Eisosomes mark static sites of endocytosis

Nature 439, 998-1003 DOI: 10.1038/nature04472

Citation Report

#	Article	IF	CITATIONS
1	Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Progress in Lipid Research, 2006, 45, 447-465.	5.3	244
2	Eisosomes: endocytic portals. Nature Cell Biology, 2006, 8, 310-310.	4.6	1
4	Big gulps: specialized membrane domains for rapid receptor-mediated endocytosis. Trends in Cell Biology, 2006, 16, 487-492.	3.6	29
5	The budding yeast endocytic pathway. Journal of Cell Science, 2006, 119, 4585-4587.	1.2	78
6	Profile of Peter Walter. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5259-5261.	3.3	0
7	The Yeast Actin Cytoskeleton: from Cellular Function to Biochemical Mechanism. Microbiology and Molecular Biology Reviews, 2006, 70, 605-645.	2.9	329
8	A large-scale full-length cDNA analysis to explore the budding yeast transcriptome. Proceedings of the United States of America, 2006, 103, 17846-17851.	3.3	213
9	Rho/ROCK and myosin II control the polarized distribution of endocytic clathrin structures at the uropod of moving T lymphocytes. Journal of Cell Science, 2007, 120, 3534-3543.	1.2	44
10	Modeling complex genetic interactions in a simple eukaryotic genome: actin displays a rich spectrum of complex haploinsufficiencies. Genes and Development, 2007, 21, 148-159.	2.7	80
11	Sterol-Rich Plasma Membrane Domains in Fungi. Eukaryotic Cell, 2007, 6, 755-763.	3.4	139
12	Cellular Processes and Pathways That Protect Saccharomyces cerevisiae Cells against the Plasma Membrane-Perturbing Compound Chitosan. Eukaryotic Cell, 2007, 6, 600-608.	3.4	62
13	Evidence for Coupled Biogenesis of Yeast Cap1 Permease and Sphingolipids: Essential Role in Transport Activity and Normal Control by Ubiquitination. Molecular Biology of the Cell, 2007, 18, 3068-3080.	0.9	68
14	Probing the Membrane Environment of the TOR Kinases Reveals Functional Interactions between TORC1, Actin, and Membrane Trafficking in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2007, 18, 2779-2794.	0.9	91
15	Key Role for Intracellular K + and Protein Kinases Sat4/Hal4 and Hal5 in the Plasma Membrane Stabilization of Yeast Nutrient Transporters. Molecular and Cellular Biology, 2007, 27, 5725-5736.	1.1	43
16	Yeast sphingolipids: Recent developments in understanding biosynthesis, regulation, and function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 421-431.	1.2	116
17	Association of putative ammonium exporters Ato with detergent-resistant compartments of plasma membrane during yeast colony development: pH affects Ato1p localisation in patches. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1170-1178.	1.4	22
18	In 75 semesters, from mannan and dolichol to Pir proteins and membrane compartmentation: personal recollections. Yeast, 2007, 24, 221-228.	0.8	1
19	Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO Journal, 2007, 26, 1-8.	3.5	235

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
20	Pkh-kinases control eisosome assembly and organization. EMBO Journal, 2007, 26, 4946-4955.	3.5	117
21	The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO Journal, 2008, 27, 2363-2374.	3.5	21
22	Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in <i>Aspergillus nidulans</i> . Molecular Microbiology, 2008, 67, 891-905.	1.2	140
23	Yeast and fungal morphogenesis from an evolutionary perspective. Seminars in Cell and Developmental Biology, 2008, 19, 224-233.	2.3	19
24	The Sphingolipid Long-chain Base-Pkh1/2-Ypk1/2 Signaling Pathway Regulates Eisosome Assembly and Turnover. Journal of Biological Chemistry, 2008, 283, 10433-10444.	1.6	107
25	The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in <i>Candida albicans</i> . Molecular Biology of the Cell, 2008, 19, 5214-5225.	0.9	77
26	Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3. Journal of Cell Biology, 2008, 183, 1061-1074.	2.3	150
27	Spatiotemporal activation of Rac1 for engulfment of apoptotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9198-9203.	3.3	95
28	TOR1 and TOR2 Have Distinct Locations in Live Cells. Eukaryotic Cell, 2008, 7, 1819-1830.	3.4	136
29	Distinct Roles for Arp2/3 Regulators in Actin Assembly and Endocytosis. PLoS Biology, 2008, 6, e1.	2.6	134
30	Plasma membrane microdomains regulate turnover of transport proteins in yeast. Journal of Cell Biology, 2008, 183, 1075-1088.	2.3	207
31	Preformed cell structure and cell heredity. Prion, 2008, 2, 1-8.	0.9	57
32	A new model for hemoglobin ingestion and transport by the human malaria parasite <i>Plasmodium falciparum</i> . Journal of Cell Science, 2008, 121, 1937-1949.	1.2	89
33	Chapter 5 A Botanist Going Astray: 77 Semesters of Studying Membrane Transport and Protein Glycosylation. Comprehensive Chemical Kinetics, 2008, 46, 335-396.	2.3	0
34	Endocytosis Is Crucial for Cell Polarity and Apical Membrane Recycling in the Filamentous Fungus <i>Aspergillus oryzae</i> . Eukaryotic Cell, 2009, 8, 37-46.	3.4	87
35	Pil1 Controls Eisosome Biogenesis. Molecular Biology of the Cell, 2009, 20, 809-818.	0.9	62
36	A Complex-based Reconstruction of the Saccharomyces cerevisiae Interactome. Molecular and Cellular Proteomics, 2009, 8, 1361-1381.	2.5	96
37	Follicle-Stimulating Hormone Peptide Can Facilitate Paclitaxel Nanoparticles to Target Ovarian Carcinoma <i>In vivo</i> . Cancer Research, 2009, 69, 6506-6514.	0.4	83

