Global measles elimination

Nature Reviews Microbiology 4, 900-908 DOI: 10.1038/nrmicro1550

Citation Report

#	Article	IF	CITATIONS
1	Eradicating measles: a feasible goal?. Pediatric Health, 2007, 1, 183-190.	0.3	3
2	Plaque reduction neutralization test for measles antibodies: Description of a standardised laboratory method for use in immunogenicity studies of aerosol vaccination. Vaccine, 2007, 26, 59-66.	1.7	153
3	Assessment of measles immunity among infants in Maputo City, Mozambique. BMC Public Health, 2008, 8, 386.	1.2	13
4	STAT2 Is a Primary Target for Measles Virus V Protein-Mediated Alpha/Beta Interferon Signaling Inhibition. Journal of Virology, 2008, 82, 8330-8338.	1.5	105
5	Measles Viruses Possessing the Polymerase Protein Genes of the Edmonston Vaccine Strain Exhibit Attenuated Gene Expression and Growth in Cultured Cells and SLAM Knock-In Mice. Journal of Virology, 2008, 82, 11979-11984.	1.5	29
6	The Pathogenesis of Measles Revisited. Pediatric Infectious Disease Journal, 2008, 27, S84-S88.	1.1	20
7	Development of a Novel Efficient Fluorescence-Based Plaque Reduction Microneutralization Assay for Measles Virus Immunity. Vaccine Journal, 2008, 15, 1054-1059.	3.2	48
8	Measles Virus Induces Oncolysis of Mesothelioma Cells and Allows Dendritic Cells to Cross-Prime Tumor-Specific CD8 Response. Cancer Research, 2008, 68, 4882-4892.	0.4	130
9	Measles Virus. , 2008, , 285-291.		2
11	Target Analysis of the Experimental Measles Therapeutic AS-136A. Antimicrobial Agents and Chemotherapy, 2009, 53, 3860-3870.	1.4	31
12	Cutting Edge: Stealth Influenza Virus Replication Precedes the Initiation of Adaptive Immunity. Journal of Immunology, 2009, 183, 3569-3573.	0.4	88
13	Development of an Artificial-Antigen-Presenting-Cell-Based Assay for the Detection of Low-Frequency Virus-Specific CD8 + T Cells in Whole Blood, with Application for Measles Virus. Vaccine Journal, 2009, 16, 1066-1073.	3.2	11
14	Genetic characterization of Chinese measles vaccines by analysis of complete genomic sequences. Journal of Medical Virology, 2009, 81, 1477-1483.	2.5	18
15	Models of epidemics: when contact repetition and clustering should be included. Theoretical Biology and Medical Modelling, 2009, 6, 11.	2.1	94
16	A chimeric measles virus with canine distemper envelope protects ferrets from lethal distemper challenge. Vaccine, 2009, 27, 4961-4966.	1.7	17
17	Early loss of measles antibodies after MMR vaccine among HIV-infected adults receiving HAART. Vaccine, 2009, 27, 7059-7064.	1.7	40
18	Inhibition of measles virus infections in cell cultures by peptide-conjugated morpholino oligomers. Virus Research, 2009, 140, 49-56.	1.1	18
19	Molecular evolution of measles viruses circulated in Taiwan 1992-2008. Virology Journal, 2009, 6, 219.	1.4	23

