 763-775.	4.2	84
506	Slow-Î ³ Rhythms Coordinate Cingulate Cortical Responses to Hippocampal Sharp-Wave Ripples during Wakefulness. Cell Reports, 2015, 13, 1327-1335.	2.9	37
507	Theta sequences are essential for internally generated hippocampal firing fields. Nature Neuroscience, 2015, 18, 282-288.	7.1	226
508	The nonspecific thalamus: A place in a wedding bed for making memories last?. Neuroscience and Biobehavioral Reviews, 2015, 54, 175-196.	2.9	63
509	Immediate-early gene transcriptional activation in hippocampus CA1 and CA3 does not accurately reflect rapid, pattern completion-based retrieval of context memory. Learning and Memory, 2015, 22, 1-5.	0.5	7
510	Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology. Current Opinion in Neurobiology, 2015, 32, 53-59.	2.0	46
511	A hierarchical model of goal directed navigation selects trajectories in a visual environment. Neurobiology of Learning and Memory, 2015, 117, 109-121.	1.0	26
512	Temporal Organization of GABAergic Interneurons in the Intermediate CA1 Hippocampus During Network Oscillations. Cerebral Cortex, 2015, 25, 1228-1240.	1.6	28
513	Hippocampal–cortical interaction in decision making. Neurobiology of Learning and Memory, 2015, 117, 34-41.	1.0	101
515	Dynamic resting state functional connectivity in awake and anesthetized rodents. NeuroImage, 2015, 104, 89-99.	2.1	126

	CHATION R	LPORT	
# 516	ARTICLE Interneuron control of hippocampal oscillations. Current Opinion in Neurobiology, 2015, 31, 81-87.	IF 2.0	Citations
517	Shortâ€ŧerm plasticity based network model of place cells dynamics. Hippocampus, 2015, 25, 94-105.	0.9	69
518	A neural mass model of place cell activity: theta phase precession, replay and imagination of never experienced paths. Journal of Computational Neuroscience, 2015, 38, 105-127.	0.6	8
519	Memory traces of long-range coordinated oscillations in the sleeping human brain. Human Brain Mapping, 2015, 36, 67-84.	1.9	16
520	Decoding the cognitive map: ensemble hippocampal sequences and decision making. Current Opinion in Neurobiology, 2015, 32, 8-15.	2.0	75
521	Abnormal resting-state functional connectivity within the default mode network subregions in male patients with obstructive sleep apnea. Neuropsychiatric Disease and Treatment, 2016, 12, 203.	1.0	51
522	The Importance of Animal Research in Cognitive Neuroscience. SSRN Electronic Journal, 0, , .	0.4	0
523	Sleep deprivation disturbed regional brain activity in healthy subjects: evidence from a functional magnetic resonance-imaging study. Neuropsychiatric Disease and Treatment, 2016, 12, 801.	1.0	24
524	Cortical Neural Computation by Discrete Results Hypothesis. Frontiers in Neural Circuits, 2016, 10, 81.	1.4	7
525	Topological Schemas of Cognitive Maps and Spatial Learning. Frontiers in Computational Neuroscience, 2016, 10, 18.	1.2	28
526	Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation?. Frontiers in Synaptic Neuroscience, 2016, 8, 25.	1.3	108
527	Disruption of Network Synchrony and Cognitive Dysfunction After Traumatic Brain Injury. Frontiers in Systems Neuroscience, 2016, 10, 43.	1.2	60
528	Brain Computation Is Organized via Power-of-Two-Based Permutation Logic. Frontiers in Systems Neuroscience, 2016, 10, 95.	1.2	27
529	Bifurcation analysis of a two-compartment hippocampal pyramidal cell model. Journal of Computational Neuroscience, 2016, 41, 91-106.	0.6	8
530	Wakeful rest promotes the integration of spatial memories into accurate cognitive maps. Hippocampus, 2016, 26, 185-193.	0.9	44
531	Interâ€hemispheric connectivity in the fusiform gyrus supports memory consolidation for faces. European Journal of Neuroscience, 2016, 43, 1137-1145.	1.2	9
532	Recurrent Spiking Networks Solve Planning Tasks. Scientific Reports, 2016, 6, 21142.	1.6	46
533	Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 2016, 540, 230-235.	13.7	812

#	Article	IF	CITATIONS
534	Modeling of Mechanism of Plan Formation by New Caledonian Crows. Procedia Computer Science, 2016, 88, 403-408.	1.2	4
535	Self, cortical midline structures and the resting state: Implications for Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 2016, 68, 245-255.	2.9	36
536	The grammar of mammalian brain capacity. Theoretical Computer Science, 2016, 633, 100-111.	0.5	6
537	Denken ohne Sprache. Phaenomenologica, 2016, , .	0.0	1
538	Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dynamics, 2016, 85, 881-891.	2.7	38
539	Effects of Arc/Arg3.1 gene deletion on rhythmic synchronization of hippocampal CA1 neurons during locomotor activity and sleep. Neurobiology of Learning and Memory, 2016, 131, 155-165.	1.0	9
540	Police officers' actual vs. recalled path of travel in response to a threatening traffic stop scenario. Police Practice and Research, 2016, 17, 51-67.	1.1	13
541	Analysis of Generalization of a Series of Images by Superimposed Fourier Holograms. Russian Physics Journal, 2016, 58, 1448-1456.	0.2	0
542	Coordinated grid and place cell replay during rest. Nature Neuroscience, 2016, 19, 792-794.	7.1	147
543	Awake reactivation of emotional memory traces through hippocampal–neocortical interactions. NeuroImage, 2016, 134, 563-572.	2.1	77
544	Maintaining Consistency of Spatial Information in the Hippocampal Network: A Combinatorial Geometry Model. Neural Computation, 2016, 28, 1051-1071.	1.3	16
545	Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science, 2016, 352, 590-595.	6.0	177
546	Hippocampal Sharp-Wave Ripples Influence Selective Activation of the Default Mode Network. Current Biology, 2016, 26, 686-691.	1.8	86
547	Dynamics of neural recruitment surrounding the spontaneous arising of thoughts in experienced mindfulness practitioners. NeuroImage, 2016, 136, 186-196.	2.1	117
548	Hippocampal Mechanisms for the Segmentation of Space by Goals and Boundaries. Research and Perspectives in Neurosciences, 2016, , 1-21.	0.4	7
549	Linking dynamics of the inhibitory network to the input structure. Journal of Computational Neuroscience, 2016, 41, 367-391.	0.6	4
550	Pretreatment with $\hat{l}^2 \hat{a} \in a$ drenergic receptor agonists facilitates induction of LTP and sharp wave ripple complexes in rodent hippocampus. Hippocampus, 2016, 26, 1486-1492.	0.9	17
551	Fast Sequences of Non-spatial State Representations in Humans. Neuron, 2016, 91, 194-204.	3.8	148

#	Article	IF	CITATIONS
552	Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity. Journal of Neuroscience, 2016, 36, 10663-10672.	1.7	97
553	Memory and navigation: Compression of space varies with route length and turns. Hippocampus, 2016, 26, 9-12.	0.9	41
554	Putting flexible animal prospection into context: escaping the theoretical box. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 5-18.	1.4	12
555	Reverse Replay of Hippocampal Place Cells Is Uniquely Modulated by Changing Reward. Neuron, 2016, 91, 1124-1136.	3.8	223
556	Comparable rest-related promotion of spatial memory consolidation in younger and older adults. Neurobiology of Aging, 2016, 48, 143-152.	1.5	29
557	Multiple modes of hippocampal–prefrontal interactions in memory-guided behavior. Current Opinion in Neurobiology, 2016, 40, 161-169.	2.0	58
558	The neurobiology of self-generated thought from cells to systems: Integrating evidence from lesion studies, human intracranial electrophysiology, neurochemistry, and neuroendocrinology. Neuroscience, 2016, 335, 134-150.	1.1	24
559	Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. Current Topics in Behavioral Neurosciences, 2016, 37, 43-100.	0.8	21
560	Neural Mechanism to Simulate a Scale-Invariant Future. Neural Computation, 2016, 28, 2594-2627.	1.3	16
561	Neural assemblies revealed by inferred connectivity-based models of prefrontal cortex recordings. Journal of Computational Neuroscience, 2016, 41, 269-293.	0.6	9
562	Awake hippocampal reactivations project onto orthogonal neuronal assemblies. Science, 2016, 353, 1280-1283.	6.0	128
563	Mind-wandering as spontaneous thought: a dynamic framework. Nature Reviews Neuroscience, 2016, 17, 718-731.	4.9	848
564	Spike-Based Functional Connectivity in Cerebral Cortex and Hippocampus: Loss of Global Connectivity Is Coupled to Preservation of Local Connectivity During Non-REM Sleep. Journal of Neuroscience, 2016, 36, 7676-7692.	1.7	37
565	Ripples on spikes show increased phaseâ€amplitude coupling in mesial temporal lobe epilepsy seizureâ€onset zones. Epilepsia, 2016, 57, 1916-1930.	2.6	69
566	Interplay between Hippocampal Sharp-Wave-Ripple Events and Vicarious Trial and Error Behaviors in Decision Making. Neuron, 2016, 92, 975-982.	3.8	103
567	Epistemological foundations of investigation of cognitive evolution. Biologically Inspired Cognitive Architectures, 2016, 18, 105-115.	0.9	2
568	Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning. Nature Communications, 2016, 7, 12438.	5.8	51
569	Rapid classification of hippocampal replay content for real-time applications. Journal of Neurophysiology, 2016, 116, 2221-2235.	0.9	26

#	Article	IF	CITATIONS
570	A hidden Markov model for decoding and the analysis of replay in spike trains. Journal of Computational Neuroscience, 2016, 41, 339-366.	0.6	5
571	Efficacy of dexmedetomidine with cognitive behavioral therapy for treating chronic insomnia related to conditioned arousal: a randomized controlled trial. Sleep and Biological Rhythms, 2016, 14, 75-85.	0.5	2
572	Reactivation of visual-evoked activity in human cortical networks. Journal of Neurophysiology, 2016, 115, 3090-3100.	0.9	19
573	What counts in estimation? The nature of the preverbal system. Progress in Brain Research, 2016, 227, 29-51.	0.9	4
574	Decision Making and Sequential Sampling from Memory. Neuron, 2016, 90, 927-939.	3.8	286
575	Resting state EEG correlates of memory consolidation. Neurobiology of Learning and Memory, 2016, 130, 17-25.	1.0	87
576	Differential Arc expression in the hippocampus and striatum during the transition from attentive to automatic navigation on a plus maze. Neurobiology of Learning and Memory, 2016, 131, 36-45.	1.0	14
577	Estimating repetitive spatiotemporal patterns from resting-state brain activity data. NeuroImage, 2016, 133, 251-265.	2.1	13
578	Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science, 2016, 351, 1440-1443.	6.0	287
579	Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science, 2016, 351, 1443-1446.	6.0	264
580	Membrane Potential Dynamics of CA1 Pyramidal Neurons during Hippocampal Ripples in Awake Mice. Neuron, 2016, 89, 800-813.	3.8	67
581	Post-learning Hippocampal Dynamics Promote Preferential Retention of Rewarding Events. Neuron, 2016, 89, 1110-1120.	3.8	157
582	Sharp-Wave Ripples Orchestrate the Induction of Synaptic Plasticity during Reactivation of Place Cell Firing Patterns in the Hippocampus. Cell Reports, 2016, 14, 1916-1929.	2.9	122
583	Nonspatial Sequence Coding in CA1 Neurons. Journal of Neuroscience, 2016, 36, 1547-1563.	1.7	129
584	Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nature Reviews Neuroscience, 2016, 17, 173-182.	4.9	411
585	Goal-Directed Decision Making with Spiking Neurons. Journal of Neuroscience, 2016, 36, 1529-1546.	1.7	62
586	The dynamics of memory retrieval in hierarchical networks. Journal of Computational Neuroscience, 2016, 40, 247-268.	0.6	5
587	Rhythms of the hippocampal network. Nature Reviews Neuroscience, 2016, 17, 239-249.	4.9	495