#	Article	IF	CITATIONS
38	The Sur7 protein resides in punctate membrane subdomains and mediates spatial regulation of cell wall synthesis in <i>Candida albicans</i> . Communicative and Integrative Biology, 2009, 2, 76-77.	0.6	24
39	The Signaling Mucins Msb2 and Hkr1 Differentially Regulate the Filamentation Mitogen-activated Protein Kinase Pathway and Contribute to a Multimodal Response. Molecular Biology of the Cell, 2009, 20, 3101-3114.	0.9	87
40	Unifying Fluorescence Microscopy and Mass Spectrometry for Studying Protein Complexes in Cells. Molecular and Cellular Proteomics, 2009, 8, 1413-1423.	2.5	44
41	TORC2 Plasma Membrane Localization Is Essential for Cell Viability and Restricted to a Distinct Domain. Molecular Biology of the Cell, 2009, 20, 1565-1575.	0.9	176
42	A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. Journal of Cell Biology, 2009, 185, 1227-1242.	2.3	123
43	ABC Transporter Pdr10 Regulates the Membrane Microenvironment of Pdr12 in Saccharomyces cerevisiae. Journal of Membrane Biology, 2009, 229, 27-52.	1.0	41
44	Recent advances in yeast organelle and membrane proteomics. Proteomics, 2009, 9, 4731-4743.	1.3	24
45	The tetraspan protein Dni1p is required for correct membrane organization and cell wall remodelling during mating in <i>Schizosaccharomyces pombe</i> . Molecular Microbiology, 2009, 73, 695-709.	1.2	16
46	Systematic Definition of Protein Constituents along the Major Polarization Axis Reveals an Adaptive Reuse of the Polarization Machinery in Pheromone-Treated Budding Yeast. Journal of Proteome Research, 2009, 8, 6-19.	1.8	28
47	Differential endocytic trafficking of neuropathy-associated antibodies to GM1 ganglioside and cholera toxin in epithelial and neural cells. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2526-2540.	1.4	28
48	Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. Journal of Cell Science, 2009, 122, 2887-2894.	1.2	145
49	Candida albicans SUR7 contributes to secretion, biofilm formation, and macrophage killing. BMC Microbiology, 2010, 10, 133.	1.3	49
50	Reconstitution and Protein Composition Analysis of Endocytic Actin Patches. Current Biology, 2010, 20, 1890-1899.	1.8	59
51	Protein phosphorylation in mitochondria – A study on fermentative and respiratory growth of <i>Saccharomyces cerevisiae</i> . Electrophoresis, 2010, 31, 2869-2881.	1.3	14
52	The lateral compartmentation of the yeast plasma membrane. Yeast, 2010, 27, 473-478.	0.8	77
53	Traffic of a Viral Movement Protein Complex to the Highly Curved Tubules of the Cortical Endoplasmic Reticulum. Traffic, 2010, 11, 912-930.	1.3	39
54	A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nature Structural and Molecular Biology, 2010, 17, 901-908.	3.6	93
55	Plants and fungi in the era of heterogeneous plasma membranes*. Plant Biology, 2010, 12, 94-98.	1.8	10

#	Article	IF	CITATIONS
56	Temporal and Spatial Regulation of Gene Expression During Asexual Development of <i>Neurospora crassa</i> . Genetics, 2010, 186, 1217-1230.	1.2	47
57	Comparative Analysis of Transcriptome and Fitness Profiles Reveals General and Condition-Specific Cellular Functions Involved in Adaptation to Environmental Change in <i>Saccharomyces cerevisiae</i> . OMICS A Journal of Integrative Biology, 2010, 14, 603-614.	1.0	8
58	Identification of novel filament-forming proteins in <i>Saccharomyces cerevisiae</i> and <i>Drosophila melanogaster</i> . Journal of Cell Biology, 2010, 190, 541-551.	2.3	272
59	Eisosome Organization in the Filamentous AscomyceteAspergillus nidulans. Eukaryotic Cell, 2010, 9, 1441-1454.	3.4	59
60	A protein kinase network regulates the function of aminophospholipid flippases. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 34-39.	3.3	158
61	Ypk1, the yeast orthologue of the human serum- and glucocorticoid-induced kinase, is required for efficient uptake of fatty acids. Journal of Cell Science, 2010, 123, 2218-2227.	1.2	33
62	C Terminus of Nce102 Determines the Structure and Function of Microdomains in the Saccharomyces cerevisiae Plasma Membrane. Eukaryotic Cell, 2010, 9, 1184-1192.	3.4	41
63	TORC2 and Sphingolipid Biosynthesis and Signaling. The Enzymes, 2010, , 177-197.	0.7	2
64	Roles for Sphingolipids in Saccharomyces cerevisiae. Advances in Experimental Medicine and Biology, 2010, 688, 217-231.	0.8	85
65	Lateral reorganization of plasma membrane is involved in the yeast resistance to severe dehydration. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 975-985.	1.4	101
66	Three unrelated sphingomyelin analogs spontaneously cluster into plasma membrane micrometric domains. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 909-927.	1.4	53
67	Adaptive Changes of the Yeast Mitochondrial Proteome in Response to Salt Stress. OMICS A Journal of Integrative Biology, 2010, 14, 541-552.	1.0	16
68	Sphingolipids as Signaling and Regulatory Molecules. Advances in Experimental Medicine and Biology, 2010, , .	0.8	23
69	Recycling of Solanum Sucrose Transporters Expressed in Yeast, Tobacco, and in Mature Phloem Sieve Elements. Molecular Plant, 2010, 3, 1064-1074.	3.9	35
70	Actin organization and dynamics in filamentous fungi. Nature Reviews Microbiology, 2011, 9, 876-887.	13.6	142
71	Eisosome-driven plasma membrane organization is mediated by BAR domains. Nature Structural and Molecular Biology, 2011, 18, 854-856.	3.6	77
72	Pun1p is a metal ion-inducible, calcineurin/Crz1p-regulated plasma membrane protein required for cell wall integrity. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1108-1119.	1.4	15
73	Hypertonic conditions trigger transient plasmolysis, growth arrest and blockage of transporter endocytosis in <i>Aspergillus nidulans</i> and <i>Saccharomyces cerevisiae</i> . Molecular Membrane Biology, 2011, 28, 54-68.	2.0	7

