Glial inhibition of CNS axon regeneration

Nature Reviews Neuroscience 7, 617-627 DOI: 10.1038/nrn1956

Citation Report

#	Article	IF	CITATIONS
1	Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?. Nature Reviews Neuroscience, 2006, 7, 603-616.	4.9	284
5	The P2X7 Receptor: A Key Player in IL-1 Processing and Release. Journal of Immunology, 2006, 176, 3877-3883.	0.4	949
6	Characterization of Myelin Ligand Complexes with Neuronal Nogo-66 Receptor Family Members. Journal of Biological Chemistry, 2007, 282, 5715-5725.	1.6	77
7	The Dawn of Molecular and Cellular Therapies for Traumatic Spinal Cord Injury. , 2007, , 207-220.		0
8	Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury. Brain, 2007, 130, 954-969.	3.7	112
9	Cytoskeletal transition at the paranodes: the Achilles' heel of myelinated axons. Neuron Glia Biology, 2007, 3, 169-178.	2.0	25
10	Inhibiting Epidermal Growth Factor Receptor Improves Structural, Locomotor, Sensory, and Bladder Recovery from Experimental Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 6428-6435.	1.7	103
11	Rho Regulates Membrane Transport in the Endocytic Pathway to Control Plasma Membrane Specialization in Oligodendroglial Cells. Journal of Neuroscience, 2007, 27, 3560-3570.	1.7	50
12	Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes and Development, 2007, 21, 3258-3271.	2.7	59
13	Gangliosides and Nogo Receptors Independently Mediate Myelin-associated Glycoprotein Inhibition of Neurite Outgrowth in Different Nerve Cells. Journal of Biological Chemistry, 2007, 282, 27875-27886.	1.6	81
14	Cholera toxin induces malignant glioma cell differentiation via the PKA/CREB pathway. Proceedings of the United States of America, 2007, 104, 13438-13443.	3.3	66
15	Spinal cord injury – scientific challenges for the unknown future. Upsala Journal of Medical Sciences, 2007, 112, 259-288.	0.4	31
16	The Inhibition Site on Myelin-Associated Glycoprotein Is within Ig-Domain 5 and Is Distinct from the Sialic Acid Binding Site. Journal of Neuroscience, 2007, 27, 9146-9154.	1.7	30
17	Introduction: The Use of Animal Research in Developing Treatments for Human Motor Disorders: Brain-Computer Interfaces and the Regeneration of Damaged Brain Circuits. ILAR Journal, 2007, 48, 313-316.	1.8	1
18	Regulation of intrinsic neuronal properties for axon growth and regeneration. Progress in Neurobiology, 2007, 81, 1-28.	2.8	134
19	BMP inhibits neurite growth by a mechanism dependent on LIM-kinase. Biochemical and Biophysical Research Communications, 2007, 360, 868-873.	1.0	18
20	Interactive effects of C3, cyclic AMP and ciliary neurotrophic factor on adult retinal ganglion cell survival and axonal regeneration. Molecular and Cellular Neurosciences, 2007, 34, 88-98.	1.0	50
21	GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Molecular and Cellular Neurosciences, 2007, 36, 185-194.	1.0	55

#	Article	IF	CITATIONS
22	Repulsion of cerebellar granule neurons by chondroitin sulfate proteoglycans is mediated by MAPK pathway. Neuroscience Letters, 2007, 423, 62-67.	1.0	16
23	Repair of injured fiber tracts in the mammalian central nervous system. International Congress Series, 2007, 1302, 131-140.	0.2	2
24	Skin-Derived Precursors Generate Myelinating Schwann Cells That Promote Remyelination and Functional Recovery after Contusion Spinal Cord Injury. Journal of Neuroscience, 2007, 27, 9545-9559.	1.7	279
25	Spinal Cord Injury: Time to Move?. Journal of Neuroscience, 2007, 27, 11782-11792.	1.7	270
26	Polydendrocytes: NG2 Cells with Many Roles in Development and Repair of the CNS. Neuroscientist, 2007, 13, 62-76.	2.6	147
27	Repair of spinal cord transection and its effects on muscle mass and myosin heavy chain isoform phenotype. Journal of Applied Physiology, 2007, 103, 1808-1814.	1.2	15
28	Navigating their way to the clinic: Emerging roles for axon guidance molecules in neurological disorders and injury. Developmental Neurobiology, 2007, 67, 1216-1231.	1.5	74
29	Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy. Journal of Comparative Neurology, 2007, 502, 1079-1097.	0.9	44
30	Roles of glial p75NTR in axonal regeneration. Journal of Neuroscience Research, 2007, 85, 1601-1605.	1.3	37
31	Regeneration and Plasticity in the Brain and Spinal Cord. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1417-1430.	2.4	44
32	Repair of neural pathways by olfactory ensheathing cells. Nature Reviews Neuroscience, 2007, 8, 312-319.	4.9	173
34	Cellular dynamics underlying regeneration of damaged axons differs from initial axon development. European Journal of Neuroscience, 2007, 26, 1100-1108.	1.2	23
35	Stem cells and neurological diseases. Cell Proliferation, 2008, 41, 94-114.	2.4	165
36	Myelin-associated glycoprotein (MAG): past, present and beyond. Journal of Neurochemistry, 2007, 100, 070214184024009-???.	2.1	247
37	Recognition molecules and neural repair. Journal of Neurochemistry, 2007, 101, 865-882.	2.1	95
38	New insight into the molecular pathways of metallothioneinâ€mediated neuroprotection and regeneration. Journal of Neurochemistry, 2008, 104, 14-20.	2.1	65
39	Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats. Brain Research, 2007, 1149, 172-180.	1.1	70
40	The role of extracellular matrix in CNS regeneration. Current Opinion in Neurobiology, 2007, 17, 120-127.	2.0	432

#	Article	IF	CITATIONS
41	Patterned PLG substrates for localized DNA delivery and directed neurite extension. Biomaterials, 2007, 28, 2603-2611.	5.7	66
42	On the presence of neurotrophin p75 receptor on rat sympathetic cerebrovascular nerves. Journal of Molecular Histology, 2008, 39, 57-68.	1.0	2
43	Disinhibition of neurite growth to repair the injured adult CNS: Focusing on Nogo. Cellular and Molecular Life Sciences, 2008, 65, 161-176.	2.4	113
44	Molecular and Cellular Basis of Regeneration and Tissue Repair. Cellular and Molecular Life Sciences, 2008, 65, 45-53.	2.4	21
45	Locomotor Dysfunction and Pain: The Scylla and Charybdis of Fiber Sprouting After Spinal Cord Injury. Molecular Neurobiology, 2008, 37, 52-63.	1.9	35
46	Role of Rho kinase pathway in chondroitin sulfate proteoglycanâ€mediated inhibition of neurite outgrowth in PC12 cells. Journal of Neuroscience Research, 2008, 86, 2214-2226.	1.3	54
47	Regeneration of nigrostriatal dopaminergic axons after transplantation of olfactory ensheathing cells and fibroblasts prevents fibrotic scar formation at the lesion site. Journal of Neuroscience Research, 2008, 86, 3140-3150.	1.3	38
48	Tenascinâ€R and axon growthâ€promoting molecules are upâ€regulated in the regenerating visual pathway of the lizard (<i>Gallotia galloti</i>). Developmental Neurobiology, 2008, 68, 899-916.	1.5	23
49	Neural tissue engineering of the CNS using hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 251-263.	1.6	145
50	A high-throughput screen to identify novel compounds to promote neurite outgrowth. Journal of Neuroscience Methods, 2008, 169, 34-42.	1.3	2
51	Actin-binding proteins take the reins in growth cones. Nature Reviews Neuroscience, 2008, 9, 136-147.	4.9	170
52	Can cell therapy heal a spinal cord injury?. Spinal Cord, 2008, 46, 532-539.	0.9	56
53	BMP inhibition enhances axonal growth and functional recovery after spinal cord injury. Journal of Neurochemistry, 2008, 105, 1471-1479.	2.1	86
54	Stimulation of axonal sprouting by trophic factors immobilized within the wound core. Brain Research, 2008, 1209, 49-56.	1.1	18
55	A morphological and electrophysiological study on the postnatal development of oligodendrocyte precursor cells in the rat brain. Brain Research, 2008, 1243, 27-37.	1.1	22
56	Critical period revisited: impact on vision. Current Opinion in Neurobiology, 2008, 18, 101-107.	2.0	307
57	Decorin promotes robust axon growth on inhibitory CSPGs and myelin via a direct effect on neurons. Neurobiology of Disease, 2008, 32, 88-95.	2.1	54
58	Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurgical Focus, 2008, 25, E2.	1.0	627

		CITATION REPORT		
#	Article		IF	CITATIONS
59	Modulating Sema3A signal with a L1 mimetic peptide is not sufficient to promote moto axon regeneration after spinal cord injury. Molecular and Cellular Neurosciences, 2008,	r recovery and 37, 222-235.	1.0	20
60	Termination of lesion-induced plasticity in the mouse barrel cortex in the absence of oligodendrocytes. Molecular and Cellular Neurosciences, 2008, 39, 40-49.		1.0	18
61	Assessment of functional recovery and axonal sprouting in oligodendrocyte-myelin glyc (OMgp) null mice after spinal cord injury. Molecular and Cellular Neurosciences, 2008, 3	oprotein 39, 258-267.	1.0	57
62	The injured nervous system: A Darwinian perspective. Progress in Neurobiology, 2008, 8	86, 48-59.	2.8	59
63	Spinal cord injury: Emerging beneficial role of reactive astrocytes' migration. Interna of Biochemistry and Cell Biology, 2008, 40, 1649-1653.	ational Journal	1.2	101
64	CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regenerat Experimental Neurology, 2008, 209, 294-301.	ion failure.	2.0	880
65	White matter inhibitors in CNS axon regeneration failure. Experimental Neurology, 200	8, 209, 302-312.	2.0	93
66	Aspiration of a cervical spinal contusion injury in preparation for delayed peripheral new does not impair forelimb behavior or axon regeneration. Experimental Neurology, 2008	ve grafting , 210, 489-500.	2.0	53
67	Intraspinal microinjection of chondroitinase ABC following injury promotes axonal rege of a peripheral nerve graft bridge. Experimental Neurology, 2008, 211, 315-319.	neration out	2.0	56
68	Plastic responses to spinal cord injury. Behavioural Brain Research, 2008, 192, 114-123		1.2	15
69	IL-1β promotes neurite outgrowth by deactivating RhoA via p38 MAPK pathway. Bioche Biophysical Research Communications, 2008, 365, 375-380.	emical and	1.0	44
70	Troy/Taj and its role in CNS axon regeneration. Cytokine and Growth Factor Reviews, 20	08, 19, 245-251.	3.2	22
71	Translating Principles of Neural Plasticity Into Research on Speech Motor Control Recov Rehabilitation. Journal of Speech, Language, and Hearing Research, 2008, 51, S240-58.	ery and	0.7	71
72	Absolute Threshold. , 2008, , 3-3.			0
73	Treadmill Training after Spinal Cord Hemisection in Mice Promotes Axonal Sprouting an Formation and Improves Motor Recovery. Journal of Neurotrauma, 2008, 25, 449-465.	d Synapse	1.7	114
74	Another Barrier to Regeneration in the CNS: Activated Macrophages Induce Extensive R Dystrophic Axons through Direct Physical Interactions. Journal of Neuroscience, 2008, 2	etraction of 28, 9330-9341.	1.7	304
75	Adaptive changes in the injured spinal cord and their role in promoting functional recov Neurological Research, 2008, 30, 17-27.	ery	0.6	65
76	Axon regeneration inhibitors. Neurological Research, 2008, 30, 1047-1052.		0.6	21

#	Article	IF	CITATIONS
77	Real-time multi-site multi-parametric monitoring of rat brain subjected to traumatic brain injury. Neurological Research, 2008, 30, 1075-1083.	0.6	17
78	Neuronal Plasticity and Functional Recovery After Ischemic Stroke. Topics in Stroke Rehabilitation, 2008, 15, 42-50.	1.0	55
79	Repulsive Wnt Signaling Inhibits Axon Regeneration after CNS Injury. Journal of Neuroscience, 2008, 28, 8376-8382.	1.7	144
80	Axonal Injury and Regeneration in the Adult Brain of Drosophila. Journal of Neuroscience, 2008, 28, 6010-6021.	1.7	109
81	Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function. Journal of Neuroscience, 2008, 28, 11998-12009.	1.7	102
82	Regenerative Growth of Corticospinal Tract Axons via the Ventral Column after Spinal Cord Injury in Mice. Journal of Neuroscience, 2008, 28, 6836-6847.	1.7	79
83	Constraint-Induced Movement Therapy in the Adult Rat after Unilateral Corticospinal Tract Injury. Journal of Neuroscience, 2008, 28, 9386-9403.	1.7	215
84	Overcoming Inhibitions. Science, 2008, 322, 869-872.	6.0	16
85	Synaptic Function for the Nogo-66 Receptor NgR1: Regulation of Dendritic Spine Morphology and Activity-Dependent Synaptic Strength. Journal of Neuroscience, 2008, 28, 2753-2765.	1.7	152
86	Redefining the Role of Metallothionein within the Injured Brain. Journal of Biological Chemistry, 2008, 283, 15349-15358.	1.6	130
87	Requirement of Myeloid Cells for Axon Regeneration. Journal of Neuroscience, 2008, 28, 9363-9376.	1.7	214
88	Current status of experimental cell replacement approaches to spinal cord injury. Neurosurgical Focus, 2008, 24, E19.	1.0	90
89	Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science, 2008, 322, 963-966.	6.0	1,455
90	New Targets of Neuroprotection in Ischemic Stroke. Scientific World Journal, The, 2008, 8, 698-712.	0.8	16
91	Ndel1 Promotes Axon Regeneration via Intermediate Filaments. PLoS ONE, 2008, 3, e2014.	1.1	37
92	Reactive Astrocytes in Glial Scar Attract Olfactory Ensheathing Cells Migration by Secreted TNF-α in Spinal Cord Lesion of Rat. PLoS ONE, 2009, 4, e8141.	1.1	49
93	Combining Peripheral Nerve Grafts and Chondroitinase Promotes Functional Axonal Regeneration in the Chronically Injured Spinal Cord. Journal of Neuroscience, 2009, 29, 14881-14890.	1.7	134
94	Spinal Interneuron Axons Spontaneously Regenerate after Spinal Cord Injury in the Adult Feline. Journal of Neuroscience, 2009, 29, 12145-12158.	1.7	77

#	Article	IF	CITATIONS
95	NFIL3 and cAMP Response Element-Binding Protein Form a Transcriptional Feedforward Loop that Controls Neuronal Regeneration-Associated Gene Expression. Journal of Neuroscience, 2009, 29, 15542-15550.	1.7	68
96	Molecular Basis of the Interactions of the Nogo-66 Receptor and Its Homolog NgR2 with Myelin-Associated Glycoprotein: Development of NgR ^{OMNI} -Fc, a Novel Antagonist of CNS Myelin Inhibition. Journal of Neuroscience, 2009, 29, 5768-5783.	1.7	53
97	Increased Synthesis of Spermidine as a Result of Upregulation of Arginase I Promotes Axonal Regeneration in Culture and <i>In Vivo</i> . Journal of Neuroscience, 2009, 29, 9545-9552.	1.7	64
98	The Rheb–mTOR Pathway Is Upregulated in Reactive Astrocytes of the Injured Spinal Cord. Journal of Neuroscience, 2009, 29, 1093-1104.	1.7	136
99	PTPσ Is a Receptor for Chondroitin Sulfate Proteoglycan, an Inhibitor of Neural Regeneration. Science, 2009, 326, 592-596.	6.0	586
100	Mechanically Induced Reactive Gliosis Causes ATP-Mediated Alterations in Astrocyte Stiffness. Journal of Neurotrauma, 2009, 26, 789-797.	1.7	56
101	No Nogo66- and NgR-Mediated Inhibition of Regenerating Axons in the Zebrafish Optic Nerve. Journal of Neuroscience, 2009, 29, 15489-15498.	1.7	41
102	Blockade of Nogo Receptor Ligands Promotes Functional Regeneration of Sensory Axons after Dorsal Root Crush. Journal of Neuroscience, 2009, 29, 6285-6295.	1.7	61
103	Reassessment of Corticospinal Tract Regeneration in Nogo-Deficient Mice. Journal of Neuroscience, 2009, 29, 8649-8654.	1.7	71
104	Multiple Channel Bridges for Spinal Cord Injury: Cellular Characterization of Host Response. Tissue Engineering - Part A, 2009, 15, 3283-3295.	1.6	56
105	Internal regulation of neurite plasticity. Communicative and Integrative Biology, 2009, 2, 318-320.	0.6	1
106	Importance of the vasculature in cyst formation after spinal cord injury. Journal of Neurosurgery: Spine, 2009, 11, 432-437.	0.9	21
107	Targeting a Dominant Negative Rho Kinase to Neurons Promotes Axonal Outgrowth and Partial Functional Recovery After Rat Rubrospinal Tract Lesion. Molecular Therapy, 2009, 17, 2020-2030.	3.7	32
108	Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain, 2009, 132, 2239-2251.	3.7	327
109	Remodeling of the Corticospinal Innervation and Spontaneous Behavioral Recovery After Ischemic Stroke in Adult Mice. Stroke, 2009, 40, 2546-2551.	1.0	87
110	Temporospatial Expression and Cellular Localization of Oligodendrocyte Myelin Glycoprotein (OMgp) after Traumatic Spinal Cord Injury in Adult Rats. Journal of Neurotrauma, 2009, 26, 2299-2311.	1.7	17
111	HDAC6 is a target for protection and regeneration following injury in the nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19599-19604.	3.3	279
112	Gene therapy and transplantation in the retinofugal pathway. Progress in Brain Research, 2009, 175, 151-161.	0.9	40

#	Article	IF	CITATIONS
113	Neuronal Nogo-A Modulates Growth Cone Motility via Rho-GTP/LIMK1/Cofilin in the Unlesioned Adult Nervous System. Journal of Biological Chemistry, 2009, 284, 10793-10807.	1.6	96
114	Cortical Changes Following Spinal Cord Injury with Emphasis on the Nogo Signaling System. Neuroscientist, 2009, 15, 291-299.	2.6	21
115	Overcoming Macrophage-Mediated Axonal Dieback Following CNS Injury. Journal of Neuroscience, 2009, 29, 9967-9976.	1.7	196
116	Neuronal programmed cell death induces glial cell division in the adult <i>Drosophila</i> brain. Development (Cambridge), 2009, 136, 51-59.	1.2	71
117	Gangliosides in cell recognition and membrane protein regulation. Current Opinion in Structural Biology, 2009, 19, 549-557.	2.6	280
118	Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neuroscience, 2009, 10, 35.	0.8	82
119	Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurology, The, 2009, 8, 491-500.	4.9	536
120	Generation of an <i>OMgp</i> allelic series in mice. Genesis, 2009, 47, 751-756.	0.8	19
121	Nerve regeneration following spinal cord injury using matrix metalloproteinaseâ€sensitive, hyaluronic acidâ€based biomimetic hydrogel scaffold containing brainâ€derived neurotrophic factor. Journal of Biomedical Materials Research - Part A, 2010, 93A, 1091-1099.	2.1	110
122	Myelinâ€associated glycoprotein and its axonal receptors. Journal of Neuroscience Research, 2009, 87, 3267-3276.	1.3	133
123	Resection of glial scar following spinal cord injury. Journal of Orthopaedic Research, 2009, 27, 931-936.	1.2	25
124	Profiling RNA interference (RNAi)â€mediated toxicity in neural cultures for effective short interfering RNA design. Journal of Gene Medicine, 2009, 11, 523-534.	1.4	29
125	High resolution neurochemical gold staining method for myelin in peripheral and central nervous system at the light- and electron-microscopic level. Cell and Tissue Research, 2009, 337, 213-221.	1.5	19
126	A Hypothesis About the Relationship of Myelin-Associated Glycoprotein's Function in Myelinated Axons to its Capacity to Inhibit Neurite Outgrowth. Neurochemical Research, 2009, 34, 79-86.	1.6	28
127	The Role of Galectin-3/MAC-2 in the Activation of the Innate-Immune Function of Phagocytosis in Microglia in Injury and Disease. Journal of Molecular Neuroscience, 2009, 39, 99-103.	1.1	101
128	Central Nervous System Regeneration Inhibitors and their Intracellular Substrates. Molecular Neurobiology, 2009, 40, 224-235.	1.9	70
129	Collagens in the developing and diseased nervous system. Cellular and Molecular Life Sciences, 2009, 66, 1223-1238.	2.4	98
130	Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 699-714.	0.7	46

	Сітатіоі	n Report	
#	ARTICLE A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis, Journal	IF	CITATIONS
131	of Tissue Engineering and Regenerative Medicine, 2009, 3, 634-646.	1.3	90
132	Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nature Neuroscience, 2009, 12, 1106-1113.	7.1	194
133	Be careful what you train for. Nature Neuroscience, 2009, 12, 1077-1079.	7.1	10
134	Wnts blow on NeuroD1 to promote adult neuron production and diversity. Nature Neuroscience, 2009, 12, 1079-1081.	7.1	23
135	The bright side of the glial scar in CNS repair. Nature Reviews Neuroscience, 2009, 10, 235-241.	4.9	588
136	Antiâ€Nogoâ€A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates – reâ€examination and extension of behavioral data. European Journal of Neuroscience, 2009, 29, 983-996.	1.2	114
137	Preconditioning selective ventral root injury promotes plasticity of ascending sensory neurons in the injured spinal cord of adult rats – possible roles of brainâ€derived †neurotrophic factor, TrkB and p75 neurotrophin receptor. European Journal of Neuroscience, 2009, 30, 1280-1296.	1.2	17
138	Axonal degeneration and regeneration: a mechanistic tugâ€ofâ€war. Journal of Neurochemistry, 2009, 108, 23-32.	2.1	63
139	Tissue plasminogen activator promotes axonal outgrowth on CNS myelin after conditioned injury. Journal of Neurochemistry, 2009, 109, 706-715.	2.1	30
140	Transgenic inhibition of astroglial NFâ€₽B leads to increased axonal sparing and sprouting following spinal cord injury. Journal of Neurochemistry, 2009, 110, 765-778.	2.1	106
141	KLF Family Members Regulate Intrinsic Axon Regeneration Ability. Science, 2009, 326, 298-301.	6.0	654
142	Emerging cues mediating astroglia lineage restriction of progenitor cells in the injured/diseased adult CNS. Differentiation, 2009, 77, 121-127.	1.0	13
143	Oligodendrocyte precursor cells differentially expressing Nogo-A but not MAG are more permissive to neurite outgrowth than mature oligodendrocytes. Experimental Neurology, 2009, 217, 184-196.	2.0	15
144	A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury. Experimental Neurology, 2009, 219, 163-174.	2.0	40
145	SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo. Neuron, 2009, 64, 617-623.	3.8	442
146	Exogenous CNTF stimulates axon regeneration of retinal ganglion cells partially via endogenous CNTF. Molecular and Cellular Neurosciences, 2009, 41, 233-246.	1.0	154
147	ADAMTS-9 expression is up-regulated following transient middle cerebral artery occlusion (tMCAo) in the rat. Neuroscience Letters, 2009, 452, 252-257.	1.0	17
148	Inhibition of TGF-β1 promotes functional recovery after spinal cord injury. Neuroscience Research, 2009, 65, 393-401.	1.0	56