#	Article	IF	CITATIONS
588	Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events. Neuron, 2016, 90, 113-127.	3.8	196
589	Exploring Memory Representations with Activity-Based Genetics. Cold Spring Harbor Perspectives in Biology, 2016, 8, a021832.	2.3	34
590	Spatial Sequence Coding Differs during Slow and Fast Gamma Rhythms in the Hippocampus. Neuron, 2016, 89, 398-408.	3.8	130
591	The mental time travel continuum: on the architecture, capacity, versatility and extension of the mental bridge into the past and future. Reviews in the Neurosciences, 2016, 27, 421-434.	1.4	20
592	Dissociating memory traces and scenario construction in mental time travel. Neuroscience and Biobehavioral Reviews, 2016, 60, 82-89.	2.9	97
593	Hippocampal–medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiology of Learning and Memory, 2016, 134, 91-106.	1.0	106
594	Serotonin dependent masking of hippocampal sharp wave ripples. Neuropharmacology, 2016, 101, 188-203.	2.0	20
595	Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum, 2017, 16, 203-229.	1.4	321
596	The evolution of language: Sharing our mental lives. Journal of Neurolinguistics, 2017, 43, 120-132.	0.5	9
597	Sleep Is for Forgetting. Journal of Neuroscience, 2017, 37, 464-473.	1.7	95
598	Neural Oscillations: Primates Have Sharp MemoriesÂToo. Current Biology, 2017, 27, R63-R65.	1.8	0
599	Separation or binding? Role of the dentate gyrus in hippocampal mnemonic processing. Neuroscience and Biobehavioral Reviews, 2017, 75, 183-194.	2.9	36
600	Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science, 2017, 355, 184-188.	6.0	129
601	Intra- and interregional cortical interactions related to sharp-wave ripples and dentate spikes. Journal of Neurophysiology, 2017, 117, 556-565.	0.9	31
602	Transformed Neural Pattern Reinstatement during Episodic Memory Retrieval. Journal of Neuroscience, 2017, 37, 2986-2998.	1.7	95
603	Neuronal Oscillations and Reactivation Subserving Memory Consolidation. Studies in Neuroscience, Psychology and Behavioral Economics, 2017, , 185-207.	0.1	10
604	Language Evolution: A Changing Perspective. Trends in Cognitive Sciences, 2017, 21, 229-236.	4.0	58
605	Cortico-Hippocampal Circuits for Memory Consolidation: The Role of the Prefrontal Cortex. Studies in Neuroscience, Psychology and Behavioral Economics, 2017, , 265-281.	0.1	8

	CITATION	LPORT	
#	Article	IF	CITATIONS
606	Hippocampal awake replay in fear memory retrieval. Nature Neuroscience, 2017, 20, 571-580.	7.1	166
607	Brain State Dependence of Hippocampal Subthreshold Activity in Awake Mice. Cell Reports, 2017, 18, 136-147.	2.9	33
608	Hippocampal neural activity reflects the economy of choices during goalâ€directed navigation. Hippocampus, 2017, 27, 743-758.	0.9	31
609	Mechanisms of Memory Consolidation and Transformation. Studies in Neuroscience, Psychology and Behavioral Economics, 2017, , 17-44.	0.1	32
610	Optimizing Transcranial Direct Current Stimulation Protocols to Promote Long-Term Learning. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2017, 1, 65-72.	0.8	45
611	The Role of Sleep Spindles in Sleep-Dependent Memory Consolidation. Studies in Neuroscience, Psychology and Behavioral Economics, 2017, , 209-226.	0.1	9
612	Sharp wave ripples during learning stabilize the hippocampal spatial map. Nature Neuroscience, 2017, 20, 845-853.	7.1	146
613	Hippocampal information processing across sleep/wake cycles. Neuroscience Research, 2017, 118, 30-47.	1.0	46
614	Mechanisms for Selective Single-Cell Reactivation during Offline Sharp-Wave Ripples and Their Distortion by Fast Ripples. Neuron, 2017, 94, 1234-1247.e7.	3.8	84
615	Inhibitory Plasticity: Balance, Control, and Codependence. Annual Review of Neuroscience, 2017, 40, 557-579.	5.0	182
616	Temporal and Rate Coding for Discrete Event Sequences in the Hippocampus. Neuron, 2017, 94, 1248-1262.e4.	3.8	125
617	Time-compressed preplay of anticipated events in human primary visual cortex. Nature Communications, 2017, 8, 15276.	5.8	120
618	Making our way through the world: Towards a functional understanding of the brain's spatial circuits. Current Opinion in Systems Biology, 2017, 3, 186-194.	1.3	8
619	Internally generated hippocampal sequences as a vantage point to probe futureâ€oriented cognition. Annals of the New York Academy of Sciences, 2017, 1396, 144-165.	1.8	61
620	Thetaâ€paced flickering between placeâ€cell maps in the hippocampus: A model based on shortâ€ŧerm synaptic plasticity. Hippocampus, 2017, 27, 959-970.	0.9	17
621	Deciphering Neural Codes of Memory during Sleep. Trends in Neurosciences, 2017, 40, 260-275.	4.2	57
622	Robust path planning by propagating rhythmic spiking activity in a hippocampal network model. Biologically Inspired Cognitive Architectures, 2017, 20, 47-58.	0.9	3
623	Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nature Neuroscience, 2017, 20, 1434-1447.	7.1	430

#	Article	IF	CITATIONS
624	Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay. Neuron, 2017, 96, 217-227.e4.	3.8	128
625	Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States. Journal of Neuroscience, 2017, 37, 11789-11805.	1.7	114
626	Increased Prevalence of Calcium Transients across the Dendritic Arbor during Place Field Formation. Neuron, 2017, 96, 490-504.e5.	3.8	141
627	Task Demands Predict a Dynamic Switch in the Content of Awake Hippocampal Replay. Neuron, 2017, 96, 925-935.e6.	3.8	84
628	Dedicated Hippocampal Inhibitory Networks for Locomotion and Immobility. Journal of Neuroscience, 2017, 37, 9222-9238.	1.7	51
629	The Aging Navigational System. Neuron, 2017, 95, 1019-1035.	3.8	256
630	Laminar Organization of Encoding and Memory Reactivation in the Parietal Cortex. Neuron, 2017, 95, 1406-1419.e5.	3.8	88
631	Remembering goal locations. Current Opinion in Behavioral Sciences, 2017, 17, 51-56.	2.0	34
632	Oscillations, neural computations and learning during wake and sleep. Current Opinion in Neurobiology, 2017, 44, 193-201.	2.0	28
633	Replay Comes of Age. Annual Review of Neuroscience, 2017, 40, 581-602.	5.0	274
634	A Bayesian supervised dualâ€dimensionality reduction model for simultaneous decoding of LFP and spike train signals. Stat, 2017, 6, 53-67.	0.3	10
635	Illuminating Neural Circuits: From Molecules to MRI. Journal of Neuroscience, 2017, 37, 10817-10825.	1.7	16
636	Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity. Network Neuroscience, 2017, 1, 275-301.	1.4	27
637	Event Boundaries Trigger Rapid Memory Reinstatement of the Prior Events to Promote Their Representation in Long-Term Memory. Current Biology, 2017, 27, 3499-3504.e4.	1.8	93
638	Brief targeted memory reactivation during the awake state enhances memory stability and benefits the weakest memories. Scientific Reports, 2017, 7, 15325.	1.6	36
639	Common oscillatory mechanisms across multiple memory systems. Npj Science of Learning, 2017, 2, .	1.5	77
640	The Integrative Level of the Hierarchical Spatial Orientation System in Animals. Neuroscience and Behavioral Physiology, 2017, 47, 675-680.	0.2	1

	CITAT	ION REPORT	
#	Article	IF	CITATIONS
642	Moral Learning: Conceptual foundations and normative relevance. Cognition, 2017, 167, 172-190.	1.1	52
643	Behavioral facilitation after hippocampal lesion: A review. Behavioural Brain Research, 2017, 317, 401-414.	1.2	20
644	Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat. Journal of Physiology, 2017, 595, 1775-1792.	1.3	28
645	A hippocampo-cerebellar centred network for the learning and execution of sequence-based navigation. Scientific Reports, 2017, 7, 17812.	1.6	58
646	Temporal Dynamics of Hippocampal and Medial Prefrontal Cortex Interactions During the Delay Period of a Working Memory-Guided Foraging Task. Cerebral Cortex, 2017, 27, 5331-5342.	1.6	29
647	Caffeine Increases Hippocampal Sharp Waves <i>in Vitro</i> . Biological and Pharmaceutical Bulletin, 2017, 40, 1111-1115.	0.6	6
648	Efficient online adaptation with stochastic recurrent neural networks. , 2017, , .		3
649	Automated long-term recording and analysis of neural activity in behaving animals. ELife, 2017, 6, .	2.8	122
650	Distinct hippocampal-cortical memory representations for experiences associated with movement versus immobility. ELife, 2017, 6, .	2.8	35
651	Strengthening of Existing Episodic Memories Through Non-invasive Stimulation of Prefrontal Cortex in Older Adults with Subjective Memory Complaints. Frontiers in Aging Neuroscience, 2017, 9, 401.	1.7	29
652	Waking Up Buried Memories of Old TV Programs. Frontiers in Behavioral Neuroscience, 2017, 11, 60.	1.0	2
653	Neural Signals Related to Outcome Evaluation Are Stronger in CA1 than CA3. Frontiers in Neural Circuits, 2017, 11, 40.	1.4	19
654	Predictive Place-Cell Sequences for Goal-Finding Emerge from Goal Memory and the Cognitive Map: A Computational Model. Frontiers in Computational Neuroscience, 2017, 11, 84.	1.2	11
655	Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells. Frontiers in Systems Neuroscience, 2017, 11, 57.	1.2	21
656	Neural Synchrony and Memory In and Out of Sleep. , 2017, , 563-583.		0
657	Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sciences, 2017, 7, 43.	1.1	70
658	Spatial Memory. , 2017, , 209-231.		2
659	The Role of Sleep in Memory Consolidation: Active or Permissive?. , 2017, , 529-555.		0

#	Article	IF	CITATIONS
660	Hippocampal network oscillations as mediators of behavioural metaplasticity: Insights from emotional learning. Neurobiology of Learning and Memory, 2018, 154, 37-53.	1.0	26
661	Learning rules for aversive associative memory formation. Current Opinion in Neurobiology, 2018, 49, 148-157.	2.0	16
662	The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain and Neuroscience Advances, 2018, 2, 239821281877182.	1.8	41
663	Methods for Assessment of Memory Reactivation. Neural Computation, 2018, 30, 2175-2209.	1.3	12
664	Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators. Journal of Neuroscience, 2018, 38, 3124-3146.	1.7	36
665	Behavioural signatures of backward planning in animals. European Journal of Neuroscience, 2018, 47, 479-487.	1.2	5
666	Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nature Neuroscience, 2018, 21, 309-314.	7.1	260
667	Characterizing Complex, Multi-Scale Neural Phenomena Using State-Space Models. , 2018, , 29-52.		16
668	Large-Scale Tetrode Recording in the Rodent Hippocampus. Neuromethods, 2018, , 87-107.	0.2	1
669	Social place-cells in the bat hippocampus. Science, 2018, 359, 218-224.	6.0	159
670	Spatial representations of self and other in the hippocampus. Science, 2018, 359, 213-218.	6.0	152
671	Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons. Nature Neuroscience, 2018, 21, 258-269.	7.1	101
672	The Role of Hippocampal Replay in Memory andÂPlanning. Current Biology, 2018, 28, R37-R50.	1.8	251
673	Dynamic Neuroscience. , 2018, , .		9
674	Rest-related consolidation protects the fine detail of new memories. Scientific Reports, 2018, 8, 6857.	1.6	25
675	Anxiety, Depression, and Decision Making: A Computational Perspective. Annual Review of Neuroscience, 2018, 41, 371-388.	5.0	124
676	Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3017-E3025.	3.3	31
677	Crowded environments reduce spatial memory in older but not younger adults. Psychological Research, 2018, 82, 407-428.	1.0	16

