Targeting proteases: successes, failures and future pros

Nature Reviews Drug Discovery 5, 785-799 DOI: 10.1038/nrd2092

Citation Report

#	Article	IF	CITATIONS
1	Structural insight into distinct mechanisms of protease inhibition by antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19784-19789.	3.3	68
2	Cysteine proteases: destruction ability versus immunomodulation capacity in immune cells. Biological Chemistry, 2007, 388, 1141-9.	1.2	40
3	Glycosaminoglycans Facilitate Procathepsin B Activation through Disruption of Propeptide-Mature Enzyme Interactions. Journal of Biological Chemistry, 2007, 282, 33076-33085.	1.6	86
4	Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resistance Updates, 2007, 10, 235-255.	6.5	118
5	Protease signalling in cell death: caspases versus cysteine cathepsins. FEBS Letters, 2007, 581, 2761-2767.	1.3	174
6	Simulated Interactions between Angiotensin-Converting Enzyme and Substrate Gonadotropin-Releasing Hormone:  Novel Insights into Domain Selectivity. Biochemistry, 2007, 46, 8753-8765.	1.2	24
7	Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis Research and Therapy, 2007, 9, 221.	1.6	121
8	Lyngbyastatin 4, a Dolastatin 13 Analogue with Elastase and Chymotrypsin Inhibitory Activity from the Marine Cyanobacterium Lyngbya confervoides. Journal of Natural Products, 2007, 70, 124-127.	1.5	94
9	Triple-Helical Transition State Analogues:  A New Class of Selective Matrix Metalloproteinase Inhibitors. Journal of the American Chemical Society, 2007, 129, 10408-10417.	6.6	69
10	Mechanisms of Disease: protease functions in intestinal mucosal pathobiology. Nature Reviews Gastroenterology & Hepatology, 2007, 4, 393-402.	1.7	93
11	Stability and equilibria of promiscuous aggregates in high protein milieus. Molecular BioSystems, 2007, 3, 208.	2.9	67
12	Quantitative Inhibitor Fingerprinting of Metalloproteases Using Small Molecule Microarrays. Journal of the American Chemical Society, 2007, 129, 13110-13117.	6.6	49
13	Isolation of High-Affinity Trypsin Inhibitors from a DNA-Encoded Chemical Library. Angewandte Chemie - International Edition, 2007, 46, 4671-4674.	7.2	101
15	AP/MALDIâ€MS complete characterization of the proteolytic fragments produced by the interaction of insulin degrading enzyme with bovine insulin. Journal of Mass Spectrometry, 2007, 42, 1590-1598.	0.7	40
16	Synthesis and biological evaluation of phosphino dipeptide isostere inhibitor of human β-secretase (BACE1). Bioorganic and Medicinal Chemistry, 2007, 15, 4136-4143.	1.4	27
17	Discovery of non-covalent dipeptidyl peptidase IV inhibitors which induce a conformational change in the active site. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1765-1768.	1.0	17
18	Patented small molecule inhibitors in the ubiquitin proteasome system. BMC Biochemistry, 2007, 8, S14.	4.4	66
19	Emerging roles of proteases in tumour suppression. Nature Reviews Cancer, 2007, 7, 800-808.	12.8	746

#	Article	IF	CITATIONS
20	Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nature Reviews Drug Discovery, 2007, 6, 871-880.	21.5	153
21	In search of partners: linking extracellular proteases to substrates. Nature Reviews Molecular Cell Biology, 2007, 8, 245-257.	16.1	326
22	Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nature Structural and Molecular Biology, 2007, 14, 413-419.	3.6	378
23	Immunonanoparticlesâ€fâ~â€fan effective tool to impair harmful proteolysis in invasive breast tumor cells. FEBS Journal, 2007, 274, 4416-4427.	2.2	22
24	Unravelling the moulting degradome: new opportunities for chemotherapy?. Trends in Parasitology, 2007, 23, 248-253.	1.5	22
25	Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends in Parasitology, 2007, 23, 397-407.	1.5	91
26	Studies on Improving the Immobilized Bead Reusability and Alkaline Protease Production by Isolated Immobilized Bacillus circulans (MTCC 6811) Using Overall Evaluation Criteria. Applied Biochemistry and Biotechnology, 2008, 150, 65-83.	1.4	26
27	Novel small molecule inhibitors for prostateâ€specific antigen. Prostate, 2008, 68, 1143-1151.	1.2	43
28	Allosteric Regulation of Proteases. ChemBioChem, 2008, 9, 2920-2928.	1.3	72
29	Chemistry and Biology of the Aeruginosin Family of Serine Protease Inhibitors. Angewandte Chemie - International Edition, 2008, 47, 1202-1223.	7.2	172
30	Selective Activityâ€Based Probes for Cysteine Cathepsins. Angewandte Chemie - International Edition, 2008, 47, 406-409.	7.2	72
31	Phosphorus NMR Spectroscopy as a Versatile Tool for Compound Library Screening. Angewandte Chemie - International Edition, 2008, 47, 2608-2611.	7.2	29
32	Activation of Protein Splicing by Protease―or Lightâ€Triggered O to N Acyl Migration. Angewandte Chemie - International Edition, 2008, 47, 7764-7767.	7.2	69
33	Evaluation of Encoded Layerâ€By‣ayer Coated Microparticles As Protease Sensors. Advanced Functional Materials, 2008, 18, 1624-1631.	7.8	15
38	Thioxophosphoranyl aryl- and heteroaryloxiranes as the representants of a new class of metallocarboxypeptidase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 4823-4828.	1.4	8
39	Specific targeting of metzincin family members with small-molecule inhibitors: Progress toward a multifarious challenge. Bioorganic and Medicinal Chemistry, 2008, 16, 8781-8794.	1.4	90
40	Fluorescent probes for bioimaging applications. Current Opinion in Chemical Biology, 2008, 12, 515-521.	2.8	370
41	Development of Protease Inhibitors and the Fight with Drugâ€Resistant HIVâ€1 Variants. Advances in Pharmacology, 2008, 56, 169-197.	1.2	47

		CITATION REPORT		
#	Article		IF	Citations
42	Rhomboid Proteases and their Biological Functions. Annual Review of Genetics, 2008, 42	, 191-210.	3.2	123
43	Proteome-derived, database-searchable peptide libraries for identifying protease cleavage Biotechnology, 2008, 26, 685-694.	sites. Nature	9.4	357
44	Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic a Journal of Applied Microbiology, 2008, 104, 889-898.	e algorithm.	1.4	62
45	Differential expression of Cathepsin S and X in the spinal cord of a rat neuropathic pain n Neuroscience, 2008, 9, 80.	nodel. BMC	0.8	15
46	Extracellular catalase activity protects cysteine cathepsins from inactivation by hydrogen FEBS Letters, 2008, 582, 1307-1312.	peroxide.	1.3	18
47	Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome c Biochemical Pharmacology, 2008, 75, 1601-1609.	oronavirus.	2.0	94
48	The design, structures and therapeutic potential of protein epitope mimetics. Drug Discc 2008, 13, 944-951.	very Today,	3.2	131
49	Cytokine Substrates: MMP Regulation of Inflammatory Signaling Molecules. , 2008, , 519)-539.		10
50	Kempopeptins A and B, Serine Protease Inhibitors with Different Selectivity Profiles from Cyanobacterium, <i>Lyngbya</i> sp <i>.</i> . Journal of Natural Products, 2008, 71, 1625	a Marine -1629.	1.5	69
51	Cathepsin K – A new molecular target for osteoporosis. IBMS BoneKEy, 2008, 5, 16-24		0.1	37
52	Stoichiometry and Physical Chemistry of Promiscuous Aggregate-Based Inhibitors. Journa American Chemical Society, 2008, 130, 9606-9612.	l of the	6.6	200
53	Fluorescence Anisotropy Assay for the Traceless Kinetic Analysis of Protein Digestion. An Chemistry, 2008, 80, 4170-4174.	alytical	3.2	28
54	Cell cycle inhibitors in cancer: current status and future directions. , 2008, , 253-283.			6
55	Synthetic active site-directed inhibitors of metzincins: Achievement and perspectives. Mo Aspects of Medicine, 2008, 29, 329-338.	blecular	2.7	40
56	Structure of an Fab–Protease Complex Reveals a Highly Specific Non-canonical Mecha Inhibition. Journal of Molecular Biology, 2008, 380, 351-360.	nism of	2.0	55
57	Cysteine cathepsin proteases as pharmacological targets in cancer. Trends in Pharmacolo Sciences, 2008, 29, 22-28.	ogical	4.0	264
58	The NMR Structure and Dynamics of the Two-Domain Tick Carboxypeptidase Inhibitor Re in Its Free Form and Stiffness upon Binding to Human Carboxypeptidase B. Biochemistry, 7066-7078.	veal Flexibility 2008, 47,	1.2	19
59	Proteases: Multifunctional Enzymes in Life and Disease. Journal of Biological Chemistry, 2 30433-30437.	.008, 283,	1.6	751

#	Article	IF	CITATIONS
60	Challenges in Modern Drug Discovery: A Case Study of Boceprevir, an HCV Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. Accounts of Chemical Research, 2008, 41, 50-59.	7.6	232
61	Lung cysteine cathepsins: Intruders or unorthodox contributors to the kallikrein–kinin system?. International Journal of Biochemistry and Cell Biology, 2008, 40, 1079-1094.	1.2	27
62	Cysteine cathepsins: Cellular roadmap to different functions. Biochimie, 2008, 90, 194-207.	1.3	341
63	Biochemical properties and regulation of cathepsin K activity. Biochimie, 2008, 90, 208-226.	1.3	147
64	Targeting ubiquitin specific proteases for drug discovery. Biochimie, 2008, 90, 270-283.	1.3	125
65	Activity-based selection of a proteolytic species using ribosome display. Biochemical and Biophysical Research Communications, 2008, 370, 77-81.	1.0	8
66	Natural Products as Pharmaceuticals and Sources for Lead Structures. , 2008, , 159-186.		12
67	Cystatins: Biochemical and structural properties, and medical relevance. Frontiers in Bioscience - Landmark, 2008, Volume, 5406.	3.0	298
68	Cysteine Cathepsins Trigger Caspase-dependent Cell Death through Cleavage of Bid and Antiapoptotic Bcl-2 Homologues. Journal of Biological Chemistry, 2008, 283, 19140-19150.	1.6	327
69	Development of peptides specifically modulating the activity of KLK2 and KLK3. Biological Chemistry, 2008, 389, 633-642.	1.2	23
70	A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16119-16124.	3.3	407
71	Metadegradomics. Molecular and Cellular Proteomics, 2008, 7, 1925-1951.	2.5	134
72	Autophagy Is Involved in Nutritional Stress Response and Differentiation in Trypanosoma cruzi. Journal of Biological Chemistry, 2008, 283, 3454-3464.	1.6	127
73	In-cell Selectivity Profiling of Serine Protease Inhibitors by Activity-based Proteomics. Molecular and Cellular Proteomics, 2008, 7, 1241-1253.	2.5	36
74	Blocking autophagy to prevent parasite differentiation: A possible new strategy for fighting parasitic infections?. Autophagy, 2008, 4, 361-363.	4.3	40
75	Anchoring Junctions As Drug Targets: Role in Contraceptive Development. Pharmacological Reviews, 2008, 60, 146-180.	7.1	140
76	Analysis of Proteinase-activated Receptor 2 and TLR4 Signal Transduction. Journal of Biological Chemistry, 2008, 283, 24314-24325.	1.6	122
77	Prostatic trypsin-like kallikrein-related peptidases (KLKs) and other prostate-expressed tryptic proteinases as regulators of signalling via proteinase-activated receptors (PARs). Biological Chemistry, 2008, 389, 653-668.	1.2	38

#	Article	IF	CITATIONS
78	Cysteine Cathepsins and Cystatins as Cancer Biomarkers. , 2008, , 587-625.		6
79	High-Throughput Screening Identifies Cardiac Glycosides as Potent Inhibitors of Human Tissue Kallikrein Expression: Implications for Cancer Therapies. Clinical Cancer Research, 2008, 14, 5778-5784.	3.2	30
80	A Profiling Platform for the Identification of Selective Metalloprotease Inhibitors. Journal of Biomolecular Screening, 2008, 13, 285-294.	2.6	19
83	Cystatin protease inhibitors and immune functions. Frontiers in Bioscience - Landmark, 2008, Volume, 4625.	3.0	65
84	Molecular Imaging of Proteases in Cancer. Cancer Growth and Metastasis, 2009, 2, CGM.S2814.	3.5	49
85	Action of plant proteinase inhibitors on enzymes of physiopathological importance. Anais Da Academia Brasileira De Ciencias, 2009, 81, 615-621.	0.3	37
86	Antibody-Mediated Inhibition of Cathepsin S Blocks Colorectal Tumor Invasion and Angiogenesis. Clinical Cancer Research, 2009, 15, 6042-6051.	3.2	95
87	The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Research, 2009, 37, D239-D243.	6.5	146
88	Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opinion on Investigational Drugs, 2009, 18, 585-600.	1.9	177
89	Release of endo-lysosomal cathepsins B, D, and L from IEC6 cells in a cell culture model mimicking intestinal manipulation. Biological Chemistry, 2009, 390, 471-80.	1.2	19
90	Inhibition of MALT1 protease activity is selectively toxic for activated B cell–like diffuse large B cell lymphoma cells. Journal of Experimental Medicine, 2009, 206, 2313-2320.	4.2	195
91	Murine and human cathepsin B exhibit similar properties: possible implications for drug discovery. Biological Chemistry, 2009, 390, 175-179.	1.2	8
92	Proteases as Anti-Cancer Targets - Molecular and Biological Basis for Development of Inhibitor-Like Drugs Against Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 728-762.	0.9	14
93	Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis?. Future Medicinal Chemistry, 2009, 1, 21-34.	1.1	54
94	Mechanisms of Growth Inhibition in Human Papillomavirus Positive and Negative Cervical Cancer Cells by the Chloromethyl Ketone Protease Inhibitor, Succinyl-Alanine-Alanine-Proline-Phenylalanine Chloromethyl Ketone. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 359-366.	1.3	8
95	Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells. Journal of Biological Chemistry, 2009, 284, 8680-8691.	1.6	172
96	Kinetoplastid papain-like cysteine peptidases. Molecular and Biochemical Parasitology, 2009, 167, 12-19.	0.5	49
97	Unraveling the Allosteric Mechanism of Serine Protease Inhibition by an Antibody. Structure, 2009, 17, 1614-1624.	1.6	58

		CITATION REPORT		
#	Article		IF	CITATIONS
98	SitePredicting the cleavage of proteinase substrates. Trends in Biochemical Sciences, 2	009, 34, 319-323.	3.7	119
99	How to find simple and accurate rules for viral protease cleavage specificities. BMC Bio 2009, 10, 149.	informatics,	1.2	26
100	Analysis of regulatory protease sequences identified through bioinformatic data mining Schistosoma mansoni genome. BMC Genomics, 2009, 10, 488.	g of the	1.2	21
101	Leishmania infantum: Antiproliferative effect of recombinant plant cystatins on promas intracellular amastigotes estimated by direct counting and real-time PCR. Experimental 2009, 123, 341-346.	tigotes and Parasitology,	0.5	9
102	Characterization and identification of proteases secreted by Aspergillus fumigatus usir electrophoresis and MS. Electrophoresis, 2009, 30, 2142-2150.	g free flow	1.3	20
103	Development of a mathematical model for <i>Bacillus circulans</i> growth and alkaling production kinetics. Journal of Chemical Technology and Biotechnology, 2009, 84, 302	e protease -307.	1.6	33
104	Processing of peptide and hormone precursors at the dibasic cleavage sites. Cellular ar Life Sciences, 2009, 66, 2075-2091.	id Molecular	2.4	69
105	Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at phand redox conditions. BMC Biochemistry, 2009, 10, 23.	ysiological pH	4.4	134
106	Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nature Che 2009, 5, 502-507.	mical Biology,	3.9	595
107	Membrane-bound FRET probe visualizes MMP12 activity in pulmonary inflammation. N Biology, 2009, 5, 628-630.	ature Chemical	3.9	97
108	Autocatalytic processing of procathepsinâ $\in fB$ is triggered by proenzyme activity. FEBS 660-668.	Journal, 2009, 276,	2.2	78
109	Macrocypins, a family of cysteine protease inhibitors from the basidiomycete <i>Macrolepiotaâ€∫procera</i> . FEBS Journal, 2009, 276, 4334-4345.		2.2	44
110	Aromatic Organic Compounds as Scaffolds for Metallocarboxypeptidase Inhibitor Desig Biology and Drug Design, 2009, 73, 75-82.	gn. Chemical	1.5	4
111	Inactivation of harmful tumour-associated proteolysis by nanoparticulate system. Inter Journal of Pharmaceutics, 2009, 381, 106-112.	national	2.6	25
112	Quantitative measurement of protease activity with correction of probe delivery and ti absorption effects. Sensors and Actuators B: Chemical, 2009, 138, 591-597.	ssue	4.0	7
113	Quantitative structure–activity relationships for a series of inhibitors of cruzain from cruzi: Molecular modeling, CoMFA and CoMSIA studies. Journal of Molecular Graphics a 2009, 28, 3-11.	Trypanosoma and Modelling,	1.3	43
114	Characterization of thermo- and detergent stable serine protease from isolated Bacillus and evaluation of eco-friendly applications. Process Biochemistry, 2009, 44, 262-268.	scirculans	1.8	134
115	Using specificity to strategically target proteases. Bioorganic and Medicinal Chemistry, 1094-1100.	2009, 17,	1.4	17

#	Article	IF	CITATIONS
116	Mutations in SPINT2 Cause a Syndromic Form of Congenital Sodium Diarrhea. American Journal of Human Genetics, 2009, 84, 188-196.	2.6	110
117	Grassystatins Aâ^'C from Marine Cyanobacteria, Potent Cathepsin E Inhibitors That Reduce Antigen Presentation. Journal of Medicinal Chemistry, 2009, 52, 5732-5747.	2.9	90
118	Intramembrane Proteolysis. Chemical Reviews, 2009, 109, 1599-1612.	23.0	124
119	Masking MALT1: the paracaspase's potential for cancer therapy. Journal of Experimental Medicine, 2009, 206, 2309-2312.	4.2	17
120	The footprints of cancer development: Cancer biomarkers. Cancer Treatment Reviews, 2009, 35, 193-200.	3.4	112
121	A novel protease activity assay using a protease-responsive chaperone protein. Biochemical and Biophysical Research Communications, 2009, 383, 293-297.	1.0	10
122	Irreversible inhibition of human cathepsins B, L, S and K by hypervalent tellurium compounds. Biological Chemistry, 2009, 390, 1205-1212.	1.2	33
123	Chapter 6 Small moleculeâ€based FRET probes. Laboratory Techniques in Biochemistry and Molecular Biology / Edited By T S Work [and] E Work, 2009, 33, 225-288.	0.2	4
124	Promiscuous Aggregate-Based Inhibitors Promote Enzyme Unfolding. Journal of Medicinal Chemistry, 2009, 52, 2067-2075.	2.9	183
125	Protease responsive nanoprobes with tethered fluorogenic peptidyl 3-arylcoumarin substrates. Chemical Communications, 2009, , 671-673.	2.2	22
126	Extracellular Proteases as Targets for Drug Development. Current Protein and Peptide Science, 2009, 10, 297-307.	0.7	68
127	Structure-Based Drug Discovery for Tropical Diseases. Current Topics in Medicinal Chemistry, 2009, 9, 824-843.	1.0	24
128	Pharmacological Inhibition of Cathepsin S Decreases Atherosclerotic Lesions in Apoe-/- Mice. Journal of Cardiovascular Pharmacology, 2010, 56, 98-105.	0.8	54
129	Orally Bioavailable Cathepsin K Inhibitors with Pyrrolopyrimidine Scaffold. Current Topics in Medicinal Chemistry, 2010, 10, 752-766.	1.0	11
130	Enzyme Kinetics and Hit Validation in Fluorimetric Protease Assays. Current Topics in Medicinal Chemistry, 2010, 10, 368-382.	1.0	37
131	Mast cell proteases: multifaceted regulators of inflammatory disease. Blood, 2010, 115, 4981-4990.	0.6	313
133	Activatable Photosensitizers for Imaging and Therapy. Chemical Reviews, 2010, 110, 2839-2857.	23.0	1,483
134	Design, synthesis and inhibitory effect of pentapeptidyl chloromethyl ketones on proteinase K. Bioorganic and Medicinal Chemistry, 2010, 18, 8383-8387.	1.4	1