TION RED

CITATION REPORT

#	Article	IF	CITATIONS
21	Isolation and complete nucleotide sequence of the measles virus IMB-1 strain in China. Virologica Sinica, 2010, 25, 381-389.	1.2	1
22	Blue Moon Neurovirology: The Merits of Studying Rare CNS Diseases of Viral Origin. Journal of NeuroImmune Pharmacology, 2010, 5, 443-455.	2.1	18
23	Seroprevalence of common vaccine-preventable viral infections in HIV-positive adults. Journal of Infection, 2010, 61, 73-80.	1.7	40
24	Reassessing conflicting evolutionary histories of the Paramyxoviridae and the origins of respiroviruses with Bayesian multigene phylogenies. Infection, Genetics and Evolution, 2010, 10, 97-107.	1.0	28
25	Canine distemper virus detection in asymptomatic and non vaccinated dogs. Pesquisa Veterinaria Brasileira, 2010, 30, 139-144.	0.5	9
26	Comparison of the Immune Responses Induced by Chimeric Alphavirus-Vectored and Formalin-Inactivated Alum-Precipitated Measles Vaccines in Mice. PLoS ONE, 2010, 5, e10297.	1.1	9
27	Emergence and re-emergence of viral diseases of the central nervous system. Progress in Neurobiology, 2010, 91, 95-101.	2.8	68
28	Mucosal adenovirus-vectored vaccine for measles. Vaccine, 2010, 28, 7613-7619.	1.7	8
29	Approach to the Patient with HIV and Coinfecting Tropical Infectious Diseases. , 2011, , 1046-1065.		0
30	ADARs: Viruses and Innate Immunity. Current Topics in Microbiology and Immunology, 2011, 353, 163-195.	0.7	77
30 31	ADARs: Viruses and Innate Immunity. Current Topics in Microbiology and Immunology, 2011, 353, 163-195. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29, 7154-7162.	0.7	77
30 31 32	ADARs: Viruses and Innate Immunity. Current Topics in Microbiology and Immunology, 2011, 353, 163-195. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29, 7154-7162. Biological feasibility of measles eradication. Virus Research, 2011, 162, 72-79.	0.7 1.7 1.1	77 80 44
30 31 32 33	ADARs: Viruses and Innate Immunity. Current Topics in Microbiology and Immunology, 2011, 353, 163-195.A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29, 7154-7162.Biological feasibility of measles eradication. Virus Research, 2011, 162, 72-79.Host RNA editor restricts measles. Nature Reviews Microbiology, 2011, 9, 80-80.	0.7 1.7 1.1 13.6	77 80 44 1
30 31 32 33 34	ADARs: Viruses and Innate Immunity. Current Topics in Microbiology and Immunology, 2011, 353, 163-195. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29, 7154-7162. Biological feasibility of measles eradication. Virus Research, 2011, 162, 72-79. Host RNA editor restricts measles. Nature Reviews Microbiology, 2011, 9, 80-80. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nature Structural and Molecular Biology, 2011, 18, 135-141.	0.7 1.7 1.1 13.6 3.6	 77 80 44 1 212
 30 31 32 33 34 35 	ADARs: Viruses and Innate Immunity. Current Topics in Microbiology and Immunology, 2011, 353, 163-195.A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29, 7154-7162.Biological feasibility of measles eradication. Virus Research, 2011, 162, 72-79.Host RNA editor restricts measles. Nature Reviews Microbiology, 2011, 9, 80-80.Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nature Structural and Molecular Biology, 2011, 18, 135-141.Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology, 2011, 411, 180-193.	0.7 1.7 1.1 13.6 3.6 1.1	 77 80 44 1 212 278
 30 31 32 33 34 35 36 	ADARs: Viruses and Innate Immunity. Current Topics in Microbiology and Immunology, 2011, 353, 163-195. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29, 7154-7162. Biological feasibility of measles eradication. Virus Research, 2011, 162, 72-79. Host RNA editor restricts measles. Nature Reviews Microbiology, 2011, 9, 80-80. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nature Structural and Molecular Biology, 2011, 18, 135-141. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology, 2011, 411, 180-193. The Clinical Epidemiology of Pediatric Patients With Measles From 2000 to 2009 in Shanghai, China.	0.7 1.7 1.1 13.6 3.6 1.1 0.4	 77 80 44 1 212 278 1
30 31 32 33 33 34 35 36 37	ADARs: Viruses and Innate Immunity. Current Topics in Microbiology and Immunology, 2011, 353, 163-195. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine, 2011, 29, 7154-7162. Biological feasibility of measles eradication. Virus Research, 2011, 162, 72-79. Host RNA editor restricts measles. Nature Reviews Microbiology, 2011, 9, 80-80. Structure of the measles virus hemagglutinin bound to its cellular receptor SLAM. Nature Structural and Molecular Biology, 2011, 18, 135-141. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology, 2011, 411, 180-193. The Clinical Epidemiology of Pediatric Patients With Measles From 2000 to 2009 in Shanghai, China. Clinical Pediatrics, 2011, 50, 916-922. Selective translation of the measles virus nucleocapsid mRNA by La protein. Frontiers in Microbiology, 2011, 2, 173.	0.7 1.7 1.1 13.6 3.6 1.1 0.4 1.5	 77 80 44 1 212 278 1 9