#	Article	IF	CITATIONS
74	Pil1, an eisosome organizer, plays an important role in the recruitment of synaptojanins and amphiphysins to facilitate receptor-mediated endocytosis in yeast. European Journal of Cell Biology, 2011, 90, 825-833.	1.6	25
75	Requirements of Slm proteins for proper eisosome organization, endocytic trafficking and recycling in the yeast Saccharomyces cerevisiae. Journal of Biosciences, 2011, 36, 79-96.	0.5	28
76	Dual olour fluorescence microscopy using yEmCherryâ€ქGFP agging of eisosome components Pil1 and Lsp1 in <i>Candida albicans</i> . Yeast, 2011, 28, 331-338.	0.8	28
77	Yeast dynamin implicated in endocytic scission and the disassembly of endocytic components. Communicative and Integrative Biology, 2011, 4, 178-181.	0.6	7
78	Reassessment of the role of plasma membrane domains in the regulation of vesicular traffic in yeast. Journal of Cell Science, 2011, 124, 328-337.	1.2	77
79	Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin. Journal of Cell Biology, 2011, 195, 657-671.	2.3	62
80	The Candida albicans Sur7 Protein Is Needed for Proper Synthesis of the Fibrillar Component of the Cell Wall That Confers Strength. Eukaryotic Cell, 2011, 10, 72-80.	3.4	50
81	The eisosome core is composed of BAR domain proteins. Molecular Biology of the Cell, 2011, 22, 2360-2372.	0.9	91
82	Endocytosis is essential for dynamic translocation of a syntaxin 1 orthologue during fission yeast meiosis. Molecular Biology of the Cell, 2011, 22, 3658-3670.	0.9	16
83	Motor-driven intracellular transport powers bacterial gliding motility. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7559-7564.	3.3	153
84	Eisosome proteins assemble into a membrane scaffold. Journal of Cell Biology, 2011, 195, 889-902.	2.3	103
85	The filament-forming protein Pil1 assembles linear eisosomes in fission yeast. Molecular Biology of the Cell, 2011, 22, 4059-4067.	0.9	66
86	Rapid Response of the Yeast Plasma Membrane Proteome to Salt Stress. Molecular and Cellular Proteomics, 2011, 10, M111.009589.	2.5	46
87	Eisosomes and membrane compartments in the ascomycetes. Communicative and Integrative Biology, 2011, 4, 64-68.	0.6	9
88	Formation and stability of eisosomes in the filamentous fungus Ashbya gossypii. Journal of Cell Science, 2011, 124, 1629-1634.	1.2	43
89	Characterization of Mug33 reveals complementary roles for actin cable-dependent transport and exocyst regulators in fission yeast exocytosis. Journal of Cell Science, 2011, 124, 2187-2199.	1.2	33
90	How eisosomes help the plasma membrane get organized. Journal of Cell Biology, 2011, 195, 705-705.	2.3	0
91	Srf1 Is a Novel Regulator of Phospholipase D Activity and Is Essential to Buffer the Toxic Effects of C16:0 Platelet Activating Factor. PLoS Genetics, 2011, 7, e1001299.	1.5	12