#	Article	IF	Citations
135	Purification of a novel cysteine protease, procerain B, from Calotropis procera with distinct characteristics compared to procerain. Process Biochemistry, 2010, 45, 399-406.	1.8	44
136	Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. Journal of Applied Phycology, 2010, 22, 659-676.	1.5	118
137	In silico studies of blood coagulation proteins: from mosaic proteases to nonenzymatic cofactor inhibitors. Current Opinion in Structural Biology, 2010, 20, 168-179.	2.6	14
138	A Highly Potent and Selective Caspaseâ€1 Inhibitor that Utilizes a Key 3 yanopropanoic Acid Moiety. ChemMedChem, 2010, 5, 730-738.	1.6	62
139	Peptideâ€Functionalized Spherical Polyelectrolyte Nanobrushes for Realâ€Time Sensing of Protease Activity. ChemBioChem, 2010, 11, 494-497.	1.3	7
140	Activation Instead of Inhibition: Targeting Proenzymes for Smallâ€Molecule Intervention. ChemBioChem, 2010, 11, 637-639.	1.3	9
141	Mechanisms of Macromolecular Protease Inhibitors. ChemBioChem, 2010, 11, 2341-2346.	1.3	102
142	Protease Activation of Split Green Fluorescent Protein. ChemBioChem, 2010, 11, 2259-2263.	1.3	20
143	The cytotoxic effect of Bowman–Birk isoinhibitors, IBB1 and IBBD2, from soybean (<i>Glycine max</i>) on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases. Molecular Nutrition and Food Research, 2010, 54, 396-405.	1.5	78
144	A lead discovery strategy driven by a comprehensive analysis of proteases in the peptide substrate space. Protein Science, 2010, 19, 2096-2109.	3.1	7
145	The structural basis for catalysis and substrate specificity of a rhomboid protease. EMBO Journal, 2010, 29, 3797-3809.	3.5	97
146	Emerging principles in protease-based drug discovery. Nature Reviews Drug Discovery, 2010, 9, 690-701.	21.5	476
148	Structural and mechanistic insight into how antibodies inhibit serine proteases. Biochemical Journal, 2010, 430, 179-189.	1.7	45
149	Pseudo-active sites of protease domains: HGF/Met and Sonic hedgehog signaling in cancer. Biological Chemistry, 2010, 391, 881-92.	1.2	9
150	Antagonistic Anti-urokinase Plasminogen Activator Receptor (uPAR) Antibodies Significantly Inhibit uPAR-mediated Cellular Signaling and Migration. Journal of Biological Chemistry, 2010, 285, 26878-26888.	1.6	51
152	The cystatin M/E athepsin L balance is essential for tissue homeostasis in epidermis, hair follicles, and cornea. FASEB Journal, 2010, 24, 3744-3755.	0.2	37
153	Identification of novel peptide inhibitors for human trypsins. Biological Chemistry, 2010, 391, 283-293.	1.2	18
154	Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biological Chemistry, 2010, 391, 571-579.	1.2	101

#	Article	IF	CITATIONS
155	Natural and engineered kallikrein inhibitors: an emerging pharmacopoeia. Biological Chemistry, 2010, 391, 357-74.	1.2	35
156	Microsphereâ€Based Flow Cytometry Protease Assays for Use in Protease Activity Detection and Highâ€Throughput Screening. Current Protocols in Cytometry, 2010, 54, Unit 13.12.1-17.	3.7	9
157	Profiling Diverse Compounds by Flux- and Electrophysiology-Based Primary Screens for Inhibition of Human Ether-Ã-go-go Related Gene Potassium Channels. Assay and Drug Development Technologies, 2010, 8, 743-754.	0.6	25
158	Multiplex N-terminome Analysis of MMP-2 and MMP-9 Substrate Degradomes by iTRAQ-TAILS Quantitative Proteomics. Molecular and Cellular Proteomics, 2010, 9, 894-911.	2.5	240
159	Modulation of Photosensitization Processes for an Improved Targeted Photodynamic Therapy. Current Medicinal Chemistry, 2010, 17, 3925-3943.	1.2	54
160	Successful Applications of Computer Aided Drug Discovery: Moving Drugs from Concept to the Clinic. Current Topics in Medicinal Chemistry, 2010, 10, 127-141.	1.0	295
161	Polarizable Atomic Multipole X-Ray Refinement: Hydration Geometry and Application to Macromolecules. Biophysical Journal, 2010, 98, 2984-2992.	0.2	29
162	Matrix Metalloproteinase Inhibitors. Drugs, 2010, 70, 949-964.	4.9	163
163	Cleavage-Sensing Redox Peptide Monolayers for the Rapid Measurement of the Proteolytic Activity of Trypsin and α-Thrombin Enzymes. Langmuir, 2010, 26, 10347-10356.	1.6	65
164	Mechanism-Based Profiling of MMPs. Methods in Molecular Biology, 2010, 622, 471-487.	0.4	23
165	The ubiquitin–proteasome system and assays to determine responses to inhibitors. Expert Opinion on Drug Discovery, 2010, 5, 1221-1236.	2.5	5
166	The Occluding Loop of Cathepsin B Prevents Its Effective Inhibition by Human Kininogens. Journal of Molecular Biology, 2010, 400, 1022-1035.	2.0	20
167	Cathepsin L, target in cancer treatment?. Life Sciences, 2010, 86, 225-233.	2.0	138
168	Biologic protease inhibitors as novel therapeutic agents. Biochimie, 2010, 92, 1681-1688.	1.3	66
169	Kininogens: More than cysteine protease inhibitors and kinin precursors. Biochimie, 2010, 92, 1568-1579.	1.3	85
170	A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie, 2010, 92, 1667-1673.	1.3	109
171	Cathepsins and cystatin C in atherosclerosis and obesity. Biochimie, 2010, 92, 1580-1586.	1.3	102
172	Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie, 2010, 92, 1618-1624.	1.3	53

#	Article	IF	CITATIONS
173	Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie, 2010, 92, 1705-1714.	1.3	54
174	Phage display as a powerful tool to engineer protease inhibitors. Biochimie, 2010, 92, 1689-1704.	1.3	23
175	X-ray Diffraction, Solution Structure, and Computational Studies on Derivatives of (3- <i>sec</i> -Butyl-2,3-dihydro-1 <i>H</i> -isoquinolin-4-ylidene)acetic Acid: Compounds with Activity as Calpain Inhibitors. Journal of Organic Chemistry, 2010, 75, 342-352.	1.7	5
176	Yin and Yang in the proteolytic landscape. Biochimie, 2010, 92, v-vii.	1.3	0
177	Allosteric regulation of protease activity by small molecules. Molecular BioSystems, 2010, 6, 1431.	2.9	41
178	Proteomic profiling of proteases: tools for granzyme degradomics. Expert Review of Proteomics, 2010, 7, 347-359.	1.3	15
179	Probing protease activity by single-fluorescent-protein nanocapsules. Chemical Communications, 2010, 46, 6467.	2.2	39
180	Morpholinecarbonyl-Rhodamine 110 Based Substrates for the Determination of Protease Activity with Accurate Kinetic Parameters. Bioconjugate Chemistry, 2011, 22, 1932-1938.	1.8	15
181	On the cutting edge: protease-sensitive prodrugs for the delivery of photoactive compounds. Photochemical and Photobiological Sciences, 2011, 10, 689-703.	1.6	16
182	Protease sensing with nanoparticle based platforms. Analyst, The, 2011, 136, 29-41.	1.7	61
183	A Cleavage Enzyme-Cytometric Bead Array Provides Biochemical Profiling of Resistance Mutations in HIV-1 Gag and Protease. Biochemistry, 2011, 50, 4371-4381.	1.2	12
184	Determining Protease Substrate Selectivity and Inhibition by Label-Free Supramolecular Tandem Enzyme Assays. Journal of the American Chemical Society, 2011, 133, 7528-7535.	6.6	176
185	Highly Adaptable and Sensitive Protease Assay Based on Fluorescence Resonance Energy Transfer. Analytical Chemistry, 2011, 83, 7356-7363.	3.2	44
186	A cross-over inhibitor of the botulinum neurotoxin light chain B: a natural product implicating an exosite mechanism of action. Chemical Communications, 2011, 47, 1713.	2.2	18
187	Serine protease acylation proceeds with a subtle re-orientation of the histidine ring at the tetrahedral intermediate. Chemical Communications, 2011, 47, 1577-1579.	2.2	47
188	Structural Determinants of Limited Proteolysis. Journal of Proteome Research, 2011, 10, 3642-3651.	1.8	68
189	Dual-Functional, Receptor-Targeted Fluorogenic Probe for In Vivo Imaging of Extracellular Protease Expressions. Bioconjugate Chemistry, 2011, 22, 1001-1005.	1.8	13
190	Cathepsin E as a Potent Anticancer Protease. Journal of Oral Biosciences, 2011, 53, 128-136.	0.8	2

#	Article	IF	CITATIONS
191	Manipulating the Power of an Additional Phase: A Flower-like Auâ^'Fe ₃ O ₄ Optical Nanosensor for Imaging Protease Expressions <i>In vivo</i> . ACS Nano, 2011, 5, 3043-3051.	7.3	98
192	<i>In Vivo</i> Optical Imaging of Membrane-Type Matrix Metalloproteinase (MT-MMP) Activity. Molecular Pharmaceutics, 2011, 8, 2331-2338.	2.3	49
193	Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nature Protocols, 2011, 6, 1578-1611.	5.5	291
194	Light Activation of a Cysteine Protease Inhibitor: Caging of a Peptidomimetic Nitrile with Ru ^{II} (bpy) ₂ . Journal of the American Chemical Society, 2011, 133, 17164-17167.	6.6	122
195	Self-Assembling Small Molecules Form Nanofibrils That Bind Procaspase-3 To Promote Activation. Journal of the American Chemical Society, 2011, 133, 19630-19633.	6.6	74
196	Synthesis of Monomeric Derivatives To Probe Memoquin's Bivalent Interactions. Journal of Medicinal Chemistry, 2011, 54, 8299-8304.	2.9	27
197	Promising approaches in using magnetic nanoparticles in oncology. Biological Chemistry, 2011, 392, 955-960.	1.2	18
198	Cysteine proteases as potential antigens in antiparasitic DNA vaccines. Vaccine, 2011, 29, 5575-5583.	1.7	8
199	The design and application of fluorophore–gold nanoparticle activatable probes. Physical Chemistry Chemical Physics, 2011, 13, 9929.	1.3	206
200	A Flow Cytometry–Based Screening System for Directed Evolution of Proteases. Journal of Biomolecular Screening, 2011, 16, 285-294.	2.6	47
201	A modified Tat peptide for selective intracellular delivery of macromolecules. Journal of Pharmacy and Pharmacology, 2011, 63, 611-618.	1.2	1
202	Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Research, 2011, 13, R115.	2.2	91
203	Inhibitors of Proteinases as Potential Anti-Cancer Agents. , 2011, , .		1
204	Real-Time Video Imaging of Protease Expression In Vivo. Theranostics, 2011, 1, 18-27.	4.6	76
205	Protease addiction and synthetic lethality in cancer. Frontiers in Oncology, 2011, 1, 25.	1.3	17
206	Substrate Profiling of Tobacco Etch Virus Protease Using a Novel Fluorescence-Assisted Whole-Cell Assay. PLoS ONE, 2011, 6, e16136.	1.1	34
207	Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors. PLoS ONE, 2011, 6, e18253.	1.1	25
208	Substrate Specifity Profiling of the Aspergillus fumigatus Proteolytic Secretome Reveals Consensus Motifs with Predominance of Ile/Leu and Phe/Tyr. PLoS ONE, 2011, 6, e21001.	1.1	12

#	Article	IF	CITATIONS
209	The P2′ residue is a key determinant of mesotrypsin specificity: engineering a high-affinity inhibitor with anticancer activity. Biochemical Journal, 2011, 440, 95-105.	1.7	37
210	The <i>Arabidopsis</i> aminopeptidase LAP2 regulates plant growth, leaf longevity and stress response. New Phytologist, 2011, 191, 958-969.	3.5	30
211	Dipeptidyl peptidase III: a multifaceted oligopeptide Nâ€end cutter. FEBS Journal, 2011, 278, 3256-3276.	2.2	81
212	The Importinâ€Alpha/Nucleophosmin Switch Controls Taspase1 Protease Function. Traffic, 2011, 12, 703-714.	1.3	32
213	Selective irreversible inhibition of a protease by targeting a noncatalytic cysteine. Nature Chemical Biology, 2011, 7, 22-24.	3.9	88
214	The resurgence of covalent drugs. Nature Reviews Drug Discovery, 2011, 10, 307-317.	21.5	1,384
215	Allosteric modulation of caspases. , 2011, 132, 180-195.		32
216	Discovery and kinetic evaluation of 6-substituted 4-benzylthio-1,3,5-triazin-2(1H)-ones as inhibitors of cathepsin B. European Journal of Medicinal Chemistry, 2011, 46, 4648-4656.	2.6	16
217	Peptide-based molecular beacons for cancer imaging and therapy. Amino Acids, 2011, 41, 1123-1134.	1.2	46
218	Anti-protease and Immunomodulatory Activities of Bacteria Associated with Caribbean Sponges. Marine Biotechnology, 2011, 13, 883-892.	1.1	34
219	Beta-secretase as a target for Alzheimer's disease drug discovery: an overview of in vitro methods for characterization of inhibitors. Analytical and Bioanalytical Chemistry, 2011, 400, 1979-1996.	1.9	82
220	Cysteine Cathepsins: Markers and Therapy Targets in Lung Disorders. Clinical Reviews in Bone and Mineral Metabolism, 2011, 9, 148-161.	1.3	17
221	Cathepsins S, L, and K and Their Pathophysiological Relevance in Obesity. Clinical Reviews in Bone and Mineral Metabolism, 2011, 9, 133-137.	1.3	5
222	Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression. BMC Cancer, 2011, 11, 4.	1.1	81
223	Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome. Proteome Science, 2011, 9, 71.	0.7	17
224	Novel Mechanism of Cathepsinâ€B Inhibition by Antibiotic Nitroxoline and Related Compounds. ChemMedChem, 2011, 6, 1351-1356.	1.6	75
225	Discovering molecular targets in cancer with multiscale modeling. Drug Development Research, 2011, 72, 45-52.	1.4	11
226	Impact of platinumâ€based chemotherapy on circulating nucleic acid levels, protease activities in blood and disseminated tumor cells in bone marrow of ovarian cancer patients. International Journal of Cancer, 2011, 128, 2572-2580.	2.3	71

#	Article	IF	CITATIONS
227	Acridone alkaloids as potent inhibitors of cathepsin V. Bioorganic and Medicinal Chemistry, 2011, 19, 1477-1481.	1.4	31
228	Development of a protease activity assay using heat-sensitive Tus–GFP fusion protein substrates. Analytical Biochemistry, 2011, 415, 126-133.	1.1	10
229	High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry. Journal of Proteomics, 2011, 74, 401-410.	1.2	42
230	It is All About Proteases: From Drug Delivery to In Vivo Imaging and Photomedicine. Current Medicinal Chemistry, 2011, 18, 1785-1805.	1.2	33
231	Fluorescence lifetime assays: current advances and applications in drug discovery. Expert Opinion on Drug Discovery, 2011, 6, 663-670.	2.5	13
232	The effects of a plant proteinase inhibitor from Enterolobium contortisiliquum on human tumor cell lines. Biological Chemistry, 2011, 392, 327-36.	1.2	30
233	In Vitro Selection of Cathepsin E-Activity-Enhancing Peptide Aptamers at Neutral pH. International Journal of Peptides, 2011, 2011, 1-10.	0.7	5
234	Proteases in Plasma and Kidney of db/db Mice as Markers of Diabetes-Induced Nephropathy. Isrn Endocrinology, 2011, 2011, 1-10.	2.0	9
235	BIOINFORMATIC APPROACHES FOR PREDICTING SUBSTRATES OF PROTEASES. Journal of Bioinformatics and Computational Biology, 2011, 09, 149-178.	0.3	31
236	Studies of intestinal morphology and cathepsin B expression in a transgenic mouse aiming at intestine-specific expression of Cath B-EGFP. Biological Chemistry, 2011, 392, 983-93.	1.2	5
237	Gamma-Secretase Inhibitor Treatment Promotes VEGF-A-Driven Blood Vessel Growth and Vascular Leakage but Disrupts Neovascular Perfusion. PLoS ONE, 2011, 6, e18709.	1.1	32
238	Proteomic Analyses Reveal an Acidic Prime Side Specificity for the Astacin Metalloprotease Family Reflected by Physiological Substrates. Molecular and Cellular Proteomics, 2011, 10, M111.009233.	2.5	113
239	Cysteine Cathepsins S and L Modulate Anti-angiogenic Activities of Human Endostatin. Journal of Biological Chemistry, 2011, 286, 37158-37167.	1.6	58
240	Cell-based Analysis of Structure-Function Activity of Threonine Aspartase 1. Journal of Biological Chemistry, 2011, 286, 3007-3017.	1.6	45
241	Targeting Proteases in Atherosclerosis. Circulation, 2011, 124, 2480-2482.	1.6	2
244	ONO 3403, a synthetic serine protease inhibitor, inhibits lipopolysaccharide-induced tumor necrosis factor-1± and nitric oxide production and protects mice from lethal endotoxic shock. Innate Immunity, 2011, 17, 97-105.	1.1	9
245	Protease signalling: the cutting edge. EMBO Journal, 2012, 31, 1630-1643.	3.5	242
246	Peptide-Modulated Activity Enhancement of Acidic Protease Cathepsin E at Neutral pH. International Journal of Peptides, 2012, 2012, 1-7.	0.7	2

#	Article	IF	CITATIONS
247	Targeting Proteases in Cardiovascular Diseases by Mass Spectrometry-Based Proteomics. Circulation: Cardiovascular Genetics, 2012, 5, 265-265.	5.1	7
248	Allosteric inhibition of Taspase1′s pathobiological activity by enforced dimerization <i>in vivo</i> . FASEB Journal, 2012, 26, 3421-3429.	0.2	22
249	Current Strategies for Probing Substrate Specificity of Proteases. Current Medicinal Chemistry, 2012, 17, 3968-3995.	1.2	49
250	Computational Methods in the Discovery and Design of BACE-1 Inhibitors. Current Medicinal Chemistry, 2012, 19, 6095-6111.	1.2	2
251	Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB Journal, 2012, 26, 5172-5181.	0.2	58
253	β-Trefoil inhibitors – from the work of Kunitz onward. Biological Chemistry, 2012, 393, 1043-1054.	1.2	34
255	A disintegrin and metalloproteases: Molecular scissors in angiogenesis, inflammation and atherosclerosis. Atherosclerosis, 2012, 224, 302-308.	0.4	47
256	The influence of repeated administration of poloxamer 407 on serum lipoproteins and protease activity in mouse liver and heart. Canadian Journal of Physiology and Pharmacology, 2012, 90, 1456-1468.	0.7	14
257	Synthesis and Biochemical Evaluation of Thiochromanone Thiosemicarbazone Analogues as Inhibitors of Cathepsin L. ACS Medicinal Chemistry Letters, 2012, 3, 450-453.	1.3	25
258	PRSS3/Mesotrypsin Is a Therapeutic Target for Metastatic Prostate Cancer. Molecular Cancer Research, 2012, 10, 1555-1566.	1.5	47
259	Microarray-guided discovery of two-photon (2P) small molecule probes for live-cell imaging of cysteinyl cathepsin activities. Chemical Communications, 2012, 48, 7304.	2.2	21
260	Tuning and predicting biological affinity: aryl nitriles as cysteine protease inhibitors. Organic and Biomolecular Chemistry, 2012, 10, 5764.	1.5	49
261	Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis. Marine Drugs, 2012, 10, 2181-2207.	2.2	116
262	Fibrils Colocalize Caspase-3 with Procaspase-3 to Foster Maturation. Journal of Biological Chemistry, 2012, 287, 33781-33795.	1.6	45
263	Evaluation of synthetic acridones and 4-quinolinones as potent inhibitors ofÂcathepsins L and V. European Journal of Medicinal Chemistry, 2012, 54, 10-21.	2.6	29
265	Analysis of Protease Activity Using Quantum Dots and Resonance Energy Transfer. Theranostics, 2012, 2, 127-138.	4.6	93
266	Turnâ€On Fluorescence Sensor Based on Singleâ€Walledâ€Carbonâ€Nanohorn–Peptide Complex for the Detection of Thrombin. Chemistry - A European Journal, 2012, 18, 16556-16561.	1.7	40
267	Cold nanoparticle-based fluorescence quenching via metal coordination for assaying protease activity. Gold Bulletin, 2012, 45, 213-219.	1.1	31