#	Article	IF	CITATIONS
39	Genetic Characterization of Measles Vaccine Strains. Journal of Infectious Diseases, 2011, 204, S533-S548.	1.9	87
40	The Association of CD46, SLAM and CD209 Cellular Receptor Gene SNPs with Variations in Measles Vaccine-Induced Immune Responses: A Replication Study and Examination of Novel Polymorphisms. Human Heredity, 2011, 72, 206-223.	0.4	58
41	Wild-Type Measles Virus Interferes with Short-Term Engraftment of Human CD34 ⁺ Hematopoietic Progenitor Cells. Journal of Virology, 2011, 85, 7710-7718.	1.5	7
42	RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 331-336.	3.3	183
43	Assessing the Cost-Effectiveness of Measles Elimination in Uganda: Local Impact of a Global Eradication Program. Journal of Infectious Diseases, 2011, 204, S116-S123.	1.9	22
44	A Research Agenda for Malaria Eradication: Vaccines. PLoS Medicine, 2011, 8, e1000398.	3.9	239
45	Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection. PLoS Pathogens, 2011, 7, e1002345.	2.1	90
46	Global health governance as shared health governance. Journal of Epidemiology and Community Health, 2012, 66, 653-661.	2.0	40
47	A casualty of the immunization wars: The reemergence of measles. JAAPA: Official Journal of the American Academy of Physician Assistants, 2012, 25, 50-54.	0.1	3
48	Measles. Lancet, The, 2012, 379, 153-164.	6.3	288
49	Evaluation of the mass measles vaccination campaign in Guangdong Province, China. International Journal of Infectious Diseases, 2012, 16, e99-e103.	1.5	11
50	The recombinant globular head domain of the measles virus hemagglutinin protein as a subunit vaccine against measles. Vaccine, 2012, 30, 3061-3067.	1.7	4
51	Paternal education status significantly influences infants' measles vaccination uptake, independent of maternal education status. BMC Public Health, 2012, 12, 336.	1.2	70
52	Measles outbreak investigation in Zaka, Masvingo Province, Zimbabwe, 2010. BMC Research Notes, 2012, 5, 687.	0.6	21
53	Measles virus, immune control, and persistence. FEMS Microbiology Reviews, 2012, 36, 649-662.	3.9	100
54	The nucleocapsid protein of measles virus blocks host interferon response. Virology, 2012, 424, 45-55.	1.1	29
55	Development of a measles vaccine production process in MRC-5 cells grown on Cytodex1 microcarriers and in a stirred bioreactor. Applied Microbiology and Biotechnology, 2012, 93, 1031-1040.	1.7	33
57	Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus. Journal of General Virology, 2013, 94, 1933-1944.	1.3	39