#	Article	IF	CITATIONS
149	Neurodegenerative Diseases: Tryptophan Metabolism. , 2009, , 2620-2623.		1
150	Synaptic Plasticity, Neurogenesis, and Functional Recovery after Spinal Cord Injury. Neuroscientist, 2009, 15, 149-165.	2.6	81
151	Spinal Cord Injury: experimental animal models and relation to human therapy. , 2009, , 209-237.		13
152	A cell surface interaction network of neural leucine-rich repeat receptors. Genome Biology, 2009, 10, R99.	13.9	63
153	Neural Tube. , 2009, , 2606-2606.		0
155	Molecular targets for axon regeneration: focus on the intrinsic pathways. Expert Opinion on Therapeutic Targets, 2009, 13, 1387-1398.	1.5	57
156	Towards personalized cell-replacement therapies for brain repair. Personalized Medicine, 2009, 6, 293-313.	0.8	1
157	RhoA and Rac1 GTPases play major and differential roles in stromal cell–derived factor-1–induced cell adhesion and chemotaxis in multiple myeloma. Blood, 2009, 114, 619-629.	0.6	103
158	Shengmai-san–Mediated Enhancement of Regenerative Responses of Spinal Cord Axons After Injury in Rats. Journal of Pharmacological Sciences, 2009, 110, 483-492.	1.1	15
159	Brief Electrical Stimulation Accelerates Axon Regeneration in the Peripheral Nervous System and Promotes Sensory Axon Regeneration in the Central Nervous System. Motor Control, 2009, 13, 412-441.	0.3	105
160	Deregulated Sphingolipid Metabolism and Membrane Organization in Neurodegenerative Disorders. Molecular Neurobiology, 2010, 41, 314-340.	1.9	117
161	Transplantation of TAT-Bcl-xL-transduced neural precursor cells: Long-term neuroprotection after stroke. Neurobiology of Disease, 2010, 40, 265-276.	2.1	35
162	Intrinsic response of thoracic propriospinal neurons to axotomy. BMC Neuroscience, 2010, 11, 69.	0.8	43
163	Neuronal intrinsic barriers for axon regeneration in the adult CNS. Current Opinion in Neurobiology, 2010, 20, 510-518.	2.0	179
164	Electrical Activity Suppresses Axon Growth through Cav1.2 Channels in Adult Primary Sensory Neurons. Current Biology, 2010, 20, 1154-1164.	1.8	87
165	Spinal cord injury in vitro: modelling axon growth inhibition. Drug Discovery Today, 2010, 15, 436-443.	3.2	26
166	Therapeutic window for treatment of cortical ischemia with bone marrow-derived cells in rats. Brain Research, 2010, 1306, 149-158.	1.1	103
167	Predifferentiated embryonic stem cells promote functional recovery after spinal cord compressive	1.1	38

		CITATION REPORT		
#	Article		IF	CITATIONS
168	Brain gangliosides in axon–myelin stability and axon regeneration. FEBS Letters, 2010	0, 584, 1741-1747.	1.3	132
169	Microglia, Corticotropin-Releasing Hormone, and Spinal Cord Injury. World Neurosurge 388-389.	ry, 2010, 74,	0.7	4
170	Promising New Aneurysm Occlusion and Clinical Outcome Results from CCT and HELPS Neurosurgery, 2010, 74, 389-390.	S. World	0.7	0
171	Regenerated synapses in lamprey spinal cord are sparse and small even after functional injury. Journal of Comparative Neurology, 2010, 518, 2854-2872.	recovery from	0.9	52
172	Triptolide promotes spinal cord repair by inhibiting astrogliosis and inflammation. Glia, 901-915.	2010, 58,	2.5	59
173	<i>Caenorhabditis elegans</i> : A new model organism for studies of axon regeneration Developmental Dynamics, 2010, 239, 1460-1464.		0.8	46
174	Nanofibrous Patches for Spinal Cord Regeneration. Advanced Functional Materials, 201	.0, 20, 1433-1440.	7.8	44
175	Nogoâ€A antibodies and training reduce muscle spasms in spinal cordâ€injured rats. An 2010, 68, 48-57.	nals of Neurology,	2.8	45
176	Combination of olfactory ensheathing cells with local versus systemic cAMP treatment cervical rubrospinal tract injury. Journal of Neuroscience Research, 2010, 88, 2833-284	after a 6.	1.3	35
177	Lentiviral vectorâ€mediated knockdown of the neuroglycan 2 proteoglycan or expressi neurotrophinâ€3 promotes neurite outgrowth in a cell culture model of the glial scar. Jo Medicine, 2010, 12, 863-872.	on of burnal of Gene	1.4	22
178	Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC f mammalian cells. Journal of Biotechnology, 2010, 145, 103-110.	rom	1.9	60
179	Induction of neuro-protective/regenerative genes in stem cells infiltrating post-ischemic Experimental & Translational Stroke Medicine, 2010, 2, 11.	: brain tissue.	3.2	25
180	Inflammatory chemokine release of astrocytes <i>in vitro</i> is reduced by allâ€ <i>tranacid. Journal of Neurochemistry, 2010, 114, 1511-1526.</i>	ıs<∕i> retinoic	2.1	40
181	Bex1 is involved in the regeneration of axons after injury. Journal of Neurochemistry, 20 910-920.	10, 115,	2.1	31
182	Functions of Nogo proteins and their receptors in the nervous system. Nature Reviews 2010, 11, 799-811.	Neuroscience,	4.9	332
183	Role of Nogo-A in Neuronal Survival in the Reperfused Ischemic Brain. Journal of Cerebra and Metabolism, 2010, 30, 969-984.	al Blood Flow	2.4	77
184	p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivit brain. Nature Neuroscience, 2010, 13, 559-566.	y in the adult	7.1	104
185	Prophylactic dietary restriction may promote functional recovery and increase lifespan cord injury. Annals of the New York Academy of Sciences, 2010, 1198, E1-11.	after spinal	1.8	21

#	Article	IF	CITATIONS
186	Antiâ€Nogo on the go: from animal models to a clinical trial. Annals of the New York Academy of Sciences, 2010, 1198, E22-34.	1.8	164
187	Combined Genetic Attenuation of Myelin and Semaphorin-Mediated Growth Inhibition Is Insufficient to Promote Serotonergic Axon Regeneration. Journal of Neuroscience, 2010, 30, 10899-10904.	1.7	69
188	Constitutive Genetic Deletion of the Growth Regulator Nogo-A Induces Schizophrenia-Related Endophenotypes. Journal of Neuroscience, 2010, 30, 556-567.	1.7	50
189	Structural Remodeling of Fibrous Astrocytes after Axonal Injury. Journal of Neuroscience, 2010, 30, 14008-14019.	1.7	109
190	Sialidase enhances recovery from spinal cord contusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11561-11566.	3.3	71
191	Oligodendrocyte-Myelin Glycoprotein and Nogo Negatively Regulate Activity-Dependent Synaptic Plasticity. Journal of Neuroscience, 2010, 30, 12432-12445.	1.7	132
192	Neuronal Nogo-A regulates neurite fasciculation, branching and extension in the developing nervous system. Development (Cambridge), 2010, 137, 2539-2550.	1.2	87
193	Four Steps to Optic Nerve Regeneration. Journal of Neuro-Ophthalmology, 2010, 30, 347-360.	0.4	53
194	Neuropilin 1 Directly Interacts with Fer Kinase to Mediate Semaphorin 3A-induced Death of Cortical Neurons. Journal of Biological Chemistry, 2010, 285, 9908-9918.	1.6	39
195	Pincher-generated Nogo-A endosomes mediate growth cone collapse and retrograde signaling. Journal of Cell Biology, 2010, 188, 271-285.	2.3	80
196	Calcium and Cyclic AMP Promote Axonal Regeneration in Caenorhabditis elegans and Require DLK-1 Kinase. Journal of Neuroscience, 2010, 30, 3175-3183.	1.7	260
197	MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. Journal of Neuroscience, 2010, 30, 6825-6837.	1.7	237
198	Clial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury. Journal of Neurosurgery: Spine, 2010, 13, 169-180.	0.9	92
199	Genetic Deletion of Paired Immunoglobulin-Like Receptor B Does Not Promote Axonal Plasticity or Functional Recovery after Traumatic Brain Injury. Journal of Neuroscience, 2010, 30, 13045-13052.	1.7	56
200	Nogo-A Regulates Neural Precursor Migration in the Embryonic Mouse Cortex. Cerebral Cortex, 2010, 20, 2380-2390.	1.6	63
201	A New Role for RPTPσ in Spinal Cord Injury: Signaling Chondroitin Sulfate Proteoglycan Inhibition. Science Signaling, 2010, 3, pe6.	1.6	31
202	Guidance Molecules in Axon Regeneration. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001867-a001867.	2.3	306
203	Study Glial Cell Heterogeneity Influence on Axon Growth Using a New Coculture Method. Journal of Visualized Experiments, 2010, , .	0.2	3

# 204	ARTICLE A Method for Preparing Primary Retinal Cell Cultures for Evaluating the Neuroprotective and Neuritogenic Effect of Factors on Axotomized Mature CNS Neurons. Current Protocols in Neuroscience, 2010, 53, Unit3.22.	IF 2.6	CITATIONS 33
205	Myelin-Associated Glycoprotein (MAG) Protects Neurons from Acute Toxicity Using a Ganglioside-Dependent Mechanism. ACS Chemical Neuroscience, 2010, 1, 215-222.	1.7	34
206	An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury. Molecular and Cellular Neurosciences, 2010, 43, 177-187.	1.0	51
207	High content screening of cortical neurons identifies novel regulators of axon growth. Molecular and Cellular Neurosciences, 2010, 44, 43-54.	1.0	110
208	Is multiple sclerosis a mitochondrial disease?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 66-79.	1.8	194
209	ProBDNF inhibits infiltration of ED1+ macrophages after spinal cord injury. Brain, Behavior, and Immunity, 2010, 24, 585-597.	2.0	51
210	Assessing Spinal Axon Regeneration and Sprouting in Nogo-, MAG-, and OMgp-Deficient Mice. Neuron, 2010, 66, 663-670.	3.8	281
211	Much Ado about Nogo. Neuron, 2010, 66, 619-621.	3.8	8
212	Metallothionein induces a regenerative reactive astrocyte phenotype via JAK/STAT and RhoA signalling pathways. Experimental Neurology, 2010, 221, 98-106.	2.0	45
213	Bone morphogenetic proteins mediate cellular response and, together with Noggin, regulate astrocyte differentiation after spinal cord injury. Experimental Neurology, 2010, 221, 353-366.	2.0	76
214	PTEN/mTOR and axon regeneration. Experimental Neurology, 2010, 223, 45-50.	2.0	243
215	Peripheral nerve grafts after cervical spinal cord injury in adult cats. Experimental Neurology, 2010, 225, 173-182.	2.0	44
216	Intrinsic control of axon regeneration. Journal of Biomedical Research, 2010, 24, 2-5.	0.7	19
217	Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases. , 2010, , .		87
218	New platform for controlled and sustained delivery of the EGF receptor tyrosine kinase inhibitor AG1478 using poly(lactic-co-glycolic acid) microspheres. Journal of Microencapsulation, 2010, 27, 263-271.	1.2	5
219	Interferon-Î ³ Decreases Chondroitin Sulfate Proteoglycan Expression and Enhances Hindlimb Function after Spinal Cord Injury in Mice. Journal of Neurotrauma, 2010, 27, 2283-2294.	1.7	18
220	Alignment of Astrocytes Increases Neuronal Growth in Three-Dimensional Collagen Gels and Is Maintained Following Plastic Compression to Form a Spinal Cord Repair Conduit. Tissue Engineering - Part A, 2010, 16, 3173-3184.	1.6	100
221	Mammalian Target of Rapamycin (mTOR) Activation Increases Axonal Growth Capacity of Injured Peripheral Nerves. Journal of Biological Chemistry, 2010, 285, 28034-28043.	1.6	190

#	Article	IF	CITATIONS
222	TAT-NEP1-40 as a novel therapeutic candidate for axonal regeneration and functional recovery after stroke. Journal of Drug Targeting, 2011, 19, 86-95.	2.1	30
223	Human Dental Pulp Cells: A New Source of Cell Therapy in a Mouse Model of Compressive Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1939-1949.	1.7	72
224	Nano-textured self-assembled aligned collagen hydrogels promote directional neurite guidance and overcome inhibition by myelin associated glycoprotein. Soft Matter, 2011, 7, 2770.	1.2	72
225	Delayed Anti-Nogo-A Therapy Improves Function After Chronic Stroke in Adult Rats. Stroke, 2011, 42, 186-190.	1.0	93
226	Delayed Intrathecal Delivery of RhoA siRNA to the Contused Spinal Cord Inhibits Allodynia, Preserves White Matter, and Increases Serotonergic Fiber Growth. Journal of Neurotrauma, 2011, 28, 1063-1076.	1.7	32
227	Materials for central nervous system regeneration: bioactive cues. Journal of Materials Chemistry, 2011, 21, 7033.	6.7	42
228	Extrinsic and intrinsic determinants of nerve regeneration. Journal of Tissue Engineering, 2011, 2, 204173141141839.	2.3	55
229	Reactive Astrocytes Inhibit the Survival and Differentiation of Oligodendrocyte Precursor Cells by Secreted TNF-α. Journal of Neurotrauma, 2011, 28, 1089-1100.	1.7	91
230	Spinal cord repair in regeneration-competent vertebrates: Adult teleost fish as a model system. Brain Research Reviews, 2011, 67, 73-93.	9.1	52
231	Tissue Engineering of Organs: Brain Tissues. , 2011, , 457-492.		1
231 232	Tissue Engineering of Organs: Brain Tissues. , 2011, , 457-492. Neuronal Intrinsic Mechanisms of Axon Regeneration. Annual Review of Neuroscience, 2011, 34, 131-152.	5.0	1 404
231 232 233	Tissue Engineering of Organs: Brain Tissues. , 2011, , 457-492. Neuronal Intrinsic Mechanisms of Axon Regeneration. Annual Review of Neuroscience, 2011, 34, 131-152. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain, 2011, 134, 2197-2221.	5.0 8.7	1 404 448
231 232 233 233	Tissue Engineering of Organs: Brain Tissues. , 2011, , 457-492. Neuronal Intrinsic Mechanisms of Axon Regeneration. Annual Review of Neuroscience, 2011, 34, 131-152. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain, 2011, 134, 2197-2221. Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain, 2011, 134, 1587-1590.	5.0 3.7 3.7	1 404 448 5
231 232 233 234 235	Tissue Engineering of Organs: Brain Tissues., 2011,, 457-492.Neuronal Intrinsic Mechanisms of Axon Regeneration. Annual Review of Neuroscience, 2011, 34, 131-152.Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain, 2011, 134, 2197-2221.Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain, 2011, 134, 1587-1590.Secretion of bacterial chondroitinase ABC from bone marrow stromal cells by glycosylation site mutation: A promising approach for axon regeneration. Medical Hypotheses, 2011, 77, 914-916.	5.0 3.7 3.7 0.8	1 404 448 5
231 232 233 234 235 236	Tissue Engineering of Organs: Brain Tissues. , 2011, , 457-492.Neuronal Intrinsic Mechanisms of Axon Regeneration. Annual Review of Neuroscience, 2011, 34, 131-152.Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain, 2011, 134, 2197-2221.Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain, 2011, 134, 1587-1590.Secretion of bacterial chondroitinase ABC from bone marrow stromal cells by glycosylation site mutation: A promising approach for axon regeneration. Medical Hypotheses, 2011, 77, 914-916.Reactivation of visual cortical plasticity by NEP1-40 from early monocular deprivation in adult rats. Neuroscience Letters, 2011, 494, 196-201.	5.0 3.7 3.7 0.8 1.0	1 404 448 5 4
 231 232 233 234 235 236 237 	Issue Engineering of Organs: Brain Tissues., 2011, , 457-492.Neuronal Intrinsic Mechanisms of Axon Regeneration. Annual Review of Neuroscience, 2011, 34, 131-152.Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain, 2011, 134, 2197-2221.Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain, 2011, 134, 1587-1590.Secretion of bacterial chondroitinase ABC from bone marrow stromal cells by glycosylation site mutation: A promising approach for axon regeneration. Medical Hypotheses, 2011, 77, 914-916.Reactivation of visual cortical plasticity by NEP1-40 from early monocular deprivation in adult rats.Reactivation of visual cortical plasticity by NEP1-40 from early monocular deprivation in adult rats.Age-related changes in myelin morphology, electrophysiological property and myelin-associated protein expression of mouse sciatic nerves. Neuroscience Letters, 2011, 502, 162-167.	5.0 3.7 3.7 0.8 1.0	1 404 448 5 4 5 21
 231 232 233 234 235 236 237 238 	Tissue Engineering of Organs: Brain Tissues., 2011,, 457-492.Neuronal Intrinsic Mechanisms of Axon Regeneration. Annual Review of Neuroscience, 2011, 34, 131-152.Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain, 2011,134, 2197-2221.Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain, 2011, 134, 1587-1590.Secretion of bacterial chondroitinase ABC from bone marrow stromal cells by glycosylation site mutation: A promising approach for axon regeneration. Medical Hypotheses, 2011, 77, 914-916.Reactivation of visual cortical plasticity by NEP1-40 from early monocular deprivation in adult rats. Neuroscience Letters, 2011, 494, 196-201.Age-related changes in myelin morphology, electrophysiological property and myelin-associated protein expression of mouse sciatic nerves. Neuroscience Letters, 2011, 502, 162-167.Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury. Neuroscience Research, 2011, 69, 187-195.	5.0 3.7 3.7 0.8 1.0 1.0	1 404 448 5 4 21 25

~			<u> </u>	
(11	ГАТ	10N	RED	NUBL
\sim	17.51			

#	Article	IF	CITATIONS
240	A novel role for PTEN in the inhibition of neurite outgrowth by myelin-associated glycoprotein in cortical neurons. Molecular and Cellular Neurosciences, 2011, 46, 235-244.	1.0	28
241	Krüppel-like transcription factors in the nervous system: Novel players in neurite outgrowth and axon regeneration. Molecular and Cellular Neurosciences, 2011, 47, 233-243.	1.0	93
242	Protease Regulation: The Yin and Yang of Neural Development and Disease. Neuron, 2011, 72, 9-21.	3.8	64
243	Axotomy-induced cytoskeleton changes in unmyelinated mammalian central nervous system axons. Neuroscience, 2011, 177, 269-282.	1.1	10
244	Influence of central glia on spiral ganglion neuron neurite growth. Neuroscience, 2011, 177, 321-334.	1.1	35
245	Bioengineered Scaffolds for Spinal Cord Repair. Tissue Engineering - Part B: Reviews, 2011, 17, 177-194.	2.5	75
246	Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. Journal of Clinical Investigation, 2012, 122, 80-90.	3.9	396
247	The Molecular Mechanism for Differentiation Therapy of Malignant Glioma. , 0, , .		1
248	ROCKing regeneration: Rho kinase inhibition as molecular target for neurorestoration. Frontiers in Molecular Neuroscience, 2011, 4, 39.	1.4	83
249	Serum response factor mediated gene activity in physiological and pathological processes of neuronal motility. Frontiers in Molecular Neuroscience, 2011, 4, 49.	1.4	9
250	Activated Microglia Inhibit Axonal Growth through RGMa. PLoS ONE, 2011, 6, e25234.	1.1	96
251	Enhancing Brain Reorganization and Recovery of Function after Stroke. , 2011, , 162-168.		0
252	Comparison of AAV2 and AAV5 in gene transfer in the injured spinal cord of mice. NeuroReport, 2011, 22, 565-569.	0.6	5
253	Adult Stem Cell Transplants for Spinal Cord Injury Repair: Current State in Preclinical Research. Current Stem Cell Research and Therapy, 2011, 6, 273-287.	0.6	62
254	Gene Therapy Approaches for Neuroprotection and Axonal Regeneration after Spinal Cord and Spinal Root Injury. Current Gene Therapy, 2011, 11, 101-115.	0.9	25
255	Nogo-66 receptor activation inhibits neurite outgrowth and increases Î ² -amyloid protein secretion of cortical neurons. Molecular Medicine Reports, 2012, 5, 619-24.	1.1	14
256	MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. European Journal of Neuroscience, 2011, 33, 1587-1597.	1.2	141
257	Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. European Journal of Neuroscience, 2011, 34, 917-929.	1.2	190

#	Article	IF	CITATIONS
258	Combined delivery of Nogo-A antibody, neurotrophin-3 and the NMDA-NR2d subunit establishes a functional â€~detour' in the hemisected spinal cord. European Journal of Neuroscience, 2011, 34, 1256-1267.	1.2	58
259	Myelinâ€associated glycoprotein protects neurons from excitotoxicity. Journal of Neurochemistry, 2011, 116, 900-908.	2.1	26
260	The inhibitory effects of chondroitin sulfate proteoglycans on oligodendrocytes. Journal of Neurochemistry, 2011, 119, 176-188.	2.1	122
261	Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of Trk activity. EMBO Journal, 2011, 30, 1389-1401.	3.5	66
262	Axon regeneration mechanisms: insights from C. elegans. Trends in Cell Biology, 2011, 21, 577-584.	3.6	33
263	Recent advances in artificial nerve conduit design: Strategies for the delivery of luminal fillers. Journal of Controlled Release, 2011, 156, 2-10.	4.8	63
264	A culture model for neurite regeneration of human spinal cord neurons. Journal of Neuroscience Methods, 2011, 201, 346-354.	1.3	9
265	Overcoming Endogenous Constraints on Neuronal Regeneration. IEEE Transactions on Biomedical Engineering, 2011, 58, 1900-1906.	2.5	15
266	Inhibitor of DNA binding 2 promotes sensory axonal growth after SCI. Experimental Neurology, 2011, 231, 38-44.	2.0	32
267	Chondroitin sulphate proteoglycans: Extracellular matrix proteins that regulate immunity of the central nervous system. Autoimmunity Reviews, 2011, 10, 766-772.	2.5	45
268	Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair. Biomaterials, 2011, 32, 8077-8086.	5.7	71
269	Microtubule Stabilization Reduces Scarring and Causes Axon Regeneration After Spinal Cord Injury. Science, 2011, 331, 928-931.	6.0	503
270	Enhancing CNS Repair in Neurological Disease. CNS Drugs, 2011, 25, 555-573.	2.7	45
271	Umbilical cord blood cell transplantation after brain ischemia—From recovery of function to cellular mechanisms. Annals of Anatomy, 2011, 193, 371-379.	1.0	38
272	Combination of Hyaluronic Acid Hydrogel Scaffold and PLGA Microspheres for Supporting Survival of Neural Stem Cells. Pharmaceutical Research, 2011, 28, 1406-1414.	1.7	112
273	Cell Cycle Activation and Spinal Cord Injury. Neurotherapeutics, 2011, 8, 221-228.	2.1	63
274	Wallerian degeneration: the innate-immune response to traumatic nerve injury. Journal of Neuroinflammation, 2011, 8, 109.	3.1	377
275	Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. Journal of Neuroinflammation, 2011, 8, 110.	3.1	647

#	ARTICLE Small molecule inhibitor of type I transforming growth factor. ² recentor binase ameliorates the	IF	Citations
276	inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. Journal of Neuroscience Research, 2011, 89, 381-393.	1.3	31
277	Adenoâ€associated virusâ€mediated human acidic fibroblast growth factor expression promotes functional recovery of spinal cord–contused rats. Journal of Gene Medicine, 2011, 13, 283-289.	1.4	21
278	Dopaminergic pathway reconstruction by Akt/Rhebâ€induced axon regeneration. Annals of Neurology, 2011, 70, 110-120.	2.8	121
279	Systemic inflammation disrupts the developmental program of white matter. Annals of Neurology, 2011, 70, 550-565.	2.8	337
280	Targeted downregulation of <i>N</i> â€acetylgalactosamine 4â€sulfate 6â€ <i>O</i> â€sulfotransferase significantly mitigates chondroitin sulfate proteoglycanâ€mediated inhibition. Glia, 2011, 59, 981-996.	2.5	44
281	Axons with highly branched terminal regions successfully regenerate across spinal midline transections in the adult cat. Journal of Comparative Neurology, 2011, 519, 3240-3258.	0.9	15
282	Axonal regeneration proceeds through specific axonal fusion in transected <i>C. elegans</i> neurons. Developmental Dynamics, 2011, 240, 1365-1372.	0.8	94
283	Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomaterialia, 2011, 7, 1634-1643.	4.1	85
284	The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain, 2011, 134, 2134-2148.	3.7	138
285	Quantitative and phenotypic analysis of bone marrow-derived cells in the intact and inflamed central nervous system. Cell Adhesion and Migration, 2011, 5, 373-381.	1.1	6
286	Facilitating axon regeneration in the injured CNS by microtubules stabilization. Communicative and Integrative Biology, 2011, 4, 391-393.	0.6	41
287	The p75 receptor mediates axon growth inhibition through an association with PIR-B. Cell Death and Disease, 2011, 2, e198-e198.	2.7	48
288	Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5057-5062.	3.3	127
289	Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19042-19047.	3.3	92
290	<i>In Vivo</i> Imaging of Dorsal Root Regeneration: Rapid Immobilization and Presynaptic Differentiation at the CNS/PNS Border. Journal of Neuroscience, 2011, 31, 4569-4582.	1.7	95
291	Ectopic myelinating oligodendrocytes in the dorsal spinal cord as a consequence of altered semaphorin 6D signaling inhibit synapse formation. Development (Cambridge), 2011, 138, 4085-4095.	1.2	45
292	Taxol Facilitates Axon Regeneration in the Mature CNS. Journal of Neuroscience, 2011, 31, 2688-2699.	1.7	228
293	Central Nervous System Tissue Engineering: Current Considerations and Strategies. Synthesis Lectures on Tissue Engineering, 2011, 3, 1-120.	0.3	7