#	Article	IF	CITATIONS
268	Current and prospective applications of non-proteinogenic amino acids in profiling of proteases substrate specificity. Biological Chemistry, 2012, 393, 843-851.	1.2	19
269	A simple and efficient protocol for the production of recombinant cathepsin V and other cysteine cathepsins in soluble form in Escherichia coli. Protein Expression and Purification, 2012, 82, 1-5.	0.6	24
270	Serine Protease Inhibition by a Silanediol Peptidomimetic. Organic Letters, 2012, 14, 4422-4425.	2.4	48
271	Target-Activated Prodrugs (TAPs) for the Autoregulated Inhibition of MMP12. ACS Medicinal Chemistry Letters, 2012, 3, 653-657.	1.3	4
272	Profile-QSAR and Surrogate AutoShim Protein-Family Modeling of Proteases. Journal of Chemical Information and Modeling, 2012, 52, 2430-2440.	2.5	9
273	A dityrosine-based substrate for a protease assay: Application for the selective assessment of papain and chymopapain activity. Analytica Chimica Acta, 2012, 723, 101-107.	2.6	19
274	Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 68-88.	1.1	990
275	Monitoring of proteolytic enzyme activity using phase transition-based peptide arrays. Biosensors and Bioelectronics, 2012, 36, 147-153.	5.3	11
276	Serine proteases of small intestine mucosa — localization, functional properties, and physiological role. Biochemistry (Moscow), 2012, 77, 820-829.	0.7	7
277	In-house preparation of hydrogels for batch affinity purification of glutathione S-transferase tagged recombinant proteins. BMC Biotechnology, 2012, 12, 63.	1.7	7
278	Self-cleavage of Human CLCA1 Protein by a Novel Internal Metalloprotease Domain Controls Calcium-activated Chloride Channel Activation. Journal of Biological Chemistry, 2012, 287, 42138-42149.	1.6	61
279	Protease Activity: Meeting Its Theranostic Potential. Theranostics, 2012, 2, 125-126.	4.6	8
280	Cow dung as a novel, inexpensive substrate for the production of a halo-tolerant alkaline protease by Halomonas sp. PV1 for eco-friendly applications. Biochemical Engineering Journal, 2012, 69, 57-60.	1.8	38
281	Deubiquitinases in cancer: new functions and therapeutic options. Oncogene, 2012, 31, 2373-2388.	2.6	401
282	Protease-Activated Drug Development. Theranostics, 2012, 2, 156-179.	4.6	203
283	Expression of Cysteine Protease Cathepsin L is Increased in Endometrial Cancer and Correlates With Expression of Growth Regulatory Genes. Cancer Investigation, 2012, 30, 398-403.	0.6	32
284	Cell in situ zymography: an in vitro cytotechnology for localization of enzyme activity in cell culture. In Vitro Cellular and Developmental Biology - Animal, 2012, 48, 463-468.	0.7	7
285	Recent development of highly sensitive protease assay methods: Signal amplification through enzyme cascades. Biotechnology and Bioprocess Engineering, 2012, 17, 1113-1119.	1.4	19

#	Article	IF	CITATIONS
286	Down-Regulation of HtrA1 Activates the Epithelial-Mesenchymal Transition and ATM DNA Damage Response Pathways. PLoS ONE, 2012, 7, e39446.	1.1	30
287	PEGylation Extends Circulation Half-Life While Preserving In Vitro and In Vivo Activity of Tissue Inhibitor of Metalloproteinases-1 (TIMP-1). PLoS ONE, 2012, 7, e50028.	1.1	39
288	Mass spectrometryâ€based proteomics strategies for protease cleavage site identification. Proteomics, 2012, 12, 516-529.	1.3	35
289	Qualitative improvement and quantitative assessment of <scp>N</scp> â€ŧerminomics. Proteomics, 2012, 12, 1207-1216.	1.3	17
290	Determination of protease subsite preference on SPOT peptide array by fluorescence quenchingâ€based assay. Journal of Peptide Science, 2012, 18, 394-399.	0.8	2
291	Chemistry and Biology Of Multicomponent Reactions. Chemical Reviews, 2012, 112, 3083-3135.	23.0	2,038
292	Matrix Metalloproteinase-10 (MMP-10) Interaction with Tissue Inhibitors of Metalloproteinases TIMP-1 and TIMP-2. Journal of Biological Chemistry, 2012, 287, 15935-15946.	1.6	88
293	New approaches for dissecting protease functions to improve probe development and drug discovery. Nature Structural and Molecular Biology, 2012, 19, 9-16.	3.6	143
294	Combining Dyad Protonation and Active Site Plasticity in BACE-1 Structure-Based Drug Design. Journal of Chemical Information and Modeling, 2012, 52, 1079-1085.	2.5	22
298	Human α ₂ â€Macroglobulin—Another Variation on the Venus Flytrap. Angewandte Chemie - International Edition, 2012, 51, 5045-5047.	7.2	21
299	Activityâ€Based Probes for the Study of Proteases: Recent Advances and Developments. ChemMedChem, 2012, 7, 1146-1159.	1.6	100
300	A general method for detecting protease activity via gelation and its application to artificial clotting. Chemical Communications, 2012, 48, 5482.	2.2	72
301	Subepithelial trypsin induces enteric nerve-mediated anion secretion by activating proteinase-activated receptor 1 in the mouse cecum. Journal of Physiological Sciences, 2012, 62, 211-219.	0.9	9
302	Internally quenched fluorescent peptide libraries with randomized sequences designed to detect endopeptidases. Analytical Biochemistry, 2012, 421, 299-307.	1.1	27
303	Functional classification of secreted proteins by position specific scoring matrix and auto covariance. Chemometrics and Intelligent Laboratory Systems, 2012, 110, 163-167.	1.8	20
304	Peptide-induced fluorescence quenching of conjugated polyelectrolyte for label-free, ultrasensitive and selective assay of protease activity. Biosensors and Bioelectronics, 2012, 34, 221-226.	5.3	28
305	Ligandâ€Based Virtual Screening and Molecular Docking Studies to Identify the Critical Chemical Features of Potent Cathepsin D Inhibitors. Chemical Biology and Drug Design, 2012, 80, 64-79.	1.5	16
306	Thermostable alkaline protease from newly isolated Vibrio sp.: extraction, purification and characterisation. Biologia (Poland), 2012, 67, 629-635.	0.8	5

#	Article	IF	CITATIONS
307	Synthesis of a Biologically Active Triazoleâ€Containing Analogue of Cystatinâ€A Through Successive Peptidomimetic Alkyne–Azide Ligations. Angewandte Chemie - International Edition, 2012, 51, 718-722.	7.2	75
308	Multiplex Imaging of an Intracellular Proteolytic Cascade by using a Broadâ€5pectrum Nanoquencher. Angewandte Chemie - International Edition, 2012, 51, 1625-1630.	7.2	60
309	Model Membrane Platforms for Biomedicine: Case Study on Antiviral Drug Development. Biointerphases, 2012, 7, 18.	0.6	39
310	Microbial and fungal protease inhibitors—current and potential applications. Applied Microbiology and Biotechnology, 2012, 93, 1351-1375.	1.7	126
311	Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues – synthesis and biochemical characterization. Organic and Biomolecular Chemistry, 2013, 11, 5162.	1.5	46
313	Alpha-amino silanes via metalated imines as an approach to the synthesis of silanediol protease inhibitors. Tetrahedron, 2013, 69, 7779-7784.	1.0	3
314	Identification of Protease Inhibitors by a Fast Fluorimetric Assay. Molecular Biotechnology, 2013, 54, 283-291.	1.3	1
316	Inhibitors of Hydrolases with an Acyl–Enzyme Intermediate. , 2013, , 493-532.		2
317	Inhibitors of Hydrolyzing Metalloenzymes. , 2013, , 565-598.		1
318	Ultra-rapid colorimetric assay for protease detection using magnetic nanoparticle-based biosensors. Analyst, The, 2013, 138, 3735.	1.7	51
319	A fluorescence turn-on method for real-time monitoring of protease activity based on the electron transfer between a fluorophore labeled oligonucleotide and cytochrome c. Analytica Chimica Acta, 2013, 784, 72-76.	2.6	25
320	Discovery of potent dipeptidyl peptidase IV inhibitors through pharmacophore hybridization and hit-to-lead optimization. Bioorganic and Medicinal Chemistry, 2013, 21, 1749-1755.	1.4	13
321	Chemerin and Vaspin: Possible Targets to Treat Obesity?. ChemMedChem, 2013, 8, 549-559.	1.6	11
323	Cathepsin L silencing enhances arsenic trioxide mediated in vitro cytotoxicity and apoptosis in glioblastoma U87MG spheroids. Experimental Cell Research, 2013, 319, 2637-2648.	1.2	21
324	Optical tomographic imaging of near infrared imaging agents quantifies disease severity and immunomodulation of experimental autoimmune encephalomyelitis in vivo. Journal of Neuroinflammation, 2013, 10, 138.	3.1	24
325	Mechanistic insights into mode of action of novel natural cathepsin L inhibitors. BMC Genomics, 2013, 14, S10.	1.2	18
326	Trypsins from fish processing waste: characteristics and biotechnological applications – comprehensive review. Journal of Cleaner Production, 2013, 57, 257-265.	4.6	68
327	Integration of cancer genomics with treatment selection. Cancer, 2013, 119, 3914-3928.	2.0	15

#	Article	IF	CITATIONS
328	Resolving Resolvins. Chemistry and Biology, 2013, 20, 138-140.	6.2	6
329	Binding of Chondroitin 4-Sulfate to Cathepsin S Regulates Its Enzymatic Activity. Biochemistry, 2013, 52, 6487-6498.	1.2	63
330	A novel protease activity assay method based on an engineered autoinhibited protein using an enzyme-linked immunoassay. Analyst, The, 2013, 138, 7164.	1.7	11
331	An ultrasensitive chemiluminescence turn-on assay for protease and inhibitor screening with a natural substrate. Chemical Communications, 2013, 49, 3137.	2.2	33
332	The advantage of biosensor analysis over enzyme inhibition studies for slow dissociating inhibitors – characterization of hydroxamate-based matrix metalloproteinase-12 inhibitors. MedChemComm, 2013, 4, 432.	3.5	7
333	Discovery, Synthesis, And Structure-Based Optimization of a Series of <i>N</i> -(<i>tert</i> -Butyl)-2-(<i>N</i> -arylamido)-2-(pyridin-3-yl) Acetamides (ML188) as Potent Noncovalent Small Molecule Inhibitors of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3CL Protease, Journal of Medicinal Chemistry, 2013, 56, 534-546.	2.9	178
334	Picking up the Pieces: A Generic Porous Si Biosensor for Probing the Proteolytic Products of Enzymes. Analytical Chemistry, 2013, 85, 1951-1956.	3.2	37
335	Development of New Cathepsin B Inhibitors: Combining Bioisosteric Replacements and Structure-Based Design To Explore the Structure–Activity Relationships of Nitroxoline Derivatives. Journal of Medicinal Chemistry, 2013, 56, 521-533.	2.9	56
336	Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 1-11.	1.8	386
337	A Tunable, Modular Approach to Fluorescent Protease-Activated Reporters. Biophysical Journal, 2013, 104, 1605-1614.	0.2	18
338	Ready, Set, Cleave: Proteases in Action. Chemistry and Biology, 2013, 20, 137-138.	6.2	4
339	Protease biosensing on novel high surface area organosilicate nanoporous films. Sensors and Actuators B: Chemical, 2013, 176, 351-359.	4.0	8
340	Electrochemical Protease Biosensor Based on Enhanced AC Voltammetry Using Carbon Nanofiber Nanoelectrode Arrays. Journal of Physical Chemistry C, 2013, 117, 4268-4277.	1.5	43
341	Das Nadelöhr – von der Forschung zur Entwicklung. , 2013, , 53-115.		1
342	Regulation of Angiogenesis by Tumour Suppressor Pathways. , 2013, , 79-99.		0
344	Proteasix: A tool for automated and large-scale prediction of proteases involved in naturally occurring peptide generation. Proteomics, 2013, 13, 1077-1082.	1.3	104
345	Identification of Selective and Potent Inhibitors of Fibroblast Activation Protein and Prolyl Oligopeptidase. Journal of Medicinal Chemistry, 2013, 56, 3467-3477.	2.9	84
346	Inhibition of Rhodesain as a Novel Therapeutic Modality for Human African Trypanosomiasis. Journal of Medicinal Chemistry, 2013, 56, 5637-5658.	2.9	77

#	Article	IF	CITATIONS
347	Unraveling Hidden Regulatory Sites in Structurally Homologous Metalloproteases. Journal of Molecular Biology, 2013, 425, 2330-2346.	2.0	52
348	A real-time fluorescence turn-on assay for trypsin based on a conjugated polyelectrolyte. Journal of Materials Chemistry B, 2013, 1, 1402.	2.9	19
349	Protease Inhibitors from Marine Venomous Animals and Their Counterparts in Terrestrial Venomous Animals. Marine Drugs, 2013, 11, 2069-2112.	2.2	87
350	Diversity of Allosteric Regulation in Proteases. ACS Chemical Biology, 2013, 8, 19-26.	1.6	45
351	Measurement of Blood Protease Kinetic Parameters with Self-Assembled Monolayer Ligand Binding Assays and Label-Free MALDI-TOF MS. Analytical Chemistry, 2013, 85, 10597-10604.	3.2	11
352	Proteomic identification of protease cleavage sites: cell-biological and biomedical applications. Expert Review of Proteomics, 2013, 10, 421-433.	1.3	32
353	Proteolytic Post-translational Modification of Proteins: Proteomic Tools and Methodology. Molecular and Cellular Proteomics, 2013, 12, 3532-3542.	2.5	127
354	Viral envelope glycoprotein processing by proprotein convertases. Antiviral Research, 2013, 99, 49-60.	1.9	22
355	Understanding HIV-1 protease autoprocessing for novel therapeutic development. Future Medicinal Chemistry, 2013, 5, 1215-1229.	1.1	21
356	Fluorescent Macromolecular Sensors of Enzymatic Activity for In Vivo Imaging. Progress in Molecular Biology and Translational Science, 2013, 113, 349-387.	0.9	6
357	Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos. PLoS Computational Biology, 2013, 9, e1003353.	1.5	23
358	Cleavage Entropy as Quantitative Measure of Protease Specificity. PLoS Computational Biology, 2013, 9, e1003007.	1.5	49
359	Role of Ubiquitin Ligases and the Proteasome in Oncogenesis: Novel Targets for Anticancer Therapies. Journal of Clinical Oncology, 2013, 31, 1231-1238.	0.8	152
360	Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes and Development, 2013, 27, 2086-2098.	2.7	74
361	A Label-Free LC/MS/MS-Based Enzymatic Activity Assay for the Detection of Genuine Caspase Inhibitors and SAR Development. Journal of Biomolecular Screening, 2013, 18, 868-878.	2.6	2
362	Biosensor based on DNA directed immobilization of enzymes onto optically sensitive porous Si. Materials Research Society Symposia Proceedings, 2013, 1569, 195-200.	0.1	1
363	HtrA3 Is Downregulated in Cancer Cell Lines and Significantly Reduced in Primary Serous and Granulosa Cell Ovarian Tumors. Journal of Cancer, 2013, 4, 152-164.	1.2	31
364	Gâ€Quadruplexâ€Linked Supersandwich DNA Structure for Electrochemical Amplified Detection of Thrombin. Electroanalysis, 2013, 25, 1960-1966	1.5	4

#	Article	IF	CITATIONS
366	Inhibitor of Cysteine Proteases Is Critical for Motility and Infectivity of <i>Plasmodium</i> Sporozoites. MBio, 2013, 4, e00874-13.	1.8	18
367	Development of a periplasmic FRET screening method for protease inhibitory antibodies. Biotechnology and Bioengineering, 2013, 110, 2856-2864.	1.7	9
368	Proteolytic Enzymes as Biomarkers of Focal Segmental Glomerulosclerosis. Drug Development Research, 2013, 74, 81-91.	1.4	0
369	Ahp Cyclodepsipeptides: The Impact of the Ahp Residue on the "Canonical Inhibition―of S1 Serine Proteases. ChemBioChem, 2013, 14, 1301-1308.	1.3	5
370	Proteolytic Enzymes:Biochemical Properties,Production and BiotechnologicalApplication. , 2013, , .		0
371	The Channel-Activating Protease CAP1/Prss8 Is Required for Placental Labyrinth Maturation. PLoS ONE, 2013, 8, e55796.	1.1	25
372	cDNA Cloning and Molecular Modeling of Procerain B, a Novel Cysteine Endopeptidase Isolated from Calotropis procera. PLoS ONE, 2013, 8, e59806.	1.1	15
373	Multiple Classes of Immune-Related Proteases Associated with the Cell Death Response in Pepper Plants. PLoS ONE, 2013, 8, e63533.	1.1	11
375	Bowman-Birk Inhibitors from Legumes: Utilisation in Disease Prevention and Therapy. , 0, , .		9
376	Understanding the Interaction Determinants of CAPN1 Inhibition by CAST4 from Bovines Using Molecular Modeling Techniques. Molecules, 2014, 19, 14316-14351.	1.7	3
377	Cow Dung Substrate for the Potential Production of Alkaline Proteases by <i>Pseudomonas putida</i> Strain AT in Solid-State Fermentation. Chinese Journal of Biology, 2014, 2014, 1-7.	2.0	8
378	Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World Journal of Gastroenterology, 2014, 20, 10305.	1.4	78
379	Identification of Plakortide E from the Caribbean Sponge Plakortis halichondroides as a Trypanocidal Protease Inhibitor using Bioactivity-Guided Fractionation. Marine Drugs, 2014, 12, 2614-2622.	2.2	16
380	Cathepsin B Inhibitors for Targeted Cancer Therapy. Journal of Cancer Science & Therapy, 2014, 06, .	1.7	3
381	The interplay between the proteolytic, invasive, and adhesive domains of invadopodia and their roles in cancer invasion. Cell Adhesion and Migration, 2014, 8, 215-225.	1.1	59
382	The role of proteases in regulating Eph/ephrin signaling. Cell Adhesion and Migration, 2014, 8, 294-307.	1.1	41
383	High Content Image-Based Screening of a Protease Inhibitor Library Reveals Compounds Broadly Active against Rift Valley Fever Virus and Other Highly Pathogenic RNA Viruses. PLoS Neglected Tropical Diseases, 2014, 8, e3095.	1.3	27
384	Homology Modeling Study of Bovine μ-Calpain Inhibitor-Binding Domains. International Journal of Molecular Sciences, 2014, 15, 7897-7938.	1.8	4

#	Article	IF	CITATIONS
385	Sunflower trypsin inhibitor (SFTI-1) analogues of synthetic and biological origin via N→S acyl transfer: potential inhibitors of human Kallikrein-5 (KLK5). Tetrahedron, 2014, 70, 7675-7680.	1.0	21
386	Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web. PLoS Biology, 2014, 12, e1001869.	2.6	137
387	Expression Profile of the Schistosoma japonicum Degradome Reveals Differential Protease Expression Patterns and Potential Anti-schistosomal Intervention Targets. PLoS Computational Biology, 2014, 10, e1003856.	1.5	26
388	Application of EMBM to Structureâ€Based Design of Warheads for Protease Inhibitors. Molecular Informatics, 2014, 33, 36-42.	1.4	1
389	Grassypeptolides as Natural Inhibitors of Dipeptidyl Peptidase 8 and T ell Activation. ChemBioChem, 2014, 15, 799-804.	1.3	19
390	Enzymatic Deposition of Silver Particles for Detecting Protease Activity. Particle and Particle Systems Characterization, 2014, 31, 1300-1306.	1.2	5
391	Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsinâ€B Inhibitor. Angewandte Chemie, 2014, 126, 10241-10245.	1.6	3
392	Luminescent Graphene Oxide with a Peptideâ€Quencher Complex for Optical Detection of Cellâ€Secreted Proteases by a Turnâ€On Response. Advanced Functional Materials, 2014, 24, 5119-5128.	7.8	38
393	Regulation of TGF-β1-driven Differentiation of Human Lung Fibroblasts. Journal of Biological Chemistry, 2014, 289, 16239-16251.	1.6	60
394	Synthetic Substrates Specific to Activated Plasmin Can Monitor the Enzymatic Functional Status <i>in Situ</i> in Breast Cancer Cells. Chemical Biology and Drug Design, 2014, 83, 52-57.	1.5	0
395	Cascleave 2.0, a new approach for predicting caspase and granzyme cleavage targets. Bioinformatics, 2014, 30, 71-80.	1.8	63
396	Inhibition of Cathepsin Activity in a Cellâ€Based Assay by a Lightâ€Activated Ruthenium Compound. ChemMedChem, 2014, 9, 1306-1315.	1.6	56
397	Sequenceâ€derived structural features driving proteolytic processing. Proteomics, 2014, 14, 42-50.	1.3	20
398	New Selective Peptidyl Di(chlorophenyl) Phosphonate Esters for Visualizing and Blocking Neutrophil Proteinase 3 in Human Diseases. Journal of Biological Chemistry, 2014, 289, 31777-31791.	1.6	38
399	Phosphinic Peptides as Potent Inhibitors of Zinc-Metalloproteases. Topics in Current Chemistry, 2014, 360, 1-38.	4.0	32
400	Is production of protease inhibitors from cyanobacteria nutrient dependent? Comparison of protease inhibitory activities in three species of Oscillatoria isolated from Central India. International Aquatic Research, 2014, 6, 211-220.	1.5	2
401	Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2518-2523.	3.3	148
402	The activity and localization patterns of cathepsins B and X in cells of the mouse gastrointestinal tract differ along its length. Biological Chemistry, 2014, 395, 1201-1219.	1.2	9