ARTICLE IF CITATIONS # Contribution of dendritic cells to measles virus induced immunosuppression. Reviews in Medical 58 3.9 19 Virology, 2013, 23, 126-138. Viral Infections with Cutaneous Lesions., 2013, , 251-268. 61 Severe Measles Infection. Medicine (United States), 2013, 92, 257-272. 0.4 32 Identifying high-risk areas for sporadic measles outbreaks: lessons from South Africa. Bulletin of the World Health Organization, 2013, 91, 174-183. Sustained Autophagy Contributes to Measles Virus Infectivity. PLoS Pathogens, 2013, 9, e1003599. 63 2.196 Vaxfectin Adjuvant Improves Antibody Responses of Juvenile Rhesus Macaques to a DNA Vaccine Encoding the Measles Virus Hemagglutinin and Fusion Proteins. Journal of Virology, 2013, 87, 1.5 6560-6568. Measles Virus Infection of Epithelial Cells in the Macaque Upper Respiratory Tract Is Mediated by 65 1.5 59 Subepithelial Immune Cells. Journal of Virology, 2013, 87, 4033-4042. Historical data and modern methods reveal insights in measles epidemiology: a retrospective closed 0.8 66 cohort study. BMJ Open, 2013, 3, e002033. 68 Antitumor Virotherapy by Attenuated Measles Virus (MV). Biology, 2013, 2, 587-602. 1.3 16 Pathogenesis of Encephalitis Caused by Persistent Measles Virus Infection., 0, , . Live attenuated measles virus vaccine therapy for locally established malignant glioblastoma tumor 70 6.0 11 cells. Oncolytic Virotherapy, 2014, 3, 57. Measles Epidemics Among Children in Vietnam: Genomic Characterization of Virus Responsible for 2.7 Measles Outbreak in Ho Chi Minh City, 2014. EBioMedicine, 2014, 1, 133-140. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the 72 0.8 15 lethal distemper challenge. Veterinary Microbiology, 2014, 174, 362-371. Synergizing vaccinations with therapeutics for measles eradication. Expert Opinion on Drug 2.5 Discovery, 2014, 9, 201-214. Measles Virus., 2014, , 71-78. 74 0 An Orally Available, Small-Molecule Polymerase Inhibitor Shows Efficacy Against a Lethal 5.8 Morbillivirus Infection in a Large Animal Model. Science Translational Medicine, 2014, 6, 232ra52. The link between genetic variation and variability in vaccine responses: Systematic review and 76 1.7 78 meta-analyses. Vaccine, 2014, 32, 1661-1669. Current progress in pulmonary delivery of measles vaccine. Expert Review of Vaccines, 2014, 13, 751-759. 24

CITATION REPORT

#	Article	IF	CITATIONS
78	The economics of virus-like particle and capsomere vaccines. Biochemical Engineering Journal, 2014, 90, 255-263.	1.8	21
79	Morbillivirus Control of the Interferon Response: Relevance of STAT2 and mda5 but Not STAT1 for Canine Distemper Virus Virulence in Ferrets. Journal of Virology, 2014, 88, 2941-2950.	1.5	34
80	Proteome profiling of virus–host interactions of wild type and attenuated measles virus strains. Journal of Proteomics, 2014, 108, 325-336.	1.2	5
81	Human Bocavirus Infections. , 2014, , 583-592.		0
82	Enhancing Antibody Response against Small Molecular Hapten with Tobacco Mosaic Virus as a Polyvalent Carrier. ChemBioChem, 2015, 16, 1279-1283.	1.3	7
83	Mutational Analysis of Measles Virus Suggests Constraints on Antigenic Variation of the Glycoproteins. Cell Reports, 2015, 11, 1331-1338.	2.9	64
84	The effects of maternal immunity and age structure on population immunity to measles. Theoretical Ecology, 2015, 8, 261-271.	0.4	11
85	High coverage of vitamin A supplementation and measles vaccination during an integrated Maternal and Child Health Week in Sierra Leone. International Health, 2015, 7, 26-31.	0.8	12
86	Profiling of Measles-Specific Humoral Immunity in Individuals Following Two Doses of MMR Vaccine Using Proteome Microarrays. Viruses, 2015, 7, 1113-1133.	1.5	11
87	Peste des petits ruminants. Veterinary Microbiology, 2015, 181, 90-106.	0.8	187
89	Synergistic Effects of Sulfated Polysaccharides from Mexican Seaweeds against Measles Virus. BioMed Research International, 2016, 2016, 1-11.	0.9	54
90	Measles Virus Fusion Protein: Structure, Function and Inhibition. Viruses, 2016, 8, 112.	1.5	72
91	Measles Virus Host Invasion and Pathogenesis. Viruses, 2016, 8, 210.	1.5	123
92	Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex. Viruses, 2016, 8, 251.	1.5	15
93	Measles to the Rescue: A Review of Oncolytic Measles Virus. Viruses, 2016, 8, 294.	1.5	98
94	A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo. PLoS ONE, 2016, 11, e0162823.	1.1	11
95	Measles Virus and Subacute Sclerosing Panencephalitis. , 2016, , 27-43.		0
96	Measles seroprevalence, outbreaks, and vaccine coverage in Rwanda. Infectious Diseases, 2016, 48, 800-807.	1.4	3