# 678	ARTICLE Precursors to Language. Topoi, 2018, 37, 297-305.	IF 0.8	CITATIONS 8
679	Prefrontal–hippocampal interactions for spatial navigation. Neuroscience Research, 2018, 129, 2-7.	1.0	35
680	NEVER forget: negative emotional valence enhances recapitulation. Psychonomic Bulletin and Review, 2018, 25, 870-891.	1.4	114
681	Experience-dependent trends in CA1 theta and slow gamma rhythms in freely behaving mice. Journal of Neurophysiology, 2018, 119, 476-489.	0.9	13
682	Disruption of perineuronal nets increases the frequency of sharp wave ripple events. Hippocampus, 2018, 28, 42-52.	0.9	40
683	Consciousness, Representation, Action: The Importance of Being Goal-Directed. Trends in Cognitive Sciences, 2018, 22, 137-153.	4.0	28
684	The effect of prior knowledge on post-encoding brain connectivity and its relation to subsequent memory. NeuroImage, 2018, 167, 211-223.	2.1	32
685	Cognitive representations of spatial location. Brain and Neuroscience Advances, 2018, 2, 239821281881068.	1.8	3
686	Navigating cognition: Spatial codes for human thinking. Science, 2018, 362, .	6.0	371
687	Retroactive and graded prioritization of memory by reward. Nature Communications, 2018, 9, 4886.	5.8	56
688	A Hippocampal Model for Behavioral Time Acquisition and Fast Bidirectional Replay of Spatio-Temporal Memory Sequences. Frontiers in Neuroscience, 2018, 12, 961.	1.4	11
689	Nonictal <scp>EEG</scp> biomarkers for diagnosis and treatment. Epilepsia Open, 2018, 3, 120-126.	1.3	21
690	Medial Temporal Lobe Epilepsy (MTLE). , 2018, , 81-116.		0
691	Rest on it: Awake quiescence facilitates insight. Cortex, 2018, 109, 205-214.	1.1	21
692	Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields. Frontiers in Neuroscience, 2018, 12, 717.	1.4	8
693	Decoding Cognitive Processes from Neural Ensembles. Trends in Cognitive Sciences, 2018, 22, 1091-1102.	4.0	25
694	Electrophysiological mechanisms of human memory consolidation. Nature Communications, 2018, 9, 4103.	5.8	103
695	Feature-Specific Awake Reactivation in Human V1 after Visual Training. Journal of Neuroscience, 2018, 38, 9648-9657.	1.7	17

#	Article	IF	CITATIONS
696	A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations. Journal of Computational Neuroscience, 2018, 45, 207-221.	0.6	15
697	The hippocampal sharp wave–ripple in memory retrieval for immediate use and consolidation. Nature Reviews Neuroscience, 2018, 19, 744-757.	4.9	262
698	Comparing Mouse and Rat Hippocampal Place Cell Activities and Firing Sequences in the Same Environments. Frontiers in Cellular Neuroscience, 2018, 12, 332.	1.8	18
699	Hippocampal replays under the scrutiny of reinforcement learning models. Journal of Neurophysiology, 2018, 120, 2877-2896.	0.9	32
701	The Hippocampal Ensemble Code for Spatial Navigation and Episodic Memory. Advances in Neurobiology, 2018, 21, 49-70.	1.3	2
702	Prioritized memory access explains planning and hippocampal replay. Nature Neuroscience, 2018, 21, 1609-1617.	7.1	221
703	Spoiled for choice, pressed for time. Nature Neuroscience, 2018, 21, 1501-1503.	7.1	0
704	Model-based spatial navigation in the hippocampus-ventral striatum circuit: A computational analysis. PLoS Computational Biology, 2018, 14, e1006316.	1.5	26
705	Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Computational Biology, 2018, 14, e1006283.	1.5	26
706	Enhancement of Declarative Memory: From Genetic Regulation to Non-invasive Stimulation. Biochemistry (Moscow), 2018, 83, 1124-1138.	0.7	2
707	Spatial representations in the primate hippocampus, and their functions in memory and navigation. Progress in Neurobiology, 2018, 171, 90-113.	2.8	117
708	Goal-Directed Sequences in the Hippocampus. , 2018, , 125-151.		6
709	The Neurobiology of Mammalian Navigation. Current Biology, 2018, 28, R1023-R1042.	1.8	117
710	Remembering rewarding futures: A simulationâ€selection model of the hippocampus. Hippocampus, 2018, 28, 913-930.	0.9	14
711	A circuit mechanism of time-to-space conversion for perception. Hearing Research, 2018, 366, 32-37.	0.9	6
712	Approaches to Modeling of Nontrivial Cognitive Behavior. Lecture Notes in Computer Science, 2018, , 37-43.	1.0	0
713	High-gamma activity in the human hippocampus and parahippocampus during inter-trial rest periods of a virtual navigation task. NeuroImage, 2018, 178, 92-103.	2.1	11
714	When planning to survive goes wrong: predicting the future and replaying the past in anxiety and PTSD. Current Opinion in Behavioral Sciences, 2018, 24, 89-95.	2.0	43

	Сітатіо	on Report	
#	Article	IF	CITATIONS
715	Anodal transcranial direct current stimulation of the right dorsolateral prefrontal cortex impairs long-term retention of reencountered memories. Cortex, 2018, 108, 80-91.	1.1	14
716	The Default Mode Network Supports Episodic Memory in Cognitively Unimpaired Elderly Individuals: Different Contributions to Immediate Recall and Delayed Recall. Frontiers in Aging Neuroscience, 2018, 10, 6.	1.7	45
717	A Knowledge-Based Arrangement of Prototypical Neural Representation Prior to Experience Contributes to Selectivity in Upcoming Knowledge Acquisition. Frontiers in Human Neuroscience, 2018, 12, 111.	1.0	3
718	Differential roles of sleep spindles and sleep slow oscillations in memory consolidation. PLoS Computational Biology, 2018, 14, e1006322.	1.5	56
719	Replay of Episodic Memories in the Rat. Current Biology, 2018, 28, 1628-1634.e7.	1.8	59
720	Functional determinants of enhanced and depressed interareal information flow in nonrapid eye movement sleep between neuronal ensembles in rat cortex and hippocampus. Sleep, 2018, 41, .	0.6	14
721	Cannabinoid disruption of learning mechanisms involved in reward processing. Learning and Memory, 2018, 25, 435-445.	0.5	12
722	A brief period of eyes-closed rest enhances motor skill consolidation. Neurobiology of Learning and Memory, 2018, 155, 1-6.	1.0	32
723	Specific hippocampal representations are linked to generalized cortical representations in memory. Nature Communications, 2018, 9, 2209.	5.8	48
724	Dendritic mechanisms of hippocampal place field formation. Current Opinion in Neurobiology, 2019, 54, 1-11.	2.0	44
725	Evidence That Default Network Connectivity During Rest Consolidates Social Information. Cerebral Cortex, 2019, 29, 1910-1920.	1.6	65
726	Non-structured spike sequences of hippocampal neuronal ensembles in awake animals. Neuroscience Research, 2019, 142, 1-6.	1.0	1
727	The subiculum: Unique hippocampal hub and more. Neuroscience Research, 2019, 143, 1-12.	1.0	51
728	Functional connectivity in categoryâ€selective brain networks after encoding predicts subsequent memory. Hippocampus, 2019, 29, 440-450.	0.9	19
729	Reliable Sequential Activation of Neural Assemblies by Single Pyramidal Cells in a Three-Layered Cortex. Neuron, 2019, 104, 353-369.e5.	3.8	35
730	Reward revaluation biases hippocampal replay content away from the preferred outcome. Nature Neuroscience, 2019, 22, 1450-1459.	7.1	68
731	The Generation of Time in the Hippocampal Memory System. Cell Reports, 2019, 28, 1649-1658.e6.	2.9	50
732	Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science, 2019, 365, .	6.0	149

#	Article	IF	CITATIONS
733	How lovebirds maneuver through lateral gusts with minimal visual information. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15033-15041.	3.3	15
734	Awake Reactivation of Prior Experiences Consolidates Memories and Biases Cognition. Trends in Cognitive Sciences, 2019, 23, 876-890.	4.0	119
735	Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation. PLoS Computational Biology, 2019, 15, e1006624.	1.5	21
736	Social by Default: Characterizing the Social Functions of the Resting Brain. Current Directions in Psychological Science, 2019, 28, 380-386.	2.8	30
737	Monosynaptic Hippocampal-Prefrontal Projections Contribute to Spatial Memory Consolidation in Mice. Journal of Neuroscience, 2019, 39, 6978-6991.	1.7	39
738	Robots that Imagine – Can Hippocampal Replay Be Utilized for Robotic Mnemonics?. Lecture Notes in Computer Science, 2019, , 277-286.	1.0	1
739	A programmable neural virtual machine based on a fast store-erase learning rule. Neural Networks, 2019, 119, 10-30.	3.3	8
740	Neurocognitive free will. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190510.	1.2	17
741	Hippocampal Sequences During Exploration: Mechanisms and Functions. Frontiers in Cellular Neuroscience, 2019, 13, 232.	1.8	59
742	Human Replay Spontaneously Reorganizes Experience. Cell, 2019, 178, 640-652.e14.	13.5	287
743	Strengthened Temporal Coordination within Pre-existing Sequential Cell Assemblies Supports Trajectory Replay. Neuron, 2019, 103, 719-733.e7.	3.8	43
744	Thalamocortical processing of the head-direction sense. Progress in Neurobiology, 2019, 183, 101693.	2.8	25
745	Dynamics of Awake Hippocampal-Prefrontal Replay for Spatial Learning and Memory-Guided Decision Making. Neuron, 2019, 104, 1110-1125.e7.	3.8	116
746	Artificial taste avoidance memory induced by coactivation of NMDA and β-adrenergic receptors in the amygdala. Behavioural Brain Research, 2019, 376, 112193.	1.2	2
747	The Next Phase for Tracking and Predicting the Navigational Behavior Using Machine Learning. , 2019, , .		0
748	Distinct Neural Circuits Underlie Prospective and Concurrent Memory-Guided Behavior. Cell Reports, 2019, 28, 2541-2553.e4.	2.9	10
749	Estimating repetitive spatiotemporal patterns from many subjects' resting-state fMRIs. NeuroImage, 2019, 203, 116182.	2.1	4
750	Wakeful rest compared to vigilance reduces intrusive but not deliberate memory for traumatic videos. Scientific Reports, 2019, 9, 13403.	1.6	6