#	Article	IF	CITATIONS
92	Membrane Compartment Occupied by Can1 (MCC) and Eisosome Subdomains of the Fungal Plasma Membrane. Membranes, 2011, 1, 394-411.	1.4	35
93	HacA-Independent Functions of the ER Stress Sensor IreA Synergize with the Canonical UPR to Influence Virulence Traits in Aspergillus fumigatus. PLoS Pathogens, 2011, 7, e1002330.	2.1	101
94	The dual PH domain protein Opy1 functions as a sensor and modulator of PtdIns(4,5)P ₂ synthesis. EMBO Journal, 2012, 31, 2882-2894.	3.5	20
95	Lipid raft involvement in yeast cell growth and death. Frontiers in Oncology, 2012, 2, 140.	1.3	52
96	Seg1 controls eisosome assembly and shape. Journal of Cell Biology, 2012, 198, 405-420.	2.3	54
98	Sur7 Promotes Plasma Membrane Organization and Is Needed for Resistance to Stressful Conditions and to the Invasive Growth and Virulence of Candida albicans. MBio, 2012, 3, .	1.8	63
99	Vesicle trafficking from a lipid perspective. Cellular Logistics, 2012, 2, 151-160.	0.9	20
100	Plasma membrane proteins Slm1 and Slm2 mediate activation of the AGC kinase Ypk1 by TORC2 and sphingolipids in <i>S. cerevisiae</i> . Cell Cycle, 2012, 11, 3745-3749.	1.3	36
101	Toxicity Mechanisms of Amphotericin B and Its Neutralization by Conjugation with Arabinogalactan. Antimicrobial Agents and Chemotherapy, 2012, 56, 5603-5611.	1.4	56
102	From mosaic to patchwork: Matching lipids and proteins in membrane organization. Molecular Membrane Biology, 2012, 29, 186-196.	2.0	27
103	Eisosomes and plasma membrane organization. Molecular Genetics and Genomics, 2012, 287, 607-620.	1.0	33
104	Membrane Protein Rim21 Plays a Central Role in Sensing Ambient pH in Saccharomyces cerevisiae*. Journal of Biological Chemistry, 2012, 287, 38473-38481.	1.6	58
105	Precise, Correlated Fluorescence Microscopy and Electron Tomography of Lowicryl Sections Using Fluorescent Fiducial Markers. Methods in Cell Biology, 2012, 111, 235-257.	0.5	130
106	Distribution of Cortical Endoplasmic Reticulum Determines Positioning of Endocytic Events in Yeast Plasma Membrane. PLoS ONE, 2012, 7, e35132.	1.1	37
107	Proteomic Analysis of Rta2p-Dependent Raft-Association of Detergent-Resistant Membranes in Candida albicans. PLoS ONE, 2012, 7, e37768.	1.1	7
108	High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy. BioTechniques, 2012, 53, 41-48.	0.8	79
109	BUHO: A MATLAB Script for the Study of Stress Granules and Processing Bodies by High-Throughput Image Analysis. PLoS ONE, 2012, 7, e51495.	1.1	7
110	Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nature Cell Biology, 2012, 14, 542-547.	4.6	303

#	Article	IF	CITATIONS
111	Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nature Cell Biology, 2012, 14, 640-648.	4.6	210
112	The plasma membrane-enriched fraction proteome response during adaptation to hydrogen peroxide in <i>Saccharomyces cerevisiae</i> . Free Radical Research, 2012, 46, 1267-1279.	1.5	9
113	Insights into eisosome assembly and organization. Journal of Biosciences, 2012, 37, 295-300.	0.5	8
114	The role of flotillin FloA and stomatin StoA in the maintenance of apical sterolâ€rich membrane domains and polarity in the filamentous fungus <i>Aspergillus nidulans</i> . Molecular Microbiology, 2012, 83, 1136-1152.	1.2	35
115	NCE102 homologue in Aspergillus fumigatus is required for normal sporulation, not hyphal growth or pathogenesis. FEMS Microbiology Letters, 2012, 329, 138-145.	0.7	9
116	Clathrin-mediated endocytosis in budding yeast. Trends in Cell Biology, 2012, 22, 1-13.	3.6	217
117	Organized living: formation mechanisms and functions of plasma membrane domains in yeast. Trends in Cell Biology, 2012, 22, 151-158.	3.6	70
118	Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains. Cell Reports, 2013, 4, 1213-1223.	2.9	134
119	RNA-seq analyses of gene expression in the microsclerotia of Verticillium dahliae. BMC Genomics, 2013, 14, 607.	1.2	75
120	Mechanisms of spindle positioning. Journal of Cell Biology, 2013, 200, 131-140.	2.3	163
121	Rax2 is important for directional establishment of growth sites, but not for reorientation of growth axes, during Candida albicans hyphal morphogenesis. Fungal Genetics and Biology, 2013, 56, 116-124.	0.9	5
122	Functional analysis of Abp1p-interacting proteins involved in endocytosis of the MCC component in Aspergillus oryzae. Fungal Genetics and Biology, 2013, 56, 125-134.	0.9	15
123	The effect of natamycin on the transcriptome of conidia of Aspergillus niger. Studies in Mycology, 2013, 74, 71-85.	4.5	36
124	An expanded view of the eukaryotic cytoskeleton. Molecular Biology of the Cell, 2013, 24, 1615-1618.	0.9	8
125	LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials, 2013, 34, 9171-9182.	5.7	186
126	Eisosome distribution and localization in the meiotic progeny of Aspergillus nidulans. Fungal Genetics and Biology, 2013, 53, 84-96.	0.9	19
127	Iron, glucose and intrinsic factors alter sphingolipid composition as yeast cells enter stationary phase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 726-736.	1.2	26
128	Membrane Microdomains, Rafts, and Detergent-Resistant Membranes in Plants and Fungi. Annual Review of Plant Biology, 2013, 64, 501-529.	8.6	152