#	Article	IF	CITATIONS
97	Enhanced lysis by bispecific oncolytic measles viruses simultaneously using HER2 /neu or EpCAM as target receptors. Molecular Therapy - Oncolytics, 2016, 3, 16003.	2.0	20
98	The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection. Human Vaccines and Immunotherapeutics, 2016, 12, 1-12.	1.4	28
99	Direct and indirect effects of influenza vaccination. BMC Infectious Diseases, 2017, 17, 308.	1.3	57
100	Molecular epidemiology study of measles viruses in Kunming area of China. Experimental and Therapeutic Medicine, 2017, 14, 4167-4173.	0.8	0
101	Sustained Responses to Measles Revaccination at 24 Months in HIV-infected Children on Antiretroviral Therapy in Kenya. Pediatric Infectious Disease Journal, 2017, 36, 1148-1155.	1.1	9
103	Distinct Contributions of Autophagy Receptors in Measles Virus Replication. Viruses, 2017, 9, 123.	1.5	38
105	Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunology, 2018, 31, 150-158.	0.6	12
106	Measles Virus Persistent Infection of Human Induced Pluripotent Stem Cells. Cellular Reprogramming, 2018, 20, 17-26.	0.5	9
107	Measles Vaccine. Viral Immunology, 2018, 31, 86-95.	0.6	80
108	Measles control in Australia – threats, opportunities and future needs. Vaccine, 2018, 36, 4393-4398.	1.7	6
109	Macrophages and Dendritic Cells Are the Predominant Cells Infected in Measles in Humans. MSphere, 2018, 3, .	1.3	38
110	Revealing Measles Outbreak Risk With a Nested Immunoglobulin G Serosurvey in Madagascar. American Journal of Epidemiology, 2018, 187, 2219-2226.	1.6	21
111	Measles vaccine immune escape: Should we be concerned?. European Journal of Epidemiology, 2019, 34, 893-896.	2.5	10
112	Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science, 2019, 366, 599-606.	6.0	294
113	Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Science Immunology, 2019, 4, .	5.6	98
114	Optimization of frequency and targeting of measles supplemental immunization activities in Nigeria: A cost-effectiveness analysis. Vaccine, 2019, 37, 6039-6047.	1.7	18
115	Immunogenicity and Safety of the Measles Vaccine in HIV-Infected Children: An Updated Systematic Review. American Journal of Epidemiology, 2019, 188, 2240-2251.	1.6	3
116	Assessing measles vaccine failure in Tianjin, China. Vaccine, 2019, 37, 3251-3254.	1.7	3

#	Article	IF	CITATIONS
117	Effect of HIV-exposure and timing of anti-retroviral treatment on immunogenicity of trivalent live-attenuated polio vaccine in infants. PLoS ONE, 2019, 14, e0215079.	1.1	1
118	Game dynamic model of optimal budget allocation under individual vaccination choice. Journal of Theoretical Biology, 2019, 470, 108-118.	0.8	20
119	Tropism and molecular pathogenesis of canine distemper virus. Virology Journal, 2019, 16, 30.	1.4	79
120	Evaluation of measles immunity in Turkey: is it still a threat?. Turkish Journal of Medical Sciences, 2019, 49, 336-340.	0.4	2
121	Protective Immunity against Canine Distemper Virus in Dogs Induced by Intranasal Immunization with a Recombinant Probiotic Expressing the Viral H Protein. Vaccines, 2019, 7, 213.	2.1	11
122	Modified Dose Efficacy Trial of a Canine Distemper–Measles Vaccine for Use in Rhesus Macaques (<i>Macaca mulatta</i>). Journal of the American Association for Laboratory Animal Science, 2019, 58, 397-405.	0.6	3
123	T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. International Review of Cell and Molecular Biology, 2019, 342, 175-263.	1.6	6
124	Containing a measles outbreak in Minnesota, 2017: methods and challenges. Perspectives in Public Health, 2020, 140, 162-171.	0.8	21
125	Association between access to a health facility and continuum of vaccination behaviors among Nigerian children. Human Vaccines and Immunotherapeutics, 2020, 16, 1215-1220.	1.4	16
126	Estimating the nationwide transmission risk of measles in US schools and impacts of vaccination and supplemental infection control strategies. BMC Infectious Diseases, 2020, 20, 497.	1.3	15
127	The Importance of MMR Immunization in the United States. Pediatrics, 2020, 146, .	1.0	7
128	The uneasy coexistence of predators and pathogens. European Physical Journal E, 2020, 43, 42.	0.7	3
129	Fine-scale spatial clustering of measles nonvaccination that increases outbreak potential is obscured by aggregated reporting data. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28506-28514.	3.3	44
130	Are the Objectives Proposed by the WHO for Routine Measles Vaccination Coverage and Population Measles Immunity Sufficient to Achieve Measles Elimination from Europe?. Vaccines, 2020, 8, 218.	2.1	24
131	Evaluating the effectiveness of national measles elimination action in mainland China during 2004–2016: A multi-site interrupted time-series study. Vaccine, 2020, 38, 4440-4447.	1.7	3
132	Chaos in disease outbreaks among prey. Scientific Reports, 2020, 10, 3907.	1.6	12
133	Vaccine hesitancy. Wiener Klinische Wochenschrift, 2020, 132, 243-252.	1.0	4
134	Type 1 Interferon Responses Underlie Tumor-Selective Replication of Oncolytic Measles Virus. Molecular Therapy, 2020, 28, 1043-1055.	3.7	18