#	Article	IF	CITATIONS
403	Serine Proteases of Malaria Parasite <i>Plasmodium falciparum</i> : Potential as Antimalarial Drug Targets. Interdisciplinary Perspectives on Infectious Diseases, 2014, 2014, 1-7.	0.6	18
404	Cysteine Cathepsins as Regulators of the Cytotoxicity of NK and T Cells. Frontiers in Immunology, 2014, 5, 616.	2.2	73
405	Hemostatic, milk clotting and blood stain removal potential of cysteine proteases from Calotropis gigantea (L.) R. Br. Latex. Pharmacognosy Magazine, 2014, 10, 350.	0.3	12
406	Production of an alkaline protease using Bacillus pumilus D3 without inactivation by SDS, its characterization and purification. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 388-396.	2.5	10
407	P-I class metalloproteinase from Bothrops moojeni venom is a post-proline cleaving peptidase with kininogenase activity: Insights into substrate selectivity and kinetic behavior. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 545-552.	1.1	17
408	Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nature Materials, 2014, 13, 653-661.	13.3	419
409	Peptide-Functionalized Quantum Dot Biosensors. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 115-126.	1.9	11
410	Cysteine cathepsins and extracellular matrix degradation. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2560-2570.	1.1	255
411	Luminal trypsin induces enteric nerve-mediated anion secretion in the mouse cecum. Journal of Physiological Sciences, 2014, 64, 119-128.	0.9	7
412	In vitro bioactivity, nutritional and sensory properties of semolina pasta added with hard-to-cook bean (Phaseolus vulgaris L.) protein hydrolysate. Journal of Functional Foods, 2014, 8, 1-8.	1.6	16
413	Fluorinated benzophenone derivatives: Balanced multipotent agents for Alzheimer's disease. European Journal of Medicinal Chemistry, 2014, 78, 157-166.	2.6	21
414	The Kallikrein Inhibitor from Bauhinia bauhinioides (BbKI) shows antithrombotic properties in venous and arterial thrombosis models. Thrombosis Research, 2014, 133, 945-951.	0.8	20
415	Functional Role of Asparaginyl Endopeptidase Ubiquitination by TRAF6 in Tumor Invasion and Metastasis. Journal of the National Cancer Institute, 2014, 106, dju012.	3.0	82
416	Architecture and function of metallopeptidase catalytic domains. Protein Science, 2014, 23, 123-144.	3.1	159
417	New Insight into Neurodegeneration: the Role of Proteomics. Molecular Neurobiology, 2014, 49, 1181-1199.	1.9	18
418	Discovery of potent inhibitor for matrix metalloproteinase-9 by pharmacophore based modeling and dynamics simulation studies. Journal of Molecular Graphics and Modelling, 2014, 49, 25-37.	1.3	45
419	A general colorimetric method for detecting protease activity based on peptide-induced gold nanoparticle aggregation. RSC Advances, 2014, 4, 6560-6563.	1.7	23
420	A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nature Communications, 2014, 5, 5352.	5.8	82

#	Article	IF	CITATIONS
421	Pericellular proteolysis in cancer. Genes and Development, 2014, 28, 2331-2347.	2.7	154
422	Metastasis review: from bench to bedside. Tumor Biology, 2014, 35, 8483-8523.	0.8	126
423	Selective Targeting of Tumor and Stromal Cells By a Nanocarrier System Displaying Lipidated Cathepsinâ€B Inhibitor. Angewandte Chemie - International Edition, 2014, 53, 10077-10081.	7.2	60
424	Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. Proteomics - Clinical Applications, 2014, 8, 416-426.	0.8	51
425	Structureâ€Based Rational Design of Prodrugs To Enable Their Combination with Polymeric Nanoparticle Delivery Platforms for Enhanced Antitumor Efficacy. Angewandte Chemie - International Edition, 2014, 53, 11532-11537.	7.2	83
426	Rational Design of Matrix Metalloproteinase-13 Activatable Probes for Enhanced Specificity. ACS Chemical Biology, 2014, 9, 510-516.	1.6	23
427	Alkoxyamines: a new family of pro-drugs against cancer. Concept for theranostics. Organic and Biomolecular Chemistry, 2014, 12, 719-723.	1.5	39
428	Pathwayâ€selective antagonism of proteinase activated receptor 2. British Journal of Pharmacology, 2014, 171, 4112-4124.	2.7	54
429	Nocardiopsis species as potential sources of diverse and novel extracellular enzymes. Applied Microbiology and Biotechnology, 2014, 98, 9173-9185.	1.7	29
430	The current stage of cathepsin B inhibitors as potential anticancer agents. Future Medicinal Chemistry, 2014, 6, 1355-1371.	1.1	91
432	Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium. BMC Genomics, 2014, 15, 428.	1.2	6
433	Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role forÂcathepsin S. Nature Cell Biology, 2014, 16, 876-888.	4.6	300
434	Simple Assay for Proteases Based on Aggregation of Stimulus-Responsive Polypeptides. Analytical Chemistry, 2014, 86, 6103-6110.	3.2	8
435	From Catalytic Mechanism to Rational Design of Reversible Covalent Inhibitors of Serine and Cysteine Hydrolases. Israel Journal of Chemistry, 2014, 54, 1137-1151.	1.0	11
436	Trypsin Inhibitor from Edible Mushroom Pleurotus floridanus Active against Proteases of Microbial Origin. Applied Biochemistry and Biotechnology, 2014, 173, 167-178.	1.4	13
437	Sample collection in clinical proteomics—Proteolytic activity profile of serum and plasma. Proteomics - Clinical Applications, 2014, 8, 299-307.	0.8	22
438	Sensitive Assay of Protease Activity on a Micro/Nanofluidics Preconcentrator Fused with the Fluorescence Resonance Energy Transfer Detection Technique. Analytical Chemistry, 2014, 86, 3216-3221.	3.2	32
439	Harnessing the Evolvability of Tricyclic Microviridins To Dissect Protease–Inhibitor Interactions. Angewandte Chemie - International Edition, 2014, 53, 3735-3738.	7.2	46

#	Article	IF	CITATIONS
440	Multiplexed Electrochemical Detection of Trypsin and Chymotrypsin Based on Distinguishable Signal Nanoprobes. Analytical Chemistry, 2014, 86, 9256-9263.	3.2	56
441	Quantitative electrochemical detection of cathepsin B activity in complex tissue lysates using enhanced AC voltammetry at carbon nanofiber nanoelectrode arrays. Biosensors and Bioelectronics, 2014, 56, 129-136.	5.3	26
442	Quantitative determination of active Bowman-Birk isoinhibitors, IBB1 and IBBD2, in commercial soymilks. Food Chemistry, 2014, 155, 24-30.	4.2	12
443	A new method for filtering of reactive "warheads―of transition-state analog protease inhibitors. European Journal of Medicinal Chemistry, 2014, 77, 134-138.	2.6	4
444	Activity-Based Profiling of Proteases. Annual Review of Biochemistry, 2014, 83, 249-273.	5.0	303
445	Cloning, characterization, expression analysis and inhibition studies of a novel gene encoding Bowman–Birk type protease inhibitor from rice bean. Gene, 2014, 546, 342-351.	1.0	17
446	The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective. Coordination Chemistry Reviews, 2014, 260, 139-155.	9.5	26
447	Papain-Like Protease (PLpro) Inhibitory Effects of Cinnamic Amides from <i>Tribulus terrestris</i> Fruits. Biological and Pharmaceutical Bulletin, 2014, 37, 1021-1028.	0.6	73
449	Protease Probes that Enable Excimer Signaling upon Scission. Angewandte Chemie - International Edition, 2014, 53, 11955-11959.	7.2	18
450	Synthesis and characterization of poly(ester amides)s with a variable ratio of branched odd diamide units. Journal of Applied Polymer Science, 2014, 131, .	1.3	7
452	Silicon Mimics of Unstable Carbon. Topics in Medicinal Chemistry, 2014, , 61-85.	0.4	11
453	Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biological Chemistry, 2015, 396, 867-882.	1.2	151
454	The path of no return—Truncated protein Nâ€ŧermini and current ignorance of their genesis. Proteomics, 2015, 15, 2547-2552.	1.3	39
457	Evaluation of Enzymatic Activities in Living Systems with Small-molecular Fluorescent Substrate Probes. Analytical Sciences, 2015, 31, 257-265.	0.8	41
460	Conjugated fluorescent polymer sensor for proteolytic activity detection with designed specificity. Polymer International, 2015, 64, 1451-1457.	1.6	2
461	Engineering trypsin for inhibitor resistance. Protein Science, 2015, 24, 1463-1474.	3.1	8
462	Multi-Leu PACE4 Inhibitor Retention within Cells Is PACE4 Dependent and a Prerequisite for Antiproliferative Activity. BioMed Research International, 2015, 2015, 1-9.	0.9	5
463	Centipede Venoms and Their Components: Resources for Potential Therapeutic Applications. Toxins, 2015, 7, 4832-4851.	1.5	46

		CITATION RE	PORT	
#	Article		IF	Citations
464	Properties of Protein Drug Target Classes. PLoS ONE, 2015, 10, e0117955.		1.1	97
465	Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy. PLoS ONE, 2015, 10, e0129103.		1.1	7
466	Recent advances and concepts in substrate specificity determination of proteases using libraries of fluorogenic substrates with unnatural amino acids. Biological Chemistry, 20. 329-337.	ş tailored 15, 396,	1.2	22
467	Protein Termini and Their Modifications Revealed by Positional Proteomics. ACS Chemic 2015, 10, 1754-1764.	al Biology,	1.6	90
468	The functional and pathologic relevance of autophagy proteases. Journal of Clinical Inve 2015, 125, 33-41.	stigation,	3.9	87
469	Influenza virus activating host proteases: Identification, localization and inhibitors as po therapeutics. European Journal of Cell Biology, 2015, 94, 375-383.	otential	1.6	73
470	A novel form of ficin from Ficus carica latex: Purification and characterization. Phytoche 117, 154-167.	mistry, 2015,	1.4	27
472	Insights into the molecular mechanisms of action of bioportides: a strategy to target pr interactions. Expert Reviews in Molecular Medicine, 2015, 17, e1.	otein-protein	1.6	19
473	Marine Cyanobacteria Compounds with Anticancer Properties: Implication of Apoptosis 621-647.	.,2015,,		4
474	Cysteine cathepsins and cystatins: from ancillary tasks to prominent status in lung dise Biological Chemistry, 2015, 396, 111-130.	ases.	1.2	40
475	Chemical Tools for the Study of Intramembrane Proteases. ACS Chemical Biology, 2015	, 10, 2423-2434.	1.6	8
476	Smart nanosystems: Bio-inspired technologies that interact with the host environment. of the National Academy of Sciences of the United States of America, 2015, 112, 1446	Proceedings D-14466.	3.3	77
477	Design of Specific Serine Protease Inhibitors Based on a Versatile Peptide Scaffold: Con Urokinase Inhibitor to a Plasma Kallikrein Inhibitor. Journal of Medicinal Chemistry, 2015 8868-8876.	version of a 5, 58,	2.9	16
478	Reduction of mouse atherosclerosis by urokinase inhibition or with a limited-spectrum metalloproteinase inhibitor. Cardiovascular Research, 2015, 105, 372-382.	natrix	1.8	11
479	Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome o Drosophila's Taspase1. FASEB Journal, 2015, 29, 1973-1985.	of	0.2	9
480	Fiber-optic protease sensor based on the degradation of thin gelatin films. Sensing and Research, 2015, 3, 65-73.	Bio-Sensing	2.2	14
481	The analytical performance of a porous silicon Bloch surface wave biosensors as protea Sensors and Actuators B: Chemical, 2015, 211, 469-475.	se biosensor.	4.0	19
482	Unleashing the therapeutic potential of human kallikrein-related serine proteases. Natu Drug Discovery, 2015, 14, 183-202.	re Reviews	21.5	192

ARTICLE IF CITATIONS Disease-triggered hydrogel therapy. Materials Today, 2015, 18, 56-57. 8.3 11 483 Activation Kinetics of Zipper Molecular Beacons. Journal of Physical Chemistry B, 2015, 119, 44-53. 484 1.2 Use of High-Throughput Mass Spectrometry to Reduce False Positives in Protease uHTS Screens. 485 29 2.6 Journal of Biomolecular Screening, 2015, 20, 212-222. Specificity and Inhibitory Mechanism of Andrographolide and Its Analogues as Antiasthma Agents on 486 NF-Î^eB p5Ó. Journal of Nátural Products, 2015, 78, 208-217. From Wastes to High Value Added Products: Novel Aspects of SSF in the Production of Enzymes. 487 6.6 95 Critical Reviews in Environmental Science and Technology, 2015, 45, 1999-2042. Probing the Mechanism of Allylic Substitution of Moritaâ€"Baylisâ€"Hillman Acetates (MBHAs) by using the Silyl Phosphonite Paradigm: Scope and Applications of a Versatile Transformation. Chemistry - A European Journal, 2015, 21, 3278-3289. 488 1.7 Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. 489 1.3 44 Proteomics, 2015, 15, 2479-2490. Cruzain inhibitors: efforts made, current leads and a structural outlook of new hits. Drug Discovery 490 3.2 54 Today, 2015, 20, 890-898. 491 In Vivo Targeting through Click Chemistry. ChemMedChem, 2015, 10, 617-620. 1.6 28 Photodynamic Quenched Cathepsin Activity Based Probes for Cancer Detection and Macrophage 4.6 Targeted Therapy. Theranostics, 2015, 5, 847-862. Extracellular peptidases from Deinococcus radiodurans. Extremophiles, 2015, 19, 989-999. 493 0.9 15 Synthesis of Cyclic Peptides and Peptidomimetics by Metathesis Reactions. Topics in Heterocyclic 494 Chemistry, 2015, , 191-244. Electrogenerated Chemiluminescence Bioanalytic System Based on Biocleavage of Probes and 495 3.2 24 Homogeneous Detection. Analytical Chemistry, 2015, 87, 6510-6515. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal 1.2 reveals features related to pathogenicity and adaptation. BMC Genomics, 2015, 16, 122. Corneal angiogenesis modulation by cysteine cathepsins: InÂvitro and inÂvivo studies. Experimental Eye 497 1.2 10 Research, 2015, 134, 39-46. Crystallization and preliminary X-ray analysis of four cysteine proteases from <i>Ficus carica </i>latex. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 459-465. AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Nature 499 5.8 110 Communications, 2015, 6, 6320. The Role of Proteases in Pain. Handbook of Experimental Pharmacology, 2015, 227, 239-260.

#	Article	IF	CITATIONS
501	SAR and QSAR in Drug Discovery and Chemical Design—Some Examples. , 2015, , 427-453.		3
502	Peptide Code-on-a-Microplate for Protease Activity Analysis via MALDI-TOF Mass Spectrometric Quantitation. Analytical Chemistry, 2015, 87, 4409-4414.	3.2	32
503	A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression. Oncogene, 2015, 34, 6066-6078.	2.6	54
504	Tailoring recombinant protein quality by rational media design. Biotechnology Progress, 2015, 31, 615-629.	1.3	64
505	Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharmaceutica Sinica B, 2015, 5, 506-519.	5.7	184
506	Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. Journal of Proteomics, 2015, 128, 424-435.	1.2	72
507	Structure of BbKI, a disulfide-free plasma kallikrein inhibitor. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1055-1062.	0.4	9
508	Design of Protease Activated Optical Contrast Agents That Exploit a Latent Lysosomotropic Effect for Use in Fluorescence-Guided Surgery. ACS Chemical Biology, 2015, 10, 1977-1988.	1.6	102
509	Lysosomal cysteine peptidases – Molecules signaling tumor cell death and survival. Seminars in Cancer Biology, 2015, 35, 168-179.	4.3	51
510	The Potential of Proteomics in Understanding Neurodegeneration. International Review of Neurobiology, 2015, 121, 25-58.	0.9	12
511	Actinoramide A Identified as a Potent Antimalarial from Titration-Based Screening of Marine Natural Product Extracts. Journal of Natural Products, 2015, 78, 2411-2422.	1.5	30
512	Cathepsin L targeting in cancer treatment. , 2015, 155, 105-116.		132
513	Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression. Seminars in Cancer Biology, 2015, 35, 71-84.	4.3	77
514	Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host–guest mediated retention. Journal of Materials Chemistry B, 2015, 3, 8010-8019.	2.9	111
515	Magnetic chelating nanoprobes for enrichment and selective recovery of metalloproteases from human saliva. Journal of Materials Chemistry B, 2015, 3, 238-249.	2.9	42
516	Inhibition Mechanism of Membrane Metalloprotease by an Exosite-Swiveling Conformational Antibody. Structure, 2015, 23, 104-115.	1.6	56
517	A simple and universal "turn-on―detection platform for proteases based on surface enhanced Raman scattering (SERS). Biosensors and Bioelectronics, 2015, 65, 375-381.	5.3	46
518	Nonâ€proteolytic functions of microbial proteases increase pathological complexity. Proteomics, 2015, 15, 1075-1088.	1.3	16

#	Article	IF	CITATIONS
519	Finding offâ€ŧargets, biological pathways, and target diseases for chymase inhibitors via structureâ€based systems biology approach. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1209-1224.	1.5	8
520	Proteolysis mediated by cysteine cathepsins and legumain—recent advances and cell biological challenges. Protoplasma, 2015, 252, 755-774.	1.0	36
521	The high-temperature requirement factor A3 (HtrA3) is associated with acquisition of the invasive phenotype in oral squamous cell carcinoma cells. Oral Oncology, 2015, 51, 84-89.	0.8	12
522	A Cysteine Protease Isolated from the Latex of Ficus microcarpa: Purification and Biochemical Characterization. Applied Biochemistry and Biotechnology, 2015, 175, 1732-1744.	1.4	13
523	Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research, 2015, 202, 120-134.	1.1	752
524	Intracellular signaling by cathepsin X: Molecular mechanisms and diagnostic and therapeutic opportunities in cancer. Seminars in Cancer Biology, 2015, 31, 76-83.	4.3	43
525	Investigation of trypsin–CdSe quantum dot interactions via spectroscopic methods and effects on enzymatic activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 134, 173-183.	2.0	17
526	Detergent-compatible, organic solvent-tolerant alkaline protease from <i>Bacillus circulans</i> MTCC 7942: Purification and characterization. Preparative Biochemistry and Biotechnology, 2016, 46, 56-64.	1.0	29
527	Structure-Based Ligand Design I. , 2016, , 15-60.		1
528	The Plant-Derived <i>Bauhinia bauhinioides</i> Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice. Mediators of Inflammation, 2016, 2016, 1-12.	1.4	18
529	Structural Characterization of the Loop at the Alpha-Subunit C-Terminus of the Mixed Lineage Leukemia Protein Activating Protease Taspase1. PLoS ONE, 2016, 11, e0151431.	1.1	8
530	Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection. International Journal of Nanomedicine, 2016, Volume 11, 4287-4298.	3.3	20
531	Persisting changes of intestinal microbiota after bowel lavage and colonoscopy. European Journal of Gastroenterology and Hepatology, 2016, 28, 532-537.	0.8	83
532	Prostate Cancer-Associated Kallikrein-Related Peptidase 4 Activates Matrix Metalloproteinase-1 and Thrombospondin-1. Journal of Proteome Research, 2016, 15, 2466-2478.	1.8	30
533	A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior. Journal of Biological Chemistry, 2016, 291, 15156-15168.	1.6	32
534	Direct production of functional matrix metalloproteinase—14 without refolding or activation and its application for in vitro inhibition assays. Biotechnology and Bioengineering, 2016, 113, 717-723.	1.7	19
535	Flap Dynamics in Aspartic Proteases: A Computational Perspective. Chemical Biology and Drug Design, 2016, 88, 159-177.	1.5	28
536	Single Cell Proteolytic Assays to Investigate Cancer Clonal Heterogeneity and Cell Dynamics Using an Efficient Cell Loading Scheme. Scientific Reports, 2016, 6, 27154.	1.6	11

	CITATION	Report	
#	Article	IF	CITATIONS
537	Molecular imaging with engineered physiology. Nature Communications, 2016, 7, 13607.	5.8	33
538	Ultrasensitive Protease Sensors Using Selective Affinity Binding, Selective Proteolytic Reaction, and Proximity-Dependent Electrochemical Reaction. Analytical Chemistry, 2016, 88, 11995-12000.	3.2	29
539	Peptide codes for multiple protease activity assay via highâ€resolution mass spectrometric quantitation. Rapid Communications in Mass Spectrometry, 2016, 30, 196-201.	0.7	6
540	Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14970-14975.	3.3	72
541	Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150372.	1.6	8
542	A bead-based cleavage method for large-scale identification of protease substrates. Scientific Reports, 2016, 6, 22645.	1.6	9
543	Two-Photon Small Molecule Enzymatic Probes. Accounts of Chemical Research, 2016, 49, 626-634.	7.6	129
544	Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie, 2016, 122, 110-118.	1.3	42
545	Detection of Cancer-Specific Proteases Using Magnetic Relaxation of Peptide-Conjugated Nanoparticles in Biological Environment. Nano Letters, 2016, 16, 3668-3674.	4.5	60
546	Comparative proteomic and bioinformatic analysis of Theileria luwenshuni and Theileria uilenbergi. Experimental Parasitology, 2016, 166, 51-59.	0.5	4
547	Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Research Reviews, 2016, 32, 22-37.	5.0	280
548	Enzyme-responsive polymer hydrogels for therapeutic delivery. Experimental Biology and Medicine, 2016, 241, 972-979.	1.1	125
549	Extracellular Matrix Proteolysis by MT1-MMP Contributes to Influenza-Related Tissue Damage and Mortality. Cell Host and Microbe, 2016, 20, 458-470.	5.1	82
550	Regulierbare Sonden mit direktem Fluoreszenzsignal für das konstitutive und das Immunoproteasom. Angewandte Chemie, 2016, 128, 13524-13528.	1.6	4
551	Label–free, turn–on fluorescent sensor for trypsin activity assay and inhibitor screening. Talanta, 2016, 161, 535-540.	2.9	21
552	Featured Article: Nanoenhanced matrix metalloproteinase-responsive delivery vehicles for disease resolution and imaging. Experimental Biology and Medicine, 2016, 241, 2023-2032.	1.1	3
553	The Human Ether-a-go-go-related Gene (hERG) Potassium Channel Represents an Unusual Target for Protease-mediated Damage. Journal of Biological Chemistry, 2016, 291, 20387-20401.	1.6	64
554	Mechanisms of peptide hydrolysis by aspartyl and metalloproteases. Physical Chemistry Chemical Physics, 2016, 18, 24790-24801.	1.3	14