# 129	ARTICLE Amyloid cannot resist identification. Prion, 2013, 7, 464-468.	IF 0.9	CITATIONS
130	The MARVEL Domain Protein Nce102 Regulates Actin Organization and Invasive Growth of Candida albicans. MBio, 2013, 4, e00723-13.	1.8	34
131	Global Analysis of Condition-specific Subcellular Protein Distribution and Abundance. Molecular and Cellular Proteomics, 2013, 12, 1421-1435.	2.5	19
132	Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components. Molecular and Cellular Proteomics, 2013, 12, 557-574.	2.5	52
133	Microcompartments within the yeast plasma membrane. Biological Chemistry, 2013, 394, 189-202.	1.2	23
134	Alteration of Plasma Membrane Organization by an Anticancer Lysophosphatidylcholine Analogue Induces Intracellular Acidification and Internalization of Plasma Membrane Transporters in Yeast. Journal of Biological Chemistry, 2013, 288, 8419-8432.	1.6	32
135	Snap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells. PLoS ONE, 2013, 8, e78745.	1.1	86
136	Ultrastructural Imaging of Endocytic Sites in <i>Saccharomyces cerevisiae</i> by Transmission Electron Microscopy and Immunolabeling. Microscopy and Microanalysis, 2013, 19, 381-392.	0.2	35
137	Functional Characterization of Aspergillus nidulans ypkA, a Homologue of the Mammalian Kinase SGK. PLoS ONE, 2013, 8, e57630.	1.1	24
138	The Non-classical Pathway is the Major Pathway to Secrete Proteins in Saccharomyces cerevisiae. Clinical & Experimental Pharmacology, 2014, 04, .	0.3	2
139	Fungal Membrane Organization: The Eisosome Concept. Annual Review of Microbiology, 2014, 68, 377-393.	2.9	118
140	A role for eisosomes in maintenance of plasma membrane phosphoinositide levels. Molecular Biology of the Cell, 2014, 25, 2797-2806.	0.9	41
141	A Neurotoxic Glycerophosphocholine Impacts PtdIns-4, 5-Bisphosphate and TORC2 Signaling by Altering Ceramide Biosynthesis in Yeast. PLoS Genetics, 2014, 10, e1004010.	1.5	4
142	A Pil1-Sle1-Syj1-Tax4 functional pathway links eisosomes with PI(4,5)P2 regulation. Journal of Cell Science, 2014, 127, 1318-26.	1.2	28
143	Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology, 2014, 456-457, 1-19.	1.1	55
144	Insight into Tor2, a budding yeast microdomain protein. European Journal of Cell Biology, 2014, 93, 87-97.	1.6	11
145	Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae. Journal of Lipid Research, 2014, 55, 1343-1356.	2.0	23
146	Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14019-14026.	3.3	70

#	Article	IF	CITATIONS
147	BEM46 Shows Eisosomal Localization and Association with Tryptophan-Derived Auxin Pathway in Neurospora crassa. Eukaryotic Cell, 2014, 13, 1051-1063.	3.4	11
148	Protein-Induced Membrane Curvature Alters Local Membrane Tension. Biophysical Journal, 2014, 107, 751-762.	0.2	109
149	HIV-1 endocytosis in astrocytes: A kiss of death or survival of the fittest?. Neuroscience Research, 2014, 88, 16-22.	1.0	22
150	ECFP–EGF1-conjugated nanoparticles for targeting both neovascular and glioma cells in therapy of brain glioma. Biomaterials, 2014, 35, 4133-4145.	5.7	61
151	TOR Complex 2-Ypk1 Signaling Maintains Sphingolipid Homeostasis by Sensing and Regulating ROS Accumulation. Cell Reports, 2014, 6, 541-552.	2.9	59
152	Endocytosis and early endosome motility in filamentous fungi. Current Opinion in Microbiology, 2014, 20, 10-18.	2.3	88
153	Specific α-Arrestins Negatively Regulate <i>Saccharomyces cerevisiae</i> Pheromone Response by Down-Modulating the G-Protein-Coupled Receptor Ste2. Molecular and Cellular Biology, 2014, 34, 2660-2681.	1.1	87
154	Characterization of AnNce102 and its role in eisosome stability and sphingolipid biosynthesis. Scientific Reports, 2015, 5, 15200.	1.6	21
155	Plasma Membrane Proteolipid 3 Protein Modulates Amphotericin B Resistance throughSphingolipid Biosynthetic Pathway. Scientific Reports, 2015, 5, 9685.	1.6	29
156	Form, Fabric, and Function of a Flagellum-Associated Cytoskeletal Structure. Cells, 2015, 4, 726-747.	1.8	20
157	Evolutionarily Conserved 5'-3' Exoribonuclease Xrn1 Accumulates at Plasma Membrane-Associated Eisosomes in Post-Diauxic Yeast. PLoS ONE, 2015, 10, e0122770.	1.1	25
158	Overview of a Surface-Ripened Cheese Community Functioning by Meta-Omics Analyses. PLoS ONE, 2015, 10, e0124360.	1.1	114
159	TORC2 and eisosomes are spatially interdependent, requiring optimal level of phosphatidylinositol 4, 5-bisphosphate for their integrity. Journal of Biosciences, 2015, 40, 299-311.	0.5	13
160	Eisosomes Are Dynamic Plasma Membrane Domains Showing Pil1-Lsp1 Heteroligomer Binding Equilibrium. Biophysical Journal, 2015, 108, 1633-1644.	0.2	24
161	Building a patchwork — The yeast plasma membrane as model to study lateral domain formation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 767-774.	1.9	25
162	The Yeast BDF1 Regulates Endocytosis via LSP1 Under Salt Stress. Current Microbiology, 2015, 70, 671-678.	1.0	3
163	Rom2-dependent Phosphorylation of Elo2 Controls the Abundance of Very Long-chain Fatty Acids. Journal of Biological Chemistry, 2015, 290, 4238-4247.	1.6	26
164	Eisosome Ultrastructure and Evolution in Fungi, Microalgae, and Lichens. Eukaryotic Cell, 2015, 14, 1017-1042.	3.4	45