#	Article	IF	CITATIONS
294	Cartilage Acidic Protein–1B (LOTUS), an Endogenous Nogo Receptor Antagonist for Axon Tract Formation. Science, 2011, 333, 769-773.	6.0	86
295	NogoA restricts synaptic plasticity in the adult hippocampus on a fast time scale. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2569-2574.	3.3	116
296	Paired Immunoglobulin-like Receptor B Knockout Does Not Enhance Axonal Regeneration or Locomotor Recovery after Spinal Cord Injury. Journal of Biological Chemistry, 2011, 286, 1876-1883.	1.6	61
297	Alpha-Crystallin Promotes Rat Retinal Neurite Growth on Myelin Substrates in vitro. Ophthalmic Research, 2011, 45, 164-168.	1.0	14
298	Therapeutic stem cell plasticity orchestrates tissue plasticity. Brain, 2011, 134, 1585-1587.	3.7	24
299	Nerve Tissue Engineering. , 2011, , 435-453.		2
300	Lentivirus-siNgR199 Promotes Axonal Regeneration and Functional Recovery in Rats. International Journal of Neuroscience, 2012, 122, 133-139.	0.8	7
301	The translational dialogue in spinal cord injury research. Spinal Cord, 2012, 50, 352-357.	0.9	27
302	Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9155-9160.	3.3	87
303	Regeneration of <i>Drosophila</i> sensory neuron axons and dendrites is regulated by the Akt pathway involving <i>Pten</i> and microRNA <i>bantam</i> . Genes and Development, 2012, 26, 1612-1625.	2.7	154
304	Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1299-1304.	3.3	196
305	Neuronal growth cones respond to laser-induced axonal damage. Journal of the Royal Society Interface, 2012, 9, 535-547.	1.5	17
306	Thy1 Associates with the Cation Channel Subunit HCN4 in Adult Rat Retina. , 2012, 53, 1696.		11
307	A sulfated carbohydrate epitope inhibits axon regeneration after injury. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4768-4773.	3.3	136
308	Chondroitinase ABC promotes selective reactivation of somatosensory cortex in squirrel monkeys after a cervical dorsal column lesion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2595-2600.	3.3	104
309	Need for a paradigm shift in therapeutic approaches to CNS injury. Expert Review of Neurotherapeutics, 2012, 12, 409-420.	1.4	8
311	Mitochondrial Dynamics Regulate Growth Cone Motility, Guidance, and Neurite Growth Rate in Perinatal Retinal Ganglion Cells In Vitro. , 2012, 53, 7402.		51
312	LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin. Journal of Cell Science, 2013, 126, 209-220.	1.2	58

#	Article	IF	CITATIONS
313	The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth. Development (Cambridge), 2012, 139, 3600-3612.	1.2	32
314	A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2230-9.	3.3	218
315	Genetic Study of Axon Regeneration with Cultured Adult Dorsal Root Ganglion Neurons. Journal of Visualized Experiments, 2012, , .	0.2	26
316	Promotion of Neuronal Recovery Following Experimental SCI via Direct Inhibition of Glial Scar Formation. Neurosurgery, 2012, 70, N10-N11.	0.6	4
317	Epigenetic regulation of axon and dendrite growth. Frontiers in Molecular Neuroscience, 2012, 5, 24.	1.4	36
318	Regenerative Neurogenesis from Neural Progenitor Cells Requires Injury-Induced Expression of Gata3. Developmental Cell, 2012, 23, 1230-1237.	3.1	146
319	Neural Regeneration in <i>Caenorhabditis elegans</i> . Annual Review of Genetics, 2012, 46, 499-513.	3.2	36
320	Proteomic Analysis of Alterations Induced by Perinatal Hypoxic–Ischemic Brain Injury. Journal of Proteome Research, 2012, 11, 5794-5803.	1.8	19
321	Intrinsic Mechanisms Regulating Axon Regeneration. International Review of Neurobiology, 2012, 106, 75-104.	0.9	17
322	Discovery of potent inhibitors of receptor protein tyrosine phosphatase sigma through the structure-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6333-6337.	1.0	15
323	Structural Remodeling of Astrocytes in the Injured CNS. Neuroscientist, 2012, 18, 567-588.	2.6	142
324	Delayed Anti-Nogo-A Antibody Application after Spinal Cord Injury Shows Progressive Loss of Responsiveness. Journal of Neurotrauma, 2012, 29, 567-578.	1.7	42
325	Injectable hydrogel materials for spinal cord regeneration: a review. Biomedical Materials (Bristol), 2012, 7, 012001.	1.7	232
326	No simpler than mammals: axon and dendrite regeneration in Drosophila. Genes and Development, 2012, 26, 1509-1514.	2.7	15
327	Notch Signaling Inhibits Axon Regeneration. Neuron, 2012, 73, 268-278.	3.8	97
328	The Nogo Receptor Family Restricts Synapse Number in the Developing Hippocampus. Neuron, 2012, 73, 466-481.	3.8	119
329	Sensory axon regeneration: rebuilding functional connections in the spinal cord. Trends in Neurosciences, 2012, 35, 156-163.	4.2	60
330	Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends in Neurosciences, 2012, 35, 164-174.	4.2	99

#	Article	IF	CITATIONS
331	Ethyl pyruvate promotes spinal cord repair by ameliorating the glial microenvironment. British Journal of Pharmacology, 2012, 166, 749-763.	2.7	22
332	Neurite outgrowth is differentially impacted by distinct immune cell subsets. Molecular and Cellular Neurosciences, 2012, 49, 68-76.	1.0	20
333	Neuronal cadherin (NCAD) increases sensory neurite formation and outgrowth on astrocytes. Neuroscience Letters, 2012, 522, 108-112.	1.0	8
334	Transient changes in spinal cord glial cells following transection of preganglionic sympathetic axons. Autonomic Neuroscience: Basic and Clinical, 2012, 168, 32-42.	1.4	7
335	The carboxyl-terminal region of Crtac1B/LOTUS acts as a functional domain in endogenous antagonism to Nogo receptor-1. Biochemical and Biophysical Research Communications, 2012, 418, 390-395.	1.0	19
336	Cortical electrical stimulation with varied low frequencies promotes functional recovery and brain remodeling in a rat model of ischemia. Brain Research Bulletin, 2012, 89, 124-132.	1.4	17
337	Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries. Drug Discovery Today, 2012, 17, 861-868.	3.2	59
338	Daidzein induces neuritogenesis in DRG neuronal cultures. Journal of Biomedical Science, 2012, 19, 80.	2.6	22
339	Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. Journal of Neuroinflammation, 2012, 9, 166.	3.1	40
340	Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion. Journal of Neuroinflammation, 2012, 9, 169.	3.1	53
341	Microglial TIR-domain-containing adapter-inducing interferon-β (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-κB. Journal of Neuroinflammation, 2012, 9, 39.	3.1	41
342	Axon Degeneration and Regeneration: Insights from <i>Drosophila</i> Models of Nerve Injury. Annual Review of Cell and Developmental Biology, 2012, 28, 575-597.	4.0	62
343	The Role of Serotonin in Axon and Dendrite Growth. International Review of Neurobiology, 2012, 106, 105-126.	0.9	42
344	Neuron-Intrinsic Inhibitors of Axon Regeneration. International Review of Neurobiology, 2012, 105, 141-173.	0.9	29
345	Sustained local delivery of bioactive nerve growth factor in the central nervous system via tunable diblock copolypeptide hydrogel depots. Biomaterials, 2012, 33, 9105-9116.	5.7	85
346	Simvastatin attenuates axonal injury after experimental traumatic brain injury and promotes neurite outgrowth of primary cortical neurons. Brain Research, 2012, 1486, 121-130.	1.1	36
347	A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rat. Tissue and Cell, 2012, 44, 205-213.	1.0	48
348	Querschnittslämung muss heilbar werden – das ambitionierte Ziel der Wings for Life Stiftung. Sports Orthopaedics and Traumatology, 2012, 28, 66-73.	0.1	0

		Citation Re	PORT	
#	Article		IF	CITATIONS
349	Promoting optic nerve regeneration. Progress in Retinal and Eye Research, 2012, 31, 68	8-701.	7.3	122
350	Enhancing intrinsic growth capacity promotes adult CNS regeneration. Journal of the Ne Sciences, 2012, 312, 1-6.	eurological	0.3	54
351	A new therapy for the reduction of axon and neuron loss and promotion of axon and oligodendrocyte regeneration through inhibition of death receptor 6 pathway after isch cerebral stroke. Medical Hypotheses, 2012, 79, 853-855.	emic	0.8	2
352	Photomechanical Wave-Driven Delivery of siRNAs Targeting Intermediate Filament Prote Functional Recovery after Spinal Cord Injury in Rats. PLoS ONE, 2012, 7, e51744.	rins Promotes	1.1	18
353	p53 Regulates the Neuronal Intrinsic and Extrinsic Responses Affecting the Recovery of Function following Spinal Cord Injury. Journal of Neuroscience, 2012, 32, 13956-13970	Motor	1.7	47
354	Reactive Astrogliosis after Spinal Cord Injury—Beneficial and Detrimental Effects. Mole Neurobiology, 2012, 46, 251-264.	ecular	1.9	285
355	Neural Regeneration: Lessons from Regenerating and Non-regenerating Systems. Molec Neurobiology, 2012, 46, 227-241.	ular	1.9	12
356	Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus, 20	12, 2, 278-291.	1.5	114
357	Teleost Fish as a Model System to Study Successful Regeneration of the Central Nervou Current Topics in Microbiology and Immunology, 2012, 367, 193-233.	s System.	0.7	53
358	Stem Cells and Spinal Cord Injury Repair. Advances in Experimental Medicine and Biolog 53-73.	y, 2012, 760,	0.8	25
359	Neural Regeneration. Current Topics in Microbiology and Immunology, 2012, 367, 163-	191.	0.7	34
360	The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the zebrafish brain. Neural Development, 2012, 7, 27.	adult	1.1	88
361	Oxygen-Glucose Deprivation Induced Glial Scar-Like Change in Astrocytes. PLoS ONE, 20)12, 7, e37574.	1.1	52
362	Potentials of endogenous neural stem cells in cortical repair. Frontiers in Cellular Neuros 2012, 6, 14.	science,	1.8	47
363	Retinoic acid signaling in axonal regeneration. Frontiers in Molecular Neuroscience, 201	1, 4, 59.	1.4	24
364	Tuning the Orchestra: Transcriptional Pathways Controlling Axon Regeneration. Frontier Molecular Neuroscience, 2011, 4, 60.	's in	1.4	68
365	Coordinating Gene Expression and Axon Assembly to Control Axon Growth: Potential Ro Signaling. Frontiers in Molecular Neuroscience, 2012, 5, 3.	ble of GSK3	1.4	32
366	Sensory Axon Regeneration: A Review from an in vivo Imaging Perspective. Experimenta 2012, 21, 83-93.	l Neurobiology,	0.7	17

#	Article	IF	CITATIONS
367	Models of CNS injury in the nonhuman primate: A new era for treatment strategies. Translational Neuroscience, 2012, 3, .	0.7	15
368	Inhibition of gecko CSKâ€3β promotes elongation of neurites and oligodendrocyte processes but decreases the proliferation of blastemal cells. Journal of Cellular Biochemistry, 2012, 113, 1842-1851.	1.2	9
369	Stimulating axonal regeneration of mature retinal ganglion cells and overcoming inhibitory signaling. Cell and Tissue Research, 2012, 349, 79-85.	1.5	23
370	Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury. Cell and Tissue Research, 2012, 349, 119-132.	1.5	61
371	Role of the lesion scar in the response to damage and repair of the central nervous system. Cell and Tissue Research, 2012, 349, 169-180.	1.5	233
372	Integrated Microfluidics Platforms for Investigating Injury and Regeneration of CNS Axons. Annals of Biomedical Engineering, 2012, 40, 1268-1276.	1.3	45
373	Cysteine―and glycineâ€#ich protein 1a is involved in spinal cord regeneration in adult zebrafish. European Journal of Neuroscience, 2012, 35, 353-365.	1.2	29
374	Anti-Nogo-A and training: Can one plus one equal three?. Experimental Neurology, 2012, 235, 53-61.	2.0	33
375	Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Experimental Neurology, 2012, 233, 312-322.	2.0	89
376	Inducing functional radial glia-like progenitors from cortical astrocyte cultures using micropatterned PMMA. Biomaterials, 2012, 33, 1759-1770.	5.7	56
377	Role of mTOR in neuroprotection and axon regeneration after inflammatory stimulation. Neurobiology of Disease, 2012, 46, 314-324.	2.1	78
378	Drug-eluting microfibrous patches for the local delivery of rolipram in spinal cord repair. Journal of Controlled Release, 2012, 161, 910-917.	4.8	44
379	Isoform diversity and its importance for axon regeneration. Neuropathology, 2012, 32, 420-431.	0.7	4
380	Cellular therapies for treating pain associated with spinal cord injury. Journal of Translational Medicine, 2012, 10, 37.	1.8	7
381	AMIGO is expressed in multiple brain cell types and may regulate dendritic growth and neuronal survival. Journal of Cellular Physiology, 2012, 227, 2217-2229.	2.0	26
382	Alpha-Crystallin Promotes Rat Axonal Regeneration Through Regulation of RhoA/Rock/Cofilin/MLC Signaling Pathways. Journal of Molecular Neuroscience, 2012, 46, 138-144.	1.1	27
383	Scaffolds for central nervous system tissue engineering. Frontiers of Materials Science, 2012, 6, 1-25.	1.1	41
384	Crystallins in Retinal Ganglion Cell Survival and Regeneration. Molecular Neurobiology, 2013, 48, 819-828.	1.9	42

#	Article	IF	CITATIONS
385	Epigenetic Regulation of Axon Outgrowth and Regeneration in CNS Injury: The First Steps Forward. Neurotherapeutics, 2013, 10, 771-781.	2.1	35
386	Carbon nanotubes in neuroregeneration and repair. Advanced Drug Delivery Reviews, 2013, 65, 2034-2044.	6.6	137
387	Combination treatment with antiâ€Nogoâ€A and chondroitinase <scp>ABC</scp> is more effective than single treatments at enhancing functional recovery after spinal cord injury. European Journal of Neuroscience, 2013, 38, 2946-2961.	1.2	81
388	Inhibition of Retinal Ganglion Cell Axonal Outgrowth Through the Amino-Nogo-A Signaling Pathway. Neurochemical Research, 2013, 38, 1365-1374.	1.6	14
389	New Perspectives in Regeneration. Current Topics in Microbiology and Immunology, 2013, 367, v-vii.	0.7	5
390	Neuronal Cell Culture. Methods in Molecular Biology, 2013, , .	0.4	12
391	Glaucoma and optic nerve repair. Cell and Tissue Research, 2013, 353, 327-337.	1.5	39
392	An update on spinal cord injury research. Neuroscience Bulletin, 2013, 29, 399-401.	1.5	1
393	The glial scar in spinal cord injury and repair. Neuroscience Bulletin, 2013, 29, 421-435.	1.5	158
394	Combination treatment with chondroitinase ABC in spinal cord injury—breaking the barrier. Neuroscience Bulletin, 2013, 29, 477-483.	1.5	95
395	Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia, 2013, 61, 1471-1487.	2.5	71
396	Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau. Acta Neuropathologica, 2013, 125, 879-889.	3.9	70
397	CXCL12/SDF-1 facilitates optic nerve regeneration. Neurobiology of Disease, 2013, 55, 76-86.	2.1	62
398	Alpha tocopherol treatment reduces the expression of Nogo-A and NgR in rat brain after traumatic brain injury. Journal of Surgical Research, 2013, 182, e69-e77.	0.8	22
399	Traumatic Brain Injury, Neuroinflammation, and Postâ€Traumatic Headaches. Headache, 2013, 53, 1523-1530.	1.8	103
400	Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPÏ f . Experimental Neurology, 2013, 247, 113-121.	2.0	116
401	Paxillin phosphorylation counteracts proteoglycan-mediated inhibition of axon regeneration. Experimental Neurology, 2013, 248, 157-169.	2.0	12
402	Neuronal Restoration Following Ischemic Stroke. Neurorehabilitation and Neural Repair, 2013, 27, 469-478.	1.4	39

#	Article	IF	CITATIONS
403	Nogo/RTN4 isoforms and RTN3 expression protect SH-SY5Y cells against multiple death insults. Molecular and Cellular Biochemistry, 2013, 384, 7-19.	1.4	14
404	Therapeutic Antibodies in Stroke. Translational Stroke Research, 2013, 4, 477-483.	2.3	36
405	The brake within: Mechanisms of intrinsic regulation of axon growth featuring the Cdh1-APC pathway. Translational Neuroscience, 2013, 4, .	0.7	0
406	Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nature Reviews Neuroscience, 2013, 14, 722-729.	4.9	429
407	Nanomedicine for treating spinal cord injury. Nanoscale, 2013, 5, 8821.	2.8	63
408	Short Hairpin RNA against PTEN Enhances Regenerative Growth of Corticospinal Tract Axons after Spinal Cord Injury. Journal of Neuroscience, 2013, 33, 15350-15361.	1.7	245
409	Roles of Chondroitin Sulfate and Dermatan Sulfate in the Formation of a Lesion Scar and Axonal Regeneration after Traumatic Injury of the Mouse Brain. Journal of Neurotrauma, 2013, 30, 413-425.	1.7	45
410	IPP5 inhibits neurite growth in primary sensory neurons by maintaining TGF-Â/Smad signaling. Journal of Cell Science, 2013, 126, 542-553.	1.2	13
411	Recombinant DNA vaccine against neurite outgrowth inhibitors attenuates behavioral deficits and decreases Abeta in an Alzheimer's disease mouse model. Neuropharmacology, 2013, 70, 200-210.	2.0	15
412	Gene delivery to overcome astrocyte inhibition of axonal growth: An in vitro Model of the glial scar. Biotechnology and Bioengineering, 2013, 110, 947-957.	1.7	12
413	Effect of topography of an electrospun nanofiber on modulation of activity of primary rat astrocytes. Neuroscience Letters, 2013, 534, 80-84.	1.0	32
414	The role of "anti-inflammatory―cytokines in axon regeneration. Cytokine and Growth Factor Reviews, 2013, 24, 1-12.	3.2	88
415	Knockout of vascular early response gene worsens chronic stroke outcomes in neonatal mice. Brain Research Bulletin, 2013, 98, 111-121.	1.4	17
416	Nogo and Nogo receptor: Relevance to schizophrenia?. Neurobiology of Disease, 2013, 54, 150-157.	2.1	42
417	Do growth-stimulated retinal ganglion cell axons find their central targets after optic nerve injury? New insights by three-dimensional imaging of the visual pathway. Experimental Neurology, 2013, 248, 254-257.	2.0	10
418	Dynamic downregulation of Nogo receptor expression in the rat forebrain by amphetamine. Neurochemistry International, 2013, 63, 195-200.	1.9	4
419	Cortical electrical stimulation promotes neuronal plasticity in the peri-ischemic cortex and contralesional anterior horn of cervical spinal cord in a rat model of focal cerebral ischemia. Brain Research, 2013, 1504, 25-34.	1.1	17
420	Expression Profile of Flotillin-2 and Its Pathophysiological Role After Spinal Cord Injury. Journal of Molecular Neuroscience, 2013, 49, 347-359.	1.1	6

#	Article	IF	CITATIONS
421	Spinal Cord Injury: Modern Clinical Management and Its Correlation to Advances in Basic Science. Neuromethods, 2013, , 299-329.	0.2	0
422	Understanding regeneration through proteomics. Proteomics, 2013, 13, 686-709.	1.3	29
423	A novel compound, denosomin, ameliorates spinal cord injury via axonal growth associated with astrocyteâ€secreted vimentin. British Journal of Pharmacology, 2013, 168, 903-919.	2.7	53
424	Developmental Mechanisms of Regeneration. , 2013, , 155-178.		Ο
425	Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials, 2013, 34, 4945-4955.	5.7	83
426	Overcoming neuriteâ€inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix. Glia, 2013, 61, 972-984.	2.5	75
427	Glycopolymer probes of signal transduction. Chemical Society Reviews, 2013, 42, 4476.	18.7	290
428	Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Progress in Neurobiology, 2013, 105, 60-78.	2.8	141
429	Improved axonal regeneration after spinal cord injury in mice with conditional deletion of ephrin B2 under the GFAP promoter. Neuroscience, 2013, 241, 89-99.	1.1	36
430	Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends in Neurosciences, 2013, 36, 363-373.	4.2	61
431	Axon Growth and Branching. , 2013, , 51-68.		0
432	Cultures of astroglial cells derived from brain of adult cichlid fish. Journal of Neuroscience Methods, 2013, 212, 269-275.	1.3	15
433	Spinal Cord Injury: A Review of Current Therapy, Future Treatments, and Basic Science Frontiers. Neurochemical Research, 2013, 38, 895-905.	1.6	192
434	Synteninâ€a promotes spinal cord regeneration following injury in adult zebrafish. European Journal of Neuroscience, 2013, 38, 2280-2289.	1.2	26
435	3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials, 2013, 34, 5995-6007.	5.7	99
436	Regulation and effects of GDF-15 in the retina following optic nerve crush. Cell and Tissue Research, 2013, 353, 1-8.	1.5	25
437	The DLK signalling pathway—a doubleâ€edged sword in neural development and regeneration. EMBO Reports, 2013, 14, 605-614.	2.0	108
438	The pleiotropic effects of galectin-3 in neuroinflammation: A review. Acta Histochemica, 2013, 115, 407-411.	0.9	79

#	Article	IF	CITATIONS
439	Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation. Cell Death and Disease, 2013, 4, e609-e609.	2.7	138
440	Axonal and Glial Responses to a Mid-Thoracic Spinal Cord Hemisection in the <i>Macaca fascicularis</i> Monkey. Journal of Neurotrauma, 2013, 30, 826-839.	1.7	18
441	Upregulation of axon guidance molecules in the adult central nervous system of Nogoâ€ <scp>A</scp> knockout mice restricts neuronal growth and regeneration. European Journal of Neuroscience, 2013, 38, 3567-3579.	1.2	28
442	Exploiting mTOR Signaling: A Novel Translatable Treatment Strategy for Traumatic Optic Neuropathy?. , 2013, 54, 6903.		59
443	Corticospinal tract sprouting in the injured rat spinal cord stimulated by Schwann cell preconditioning of the motor cortex. Neurological Research, 2013, 35, 763-772.	0.6	2
444	Antagonism of purinergic signalling improves recovery from traumatic brain injury. Brain, 2013, 136, 65-80.	3.7	73
445	Cross-talk between KLF4 and STAT3 regulates axon regeneration. Nature Communications, 2013, 4, 2633.	5.8	104
446	Neuronal Nogo-A negatively regulates dendritic morphology and synaptic transmission in the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1083-1088.	3.3	80
447	Real-Time PCR and Immunocytochemical Study of Chondroitin Sulfate Proteoglycans after Scratch Wounding in Cultured Astrocytes / PCR I IMUNOCITOHEMIJSKA STUDIJA EKSPRESIJE HONDROITIN-SULFATNIH PROTEOGLIKANA NAKON POVREDE ASTROCITA U KULTURI. Journal of Medical Biochemistry, 2013, 32, 398-405.	0.7	1
448	Atypical Protein Kinase C and Par3 Are Required for Proteoglycan-Induced Axon Growth Inhibition. Journal of Neuroscience, 2013, 33, 2541-2554.	1.7	22
449	Myelin Recovery in Multiple Sclerosis: The Challenge of Remyelination. Brain Sciences, 2013, 3, 1282-1324.	1.1	95
450	Lesion-Induced Alterations in Astrocyte Glutamate Transporter Expression and Function in the Hippocampus. ISRN Neurology, 2013, 2013, 1-16.	1.5	17
451	Dorsolateral Funiculus Lesioning of the Mouse Cervical Spinal Cord at C4 but Not at C6 Results in Sustained Forelimb Motor Deficits. Journal of Neurotrauma, 2013, 30, 1070-1083.	1.7	35
452	Implications of the oxygenated electrospun poly(É>-caprolactone) nanofiber for the astrocytes activities. , 2013, 101, 1267-1274.		5
453	Nogo-A is a negative regulator of CNS angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1943-52.	3.3	95
454	Inhibition of Nogo-66 Receptor 1 Enhances Recovery of Cognitive Function after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2013, 30, 247-258.	1.7	31
455	Spinal cord regeneration: Lessons for mammals from nonâ€mammalian vertebrates. Genesis, 2013, 51, 529-544.	0.8	83
456	Granulocyte macrophage colonyâ€stimulating factor promotes regeneration of retinal ganglion cells in vitro through a mammalian target of rapamycinâ€dependent mechanism. Journal of Neuroscience Research, 2013, 91, 771-779.	1.3	25