#	Article	IF	CITATIONS
555	Clioquinol–ruthenium complex impairs tumour cell invasion by inhibiting cathepsin B activity. Dalton Transactions, 2016, 45, 16913-16921.	1.6	33
556	Tunable Probes with Direct Fluorescence Signals for the Constitutive and Immunoproteasome. Angewandte Chemie - International Edition, 2016, 55, 13330-13334.	7.2	11
557	A colorimetric protease activity assay method using engineered procaspase-3 enzymes. Analytical Methods, 2016, 8, 6270-6276.	1.3	4
558	Novel fluorescent substrates for detection of trypsin activity and inhibitor screening by self-quenching. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5736-5740.	1.0	16
559	The SBT6.1 subtilase processes the GOLVEN1 peptide controlling cell elongation. Journal of Experimental Botany, 2016, 67, 4877-4887.	2.4	51
560	The effect of desolvation on the binding of inhibitors to HIV-1 protease and cyclin-dependent kinases: Causes of resistance. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3705-3713.	1.0	9
561	A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Molecular Cancer, 2016, 15, 29.	7.9	28
562	Acute and subchronic toxicological evaluation of the purified protease inhibitor from the fruits of <i>Solanum aculeatissimum</i> Jacq. on Wistar rats. Cogent Biology, 2016, 2, 1191588.	1.7	3
563	Proresolving Actions of Synthetic and Natural Protease Inhibitors Are Mediated by Annexin A1. Journal of Immunology, 2016, 196, 1922-1932.	0.4	47
564	Extracellular matrix structure. Advanced Drug Delivery Reviews, 2016, 97, 4-27.	6.6	1,581
564 565	Extracellular matrix structure. Advanced Drug Delivery Reviews, 2016, 97, 4-27. The structural properties of egg white gels impact the extent of inÂvitro protein digestion and the nature of peptides generated. Food Hydrocolloids, 2016, 54, 315-327.	6.6 5.6	1,581 91
564 565 566	Extracellular matrix structure. Advanced Drug Delivery Reviews, 2016, 97, 4-27. The structural properties of egg white gels impact the extent of inÂvitro protein digestion and the nature of peptides generated. Food Hydrocolloids, 2016, 54, 315-327. Taspase1: a 'misunderstood' protease with translational cancer relevance. Oncogene, 2016, 35, 3351-3364.	6.6 5.6 2.6	1,581 91 20
564 565 566 567	Extracellular matrix structure. Advanced Drug Delivery Reviews, 2016, 97, 4-27. The structural properties of egg white gels impact the extent of inÂvitro protein digestion and the nature of peptides generated. Food Hydrocolloids, 2016, 54, 315-327. Taspase1: a 'misunderstood' protease with translational cancer relevance. Oncogene, 2016, 35, 3351-3364. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut, 2016, 65, 757-766.	6.6 5.6 2.6 6.1	1,581 91 20 64
564 565 566 567	Extracellular matrix structure. Advanced Drug Delivery Reviews, 2016, 97, 4-27. The structural properties of egg white gels impact the extent of inÂvitro protein digestion and the nature of peptides generated. Food Hydrocolloids, 2016, 54, 315-327. Taspase1: a 'misunderstood' protease with translational cancer relevance. Oncogene, 2016, 35, 3351-3364. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Out, 2016, 65, 757-766. Highly sensitive fluorescence detection of trypsin based on gold nanoparticle probes. Analytical Methods, 2016, 8, 393-400.	6.6 5.6 2.6 6.1 1.3	1,581 91 20 64 11
 564 565 566 567 568 569 	Extracellular matrix structure. Advanced Drug Delivery Reviews, 2016, 97, 4-27. The structural properties of egg white gels impact the extent of inÂvitro protein digestion and the nature of peptides generated. Food Hydrocolloids, 2016, 54, 315-327. Taspase1: a 'misunderstood' protease with translational cancer relevance. Oncogene, 2016, 35, 3351-3364. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut, 2016, 65, 757-766. Highly sensitive fluorescence detection of trypsin based on gold nanoparticle probes. Analytical Methods, 2016, 8, 393-400. Controlling the spectroscopic properties of quantum dots via energy transfer and charge transfer interactions: Concepts and applications. Nano Today, 2016, 11, 98-121.	 6.6 5.6 2.6 6.1 1.3 6.2 	1,581 91 20 64 11
 564 565 566 568 569 570 	 Extracellular matrix structure. Advanced Drug Delivery Reviews, 2016, 97, 4-27. The structural properties of egg white gels impact the extent of inÂvitro protein digestion and the nature of peptides generated. Food Hydrocolloids, 2016, 54, 315-327. Taspase1: a 'misunderstood' protease with translational cancer relevance. Oncogene, 2016, 35, 3351-3364. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut, 2016, 65, 757-766. Highly sensitive fluorescence detection of trypsin based on gold nanoparticle probes. Analytical Methods, 2016, 8, 393-400. Controlling the spectroscopic properties of quantum dots via energy transfer and charge transfer interactions: Concepts and applications. Nano Today, 2016, 11, 98-121. Cleaving for growth: threonine aspartase 1â€"a protease relevant for development and disease. FASEB Journal, 2016, 30, 1012-1022. 	 6.6 5.6 2.6 6.1 1.3 6.2 0.2 	1,581 91 20 64 11 43
 564 565 566 567 568 569 570 571 	 Extracellular matrix structure. Advanced Drug Delivery Reviews, 2016, 97, 4-27. The structural properties of egg white gels impact the extent of inÂvitro protein digestion and the nature of peptides generated. Food Hydrocolloids, 2016, 54, 315-327. Taspase1: a 'misunderstood' protease with translational cancer relevance. Oncogene, 2016, 35, 3351-3364. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Out, 2016, 65, 757-766. Highly sensitive fluorescence detection of trypsin based on gold nanoparticle probes. Analytical Methods, 2016, 8, 393-400. Controlling the spectroscopic properties of quantum dots via energy transfer and charge transfer interactions: Concepts and applications. Nano Today, 2016, 11, 98-121. Cleaving for growth: threonine aspartase 1â€"a protease relevant for development and disease. FASEB Journal, 2016, 30, 1012-1022. Inoculation effect of thermophilic microorganisms on protease production through solid-state fermentation under non-sterile conditions at lab and bench scale (SSF). Bioprocess and Biosystems Engineering, 2016, 39, 585-592. 	 6.6 5.6 2.6 6.1 1.3 6.2 0.2 1.7 	1,581 91 20 64 11 43 11

		CITATION REPORT	
#	Article	IF	CITATIONS
573	Photoactivated inhibition of cathepsin K in a 3D tumor model. Biological Chemistry, 2016, 397, 57	'1-582. 1.2	24
574	Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases. Journal of Physical Chemistry B, 2016, 120, 299-308.	1.2	5
575	A sensitive and label-free trypsin colorimetric sensor with cytochrome c as a substrate. Biosensors and Bioelectronics, 2016, 79, 347-352.	5.3	47
576	Polyethylene glycol (PEG) gel arrays for differentiating oligopeptide fragments and on-chip proteas assays. Biosensors and Bioelectronics, 2016, 77, 1126-1133.	se 5.3	8
577	Current trends and challenges in proteomic identification of protease substrates. Biochimie, 2016 77-87.	, 122, 1.3	38
578	Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin. Talanta, 2016, 147, 63-68.	2.9	40
579	The kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie, 2016, 122, 283-299.	1.3	68
580	Detection of protease activity in cells and animals. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 130-142.	1.1	37
581	An integrated proteomic and peptidomic assessment of the normal human urinome. Clinical Chem and Laboratory Medicine, 2017, 55, 237-247.	iistry 1.4	28
582	Emerging challenges in the design of selective substrates, inhibitors and activityâ€based probes fo indistinguishable proteases. FEBS Journal, 2017, 284, 1518-1539.)r 2.2	50
583	Synthesis, structure-activity relationships studies of benzoxazinone derivatives as $\hat{l}\pm$ -chymotrypsininhibitors. Bioorganic Chemistry, 2017, 70, 210-221.	۱ 2.0	18
584	Genetic Organization of Anabaenopeptin and Spumigin Biosynthetic Gene Clusters in the Cyanobacterium <i>Sphaerospermopsis torques-reginae</i> ITEP-024. ACS Chemical Biology, 201 769-778.	7, 12, 1.6	25
585	Identification of highly selective MMPâ€14 inhibitory Fabs by deep sequencing. Biotechnology and Bioengineering, 2017, 114, 1140-1150.	1.7	26
586	Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence. Trends in Parasitology, 2017, 33, 400-413.	1.5	31
587	Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profi in diverse protease families. Scientific Reports, 2017, 7, 43135.	les 1.6	51
588	Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SIVPE3. Genome Biology, 2017, 18, 47.	3.8	51
589	The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic effic associated with heterosis, some balancing selection, and the evolution of ploidy levels. Progress in Biophysics and Molecular Biology, 2017, 126, 1-21.	iency 1.4	8
590	Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity. Methods in Molecular Biology, 2017, 1530, 63-97.	0.4	4

ARTICLE IF CITATIONS # Structure-Based Targeting of Orthologous Pathogen Proteins Accelerates Antiparasitic Drug 591 1.8 13 Discovery. ACS Infectious Diseases, 2017, 3, 281-292. Catabolism of antibody drug conjugates and characterization methods. Bioorganic and Medicinal 1.4 19 Chemistry, 2017, 25, 2933-2945. Monitoring proteolytic processing events by quantitative mass spectrometry. Expert Review of 593 1.3 10 Proteomics, 2017, 14, 409-418. Human airway trypsin-like protease, a serine protease involved in respiratory diseases. American 594 Journal of Phýsiology - Lung Cellular and Molecular Physiology, 2017, 312, L657-L668. Novel ratiometric xanthene-based probes for protease detection. Dyes and Pigments, 2017, 143, 232-238. 595 2.0 4 Do Fragments and Crystallization Additives Bind Similarly to Drug-like Ligands?. Journal of Chemical 2.5 Information and Modeling, 2017, 57, 1197-1209. Journey of cystatins from being mere thiol protease inhibitors to at heart of many pathological 597 3.6 37 conditions. International Journal of Biological Macromolecules, 2017, 102, 674-693. The metalloproteinase ADAM10: A useful therapeutic target?. Biochimica Et Biophysica Acta - Molecular 598 1.9 Cell Research, 2017, 1864, 2071-2081. Degradomics in Neurotrauma: Profiling Traumatic Brain Injury. Methods in Molecular Biology, 2017, 599 0.4 15 1598, 65-99. One label-based fluorescence detection of a protease that cleaves the peptide bond between two 1.3 specific amino acids. Analytical Methods, 2017, 9, 3049-3054. Insecticide resistance and intracellular proteases. Pest Management Science, 2017, 73, 2403-2412. 601 1.7 17 Next generation matrix metalloproteinase inhibitors â€" Novel strategies bring new prospects. 138 Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1927-1939. Exploration of peptides that fit into the thermally vibrating active site of cathepsin K protease by 603 1.2 2 alternating artificial intelligence and molecular simulation. Chemical Physics Letters, 2017, 682, 26-29. Silver triangular nanoplates as an high efficiently FRET donor-acceptor of upconversion 604 nanoparticles for ultrasensitive "Turn on-offấ€•protamine and trypsin sensor. Talanta, 2017, 174, 148-155. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix 605 37 5.8 information. Nature Communications, 2017, 8, 15509. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS 606 2.2 Journal, 2017, 284, 2604-2628. Proteolytic activity in the meibomian gland: Implications to health and disease. Experimental Eye 607 1.2 3 Research, 2017, 163, 53-57. FPPS: Fast Profiling of Protease Specificity. Methods in Molecular Biology, 2017, 1574, 183-195. 0.4

#	ARTICLE	IF	CITATIONS
609	Prediction of Proteases Involved in Peptide Generation. Methods in Molecular Biology, 2017, 1574, 205-213.	0.4	2
610	Protein Translocation Assays to Probe Protease Function and Screen for Inhibitors. Methods in Molecular Biology, 2017, 1574, 227-241.	0.4	0
611	Lysosomes in programmed cell death pathways: from initiators to amplifiers. Biological Chemistry, 2017, 398, 289-301.	1.2	46
612	Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomedicine and Pharmacotherapy, 2017, 86, 221-231.	2.5	107
613	Generation of inhibitory monoclonal antibodies targeting matrix metalloproteinase-14 by motif grafting and CDR optimization. Protein Engineering, Design and Selection, 2017, 30, 113-118.	1.0	14
614	Surfactant- and oxidant-stable alkaline proteases from Bacillus invictae : Characterization and potential applications in chitin extraction and as a detergent additive. International Journal of Biological Macromolecules, 2017, 96, 272-281.	3.6	46
615	Grassystatins D–F, Potent Aspartic Protease Inhibitors from Marine Cyanobacteria as Potential Antimetastatic Agents Targeting Invasive Breast Cancer. Journal of Natural Products, 2017, 80, 2969-2986.	1.5	31
616	Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome. Molecular and Cellular Proteomics, 2017, 16, 2055-2068.	2.5	56
617	Therapeutic Approaches for Zika Virus Infection of the Nervous System. Neurotherapeutics, 2017, 14, 1027-1048.	2.1	25
618	Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime. Methods and Applications in Fluorescence, 2017, 5, 034002.	1.1	15
619	Gold nanodome SERS platform for label-free detection of protease activity. Faraday Discussions, 2017, 205, 345-361.	1.6	20
620	Plant Latex Proteases: Natural Wound Healers. , 2017, , 297-323.		10
621	Identification and characterization of the novel reversible and selective cathepsin X inhibitors. Scientific Reports, 2017, 7, 11459.	1.6	15
622	Changes in dynamics of α-chymotrypsin due to covalent inhibitors investigated by elastic incoherent neutron scattering. Physical Chemistry Chemical Physics, 2017, 19, 25369-25379.	1.3	5
623	Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity. Nature Protocols, 2017, 12, 2189-2214.	5.5	80
625	Efficient near infrared fluorescence detection of elastase enzyme using peptide-bound unsymmetrical squaraine dye. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4024-4029.	1.0	10
626	Sustained Release of a Peptide-Based Matrix Metalloproteinase-2 Inhibitor to Attenuate Adverse Cardiac Remodeling and Improve Cardiac Function Following Myocardial Infarction. Biomacromolecules, 2017, 18, 2820-2829.	2.6	79
627	Protease cleavage site fingerprinting by labelâ€free inâ€gel degradomics reveals <scp>pH</scp> â€dependent specificity switch of legumain. EMBO Journal, 2017, 36, 2455-2465.	3.5	58

#	Article	IF	CITATIONS
628	Maximizing the stability of metabolic engineeringâ€derived whole ell biocatalysts. Biotechnology Journal, 2017, 12, 1600170.	1.8	34
629	Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites. Scientific Reports, 2017, 7, 5755.	1.6	17
630	Overview of transcriptomic analysis of all human proteases, non-proteolytic homologs and inhibitors: Organ, tissue and ovarian cancer cell line expression profiling of the human protease degradome by the CLIP-CHIPâ,,¢ DNA microarray. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2210-2219.	1.9	34
631	Discovery and Biological Evaluation of Potent and Selective <i>N</i> -Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases. Biochemistry, 2017, 56, 6713-6725.	1.2	10
632	The Future of Cysteine Cathepsins in Disease Management. Trends in Pharmacological Sciences, 2017, 38, 873-898.	4.0	146
633	Escherichia coli Proteome Microarrays Identified the Substrates of ClpYQ Protease. Molecular and Cellular Proteomics, 2017, 16, 113-120.	2.5	16
634	Aminoâ€methyl coumarin as a potential SERS@Ag probe for the evaluation of protease activity and inhibition. Journal of Raman Spectroscopy, 2017, 48, 82-88.	1.2	12
635	Critical Functions of the Lysosome in Cancer Biology. Annual Review of Pharmacology and Toxicology, 2017, 57, 481-507.	4.2	146
636	Intramembrane proteases as drug targets. FEBS Journal, 2017, 284, 1489-1502.	2.2	32
637	Engineering a temperature sensitive tobacco etch virus protease. Protein Engineering, Design and Selection, 2017, 30, 705-712.	1.0	1
638	Boarfish (Capros aper): review of a new capture fishery and its valorization potential. ICES Journal of Marine Science, 2017, 74, 2059-2068.	1.2	14
639	Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells. Oncotarget, 2017, 8, 73793-73809.	0.8	22
640	Proteolytic Enzymes. , 2017, , 149-173.		10
641	Predicted Release and Analysis of Novel ACE-I, Renin, and DPP-IV Inhibitory Peptides from Common Oat (Avena sativa) Protein Hydrolysates Using in Silico Analysis. Foods, 2017, 6, 108.	1.9	59
642	Identification of Tight-Binding Plasmepsin II and Falcipain 2 Inhibitors in Aqueous Extracts of Marine Invertebrates by the Combination of Enzymatic and Interaction-Based Assays. Marine Drugs, 2017, 15, 123.	2.2	7
643	Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice. BioMed Research International, 2017, 2017, 1-13.	0.9	13
644	Proteinases and Matrix Degradation. , 2017, , 106-125.		9
645	Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods, 2017, 6, 33.	1.9	592

		LPORT	
#	Article	IF	CITATIONS
646	Matrix Metalloproteinase Gene Activation Resulting from Disordred Epigenetic Mechanisms in Rheumatoid Arthritis. International Journal of Molecular Sciences, 2017, 18, 905.	1.8	82
647	Circulating Peptidome and Tumor-Resident Proteolysis. The Enzymes, 2017, 42, 1-25.	0.7	7
648	3.29 Nanomaterials for Biological Sensing. , 2017, , 635-656.		2
649	Block-based characterization of protease specificity from substrate sequence profile. BMC Bioinformatics, 2017, 18, 438.	1.2	7
650	Determinants of Macromolecular Specificity from Proteomics-De rived Peptide Substrate Data. Current Protein and Peptide Science, 2017, 18, 905-913.	0.7	1
651	Targeting Protein Synthesis, Folding, and Degradation Pathways in Cancer. , 2017, , 202-280.		4
652	Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors. International Journal of Biological Sciences, 2017, 13, 1222-1233.	2.6	10
653	A Plant Proteinase Inhibitor from Enterolobium contortisiliquum Attenuates Pulmonary Mechanics, Inflammation and Remodeling Induced by Elastase in Mice. International Journal of Molecular Sciences, 2017, 18, 403.	1.8	21
654	Protease prospecion and determination of its isoenzymes activity in cocoa cultivars (Theobroma) Tj ETQq0 0 0 r	gBT_/Qver	lock 10 Tf 50
655	Cathepsin B inhibitors: Further exploration of the nitroxoline core. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1239-1247.	1.0	23
656	Serine protease inhibitors to treat inflammation: a patent review (2011-2016). Expert Opinion on Therapeutic Patents, 2018, 28, 93-110.	2.4	40
657	N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2716-E2724.	3.3	56
658	The impaired proteases and anti-proteases balance in Idiopathic Pulmonary Fibrosis. Matrix Biology, 2018, 68-69, 382-403.	1.5	56
659	Binding Mode Characterization and Early <i>in Vivo</i> Evaluation of Fragment-Like Thiols as Inhibitors of the Virulence Factor LasB from <i>Pseudomonas aeruginosa</i> . ACS Infectious Diseases, 2018, 4, 988-997.	1.8	27
660	Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. International Journal of Biological Macromolecules, 2018, 113, 933-943.	3.6	58
661	Dual-signal detection of trypsin using controlled aggregation of conjugated polymer dots and magnetic nanoparticles. Sensors and Actuators B: Chemical, 2018, 264, 45-51.	4.0	19
662	Linear Discriminant Analysis for the <i>in Silico</i> Discovery of Mechanism-Based Reversible Covalent Inhibitors of a Serine Protease: Application of Hydration Thermodynamics Analysis and Semi-empirical Molecular Orbital Calculation. Chemical and Pharmaceutical Bulletin, 2018, 66, 399-409.	0.6	1

663	Ssy5 is a signaling serine protease that exhibits atypical biogenesis and marked S1 specificity. Journal of Biological Chemistry, 2018, 293, 8362-8378.	1.6	5
-----	--	-----	---

ARTICLE IF CITATIONS # Protease Specificity Profiling in a Pipet Tip Using "Charge-Synchronized―Proteome-Derived Peptide 1.8 16 664 Libraries. Journal of Proteome Research, 2018, 17, 1923-1933. Identification of Non-Zinc Binding Inhibitors of MMP-2 Through Virtual Screening and Subsequent Rescoring. Drug Research, 2018, 68, 529-535. Using <i>in Vitro</i> Evolution and Whole Genome Analysis To Discover Next Generation Targets for 666 1.8 60 Antimalarial Drug Discovery. ACS Infectious Diseases, 2018, 4, 301-314. Proteinases and their receptors in inflammatory arthritis: an overview. Nature Reviews Rheumatology, 2018, 14, 170-180. An integrated structure- and pharmacophore-based MMP-12 virtual screening. Molecular Diversity, 668 2.1 9 2018, 22, 383-395. Label-free optical monitoring of proteolytic reaction products using nanoporous silica colloidal assembly. Sensors and Actuators B: Chemical, 2018, 262, 796-800. 4.0 Positive Correlation between Matrix Metalloproteinases and Epithelial-to-Mesenchymal Transition 670 and its Association with Clinical Outcome in Bladder Cancer Patients. Cancer Microenvironment, 3.1 18 2018, 11, 23-39. Extracellular Enzyme Composition and Functional Characteristics of <i>Aspergillus niger</i> Induced by Food Processing Byproducts and Based on Integrated Functional Omics. Journal of Agricultural and Food Chemistry, 2018, 66, 1285-1295. 671 2.4 Evaluation of Tumor Vasculature Using a Syngeneic Tumor Model in Wild-Type and Genetically 672 0.4 0 Modified Mice. Methods in Molecular Biology, 2018, 1731, 179-192. Generation of Highly Selective MMP Antibody Inhibitors. Methods in Molecular Biology, 2018, 1731, 0.4 307-324. Ru(<scp>ii</scp>) polypyridyl complexes as photocages for bioactive compounds containing nitriles 674 2.2 68 and aromatic heterocycles. Chemical Communications, 2018, 54, 1280-1290. Highly Sensitive Detection of Caspase-3/7 Activity in Living Mice Using Enzyme-Responsive 1.8 44 ¹⁹F MRI Nanoprobes. Bioconjugate Chemistry, 2018, 29, 1720-1728. TAILS N-terminomics and proteomics reveal complex regulation of proteolytic cleavage by 676 1.6 25 O-glycosylation. Journal of Biological Chemistry, 2018, 293, 7629-7644. Enzymeâ€MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angewandte Chemie -International Edition, 2018, 57, 5725-5730. 7.2 A novel interaction fingerprint derived from per atom score contributions: exhaustive evaluation of interaction fingerprint performance in docking based virtual screening. Journal of Cheminformatics, 678 2.8 32 2018, 10, 15. Enzymeâ€MOF Nanoreactor Activates Nontoxic Paracetamol for Cancer Therapy. Angewandte Chemie, 679 2018, 130, 5827-5832. Pre-equilibrium competitive library screening for tuning inhibitor association rate and specificity 680 1.7 6 toward serine proteases. Biochemical Journal, 2018, 475, 1335-1352. Serine peptidase inhibitor Kunitz type 2 (SPINT2) in cancer development and progression. Biomedicine and Pharmacotherapy, 2018, 101, 278-286.