#	Article	IF	CITATIONS
165	The yeast Pmp3p has a significant role in plasma membrane organization. Journal of Cell Science, 2015, 128, 3646-59.	1.2	18
166	Endocytosis of human immunodeficiency virus 1 (HIV-1) in astrocytes: A fiery path to its destination. Microbial Pathogenesis, 2015, 78, 1-6.	1.3	28
167	Assembly of fission yeast eisosomes in the plasma membrane of budding yeast: Import of foreign membrane microdomains. European Journal of Cell Biology, 2015, 94, 1-11.	1.6	15
168	Disentangling metabolic pathways involved in copper resistance in <i>Candida fukuyamaensis</i> RCLâ€3 indigenous yeast. Journal of Basic Microbiology, 2016, 56, 698-710.	1.8	6
169	Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1319-1333.	1.9	28
170	Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in <i>Candida albicans</i> . Molecular Biology of the Cell, 2016, 27, 1663-1675.	0.9	32
171	Protein engineering strategies with potential applications for altering clinically relevant cellular pathways at the protein level. Expert Review of Proteomics, 2016, 13, 481-493.	1.3	3
172	New Insight Into the Roles of Membrane Microdomains in Physiological Activities of Fungal Cells. International Review of Cell and Molecular Biology, 2016, 325, 119-180.	1.6	25
173	Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response. Journal of Proteomics, 2016, 148, 26-35.	1.2	2
174	Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: The uptake kinetics and mechanisms and the toxic responses. Journal of Hazardous Materials, 2016, 318, 650-662.	6.5	55
175	A particleâ€based moving interface method (PMIM) for modeling the large deformation of boundaries in soft matter systems. International Journal for Numerical Methods in Engineering, 2016, 107, 923-946.	1.5	8
176	Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 784-792.	1.2	56
177	At-line determination of spore inoculum quality in Penicillium chrysogenum bioprocesses. Applied Microbiology and Biotechnology, 2016, 100, 5363-5373.	1.7	20
178	Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans. Journal of Microbiology, 2016, 54, 178-191.	1.3	29
179	The yeast Ste2p G protein-coupled receptor dimerizes on the cell plasma membrane. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 698-711.	1.4	13
180	Two eisosome proteins play opposite roles in autophagic control and sustain cell integrity, function and pathogenicity in <i>Beauveria bassiana</i> . Environmental Microbiology, 2017, 19, 2037-2052.	1.8	36
181	Vps15p regulates the distribution of cupâ€shaped organelles containing the major eisosome protein Pil1p to the extracellular fraction required for endocytosis of extracellular vesicles carrying metabolic enzymes. Biology of the Cell, 2017, 109, 190-209.	0.7	9
182	mRNA decay is regulated via sequestration of the conserved 5′-3′ exoribonuclease Xrn1 at eisosome in yeast. European Journal of Cell Biology, 2017, 96, 591-599.	1.6	17

#	Article	IF	CITATIONS
183	A stabilized finite element formulation for liquid shells and its application to lipid bilayers. Journal of Computational Physics, 2017, 330, 436-466.	1.9	54
184	Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. Journal of Proteome Research, 2017, 16, 504-515.	1.8	22
185	Heat stress-induced activation of a Trichoderma harzianum PIL superfamily gene. Gene Reports, 2017, 6, 44-48.	0.4	0
186	Irreversible thermodynamics of curved lipid membranes. Physical Review E, 2017, 96, 042409.	0.8	32
187	The Shape of Vesicle-Containing Organelles Is Critical for Their Functions in Vesicle Endocytosis. DNA and Cell Biology, 2017, 36, 909-921.	0.9	4
188	Single-molecule imaging of the BAR-domain protein Pil1p reveals filament-end dynamics. Molecular Biology of the Cell, 2017, 28, 2251-2259.	0.9	21
189	Study of the Plasma Membrane Proteome Dynamics Reveals Novel Targets of the Nitrogen Regulation in Yeast. Molecular and Cellular Proteomics, 2017, 16, 1652-1668.	2.5	16
190	MCC/Eisosomes Regulate Cell Wall Synthesis and Stress Responses in Fungi. Journal of Fungi (Basel,) Tj ETQq1 1	0.784314 1.5	rgရီT /Overlo
191	Budding Yeast: An Ideal Backdrop for In vivo Lipid Biochemistry. Frontiers in Cell and Developmental Biology, 2016, 4, 156.	1.8	12
192	The TORC2â€Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules, 2017, 7, 66.	1.8	56
193	Steric exclusion and protein conformation determine the localization of plasma membrane transporters. Nature Communications, 2018, 9, 501.	5.8	65
194	Characterisation of the biological response of Saccharomyces cerevisiae to the loss of an allele of the eukaryotic initiation factor 4A. Biochemical and Biophysical Research Communications, 2018, 496, 1082-1087.	1.0	0
195	The Fungal MCC/Eisosome Complex: An Unfolding Story. , 2018, , 119-130.		2
196	Eisosomes. Current Biology, 2018, 28, R376-R378.	1.8	24
197	Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3145-E3154.	3.3	66
198	Heterologous mammalian Akt disrupts plasma membrane homeostasis by taking over TORC2 signaling in Saccharomyces cerevisiae. Scientific Reports, 2018, 8, 7732.	1.6	6
199	Sphingolipids inhibit endosomal recycling of nutrient transporters by inactivating ARF6. Journal of Cell Science, 2018, 131, .	1.2	15
200	Cellular Organization of the Gastrointestinal Tract. , 2018, , 107-199.		0