ARTICLE IF CITATIONS # Reversible reactivity by optic nerve astrocytes. Glia, 2013, 61, 1218-1235. 2.5 88 457 Neutralization of Inhibitory Molecule NG2 Improves Synaptic Transmission, Retrograde Transport, and Locomotor Function after Spinal Cord Injury in Adult Rats. Journal of Neuroscience, 2013, 33, 1.7 4032-4043. LRP1 Assembles Unique Co-receptor Systems to Initiate Cell Signaling in Response to Tissue-type Plasminogen Activator and Myelin-associated Glycoprotein. Journal of Biological Chemistry, 2013, 288, 459 1.6 76 34009-34018. Suppression of SHP-1 promotes corticospinal tract sprouting and functional recovery after brain 460 injury. Cell Death and Disease, 2013, 4, e567-e567. Neuronal STAT3 activation is essential for CNTF- and inflammatory stimulation-induced CNS axon 461 2.7 99 regeneration. Cell Death and Disease, 2013, 4, e805-e805. Sialidase, Chondroitinase ABC, and Combination Therapy after Spinal Cord Contusion Injury. Journal 1.7 44 of Neurotrauma, 2013, 30, 181-190. Cotransplantation of Glial Restricted Precursor Cells and Schwann Cells Promotes Functional 463 1.2 21 Recovery after Spinal Cord Injury. Cell Transplantation, 2013, 22, 2219-2236. Transplantation of Bone Marrow Stromal Cell-Derived Neural Precursor Cells Ameliorates Deficits in 464 1.2 14 a Rat Model of Complete Spinal Cord Transection. Cell Transplantation, 2013, 22, 1613-1625. 465 Role of Glial Cells in Axonal Regeneration. Experimental Neurobiology, 2013, 22, 68-76. 0.7 36 Adhesion to Carbon Nanotube Conductive Scaffolds Forces Action-Potential Appearance in Immature 1.1 466 Rat Spinal Neurons. PLoS ONE, 2013, 8, e73621. Noninvasive Strategies to Promote Functional Recovery after Stroke. Neural Plasticity, 2013, 2013, 1-16. 467 1.0 60 CSF Proteomics of Secondary Phase Spinal Cord Injury in Human Subjects: Perturbed Molecular Pathways Post Injury. PLoS ONE, 2014, 9, e110885. 468 1.1 Chemokines Referee Inflammation within the Central Nervous System during Infection and Disease. 469 0.3 12 Advances in Medicine, 2014, 2014, 1-10. Treatment with Anti-EGF Ab Ameliorates Experimental Autoimmune Encephalomyelitis<i>via</i>Induction of Neurogenesis and Oligodendrogenesis. Multiple Sclerosis 0.4 International, 2014, 2014, 1-9. Significance of Clinical Treatments on Peripheral Nerve and its Effect on Nerve Regeneration. Journal 472 10 0.1 of Neurological Disorders, 2014, 02, . Adverse Effects of Radiation Therapy in treating Gliomas. Japanese Journal of Neurosurgery, 2014, 23, 569-580. Multifaceted Neuro-Regenerative Activities of Human Dental Pulp Stem Cells for Functional Recovery 474 0 after Spinal Cord Injury., 0,,. Typical and Atypical Stem Cell Niches of the Adult Nervous System in Health and Inflammatory Brain and Spinal Cord Diseases., 0, , .

#	ARTICLE	IF	CITATIONS
476	Intraneuronal determinants of axon regeneration. , 0, , 413-434.		0
477	Altered expression of myelin-associated inhibitors and their receptors after traumatic brain injury in the mouse. Restorative Neurology and Neuroscience, 2014, 32, 717-731.	0.4	10
478	S6 Kinase Inhibits Intrinsic Axon Regeneration Capacity via AMP Kinase in Caenorhabditis elegans. Journal of Neuroscience, 2014, 34, 758-763.	1.7	29
479	Scar-modulating treatments for central nervous system injury. Neuroscience Bulletin, 2014, 30, 967-984.	1.5	15
480	Regenerative Biology of the Eye. Pancreatic Islet Biology, 2014, , .	0.1	4
481	Treatment of a Spinal Cord Hemitransection Injury with Keratin Biomaterial Hydrogel Elicits Recovery and Tissue Repair. ISRN Biomaterials, 2014, 2014, 1-9.	0.7	6
482	Assessment of Morphology, Activity, and Infiltration of Astrocytes on Marine EPS-Imbedded Electrospun PCL Nanofiber. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	5
483	The Sphingolipid Receptor S1PR2 Is a Receptor for Nogo-A Repressing Synaptic Plasticity. PLoS Biology, 2014, 12, e1001763.	2.6	144
484	MEK inhibition reduces glial scar formation and promotes the recovery of sensorimotor function in rats following spinal cord injury. Experimental and Therapeutic Medicine, 2014, 7, 66-72.	0.8	32
485	Development of a Stereotaxic Device for Low Impact Implantation of Neural Constructs or Pieces of Neural Tissues into the Mammalian Brain. BioMed Research International, 2014, 2014, 1-9.	0.9	Ο
486	Suppression of neurocan and enhancement of axonal density in rats after treatment of traumatic brain injury with scaffolds impregnated with bone marrow stromal cells. Journal of Neurosurgery, 2014, 120, 1147-1155.	0.9	17
487	Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ Journal of Surgery, 2014, 84, 417-423.	0.3	5
488	The mechanisms of EGFR in the regulation of axon regeneration. Cell Biochemistry and Function, 2014, 32, 101-105.	1.4	16
489	PTEN inhibition enhances neurite outgrowth in human embryonic stem cell–derived neuronal progenitor cells. Journal of Comparative Neurology, 2014, 522, 2741-2755.	0.9	44
490	Maintaining stable memory engrams: New roles for Nogo-A in the CNS. Neuroscience, 2014, 283, 17-25.	1.1	27
491	New strategies for the repair of spinal cord injury. Science Bulletin, 2014, 59, 4041-4049.	1.7	2
492	Regulation of Intrinsic Axon Growth Ability at Retinal Ganglion Cell Growth Cones. , 2014, 55, 4369.		44
493	Effect and Reporting Bias of RhoA/ROCK-Blockade Intervention on Locomotor Recovery After Spinal Cord Injury. JAMA Neurology, 2014, 71, 91.	4.5	80

#	Article	IF	CITATIONS
494	Cellular expression profile of RhoA in rats with spinal cord injury. Journal of Huazhong University of Science and Technology [Medical Sciences], 2014, 34, 657-662.	1.0	12
495	CNS axon regeneration inhibitors stimulate an immediate early gene response via MAP kinase-SRF signaling. Molecular Brain, 2014, 7, 86.	1.3	14
496	BMP2 shows neurotrophic effects including neuroprotection against neurodegeneration. NeuroReport, 2014, 25, 549-555.	0.6	4
497	Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: Case series of 14 patients. Journal of Spinal Cord Medicine. 2014. 37. 54-71.	0.7	49
498	Stem cell therapy for central nerve system injuries: glial cells hold the key. Neural Regeneration Research, 2014, 9, 1253.	1.6	36
499	Chondroitin Sulfate Proteoglycans in the Nervous System: Inhibitors to Repair. BioMed Research International, 2014, 2014, 1-15.	0.9	107
500	Assessment of Nogo-66 Receptor 1 Function In Vivo After Spinal Cord Injury. Neurosurgery, 2014, 75, 51-60.	0.6	7
501	Blockade of Gap Junction Hemichannel Protects Secondary Spinal Cord Injury from Activated Microglia-Mediated Glutamate Exitoneurotoxicity. Journal of Neurotrauma, 2014, 31, 1967-1974.	1.7	34
502	Cortical PKC Inhibition Promotes Axonal Regeneration of the Corticospinal Tract and Forelimb Functional Recovery After Cervical Dorsal Spinal Hemisection in Adult Rats. Cerebral Cortex, 2014, 24, 3069-3079.	1.6	25
503	FGF-2-Responsive and Spinal Cord-Resident Cells Improve Locomotor Function after Spinal Cord Injury. Journal of Neurotrauma, 2014, 31, 1584-1598.	1.7	27
504	Concept and molecular basis of axonal regeneration after central nervous system injury. Neuroscience Research, 2014, 78, 45-49.	1.0	9
505	An inÂvitro spinal cord injury model to screen neuroregenerative materials. Biomaterials, 2014, 35, 3756-3765.	5.7	44
506	Inhibitors of myelination: ECM changes, CSPGs and PTPs. Experimental Neurology, 2014, 251, 39-46.	2.0	66
507	Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neuroscience Research, 2014, 78, 16-20.	1.0	71
508	Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro. Neuroscience, 2014, 256, 456-466.	1.1	17
509	Awakening the stalled axon — Surprises in CSPG gradients. Experimental Neurology, 2014, 254, 12-17.	2.0	5
510	Discovery of novel protein tyrosine phosphatase sigma inhibitors through the virtual screening with modified scoring function. Medicinal Chemistry Research, 2014, 23, 1016-1022.	1.1	2
511	Roles of innervation in developing and regenerating orofacial tissues. Cellular and Molecular Life Sciences, 2014, 71, 2241-2251.	2.4	38

#	Article	IF	Citations
512	Phagocytosis of Microglia in the Central Nervous System Diseases. Molecular Neurobiology, 2014, 49, 1422-1434.	1.9	486
513	Lipid Rafts in Neurodegeneration and Neuroprotection. Molecular Neurobiology, 2014, 50, 130-148.	1.9	74
514	In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nature Communications, 2014, 5, 3338.	5.8	353
515	Functional regeneration beyond the glial scar. Experimental Neurology, 2014, 253, 197-207.	2.0	532
516	Class II HDACs and Neuronal Regeneration. Journal of Cellular Biochemistry, 2014, 115, 1225-1233.	1.2	11
517	Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience, 2014, 276, 29-47.	1.1	209
518	Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration. Physiological Reviews, 2014, 94, 461-518.	13.1	575
519	Role of astrocytes in the neuroprotective actions of 17β-estradiol and selective estrogen receptor modulators. Molecular and Cellular Endocrinology, 2014, 389, 48-57.	1.6	89
520	Carbon nanomaterials for nerve tissue stimulation and regeneration. Materials Science and Engineering C, 2014, 34, 35-49.	3.8	99
521	Axon Regeneration Genes Identified by RNAi Screening in <i>C. elegans</i> . Journal of Neuroscience, 2014, 34, 629-645.	1.7	87
522	Signaling regulations of neuronal regenerative ability. Current Opinion in Neurobiology, 2014, 27, 135-142.	2.0	102
523	GART expression in rat spinal cord after injury and its role in inflammation. Brain Research, 2014, 1564, 41-51.	1.1	8
524	Knockdown of Lingo1b protein promotes myelination and oligodendrocyte differentiation in zebrafish. Experimental Neurology, 2014, 251, 72-83.	2.0	27
525	Contrasting the Glial Response to Axon Injury in the Central and Peripheral Nervous Systems. Developmental Cell, 2014, 28, 7-17.	3.1	193
526	Rho-ROCK Inhibition in the Treatment of Spinal Cord Injury. World Neurosurgery, 2014, 82, e535-e539.	0.7	100
527	From basics to clinical: A comprehensive review on spinal cord injury. Progress in Neurobiology, 2014, 114, 25-57.	2.8	626
528	A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat. Journal of Biomedical Materials Research - Part A, 2014, 102, 1715-1725.	2.1	40
529	Immobilized ECM molecules and the effects of concentration and surface type on the control of NSC differentiation. Journal of Biomedical Materials Research - Part A, 2014, 102, 3419-3428.	2.1	16

#	Article	IF	CITATIONS
530	The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration. Nature Communications, 2014, 5, 5416.	5.8	102
531	The role of soluble adenylyl cyclase in neurite outgrowth. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2561-2568.	1.8	22
533	Axon plasticity in the mammalian central nervous system after injury. Trends in Neurosciences, 2014, 37, 583-593.	4.2	43
534	Age-Dependent Decline of Nogo-A Protein in the Mouse Cerebrum. Cellular and Molecular Neurobiology, 2014, 34, 1131-1141.	1.7	18
535	Pleiotropic molecules in axon regeneration and neuroinflammation. Experimental Neurology, 2014, 258, 17-23.	2.0	24
536	LOTUS suppresses axon growth inhibition by blocking interaction between Nogo receptor-1 and all four types of its ligand. Molecular and Cellular Neurosciences, 2014, 61, 211-218.	1.0	27
537	Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and longâ€distance neuronal integration. Glia, 2014, 62, 2061-2079.	2.5	60
538	Axon Growth and Regeneration. Methods in Molecular Biology, 2014, , .	0.4	5
539	Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration. Experimental Neurology, 2014, 261, 451-461.	2.0	21
540	Treatment with ginseng total saponins improves the neurorestoration of rat after traumatic brain injury. Journal of Ethnopharmacology, 2014, 155, 1243-1255.	2.0	42
541	Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration. Journal of Neuroscience, 2014, 34, 7361-7374.	1.7	36
542	Short Duration Electrical Stimulation to Enhance Neurite Outgrowth and Maturation of Adult Neural Stem Progenitor Cells. Annals of Biomedical Engineering, 2014, 42, 2164-2176.	1.3	54
543	Nanovectorâ€mediated drug delivery for spinal cord injury treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 506-515.	3.3	24
544	Soluble Adenylyl Cyclase Is Necessary and Sufficient to Overcome the Block of Axonal Growth by Myelin-Associated Factors. Journal of Neuroscience, 2014, 34, 9281-9289.	1.7	22
545	Biologic scaffold for CNS repair. Regenerative Medicine, 2014, 9, 367-383.	0.8	44
546	A microchip for quantitative analysis of CNS axon growth under localized biomolecular treatments. Journal of Neuroscience Methods, 2014, 221, 166-174.	1.3	58
547	Contributions of chondroitin sulfate proteoglycans to neurodevelopment, injury, and cancer. Current Opinion in Neurobiology, 2014, 27, 171-178.	2.0	71
548	Theoretical and experimental quantification of the role of diffusive chemogradients on neuritogenesis within three-dimensional collagen scaffolds. Acta Biomaterialia, 2014, 10, 3664-3674.	4.1	11

#	Article	IF	CITATIONS
549	TBI and sex: Crucial role of progesterone protecting the brain in an omegaâ^'3 deficient condition. Experimental Neurology, 2014, 253, 41-51.	2.0	7
550	Alignment of multiple glial cell populations in 3D nanofiber scaffolds: Toward the development of multicellular implantable scaffolds for repair of neural injury. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 291-295.	1.7	34
551	PirB is a novel potential therapeutic target for enhancing axonal regeneration and synaptic plasticity following CNS injury in mammals. Journal of Drug Targeting, 2014, 22, 365-371.	2.1	24
552	Glial scar and immune cell involvement in tissue remodeling and repair following acute CNS injuries. Glia, 2014, 62, 1895-1904.	2.5	81
553	Lost in the jungle: new hurdles for optic nerve axon regeneration. Trends in Neurosciences, 2014, 37, 381-387.	4.2	84
554	Long-term survival, axonal growth-promotion, and myelination of Schwann cells grafted into contused spinal cord in adult rats. Experimental Neurology, 2014, 261, 308-319.	2.0	27
555	Characterization of a novel primary culture system of adult zebrafish brainstem cells. Journal of Neuroscience Methods, 2014, 223, 11-19.	1.3	9
556	Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ Journal of Surgery, 2014, 84, E1-E11.	0.3	3
557	Type II cGMP-dependent protein kinase inhibits RhoA activation in gastric cancer cells. Molecular Medicine Reports, 2014, 9, 1444-1452.	1.1	7
558	Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases. Marine Drugs, 2014, 12, 2539-2589.	2.2	29
559	Axon growth inhibition by RhoA/ROCK in the central nervous system. Frontiers in Neuroscience, 2014, 8, 338.	1.4	201
560	Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World Journal of Stem Cells, 2014, 6, 179.	1.3	38
561	Design of hydrogel biomaterial interfaces for the injured spinal cord. Surface Innovations, 2014, 2, 26-46.	1.4	2
562	Effects of Ashwagandha (Roots of <i>Withania somnifera</i>) on Neurodegenerative Diseases. Biological and Pharmaceutical Bulletin, 2014, 37, 892-897.	0.6	99
563	Progesterone alters Nogo-A, GFAP and GAP-43 expression in a rat model of traumatic brain injury. Molecular Medicine Reports, 2014, 9, 1225-1231.	1.1	28
564	Degree of corticospinal tract damage correlates with motor function after stroke. Annals of Clinical and Translational Neurology, 2014, 1, 891-899.	1.7	54
565	Neuroprotection of Early Locomotor Exercise Poststroke: Evidence From Animal Studies. Canadian Journal of Neurological Sciences, 2015, 42, 213-220.	0.3	22
566	Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury. Frontiers in Biology, 2015, 10, 427-438.	0.7	3

#	Article	IF	CITATIONS
567	Osthole confers neuroprotection against cortical stab wound injury and attenuates secondary brain injury. Journal of Neuroinflammation, 2015, 12, 155.	3.1	41
568	A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo. Molecular Medicine Reports, 2015, 12, 2598-2606.	1.1	8
569	Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration. Scientific Reports, 2015, 5, 15356.	1.6	50
570	Sirtuin 1 regulates lipid metabolism associated with optic nerve regeneration. Molecular Medicine Reports, 2015, 12, 6962-6968.	1.1	29
572	Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Scientific Reports, 2015, 5, 8269.	1.6	34
573	Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Frontiers in Cellular Neuroscience, 2015, 9, 13.	1.8	80
574	Title is missing!. Journal of Otolaryngology of Japan, 2015, 118, 98-106.	0.1	0
575	Batroxobin protects against spinal cord injury in rats by promoting the expression of vascular endothelial growth factor to reduce apoptosis. Experimental and Therapeutic Medicine, 2015, 9, 1631-1638.	0.8	5
576	O-GlcNAc glycosylation of p27kip1 promotes astrocyte migration and functional recovery after spinal cord contusion. Experimental Cell Research, 2015, 339, 197-205.	1.2	15
578	Repetitive Treatment with Diluted Bee Venom Attenuates the Induction of Below-Level Neuropathic Pain Behaviors in a Rat Spinal Cord Injury Model. Toxins, 2015, 7, 2571-2585.	1.5	19
579	Extracellular environment contribution to astrogliosis—lessons learned from a tissue engineered 3D model of the glial scar. Frontiers in Cellular Neuroscience, 2015, 9, 377.	1.8	29
580	The Role of Astrocytes in Multiple Sclerosis Progression. Frontiers in Neurology, 2015, 6, 180.	1.1	185
581	Electrical Stimulation Elicits Neural Stem Cells Activation: New Perspectives in CNS Repair. Frontiers in Human Neuroscience, 2015, 9, 586.	1.0	50
582	Extrinsic and intrinsic regulation of axon regeneration at a crossroads. Frontiers in Molecular Neuroscience, 2015, 8, 27.	1.4	45
583	Membrane lipid domains in the nervous system. Frontiers in Bioscience - Landmark, 2015, 20, 280-302.	3.0	28
584	Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles. BioMed Research International, 2015, 2015, 1-20.	0.9	32
585	Acute Putrescine Supplementation with Schwann Cell Implantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injured Rats. Neural Plasticity, 2015, 2015, 1-11.	1.0	8
586	Neurotrauma and Inflammation: CNS and PNS Responses. Mediators of Inflammation, 2015, 2015, 1-14.	1.4	133

		CITATION R	EPORT	
#	Article		IF	Citations
587	Early life nutrition and neural plasticity. Development and Psychopathology, 2015, 27,	411-423.	1.4	130
589	Neural stem cells respond to stress hormones: distinguishing beneficial from detriment Frontiers in Physiology, 2015, 6, 77.	al stress.	1.3	23
590	MicroRNA delivery for regenerative medicine. Advanced Drug Delivery Reviews, 2015, 8	\$8, 108-122.	6.6	125
591	Endoplasmic Protein Nogo-B (RTN4-B) Interacts with GRAMD4 and Regulates TLR9-Med Immune Responses. Journal of Immunology, 2015, 194, 5426-5436.	diated Innate	0.4	15
592	Potential primary roles of glial cells in the mechanisms of psychiatric disorders. Frontier Cellular Neuroscience, 2015, 9, 154.	's in	1.8	28
593	TCTP Expression After Rat Spinal Cord Injury: Implications for Astrocyte Proliferation ar Journal of Molecular Neuroscience, 2015, 57, 366-375.	id Migration.	1.1	10
594	Neuroprotective effect of allicin in a rat model of acute spinal cord injury. Life Sciences 114-123.	, 2015, 143,	2.0	27
595	Crosstalk between macrophages and astrocytes affects proliferation, reactive phenoty inflammatory response, suggesting a role during reactive gliosis following spinal cord in Journal of Neuroinflammation, 2015, 12, 109.	pe and hjury.	3.1	54
596	shRNA against <i>PTEN</i> promotes neurite outgrowth of cortical neurons and functi in spinal cord contusion rats. Regenerative Medicine, 2015, 10, 411-429.	onal recovery	0.8	11
597	Lipid membrane domains in the brain. Biochimica Et Biophysica Acta - Molecular and Ce Lipids, 2015, 1851, 1006-1016.	ell Biology of	1.2	106
598	Lentiviralâ€mediated silencing of glial fibrillary acidic protein and vimentin promotes ar plasticity and functional recovery after spinal cord injury. Journal of Neuroscience Rese 43-55.	natomical arch, 2015, 93,	1.3	23
599	Shared Brain Connectivity Issues, Symptoms, and Comorbidities in Autism Spectrum D Attention Deficit/Hyperactivity Disorder, and Tourette Syndrome. Brain Connectivity, 2	isorder, 015, 5, 321-335.	0.8	86
600	Chronic spinal cord lesions respond positively to tranplants of mesenchymal stem cells Neurology and Neuroscience, 2015, 33, 43-55.	. Restorative	0.4	19
601	Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodo inhibitory substrates and lesioned spinal cord. Cellular and Molecular Life Sciences, 201 2719-2737.	main over 15, 72,	2.4	29
602	Glial Precursor Cell Transplantation-Mediated Regeneration after Spinal Cord Injury Rep 321-335.	pair. , 2015, ,		0
603	Transplantation of Olfactory Ensheathing Cells for Neural Repair. , 2015, , 301-319.			0
604	Optic Nerve Regeneration in Lower Vertebrates and Mammals. , 2015, , 209-227.			0
605	The Intrinsic Determinants of Axon Regeneration in the Central Nervous System. , 2015	5, , 197-207.		0