CITATION REPORT

#	Article	IF	CITATIONS
135	Immunodomination of Serotype-Specific CD4+ T-Cell Epitopes Contributed to the Biased Immune Responses Induced by a Tetravalent Measles-Vectored Dengue Vaccine. Frontiers in Immunology, 2020, 11, 546.	2.2	5
136	Measles Resurgence and Drug Development. Current Opinion in Virology, 2020, 41, 8-17.	2.6	20
137	Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials, 2021, 268, 120597.	5.7	93
138	Associating Measles Vaccine Uptake Classification and its Underlying Factors Using an Ensemble of Machine Learning Models. IEEE Access, 2021, 9, 119613-119628.	2.6	15
139	Three-year prevalence of measles antibody seropositivity at a tertiary care hospital in Turkey. Journal of Clinical Medicine of Kazakhstan, 2021, 18, 23-27.	0.1	1
140	Crosstalk between oncolytic viruses and autophagy in cancer therapy. Biomedicine and Pharmacotherapy, 2021, 134, 110932.	2.5	23
141	Mechanisms and Consequences of Newcastle Disease Virus W Protein Subcellular Localization in the Nucleus or Mitochondria. Journal of Virology, 2021, 95, .	1.5	16
142	Environmental Risk Assessment of Recombinant Viral Vector Vaccines against SARS-Cov-2. Vaccines, 2021, 9, 453.	2.1	11
143	Electroencephalography Patterns of Subacute Sclerosing Panencephalitis. Cureus, 2021, 13, e15728.	0.2	0
144	Nanodelivery of STINC agonists against cancer and infectious diseases. Molecular Aspects of Medicine, 2022, 83, 101007.	2.7	15
145	Adenosine-to-inosine RNA editing in neurological development and disease. RNA Biology, 2021, 18, 999-1013.	1.5	39
146	Brief Introduction of Measles Virus and Its Therapeutic Strategies. , 2021, , 503-530.		0
147	Infectious Disease Modeling. , 2013, , 99-115.		4
148	Human Acute and Chronic Viruses: Host-Pathogen Interactions and Therapeutics. , 2020, , 1-120.		3
149	Measles: Old Vaccines, New Vaccines. Current Topics in Microbiology and Immunology, 2009, 330, 191-212.	0.7	50
150	Measles Control and the Prospect of Eradication. Current Topics in Microbiology and Immunology, 2009, 330, 173-189.	0.7	36
153	Immature CD4+CD8+ Thymocytes Are Preferentially Infected by Measles Virus in Human Thymic Organ Cultures. PLoS ONE, 2012, 7, e45999.	1.1	10
154	Antiviral Drug Targets of Single-Stranded RNA Viruses Causing Chronic Human Diseases. Current Drug Targets, 2020, 21, 105-124.	1.0	18