#	Article	IF	CITATIONS
201	Functional patchworking at the plasma membrane. EMBO Journal, 2018, 37, .	3.5	4
202	Phosphatidylserine and GTPase activation control Cdc42 nanoclustering to counter dissipative diffusion. Molecular Biology of the Cell, 2018, 29, 1299-1310.	0.9	40
203	Lateral plasma membrane compartmentalization links protein function and turnover. EMBO Journal, 2018, 37, .	3.5	53
204	The role of mitochondria in anchoring dynein to the cell cortex extends beyond clustering the anchor protein. Cell Cycle, 2018, 17, 1345-1357.	1.3	18
205	Correlative Microscopy of Vitreous Sections Provides Insights into BAR-Domain Organization In Situ. Structure, 2018, 26, 879-886.e3.	1.6	43
206	The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride. Scientific Reports, 2018, 8, 12064.	1.6	25
207	Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nature Cell Biology, 2018, 20, 1043-1051.	4.6	114
208	Mechanical signals regulate TORC2 activity. Nature Cell Biology, 2018, 20, 994-995.	4.6	3
209	Eisosomes are metabolically regulated storage compartments for APC-type nutrient transporters. Molecular Biology of the Cell, 2018, 29, 2113-2127.	0.9	40
210	Role of MCC/Eisosome in Fungal Lipid Homeostasis. Biomolecules, 2019, 9, 305.	1.8	36
211	Proteome analysis of Candida albicans cells undergoing chlamydosporulation. Journal of Proteins and Proteomics, 2019, 10, 269-290.	1.0	3
212	Regulation of Amino Acid Transport in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	65
213	Fungal plasma membrane domains. FEMS Microbiology Reviews, 2019, 43, 642-673.	3.9	46
214	Genome-Wide Studies of Rho5-Interacting Proteins That Are Involved in Oxidant-Induced Cell Death in Budding Yeast. G3: Genes, Genomes, Genetics, 2019, 9, 921-931.	0.8	9
215	Back to the Salt Mines: Genome and Transcriptome Comparisons of the Halophilic Fungus Aspergillus salisburgensis and Its Halotolerant Relative Aspergillus sclerotialis. Genes, 2019, 10, 381.	1.0	17
216	Regulation of TORC2 function and localization by Rab5 GTPases in Saccharomyces cerevisiae. Cell Cycle, 2019, 18, 1084-1094.	1.3	6
217	Asymmetric distribution of glucose transporter mRNA provides a growth advantage in yeast. EMBO Journal, 2019, 38, .	3.5	9
218	Lipid determinants of endocytosis and exocytosis in budding yeast. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1005-1016.	1.2	22

#	Article	IF	CITATIONS
219	Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe. Acta Biomaterialia, 2019, 90, 324-336.	4.1	22
220	The Yin and Yang of Current Antifungal Therapeutic Strategies: How Can We Harness Our Natural Defenses?. Frontiers in Pharmacology, 2019, 10, 80.	1.6	49
221	Role of membrane compartment occupied by Can1 (MCC) and eisosome subdomains in plant pathogenicity of the necrotrophic fungus Alternaria brassicicola. BMC Microbiology, 2019, 19, 295.	1.3	6
222	<i>Magnaporthe oryzae</i> Abp1, a MoArk1 Kinase-Interacting Actin Binding Protein, Links Actin Cytoskeleton Regulation to Growth, Endocytosis, and Pathogenesis. Molecular Plant-Microbe Interactions, 2019, 32, 437-451.	1.4	11
223	A conserved mechanism for mitochondria-dependent dynein anchoring. Molecular Biology of the Cell, 2019, 30, 691-702.	0.9	19
224	Yeast transformation efficiency is enhanced by TORC 1―and eisosomeâ€dependent signaling. MicrobiologyOpen, 2019, 8, e00730.	1.2	5
225	The Composition and the Structure of MCC/Eisosomes in Neurospora crassa. Frontiers in Microbiology, 2020, 11, 2115.	1.5	3
226	The Sur7/Pall family transmembrane protein Tos7 (Yol019w) plays a role in secretion in budding yeast. Fungal Genetics and Biology, 2020, 144, 103467.	0.9	0
227	The yeast α-arrestin Art3 is a key regulator for arginine-induced endocytosis of the high-affinity proline transporter Put4. Biochemical and Biophysical Research Communications, 2020, 531, 416-421.	1.0	16
228	Sphingolipidâ€enriched domains in fungi. FEBS Letters, 2020, 594, 3698-3718.	1.3	19
229	Plasma Membrane MCC/Eisosome Domains Promote Stress Resistance in Fungi. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	30
230	Hog1 Controls Lipids Homeostasis Upon Osmotic Stress in Candida albicans. Journal of Fungi (Basel,) Tj ETQq1 1	0.784314 1.5	• rgBT /Over
231	The RNA fold interactome of evolutionary conserved RNA structures in S. cerevisiae. Nature Communications, 2020, 11, 2789.	5.8	11
232	Protein phosphorylation networks in spargana of Spirometra erinaceieuropaei revealed by phosphoproteomic analysis. Parasites and Vectors, 2020, 13, 248.	1.0	8
233	Subcellular localization of Sur7 and its pleiotropic effect on cell wall integrity, multiple stress responses, and virulence of Beauveria bassiana. Applied Microbiology and Biotechnology, 2020, 104, 6669-6678.	1.7	6
234	Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules, 2020, 10, 871.	1.8	9
235	Stress granules sense metabolic stress at the plasma membrane and potentiate recovery by storing active Pkc1. Science Signaling, 2020, 13, .	1.6	18
236	Plasma Membrane Furrows Control Plasticity of ER-PM Contacts. Cell Reports, 2020, 30, 1434-1446.e7.	2.9	18