#	Article	IF	CITATIONS
682	Regulating the Master Regulator: Controlling Ubiquitination by Thinking Outside the Active Site. Journal of Medicinal Chemistry, 2018, 61, 405-421.	2.9	9
683	Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 2018, 103, 253-262.	2.9	141
684	PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy. Bioinformatics, 2018, 34, 684-687.	1.8	131
685	Deubiquitylating enzymes and drug discovery: emerging opportunities. Nature Reviews Drug Discovery, 2018, 17, 57-78.	21.5	555
686	Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds. Journal of Medicinal Chemistry, 2018, 61, 3779-3798.	2.9	339
687	Histone controlled aggregation of tetraphenylethene probe: A new method for the detection of protease activity. Sensors and Actuators B: Chemical, 2018, 257, 1143-1149.	4.0	11
688	Crystallographic and docking (Cathepsins B, K, L and S) studies on bioactive halotelluroxetanes. Zeitschrift Fur Kristallographie - Crystalline Materials, 2018, 233, 113-124.	0.4	4
689	Auxiliary activation of the complement system and its importance for the pathophysiology of clinical conditions. Seminars in Immunopathology, 2018, 40, 87-102.	2.8	30
690	Advances in bioresponsive closed-loop drug delivery systems. International Journal of Pharmaceutics, 2018, 544, 350-357.	2.6	59
691	Purification and characterization of a protease from the visceral mass of Mytella charruana and its evaluation to obtain antimicrobial peptides. Food Chemistry, 2018, 245, 1169-1175.	4.2	11
692	Development of a Protease Biosensor Based on a Dimerization-Dependent Red Fluorescent Protein. ACS Chemical Biology, 2018, 13, 66-72.	1.6	17
693	Mobile Loop in the Active Site of Metallocarboxypeptidases as an Underestimated Determinant of Substrate Specificity. Biochemistry (Moscow), 2018, 83, 1594-1602.	0.7	1
694	Step IIIb: The Drug-Like Chemical Diversity Pool: Diverse and Targeted Compound Collections. , 2018, , 115-177.		0
695	Extraction, purification, and activity of protease from the leaves of Moringa oleifera. F1000Research, 2018, 7, 1151.	0.8	29
696	Exceptionally Selective Substrate Targeting by the Metalloprotease Anthrax Lethal Factor. Advances in Experimental Medicine and Biology, 2018, 1111, 189-203.	0.8	4
697	Catch and Release Photosensitizers: Combining Dual-Action Ruthenium Complexes with Protease Inactivation for Targeting Invasive Cancers. Journal of the American Chemical Society, 2018, 140, 14367-14380.	6.6	92
698	Selectivity Conversion of Protease Inhibitory Antibodies. Antibody Therapeutics, 2018, 1, 75-83.	1.2	1
699	Therapeutic potential of targeting the Eph/ephrin signaling complex. International Journal of Biochemistry and Cell Biology, 2018, 105, 123-133.	1.2	35

#	Article	IF	CITATIONS
700	Vigna unguiculata Trypsin Inhibitor: A Protein with Versatile Biological Applications. Current Enzyme Inhibition, 2018, 14, 75-84.	0.3	0
701	The Antiviral Potential of Host Protease Inhibitors. , 2018, , 279-325.		22
702	Electrostatic recognition in substrate binding to serine proteases. Journal of Molecular Recognition, 2018, 31, e2727.	1.1	13
703	Therapeutic targeting of cathepsin C: from pathophysiology to treatment. , 2018, 190, 202-236.		85
704	Targeting Drug Conjugates to the Tumor Microenvironment: Probody Drug Conjugates. Cancer Drug Discovery and Development, 2018, , 281-298.	0.2	8
705	A novel three-fluorophore system as a ratiometric sensor for multiple protease detection. Chemical Communications, 2018, 54, 7589-7592.	2.2	21
708	Ultrasensitive detection of trypsin activity and inhibitor screening based on the electron transfer between phosphorescence copper nanocluster and cytochrome c. Talanta, 2018, 189, 92-99.	2.9	22
709	Dimeric chalcones derivatives from Myracrodruon urundeuva act as cathepsin V inhibitors. Phytochemistry, 2018, 154, 31-38.	1.4	10
710	Cysteine cathepsins: Their biological and molecular significance in cancer stem cells. Seminars in Cancer Biology, 2018, 53, 168-177.	4.3	31
711	Protease Specificity: Towards In Vivo Imaging Applications and Biomarker Discovery. Trends in Biochemical Sciences, 2018, 43, 829-844.	3.7	51
712	ATPase and Protease Domain Movements in the Bacterial AAA+ Protease FtsH Are Driven by Thermal Fluctuations. Journal of Molecular Biology, 2018, 430, 4592-4602.	2.0	14
713	Use of a novel camelid-inspired human antibody demonstrates the importance of MMP-14 to cancer stem cell function in the metastatic process. Oncotarget, 2018, 9, 29431-29444.	0.8	12
714	Reviewing Mechanistic Peptidomics in Body Fluids Focusing on Proteases. Proteomics, 2018, 18, e1800187.	1.3	18
715	Discovery of a new Pro-Pro endopeptidase, PPEP-2, provides mechanistic insights into the differences in substrate specificity within the PPEP family. Journal of Biological Chemistry, 2018, 293, 11154-11165.	1.6	10
716	Nanoparticle Based Delivery of Protease Inhibitors to Cancer Cells. Current Medicinal Chemistry, 2018, 24, 4816-4837.	1.2	3
717	Anticancer, Antiviral, Antibacterial, and Antifungal Properties in Microalgae. , 2018, , 235-261.		26
718	Crystal structure of plasma kallikrein reveals the unusual flexibility of the S1 pocket triggered by Glu217. FEBS Letters, 2018, 592, 2658-2667.	1.3	5
719	A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate. Nature Communications, 2018, 9, 1780.	5.8	31

#	Article	IF	CITATIONS
720	Epitopeâ€specific affinity maturation improved stability of potent protease inhibitory antibodies. Biotechnology and Bioengineering, 2018, 115, 2673-2682.	1.7	4
721	Ascorbic Acid-Loaded Apoferritin-Assisted Carbon Dot-MnO ₂ Nanocomposites for the Selective and Sensitive Detection of Trypsin. ACS Applied Bio Materials, 2018, 1, 777-782.	2.3	19
722	Tackling <i>Pseudomonas aeruginosa</i> Virulence by a Hydroxamic Acid-Based LasB Inhibitor. ACS Chemical Biology, 2018, 13, 2449-2455.	1.6	24
723	Protease-Activatable Scaffold Proteins as Versatile Molecular Hubs in Synthetic Signaling Networks. ACS Synthetic Biology, 2018, 7, 2216-2225.	1.9	14
724	Structural analysis of peptides that fill sites near the active center of the two different enzyme molecules by artificial intelligence and computer simulations. AIP Advances, 2018, 8, .	0.6	5
725	Expediting the Design, Discovery and Development of Anticancer Drugs using Computational Approaches. Current Medicinal Chemistry, 2018, 24, 4753-4778.	1.2	18
726	Affinity-Enhanced Luminescent Re(I)- and Ru(II)-Based Inhibitors of the Cysteine Protease Cathepsin L. Inorganic Chemistry, 2018, 57, 7881-7891.	1.9	5
727	Future Prospects of Actinobacteria in Health and Industry. , 2018, , 305-324.		6
728	A protein scaffold, engineered SPINK2, for generation of inhibitors with high affinity and specificity against target proteases. Scientific Reports, 2019, 9, 11436.	1.6	6
729	Prospects for the Use of Gene Expression Analysis in Rheumatology. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2019, 13, 13-25.	0.2	0
730	Recent progress in two-photon small molecule fluorescent probes for enzymes. Chinese Chemical Letters, 2019, 30, 1738-1744.	4.8	47
731	Degradomics in Biomarker Discovery. Proteomics - Clinical Applications, 2019, 13, e1800138.	0.8	9
732	Bioanalytical Aspects in Enzymatic Protein Hydrolysis of By-Products. , 2019, , 225-258.		10
733	Photoelectrochemical determination of trypsin by using an indium tin oxide electrode modified with a composite prepared from MoS2 nanosheets and TiO2 nanorods. Mikrochimica Acta, 2019, 186, 490.	2.5	17
734	Molecular stratification of idiopathic nephrotic syndrome. Nature Reviews Nephrology, 2019, 15, 750-765.	4.1	55
735	A Simple and Fast Method for the Simultaneous Determination of Liquiritigenin and Liquiritin at DNA/Carboxyl MWCNTs Modified GCE. Journal of the Electrochemical Society, 2019, 166, H730-H735.	1.3	3
736	Functional selection of protease inhibitory antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16314-16319.	3.3	29
737	Bioresponse Inspired Nanomaterials for Targeted Drug and Gene Delivery. Pharmaceutical Nanotechnology, 2019, 7, 220-233.	0.6	44

#	Article	IF	CITATIONS
738	Design of Gallinamide A Analogs as Potent Inhibitors of the Cysteine Proteases Human Cathepsin L and <i>Trypanosoma cruzi</i> Cruzain. Journal of Medicinal Chemistry, 2019, 62, 9026-9044.	2.9	43
739	Quantitatively Visualizing Tumor-Related Protease Activity <i>in Vivo</i> Using a Ratiometric Photoacoustic Probe. Journal of the American Chemical Society, 2019, 141, 3265-3273.	6.6	123
740	An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nature Chemical Biology, 2019, 15, 304-313.	3.9	50
741	Suppression of Tumor Growth and Metastases by Targeted Intervention in Urokinase Activity with Cyclic Peptides. Journal of Medicinal Chemistry, 2019, 62, 2172-2183.	2.9	12
742	Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Advanced Drug Delivery Reviews, 2019, 151-152, 130-151.	6.6	78
743	Plant proteases in the control of the hypersensitive response. Journal of Experimental Botany, 2019, 70, 2087-2095.	2.4	62
744	Protease Inhibitors and Their Applications: An Overview. Studies in Natural Products Chemistry, 2019, 62, 211-242.	0.8	7
746	Targeting of an antecedent proteinase by an activatable probe with deep tissue penetration facilitates early visualization and dynamic malignancy evaluation of orthotopic pancreatic ductal adenocarcinoma (PDAC). Biomaterials Science, 2019, 7, 3320-3333.	2.6	8
747	Stefin A-functionalized liposomes as a system for cathepsins S and L-targeted drug delivery. Biochimie, 2019, 166, 94-102.	1.3	16
748	Peptide-based protease inhibitors from plants. Drug Discovery Today, 2019, 24, 1877-1889.	3.2	76
749	Combined Signal Amplification Using a Propagating Cascade Reaction and a Redox Cycling Reaction for Sensitive Thyroid-Stimulating Hormone Detection. Analytical Chemistry, 2019, 91, 7894-7901.	3.2	23
750	Proteolytic Regulation of Parathyroid Hormone-Related Protein: Functional Implications for Skeletal Malignancy. International Journal of Molecular Sciences, 2019, 20, 2814.	1.8	9
751	Neutrophil Elastase Activity Imaging: Recent Approaches in the Design and Applications of Activity-Based Probes and Substrate-Based Probes. Contrast Media and Molecular Imaging, 2019, 2019, 1-12.	0.4	9
752	Directed evolution of the metalloproteinase inhibitor TIMP-1 reveals that its N- and C-terminal domains cooperate in matrix metalloproteinase recognition. Journal of Biological Chemistry, 2019, 294, 9476-9488.	1.6	25
753	Application of nanotechnology to target and exploit tumour associated proteases. Biochimie, 2019, 166, 112-131.	1.3	7
754	Antiviral Drug Discovery: Norovirus Proteases and Development of Inhibitors. Viruses, 2019, 11, 197.	1.5	55
755	The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. Advances in Parasitology, 2019, 104, 113-164.	1.4	46
756	Measurement of novel intestinal secretory and barrier pathways and effects of proteases. Neurogastroenterology and Motility. 2019. 31. e13547.	1.6	2

	СІТАТ	tion Report	
#	Article	IF	CITATIONS
757	Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells, 2019, 8, 264.	1.8	255
758	The multifaceted roles of tumor-associated proteases and harnessing their activity for prodrug activation. Biological Chemistry, 2019, 400, 965-977.	1.2	30
759	Plant latex thrombinâ€like cysteine proteases alleviates bleeding by bypassing factor VIII in murine model. Journal of Cellular Biochemistry, 2019, 120, 12843-12858.	1.2	11
760	Imaging of extracellular cathepsin S activity by a selective near infrared fluorescence substrate-based probe. Biochimie, 2019, 166, 84-93.	1.3	10
761	Effects of matrix metalloproteinase inhibitors on N-methyl-D-aspartate receptor and contribute to long-term potentiation in the anterior cingulate cortex of adult mice. Molecular Pain, 2019, 15, 174480691984295.	1.0	4
762	Crystallographic structure of a complex between trypsin and a nonapeptide derived from a Bowman-Birk inhibitor found in Vigna unguiculata seeds. Archives of Biochemistry and Biophysics, 2019, 665, 79-86.	1.4	4
763	Electrochemical Activity Assay for Protease Analysis Using Carbon Nanofiber Nanoelectrode Arrays. Analytical Chemistry, 2019, 91, 3971-3979.	3.2	25
764	Quantitative Multiplex Substrate Profiling of Peptidases by Mass Spectrometry. Molecular and Cellular Proteomics, 2019, 18, 968a-981.	2.5	28
765	Cathepsins: Potent regulators in carcinogenesis. , 2019, 198, 1-19.		36
766	Caught green-handed: methods for in vivo detection and visualization of protease activity. Journal of Experimental Botany, 2019, 70, 2125-2141.	2.4	7
767	The conserved metalloprotease invadolysin is present in invertebrate haemolymph and vertebrate blood. Biology Open, 2019, 8, .	0.6	2
768	Crystal structures of the complex of a kallikrein inhibitor from <i>Bauhinia bauhinioides</i> with trypsin and modeling of kallikrein complexes. Acta Crystallographica Section D: Structural Biology, 2019, 75, 56-69.	1.1	3
769	The nature of the ligand's side chain interacting with the S1'-subsite of metallocarboxypeptidase T (from Thermoactinomyces vulgaris) determines the geometry of the tetrahedral transition complex. PLoS ONE, 2019, 14, e0226636.	1.1	4
770	Single-cell proteolytic activity measurement using microfluidics for rare cell populations. Methods in Enzymology, 2019, 628, 129-143.	0.4	0
771	New Molecular Targets and Strategies for Antimalarial Discovery. Current Medicinal Chemistry, 2019, 26, 4380-4402.	1.2	16
772	Identification of PlasmodiumÂdipeptidyl aminopeptidase allosteric inhibitors by high throughput screening. PLoS ONE, 2019, 14, e0226270.	1.1	7
773	Spatial and temporal regulation of the endoproteolytic activity of the SPS-sensor–controlled Ssy5 signaling protease. Molecular Biology of the Cell, 2019, 30, 2709-2720.	0.9	5
774	New Molecular Insights into the Inhibition of Dipeptidyl Peptidase-4 by Natural Cyclic Peptide Oxytocin. Molecules, 2019, 24, 3887.	1.7	11

#	Article	IF	CITATIONS
775	BODIPY-Caged Photoactivated Inhibitors of Cathepsin B Flip the Light Switch on Cancer Cell Apoptosis. ACS Chemical Biology, 2019, 14, 2833-2840.	1.6	27
776	The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Frontiers in Microbiology, 2019, 10, 2351.	1.5	118
777	Epigenetic Suppression of SERPINB1 Promotes Inflammation-Mediated Prostate Cancer Progression. Molecular Cancer Research, 2019, 17, 845-859.	1.5	42
778	Leishmanicidal therapy targeted to parasite proteases. Life Sciences, 2019, 219, 163-181.	2.0	24
779	Black phosphorus nanosheets based sensitive protease detection and inhibitor screening. Talanta, 2019, 197, 270-276.	2.9	30
780	Reducing proteolytic liability of a MMPâ€14 inhibitory antibody by siteâ€saturation mutagenesis. Protein Science, 2019, 28, 643-653.	3.1	9
781	Targeting the <i>Plasmodium falciparum</i> plasmepsin V by ligandâ€based virtual screening. Chemical Biology and Drug Design, 2019, 93, 300-312.	1.5	10
782	Microviridins. , 2020, , 193-205.		2
783	Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1. Cellular and Molecular Life Sciences, 2020, 77, 3013-3026.	2.4	24
784	Prognostic significance of cathepsin V (CTSV/CTSL2) in breast ductal carcinoma in situ. Journal of Clinical Pathology, 2020, 73, 76-82.	1.0	31
785	Benzo[4,5]thieno[2,3―d]pyrimidine phthalimide derivative, one of the rare noncompetitive inhibitors of dipeptidyl peptidaseâ€4. Archiv Der Pharmazie, 2020, 353, 1900238.	2.1	3
786	UV/Vis and fluorescence study on the interaction of Ni(II) complex of Schiff base of glycine and chiral auxiliary (S)-2-[N-(Nâ€2-benzylprolyl)amino]benzophenone with bovine serum albumin. Monatshefte FÃ1⁄4r Chemie, 2020, 151, 135-139.	0.9	6
787	Antibody prodrugs for cancer. Expert Opinion on Biological Therapy, 2020, 20, 163-171.	1.4	33
788	Gene Expression in the Salivary Gland of Rhipicephalus (Boophilus) microplus Fed on Tick-Susceptible and Tick-Resistant Hosts. Frontiers in Cellular and Infection Microbiology, 2019, 9, 477.	1.8	12
789	On ATG4B as Drug Target for Treatment of Solid Tumours—The Knowns and the Unknowns. Cells, 2020, 9, 53.	1.8	26
790	Ahp-Cyclodepsipeptides as tunable inhibitors of human neutrophil elastase and kallikrein 7: Total synthesis of tutuilamide A, serine protease selectivity profile and comparison with lyngbyastatin 7. Bioorganic and Medicinal Chemistry, 2020, 28, 115756.	1.4	6
791	Prediction of potential inhibitors of the dimeric SARS-CoV2 main proteinase through the MM/GBSA approach. Journal of Molecular Graphics and Modelling, 2020, 101, 107762.	1.3	17
792	Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Science Advances, 2020, 6, .	4.7	344