#	Article	IF	CITATIONS
751	How Targeted Memory Reactivation Promotes theÂSelective Strengthening of Memories in Sleep. Current Biology, 2019, 29, R906-R912.	1.8	51
752	Locomotor and Hippocampal Processing Converge in the Lateral Septum. Current Biology, 2019, 29, 3177-3192.e3.	1.8	47
753	Acute silencing of hippocampal CA3 reveals a dominant role in place field responses. Nature Neuroscience, 2019, 22, 337-342.	7.1	81
754	Refresh my memory: Episodic memory reinstatements intrude on working memory maintenance. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 338-354.	1.0	23
755	Strong relationship between NREM sleep, epilepsy and plastic functions — A conceptual review on the neurophysiology background. Epilepsy Research, 2019, 150, 95-105.	0.8	48
756	Planning at decision time and in the background during spatial navigation. Current Opinion in Behavioral Sciences, 2019, 29, 69-76.	2.0	29
757	Neural signatures underlying deliberation in human foraging decisions. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 1492-1508.	1.0	17
758	Unsupervised Detection of Cell-Assembly Sequences by Similarity-Based Clustering. Frontiers in Neuroinformatics, 2019, 13, 39.	1.3	8
759	A diversity of interneurons and Hebbian plasticity facilitate rapid compressible learning in the hippocampus. Nature Neuroscience, 2019, 22, 1168-1181.	7.1	52
760	Sleep and Plasticity. Handbook of Behavioral Neuroscience, 2019, 30, 425-442.	0.7	1
761	Sleep and Memory Consolidation: Conceptual and Methodological Challenges. Handbook of Behavioral Neuroscience, 2019, 30, 489-501.	0.7	4
762	Caching mechanisms for habit formation in Active Inference. Neurocomputing, 2019, 359, 298-314.	3.5	27
763	Long-duration hippocampal sharp wave ripples improve memory. Science, 2019, 364, 1082-1086.	6.0	308
764	Replays of spatial memories suppress topological fluctuations in cognitive map. Network Neuroscience, 2019, 3, 707-724.	1.4	14
765	Post-learning Hippocampal Replay Selectively Reinforces Spatial Memory for Highly Rewarded Locations. Current Biology, 2019, 29, 1436-1444.e5.	1.8	65
766	Serotonin-mediated inhibition of ventral hippocampus is required for sustained goal-directed behavior. Nature Neuroscience, 2019, 22, 770-777.	7.1	61
767	Sleep and Brain Plasticity. , 2019, , 107-124.		0
768	CA3 place cells that represent a novel waking experience are preferentially reactivated during sharp waveâ€ripples in subsequent sleep. Hippocampus, 2019, 29, 921-938.	0.9	19

#	Article	IF	CITATIONS
769	Insensitivity of place cells to the value of spatial goals in a two-choice flexible navigation task. Journal of Neuroscience, 2019, 39, 1578-18.	1.7	37
770	Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science, 2019, 363, 975-978.	6.0	190
771	Rippleâ€related firing of identified deep CA1 pyramidal cells in chronic temporal lobe epilepsy in mice. Epilepsia Open, 2019, 4, 254-263.	1.3	8
772	Memory: Sequences Take Time. Current Biology, 2019, 29, R158-R160.	1.8	0
773	Hippocampal CA1 replay becomes less prominent but more rigid without inputs from medial entorhinal cortex. Nature Communications, 2019, 10, 1341.	5.8	34
774	Backpropagation through time and the brain. Current Opinion in Neurobiology, 2019, 55, 82-89.	2.0	60
775	A contextual binding theory of episodic memory: systems consolidation reconsidered. Nature Reviews Neuroscience, 2019, 20, 364-375.	4.9	246
776	A Rapid Form of Offline Consolidation in Skill Learning. Current Biology, 2019, 29, 1346-1351.e4.	1.8	91
777	Three brain states in the hippocampus and cortex. Hippocampus, 2019, 29, 184-238.	0.9	49
778	Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffusion. Neuron, 2019, 102, 450-461.e7.	3.8	85
779	Transcending time in the brain: How event memories are constructed from experience. Hippocampus, 2019, 29, 162-183.	0.9	120
781	Epilepsy as a derailment of sleep plastic functions may cause chronic cognitive impairment - A theoretical review. Sleep Medicine Reviews, 2019, 45, 31-41.	3.8	14
782	Resting States and Memory Consolidation: A Preregistered Replication and Meta-Analysis. Scientific Reports, 2019, 9, 19345.	1.6	21
783	Characterizing hippocampal replay using hybrid point process state space models. , 2019, , .		4
784	Chaotic dynamics as a mechanism of rapid transition of hippocampal local field activity between theta and non-theta states. Chaos, 2019, 29, 113115.	1.0	5
785	Modeling of Cognitive Evolution. , 2019, , .		0
786	Hippocampal-Cortical Memory Trace Transfer and Reactivation Through Cell-Specific Stimulus and Spontaneous Background Noise. Frontiers in Computational Neuroscience, 2019, 13, 67.	1.2	6
787	Speed of time-compressed forward replay flexibly changes in human episodic memory. Nature Human Behaviour, 2019, 3, 143-154.	6.2	57

#	Article	IF	CITATIONS
788	Neural Network Connectivity During Post-encoding Rest: Linking Episodic Memory Encoding and Retrieval. Frontiers in Human Neuroscience, 2018, 12, 528.	1.0	5
789	Hippocampal signatures of awakeÂtargeted memory reactivation. Brain Structure and Function, 2019, 224, 713-726.	1.2	16
790	Assembly Responses of Hippocampal CA1 Place Cells Predict Learned Behavior in Goal-Directed Spatial Tasks on the Radial Eight-Arm Maze. Neuron, 2019, 101, 119-132.e4.	3.8	80
791	Emergence of preconfigured and plastic time-compressed sequences in early postnatal development. Science, 2019, 363, 168-173.	6.0	97
792	Intrinsic motivation and mental replay enable efficient online adaptation in stochastic recurrent networks. Neural Networks, 2019, 109, 67-80.	3.3	15
793	Computational models of memory consolidation and long-term synaptic plasticity during sleep. Neurobiology of Learning and Memory, 2019, 160, 32-47.	1.0	7
794	Preconfigured patterns are the primary driver of offline multiâ€neuronal sequence replay. Hippocampus, 2019, 29, 275-283.	0.9	24
795	Dendrites, deep learning, and sequences in the hippocampus. Hippocampus, 2019, 29, 239-251.	0.9	12
796	Neuronal Origin of the Temporal Dynamics of Spontaneous BOLD Activity Correlation. Cerebral Cortex, 2019, 29, 1496-1508.	1.6	56
797	Circuit mechanisms of hippocampal reactivation during sleep. Neurobiology of Learning and Memory, 2019, 160, 98-107.	1.0	22
798	Sharp-wave ripples as a signature of hippocampal-prefrontal reactivation for memory during sleep and waking states. Neurobiology of Learning and Memory, 2019, 160, 11-20.	1.0	43
799	The Effect of Post-Learning Wakeful Rest on the Retention of Second Language Learning Material over the Long Term. Current Psychology, 2020, 39, 299-306.	1.7	15
800	The role of replay and theta sequences in mediating hippocampalâ€prefrontal interactions for memory and cognition. Hippocampus, 2020, 30, 60-72.	0.9	51
801	The content of hippocampal "replay― Hippocampus, 2020, 30, 6-18.	0.9	105
802	Sharpâ€wave ripple features in macaques depend on behavioral state and cellâ€ŧype specific firing. Hippocampus, 2020, 30, 50-59.	0.9	20
803	Hippocampal ripples as a mode of communication with cortical and subcortical areas. Hippocampus, 2020, 30, 39-49.	0.9	38
804	Ageâ€associated changes in waking hippocampal sharpâ€wave ripples. Hippocampus, 2020, 30, 28-38.	0.9	23
805	Update on temporal lobeâ€dependent information processing, in health and disease. European Journal of Neuroscience, 2020, 51, 2159-2204.	1.2	15

#	Article	IF	CITATIONS
806	From Conditioning to Emotion: Translating Animal Models of Learning to Human Psychopathology. Neuroscientist, 2020, 26, 43-56.	2.6	5
807	Allocentric representations of space in the hippocampus. Neuroscience Research, 2020, 153, 1-7.	1.0	16
808	Five Decades of Hippocampal Place Cells and EEG Rhythms in Behaving Rats. Journal of Neuroscience, 2020, 40, 54-60.	1.7	18
809	Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation. Hippocampus, 2020, 30, 332-353.	0.9	27
810	Learning, memory and consolidation mechanisms for behavioral control in hierarchically organized corticoâ€basal ganglia systems. Hippocampus, 2020, 30, 73-98.	0.9	45
811	Navigating with grid and place cells in cluttered environments. Hippocampus, 2020, 30, 220-232.	0.9	43
812	Memory reactivations and consolidation: considering neuromodulators across wake and sleep. Current Opinion in Physiology, 2020, 15, 120-127.	0.9	7
813	Number and time in acquisition, extinction and recovery. Journal of the Experimental Analysis of Behavior, 2020, 113, 15-36.	0.8	6
814	Distinct effects of reward and navigation history on hippocampal forward and reverse replays. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 689-697.	3.3	29
815	Dorsal and Ventral Hippocampal Sharp-Wave Ripples Activate Distinct Nucleus Accumbens Networks. Neuron, 2020, 105, 725-741.e8.	3.8	85
816	Beyond replay: Introduction to the special issue on hippocampal replay. Hippocampus, 2020, 30, 3-5.	0.9	3
817	Brain Rhythms During Sleep and Memory Consolidation: Neurobiological Insights. Physiology, 2020, 35, 4-15.	1.6	25
818	Routing of Hippocampal Ripples to Subcortical Structures via the Lateral Septum. Neuron, 2020, 105, 138-149.e5.	3.8	41
819	CA2: A Highly Connected Intrahippocampal Relay. Annual Review of Neuroscience, 2020, 43, 55-72.	5.0	33
820	Learning Long Temporal Sequences in Spiking Networks by Multiplexing Neural Oscillations. Frontiers in Computational Neuroscience, 2020, 14, 78.	1.2	6
821	Episodic Memories: How do the Hippocampus and the Entorhinal Ring Attractors Cooperate to Create Them?. Frontiers in Systems Neuroscience, 2020, 14, 559168.	1.2	6
822	Neuronal Computation Underlying Inferential Reasoning in Humans and Mice. Cell, 2020, 183, 228-243.e21.	13.5	87
823	Alternating sequences of future and past behavior encoded within hippocampal theta oscillations. Science, 2020, 370, 247-250.	6.0	71