#	Article	IF	CITATIONS
237	Correlating single-molecule characteristics of the yeast aquaglyceroporin Fps1 with environmental perturbations directly in living cells. Methods, 2021, 193, 46-53.	1.9	10
238	Lymphocyteâ€specific protein 1 (LSP1) regulates bone marrow stromal cell antigen 2 (BSTâ€2)â€mediated intracellular trafficking of HIVâ€1 in dendritic cells. FEBS Letters, 2020, 594, 1947-1959.	1.3	3
239	Overview of Alternaria alternata Membrane Proteins. Indian Journal of Microbiology, 2020, 60, 269-282.	1.5	4
240	The αâ€∎rrestin family of ubiquitin ligase adaptors links metabolism with selective endocytosis. Biology of the Cell, 2021, 113, 183-219.	0.7	38
241	A glucose-starvation response governs endocytic trafficking and eisosomal retention of surface cargoes in budding yeast. Journal of Cell Science, 2021, 134, .	1.2	23
242	Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Computational and Structural Biotechnology Journal, 2021, 19, 1713-1737.	1.9	22
243	Fungal Extracellular Vesicles in Pathophysiology. Sub-Cellular Biochemistry, 2021, 97, 151-177.	1.0	5
244	The cytoskeleton influences the formation and distribution of eisosomes in Neurospora crassa. Biochemical and Biophysical Research Communications, 2021, 545, 62-68.	1.0	2
245	Characterization of micron-scale protein-depleted plasma membrane domains in phosphatidylserine-deficient yeast cells. Journal of Cell Science, 2022, 135, .	1.2	8
246	A virulence-related lectin traffics into eisosome and contributes to functionality of cytomembrane and cell-wall in the insect-pathogenic fungus Beauveria bassiana. Fungal Biology, 2021, 125, 914-922.	1.1	9
250	Yeast Ist2 Recruits the Endoplasmic Reticulum to the Plasma Membrane and Creates a Ribosome-Free Membrane Microcompartment. PLoS ONE, 2012, 7, e39703.	1.1	71
251	A humanized yeast-based toolkit for monitoring phosphatidylinositol 3-kinase activity at both single cell and population levels. Microbial Cell, 2018, 5, 545-554.	1.4	7
252	Quick-Freeze, Deep-Etch Electron Microscopy Reveals the Characteristic Architecture of the Fission Yeast Spore. Journal of Fungi (Basel, Switzerland), 2021, 7, 7.	1.5	6
253	Eisosomes and membrane compartments in the ascomycetes: A view from Aspergillus nidulans. Communicative and Integrative Biology, 2011, 4, 64-8.	0.6	6
254	Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. ELife, 2019, 8, .	2.8	21
255	Periprotein lipidomes of Saccharomyces cerevisiae provide a flexible environment for conformational changes of membrane proteins. ELife, 2020, 9, .	2.8	43
256	Intimate and Facultative? Regulation of Clathrin-Mediated Endocytosis by the Actin Cytoskeleton. , 2013, , 33-56.		1
263	Physical, genetic and functional interactions between the eisosome protein Pil1 and the MBOAT O-acyltransferase Gup1. FEMS Yeast Research, 2021, 21, .	1.1	0

#	Article	IF	CITATIONS
268	Hierarchical integration of mitochondrial and nuclear positioning pathways by the Num1 EF hand. Molecular Biology of the Cell, 2022, 33, mbcE21120610T.	0.9	4
269	Erg25 Controls Host-Cholesterol Uptake Mediated by Aus1p-Associated Sterol-Rich Membrane Domains in Candida glabrata. Frontiers in Cell and Developmental Biology, 2022, 10, 820675.	1.8	9
270	Coordinated regulation of <scp>TORC2</scp> signaling by <scp>MCC</scp> /eisosomeâ€associated proteins, Pil1 and tetraspan membrane proteins during the stress response. Molecular Microbiology, 2022, 117, 1227-1244.	1.2	9
276	Microdomain Protein Nce102 Is a Local Sensor of Plasma Membrane Sphingolipid Balance. Microbiology Spectrum, 2022, 10, .	1.2	9
278	Correlation analyses reveal differential diffusion behavior of eisosomal proteins between mother and daughter cells. Methods and Applications in Fluorescence, 2022, 10, 044012.	1.1	1
279	Eisosome protein Pil1 regulates mitochondrial morphology, mitophagy, and cell death in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2022, 298, 102533.	1.6	2
280	Loss of Num1-mediated cortical dynein anchoring negatively impacts respiratory growth. Journal of Cell Science, 2022, 135, .	1.2	2
281	The eisosomes contribute to acid tolerance of yeast by maintaining cell membrane integrity. Food Microbiology, 2023, 110, 104157.	2.1	4
282	The Yin-Yang of the Green Fluorescent Protein: Impact on Saccharomyces cerevisiae stress resistance. Journal of Photochemistry and Photobiology B: Biology, 2023, 238, 112603.	1.7	0
284	Lsp1 partially substitutes for Pil1 function in eisosome assembly under stress conditions. Journal of Cell Science, 2023, 136, .	1.2	4
285	A member of the claudin superfamily influences formation of the front domain in pheromone-responding yeast cells. Journal of Cell Science, 2023, 136, .	1.2	1
286	Complementation of an Eisosomal Yeast pil1 Mutant and Characteristics of Eisosomal Distribution in Hyphae of Neurospora crassa Germinating from Two Different Spore Types. Journal of Fungi (Basel,) Tj ETQq1 1 ().7 &\$ 314 r	gBJT /Overlo
287	Divergent Evolution of Early Terrestrial Fungi Reveals the Evolution of Mucormycosis Pathogenicity Factors. Genome Biology and Evolution, 2023, 15, .	1.1	7
304	Pathogenesis of fungal infections. , 2024, , 2797-2812.		0