#	Article	IF	Citations
606	Plasticity of Intact Rubral Projections Mediates Spontaneous Recovery of Function after Corticospinal Tract Injury. Journal of Neuroscience, 2015, 35, 1443-1457.	1.7	61
608	Histamine Promotes Locomotion Recovery After Spinal Cord Hemisection <i>via</i> Inhibiting Astrocytic Scar Formation. CNS Neuroscience and Therapeutics, 2015, 21, 454-462.	1.9	21
609	Mst3b Promotes Spinal Cord Neuronal Regeneration by Promoting Growth Cone Branching Out in Spinal Cord Injury Rats. Molecular Neurobiology, 2015, 51, 1144-1157.	1.9	9
610	X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury. Journal of Synchrotron Radiation, 2015, 22, 136-142.	1.0	21
611	Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1575-1587.	1.1	30
612	Adult neurogenesis and brain remodelling after brain injury: From bench to bedside?. Anaesthesia, Critical Care & Pain Medicine, 2015, 34, 239-245.	0.6	6
613	Early neuroprotective effect with lack of long-term cell replacement effect on experimental stroke after intra-arterial transplantation of adipose-derived mesenchymal stromal cells. Cytotherapy, 2015, 17, 1090-1103.	0.3	44
614	Mathematical modeling reveals a critical role for cyclin D1 dynamics in phenotype switching during glioma differentiation. FEBS Letters, 2015, 589, 2304-2311.	1.3	9
615	Effects of ROCK inhibitor Y27632 and EGFR inhibitor PD168393 on human neural precursors co-cultured with rat auditory brainstem explant. Neuroscience, 2015, 287, 43-54.	1.1	5
616	Stem cell therapy in spinal trauma: Does it have scientific validity?. Indian Journal of Orthopaedics, 2015, 49, 54.	0.5	16
617	Attractive and repulsive factors act through multi-subunit receptor complexes to regulate nerve fiber growth. Journal of Cell Science, 2015, 128, 2403-14.	1.2	39
618	The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury. Brain, 2015, 138, 1843-1862.	3.7	49
619	Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat. Tissue Engineering - Part A, 2015, 21, 2099-2114.	1.6	43
620	New neurons for injured brains? The emergence of new genetic model organisms to study brain regeneration. Neuroscience and Biobehavioral Reviews, 2015, 56, 62-72.	2.9	8
621	Neuroprotective effects of nitidine against traumatic CNS injury via inhibiting microglia activation. Brain, Behavior, and Immunity, 2015, 48, 287-300.	2.0	33
622	Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Experimental Neurology, 2015, 269, 169-187.	2.0	137
623	The potential use of mesenchymal stem cells in stroke therapy—From bench to bedside. Journal of the Neurological Sciences, 2015, 352, 1-11.	0.3	36
624	Traumatic Injury to Peripheral Nerves. , 2015, , 611-628.		7

#	Article	IF	CITATIONS
625	Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Progress in Brain Research, 2015, 218, 15-54.	0.9	125
626	Development of a Cell Permeable Competitive Antagonist of RhoA and CRMP4 binding, TAT-C4RIP, to Promote Neurite Outgrowth. Journal of Molecular Neuroscience, 2015, 55, 406-415.	1.1	2
627	The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience, 2015, 302, 174-203.	1.1	133
628	Recombinant Nogo-66 via soluble expression with SUMO fusion in Escherichia coli inhibits neurite outgrowth in vitro. Applied Microbiology and Biotechnology, 2015, 99, 5997-6007.	1.7	6
629	Low levels of cobalamin, epidermal growth factor, and normal prions in multiple sclerosis spinal cord. Neuroscience, 2015, 298, 293-301.	1.1	17
630	Vascular Signal Transducer and Activator of Transcription-3 Promotes Angiogenesis and Neuroplasticity Long-Term After Stroke. Circulation, 2015, 131, 1772-1782.	1.6	71
631	NG2 (Cspg4). , 2015, , 103-112.		0
632	Regulation of axon regeneration by the RNA repair and splicing pathway. Nature Neuroscience, 2015, 18, 817-825.	7.1	50
633	AAVâ€mediated expression of BAG1 and ROCK2â€shRNA promote neuronal survival and axonal sprouting in a rat model of rubrospinal tract injury. Journal of Neurochemistry, 2015, 134, 261-275.	2.1	11
634	MicroRNAs in the axon locally mediate the effects of chondroitin sulfate proteoglycans and cGMP on axonal growth. Developmental Neurobiology, 2015, 75, 1402-1419.	1.5	41
635	Direct lineage conversion of astrocytes to induced neural stem cells or neurons. Neuroscience Bulletin, 2015, 31, 357-367.	1.5	21
636	Neurodegenerative Disorders as Systemic Diseases. , 2015, , .		2
637	A nutrient combination designed to enhance synapse formation and function improves outcome in experimental spinal cord injury. Neurobiology of Disease, 2015, 82, 504-515.	2.1	21
638	Transcriptomic Approaches to Neural Repair. Journal of Neuroscience, 2015, 35, 13860-13867.	1.7	28
639	Extracellular matrix in the CNS. Neurology, 2015, 85, 1417-1427.	1.5	36
640	Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans. Experimental Neurology, 2015, 274, 115-125.	2.0	78
641	Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex. Journal of Cell Science, 2015, 128, 3583-96.	1.2	16
642	Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. Journal of Controlled Release, 2015, 219, 141-154.	4.8	164

#	Article	IF	CITATIONS
643	Comprehensive Corticospinal Labeling with <i>mu-crystallin</i> Transgene Reveals Axon Regeneration after Spinal Cord Trauma in <i>ngr1</i> ^{â^'/â^'} Mice. Journal of Neuroscience, 2015, 35, 15403-15418.	1.7	40
644	Down regulation of IncSCIR1 after spinal cord contusion injury in rat. Brain Research, 2015, 1624, 314-320.	1.1	34
645	The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons. Molecular and Cellular Neurosciences, 2015, 68, 272-283.	1.0	23
646	Poly(ADP-ribose) polymerase 1 is a novel target to promote axonal regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15220-15225.	3.3	33
647	Direct Conversion of Equine Adipose-Derived Stem Cells into Induced Neuronal Cells Is Enhanced in Three-Dimensional Culture. Cellular Reprogramming, 2015, 17, 419-426.	0.5	5
648	The effect of Noggin supplementation in Matrigel nanofiber-based cell culture system for derivation of neural-like cells from human endometrial-derived stromal cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 1-7.	2.1	19
649	Microfluidic Gradients Reveal Enhanced Neurite Outgrowth but Impaired Guidance within 3D Matrices with High Integrin Ligand Densities. Small, 2015, 11, 722-730.	5.2	26
650	All trans retinoic acid modulates peripheral nerve fibroblasts viability and apoptosis. Tissue and Cell, 2015, 47, 61-65.	1.0	12
651	Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord. Neuroscience, 2015, 284, 134-152.	1.1	23
652	Stem Cells in Canine Spinal Cord Injury – Promise for Regenerative Therapy in a Large Animal Model of Human Disease. Stem Cell Reviews and Reports, 2015, 11, 180-193.	5.6	47
653	Cell type-specific Nogo-A gene ablation promotes axonal regeneration in the injured adult optic nerve. Cell Death and Differentiation, 2015, 22, 323-335.	5.0	35
654	Role of JAK-STAT Signalling on Motor Function Recovery after Spinal Cord Injury. , 0, , .		1
655	Bridging Defects in Chronic Spinal Cord Injury Using Peripheral Nerve Grafts: From Basic Science to Clinical Experience. , 2016, , .		4
656	Differentiated Expression Patterns and Phagocytic Activities of Type 1 and 2 Microglia. , 2016, 57, 2814.		8
657	siRNA-Mediated Knockdown of the mTOR Inhibitor RTP801 Promotes Retinal Ganglion Cell Survival and Axon Elongation by Direct and Indirect Mechanisms. , 2016, 57, 429.		35
658	Neurodegeneration and Glial Response after Acute Striatal Stroke: Histological Basis for Neuroprotective Studies. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-15.	1.9	28
659	A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-9.	0.7	6
660	Therapeutic Effects of Traditional Chinese Medicine on Spinal Cord Injury: A Promising Supplementary Treatment in Future. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-18.	0.5	36

		CITATION R	EPORT	
#	Article		IF	CITATIONS
661	Inhibiting poly(ADP-ribosylation) improves axon regeneration. ELife, 2016, 5, .		2.8	38
662	Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth promotes central nervous system axon regeneration. ELife, 2016, 5, .	and	2.8	27
663	Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Autologous Nerve Grafts in Craniomaxillofacial Surgery. BioMed Research International, 1-18.	Replacing 2016, 2016,	0.9	147
664	A Microchip for High-Throughput Axon Growth Drug Screening. Micromachines, 2016, 7	7, 114.	1.4	13
665	Mdivi-1 Inhibits Astrocyte Activation and Astroglial Scar Formation and Enhances Axona Regeneration after Spinal Cord Injury in Rats. Frontiers in Cellular Neuroscience, 2016, 1	l l0, 241.	1.8	31
666	Amyloid Proteins and Their Role in Multiple Sclerosis. Considerations in the Use of Amyl Imaging. Frontiers in Neurology, 2016, 7, 53.	oid-PET	1.1	44
667	Neural Substrate Expansion for the Restoration of Brain Function. Frontiers in Systems I 2016, 10, 1.	Neuroscience,	1.2	85
668	One-year clinical study of NeuroRegen scaffold implantation following scar resection in chronic spinal cord injury patients. Science China Life Sciences, 2016, 59, 647-655.	complete	2.3	90
669	A Hydrogel Bridge Incorporating Immobilized Growth Factors and Neural Stem/Progenit Treat Spinal Cord Injury. Advanced Healthcare Materials, 2016, 5, 802-812.	or Cells to	3.9	68
670	Fibroblastâ€derived tenascinâ€ <scp>C</scp> promotes <scp>S</scp> chwann cell migr β1â€integrin dependent pathway during peripheral nerve regeneration. Glia, 2016, 64,	ation through 374-385.	2.5	63
671	The Neuroprotective Effect of Puerarin in Acute Spinal Cord Injury Rats. Cellular Physiolo Biochemistry, 2016, 39, 1152-1164.	ogy and	1.1	40
672	Chapter 23 Low-Level Laser Therapy for Spinal Cord Repair. , 2016, , 415-434.			0
673	Regenerative Strategies for the Central Nervous System. Pancreatic Islet Biology, 2016,	, 121-173.	0.1	0
674	Reducing neuroinflammation by delivery of ILâ€10 encoding lentivirus from multipleâ€c Bioengineering and Translational Medicine, 2016, 1, 136-148.	hannel bridges.	3.9	35
675	Directed neural stem cell differentiation on polyaniline-coated high strength hydrogels. Today Chemistry, 2016, 1-2, 15-22.	Materials	1.7	42
676	Innovations in Molecular Mechanisms and Tissue Engineering. Pancreatic Islet Biology, 2	2016,,.	0.1	0
677	Epigenetic profiling reveals a developmental decrease in promoter accessibility during c maturation in vivo. Neuroepigenetics, 2016, 8, 19-26.	ortical	2.8	28
678	Absence of gliosis in a teleost model of spinal cord regeneration. Journal of Comparative A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 445-456.	Physiology	0.7	15

#	Article	IF	CITATIONS
679	Dynamic behaviors of astrocytes in chemically modified fibrin and collagen hydrogels. Integrative Biology (United Kingdom), 2016, 8, 624-634.	0.6	26
680	Heat shock proteins in the retina: Focus on HSP70 and alpha crystallins in ganglion cell survival. Progress in Retinal and Eye Research, 2016, 52, 22-46.	7.3	56
681	Organ and Appendage Regeneration in the Axolotl. , 2016, , 223-247.		2
682	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
683	Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons. Tissue Engineering - Part A, 2016, 22, 850-861.	1.6	26
684	Protective effects of batroxobin on a nigrostriatal pathway injury in mice. Brain Research Bulletin, 2016, 127, 195-201.	1.4	7
685	Protein Prenylation Constitutes an Endogenous Brake on Axonal Growth. Cell Reports, 2016, 16, 545-558.	2.9	45
686	Viral neurotropism, peripheral neuropathy and other morphological abnormalities in bovine ephemeral fever virusâ€infected downer cattle. Australian Veterinary Journal, 2016, 94, 362-370.	0.5	6
687	Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. Cells Tissues Organs, 2016, 202, 52-66.	1.3	37
688	Glial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, 2016, , .	0.8	9
689	Schwann Cell and Axon: An Interlaced Unit—From Action Potential to Phenotype Expression. Advances in Experimental Medicine and Biology, 2016, 949, 183-201.	0.8	8
690	The effect of AMPA receptor blockade on spatial information acquisition, consolidation and expression in juvenile rats. Neurobiology of Learning and Memory, 2016, 133, 145-156.	1.0	3
691	Characterization of p75 neurotrophin receptor expression in human dental pulp stem cells. International Journal of Developmental Neuroscience, 2016, 53, 90-98.	0.7	17
692	SCISSOR—Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open, 2016, 6, e010651.	0.8	17
693	Stereotactic injection of shrna GSK-3β-AAV promotes axonal regeneration after spinal cord injury. Journal of Huazhong University of Science and Technology [Medical Sciences], 2016, 36, 548-553.	1.0	4
694	Local Release of Paclitaxel from Aligned, Electrospun Microfibers Promotes Axonal Extension. Advanced Healthcare Materials, 2016, 5, 2628-2635.	3.9	45
695	Molecular mechanism of central nervous system repair by the <i>Drosophila</i> NG2 homologue <i>kon-tiki</i> . Journal of Cell Biology, 2016, 214, 587-601.	2.3	23
696	InÂVivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron, 2016, 91, 728-738.	3.8	131

#	Article	IF	CITATIONS
697	Dysfunction. , 2016, , 31-47.		0
698	Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11324-11329.	3.3	144
700	Extremely low-frequency electromagnetic fields: A possible non-invasive therapeutic tool for spinal cord injury rehabilitation. Electromagnetic Biology and Medicine, 2017, 36, 1-14.	0.7	12
701	Dynamic secondary degeneration in the spinal cord and ventral root after a focal cerebral infarction among hypertensive rats. Scientific Reports, 2016, 6, 22655.	1.6	29
702	Myelinating glia differentiation is regulated by extracellular matrix elasticity. Scientific Reports, 2016, 6, 33751.	1.6	91
703	Nogo-p4 Suppresses TrkA Signaling Induced by Low Concentrations of Nerve Growth Factor Through NgR1 in Differentiated PC12 Cells. NeuroSignals, 2016, 24, 25-39.	0.5	1
704	Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. Journal of Cell Biology, 2016, 214, 103-119.	2.3	255
705	Olfactory Ensheathing Cell Transplantation after a Complete Spinal Cord Transection Mediates Neuroprotective and Immunomodulatory Mechanisms to Facilitate Regeneration. Journal of Neuroscience, 2016, 36, 6269-6286.	1.7	76
706	A Phase III Clinical Trial Showing Limited Efficacy of Autologous Mesenchymal Stem Cell Therapy for Spinal Cord Injury. Neurosurgery, 2016, 78, 436-447.	0.6	132
707	Gangliosides of the Vertebrate Nervous System. Journal of Molecular Biology, 2016, 428, 3325-3336.	2.0	165
708	Intrathecal decompression versus epidural decompression in the treatment of severe spinal cord injury in rat model: a randomized, controlled preclinical research. Journal of Orthopaedic Surgery and Research, 2016, 11, 34.	0.9	23
709	Myelin Lipids Inhibit Axon Regeneration Following Spinal Cord Injury: a Novel Perspective for Therapy. Molecular Neurobiology, 2016, 53, 1052-1064.	1.9	23
710	Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses. Experimental Neurology, 2016, 277, 283-295.	2.0	44
711	Restoration of Visual Function by Enhancing Conduction in Regenerated Axons. Cell, 2016, 164, 219-232.	13.5	209
712	Intrinsic protective mechanisms of the neuron-glia network against glioma invasion. Journal of Clinical Neuroscience, 2016, 26, 19-25.	0.8	18
713	Rapid Mechanically Controlled Rewiring of Neuronal Circuits. Journal of Neuroscience, 2016, 36, 979-987.	1.7	30
714	Mechanisms of Plasticity, Remodeling and Recovery. , 2016, , 141-148.		0
715	Nogo Receptor Signaling Restricts Adult Neural Plasticity by Limiting Synaptic AMPA Receptor Delivery. Cerebral Cortex, 2016, 26, 427-439.	1.6	30

#	Article	IF	CITATIONS
716	Schwann Cell Exosomes Mediate Neuron–Glia Communication and Enhance Axonal Regeneration. Cellular and Molecular Neurobiology, 2016, 36, 429-436.	1.7	82
717	Deletion of Crmp4 attenuates CSPG-induced inhibition of axonal growth and induces nociceptive recovery after spinal cord injury. Molecular and Cellular Neurosciences, 2016, 74, 42-48.	1.0	17
718	Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomaterialia, 2016, 35, 42-56.	4.1	15
719	A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron, 2016, 89, 956-970.	3.8	314
720	Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury. Neurotherapeutics, 2016, 13, 370-381.	2.1	53
721	The emerging role of GPR50 receptor in brain. Biomedicine and Pharmacotherapy, 2016, 78, 121-128.	2.5	19
722	Mast cells promote scar remodeling and functional recovery after spinal cord injury <i>via</i> mouse mast cell protease 6. FASEB Journal, 2016, 30, 2040-2057.	0.2	26
723	Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Molecular and Cellular Proteomics, 2016, 15, 394-408.	2.5	59
724	Identification of novel protein tyrosine phosphatase sigma inhibitors promoting neurite extension. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 87-93.	1.0	6
725	Engineering Cell Fate for Tissue Regeneration by In Vivo Transdifferentiation. Stem Cell Reviews and Reports, 2016, 12, 129-139.	5.6	9
726	Inhibitory Injury Signaling Represses Axon Regeneration After Dorsal Root Injury. Molecular Neurobiology, 2016, 53, 4596-4605.	1.9	23
727	P2Y6 Receptor-Mediated Microglial Phagocytosis in Radiation-Induced Brain Injury. Molecular Neurobiology, 2016, 53, 3552-3564.	1.9	43
728	The reactions and role of NG2 glia in spinal cord injury. Brain Research, 2016, 1638, 199-208.	1.1	63
729	Reaching the brain: Advances in optic nerve regeneration. Experimental Neurology, 2017, 287, 365-373.	2.0	173
730	Attenuation of Axonal Degeneration by Calcium Channel Inhibitors Improves Retinal Ganglion Cell Survival and Regeneration After Optic Nerve Crush. Molecular Neurobiology, 2017, 54, 72-86.	1.9	40
731	Exosomes Derived from Mesenchymal Stromal Cells Promote Axonal Growth of Cortical Neurons. Molecular Neurobiology, 2017, 54, 2659-2673.	1.9	228
732	In vitro models of axon regeneration. Experimental Neurology, 2017, 287, 423-434.	2.0	47
733	CRMPs Function in Neurons and Glial Cells: Potential Therapeutic Targets for Neurodegenerative Diseases and CNS Injury. Molecular Neurobiology, 2017, 54, 4243-4256.	1.9	29

#	Article	IF	CITATIONS
734	Mechanical elongation of astrocyte processes to create living scaffolds for nervous system regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2737-2751.	1.3	26
735	Agenesis of the corpus callosum in Nogo receptor deficient mice. Journal of Comparative Neurology, 2017, 525, 291-301.	0.9	11
736	Altered Expression of Growth Associated Proteinâ€43 and Rho Kinase in Human Patients with Parkinson's Disease. Brain Pathology, 2017, 27, 13-25.	2.1	35
737	Cholinergic Protection in Ischemic Brain Injury. Springer Series in Translational Stroke Research, 2017, , 433-457.	0.1	1
738	Array Focal Cortical Stimulation Enhances Motor Function Recovery and Brain Remodeling in a Rat Model of Ischemia. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 658-665.	0.7	7
739	Therapeutic potential of flavonoids in spinal cord injury. Reviews in the Neurosciences, 2017, 28, 87-101.	1.4	15
740	Peptide-Tethered Hydrogel Scaffold Promotes Recovery from Spinal Cord Transection via Synergism with Mesenchymal Stem Cells. ACS Applied Materials & amp; Interfaces, 2017, 9, 3330-3342.	4.0	90
741	The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials, 2017, 123, 77-91.	5.7	51
742	The systematic analysis of coding and long non-coding RNAs in the sub-chronic and chronic stages of spinal cord injury. Scientific Reports, 2017, 7, 41008.	1.6	46
743	Neurogenic bladder dysfunction does not correlate with astrocyte and microglia activation produced by graded force in a contusion-induced spinal cord injury. Brain Research Bulletin, 2017, 131, 18-24.	1.4	7
744	Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help?. Advanced Healthcare Materials, 2017, 6, 1601130.	3.9	135
745	Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomaterialia, 2017, 54, 1-20.	4.1	136
746	Neurodegeneration and regeneration. Journal of Neuroscience Research, 2017, 95, 1525-1527.	1.3	0
747	ZL006 promotes migration and differentiation of transplanted neural stem cells in male rats after stroke. Journal of Neuroscience Research, 2017, 95, 2409-2419.	1.3	8
748	The role of timing in the treatment of spinal cord injury. Biomedicine and Pharmacotherapy, 2017, 92, 128-139.	2.5	33
749	Low intensity rTMS has sex-dependent effects on the local response of glia following a penetrating cortical stab injury. Experimental Neurology, 2017, 295, 233-242.	2.0	21
750	Thermosensitive heparinâ€poloxamer hydrogels enhance the effects of GDNF on neuronal circuit remodeling and neuroprotection after spinal cord injury. Journal of Biomedical Materials Research - Part A, 2017, 105, 2816-2829.	2.1	18
751	Regenerating optic pathways from the eye to the brain. Science, 2017, 356, 1031-1034.	6.0	112

#	Article	IF	CITATIONS
752	Gene co-expression networks identify Trem2 and Tyrobp as major hubs in human APOE expressing mice following traumatic brain injury. Neurobiology of Disease, 2017, 105, 1-14.	2.1	39
753	Nanotechnology in neurosurgery: thinking small, dreaming big. British Journal of Neurosurgery, 2017, 31, 538-550.	0.4	7
754	Possible effects of some agents on the injured nerve in obese rats: AÂstereological and electron microscopic study. Journal of Cranio-Maxillo-Facial Surgery, 2017, 45, 1258-1267.	0.7	9
755	Blockade of chondroitin sulfate proteoglycans-induced axonal growth inhibition by LOTUS. Neuroscience, 2017, 356, 265-274.	1.1	18
756	3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication, 2017, 9, 025002.	3.7	68
757	<scp>T</scp> hermogelling chitosan lactate hydrogel improves functional recovery after a C2 spinal cord hemisection in rat. Journal of Biomedical Materials Research - Part A, 2017, 105, 2004-2019.	2.1	27
758	Sigma-1 Receptors Fine-Tune the Neuronal Networks. Advances in Experimental Medicine and Biology, 2017, 964, 79-83.	0.8	18
759	The role of RhoA in retrograde neuronal death and axon regeneration after spinal cord injury. Neurobiology of Disease, 2017, 98, 25-35.	2.1	38
760	Novel sulfoglycolipid IG20 causes neuroprotection by activating the phase II antioxidant response in rat hippocampal slices. Neuropharmacology, 2017, 116, 110-121.	2.0	1
761	Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth. Biochemical and Biophysical Research Communications, 2017, 483, 759-764.	1.0	20
762	A robust and reproducible human pluripotent stem cell derived model of neurite outgrowth in a three-dimensional culture system and its application to study neurite inhibition. Neurochemistry International, 2017, 106, 74-84.	1.9	15
763	Tissue mechanics regulate brain development, homeostasis and disease. Journal of Cell Science, 2017, 130, 71-82.	1.2	243
764	Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury. Advances in Experimental Medicine and Biology, 2017, 1015, 241-264.	0.8	11
765	The Plastic Brain. Advances in Experimental Medicine and Biology, 2017, , .	0.8	9
766	The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Experimental and Therapeutic Medicine, 2017, 14, 3355-3368.	0.8	34
767	Anti-encephalitogenic effects of ethyl pyruvate are reflected in the central nervous system and the gut. Biomedicine and Pharmacotherapy, 2017, 96, 78-85.	2.5	27
768	Recent advances in regenerative medicine approaches for spinal cord injuries. Current Opinion in Biomedical Engineering, 2017, 4, 40-49.	1.8	5
769	Bone marrow mesenchymal stem cells repair the hippocampal neurons and increase the expression of IGFâ€1 after cardiac arrest in rats. Experimental and Therapeutic Medicine, 2017, 14, 4312-4320.	0.8	9