#	Article	IF	CITATIONS
824	The role of discrete positive emotions in consumer response to place-of-origin. European Journal of Marketing, 2020, 54, 909-934.	1.7	6
825	Dual n-back training improves functional connectivity of the right inferior frontal gyrus at rest. Scientific Reports, 2020, 10, 20379.	1.6	4
826	Experience-dependent persistent Arc expression is reduced in the aged hippocampus. Neurobiology of Aging, 2020, 95, 225-230.	1.5	3
827	Signaling models for dopamine-dependent temporal contiguity in striatal synaptic plasticity. PLoS Computational Biology, 2020, 16, e1008078.	1.5	17
828	Causal Contribution of Awake Post-encoding Processes to Episodic Memory Consolidation. Current Biology, 2020, 30, 3533-3543.e7.	1.8	26
829	A Computational Model for Latent Learning based on Hippocampal Replay. , 2020, , .		1
830	Interictal Fast Ripples Are Associated With the Seizure-Generating Lesion in Patients With Dual Pathology. Frontiers in Neurology, 2020, 11, 573975.	1.1	9
831	One Shot Spatial Learning through Replay in a Hippocampus-Inspired Reinforcement Learning Model. , 2020, , .		1
832	Hierarchical Interest-Driven Goal Babbling for Efficient Bootstrapping of Sensorimotor skills. , 2020, ,		2
833	Fate of Duplicated Neural Structures. Entropy, 2020, 22, 928.	1.1	4
834	Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction. Journal of Neuroscience, 2020, 40, 8329-8342.	1.7	39
834 835	Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction. Journal of Neuroscience, 2020, 40, 8329-8342. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell, 2020, 183, 1586-1599.e10.	1.7	39 153
834 835 836	Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction. Journal of Neuroscience, 2020, 40, 8329-8342.Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell, 2020, 183, 1586-1599.e10.The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation. Cell, 2020, 183, 1249-1263.e23.	1.7 13.5 13.5	39 153 259
834 835 836 837	Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction. Journal of Neuroscience, 2020, 40, 8329-8342. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell, 2020, 183, 1586-1599.e10. The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation. Cell, 2020, 183, 1249-1263.e23. The Evolution of Language., 2020, 233-240.	1.7 13.5 13.5	39 153 259 0
834 835 836 837 838	Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction. Journal of Neuroscience, 2020, 40, 8329-8342.Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell, 2020, 183, 1586-1599,e10.The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation. Cell, 2020, 183, 1249-1263.e23.The Evolution of Language., 2020, 233-240.Replay of Learned Neural Firing Sequences during Rest in Human Motor Cortex. Cell Reports, 2020, 31, 107581.	1.7 13.5 13.5 2.9	39 153 259 0 37
834 835 836 837 838	Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction. Journal of Neuroscience, 2020, 40, 8329-8342. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell, 2020, 183, 1586-1599.e10. The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation. Cell, 2020, 183, 1249-1263.e23. The Evolution of Language. , 2020, , 233-240. Replay of Learned Neural Firing Sequences during Rest in Human Motor Cortex. Cell Reports, 2020, 31, 107581. Neuronal Oscillations of Wakefulness and Sleep. , 2020, ,.	1.7 13.5 13.5 2.9	 39 153 259 0 37 1
 834 835 836 837 838 839 840 	Long-Term Characterization of Hippocampal Remapping during Contextual Fear Acquisition and Extinction. Journal of Neuroscience, 2020, 40, 8329-8342. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell, 2020, 183, 1586-1599.e10. The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation. Cell, 2020, 183, 1249-1263.e23. The Evolution of Language., 2020, , 233-240. Replay of Learned Neural Firing Sequences during Rest in Human Motor Cortex. Cell Reports, 2020, 31, 107581. Neuronal Oscillations of Wakefulness and Sleep., 2020, . A Probabilistic Framework for Decoding Behavior From in vivo Calcium Imaging Data. Frontiers in Neural Circuits, 2020, 14, 19.	1.7 13.5 13.5 2.9 1.4	 39 153 259 0 37 1 33

#	Article	IF	CITATIONS
842	Episodic memory retrieval success is associated with rapid replay of episode content. Nature Neuroscience, 2020, 23, 1025-1033.	7.1	50
843	Impaired Hippocampal-Cortical Interactions during Sleep in a Mouse Model of Alzheimer's Disease. Current Biology, 2020, 30, 2588-2601.e5.	1.8	32
844	Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Frontiers in Systems Neuroscience, 2020, 14, 22.	1.2	19
845	Real-time sensory–motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization. Biological Cybernetics, 2020, 114, 249-268.	0.6	8
846	Refinement and Reactivation of a Taste-Responsive Hippocampal Network. Current Biology, 2020, 30, 1306-1311.e4.	1.8	11
847	A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions. Journal of Neurophysiology, 2020, 123, 1739-1755.	0.9	52
848	Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta. Journal of Neurophysiology, 2020, 123, 1671-1681.	0.9	3
849	Replay of cortical spiking sequences during human memory retrieval. Science, 2020, 367, 1131-1134.	6.0	122
850	Patterned activation of action potential patterns during offline states in the neocortex: replay and non-replay. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190233.	1.8	7
851	Theta Oscillations Coincide with Sustained Hyperpolarization in CA3 Pyramidal Cells, Underlying Decreased Firing. Cell Reports, 2020, 32, 107868.	2.9	13
852	Synaptic organisation and behaviour-dependent activity of mGluR8a-innervated GABAergic trilaminar cells projecting from the hippocampus to the subiculum. Brain Structure and Function, 2020, 225, 705-734.	1.2	11
853	Modeling awake hippocampal reactivations with model-based bidirectional search. Biological Cybernetics, 2020, 114, 231-248.	0.6	12
854	Improving sensory representations using episodic memory. Hippocampus, 2020, 30, 638-656.	0.9	1
855	Locally sequential synaptic reactivation during hippocampal ripples. Science Advances, 2020, 6, eaay1492.	4.7	10
856	Unsupervised Learning of Persistent and Sequential Activity. Frontiers in Computational Neuroscience, 2019, 13, 97.	1.2	16
857	Constant Sub-second Cycling between Representations of Possible Futures in the Hippocampus. Cell, 2020, 180, 552-567.e25.	13.5	171
858	Replay of Behavioral Sequences in the Medial Prefrontal Cortex during Rule Switching. Neuron, 2020, 106, 154-165.e6.	3.8	70
859	Potential factors influencing replay across CA1 during sharp-wave ripples. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190236.	1.8	20

#	Article	IF	CITATIONS
860	Effects of transcranial electrical stimulation on episodic memory in physiological and pathological ageing. Ageing Research Reviews, 2020, 61, 101065.	5.0	11
861	Hippocampal neurons represent events as transferable units of experience. Nature Neuroscience, 2020, 23, 651-663.	7.1	78
862	Memory reactivation in rat medial prefrontal cortex occurs in a subtype of cortical UP state during slow-wave sleep. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190227.	1.8	8
863	On the methods for reactivation and replay analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190231.	1.8	28
864	Electrophysiological signatures of memory reactivation in humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190293.	1.8	43
865	A consensus statement: defining terms for reactivation analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200001.	1.8	30
866	Cue-triggered activity replay in human early visual cortex. Science China Life Sciences, 2021, 64, 144-151.	2.3	12
867	Time as the fourth dimension in the hippocampus. Progress in Neurobiology, 2021, 199, 101920.	2.8	16
868	Oscillation-Driven Memory Encoding, Maintenance, and Recall in an Entorhinal–Hippocampal Circuit Model. Cerebral Cortex, 2021, 31, 2038-2057.	1.6	5
869	What is dopamine doing in model-based reinforcement learning?. Current Opinion in Behavioral Sciences, 2021, 38, 74-82.	2.0	11
870	Information and communication technologies (ICT)-enabled severe moral communities and how the (Covid19) pandemic might bring new ones. International Journal of Information Management, 2021, 57, 102271.	10.5	28
871	Neural Markers of Event Boundaries. Topics in Cognitive Science, 2021, 13, 128-141.	1.1	10
872	From Topological Analyses to Functional Modeling: The Case of Hippocampus. Frontiers in Computational Neuroscience, 2020, 14, 593166.	1.2	6
873	The Quest for the Hippocampal Memory Engram: From Theories to Experimental Evidence. Frontiers in Behavioral Neuroscience, 2020, 14, 632019.	1.0	16
875	Bistability of somatic pattern memories: stochastic outcomes in bioelectric circuits underlying regeneration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190765.	1.8	24
877	Awake suppression after brief exposure to a familiar stimulus. Communications Biology, 2021, 4, 348.	2.0	2
878	Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network. ELife, 2021, 10, .	2.8	17
879	Synchronous activity patterns in the dentate gyrus during immobility. ELife, 2021, 10, .	2.8	25

#	Article	IF	CITATIONS
880	Dynamics of fMRI patterns reflect sub-second activation sequences and reveal replay in human visual cortex. Nature Communications, 2021, 12, 1795.	5.8	33
882	Bad Timing for Epileptic Networks: Role of Temporal Dynamics in Seizures and Cognitive Deficits. Epilepsy Currents, 2021, 21, 177-182.	0.4	0
883	Subthreshold membrane potential dynamics of posterior parietal cortical neurons coupled with hippocampal ripples. Physiology International, 2021, , .	0.8	1
887	Distinction of Physiologic and Epileptic Ripples: An Electrical Stimulation Study. Brain Sciences, 2021, 11, 538.	1.1	4
888	Alzheimer's pathology causes impaired inhibitory connections and reactivation of spatial codes during spatial navigation. Cell Reports, 2021, 35, 109008.	2.9	31
891	Impaired spatial learning and suppression of sharp wave ripples by cholinergic activation at the goal location. ELife, 2021, 10, .	2.8	19
894	â€~Sleep-dependent' memory consolidation? Brief periods of post-training rest and sleep provide an equivalent benefit for both declarative and procedural memory. Learning and Memory, 2021, 28, 195-203.	0.5	16
895	Multiscale representation of very large environments in the hippocampus of flying bats. Science, 2021, 372, .	6.0	50
896	Prefrontal Cortical Neurons Are Selective for Non-Local Hippocampal Representations during Replay and Behavior. Journal of Neuroscience, 2021, 41, 5894-5908.	1.7	15
898	Experience replay is associated with efficient nonlocal learning. Science, 2021, 372, .	6.0	83
899	Formalizing planning and information search in naturalistic decision-making. Nature Neuroscience, 2021, 24, 1051-1064.	7.1	40
900	Disrupting the medial prefrontal cortex with <scp>designer receptors exclusively activated by designer drug</scp> alters hippocampal sharpâ€wave ripples and their associated cognitive processes. Hippocampus, 2021, 31, 1051-1067.	0.9	17
901	Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Reports, 2021, 35, 109193.	2.9	51
904	Temporally coherent perturbation of neural dynamics during retention alters human multi-item working memory. Progress in Neurobiology, 2021, 201, 102023.	2.8	9
905	Exploring Ripple Waves in the Human Brain. Clinical EEG and Neuroscience, 2021, , 155005942110343.	0.9	3
906	Memory consolidation as an adaptive process. Psychonomic Bulletin and Review, 2021, 28, 1796-1810.	1.4	48
907	A transient postnatal quiescent period precedes emergence of mature cortical dynamics. ELife, 2021, 10,	2.8	11
908	Nonlocal spatiotemporal representation in the hippocampus of freely flying bats. Science, 2021, 373, 242-247.	6.0	24

ARTICLE IF CITATIONS # Navigating for reward. Nature Reviews Neuroscience, 2021, 22, 472-487. 909 4.9 74 Lateral septum as a nexus for mood, motivation, and movement. Neuroscience and Biobehavioral 911 Reviews, 2021, 126, 544-559. Model-based aversive learning in humans is supported by preferential task state reactivation. Science 912 4.7 18 Advances, 2021, 7, . Sequence structure organizes items in varied latent states of working memory neural network. ELife, 2021, 10, . Impaired neural replay of inferred relationships in schizophrenia. Cell, 2021, 184, 4315-4328.e17. 915 13.5 42 Neurons of rat motor cortex become active during both grasping execution and grasping observation. 1.8 Current Biology, 2021, 31, 4405-4412.e4. Divergence in Population Coding for Space between Dorsal and Ventral CA1. ENeuro, 2021, 8, 917 0.9 11 ENEURO.0211-21.2021. Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice. 3.8 86 Neuron, 2021, 109, 3149-3163.e6. Single-trial dynamics of hippocampal spatial representations are modulated by reward value. Current 921 1.8 5 Biology, 2021, 31, 4423-4435.e5. Replay in Deep Learning: Current Approaches and Missing Biological Elements. Neural Computation, 1.3 2021, 33, 1-44. Interictal spikes with and without high-frequency oscillation have different single-neuron 924 30 3.7 correlates. Brain, 2021, 144, 3078-3088. Prefrontal cortical activity predicts the occurrence of nonlocal hippocampal representations during 2.6 spatial navigation. PLoS Biology, 2021, 19, e3001393. Neurophysiology of Remembering. Annual Review of Psychology, 2022, 73, 187-215. 926 9.9 25 Hippocampal replay of experience at real-world speeds. ELife, 2021, 10, . 927 2.8 29 Hippocampal ripples and their coordinated dialogue with the default mode network during recent and 928 3.8 46 remote recollection. Neuron, 2021, 109, 2767-2780.e5. Continuous attractors for dynamic memories. ELife, 2021, 10, . Hippocampal neurons construct a map of an abstract value space. Cell, 2021, 184, 4640-4650.e10. 930 13.558 Stimulus-Driven and Spontaneous Dynamics in Excitatory-Inhibitory Recurrent Neural Networks for 1.3 Sequence Representation. Neural Computation, 2021, 33, 2603-2645.