#	Article	IF	CITATIONS
793	Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cellular Signalling, 2020, 76, 109770.	1.7	6
794	Benzothiophene-2-carboxamide derivatives as SENPs inhibitors with selectivity within SENPs family. European Journal of Medicinal Chemistry, 2020, 204, 112553.	2.6	12
795	Gold nanorods–trypsin biocorona: a novel nano composite for <i>in vitro</i> cytotoxic activity towards MCF-7 and A-549 cancer cells. New Journal of Chemistry, 2020, 44, 20574-20583.	1.4	2
796	Purification and Biochemical Characterization of a New Protease Inhibitor from Conyza dioscoridis with Antimicrobial, Antifungal and Cytotoxic Effects. Molecules, 2020, 25, 5452.	1.7	9
797	Targeting severe acute respiratory syndrome-coronavirus (SARS-CoV-1) with structurally diverse inhibitors: a comprehensive review. RSC Advances, 2020, 10, 28287-28299.	1.7	15
798	Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods, 2020, 9, 983.	1.9	53
799	Synthesis of Novel Nitroxoline Analogs with Potent Cathepsin B Exopeptidase Inhibitory Activity. ChemMedChem, 2020, 15, 2477-2490.	1.6	6
800	Generation of highly selective monoclonal antibodies inhibiting a recalcitrant protease using decoy designs. Biotechnology and Bioengineering, 2020, 117, 3664-3676.	1.7	4
801	Controlled Inhibition of Apoptosis by Photoactivatable Caspase Inhibitors. Cell Chemical Biology, 2020, 27, 1434-1440.e10.	2.5	15
802	In silico Design of Phl p 6 Variants With Altered Fold-Stability Significantly Impacts Antigen Processing, Immunogenicity and Immune Polarization. Frontiers in Immunology, 2020, 11, 1824.	2.2	8
803	Somatostatin, an <i>In Vivo</i> Binder to Aβ Oligomers, Binds to βPFO _{Aβ(1–42)} Tetramers. ACS Chemical Neuroscience, 2020, 11, 3358-3365.	1.7	7
804	Role of trypsin and protease-activated receptor-2 in ovarian cancer. PLoS ONE, 2020, 15, e0232253.	1.1	19
805	Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules, 2020, 25, 2197.	1.7	38
806	Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information. Genomics, Proteomics and Bioinformatics, 2020, 18, 52-64.	3.0	71
807	Simultaneous, multiplex quantification of protease activities using a gold microelectrode array. Biosensors and Bioelectronics, 2020, 165, 112330.	5.3	10
808	Epithelial-to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118782.	1.9	41
809	Advances in Deubiquitinating Enzyme Inhibition and Applications in Cancer Therapeutics. Cancers, 2020, 12, 1579.	1.7	73
810	Targeting eukaryotic proteases for natural products-based drug development. Natural Product Reports, 2020, 37, 827-860.	5.2	18

#	Article	IF	CITATIONS
811	Regulation of the Proteolytic Activity of Cysteine Cathepsins by Oxidants. International Journal of Molecular Sciences, 2020, 21, 1944.	1.8	17
812	MT1-MMP activatable fluorogenic probes with enhanced specificity <i>via</i> high-affinity peptide conjugation for tumor imaging. Biomaterials Science, 2020, 8, 2308-2317.	2.6	7
813	Rapid Identification of Potential Inhibitors of SARSâ€CoVâ€2 Main Protease by Deep Docking of 1.3â€Billion Compounds. Molecular Informatics, 2020, 39, e2000028.	1.4	398
814	Role of Glycosaminoglycans in Procathepsin B Maturation: Molecular Mechanism Elucidated by a Computational Study. Journal of Chemical Information and Modeling, 2020, 60, 2247-2256.	2.5	9
815	Cathepsin G—Not Only Inflammation: The Immune Protease Can Regulate Normal Physiological Processes. Frontiers in Immunology, 2020, 11, 411.	2.2	24
816	Synthesis of the Novel Covalent Cysteine Proteases Inhibitor with Iodoacetic Functional Group. Molecules, 2020, 25, 813.	1.7	4
817	Repurposing Therapeutics for Potential Treatment of SARS-CoV-2: A Review. Viruses, 2020, 12, 705.	1.5	43
818	Insight to the residue in P2 position prevents the peptide inhibitor from being hydrolyzed by serine proteases. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1153-1159.	0.6	1
819	Biological Evaluation and In Silico Study of Benzoic Acid Derivatives from Bjerkandera adusta Targeting Proteostasis Network Modules. Molecules, 2020, 25, 666.	1.7	12
820	Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Nature Chemical Biology, 2020, 16, 318-326.	3.9	59
821	Preâ€ŧargeted Imaging of Protease Activity through Inâ€Situ Assembly of Nanoparticles. Angewandte Chemie, 2020, 132, 7938-7944.	1.6	17
822	Genomic and Metabolomic Analyses of Natural Products in Nodularia spumigena Isolated from a Shrimp Culture Pond. Toxins, 2020, 12, 141.	1.5	8
823	Endoplasmic reticulum stress promotes inflammation-mediated proteolytic activity at the ocular surface. Scientific Reports, 2020, 10, 2216.	1.6	16
824	Preâ€ŧargeted Imaging of Protease Activity through Inâ€Situ Assembly of Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 7864-7870.	7.2	54
825	Serine proteases leading to prostate cancer: Structures, functions, and development of anticancer drugs. , 2020, , 215-242.		0
826	Tumor-suppressive proteases revisited: Role in inhibiting tumor progression and metastasis. , 2020, , 391-416.		0
827	Proteaseâ€activated prodrugs: strategies, challenges, and future directions. FEBS Journal, 2020, 287, 1936-1969.	2.2	71
828	Plant hypersensitive response vs pathogen ingression: Death of few gives life to others. Microbial Pathogenesis, 2020, 145, 104224.	1.3	36

#	Article	IF	CITATIONS
829	Assembling the prenylneoflavone system through a Pechmann condensation/Mitsunobu reaction/Claisen rearrangement/olefin cross-metathesis sequence. Monatshefte Für Chemie, 2020, 151, 605-610.	0.9	4
830	Monitoring protease activity in biological tissues using antibody prodrugs as sensing probes. Scientific Reports, 2020, 10, 5894.	1.6	19
831	Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opinion on Therapeutic Targets, 2020, 24, 573-588.	1.5	24
832	Natural Bioactive Compounds from Fungi as Potential Candidates for Protease Inhibitors and Immunomodulators to Apply for Coronaviruses. Molecules, 2020, 25, 1800.	1.7	56
833	Drug Development and Medicinal Chemistry Efforts toward SARSâ€Coronavirus and Covidâ€19 Therapeutics. ChemMedChem, 2020, 15, 907-932.	1.6	229
834	Design and syntheses of 7-nitro-2-aryl-4H-benzo[d][1,3]oxazin-4-ones as potent anticancer and antioxidant agents. Journal of Molecular Structure, 2020, 1214, 128252.	1.8	6
835	Protease propeptide structures, mechanisms of activation, and functions. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 111-165.	2.3	37
836	Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation. FASEB Journal, 2020, 34, 7270-7282.	0.2	18
837	Liquid Fungal Cocultivation as a Strategy to Access Bioactive Metabolites. Planta Medica, 2021, 87, 187-195.	0.7	1
838	Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Advanced Healthcare Materials, 2021, 10, e2001341.	3.9	168
839	Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorganic and Medicinal Chemistry, 2021, 29, 115860.	1.4	126
840	Reviewing the experimental and mathematical factors involved in tight binding inhibitors Ki values determination: The bi-functional protease inhibitor SmCl as a test model. Biochimie, 2021, 181, 86-95.	1.3	3
841	Structure of an affinity-matured inhibitory recombinant fab against urokinase plasminogen activator reveals basis of potency and specificity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140562.	1.1	1
842	Targeting Atg4B for cancer therapy: Chemical mediators. European Journal of Medicinal Chemistry, 2021, 209, 112917.	2.6	17
843	Three-phase partitioning (TPP) of proteases from parasites, plants, tissue and bacteria for enhanced activity. , 2021, , 133-154.		2
844	Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. RSC Medicinal Chemistry, 2021, 12, 1722-1730.	1.7	40
845	Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. International Journal of Molecular Sciences, 2021, 22, 997.	1.8	12
846	Bioorthogonal protein labelling enables the study of antigen processing of citrullinated and carbamylated auto-antigens. RSC Chemical Biology, 2021, 2, 855-862.	2.0	6

C	- A	DEDODT
\sim		

#	Article	IF	CITATIONS
847	Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. Drug Design, Development and Therapy, 2021, Volume 15, 9-20.	2.0	31
848	A general strategy to inhibit serine protease by targeting its autolysis loop. FASEB Journal, 2021, 35, e21259.	0.2	14
849	PF-429242, a Subtilisin Inhibitor, Is Effective in vitro Against Leishmania infantum. Frontiers in Microbiology, 2021, 12, 583834.	1.5	11
850	First structure–activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery. Molecular Diversity, 2021, 25, 1827-1838.	2.1	33
851	Quantitatively visualizing the activity of MMP-2 enzyme in vivo using a ratiometric photoacoustic probe. Methods in Enzymology, 2021, 657, 59-87.	0.4	2
853	Mechanistic insight into anti-COVID-19 drugs: recent trends and advancements. 3 Biotech, 2021, 11, 110.	1.1	2
854	A critical review on marine serine protease and its inhibitors: A new wave of drugs?. International Journal of Biological Macromolecules, 2021, 170, 674-687.	3.6	23
855	DOTAM-Based, Targeted, Activatable Fluorescent Probes for the Highly Sensitive and Selective Detection of Cancer Cells. Bioconjugate Chemistry, 2021, 32, 702-712.	1.8	5
856	Structure-based virtual screening, molecular dynamics and binding affinity calculations of some potential phytocompounds against SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2022, 40, 6921-6938.	2.0	9
857	Two-Photon Fluorescent Probes for Detecting Enzyme Activities in Live Tissues. ACS Applied Bio Materials, 2021, 4, 2957-2973.	2.3	17
858	Global Protease Activity Profiling Identifies HER2-Driven Proteolysis in Breast Cancer. ACS Chemical Biology, 2021, 16, 712-723.	1.6	6
859	Structure of the microbial carboxypeptidase T complexed with the transition state analog N-sulfamoyl-l-lysine. Biophysical Chemistry, 2021, 270, 106535.	1.5	1
860	Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen. Nature Communications, 2021, 12, 1693.	5.8	17
861	The interaction of the green tea polyphenol (catechin) with pepsin: Insights from spectroscopic to molecular dynamics studies. Journal of Molecular Liquids, 2021, 326, 115196.	2.3	30
862	Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Frontiers in Chemistry, 2021, 9, 622898.	1.8	213
863	Keratinolytic protease from Pseudomonas aeruginosa for leather skin processing. Journal of Genetic Engineering and Biotechnology, 2021, 19, 53.	1.5	11
864	Protease targeted COVID-19 drug discovery: What we have learned from the past SARS-CoV inhibitors?. European Journal of Medicinal Chemistry, 2021, 215, 113294.	2.6	26
866	Local Colonic Administration of a Serine Protease Inhibitor Improves Post-Inflammatory Visceral Hypersensitivity in Rats. Pharmaceutics, 2021, 13, 811.	2.0	10

#	Article	IF	CITATIONS
867	Macrophage morphological plasticity and migration is Rac signalling and MMP9 dependant. Scientific Reports, 2021, 11, 10123.	1.6	10
868	Mapping Salivary Proteases in Sjögren's Syndrome Patients Reveals Overexpression of Dipeptidyl Peptidase-4/CD26. Frontiers in Immunology, 2021, 12, 686480.	2.2	8
869	N-Terminal Finger Stabilizes the S1 Pocket for the Reversible Feline Drug GC376 in the SARS-CoV-2 Mpro Dimer. Journal of Molecular Biology, 2021, 433, 167003.	2.0	23
870	Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance. Plant Cell Reports, 2021, 40, 2081-2095.	2.8	24
871	Inhibition of Extracellular Cathepsin D Reduces Hepatic Lipid Accumulation and Leads to Mild Changes in Inflammationin NASH Mice. Frontiers in Immunology, 2021, 12, 675535.	2.2	13
872	Structureâ€Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angewandte Chemie, 2021, 133, 21978-21987.	1.6	2
873	Enzyme-Instructed Formation of β-Sheet-Rich Nanoplatelets for Label-Free Protease Sensing. ACS Applied Nano Materials, 2021, 4, 7800-7810.	2.4	3
874	Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and <i>in Vitro</i> Biological Stability. Journal of Medicinal Chemistry, 2022, 65, 2905-2925.	2.9	71
875	Proteases Regulate Cancer Stem Cell Properties and Remodel Their Microenvironment. Journal of Histochemistry and Cytochemistry, 2021, 69, 775-794.	1.3	6
876	Structural studies of complexes of kallikrein 4 with wild-type and mutated forms of the Kunitz-type inhibitor BbKI. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1084-1098.	1.1	1
877	Structureâ€Based Programming of Supramolecular Assemblies in Living Cells for Selective Cancer Cell Inhibition. Angewandte Chemie - International Edition, 2021, 60, 21807-21816.	7.2	33
878	N-Terminomics Strategies for Protease Substrates Profiling. Molecules, 2021, 26, 4699.	1.7	11
879	Two-Dimensional Mesoporous Copper Hydroxide Nanosheets Shelled on Hollow Nitrogen-Doped Carbon Nanoboxes as a High Performance Aptasensing Platform. ACS Sustainable Chemistry and Engineering, 2021, 9, 11080-11090.	3.2	18
880	Peptide Nucleic Acid (PNA)â€Guided Peptide Engineering of an Aptamer Sensor for Proteaseâ€Triggered Molecular Imaging. Angewandte Chemie - International Edition, 2021, 60, 22659-22663.	7.2	44
881	Peptide Nucleic Acid (PNA)â€Guided Peptide Engineering of an Aptamer Sensor for Proteaseâ€Triggered Molecular Imaging. Angewandte Chemie, 2021, 133, 22841.	1.6	7
882	Quantitative Detection of Cathepsin B Activity in Neutral pH Buffers Using Gold Microelectrode Arrays: Toward Direct Multiplex Analyses of Extracellular Proteases in Human Serum. ACS Sensors, 2021, 6, 3621-3631.	4.0	5
883	Novel Ex Vivo Zymography Approach for Assessment of Protease Activity in Tissues with Activatable Antibodies. Pharmaceutics, 2021, 13, 1390.	2.0	5
884	Synthesis, Mechanism Elucidation and Biological Insights of Tellurium(IV) ontaining Heterocycles. Chemistry - A European Journal, 2021, 27, 14427-14437.	1.7	3

#	ARTICLE	IF	Citations
885	Universal Access to Protease Chemiluminescent Probes through Solid-Phase Synthesis. Bioconjugate Chemistry, 2021, 32, 2134-2140.	1.8	6
886	Amplified and label-free electrochemical detection of a protease biomarker by integrating proteolysis-triggered transcription. Biosensors and Bioelectronics, 2021, 190, 113372.	5.3	6
887	Potential of microbial extremophiles for biotechnological applications: An overview. , 2022, , 89-109.		1
888	Rational design of thioamide peptides as selective inhibitors of cysteine protease cathepsin L. Chemical Science, 2021, 12, 10825-10835.	3.7	13
889	Stimulus-cleavable chemistry in the field of controlled drug delivery. Chemical Society Reviews, 2021, 50, 4872-4931.	18.7	93
890	Fungal Proteases: Current and Potential Industrial Applications. , 2021, , 348-357.		2
891	Insights into protease sequence similarities by comparing substrate sequences and phylogenetic dynamics. Mathematical Biosciences and Engineering, 2021, 18, 837-850.	1.0	0
892	A Molecular Probe with Both Chromogenic and Fluorescent Units for Detecting Serine Proteases. Molecules, 2021, 26, 482.	1.7	1
894	Protease Genomics and the Cancer Degradome. , 2008, , 3-15.		6
895	Quantitative Measurement of Proteolytic Rates with Quantum Dot-Peptide Substrate Conjugates and Förster Resonance Energy Transfer. Methods in Molecular Biology, 2014, 1199, 215-239.	0.4	16
896	Translocation Biosensors—Versatile Tools to Probe Protein Functions in Living Cells. Methods in Molecular Biology, 2018, 1683, 195-210.	0.4	1
897	Inhibition of ADAMTS1 Expression by Lentiviral CRISPR/Cas9 Gene Editing Technology. Methods in Molecular Biology, 2020, 2043, 13-24.	0.4	4
898	High Throughput Screening. Springer Protocols, 2008, , 1097-1118.	0.1	4
899	Evaluation of Peptides as Protease Inhibitors and Stimulators. Methods in Molecular Biology, 2014, 1088, 147-158.	0.4	3
900	Clinical Significance of Enzymes in Disease and Diagnosis. , 2019, , 213-231.		4
901	Preclinical Animal Model and Non-invasive Imaging in Apoptosis. , 2015, , 203-237.		1
902	Role of Cysteine Cathepsins in Extracellular Proteolysis. , 2011, , 23-51.		24
903	Nanomaterial-Enhanced Fluorescence Polarization and Its Application. Springer Briefs in Molecular Science, 2012, , 3-25.	0.1	2

#	ARTICLE	IF	CITATIONS
904	Introduction to the Global Scenario of Marine Sponge Research. , 2016, , 1-23.		1
905	Serine Proteases and Their Inhibitors in Human Health and Disease. , 2017, , 195-226.		2
906	Proteases of Parasitic Helminths: Their Metabolic Role in Establishment of Infection in the Host. , 2017, , 247-262.		2
907	Plasmodium Proteases as Therapeutic Targets Against Malaria. , 2017, , 69-90.		2
908	The Role of Urinary Proteases in Bladder Cancer. , 2017, , 89-118.		1
909	Proteinases and Matrix Degradation. , 2013, , 97-115.		9
910	The Journey to the Discovery of Boceprevir: An NS3–NS4 HCV Protease Inhibitor for the Treatment of Chronic Hepatitis C. Progress in Medicinal Chemistry, 2010, 49, 1-36.	4.1	27
911	Bright Bioluminescent BRET Sensor Proteins for Measuring Intracellular Caspase Activity. ACS Sensors, 2017, 2, 729-734.	4.0	52
915	Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts. Journal of Biomedical Optics, 2018, 23, 1.	1.4	11
916	Cathepsins and Other Proteases in Tumor Angiogenesis. , 2013, , 297-339.		1
917	Waveguide-based surface-enhanced Raman spectroscopy detection of protease activity using non-natural aromatic amino acids. Biomedical Optics Express, 2020, 11, 4800.	1.5	8
918	Cathepsin K Null Mice Show Reduced Adiposity during the Rapid Accumulation of Fat Stores. PLoS ONE, 2007, 2, e683.	1.1	48
919	A Sequence and Structure Based Method to Predict Putative Substrates, Functions and Regulatory Networks of Endo Proteases. PLoS ONE, 2009, 4, e5700.	1.1	8
920	Modifying the Substrate Specificity of Carcinoscorpius rotundicauda Serine Protease Inhibitor Domain 1 to Target Thrombin. PLoS ONE, 2010, 5, e15258.	1.1	6
921	PROSPER: An Integrated Feature-Based Tool for Predicting Protease Substrate Cleavage Sites. PLoS ONE, 2012, 7, e50300.	1.1	265
922	CLCAs - A Family of Metalloproteases of Intriguing Phylogenetic Distribution and with Cases of Substituted Catalytic Sites. PLoS ONE, 2013, 8, e62272.	1.1	19
923	Evolution of the Plasma and Tissue Kallikreins, and Their Alternative Splicing Isoforms. PLoS ONE, 2013, 8, e68074.	1.1	40
924	Proteolysis Controls Endogenous Substance P Levels. PLoS ONE, 2013, 8, e68638.	1.1	13

#	Article	IF	CITATIONS
925	Fecal Protease Activity Is Associated with Compositional Alterations in the Intestinal Microbiota. PLoS ONE, 2013, 8, e78017.	1.1	48
926	Measurement of Separase Proteolytic Activity in Single Living Cells by a Fluorogenic Flow Cytometry Assay. PLoS ONE, 2015, 10, e0133769.	1.1	10
927	Characterizing Protease Specificity: How Many Substrates Do We Need?. PLoS ONE, 2015, 10, e0142658.	1.1	25
928	A composite docking approach for the identification and characterization of ectosteric inhibitors of cathepsin K. PLoS ONE, 2017, 12, e0186869.	1.1	8
929	The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathogens, 2020, 16, e1009013.	2.1	77
930	SCREENING OF THERMOSTABLE PROTEASE PRODUCING MICROORGANISMS ISOLATED FROM INDONESIAN HOTSPRING. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 2012, 7, 105.	0.2	13
931	PURIFICATION AND CHARACTERIZATION OF THE NEWLY THERMOSTABLE PROTEASE PRODUCED BY Brevibacillus thermoruber LII ISOLATED FROM PADANG CERMIN HOTSPRING, INDONESIA. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 2014, 9, 1.	0.2	4
932	The use of Fluorescence Resonance Energy Transfer (FRET) peptidesfor measurement of clinically important proteolytic enzymes. Anais Da Academia Brasileira De Ciencias, 2009, 81, 381-392.	0.3	23
933	The deubiquitinase <i>USP54</i> is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis. Oncotarget, 2016, 7, 74427-74434.	0.8	34
934	Could a plant derived protein potentiate the anticancer effects of a stem cell in brain cancer?. Oncotarget, 2018, 9, 21296-21312.	0.8	9
935	Nitroxoline impairs tumor progression in vitro and in vivo by regulating cathepsin B activity. Oncotarget, 2015, 6, 19027-19042.	0.8	64
936	Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden. Oncotarget, 2015, 6, 33534-33553.	0.8	12
937	High temperature requirement A3 (HTRA3) expression predicts postoperative recurrence and survival in patients with non-small-cell lung cancer. Oncotarget, 2016, 7, 40725-40734.	0.8	17
938	Robust substrate profiling method reveals striking differences in specificities of serum and lung fluid proteases. BioTechniques, 2011, 51, 95-104.	0.8	10
939	Bowman-Birk Inhibitors from Legumes and Human Gastrointestinal Health: Current Status and Perspectives. Current Protein and Peptide Science, 2011, 12, 358-373.	0.7	51
940	Evaluating Protein-protein Interaction (PPI) Networks for Diseases Pathway, Target Discovery, and Drug-design Using â€ĩn silico Pharmacology'. Current Protein and Peptide Science, 2014, 15, 561-571.	0.7	19
941	Inhibitors of the Metalloproteinase Anthrax Lethal Factor. Current Topics in Medicinal Chemistry, 2016, 16, 2350-2358.	1.0	9
942	Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery. Current Topics in Medicinal Chemistry, 2019, 19, 74-97.	1.0	16