#	Article	IF	Citations
770	Investigating the structural and functional features of representative recombinants of chondroitinase ABC I. Enzyme and Microbial Technology, 2017, 107, 64-71.	1.6	7
771	Lowâ€dose fractionated irradiation promotes axonal regeneration beyond reactive gliosis and facilitates locomotor function recovery after spinal cord injury in beagle dogs. European Journal of Neuroscience, 2017, 46, 2507-2518.	1.2	2
772	Regulation of axonal regeneration by the level of function of the endogenous Nogo receptor antagonist LOTUS. Scientific Reports, 2017, 7, 12119.	1.6	23
773	A multi-trap microfluidic chip enabling longitudinal studies of nerve regeneration in Caenorhabditis elegans. Scientific Reports, 2017, 7, 9837.	1.6	33
774	KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS. Journal of Neuroscience, 2017, 37, 9632-9644.	1.7	91
775	A novel rare variant R292H in RTN4R affects growth cone formation and possibly contributes to schizophrenia susceptibility. Translational Psychiatry, 2017, 7, e1214-e1214.	2.4	25
776	Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling. Journal of Visualized Experiments, 2017, , .	0.2	33
777	Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks. Advanced Biology, 2017, 1, 1700068.	3.0	18
778	Fabrication and characterization of aligned fibrin nanofiber hydrogel loaded with PLGA microspheres. Macromolecular Research, 2017, 25, 528-533.	1.0	6
779	Advances in experimental optic nerve regeneration. Current Opinion in Ophthalmology, 2017, 28, 558-563.	1.3	22
780	Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping. Advanced Functional Materials, 2017, 27, 1700489.	7.8	49
781	DSCAM-mediated control of dendritic and axonal arbor outgrowth enforces tiling and inhibits synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10224-E10233.	3.3	27
782	Discovery of a Small-Molecule Modulator of Glycosaminoglycan Sulfation. ACS Chemical Biology, 2017, 12, 3126-3133.	1.6	24
783	Leukemia Inhibitory Factor Contributes to Reactive Astrogliosis via Activation of Signal Transducer and Activator of Transcription 3 Signaling after Intracerebral Hemorrhage in Rats. Journal of Neurotrauma, 2017, 34, 1658-1665.	1.7	17
784	Poly(lactide-co-glycolide) nanoparticles embedded in a micropatterned collagen scaffold for neuronal tissue regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 359-368.	1.8	7
785	Heme Oxygenase-1 Inhibits Neuronal Apoptosis in Spinal Cord Injury through Down-Regulation of Cdc42-MLK3-MKK7-JNK3 Axis. Journal of Neurotrauma, 2017, 34, 695-706.	1.7	19
786	1 Pathobiology of Spinal Cord Injury. , 2017, , .		0
787	Hyper-IL-6: a potent and efficacious stimulator of RGC regeneration. Eye, 2017, 31, 173-178.	1.1	24

_			_		
Сіт	ATI	ON	L) E		DT
	Λ I I			. F O	

#	Article	IF	CITATIONS
788	Speculations on the Use of Marine Polysaccharides as Scaffolds for Artificial Nerve â€~Side-'Grafts. , 0, ,		3
789	Gene Manipulation Strategies to Identify Molecular Regulators of Axon Regeneration in the Central Nervous System. Frontiers in Cellular Neuroscience, 2017, 11, 231.	1.8	20
790	Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia. Frontiers in Cellular Neuroscience, 2017, 11, 391.	1.8	30
791	The Role of SDF-1/CXCR4/CXCR7 in Neuronal Regeneration after Cerebral Ischemia. Frontiers in Neuroscience, 2017, 11, 590.	1.4	92
792	Differential Expression of Sox11 and Bdnf mRNA Isoforms in the Injured and Regenerating Nervous Systems. Frontiers in Molecular Neuroscience, 2017, 10, 354.	1.4	23
793	Prerequisites for Mesenchymal Stem Cell Transplantation in Spinal Cord Injury. , 2017, , .		1
794	Harnessing supramolecular peptide nanotechnology in biomedical applications. International Journal of Nanomedicine, 2017, Volume 12, 1171-1182.	3.3	36
795	Cell-type specific expression of constitutively-active Rheb promotes regeneration of bulbospinal respiratory axons following cervical SCI. Experimental Neurology, 2018, 303, 108-119.	2.0	12
796	The Soluble Form of LOTUS inhibits Nogo Receptor-Mediated Signaling by Interfering with the Interaction Between Nogo Receptor Type 1 and p75 Neurotrophin Receptor. Journal of Neuroscience, 2018, 38, 2589-2604.	1.7	18
797	Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell, 2018, 173, 153-165.e22.	13.5	242
798	Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury. Molecular Therapy - Nucleic Acids, 2018, 11, 393-406.	2.3	13
799	Intrinsic mechanisms of neuronal axon regeneration. Nature Reviews Neuroscience, 2018, 19, 323-337.	4.9	383
800	ROCK inhibition in models of neurodegeneration and its potential for clinical translation. , 2018, 189, 1-21.		136
801	Zebrafish extracellular matrix improves neuronal viability and network formation in a 3-dimensional culture. Biomaterials, 2018, 170, 137-146.	5.7	5
802	Three-dimensional Tissue Engineered Aligned Astrocyte Networks to Recapitulate Developmental Mechanisms and Facilitate Nervous System Regeneration. Journal of Visualized Experiments, 2018, , .	0.2	12
803	Comparative analysis of the transcriptome of injured nerve segments reveals spatiotemporal responses to neural damage in mice. Journal of Comparative Neurology, 2018, 526, 1195-1208.	0.9	17
804	Fibrotic scarring following lesions to the central nervous system. Matrix Biology, 2018, 68-69, 561-570.	1.5	103
805	Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice. Biochemical and Biophysical Research Communications, 2018, 496, 1302-1307.	1.0	11

#	Article	IF	CITATIONS
806	Comparisons of the therapeutic effects of three different routes of bone marrow mesenchymal stem cell transplantation in cerebral ischemic rats. Brain Research, 2018, 1680, 143-154.	1.1	36
807	Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair. Biomaterials Science, 2018, 6, 265-271.	2.6	56
808	<scp>C</scp> ell therapy for spinal cord injury with olfactory ensheathing glia cells (<scp>OEC</scp> s). Glia, 2018, 66, 1267-1301.	2.5	89
809	p75NTR and TROY: Uncharted Roles of Nogo Receptor Complex in Experimental Autoimmune Encephalomyelitis. Molecular Neurobiology, 2018, 55, 6329-6336.	1.9	8
810	Axonal regeneration in zebrafish spinal cord. Regeneration (Oxford, England), 2018, 5, 43-60.	6.3	30
811	Regeneration of the Rhopalium and the Rhopalial Nervous System in the Box Jellyfish <i>Tripedalia cystophora</i> . Biological Bulletin, 2018, 234, 22-36.	0.7	8
812	Local Immunomodulation with Anti-inflammatory Cytokine-Encoding Lentivirus Enhances Functional Recovery after Spinal Cord Injury. Molecular Therapy, 2018, 26, 1756-1770.	3.7	56
813	CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Progress in Retinal and Eye Research, 2018, 65, 28-49.	7.3	64
814	Cell based therapy enhances activation of ventral premotor cortex to improve recovery following primary motor cortex injury. Experimental Neurology, 2018, 305, 13-25.	2.0	13
815	Collagen scaffold combined with human umbilical cordâ€derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1154-e1163.	1.3	50
816	Serotonin axons in the neocortex of the adult female mouse regrow after traumatic brain injury. Journal of Neuroscience Research, 2018, 96, 512-526.	1.3	28
817	The Involvement of the Myelin-Associated Inhibitors and Their Receptors in CNS Plasticity and Injury. Molecular Neurobiology, 2018, 55, 1831-1846.	1.9	44
818	Diffusion MRI and the detection of alterations following traumatic brain injury. Journal of Neuroscience Research, 2018, 96, 612-625.	1.3	85
819	Epigenetic regulation of neural stem cell differentiation towards spinal cord regeneration. Cell and Tissue Research, 2018, 371, 189-199.	1.5	24
820	NG2/CSPG4 and progranulin in the posttraumatic glial scar. Matrix Biology, 2018, 68-69, 571-588.	1.5	51
821	Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury. Experimental Neurology, 2018, 300, 22-29.	2.0	62
822	In vivo imaging of Mauthner axon regeneration, remyelination and synapses re-establishment after laser axotomy in zebrafish larvae. Experimental Neurology, 2018, 300, 67-73.	2.0	20
823	Carnosine suppresses oxygen-glucose deprivation/recovery-induced proliferation and migration of reactive astrocytes of rats in vitro. Acta Pharmacologica Sinica, 2018, 39, 24-34.	2.8	20

#	Article	IF	Citations
824	Non-functionalized soft alginate hydrogel promotes locomotor recovery after spinal cord injury in a rat hemimyelonectomy model. Acta Neurochirurgica, 2018, 160, 449-457.	0.9	29
825	Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury. Magnetic Resonance Imaging, 2018, 47, 25-32.	1.0	32
826	Biomaterial strategies for limiting the impact of secondary events following spinal cord injury. Biomedical Materials (Bristol), 2018, 13, 024105.	1.7	33
827	Neural stem cell therapy aiming at better functional recovery after spinal cord injury. Developmental Dynamics, 2018, 247, 75-84.	0.8	72
828	Gene network underlying the glial regenerative response to central nervous system injury. Developmental Dynamics, 2018, 247, 85-93.	0.8	26
829	Retinal Ganglion Cell Replacement: A Bridge to the Brain. Fundamental Biomedical Technologies, 2018, , 193-206.	0.2	0
830	The utility of stem cells for neural regeneration. Brain and Neuroscience Advances, 2018, 2, 239821281881807.	1.8	5
831	Alterations in the spinal cord and ventral root after cerebral infarction in non-human primates. Restorative Neurology and Neuroscience, 2018, 36, 729-740.	0.4	6
832	Biomaterial Approaches to Modulate Reactive Astroglial Response. Cells Tissues Organs, 2018, 205, 372-395.	1.3	34
833	Subnetwork identification and chemical modulation for neural regeneration: A study combining network guided forest and heat diffusion model. Quantitative Biology, 2018, 6, 321-333.	0.3	0
834	Repulsive Environment Attenuation during Adult Mouse Optic Nerve Regeneration. Neural Plasticity, 2018, 2018, 1-11.	1.0	12
835	Biomaterials Developments for Brain Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1078, 323-346.	0.8	13
836	Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Research Bulletin, 2018, 143, 123-131.	1.4	15
837	Coordination of Necessary and Permissive Signals by PTEN Inhibition for CNS Axon Regeneration. Frontiers in Neuroscience, 2018, 12, 558.	1.4	26
838	The Krüppel-Like Factor Gene Target Dusp14 Regulates Axon Growth and Regeneration. , 2018, 59, 2736.		48
839	On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Frontiers in Neurology, 2018, 9, 602.	1.1	15
840	Comparison of subacute and chronic scar tissues after complete spinal cord transection. Experimental Neurology, 2018, 306, 132-137.	2.0	26
841	Adult rat myelin enhances axonal outgrowth from neural stem cells. Science Translational Medicine, 2018, 10, .	5.8	28

ARTICLE IF CITATIONS Targeting the cytoskeleton with an FDA approved drug to promote recovery after spinal cord injury. 842 2.0 1 Experimental Neurology, 2018, 306, 260-262. Molecular Aspects of Spinal Cord Injury., 2018, , 155-195. 843 844 Potential Neuroprotective Strategies for Experimental Spinal Cord Injury., 2018, 197-238. 0 The extent of extra-axonal tissue damage determines the levels of CSPG upregulation and the success 845 of experimental axon regeneration in the CNS. Scientific Reports, 2018, 8, 9839. The Extracellular Environment of the CNS: Influence on Plasticity, Sprouting, and Axonal 846 1.0 59 Regeneration after Spinal Cord Injury. Neural Plasticity, 2018, 2018, 1-18. RLIPostC protects against cerebral ischemia through improved synaptogenesis in rats. Brain Injury, 847 2018, 32, 1429-1436. Oligodendrocytic but not neuronal Nogo restricts corticospinal axon sprouting after CNS injury. 848 2.0 15 Experimental Neurology, 2018, 309, 32-43. Dextran-based biodegradable nanoparticles: an alternative and convenient strategy for treatment of 849 3.3 traumatic spinal cord injury. International Journal of Nanomedicine, 2018, Volume 13, 4121-4132. Optic Nerve Regeneration After Crush Remodels the Injury Site: Molecular Insights From Imaging Mass 850 19 Spectrometry. , 2018, 59, 212. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role 1.4 of their environment. Reviews in the Neurosciences, 2018, 30, 45-66. Transplantation of photoreceptor precursor cells into the retina of an adult <i>Drosophila</i>. 852 0.6 1 Development Growth and Differentiation, 2018, 60, 442-453. Sema3E/PlexinD1 inhibition is a therapeutic strategy for improving cerebral perfusion and restoring functional loss after stroke in agedÂrats. Neurobiology of Aging, 2018, 70, 102-116. 1.5 The Virtuous Cycle of Axon Growth: Axonal Transport of Growthâ€Promoting Machinery as an Intrinsic 854 1.5 28 Determinant of Axon Regeneration. Developmental Neurobiology, 2018, 78, 898-925. A Drosophila In Vivo Injury Model for Studying Neuroregeneration in the Peripheral and Central Nervous System. Journal of Visualized Experiments, 2018, , . 0.2 Mechanisms of Pathology-Induced Neural Stem Cell Plasticity and Neural Regeneration in Adult 856 32 1.6 Zebrafish Brain. Current Pathobiology Reports, 2018, 6, 71-77. The impact of metallothionein-II on microglial response to tumor necrosis factor-alpha (TNF \hat{i} +) and 3.1 downstream effects on neuronal regeneration. Journal of Neuroinflammation, 2018, 15, 56. Effects of long-term rapamycin treatment on glial scar formation after cryogenic traumatic brain 858 1.0 13 injury in mice. Neuroscience Letters, 2018, 678, 68-75. Flufenamic acid inhibits secondary hemorrhage and BSCB disruption after spinal cord injury. 859 Theranostics, 2018, 8, 4181-4198.

#	Article	IF	CITATIONS
860	Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell Death Discovery, 2018, 4, 7.	2.0	46
861	MicroRNA-21-5p mediates TGF-Î ² -regulated fibrogenic activation of spinal fibroblasts and the formation of fibrotic scars after spinal cord injury. International Journal of Biological Sciences, 2018, 14, 178-188.	2.6	58
862	The role of oligodendrocytes and their progenitors on neural interface technology: A novel perspective on tissue regeneration and repair. Biomaterials, 2018, 183, 200-217.	5.7	30
863	From Neural Crest Development to Cancer and Vice Versa: How p75NTR and (Pro)neurotrophins Could Act on Cell Migration and Invasion?. Frontiers in Molecular Neuroscience, 2018, 11, 244.	1.4	26
864	Advances and Limitations of Current Epigenetic Studies Investigating Mammalian Axonal Regeneration. Neurotherapeutics, 2018, 15, 529-540.	2.1	22
865	MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma. Experimental Cell Research, 2018, 370, 24-30.	1.2	16
866	Electrospun polycaprolactone scaffolds for tissue engineering: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 527-539.	1.8	76
867	Feasible stabilization of chondroitinase abc enables reduced astrogliosis in a chronic model of spinal cord injury. CNS Neuroscience and Therapeutics, 2019, 25, 86-100.	1.9	22
868	Nerve Growth Factor Role on Retinal Ganglion Cell Survival and Axon Regrowth: Effects of Ocular Administration in Experimental Model of Optic Nerve Injury. Molecular Neurobiology, 2019, 56, 1056-1069.	1.9	42
869	Exosomes Derived from Bone Mesenchymal Stem Cells Repair Traumatic Spinal Cord Injury by Suppressing the Activation of A1 Neurotoxic Reactive Astrocytes. Journal of Neurotrauma, 2019, 36, 469-484.	1.7	204
870	Neuro-regeneration Therapeutic for Alzheimer's Dementia: Perspectives on Neurotrophic Activity. Trends in Pharmacological Sciences, 2019, 40, 655-668.	4.0	21
871	Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 3524-3539.	1.9	85
872	Identification of Key Genes and Pathways Involved in the Heterogeneity of Intrinsic Growth Ability Between Neurons After Spinal Cord Injury in Adult Zebrafish. Neurochemical Research, 2019, 44, 2057-2067.	1.6	6
873	Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14947-14954.	3.3	83
874	Nogo-A/Pir-B/TrkB Signaling Pathway Activation Inhibits Neuronal Survival and Axonal Regeneration After Experimental Intracerebral Hemorrhage in Rats. Journal of Molecular Neuroscience, 2019, 69, 360-370.	1.1	17
875	The advances in nerve tissue engineering: From fabrication of nerve conduit to <i>in vivo</i> nerve regeneration assays. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2077-2100.	1.3	40
876	Reflex arc recovery after spinal cord dorsal root repair with platelet rich plasma (PRP). Brain Research Bulletin, 2019, 152, 212-224.	1.4	11
877	Temporospatial effects of acylâ€ghrelin on activation of astrocytes after ischaemic brain injury. Journal of Neuroendocrinology, 2019, 31, e12767.	1.2	6

#	Article	IF	CITATIONS
878	Circ-Spidr enhances axon regeneration after peripheral nerve injury. Cell Death and Disease, 2019, 10, 787.	2.7	24
879	Designing a Tenascin-C-Inspired Short Bioactive Peptide Scaffold to Direct and Control Cellular Behavior. ACS Biomaterials Science and Engineering, 2019, 5, 6497-6510.	2.6	17
880	Prospects of siRNA cocktails as tools for modifying multiple gene targets in the injured spinal cord. Experimental Biology and Medicine, 2019, 244, 1096-1110.	1.1	7
881	CSK-3 Inhibitor Promotes Neuronal Cell Regeneration and Functional Recovery in a Rat Model of Spinal Cord Injury. BioMed Research International, 2019, 2019, 1-8.	0.9	14
882	Activation of endothelial ras-related C3 botulinum toxin substrate 1 (Rac1) improves post-stroke recovery and angiogenesis via activating Pak1 in mice. Experimental Neurology, 2019, 322, 113059.	2.0	29
883	AAV2â€BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury. FASEB Journal, 2019, 33, 13775-13793.	0.2	18
884	Developmental Aspects of Glucose and Calcium Availability on the Persistence of Memory Function Over the Lifespan. Frontiers in Aging Neuroscience, 2019, 11, 253.	1.7	7
885	Kaolin-induced hydrocephalus causes acetylcholinesterase activity dysfunction following hypothalamic damage in infant rats. Brain Research, 2019, 1724, 146408.	1.1	4
886	Bundled Three-Dimensional Human Axon Tracts Derived from Brain Organoids. IScience, 2019, 21, 57-67.	1.9	37
887	Enhanced angiogenesis by the hyaluronic acid hydrogels immobilized with a VEGF mimetic peptide in a traumatic brain injury model in rats. International Journal of Energy Production and Management, 2019, 6, 325-334.	1.9	49
888	Roles of mTOR Signaling in Tissue Regeneration. Cells, 2019, 8, 1075.	1.8	81
889	Constitutional mislocalization of Pten drives precocious maturation in oligodendrocytes and aberrant myelination in model of autism spectrum disorder. Translational Psychiatry, 2019, 9, 13.	2.4	28
890	Functional Cortical Axon Tracts Generated from Human Stem Cell-Derived Neurons. Tissue Engineering - Part A, 2019, 25, 736-745.	1.6	10
891	HDAC6 and Miro1: Another interaction causing trouble in neurons. Journal of Cell Biology, 2019, 218, 1769-1770.	2.3	8
892	LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice. Experimental Neurology, 2019, 320, 112965.	2.0	20
893	Optic nerve regeneration in larval zebrafish exhibits spontaneous capacity for retinotopic but not tectum specific axon targeting. PLoS ONE, 2019, 14, e0218667.	1.1	13
894	Calcium/calmodulinâ€dependent protein kinase II regulates mammalian axon growth by affecting Fâ€actin length in growth cone. Journal of Cellular Physiology, 2019, 234, 23053-23065.	2.0	22
895	The Intrinsic Role of Epigenetics in Axonal Regeneration. , 2019, , 333-354.		0

		CITATION REF	PORT	
#	Article		IF	CITATIONS
896	Multicellular gene network analysis identifies a macrophage-related gene signature predictive therapeutic response and prognosis of gliomas. Journal of Translational Medicine, 2019, 17, 2	? of 159.	1.8	40
897	Stem cell/cellular interventions in human spinal cord injury: Is it time to move from guidelines regulations and legislations? Literature review and Spinal Cord Society position statement. En Spine Journal, 2019, 28, 1837-1845.	to uropean	1.0	8
898	Wallerian degeneration in experimental focal cortical ischemia. Brain Research Bulletin, 2019 194-202.	, 149,	1.4	17
899	Theranostic Biomaterials for Regulation of the Blood–Brain Barrier. , 2019, , 303-319.			4
900	Current and Combinative Curcumin Therapeutics for Treating Spinal Cord Injury. , 2019, , 419	9-435.		1
901	Peri-Infarct Upregulation of the Oxytocin Receptor in Vascular Dementia. Journal of Neuropat and Experimental Neurology, 2019, 78, 436-452.	hology	0.9	56
902	FTY720 attenuates iron deposition and glial responses in improving delayed lesion and long-tout outcomes of collagenase-induced intracerebral hemorrhage. Brain Research, 2019, 1718, 91-	erm 102.	1.1	15
903	<i>In vivo</i> imaging of evoked calcium responses indicates the intrinsic axonal regenerativ of zebrafish. FASEB Journal, 2019, 33, 7721-7733.	e capacity	0.2	8
904	Effect of lesion proximity on the regenerative response of long descending propriospinal neu after spinal transection injury. BMC Neuroscience, 2019, 20, 10.	rons	0.8	14
905	Heterozygous Deletion of EphrinA5 Does Not Improve Functional Recovery After Experiment Stroke, 2019, 50, e101.	al Stroke.	1.0	4
906	Copy number variation of <i>LINGO1</i> in familial dystonic tremor. Neurology: Genetics, 20	19, 5, e307.	0.9	8
907	Stemâ€Cellâ€Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish. Developr Neurobiology, 2019, 79, 406-423.	nental	1.5	6
908	Proteomics analysis of Schwann cell-derived exosomes: a novel therapeutic strategy for centr nervous system injury. Molecular and Cellular Biochemistry, 2019, 457, 51-59.	al	1.4	44
909	Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelir following traumatic nerve injuries. Advanced Drug Delivery Reviews, 2019, 149-150, 19-48.	ation	6.6	31
910	Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mecl Frontiers in Neurology, 2019, 10, 282.	ianisms.	1.1	698
911	Long noncoding RNA <i>HOTAIR</i> promotes invasion of breast cancer cells through chond sulfotransferase CHST15. International Journal of Cancer, 2019, 145, 2478-2487.	roitin	2.3	42
912	Administration of ONO-2506 suppresses neuropathic pain after spinal cord injury by inhibitic astrocytic activation. Spine Journal, 2019, 19, 1434-1442.	n of	0.6	9
913	Galectin-3 (MAC-2) Controls Microglia Phenotype Whether Amoeboid and Phagocytic or Bran Non-phagocytic by Regulating the Cytoskeleton. Frontiers in Cellular Neuroscience, 2019, 13	nched and , 90.	1.8	43