#	Article	IF	CITATIONS
155	Measles surveillance in Qatar, 2008: quality of surveillance data and timeliness of notification. Eastern Mediterranean Health Journal, 2011, 17, 813-817.	0.3	8
156	Measles outbreak in a tertiary level hospital, Porto, Portugal, 2018: challenges in the post-elimination era. Eurosurveillance, 2018, 23, .	3.9	25
158	Investigation of a measles transmission with vaccination: a case study in Jakarta, Indonesia. Mathematical Biosciences and Engineering, 2020, 17, 2998-3018.	1.0	8
159	Approach to the Patient with HIV and Coinfecting Tropical Infectious Diseases. , 2006, , 1642-1684.		1
161	Virus Infections of the Central Nervous System. , 2009, , 853-883.		3
162	Cutaneous Viral Diseases. , 2009, , 835-852.		0
163	Infectious Disease Modeling. , 2012, , 5347-5357.		0
164	Host Molecular Chaperones: Cell Surface Receptors for Viruses. Heat Shock Proteins, 2013, , 293-307.	0.2	1
165	Toward a New Vaccine Against Measles. , 2013, , 183-191.		0
167	Induction of Immunogenic Tumor Cell Death by Attenuated Oncolytic Measles Virus. Journal of Clinical & Cellular Immunology, 2015, 06, .	1.5	1
168	Cinomose canina: revisão de literatura. Medicina Veterinaria (Brazil), 2017, 11, 162.	0.1	2
169	Transmission Network of Measles During the Yamagata Outbreak in Japan, 2017. Journal of Epidemiology, 2022, 32, 96-104.	1.1	1
170	Measles controlcan measles virus inhibitors make a difference?. Current Opinion in Investigational Drugs, 2009, 10, 811-20.	2.3	20
171	Global Health Governance at a Crossroads. Global Health Governance: the Scholarly Journal for the New Health Security Paradigm, 2011, 3, 1-37.	0.2	15
172	Measles outbreak in South of iran, where vaccine coverage was high: a case-series study. Iranian Journal of Public Health, 2014, 43, 375-80.	0.3	10
173	Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Pathogens, 2021, 10, 1599.	1.2	14
174	Hollow Pt Nanocage@Mesoporous SiO ₂ Nanoreactors as a Nanozyme for Colorimetric Immunoassays of Viral Diagnosis. ACS Applied Nano Materials, 2022, 5, 1553-1561.	2.4	4
177	Completed Genomes: Viruses. , 0, , 566-595.		0

CITATION REPORT

#	Article	IF	CITATIONS
178	Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Molecular Diagnosis and Therapy, 2022, 26, 353-367.	1.6	2
179	Immunogenicity after outbreak response immunization activities among young healthcare workers with secondary vaccine failure during the measles epidemic in Korea, 2019. BMC Infectious Diseases, 2022, 22, .	1.3	2
180	Breakthrough Infections: A Challenge towards Measles Elimination?. Microorganisms, 2022, 10, 1567.	1.6	7
181	Reactivation of latent viruses in Neurology. Clinical Neurology, 2022, 62, 697-706.	0.0	2
182	Measles second dose vaccine utilization and associated factors among children aged 24–35 months in Sub-Saharan Africa, a multi-level analysis from recent DHS surveys. BMC Public Health, 2022, 22, .	1.2	6
183	REVIEW OF MEASLES VIRUS. , 2021, 49, 5-13.		4
184	Trends, barriers and enablers to measles immunisation coverage in Saskatchewan, Canada: A mixed methods study. PLoS ONE, 2022, 17, e0277876.	1.1	0
185	Current Status of Immunology Education in U.S. Medical Schools. ImmunoHorizons, 2022, 6, 864-871.	0.8	0
186	Molecular Epidemiological Study of Measles Cases in Gyeonggi Province. Journal of Bacteriology and Virology, 2022, 52, 137-144.	0.0	0
187	Infectious Disease Modeling. , 2012, , 9-20.		1
188	The epidemiology of measles in Angola: Results from Routine Surveillance 2015-2021. IJID Regions, 2023, ,	0.5	0