#	Article	IF	Citations
932	LSD degrades hippocampal spatial representations and suppresses hippocampal-visual cortical interactions. Cell Reports, 2021, 36, 109714.	2.9	5
933	CA2 inhibition reduces the precision of hippocampal assembly reactivation. Neuron, 2021, 109, 3674-3687.e7.	3.8	14
934	Resting-state brain connectivity in healthy young and middle-aged adults at risk of progressive Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 2021, 129, 142-153.	2.9	18
935	Replay in minds and machines. Neuroscience and Biobehavioral Reviews, 2021, 129, 367-388.	2.9	21
936	Egr1-EGFP transgenic mouse allows in vivo recording of Egr1 expression and neural activity. Journal of Neuroscience Methods, 2021, 363, 109350.	1.3	5
937	The role of sleep disturbance and inflammation for spatial memory. Brain, Behavior, & Immunity - Health, 2021, 17, 100333.	1.3	6
938	Separable Signaling Streams of NMDA Receptors Support Distinct Aspects of Spatial Cognition. , 2022, , 169-175.		0
939	Topological Stability of the Hippocampal Spatial Map and Synaptic Transience. Springer Proceedings in Mathematics and Statistics, 2021, , 239-253.	0.1	0
940	Cellular Mechanisms of Thalamocortical Oscillations in the Sleeping Brain. , 2020, , 119-170.		3
941	Auditory Memories and Feedback Processing for Vocal Learning. , 2011, , 561-575.		2
942	Neuronal Activity Patterns in Anaesthetized Animals. , 2010, , 277-291.		3
943	Dual-System Learning Models and Drugs of Abuse. , 2012, , 145-161.		10
944	Memory Reactivation in Humans (Imaging Studies). Springer Series in Computational Neuroscience, 2015, , 225-243.	0.3	2
945	Reinforcement Learning and Hippocampal Dynamics. Springer Series in Computational Neuroscience, 2015, , 299-312.	0.3	2
946	Prioritized Sweeping Neural DynaQ with Multiple Predecessors, and Hippocampal Replays. Lecture Notes in Computer Science, 2018, , 16-27.	1.0	6
947	Encoding and Replay of Dynamic Attractors with Multiple Frequencies: Analysis of a STDP Based Learning Rule. Lecture Notes in Computer Science, 2008, , 38-60.	1.0	6
948	Dynamics and Function of a CA1 Model of the Hippocampus during Theta and Ripples. Lecture Notes in Computer Science, 2010, , 230-240.	1.0	6
949	Memory Replay in the Hippocampus. , 2014, , 351-371.		3

ARTICLE IF CITATIONS # Hippocampal Neurophysiology Across Species., 2014, , 431-461. 950 13 Functional Interactions of Prefrontal Cortex and the Hippocampus in Learning and Memory., 2014, , 517-560. 952 Neural Representations Supporting Spatial Navigation and Memory., 2007, , 219-248. 2 Cell assemblies, sequences and temporal coding in the hippocampus. Current Opinion in Neurobiology, 2020, 64, 111-118. Developmental outcomes of early adverse care on amygdala functional connectivity in nonhuman 955 1.4 20 primates. Development and Psychopathology, 2020, 32, 1579-1596. Beyond happiness: Building a science of discrete positive emotions.. American Psychologist, 2017, 72, 617-643. 3.8 Neurophysiological signatures of temporal coordination between retrosplenial cortex and the 957 0.6 47 hippocampal formation.. Behavioral Neuroscience, 2018, 132, 453-468. Prioritized experience replays on a hippocampal predictive map for learning. Proceedings of the 958 3.3 44 National Academy of Sciences of the United States of America, 2021, 118, . 960 The evolving view of replay and its functions in wake and sleep. SLEEP Advances, 2020, 1, zpab002. 0.1 28 Efficient Online Interest-Driven Exploration for Developmental Robots. IEEE Transactions on 993 2.6 Cognitive and Developmental Systems, 2022, 14, 1367-1377. Mesoscale-duration activated states gate spiking in response to fast rises in membrane voltage in the 994 0.9 6 awake brain. Journal of Neurophysiology, 2017, 118, 1270-1291. Mathematical model of the microcircuit organization of freely scalable ECI–network as a former of spatial processing in hippocampal–entorhinal brain system. Applied Mathematical Sciences, 0, 8, 549-572. 0.0 Spike-Based Bayesian-Hebbian Learning of Temporal Sequences. PLoS Computational Biology, 2016, 12, 996 1.5 41 e1004954. Memory replay in balanced recurrent networks. PLoS Computational Biology, 2017, 13, e1005359. 1.5 64 998 Sleep Enforces the Temporal Order in Memory. PLoS ONE, 2007, 2, e376. 1.1 37 Hippocampal Lesions Impair Rapid Learning of a Continuous Spatial Alternation Task. PLoS ONE, 2009, 4, 1.1 e5494. Neural Population-Level Memory Traces in the Mouse Hippocampus. PLoS ONE, 2009, 4, e8256. 1000 1.1 52 Increased Resting-State Perfusion after Repeated Encoding Is Related to Later Retrieval of Declarative 1.1 Associative Memories. PLoS ONE, 2011, 6, e19985.

ARTICLE IF CITATIONS Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and 1002 51 1.1 Sequence-Based Navigation Behavior. PLoS ONE, 2013, 8, e67232. Optimal Design for Hetero-Associative Memory: Hippocampal CA1 Phase Response Curve and Spike-Timing-Dependent Plasticity. PLoS ONE, 2013, 8, e77395. 1.1 Cholinergic Plasticity of Oscillating Neuronal Assemblies in Mouse Hippocampal Slices. PLoS ONE, 1004 1.1 22 2013, 8, e80718. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of 1.1 Sequential Activity Including Replay. PLoS ONE, 2016, 11, e0147708. Cell Assemblies in the Cortico-Hippocampal-Reuniens Network during Slow Oscillations. Journal of 1006 1.7 11 Neuroscience, 2020, 40, 8343-8354. A Mathematical Model of Hippocampal Spatial Encoding. II. Neurodynamic Correlates of Mental Trajectories and Decision-Making Problem. Mathematical Biology and Bioinformatics, 2014, 9, 216-256. 0.1 Mental Perspective in Multiple-Event Memory and Foresight. Journal of Cognitive Science, 2014, 15, 1008 0.2 4 57-96. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related 1009 0.8 cognitive decline. Oncotarget, 2015, 6, 23181-23203. Beneficial effect of minimal interference on item memory but not on source memory in Alzheimer's 1010 0.7 3 disease. Current Alzheimer Research, 2018, 15, 1070-1076. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and 1.8 404 neuropsychiatric disease.. Dialogues in Clinical Neuroscience, 2012, 14, 345-367. The CRISP theory of hippocampal function in episodic memory. Frontiers in Neural Circuits, 2013, 7, 88. 1012 1.4 70 Dreaming as mind wandering: evidence from functional neuroimaging and first-person content 1.0 192 reports. Frontiers in Human Neuroscience, 2013, 7, 412. 1014 Topological Coding in the Hippocampus., 0, , 293-320. 5 Neural and Spinal Modules in Implementation of a Simple Ballistic Movement. Journal of Software 0.8 Engineering and Applications, 2016, 09, 326-345. Rigid firing sequences undermine spatial memory codes in a neurodegenerative mouse model. ELife, 1017 2.8 78 2013, 2, e00647. CA1 cell activity sequences emerge after reorganization of network correlation structure during associative learning. ELife, 2014, 3, e01982. Reconceiving the hippocampal map as a topological template. ELife, 2014, 3, e03476. 1019 2.8 113 Functional fission of parvalbumin interneuron classes during fast network events. ELife, 2014, 3, . 2.8

		CITATION [Report	
#	Article		IF	Citations
1021	Temporal structure in associative retrieval. ELife, 2015, 4, .		2.8	56
1022	Hippocampal place cells construct reward related sequences through unexplored spac e06063.	e. ELife, 2015, 4,	2.8	206
1023	Episodic-like memory trace in awake replay of hippocampal place cell activity sequence e08105.	es. ELife, 2015, 4,	2.8	32
1024	Activities of visual cortical and hippocampal neurons co-fluctuate in freely moving rats spatial behavior. ELife, 2015, 4, .	during	2.8	74
1025	Spatial tuning and brain state account for dorsal hippocampal CA1 activity in a non-sp task. ELife, 2016, 5, .	atial learning	2.8	19
1026	Social observation enhances cross-environment activation of hippocampal place cell p. 2016, 5, .	atterns. ELife,	2.8	19
1027	Cell assemblies at multiple time scales with arbitrary lag constellations. ELife, 2017, 6,		2.8	54
1028	Synchronized excitability in a network enables generation of internal neuronal sequent 5, .	ces. ELife, 2016,	2.8	16
1029	Network-wide reorganization of procedural memory during NREM sleep revealed by fM .	IRI. ELife, 2017, 6,	2.8	57
1030	Rat anterior cingulate cortex recalls features of remote reward locations after disfavou reinforcements. ELife, 2018, 7, .	red	2.8	52
1031	A neural-level model of spatial memory and imagery. ELife, 2018, 7, .		2.8	138
1032	Recurrent network model for learning goal-directed sequences through reverse replay.	ELife, 2018, 7, .	2.8	32
1033	Uncovering temporal structure in hippocampal output patterns. ELife, 2018, 7, .		2.8	54
1034	Fast-backward replay of sequentially memorized items in humans. ELife, 2018, 7, .		2.8	36
1035	Real-time classification of experience-related ensemble spiking patterns for closed-loop ELife, 2018, 7, .	applications.	2.8	26
1036	Theta-modulation drives the emergence of connectivity patterns underlying replay in a of place cells. ELife, 2018, 7, .	network model	2.8	20
1037	Transitioning between preparatory and precisely sequenced neuronal activity in produ- skilled behavior. ELife, 2019, 8, .	ction of a	2.8	21
1038	Fast and flexible sequence induction in spiking neural networks via rapid excitability ch 2019, 8, .	anges. ELife,	2.8	11

#	Article	IF	CITATIONS
1039	Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. ELife, 2019, 8, .	2.8	14
1040	Can sleep protect memories from catastrophic forgetting?. ELife, 2020, 9, .	2.8	31
1041	The hippocampus encodes delay and value information during delay-discounting decision making. ELife, 2020, 9, .	2.8	18
1042	Behavioral evidence for memory replay of video episodes in the macaque. ELife, 2020, 9, .	2.8	11
1043	The roles of online and offline replay in planning. ELife, 2020, 9, .	2.8	40
1044	Sleep replay reveals premotor circuit structure for a skilled behavior. Neuron, 2021, 109, 3851-3861.e4.	3.8	12
1045	Lateralization of CA1 assemblies in the absence of CA3 input. Nature Communications, 2021, 12, 6114.	5.8	9
1046	The Basis of Navigation Across Species. Annual Review of Psychology, 2022, 73, 217-241.	9.9	20
1047	The learning of prospective and retrospective cognitive maps within neural circuits. Neuron, 2021, 109, 3552-3575.	3.8	13
1048	Reactivation predicts the consolidation of unbiased long-term cognitive maps. Nature Neuroscience, 2021, 24, 1574-1585.	7.1	47
1049	Do animals dream?. Consciousness and Cognition, 2021, 95, 103214.	0.8	2
1050	Respiration-Driven Brain Oscillations in Emotional Cognition. Frontiers in Neural Circuits, 2021, 15, 761812.	1.4	19
1051	Interplay Between Dopamine and Acetylcholine in the Modulation of Attention. , 2007, , 283-297.		0
1052	Memory Replay and Memory Consolidation. Seibutsu Butsuri, 2007, 47, 368-377.	0.0	1
1053	Spike-Timing-Dependent Synaptic Plasticity to Learn Spatiotemporal Patterns in Recurrent Neural Networks. Lecture Notes in Computer Science, 2007, , 757-766.	1.0	2
1056	āfžāf«āfāf<āf¥āf¼āfāf³è‴録実é‴ʿā₽実用āf—āfāf^ā,³āf¼āf«. The Brain & Neural Networks, 2011, 18,	1 0. 21.	1
1057	23 Language. , 2011, , 625-665.		0
1058	24 Mind and Brain (Body). , 2011, , 666-677.		0