#	Article	IF	Citations
914	Toll-like receptor 9 antagonism modulates astrocyte function and preserves proximal axons following spinal cord injury. Brain, Behavior, and Immunity, 2019, 80, 328-343.	2.0	19
915	Conditional ablation of reactive astrocytes to dissect their roles in spinal cord injury and repair. Brain, Behavior, and Immunity, 2019, 80, 394-405.	2.0	47
916	Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis. Biomedicines, 2019, 7, 14.	1.4	76
917	Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Advanced Drug Delivery Reviews, 2019, 148, 239-251.	6.6	83
918	Chemical Conversion of Human Fetal Astrocytes into Neurons through Modulation of Multiple Signaling Pathways. Stem Cell Reports, 2019, 12, 488-501.	2.3	70
919	GATA3 Promotes the Neural Progenitor State but Not Neurogenesis in 3D Traumatic Injury Model of Primary Human Cortical Astrocytes. Frontiers in Cellular Neuroscience, 2019, 13, 23.	1.8	23
920	The functional impact of G protein-coupled receptor 142 (Gpr142) on pancreatic β-cell in rodent. Pflugers Archiv European Journal of Physiology, 2019, 471, 633-645.	1.3	24
921	PTEN modulates neurites outgrowth and neuron apoptosis involving the PI3K/Akt/mTOR signaling pathway. Molecular Medicine Reports, 2019, 20, 4059-4066.	1.1	15
922	Non-Thermal Plasma Accelerates Astrocyte Regrowth and Neurite Regeneration Following Physical Trauma In Vitro. Applied Sciences (Switzerland), 2019, 9, 3747.	1.3	14
923	The Importance of Natural Antioxidants in the Treatment of Spinal Cord Injury in Animal Models: An Overview. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-22.	1.9	36
924	Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury. Frontiers of Medicine, 2019, 13, 131-137.	1.5	14
925	Method and Apparatus for the Automated Delivery of Continuous Neural Stem Cell Trails Into the Spinal Cord of Small and Large Animals. Neurosurgery, 2019, 85, 560-573.	0.6	8
926	Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury. Injury, 2019, 50, 278-285.	0.7	65
927	PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. Journal of Cellular Physiology, 2019, 234, 11060-11069.	2.0	34
928	Effects of Different Doses of Mesenchymal Stem Cells on Functional Recovery After Compressive Spinal-Cord Injury in Mice. Neuroscience, 2019, 400, 17-32.	1.1	9
929	Nanotechnology in Spine Surgery: A Current Update and Critical Review of the Literature. World Neurosurgery, 2019, 123, 142-155.	0.7	27
930	In Vivo Evaluation of Engineered Self-Assembling Silk Fibroin Hydrogels after Intracerebral Injection in a Rat Stroke Model. ACS Biomaterials Science and Engineering, 2019, 5, 859-869.	2.6	45
931	Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Progress in Retinal and Eye Research, 2019, 69, 1-37.	7.3	130

#	Article	IF	CITATIONS
932	Evaluation of hyperbaric oxygen therapy for spinal cord injury in rats with different treatment course using diffusion tensor imaging. Spinal Cord, 2019, 57, 404-411.	0.9	4
933	Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials, 2019, 197, 20-31.	5.7	82
934	Primary culture of mouse embryonic spinal cord neurons: cell composition and suitability for axonal regeneration studies. International Journal of Neuroscience, 2019, 129, 762-769.	0.8	3
935	Chronic Viral Neuroinflammation: Speculation on Underlying Mechanisms. Viral Immunology, 2019, 32, 55-62.	0.6	7
936	Treatment With the Neutralizing Antibody Against Repulsive Guidance Molecule-a Promotes Recovery From Impaired Manual Dexterity in a Primate Model of Spinal Cord Injury. Cerebral Cortex, 2019, 29, 561-572.	1.6	39
937	Mesenchymal stem cells and treadmill training enhance function and promote tissue preservation after spinal cord injury. Brain Research, 2020, 1726, 146494.	1.1	16
938	Axonal regeneration and functional recovery driven by endogenous Nogo receptor antagonist LOTUS in a rat model of unilateral pyramidotomy. Experimental Neurology, 2020, 323, 113068.	2.0	13
939	Drug Delivery Applications of Nanoparticles in the Spine. Methods in Molecular Biology, 2020, 2059, 121-143.	0.4	3
940	Introduction to spinal cord injury as clinical pathology. , 2020, , 1-12.		3
941	Ancestral Folate Promotes Neuronal Regeneration in Serial Generations of Progeny. Molecular Neurobiology, 2020, 57, 2048-2071.	1.9	8
942	Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. Autophagy, 2020, 16, 2052-2068.	4.3	39
943	Recovery after spinal cord injury is enhanced by anti-Nogo-A antibody therapy — from animal models to clinical trials. Current Opinion in Physiology, 2020, 14, 1-6.	0.9	14
944	Neuro-protection and neuro-regeneration of the optic nerve: recent advances and future directions. Current Opinion in Neurology, 2020, 33, 93-105.	1.8	28
945	Environmental enrichment during the chronic phase after experimental stroke promotes functional recovery without synergistic effects of EphA4 targeted therapy. Human Molecular Genetics, 2020, 29, 605-617.	1.4	8
946	Zebrafish Spinal Cord Repair Is Accompanied by Transient Tissue Stiffening. Biophysical Journal, 2020, 118, 448-463.	0.2	37
947	Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. Journal of Lipid Research, 2020, 61, 636-654.	2.0	88
948	A Collagen-Based Scaffold for Promoting Neural Plasticity in a Rat Model of Spinal Cord Injury. Polymers, 2020, 12, 2245.	2.0	13
949	GDNF gene-engineered adipose-derived stem cells seeded Emu oil-loaded electrospun nanofibers for axonal regeneration following spinal cord injury. Journal of Drug Delivery Science and Technology, 2020, 60, 102095.	1.4	18

#	Article	IF	CITATIONS
950	Nogo-A/S1PR2 Signaling Pathway Inactivation Decreases Microvascular Damage and Enhances Microvascular Regeneration in PDMCI Mice. Neuroscience, 2020, 449, 21-34.	1.1	6
951	Common and Distinct Features of Adult Neurogenesis and Regeneration in the Telencephalon of Zebrafish and Mammals. Frontiers in Neuroscience, 2020, 14, 568930.	1.4	49
952	Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cellular and Molecular Neurobiology, 2022, 42, 891-916.	1.7	20
953	Adult Mouse Retina Explants: From ex vivo to in vivo Model of Central Nervous System Injuries. Frontiers in Molecular Neuroscience, 2020, 13, 599948.	1.4	15
954	Microstructure and Mechanical Properties of PU/PLDL Sponges Intended for Grafting Injured Spinal Cord. Polymers, 2020, 12, 2693.	2.0	1
955	Universal Glia to Neurone Lactate Transfer in the Nervous System: Physiological Functions and Pathological Consequences. Biosensors, 2020, 10, 183.	2.3	20
956	Comparative gene expression profiling reveals the mechanisms of axon regeneration. FEBS Journal, 2021, 288, 4786-4797.	2.2	6
957	RNA interference in glial cells for nerve injury treatment. Journal of Tissue Engineering, 2020, 11, 204173142093922.	2.3	8
958	Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Frontiers in Cellular Neuroscience, 2020, 14, 187.	1.8	25
959	Revealing the Therapeutic Potential of Botulinum Neurotoxin Type A in Counteracting Paralysis and Neuropathic Pain in Spinally Injured Mice. Toxins, 2020, 12, 491.	1.5	15
960	Combined Treatment with Fasudil and Menthol Improves Functional Recovery in Rat Spinal Cord Injury Model. Biomedicines, 2020, 8, 258.	1.4	9
961	Biomimicking Fiber Platform with Tunable Stiffness to Study Mechanotransduction Reveals Stiffness Enhances Oligodendrocyte Differentiation but Impedes Myelination through YAPâ€Dependent Regulation. Small, 2020, 16, e2003656.	5.2	25
962	Biomaterial strategies for creating inÂvitro astrocyte cultures resembling inÂvivo astrocyte morphologies and phenotypes. Current Opinion in Biomedical Engineering, 2020, 14, 67-74.	1.8	7
963	Local Delivery of Taxol From FGL-Functionalized Self-Assembling Peptide Nanofiber Scaffold Promotes Recovery After Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 820.	1.8	16
964	Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metabolism, 2020, 32, 767-785.e7.	7.2	64
965	A laser microdissection-based axotomy model incorporating the use of biomimicking fiber scaffolds reveals that microRNAs promote axon regeneration over long injury distances. Biomaterials Science, 2020, 8, 6286-6300.	2.6	2
966	Extracellular Alpha-Synuclein Promotes a Neuroinhibitory Secretory Phenotype in Astrocytes. Life, 2020, 10, 183.	1.1	7
967	Effective Modulation of CNS Inhibitory Microenvironment using Bioinspired Hybridâ€Nanoscaffoldâ€Based Therapeutic Interventions. Advanced Materials, 2020, 32, e2002578.	11.1	40

	CITATION	REPORT	
#	Article	IF	CITATIONS
968	Fibrotic Scar in Neurodegenerative Diseases. Frontiers in Immunology, 2020, 11, 1394.	2.2	41
969	Ischemic Cerebral Endothelial Cell–Derived Exosomes Promote Axonal Growth. Stroke, 2020, 51, 3701-3712.	1.0	33
970	Agrin Involvement in Synaptogenesis Induced by Exercise in a Rat Model of Experimental Stroke. Neurorehabilitation and Neural Repair, 2020, 34, 1124-1137.	1.4	11
971	Histidine: A Systematic Review on Metabolism and Physiological Effects in Human and Different Animal Species. Nutrients, 2020, 12, 1414.	1.7	102
972	Astrocytes: Initiators of and Responders to Inflammation. , 2020, , .		6
973	Long-Range Optogenetic Control of Axon Guidance Overcomes Developmental Boundaries and Defects. Developmental Cell, 2020, 53, 577-588.e7.	3.1	27
974	Reaching and Grasping Training Improves Functional Recovery After Chronic Cervical Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2020, 14, 110.	1.8	15
975	Diffusion tensor imaging and electrophysiology as robust assays to evaluate the severity of acute spinal cord injury in rats. BMC Neurology, 2020, 20, 236.	0.8	7
976	Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Military Medical Research, 2020, 7, 30.	1.9	40
977	The stem cell marker <i>Prom1</i> promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15955-15966.	3.3	34
978	An injectable recombinant human milk fat globule–epidermal growth factor 8–loaded copolymer system for spinal cord injury reduces inflammation through NF-κB and neuronal cell death. Cytotherapy, 2020, 22, 193-203.	0.3	14
979	Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules, 2020, 10, 389.	1.8	99
980	Nogo receptor antagonist LOTUS exerts suppression on axonal growthâ€inhibiting receptor PIRâ€B. Journal of Neurochemistry, 2020, 155, 285-299.	2.1	8
981	Astrocytic YAP Promotes the Formation of Glia Scars and Neural Regeneration after Spinal Cord Injury. Journal of Neuroscience, 2020, 40, 2644-2662.	1.7	57
982	Epigenetic Regulation of WNT3A Enhancer during Regeneration of Injured Cortical Neurons. International Journal of Molecular Sciences, 2020, 21, 1891.	1.8	4
983	Chondroitin sulfate proteoglycans: key modulators of neuronal plasticity, long-term memory, neurodegenerative, and psychiatric disorders. Reviews in the Neurosciences, 2020, 31, 555-568.	1.4	18
984	Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metabolism, 2020, 31, 623-641.e8.	7.2	102
985	Biomaterial-based systems as biomimetic agents in the repair of the central nervous system. , 2020, , 259-289.		0

#	Article	IF	CITATIONS
986	Axon growth and branching. , 2020, , 57-85.		0
987	Recent trends in the development of peptide and protein-based hydrogel therapeutics for the healing of CNS injury. Soft Matter, 2020, 16, 10046-10064.	1.2	35
988	Optic Nerve Regeneration: How Will We Get There?. Journal of Neuro-Ophthalmology, 2020, 40, 234-242.	0.4	10
989	Exercise modulates the levels of growth inhibitor genes before and after multiple sclerosis. Journal of Neuroimmunology, 2020, 341, 577172.	1.1	15
990	Activating Transcription Factor 3 (ATF3) Protects Retinal Ganglion Cells and Promotes Functional Preservation After Optic Nerve Crush. , 2020, 61, 31.		46
991	Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells, 2020, 9, 151.	1.8	33
992	Myelination during fracture healing in vivo in myelin protein zero (p0) transgenic medaka line. Bone, 2020, 133, 115225.	1.4	10
993	LOTUS as an endogenous protein converting the adult central nervous system environment from nonpermissive to permissive for axonal regrowth after brain injury. Neuropathology, 2020, 40, 14-20.	0.7	1
995	The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. Journal of Biological Chemistry, 2020, 295, 8374-8386.	1.6	28
996	Genetic Variants Were Associated With the Prognosis of Head and Neck Squamous Carcinoma. Frontiers in Oncology, 2020, 10, 372.	1.3	7
997	Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead. International Journal of Molecular Sciences, 2020, 21, 2262.	1.8	68
998	Microcarrier expansion of câ€MycER TAM â€modified human olfactory mucosa cells for neural regeneration. Biotechnology and Bioengineering, 2021, 118, 329-344.	1.7	0
999	Bioactive 3D porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface for nerve tissue engineering application. Journal of Materials Chemistry B, 2021, 9, 322-335.	2.9	25
1000	Evaluating and modulating TFEB in the control of autophagy: toward new treatments in CNS disorders. Fundamental and Clinical Pharmacology, 2021, 35, 539-551.	1.0	6
1001	The intrinsic axon regenerative properties of mature neurons after injury. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1-9.	0.9	6
1002	In vivo spatiotemporal patterns of oligodendrocyte and myelin damage at the neural electrode interface. Biomaterials, 2021, 268, 120526.	5.7	28
1003	Detection and Characterization of Vesicular Gangliosides Binding to Myelin-Associated Glycoprotein on Supported Lipid Bilayers. Analytical Chemistry, 2021, 93, 1185-1192.	3.2	10
1004	Activation of neuronal Rasâ€related C3 botulinum toxin substrate 1 (Rac1) improves postâ€stroke recovery and axonal plasticity in mice. Journal of Neurochemistry, 2021, 157, 1366-1376.	2.1	17

#	Article	IF	CITATIONS
1005	Potential roles of stem cell marker genes in axon regeneration. Experimental and Molecular Medicine, 2021, 53, 1-7.	3.2	9
1006	Mechanisms and significance of microglia–axon interactions in physiological and pathophysiological conditions. Cellular and Molecular Life Sciences, 2021, 78, 3907-3919.	2.4	7
1007	Injectable hydrogels in stroke and spinal cord injury treatment: a review on hydrogel materials, cell–matrix interactions and glial involvement. Materials Advances, 2021, 2, 2561-2583.	2.6	18
1008	The Mechanisms of Peripheral Nerve Preconditioning Injury on Promoting Axonal Regeneration. Neural Plasticity, 2021, 2021, 1-9.	1.0	12
1009	An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomaterials Science, 2021, 9, 3911-3938.	2.6	20
1010	Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury. Journal of Materials Chemistry B, 2021, 9, 7979-7990.	2.9	12
1011	Polyphenols and neurodegenerative diseases: focus on neuronal regeneration. Critical Reviews in Food Science and Nutrition, 2022, 62, 3421-3436.	5.4	28
1012	Experimental Model Systems for Understanding Human Axonal Injury Responses. International Journal of Molecular Sciences, 2021, 22, 474.	1.8	6
1013	Inhibitor of DNA binding 2 accelerates nerve regeneration after sciatic nerve injury in mice. Neural Regeneration Research, 2021, 16, 2542.	1.6	3
1014	Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats. Neural Regeneration Research, 2021, 16, 1052.	1.6	4
1015	Scar tissue removal-activated endogenous neural stem cells aid Taxol-modified collagen scaffolds in repairing chronic long-distance transected spinal cord injury. Biomaterials Science, 2021, 9, 4778-4792.	2.6	12
1016	Quantitative Assessment of Neurite Outgrowth Over Growth Promoting or Inhibitory Substrates. Methods in Molecular Biology, 2021, 2311, 167-175.	0.4	0
1017	CNS Disease and Regeneration: When Growing Is Not Enough. , 2021, , 31-40.		0
1018	Effect of diet on neurological disorders and regenerative processes in the brain. , 2021, , 41-79.		0
1019	Olfactory ensheathing cells: Unique glial cells promising for treatments of spinal cord injury. Journal of Neuroscience Research, 2021, 99, 1579-1597.	1.3	20
1020	Roles of Non-coding RNAs in Central Nervous System Axon Regeneration. Frontiers in Neuroscience, 2021, 15, 630633.	1.4	11
1021	Dynamic Environmental Physical Cues Activate Mechanosensitive Responses in the Repair Schwann Cell Phenotype. Cells, 2021, 10, 425.	1.8	5
1022	Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. Nature	5.8	44

#	Article	IF	CITATIONS
1023	CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nature Neuroscience, 2021, 24, 234-244.	7.1	120
1024	Serine Proteases and Chemokines in Neurotrauma: New Targets for Immune Modulating Therapeutics in Spinal Cord Injury. Current Neuropharmacology, 2021, 19, 1835-1854.	1.4	7
1025	The utilization of small nonâ€nammals in traumatic brain injury research: A systematic review. CNS Neuroscience and Therapeutics, 2021, 27, 381-402.	1.9	7
1026	AAV-mediated inhibition of ULK1 promotes axonal regeneration in the central nervous system in vitro and in vivo. Cell Death and Disease, 2021, 12, 213.	2.7	6
1027	Nogo-A-Δ20/EphA4 interaction antagonizes apoptosis of neural stem cells by integrating p38 and JNK MAPK signaling. Journal of Molecular Histology, 2021, 52, 521-537.	1.0	10
1028	Graphene-Based Scaffolds for Regenerative Medicine. Nanomaterials, 2021, 11, 404.	1.9	45
1030	Glial cell type-specific gene expression in the mouse cerebrum using the piggyBac system and in utero electroporation. Scientific Reports, 2021, 11, 4864.	1.6	10
1031	Aerobic exercise training decreases cognitive impairment caused by demyelination by regulating ROCK signaling pathway in aging mice. Brain Research Bulletin, 2021, 168, 52-62.	1.4	14
1032	Optimal Preclinical Conditions for Using Adult Human Multipotent Neural Cells in the Treatment of Spinal Cord Injury. International Journal of Molecular Sciences, 2021, 22, 2579.	1.8	8
1033	LOTUS, an endogenous Nogo receptor antagonist, is involved in synapse and memory formation. Scientific Reports, 2021, 11, 5085.	1.6	4
1034	Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Molecular Medicine Reports, 2021, 23, .	1.1	59
1035	Mitochondrial Behavior in Axon Degeneration and Regeneration. Frontiers in Aging Neuroscience, 2021, 13, 650038.	1.7	37
1036	Hyaluronic Acid-Coated Nanoparticles for the Localized Delivery of Methylprednisolone to the Injured Spinal Cord. Journal of Nanomaterials, 2021, 2021, 1-9.	1.5	3
1037	Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke. International Journal of Molecular Sciences, 2021, 22, 4280.	1.8	79
1038	The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain, 2021, 144, 1958-1973.	3.7	71
1039	Matrix stiffness changes affect astrocyte phenotype in an in vitro injury model. NPG Asia Materials, 2021, 13, .	3.8	32
1040	Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. Journal of Neurotrauma, 2021, 38, 1251-1266.	1.7	14
1041	Mechanotransduction assays for neural regeneration strategies: A focus on glial cells. APL Bioengineering, 2021, 5, 021505.	3.3	16

#	Article	IF	CITATIONS
1042	Duraplasty in Traumatic Thoracic Spinal Cord Injury: Impact on Spinal Cord Hemodynamics, Tissue Metabolism, Histology, and Behavioral Recovery Using a Porcine Model. Journal of Neurotrauma, 2021, 38, 2937-2955.	1.7	7
1043	The Long Non-coding RNA NEAT1/miR-224-5p/IL-33 Axis Modulates Macrophage M2a Polarization and A1 Astrocyte Activation. Molecular Neurobiology, 2021, 58, 4506-4519.	1.9	14
1044	Reprogramming astrocytes to motor neurons by activation of endogenous Ngn2 and Isl1. Stem Cell Reports, 2021, 16, 1777-1791.	2.3	20
1045	Establishing the ground squirrel as a superb model for retinal ganglion cell disorders and optic neuropathies. Laboratory Investigation, 2021, 101, 1289-1303.	1.7	7
1046	CSPGs promote the migration of meningeal fibroblasts via p38 mitogen-activated protein kinase signaling pathway under OGD conditions. Brain Research Bulletin, 2021, 173, 37-44.	1.4	1
1047	Interleukin-17A regulates ependymal cell proliferation and functional recovery after spinal cord injury in mice. Cell Death and Disease, 2021, 12, 766.	2.7	11
1048	Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cellular and Molecular Immunology, 2021, 18, 2472-2488.	4.8	61
1049	Neutrophil Extracellular Traps Exacerbate Secondary Injury via Promoting Neuroinflammation and Blood–Spinal Cord Barrier Disruption in Spinal Cord Injury. Frontiers in Immunology, 2021, 12, 698249.	2.2	26
1050	An Outside-In Switch in Integrin Signaling Caused by Chemical and Mechanical Signals in Reactive Astrocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 712627.	1.8	7
1051	Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. Science China Life Sciences, 2022, 65, 909-926.	2.3	31
1052	Central Nervous System Tissue Regeneration after Intracerebral Hemorrhage: The Next Frontier. Cells, 2021, 10, 2513.	1.8	15
1053	Cell Transdifferentiation and Reprogramming in Disease Modeling: Insights into the Neuronal and Cardiac Disease Models and Current Translational Strategies. Cells, 2021, 10, 2558.	1.8	4
1054	Klf2-Vav1-Rac1 axis promotes axon regeneration after peripheral nerve injury. Experimental Neurology, 2021, 343, 113788.	2.0	10
1055	Recurrent rewiring of the adult hippocampal mossy fiber system by a single transcriptional regulator, Id2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
1056	Chondroitin 6-sulfate-binding peptides improve recovery in spinal cord-injured mice. European Journal of Pharmacology, 2021, 910, 174421.	1.7	3
1057	Mechanisms of Plasticity Remodeling and Recovery. , 2022, , 129-137.e7.		1
1058	Cholesterol synthesis inhibition or depletion in axon regeneration. Neural Regeneration Research, 2022, 17, 271.	1.6	3
1059	Molecular aspects of regeneration and neuroprotection in neurotraumatic diseases. , 2021, , 181-224.		Ο

#	Article	IF	Citations
1060	Modulation of Nogo receptor 1 expression orchestrates myelin-associated infiltration of glioblastoma. Brain, 2021, 144, 636-654.	3.7	16
1061	Axonal remodeling of the corticospinal tract during neurological recovery after stroke. Neural Regeneration Research, 2021, 16, 939.	1.6	16
1062	Immobilized ECM molecules and the effects of concentration and surface type on the control of NSC differentiation. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	2.1	12
1063	In Vitro Direct Reprogramming of Mouse and Human Astrocytes to Induced Neurons. Methods in Molecular Biology, 2020, 2155, 41-61.	0.4	6
1064	Neurochemical Aspects of Spinal Cord Injury. , 2010, , 107-149.		1
1065	Structural Plasticity in Adult Nervous System: An Historic Perspective. Pancreatic Islet Biology, 2014, , 5-41.	0.1	4
1066	Neural Stem Cell Transplantation in an Animal Model of Traumatic Brain Injury. Methods in Molecular Biology, 2014, 1210, 9-21.	0.4	5
1067	Quantitative Assessment of Neurite Outgrowth Over Growth Promoting or Inhibitory Substrates. Methods in Molecular Biology, 2013, 1078, 153-161.	0.4	2
1068	Functional carbon-based nanomaterials for engineered tissues toward organ regeneration. , 2020, , 529-550.		2
1069	Optic Nerve. , 2011, , 550-573.		3
1070	Reduced post-stroke glial scarring in the infant primate brain reflects age-related differences in the regulation of astrogliosis. Neurobiology of Disease, 2018, 111, 1-11.	2.1	8
1072	MECHANICALLY INDUCED REACTIVE GLIOSIS CAUSES ATP-MEDIATED ALTERATIONS IN ASTROCYTE STIFFNESS. Journal of Neurotrauma, 2009, 26, 090330061141047.	1.7	30
1076	Overexpression of the transcription factors OCT4 and KLF4 improves motor function after spinal cord injury. CNS Neuroscience and Therapeutics, 2020, 26, 940-951.	1.9	18
1077	Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. Journal of Clinical Investigation, 2010, 120, 1603-1616.	3.9	144
1078	Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans. F1000Research, 2016, 5, 764.	0.8	24
1079	Peripherally-Derived BDNF Promotes Regeneration of Ascending Sensory Neurons after Spinal Cord Injury. PLoS ONE, 2008, 3, e1707.	1.1	91
1080	A Novel and Efficient Gene Transfer Strategy Reduces Glial Reactivity and Improves Neuronal Survival and Axonal Growth In Vitro. PLoS ONE, 2009, 4, e6227.	1.1	45
1081	The Clial Scar-Monocyte Interplay: A Pivotal Resolution Phase in Spinal Cord Repair. PLoS ONE, 2011, 6, e27969.	1.1	99