#	Article	IF	CITATIONS
1059	20 Intentionality and Conceptualization. , 2011, , 573-593.		0
1060	25 Final Philosophical Remarks. , 2011, , 678-687.		0
1061	8 The Organism as a Semiotic and Cybernetic System. , 2011, , 248-274.		0
1062	19 What Symbols Are. , 2011, , 562-572.		0
1063	22 Development and Culture. , 2011, , 604-624.		0
1064	17 Memory. , 2011, , 494-512.		0
1065	14 Decisional, Emotional, and Cognitive Systems. , 2011, , 440-460.		0
1066	16 Learning. , 2011, , 479-493.		0
1067	5 Dealing with Target Motion and Our Own Movement. , 2011, , 135-150.		0
1068	15 Behavior. , 2011, , 461-478.		0
1069	9 Phylogeny. , 2011, , 275-316.		0
1070	10 Ontogeny. , 2011, , 317-334.		0
1071	13 The Brain as an Informationâ€Control System. , 2011, , 423-439.		0
1072	21 Consciousness. , 2011, , 594-603.		0
1073	4 Vision. , 2011, , 104-134.		0
1074	18 The Basic Symbolic Systems. , 2011, , 515-561.		0
1075	3 The Brain: An Outlook. , 2011, , 66-103.		0
1076	11 Epigeny. , 2011, , 335-377.		0

#	Article	IF	CITATIONS
1077	6 Complexity: A Necessary Condition. , 2011, , 153-197.		0
1078	7 General Features of Life. , 2011, , 198-247.		0
1079	12 Representational Semiotics. , 2011, , 378-422.		0
1081	1 Quantum Mechanics as a General Framework. , 2011, , 7-32.		0
1082	2 Quantum and Classical Information and Entropy. , 2011, , 33-65.		0
1083	Structuring Intelligence: The Role of Hierarchy, Modularity and Learning in Generating Intelligent Behaviour. , 2012, , 126-143.		2
1084	Memory and epilepsy in nonhuman animals. , 2012, , 339-357.		0
1085	Research on Electromagnetic Coupling Artificial Neural Network with Spatial Topology. Lecture Notes in Computer Science, 2013, , 57-65.	1.0	0
1086	Traveling Neuronal Activities Organized in a Recurrent Network with Static and Dynamic Inhibitory Structures. The Brain & Neural Networks, 2014, 21, 50-56.	0.1	0
1087	Visual Cognitive Adventures of Single Neurons in the Human Medial Temporal Lobe. , 2014, , 121-152.		0
1088	Causal Relationship Between SPWRs and Spatial Learning and Memory. Springer Series in Computational Neuroscience, 2015, , 147-160.	0.3	0
1089	Overview of Neural Activity in the Awake and Sleeping Hippocampus. Springer Series in Computational Neuroscience, 2015, , 65-79.	0.3	0
1090	How Animals Find Their Way in Space. Experiments and Modeling. Mathematical Biology and Bioinformatics, 2015, 10, 88-115.	0.1	1
1091	Die konkrete Ausformung der nicht-sprachlichen ReprÄ s entations-Systeme und ihre wichtigsten Teilsysteme. Das szenisch-phantasmatische System. Phaenomenologica, 2016, , 83-151.	0.0	0
1092	Computational Neuroscience: Hippocampus. , 2016, , 3081-3095.		0
1093	Computational Neuroscience: Hippocampus. , 2016, , 1-15.		0
1096	Navigation System in the Brain. Journal of the Robotics Society of Japan, 2017, 35, 311-315.	0.0	0
1097	Hippocampus. , 2017, , 1-7.		0

		CITATION RE	PORT	
#	Article		IF	Citations
1117	Mental travels and the cognitive basis of language. Interaction Studies, 2018, 19, 352	-369.	0.4	1
1122	Theta-Phase Dependent Neuronal Coding During Sequence Learning in Human Single Electronic Journal, 0, , .	Neurons. SSRN	0.4	0
1123	Awake Hippocampal-Prefrontal Replay Mediates Spatial Learning and Decision Making Journal, 0, , .	. SSRN Electronic	0.4	0
1124	Distinct Neural Circuits Underlie Prospective and Concurrent Memory-Guided Behavior Electronic Journal, 0, , .	. SSRN	0.4	0
1126	Cataglyphis Ant Navigation Strategies Solve the Global Localization Problem in Robots Sensors. , 2019, , .	with Binary		0
1144	Traumatic Brain Injury Preserves Firing Rates But Disrupts Laminar Oscillatory Coupling and Neuronal Entrainment in Hippocampal CA1. ENeuro, 2020, 7, ENEURO.0495-19.2020.		0.9	9
1145	Mental travels and the cognitive basis of language. Contemporary Discourses of Hate Across Space and Genres, 2020, , 352-369.	and Radicalism	0.0	0
1147	The orbitofrontal cortex maps future navigational goals. Nature, 2021, 599, 449-452.		13.7	31
1148	The diversity and specificity of functional connectivity across spatial and temporal scal NeuroImage, 2021, 245, 118692.	es.	2.1	15
1152	Spatial Navigation. Advances in Experimental Medicine and Biology, 2020, 1284, 63-90	D.	0.8	4
1153	Fast Reverse Replays of Recent Spatiotemporal Trajectories in a Robotic Hippocampal Model. Lecture Notes in Computer Science, 2020, , 390-401.		1.0	1
1154	Alterations of Neuronal Dynamics as a Mechanism for Cognitive Impairment in Epileps in Behavioral Neurosciences, 2020, , 65-106.	y. Current Topics	0.8	2
1158	Reinforcement learning and its connections with neuroscience and psychology. Neura 2022, 145, 271-287.	Networks,	3.3	16
1160	Neural Circuits and Symbolic Processing. Neurobiology of Learning and Memory, 2021	, 186, 107552.	1.0	6
1161	Neural Network Model of Forward Shift of CA1 Place Fields Towards Reward Location. in Computer Science, 2008, , 309-316.	Lecture Notes	1.0	0
1165	Solving the mystery of memory. Cerebrum: the Dana Forum on Brain Science, 2014, 20	014, 2.	0.1	1
1166	The Hippocampal Horizon: Constructing and Segmenting Experience for Episodic Men Neuroscience and Biobehavioral Reviews, 2022, 132, 181-196.	iory.	2.9	20
1168	Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Frontiers Neuroscience, 2021, 14, 767384.	in Molecular	1.4	4

#	Article	IF	CITATIONS
1171	A Platform for Spatiotemporal a contrixa contrixa contribution in Brain Networks Reveals Novel Forms of Circuit Plasticity. Frontiers in Neural Circuits, 2021, 15, 792228.	1.4	0
1173	Modulation of lateral septal and dorsomedial striatal neurons by hippocampal sharpâ€wave ripples, theta rhythm, and running speed. Hippocampus, 2022, 32, 153-178.	0.9	6
1174	Neural Circuits and Some New Factors Involved in Hippocampal Memory. , 0, , .		0
1175	Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3. ELife, 2022, 11, .	2.8	17
1176	Learning orientations: a discrete geometry model. Journal of Applied and Computational Topology, 2022, 6, 193-220.	1.0	3
1177	Planning in the brain. Neuron, 2022, 110, 914-934.	3.8	37
1178	Spatialization of Time in the Entorhinal-Hippocampal System. Frontiers in Behavioral Neuroscience, 2021, 15, 807197.	1.0	1
1179	Reorganization of CA1 dendritic dynamics by hippocampal sharp-wave ripples during learning. Neuron, 2022, 110, 977-991.e4.	3.8	20
1180	Optimism and pessimism in optimised replay. PLoS Computational Biology, 2022, 18, e1009634.	1.5	8
1181	Spatial goal coding in the hippocampal formation. Neuron, 2022, 110, 394-422.	3.8	62
1183	Disrupted social memory ensembles in the ventral hippocampus underlie social amnesia in autism-associated Shank3 mutant mice. Molecular Psychiatry, 2022, 27, 2095-2105.	4.1	28
1184	Multiple-Timescale Representations of Space: Linking Memory to Navigation. Annual Review of Neuroscience, 2022, 45, 1-21.	5.0	5
1185	A Map Construction Method Based on the Cognitive Mechanism of Rat Brain Hippocampus. CMES - Computer Modeling in Engineering and Sciences, 2022, 131, 1147-1169.	0.8	0
1186	Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping. Neuron, 2022, 110, 1547-1558.e8.	3.8	50
1187	A large majority of awake hippocampal sharp-wave ripples feature spatial trajectories with momentum. Neuron, 2022, 110, 722-733.e8.	3.8	15
1189	A Variable Clock Underlies Internally Generated Hippocampal Sequences. Journal of Neuroscience, 2022, 42, 3797-3810.	1.7	1
1190	How Working Memory and Reinforcement Learning Are Intertwined: A Cognitive, Neural, and Computational Perspective. Journal of Cognitive Neuroscience, 2022, 34, 551-568.	1.1	26
1191	From synapses to circuits and back: Bridging levels of understanding in animal models of Alzheimer's disease. European Journal of Neuroscience, 2022, 56, 5564-5586.	1.2	2

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1193	Decoding cognition from spontaneous neural activity. Nature Reviews Neuroscience, 20	122, 23, 204-214.	4.9	27
1194	Observational learning promotes hippocampal remote awake replay toward future rewa Neuron, 2022, 110, 891-902.e7.	rd locations.	3.8	11
1195	Replays of socially acquired information in the hippocampus. Neuron, 2022, 110, 744-74	45.	3.8	1
1196	Inhibition allocates spikes during hippocampal ripples. Nature Communications, 2022, 1	3, 1280.	5.8	17
1197	Spatial Learning Drives Rapid Goal Representation in Hippocampal Ripples without Place Accumulation or Goal-Oriented Theta Sequences. Journal of Neuroscience, 2022, 42, 39	? Field 75-3988.	1.7	15
1198	Hippocampal replays appear after a single experience and incorporate greater detail with experience. Neuron, 2022, 110, 1829-1842.e5.	n more	3.8	21
1200	Electrophysiology. , 2022, , 85-113.			0
1201	Mental replays enable flexible navigation. Nature, 2022, 605, 35-36.		13.7	2
1212	HectoSTAR μLED Optoelectrodes for Largeâ€Scale, Highâ€Precision In Vivo Optoâ€Ele Advanced Science, 2022, 9, e2105414.	ctrophysiology.	5.6	20
1213	Evolution of Brains and Computers: The Roads Not Taken. Entropy, 2022, 24, 665.		1.1	4
1214	Impact of optogenetic pulse design on CA3 learning and replay: A neural model. Cell Rep 2022, , 100208.	oorts Methods,	1.4	1
1215	Advanced age has dissociable effects on hippocampal CA1 ripples and CA3 high frequen rats. Neurobiology of Aging, 2022, 117, 44-58.	cy events in male	1.5	2
1216	Syntactic Structures as Descriptions of Sensorimotor Processes. Biolinguistics, 0, 8, 001	052 .	0.6	6
1217	Learned Motor Patterns Are Replayed in Human Motor Cortex during Sleep. Journal of N 2022, 42, 5007-5020.	euroscience,	1.7	27
1218	Hippocampus. , 2022, , 3117-3123.			0
1219	Replay of Specific Sequences of Neuronal Activity in the Brain and its Significance for Co Processes. A^ksperimentalʹnaâ Psihologiâ, 2022, 15, 33-55.	ognitive	0.1	0
1222	The role of inhibitory circuits in hippocampal memory processing. Nature Reviews Neuro 23, 476-492.	science, 2022,	4.9	35
1223	Controlling neuronal assemblies: a fundamental function of respiration-related brain osc neuronal networks. Pflugers Archiv European Journal of Physiology, 2023, 475, 13-21.	illations in	1.3	8

#	Article	IF	Citations
1224	Offline memory consolidation during waking rest. , 2022, 1, 441-453.		16
1225	GABAergic CA1 neurons are more stable following context changes than glutamatergic cells. Scientific Reports, 2022, 12, .	1.6	5
1226	Model-Based and Model-Free Replay Mechanisms for Reinforcement Learning in Neurorobotics. Frontiers in Neurorobotics, 0, 16, .	1.6	2
1229	Altered brain rhythms and behaviour in the accelerated ovarian failure mouse model of human menopause. Brain Communications, 2022, 4, .	1.5	3
1230	The role of nocturnal sleep on the retention, adaptability, and relearning rate of a motor skill. Motriz Revista De Educacao Fisica, 0, 28, .	0.3	0
1232	Pathological changes of brain oscillations following ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1753-1776.	2.4	8
1235	The hearing hippocampus. Progress in Neurobiology, 2022, 218, 102326.	2.8	22
1237	Functional connectivity with medial temporal regions differs across cultures during post-encoding rest. Cognitive, Affective and Behavioral Neuroscience, 2022, 22, 1334-1348.	1.0	3
1238	Transient brain-wide coactivations and structured transitions revealed in hemodynamic imaging data. NeuroImage, 2022, 260, 119460.	2.1	1
1245	Hippocampal and Medial Prefrontal Cortical Maps Represent Episodes and Rules in a Common Task Space. SSRN Electronic Journal, 0, , .	0.4	0
1246	Cell-type-specific silence in thalamocortical circuits precedes hippocampal sharp-wave ripples. Cell Reports, 2022, 40, 111132.	2.9	10
1248	Spatiotemporal Precision of Neuroimaging in Psychiatry. Biological Psychiatry, 2023, 93, 671-680.	0.7	1
1249	Impaired sharp-wave ripple coordination between the medial entorhinal cortex and hippocampal CA1 of knock-in model of Alzheimer's disease. Frontiers in Systems Neuroscience, 0, 16, .	1.2	5
1250	Functional neuroimaging in psychiatry and the case for failing better. Neuron, 2022, 110, 2524-2544.	3.8	36
1251	Narrative thinking lingers in spontaneous thought. Nature Communications, 2022, 13, .	5.8	7
1253	Replay, the default mode network and the cascaded memory systems model. Nature Reviews Neuroscience, 2022, 23, 628-640.	4.9	44
1254	The hippocampal formation as a hierarchical generative model supporting generative replay and continual learning. Progress in Neurobiology, 2022, 217, 102329.	2.8	17
1255	From remembering to reconstruction: The transformative neural representation of episodic memory. Progress in Neurobiology, 2022, 219, 102351.	2.8	11

	СІТАТ	tion Report	
#	Article	IF	CITATIONS
1256	Sleep and Neuronal Plasticity. Translational Medicine Research, 2022, , 71-91.	0.0	0
1257	Context-Dependent Spatial Representations in the Hippocampus using Place Cell Dendritic Computation. , 2022, , .		Ο
1258	Brain Mechanisms of Embodied Decision-Making. International Journal of Cognitive Research in Science, Engineering and Education, 2022, 10, 163-171.	0.1	0
1259	Experience-driven rate modulation is reinstated during hippocampal replay. ELife, 0, 11, .	2.8	7
1261	How to build a cognitive map. Nature Neuroscience, 2022, 25, 1257-1272.	7.1	56
1262	A Brain-Inspired Model of Hippocampal Spatial Cognition Based on a Memory-Replay Mechanism. Brain Sciences, 2022, 12, 1176.	1.1	Ο
1264	Heterogeneous mechanisms for synchronization of networks of resonant neurons under different E/I balance regimes. Frontiers in Network Physiology, 0, 2, .	0.8	2
1265	Computational Neuroscience: Hippocampus. , 2022, , 3489-3503.		0
1268	Imagination as a fundamental function of the hippocampus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	15
1269	Internally Triggered Experiences of Hedonic Valence in Nonhuman Animals: Cognitive and Welfare Considerations. Perspectives on Psychological Science, 2023, 18, 688-701.		3
1270	A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nature Communications, 2022, 13, .	5.8	41
1273	Postsynaptic burst reactivation of hippocampal neurons enables associative plasticity of temporally discontiguous inputs. ELife, 0, 11, .	2.8	8
1274	Post-encoding Reactivation Is Related to Learning of Episodes in Humans. Journal of Cognitive Neuroscience, 2022, 35, 74-89.	1.1	6
1277	A robotic model of hippocampal reverse replay for reinforcement learning. Bioinspiration and Biomimetics, 2023, 18, 015007.	1.5	2
1278	Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo. Nature Communications, 2022, 13, .	5.8	6
1280	Activity Patterns of Individual Neurons and Ensembles Correlated with Retrieval of a Contextual Memory in the Dorsal CA1 of Mouse Hippocampus. Journal of Neuroscience, 2023, 43, 113-124.	1.7	4
1282	The two tales of hippocampal sharp-wave ripple content: The rigid and the plastic. Progress in Neurobiology, 2023, 221, 102396.	2.8	5
1283	A lineage explanation of human normative guidance: the coadaptive model of instrumental rationality and shared intentionality. SynthÃ`se, 2022, 200, .	0.6	0

#	Article	IF	CITATIONS
1284	Hippocampal representations of foraging trajectories depend upon spatial context. Nature Neuroscience, 2022, 25, 1693-1705.	7.1	5
1285	Accommodating representation in the neuroscience of memory: a conceptual blending analysis of replay and preplay in hippocampal place cell research. Cognitive Semiotics, 2022, 15, 175-196.	0.3	Ο
1286	Mesoscopic description of hippocampal replay and metastability in spiking neural networks with short-term plasticity. PLoS Computational Biology, 2022, 18, e1010809.	1.5	6
1291	Concepts as plug & play devices. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	3
1293	The expanded circuitry of hippocampal ripples and replay. Neuroscience Research, 2023, 189, 13-19.	1.0	2
1294	No evidence for a preferential role of sleep in episodic memory abstraction. Frontiers in Neuroscience, 0, 16, .	1.4	2
1295	The Role of Intra-amygdaloid Neurotensin and Dopamine Interaction in Spatial Learning and Memory. Biomedicines, 2022, 10, 3138.	1.4	1
1296	Mnemicity: A Cognitive Gadget?. Perspectives on Psychological Science, 0, , 174569162211413.	5.2	2
1297	Consciousness, Memory, and the Human Self: Commentary on "Consciousness as a Memory System―by Budson et al (2022). Cognitive and Behavioral Neurology, 0, Publish Ahead of Print, .	0.5	0
1298	Enhanced Reactivation of Remapping Place Cells during Aversive Learning. Journal of Neuroscience, 2023, 43, 2153-2167.	1.7	7
1299	<scp>CA2</scp> orchestrates hippocampal network dynamics. Hippocampus, 2023, 33, 241-251.	0.9	7
1300	Ripples in macaque V1 and V4 are modulated by top-down visual attention. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
1301	Development of Hippocampal Replay with Learning in Spatial Memory of Precise Goal Locations. , 2022, ,		0
1302	A computational model of learning flexible navigation in a maze by layout-conforming replay of place cells. Frontiers in Computational Neuroscience, 0, 17, .	1.2	0
1304	Computational <scp>crossâ€species</scp> views of the hippocampal formation. Hippocampus, 2023, 33, 586-599.	0.9	7
1305	Differential replay of reward and punishment paths predicts approach and avoidance. Nature Neuroscience, 2023, 26, 627-637.	7.1	4
1306	Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron, 2023, 111, 1020-1036.	3.8	5
1307	Successor-like representation guides the prediction of future events in human visual cortex and hippocampus. ELife, 0, 12, .	2.8	17

		CITATION REPOR	Т	
#	Article	IF	C	Citations
1308	How our understanding of memory replay evolves. Journal of Neurophysiology, 2023, 129,	552-580. 0.9) 8	3
1309	Intrinsic motivation learning for real robot applications. Frontiers in Robotics and AI, 0, 10,	2.0) 1	L
1311	Execution of new trajectories toward a stable goal without a functional hippocampus. Hipp 0, , .	ocampus, 0.9) 1	L
1313	Route-dependent spatial engram tagging in mouse dentate gyrus. Neurobiology of Learning Memory, 2023, 200, 107738.	g and 1.C) 2	2
1314	Sequential order spatial memory in male rats: Characteristics and impact of medial prefront and hippocampus disruption. Neurobiology of Learning and Memory, 2023, 200, 107739.	al cortex 1.0) С)
1315	Synthetic Data Resource and Benchmarks for Time Cell Analysis and Detection Algorithms. 2023, 10, ENEURO.0007-22.2023.	ENeuro, 0.9) ()
1317	Reduced coupling between offline neural replay events and default mode network activatic schizophrenia. Brain Communications, 2023, 5, .	n in 1.5	; 1	L
1318	A model of hippocampal replay driven by experience and environmental structure facilitates learning. ELife, 0, 12, .	spatial 2.8	3 3	3
1321	Predictive Coding of Hippocampal Place Cell Ensembles during Early Phase of Spatial Decisi 2022, , .	on-making. ,	C)
1322	Neural learning rules for generating flexible predictions and computing the successor representation. ELife, 0, 12, .	2.8	3 1	.5
1324	Efficient, continual, and generalized learning in the brain– neural mechanism of Mental Reviews in the Neurosciences, 2023, .	Schema 2.0 –. 1.4	+ 1	L
1326	Goal Choices Modify Frontotemporal Memory Representations. Journal of Neuroscience, 20 3353-3364.	23, 43, 1.7	2	2
1328	Sleep—A brain-state serving systems memory consolidation. Neuron, 2023, 111, 1050-10	75. 3.8	3 4	13
1331	Differential ripple propagation along the hippocampal longitudinal axis. ELife, 0, 12, .	2.8	8 4	1
1332	Hippocampal inactivation during rearing on hind legs impairs spatial memory. Scientific Rep 13, .	orts, 2023, 1.6	6 2	2
1333	Modeling the function of episodic memory in spatial learning. Frontiers in Psychology, 0, 14	y. 1.1	C)
1334	Contextual incongruency triggers memory reinstatement and the disruption of neural stab NeuroImage, 2023, 273, 120114.	lity. 2.1	. 4	ł
1359	Selective Memory Replay Improves Exploration in a Spiking Wavefront Planner. , 2023, , .		C)

#	Article	IF	CITATIONS
1366	Electrophysiological recordings in rodents during spatial navigation: Single neuron recordings. , 2023, , .		0
1374	Oscillatory Network and Deep Value Network Based Memory Replay Model of Hippocampus. Lecture Notes in Computer Science, 2023, , 117-127.	1.0	0