#	Article	IF	CITATIONS
1082	Astrocytic $\hat{I} \pm V \hat{I}^2 3$ Integrin Inhibits Neurite Outgrowth and Promotes Retraction of Neuronal Processes by Clustering Thy-1. PLoS ONE, 2012, 7, e34295.	1.1	56
1083	Myelin Basic Protein Induces Neuron-Specific Toxicity by Directly Damaging the Neuronal Plasma Membrane. PLoS ONE, 2014, 9, e108646.	1.1	24
1084	Epigenetic Regulation of Axon Regeneration after Neural Injury. Molecules and Cells, 2017, 40, 10-16.	1.0	48
1085	3D Visualization of Individual Regenerating Retinal Ganglion Cell Axons Reveals Surprisingly Complex Growth Paths. ENeuro, 2017, 4, ENEURO.0093-17.2017.	0.9	40
1086	α-Tubulin Acetyltransferase Is a Novel Target Mediating Neurite Growth Inhibitory Effects of Chondroitin Sulfate Proteoglycans and Myelin-Associated Glycoprotein. ENeuro, 2018, 5, ENEURO.0240-17.2018.	0.9	17
1087	Inhibition of Poly-ADP-Ribosylation Fails to Increase Axonal Regeneration or Improve Functional Recovery after Adult Mammalian CNS Injury. ENeuro, 2016, 3, ENEURO.0270-16.2016.	0.9	22
1088	Targeted Krüppel-Like Factor 4 Gene Knock-Out in Retinal Ganglion Cells Improves Visual Function in Multiple Sclerosis Mouse Model. ENeuro, 2020, 7, ENEURO.0320-19.2020.	0.9	4
1089	Biochemical events related to glial response in spinal cord injury. Revista Facultad De Medicina, 2018, 66, 269-277.	0.0	5
1090	Promotion of axon regeneration and inhibition of astrocyte activation by alpha A-crystallin on crushed optic nerve. International Journal of Ophthalmology, 2016, 9, 955-66.	0.5	5
1091	Changes in transcriptome profiling during the acute/subacute phases of contusional spinal cord injury in rats. Annals of Translational Medicine, 2020, 8, 1682-1682.	0.7	19
1092	Mesenchymal Stem Cells of Dental Origin-Their Potential for Antiinflammatory and Regenerative Actions in Brain and Gut Damage. Current Neuropharmacology, 2016, 14, 914-934.	1.4	28
1093	Exploring Optic Nerve Axon Regeneration. Current Neuropharmacology, 2017, 15, 861-873.	1.4	49
1094	iPS Cell Transplantation for Traumatic Spinal Cord Injury. Current Stem Cell Research and Therapy, 2016, 11, 321-328.	0.6	17
1095	Vitamins in the Prevention or Delay of Cognitive Disability of Aging. Current Aging Science, 2015, 7, 187-213.	0.4	15
1096	Neuroprotective Effects of Combined Treatment with Minocycline and Olfactory Ensheathing Cells Transplantation against Inflammation and Oxidative Stress after Spinal Cord Injury. Cell Journal, 2019, 21, 220-228.	0.2	9
1097	Development of Neuroregenerative Gene Therapy to Reverse Glial Scar Tissue Back to Neuron-Enriched Tissue. Frontiers in Cellular Neuroscience, 2020, 14, 594170.	1.8	40
1098	The Effects of Root Aquatic Extract of Salvia staminea on Neuronal Density of Alpha Motoneurons in Spinal Cord Anterior Horn after Sciatic Nerve Compression in Rats. Journal of Biological Sciences, 2009, 10, 48-52.	0.1	2
1099	Rho/ROCK pathway and neural regeneration: a potential therapeutic target for central nervous system and optic nerve damage. International Journal of Ophthalmology, 2011, 4, 652-7.	0.5	56

#	Article	IF	CITATIONS
1100	Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors. Neural Regeneration Research, 2014, 9, 1418.	1.6	26
1101	Microfluidic systems for axonal growth and regeneration research. Neural Regeneration Research, 2014, 9, 1703.	1.6	8
1102	Hydrogen sulfide controls peripheral nerve degeneration and regeneration: a novel therapeutic strategy for peripheral demyelinating disorders or nerve degenerative diseases. Neural Regeneration Research, 2014, 9, 2119.	1.6	11
1103	Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regeneration Research, 2015, 10, 726.	1.6	134
1104	Distribution of paired immunoglobulin-like receptor B in the nervous system related to regeneration difficulties after unilateral lumbar spinal cord injury. Neural Regeneration Research, 2015, 10, 1139.	1.6	4
1105	RhoA/Rho kinase in spinal cord injury. Neural Regeneration Research, 2016, 11, 23.	1.6	44
1106	Repair, protection and regeneration of spinal cord injury. Neural Regeneration Research, 2015, 10, 1953.	1.6	21
1107	Possible application of apolipoprotein E-containing lipoproteins and polyunsaturated fatty acids in neural regeneration. Neural Regeneration Research, 2016, 11, 715.	1.6	2
1108	Axonal remodeling in the corticospinal tract after stroke: how does rehabilitative training modulate it?. Neural Regeneration Research, 2017, 12, 185.	1.6	30
1109	Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regeneration Research, 2017, 12, 702.	1.6	96
1110	Optogenetics and its application in neural degeneration and regeneration. Neural Regeneration Research, 2017, 12, 1197.	1.6	42
1111	Cerebral ischemia and neuroregeneration. Neural Regeneration Research, 2018, 13, 373.	1.6	129
1112	The protocadherin alpha cluster is required for axon extension and myelination in the developing central nervous system. Neural Regeneration Research, 2018, 13, 427.	1.6	11
1113	Endoplasmic reticulum stress transducer old astrocyte specifically induced substance contributes to astrogliosis after spinal cord injury. Neural Regeneration Research, 2018, 13, 536.	1.6	7
1114	Injection of bone marrow mesenchymal stem cells by intravenous or intraperitoneal routes is a viable alternative to spinal cord injury treatment in mice. Neural Regeneration Research, 2018, 13, 1046.	1.6	29
1115	Diabetic neuropathy research: from mouse models to targets for treatment. Neural Regeneration Research, 2019, 14, 1870.	1.6	19
1116	Stem cells for spinal cord regeneration: Current status. , 2010, 1, 93.		20
1117	Facilitating axon regeneration in the injured CNS by microtubules stabilization. Communicative and Integrative Biology, 2011, 4, 391-3.	0.6	32

#	Article	IF	CITATIONS
1118	Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease. International Neurourology Journal, 2014, 18, 171.	0.5	13
1119	New advances on glial activation in health and disease. World Journal of Virology, 2015, 4, 42.	1.3	53
1120	Wallerian Degeneration in Injury and Diseases: Concepts and Prevention. , 0, , .		1
1121	The Effects of tDCS and Montoya Stair Task on Sensorimotor Recovery and GFAP Expression in MCAo induced Stroke Rat Model. Journal of International Academy of Physical Therapy Research, 2011, 2, 193-200.	0.1	2
1122	Optic Nerve Neuropathy and Repair in Glaucoma. North American Journal of Medicine & Science, 2008, 1, 1.	3.8	3
1123	GSK3β regulates AKT-induced central nervous system axon regeneration via an elF2Bε-dependent, mTORC1-independent pathway. ELife, 2016, 5, e11903.	2.8	67
1124	Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila. ELife, 2020, 9, .	2.8	23
1125	Identification of target genes in neuroinflammation and neurodegeneration after traumatic brain injury in rats. PeerJ, 2019, 7, e8324.	0.9	13
1126	Artificial spider silk supports and guides neurite extension in vitro. FASEB Journal, 2021, 35, e21896.	0.2	4
1128	Engineering spinal cord repair. Current Opinion in Biotechnology, 2021, 72, 48-53.	3.3	18
1129	(Stem) Cell Based Therapy for Neurological Disorders. , 2010, , 203-234.		0
1130	Potential Neuroprotective Strategies for Experimental Spinal Cord Injury. , 2010, , 151-181.		Ο
1131	Basic Science of Spinal Cord Injury. , 2011, , 1298-1306.		0
1132	Understanding Injury, Health, and Adaptations of the Musculoskeletal System. , 2012, , 1-52.		Ο
1133	Photomechanical Wave-mediated siRNA Delivery for Therapy of Spinal Cord Injury. Nippon Laser Igakkaishi, 2012, 33, 97-103.	0.0	0
1134	Brain Plasticity Following Ischemia: Effect of Estrogen and Other Cerebroprotective Drugs. , 0, , .		1
1135	New Approaches in Glial Biology. , 2013, , 929-944.		0
1138	Nerve Fiber Regeneration in the Central Nervous System of Higher Vertebrates. , 2013, , .		0

#	Article	IF	CITATIONS
1139	Stem Cell Therapies in Neurology. Pancreatic Islet Biology, 2014, , 117-136.	0.1	2
1140	Neurite Outgrowth and Growth Cone Collapse Assays to Assess Neuronal Responses to Extracellular Cues. Methods in Molecular Biology, 2014, 1162, 43-56.	0.4	0
1141	Stem Cell Strategies for Optic Nerve Protection. Pancreatic Islet Biology, 2014, , 121-143.	0.1	0
1142	Soluble Adenylyl Cyclase (sAC) Rescues Neurons from Inhibitory Myelin Cues. Postdoc Journal, 0, , .	0.4	0
1143	Significance of Mechanism-Oriented Research Toward Neuronal Protection Therapy Against Neurodegenerative Disorders ~ ZNRF1 E3 Ubiquitin Ligase as a Critical Mediator for Wallerian Degeneration and Neuronal Apoptosis. , 2015, , 159-182.		0
1144	Gene Therapy Approaches to Promoting Axonal Regeneration After Spinal Cord Injury. Neuromethods, 2015, , 153-174.	0.2	0
1145	"To measure is to know": how advances in image analysis are supporting neural repair strategies. Neural Regeneration Research, 2015, 10, 1040.	1.6	0
1146	Intrinsic Neuronal Mechanisms in Axon Regeneration After Spinal Cord Injury. , 2016, , 399-414.		0
1147	Examination of the Neuroplastic Biomarker Levels in Attention Deficit Hyperactivity Disorder. Asian Journal of Biochemistry, 2016, 12, 1-8.	0.5	0
1148	Polyethylene glycol restores axonal conduction after corpus callosum transection. Neural Regeneration Research, 2017, 12, 757.	1.6	1
1153	The Impact of Neuroscience on the Evolution of Decision-Making in Brachial Plexus Surgery. Part II: Nerve Grafts Act as Operator Channels (How the New May Meet the Old). , 0, , .		0
1156	The Role of Extracellular Matrix in Myelination and Oligodendrogenesis of the Central Nervous System. The Neuroscience Journal of Shefaye Khatam, 2019, 7, 66-82.	0.4	1
1160	A Nanodiamond-Based Surface Topography Downregulates the MicroRNA miR6236 to Enhance Neuronal Development and Regeneration. ACS Applied Bio Materials, 2021, 4, 890-902.	2.3	4
1161	Molecular Biology of Nervous System. , 2020, , 3-17.		0
1166	Transplanting p75-suppressed bone marrow stromal cells promotes functional behavior in a rat model of spinal cord injury. Iranian Biomedical Journal, 2013, 17, 140-5.	0.4	10
1167	Mitochondrial Dynamics in Retinal Ganglion Cell Axon Regeneration and Growth Cone Guidance. Journal of Ocular Biology, 2013, 1, 9.	1.5	18
1168	Glial scar size, inhibitor concentration, and growth of regenerating axons after spinal cord transection. Neural Regeneration Research, 2012, 7, 1525-33.	1.6	0
1170	Establishment and characterization of an astroglial cell line derived from the brain of half-smooth tongue sole (Cynoglossus semilaevis). Zoological Research, 2015, 36, 305-10.	0.6	Ο

#	Article	IF	CITATIONS
1171	Optic nerve regeneration in the mouse is a complex trait modulated by genetic background. Molecular Vision, 2018, 24, 174-186.	1.1	12
1172	The Controlled Release of Dexamethasone Sodium Phosphate from Bioactive Electrospun PCL/Gelatin Nanofiber Scaffold. Iranian Journal of Pharmaceutical Research, 2019, 18, 111-124.	0.3	7
1173	Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restorative Neurology and Neuroscience, 2008, 26, 97-115.	0.4	60
1174	Let-7f promotes the differentiation of neural stem cells in rats. American Journal of Translational Research (discontinued), 2020, 12, 5752-5761.	0.0	1
1176	Activation and Role of Astrocytes in Ischemic Stroke. Frontiers in Cellular Neuroscience, 2021, 15, 755955.	1.8	70
1177	RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell, 2021, 184, 5869-5885.e25.	13.5	45
1178	Neural Cell Membrane-Coated Nanoparticles for Targeted and Enhanced Uptake by Central Nervous System Cells. ACS Applied Materials & Interfaces, 2021, 13, 55840-55850.	4.0	13
1179	The role of neural stem cells in regulating glial scar formation and repair. Cell and Tissue Research, 2022, 387, 399-414.	1.5	20
1180	Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomedicine and Pharmacotherapy, 2022, 146, 112529.	2.5	16
1181	Involvement of Denervated Midbrain-Derived Factors in the Formation of Ectopic Cortico-Mesencephalic Projection after Hemispherectomy. Journal of Neuroscience, 2022, 42, 749-761.	1.7	1
1182	The regenerative potential of honey: a comprehensive literature review. Journal of Apicultural Research, 0, , 1-16.	0.7	6
1183	Overexpressed ski efficiently promotes neurorestoration, increases neuronal regeneration, and reduces astrogliosis after traumatic brain injury. Gene Therapy, 2023, 30, 75-87.	2.3	8
1184	Neuroprotective strategies. , 2022, , 523-535.		0
1186	Hypoxia-stimulated mesenchymal stem cell-derived exosomes loaded by adhesive hydrogel for effective angiogenic treatment of spinal cord injury. Biomaterials Science, 2022, 10, 1803-1811.	2.6	47
1187	mdka Expression Is Associated with Quiescent Neural Stem Cells during Constitutive and Reactive Neurogenesis in the Adult Zebrafish Telencephalon. Brain Sciences, 2022, 12, 284.	1.1	2
1188	Partial Restoration of Spinal Cord Neural Continuity via Sural Nerve Transplantation Using a Technique of Spinal Cord Fusion. Frontiers in Neuroscience, 2022, 16, 808983.	1.4	0
1189	Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Frontiers in Medical Technology, 2022, 4, 693438.	1.3	10
1190	Synaptic or Non-synaptic? Different Intercellular Interactions with Retinal Ganglion Cells in Optic Nerve Regeneration. Molecular Neurobiology, 2022, 59, 3052-3072.	1.9	6

#	Article	IF	CITATIONS
1191	Highly Effective Stroke Therapy Enabled by Genetically Engineered Viral Nanofibers. Advanced Materials, 2022, 34, e2201210.	11.1	20
1192	Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy. Cell Biochemistry and Function, 2022, 40, 232-247.	1.4	19
1193	Hepatocyte Growth Factor-Preconditioned Neural Progenitor Cells Attenuate Astrocyte Reactivity and Promote Neurite Outgrowth. Frontiers in Cellular Neuroscience, 2021, 15, 741681.	1.8	2
1197	Basic mechanisms of functional recovery. , 0, , 44-52.		0
1199	Neuroinflammation: Modulating Pesticide-induced Neurodegeneration. , 2009, , 2734-2739.		1
1235	Microtubule Dynamics Following Central and Peripheral Nervous System Axotomy. ACS Chemical Neuroscience, 2022, 13, 1358-1369.	1.7	4
1241	Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System. Frontiers in Cellular Neuroscience, 2022, 16, 872501.	1.8	23
1242	Pericyte Biology in the Optic Nerve and Retina. Current Tissue Microenvironment Reports, 2022, 3, 37-50.	1.3	2
1243	Transhemispheric cortex remodeling promotes forelimb recovery after spinal cord injury. JCI Insight, 2022, 7, .	2.3	4
1244	Acutely Inhibiting AQP4 With TGN-020 Improves Functional Outcome by Attenuating Edema and Peri-Infarct Astrogliosis After Cerebral Ischemia. Frontiers in Immunology, 2022, 13, 870029.	2.2	19
1245	From cradle to grave: neurogenesis, neuroregeneration and neurodegeneration in Alzheimer's and Parkinson's diseases. Neural Regeneration Research, 2022, 17, 2606.	1.6	17
1246	Novel agent ONO-2506 suppresses astrocytic activation and attenuates post-spinal cord injury pain. , 2022, , 177-186.		0
1247	WNT genes and their roles in traumatic brain injury. , 2022, , 267-278.		0
1248	Radial Glia and Neuronal-like Ependymal Cells Are Present within the Spinal Cord of the Trunk (Body) in the Leopard Gecko (Eublepharis macularius). Journal of Developmental Biology, 2022, 10, 21.	0.9	0
1251	Circuit formation in the adult brain. European Journal of Neuroscience, 2022, 56, 4187-4213.	1.2	7
1252	Dynamic induction of the myelinâ€associated growth inhibitor Nogoâ€A in perilesional plasticity regions after human spinal cord injury. Brain Pathology, 2023, 33, .	2.1	2
1253	Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries. Acta Pharmaceutica Sinica B, 2023, 13, 2202-2218.	5.7	17
1254	The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells, 2022, 11, 2083.	1.8	29

ARTICLE IF CITATIONS 视神ç»æŸä¼æŽå†ç"Ÿçš"ç"究进展. Scientia Sinica Vitae, 2022, , . 0.1 0 1255 Biomaterial-Mediated Factor Delivery for Spinal Cord Injury Treatment. Biomedicines, 2022, 10, 1673. 9 1.4 Bioorthogonal DOPA-NGF activated tissue engineering microunits for recovery from traumatic brain 1257 4.1 12 injury by microenvironment regulation. Acta Biomaterialia, 2022, 150, 67-82. Topographical pattern for neuronal tissue engineering. Journal of Industrial and Engineering 1258 2.9 Chemistry, 2022, 114, 19-32. Molecular approaches for spinal cord injury treatment. Neural Regeneration Research, 2023, 18, 23. 1259 1.6 8 The regenerative potential of glial progenitor cells and reactive astrocytes in CNS injuries. Neuroscience and Biobehavioral Reviews, 2022, 140, 104794. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. 1261 1.9 8 Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21. Paclitaxel-incorporated nanoparticles improve functional recovery after spinal cord injury. 1.6 Frontiers in Pharmacology, 0, 13, . Anti-LINGO-1 Antibody Protects Neurons and Synapses in the Medial Prefrontal Cortex of APP/PS1 1263 0.4 0 Transgenic Mice. SSRN Electronic Journal, 0, , . Prediction of lower extremity strength by nerve conduction study in cauda equina syndrome. 1264 0.4 Medicine (United States), 2022, 101, e30124. Capacity of astrocytes to promote axon growth in the injured mammalian central nervous system. 1266 9 1.4 Frontiers in Neuroscience, 0, 16, . The therapeutic potential of triptolide and celastrol in neurological diseases. Frontiers in 1.6 Pharmacology, 0, 13, . Human Mesenchymal Stem Cell Transplantation Improved Functional Outcomes Following Spinal Cord 1268 0.6 0 Injury Concomitantly with Neuroblast Regeneration. Advanced Pharmaceutical Bulletin, 0, , . Micropattern-based nerve guidance conduit with hundreds of microchannels and stem cell 2.5 recruitment for nerve regeneration. Npj Regenerative Medicine, 2022, 7, . Dynamic inflammatory changes of the neurovascular units after ischemic stroke. Brain Research 1270 1.4 5 Bulletin, 2022, 190, 140-151. Double-target neural circuit-magnetic stimulation improves motor function in spinal cord injury by 1271 attenuating astrocyte activation. Neural Regeneration Research, 2023, 18, 1062. Ethical considerations for the use of stem cell-derived therapies. , 2023, , 339-349. 1272 0 Bridging the gap of axonal regeneration in the central nervous system: A state of the art review on 1273 1.4 central axonal regeneration. Frontiers in Neuroscience, 0, 16, .

#	Article	IF	CITATIONS
1274	Astrocyte innate immune activation and injury amplification following experimental focal cerebral ischemia. Neurochemistry International, 2023, 162, 105456.	1.9	1
1275	Application of biomimetic surfaces and 3D culture technology to study the role of extracellular matrix interactions in neurite outgrowth and inhibition. , 2023, 144, 213204.		2
1276	Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	3
1277	Research hotspots and trends for axon regeneration (2000–2021): a bibliometric study and systematic review. Inflammation and Regeneration, 2022, 42, .	1.5	2
1278	Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. , 2022, 1, .		7
1279	Brainâ€derived neurotrophic factor (<scp>BDNF</scp>) induces antagonistic action to Nogo signaling by the upregulation of lateral olfactory tract usher substance (<scp>LOTUS</scp>) expression. Journal of Neurochemistry, 2023, 164, 29-43.	2.1	2
1280	Optic Nerve Regeneration in Diabetic Retinopathy: Potentials and Challenges Ahead. International Journal of Molecular Sciences, 2023, 24, 1447.	1.8	2
1281	Targeting reactive astrocytes by pH-responsive ligand-bonded polymeric nanoparticles in spinal cord injury. Drug Delivery and Translational Research, 2023, 13, 1842-1855.	3.0	3
1282	Purified regenerating retinal neurons reveal regulatory role of DNA methylation-mediated Na+/K+-ATPase in murine axon regeneration. Communications Biology, 2023, 6, .	2.0	1
1283	AAV Vector Mediated Delivery of NG2 Function Neutralizing Antibody and Neurotrophin NT-3 Improves Synaptic Transmission, Locomotion, and Urinary Tract Function after Spinal Cord Contusion Injury in Adult Rats. Journal of Neuroscience, 2023, 43, 1492-1508.	1.7	6
1284	The factors affecting neurogenesis after stroke and the role of acupuncture. Frontiers in Neurology, 0, 14, .	1.1	5
1285	Gliotransmission and adenosine signaling promote axon regeneration. Developmental Cell, 2023, 58, 660-676.e7.	3.1	3
1286	Pten inhibition dedifferentiates long-distance axon-regenerating intrinsically photosensitive retinal ganglion cells and upregulates mitochondria-associated Dynlt1a and Lars2. Development (Cambridge), 2023, 150, .	1.2	6
1288	Srgap2 suppression ameliorates retinal ganglion cell degeneration in mice. Neural Regeneration Research, 2023, 18, 2307.	1.6	2
1289	Anti-LINGO-1 antibody protects neurons and synapses in the medial prefrontal cortex of APP/PS1 transgenic mice. Neuroscience Research, 2023, 193, 28-40.	1.0	0
1290	Delayed Chronic Acidic Postconditioning Improves Poststroke Motor Functional Recovery and Brain Tissue Repair by Activating Proton-Sensing TDAG8. Translational Stroke Research, 0, , .	2.3	1
1291	Erinacine S from Hericium erinaceus mycelium promotes neuronal regeneration by inducing neurosteroids accumulation. Journal of Food and Drug Analysis, 2023, 31, 32-54.	0.9	1
1292	Commissural dentate granule cell projections and their rapid formation in the adult brain. , 2023, 2,		2

#	Article	IF	CITATIONS
1293	Deletion of Transglutaminase 2 from Mouse Astrocytes Significantly Improves Their Ability to Promote Neurite Outgrowth on an Inhibitory Matrix. International Journal of Molecular Sciences, 2023, 24, 6058.	1.8	1
1294	Epigenetic and epitranscriptomic regulation of axon regeneration. Molecular Psychiatry, 2023, 28, 1440-1450.	4.1	3
1295	Post-injury born oligodendrocytes incorporate into the glial scar and contribute to the inhibition of axon regeneration. Development (Cambridge), 2023, 150, .	1.2	8
1296	Xeomin®, a Commercial Formulation of Botulinum Neurotoxin Type A, Promotes Regeneration in a Preclinical Model of Spinal Cord Injury. Toxins, 2023, 15, 248.	1.5	4
1309	Corticospinal tract: a new hope for the treatment of post-stroke spasticity. Acta Neurologica Belgica, 2024, 124, 25-36.	0.5	1
1325	Neuroprotection through nanotechnology. , 2024, , 1883-1903.		0