#	Article	IF	CITATIONS
943	Advantages of Structure-Based Drug Design Approaches in Neurological Disorders. Current Neuropharmacology, 2017, 15, 1136-1155.	1.4	23
944	Protease Inhibitors as Ad-hoc Antibiotics. Open Pharmaceutical Sciences Journal, 2016, 3, 131-137.	2.1	9
945	A Report on Finding a New Peptide Aldehyde from Cyanobacterium Nostoc sp. Bahar M by LC-MS and Marfey's Analysis. Iranian Journal of Biotechnology, 2019, 17, 71-78.	0.3	10
947	The clinical utility of gene expression examination in rheumatology. Mediterranean Journal of Rheumatology, 2017, 28, 116-126.	0.3	2
948	Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases. World Journal of Gastroenterology, 2016, 22, 10275.	1.4	37
949	Cathepsin�L interacts with CDK2â€ʿAP1 as a potential predictor of prognosis in patients with breast cancer. Oncology Letters, 2020, 19, 167-176.	0.8	7
950	Molecular Modeling and Structural Analysis of Five SE Clan (S12 Family) Serine Proteases. Asian Journal of Biotechnology, 2011, 3, 435-448.	0.3	2
951	Physio-chemical Characterization and Anti-microbial Activity of Serine Protease Inhibitors Purified from the Sophora japonica Seeds. Pakistan Journal of Biological Sciences, 2018, 21, 432-440.	0.2	4
952	New Pharmacological Targets for Asthma Drug Development. Journal of Allergy & Therapy, 2014, 05, .	0.1	4
953	Screening of Protease Inhibitory Activity in Aqueous Extracts of Marine Invertebrates from Cuban Coast. American Journal of Analytical Chemistry, 2016, 07, 319-331.	0.3	6
954	Role of Cathepsin K, L and S in Blood Vessel Remodeling. , 0, , .		1
955	Subcloning and Expression of Functional Human Cathepsin B and K in E. coli: Characterization and Inhibition by Flavonoids. , 0, , .		1
956	Bioactive Food Peptides in Health and Disease. , 2013, , .		15
957	Modeling and structural analysis of evolutionarily diverse S8 family serine proteases. Bioinformation, 2011, 7, 239-245.	0.2	13
958	Screening, Purification and Characterization of Protease Inhibitor from Capsicum frutescens. Bioinformation, 2018, 14, 285-293.	0.2	8
959	A toolkit for studying cell surface shedding of diverse transmembrane receptors. ELife, 2019, 8, .	2.8	8
960	Bacterial Protease Inhibitors as Antibacterial agents to prevent Bacterial Infections Associated with Biofilms. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2021, 23, 398-412.	0.1	0
961	Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery. Applied Sciences (Switzerland), 2021, 11, 9541.	1.3	5

	CITATION	CITATION REPORT	
#	Article	IF	Citations
962	The reorganization energy of compounds upon binding to proteins, from dynamic and solvated bound and unbound states. Bioorganic and Medicinal Chemistry, 2021, 51, 116464.	1.4	2
963	Conditional PD-1/PD-L1 Probody Therapeutics Induce Comparable Antitumor Immunity but Reduced Systemic Toxicity Compared with Traditional Anti–PD-1/PD-L1 Agents. Cancer Immunology Research, 2021, 9, 1451-1464.	1.6	15
965	Inhibitoren für Hydrolasen mit Acylenzym-Zwischenstufe. , 2009, , 351-379.		0
966	Inhibitoren von hydrolytisch spaltenden Metalloenzymen. , 2009, , 403-425.		0
967	Contribution of ADAMs and ADAMTSs to Tumor Expansion and Metastasis. , 2010, , 293-314.		1
968	Das Nadelöhr – von der Forschung zur Entwicklung. , 2010, , 47-108.		0
969	Chapter 9. Pharmacological Targeting of Human Tissue Kallikrein-Related Peptidases. RSC Drug Discovery Series, 2011, , 199-228.	0.2	0
970	Proteases as Virulence Factors in Leishmania: Focus on Serine Proteases as Possible Therapeutic Targets. , 2013, , 135-161.		1
971	Residue-Specific Annotation of Disorder-to-Order Transition and Cathepsin Inhibition of a Propeptide-Like Crammer from D. melanogaster. PLoS ONE, 2013, 8, e54187.	1.1	0
972	Das Nadelöhr – von der Forschung zur Entwicklung. , 2013, , 53-115.		Ο
973	SpsB Signal Peptidase. , 2013, , 3501-3508.		0
974	PROTEASE INHIBITORS: A REVIEW. Indian Drugs, 2013, 50, 5-19.	0.1	0
975	Implications of Intracellular Proteolytic Activation of MMP-2 in the Heart. , 2014, , 335-349.		0
976	Proteases and Their Role in Drug Development with an Emphasis in Cancer. , 2014, , 227-244.		0
977	Opportunities for New Photodynamic Molecular Beacon Designs. , 2014, , 733-758.		0
979	Proteases in Apoptosis: Protocols and Methods. , 2015, , 143-202.		1
980	Chapter 13. The Business Case for Green Chemistry in Drug Discovery. RSC Drug Discovery Series, 2015, , 280-313.	0.2	1
981	Fungal Protease Inhibitors. , 2015, , 1-33.		1

#	Article	IF	CITATIONS
982	Cathepsin B. , 2016, , 1-17.		1
983	Role of Proteases in Regulating Cell Death Pathways. , 2017, , 535-551.		0
984	Proteases in Neuropathophysiology. , 2017, , 131-145.		0
985	Proteolytic Networks at the Crossroads of Cancer Cell Life and Death: Cancer Stem Cell Deciding Cell Fate. , 2017, , 237-263.		0
986	Role of Proteases in Tumor Immune Evasion. , 2017, , 265-296.		0
987	Virtual Screening of Transmembrane Serine Protease Inhibitors. Bio-protocol, 2017, 7, e2246.	0.2	0
988	Protease, an Advance Therapeutic Target in Cancer. , 2017, , 297-317.		0
989	Unfolding the Mechanism of Proteases in Pathophysiology of Gastrointestinal Diseases. , 2017, , 583-603.		0
990	Fungal Protease Inhibitors. , 2017, , 853-885.		0
991	PAR1-Mediated Apoptosis and Tumor Regression of Breast Cancer Cells by Vibrio cholerae Hemagglutinin Protease. , 2017, , 191-205.		0
992	Simulação por dinâmica molecular da enzima cruzaÃna do trypanosoma cruzi. , 2018, , 227-244.		0
993	Cathepsin B. , 2018, , 746-762.		0
1001	Der Flaschenhals – von der Forschung zur Entwicklung. , 2020, , 73-115.		2
1003	Small Peptides as Modulators of Serine Proteases. Current Medicinal Chemistry, 2020, 27, 3686-3705.	1.2	6
1004	Clickable, selective, and cell-permeable activity-based probe of human cathepsin B – Minimalistic approach for enhanced selectivity. Bioorganic Chemistry, 2021, 117, 105463.	2.0	3
1005	The protease web. , 2022, , 229-250.		0
1007	Cyanobacteria derived compounds: Emerging drugs for cancer management. Journal of Basic Microbiology, 2022, 62, 1125-1142.	1.8	4
1009	Preparation, Crystallization, and Preliminary X-Ray Diffraction Study of Mutant Carboxypeptidase T Bearing the Primary Specificity Pocket and the Active-Site Loop of Carboxypeptidase B. Crystallography Reports, 2020, 65, 900-902.	0.1	1

#	Article	IF	CITATIONS
1011	KLK-targeted Therapies for Prostate Cancer. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine, 2014, 25, 207-18.	0.7	6
1013	Biodiversity of cold-adapted extremophiles from Antarctica and their biotechnological potential. , 2022, , 231-265.		3
1014	Inhibitory monoclonal antibody targeting ADAM17 expressed on cancer cells. Translational Oncology, 2022, 15, 101265.	1.7	8
1015	Therapeutic potential of targeting cathepsin S in pulmonary fibrosis. Biomedicine and Pharmacotherapy, 2022, 145, 112245.	2.5	15
1016	Structure-based molecular insights into matrix metalloproteinase inhibitors in cancer treatments. Future Medicinal Chemistry, 2022, 14, 35-51.	1.1	3
1017	Atlantic Forest's and Caatinga's semiarid soils and their potential as a source for halothermotolerant actinomycetes and proteolytic enzymes. Environmental Technology (United) Tj ETQq1 1 0.78	4 ₿. ⊉4 rgBT	- Þverlock
1018	New Insights into the Role of Cysteine Cathepsins in Neuroinflammation. Biomolecules, 2021, 11, 1796.	1.8	12
1020	Investigation of the interaction of a papain-like cysteine protease (RD19c) with selenium-binding protein 1 (SBP1) in Arabidopsis thaliana. Plant Science, 2022, 315, 111157.	1.7	5
1021	The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. International Journal of Molecular Sciences, 2022, 23, 1351.	1.8	32
1022	Stimuli-responsive destructible polymeric hydrogels based on irreversible covalent bond dissociation. Polymer Chemistry, 2022, 13, 161-192.	1.9	18
1023	Activation of multiple proteolysis systems contributes to acute cadmium cytotoxicity. Molecular and Cellular Biochemistry, 2022, 477, 927-937.	1.4	3
1024	Veni, Vidi, Vici: Immobilized Peptide-Based Conjugates as Tools for Capture, Analysis, and Transformation. Chemosensors, 2022, 10, 31.	1.8	4
1025	Novel Diagnostic Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 2022, 23, 852.	1.8	75
1026	Upregulation of Cathepsin X in Glioblastoma: Interplay with Î ³ -Enolase and the Effects of Selective Cathepsin X Inhibitors. International Journal of Molecular Sciences, 2022, 23, 1784.	1.8	9
1028	Discovery of varlaxins, new aeruginosin-type inhibitors of human trypsins. Organic and Biomolecular Chemistry, 2022, 20, 2681-2692.	1.5	8
1029	Cathepsin V: Molecular characteristics and significance in health and disease. Molecular Aspects of Medicine, 2022, 88, 101086.	2.7	15
1030	Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chemical Reviews, 2022, 122, 6850-6918.	23.0	94
1032	Exploiting protease activation for therapy. Drug Discovery Today, 2022, 27, 1743-1754.	3.2	16

#	Article	IF	CITATIONS
1033	In silico detection of potential inhibitors from vitamins and their derivatives compounds against SARS-CoV-2 main protease by using molecular docking, molecular dynamic simulation and ADMET profiling. Journal of Molecular Structure, 2022, 1258, 132652.	1.8	36
1034	In silico and in vitro mapping of specificity patterns of glycosaminoglycans towards cysteine cathepsins B, L, K, S and V. Journal of Molecular Graphics and Modelling, 2022, 113, 108153.	1.3	8
1035	Commercial SARS-CoV-2 Targeted, Protease Inhibitor Focused and Protein–Protein Interaction Inhibitor Focused Molecular Libraries for Virtual Screening and Drug Design. International Journal of Molecular Sciences, 2022, 23, 393.	1.8	11
1036	Tittle: Detection and Targeting of <i>Taenia Solium</i> Cysticerci Proteases as Potential Drug Targets for Neurocysticercosis an in Silico and in Vitro Study. SSRN Electronic Journal, 0, , .	0.4	0
1037	Glycosylated Cathepsin V Serves as a Prognostic Marker in Lung Cancer. Frontiers in Oncology, 2022, 12, 876245.	1.3	8
1038	Photoresponsive Small Molecule Inhibitors for the Remote Control of Enzyme Activity. Chemistry - an Asian Journal, 2022, 17, e202200200.	1.7	10
1046	Promiscuous Catalytic Activity of a Binuclear <i>Metallohydrolase</i> : Peptide and Phosphoester Hydrolyses. Journal of Chemical Information and Modeling, 2022, , .	2.5	3
1047	基于PNAçš"ç"Ÿç‰©ä¼æ"ŸæŠ€æœ⁻最新ç"究进展. Scientia Sinica Chimica, 2022, , .	0.2	0
1048	Gut microbial β-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nature Microbiology, 2022, 7, 680-694.	5.9	26
1049	An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations. Biophysical Journal, 2022, 121, 2330-2344.	0.2	10
1050	Inhibition of Serine Proteases as a Novel Therapeutic Strategy for Abdominal Pain in IBS. Frontiers in Physiology, 2022, 13, .	1.3	3
1051	Exploring Aspartic Protease Inhibitor Binding to Design Selective Antimalarials. Journal of Chemical Information and Modeling, 2022, 62, 3263-3273.	2.5	2
1052	Bioactive compounds and pigments from cyanobacteria: Applications in the pharmaceutical industry. , 2022, , 65-90.		0
1053	Realtime, continuous assessment of complex-mixture protease and protease inhibitor activity. 4open, 2022, 5, 11.	0.1	1
1054	Peptidyl-Resin Substrates as a Tool in the Analysis of Caspase Activity. Molecules, 2022, 27, 4107.	1.7	2
1055	Prevotella: An insight into its characteristics and associated virulence factors. Microbial Pathogenesis, 2022, 169, 105673.	1.3	17
1056	Molecular Characterization of Kunitz-Type Protease Inhibitors from Blister Beetles (Coleoptera,) Tj ETQq0 0 0 rgB	[/Overlocl	۹ 10 Tf 50 10

1057	Bioactive Peptides and Proteins from Centipede Venoms. Molecules, 2022, 27, 4423.	1.7	7

#	Article	IF	CITATIONS
1058	Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Molecular Aspects of Medicine, 2022, 88, 101106.	2.7	29
1059	Sensitive Affinity-Based Biosensor Using the Autocatalytic Activation of Trypsinogen Mutant by Trypsin with Low Self-activation . ACS Applied Bio Materials, 0, , .	2.3	1
1060	Pep2Graph: A standalone tool to analyse proteolytic cleavages by proteases from gelâ€based mass spectrometry data. Proteomics, 0, , 2200147.	1.3	0
1061	Diagnostic and therapeutic potential of protease inhibition. Molecular Aspects of Medicine, 2022, 88, 101144.	2.7	7
1062	New inhibitors of cathepsin V impair tumor cell proliferation and elastin degradation and increase immune cell cytotoxicity. Computational and Structural Biotechnology Journal, 2022, 20, 4667-4687.	1.9	5
1063	Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. International Journal of Molecular Sciences, 2022, 23, 9795.	1.8	5
1064	Discovery of Highly Potent and Selective Matrix Metalloproteinase-7 Inhibitors by Hybridizing the S1′ Subsite Binder with Short Peptides. Journal of Medicinal Chemistry, 2022, 65, 13253-13263.	2.9	3
1065	Triple-FRET multi-purpose fluorescent probe for three-protease detection. RSC Advances, 2022, 12, 28780-28787.	1.7	2
1066	Widespread microbial utilization of ribosomal β-amino acid-containing peptides and proteins. CheM, 2022, 8, 2659-2677.	5.8	12
1067	Helical ultrastructure of the metalloprotease meprin $\hat{I}\pm$ in complex with a small molecule inhibitor. Nature Communications, 2022, 13, .	5.8	5
1069	Ultrafast one-minute electronic detection of SARS-CoV-2 infection by 3CLpro enzymatic activity in untreated saliva samples. Nature Communications, 2022, 13, .	5.8	15
1070	Cysteine cathepsins: A long and winding road towards clinics. Molecular Aspects of Medicine, 2022, 88, 101150.	2.7	10
1071	Nitriles: an attractive approach to the development of covalent inhibitors. RSC Medicinal Chemistry, 2023, 14, 201-217.	1.7	11
1072	Phosphinic Peptides as Tool Compounds for the Study of Pharmacologically Relevant Zn-Metalloproteases. ACS Pharmacology and Translational Science, 2022, 5, 1228-1253.	2.5	1
1073	New FRET Pairs of Fluorescent Proteins for In Vitro Caspase Activity Determination. Applied Biochemistry and Microbiology, 2022, 58, 738-743.	0.3	0
1075	The roles of proteases in prostate cancer. IUBMB Life, 2023, 75, 493-513.	1.5	8
1076	Purification and thermodynamic characterization of acid protease with novel properties from Melilotus indicus leaves. International Journal of Biological Macromolecules, 2023, 230, 123217.	3.6	1
1077	A Biocompatible Probe for the Detection of Neutrophil Elastase Free from the Interference of Structural Changes and Its Application to Ratiometric Photoacoustic Imaging In Vivo. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
1078	Embracing enzyme promiscuity with activity-based compressed biosensing. Cell Reports Methods, 2023, 3, 100372.	1.4	1
1079	A Biocompatible Probe for the Detection of Neutrophil Elastase Free from the Interference of Structural Changes and Its Application to Ratiometric Photoacoustic Imaging In Vivo. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1080	Synthesis and Biological Evaluation of 3-Amidoquinuclidine Quaternary Ammonium Compounds as New Soft Antibacterial Agents. Pharmaceuticals, 2023, 16, 187.	1.7	1
1081	Investigation of osteoclast cathepsin K activity in osteoclastogenesis and bone loss using a set of chemical reagents. Cell Chemical Biology, 2023, 30, 159-174.e8.	2.5	5
1082	Canonical or noncanonical? Structural plasticity of serine proteaseâ€binding loops in <scp>Kunitzâ€STI</scp> protease inhibitors. Protein Science, 2023, 32, .	3.1	2
1083	Multifunctional fluorescent mesoporous carbon nanoprobe for MMP-2-activated cancer cell imaging and targeted photothermal therapy. Analytica Chimica Acta, 2023, 1260, 341203.	2.6	1
1084	Metal–Organic Materials (MOMs) Enhance Proteolytic Selectivity, Efficiency, and Reusability of Trypsin: A Time-Resolved Study on Proteolysis. ACS Applied Materials & Interfaces, 2023, 15, 8927-8936.	4.0	7
1086	Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers, 2023, 15, 1123.	2.0	22
1087	Drug discovery: Chaos can be your friend or your enemy. , 2023, , 417-511.		2
1088	Secreted protease PRSS35 suppresses hepatocellular carcinoma by disabling CXCL2-mediated neutrophil extracellular traps. Nature Communications, 2023, 14, .	5.8	11
1089	Diversity, Biosynthesis and Bioactivity of Aeruginosins, a Family of Cyanobacteria-Derived Nonribosomal Linear Tetrapeptides. Marine Drugs, 2023, 21, 217.	2.2	2
1090	Protease-Triggered, Spatially Controlled DNA Assembly in Apoptotic Cells for Early Evaluation of Therapeutic Efficacy. Journal of the American Chemical Society, 2023, 145, 7931-7940.	6.6	10
1091	TMPRSS4, a type II transmembrane serine protease, as a potential therapeutic target in cancer. Experimental and Molecular Medicine, 2023, 55, 716-724.	3.2	1
1092	Identification of small molecule inhibitors against MMP-14 via High-Throughput screening. Bioorganic and Medicinal Chemistry, 2023, 85, 117289.	1.4	3
1097	Amino acid transporters as drug targets in disease modification. , 2023, , 57-76.		2
1132	Interrogating the Impact of Protease Activity on Tumor Progression Using 3D Spheroid Models. Methods in Molecular Biology, 2024, , 177-188.	0.4	0
1133	Generation of Protease Inhibitory Antibodies by Functional In Vivo Selection. Methods in Molecular Biology, 2024, , 243-256.	0.4	0
1136	Label-free detection of biomolecules using inductively coupled plasma mass spectrometry (ICP-MS). Analytical and Bioanalytical Chemistry, 2024, 416, 2625-2640.	1.9	0

#	Δρτιςι ε	IF	CITATIONS
π	ARTICLE		CHAHONS
1139	Fungal enzymes in textile industry: An emerging avenue to entrepreneurship. , 2024, , 121-141.		0
1140	Gold nanoparticles as a recent nanocarrier against HIV/AIDS. , 2024, , 305-329.		0
1142	Inhibitoren von hydrolytisch spaltenden Metalloenzymen. , 2023, , 477-504.		0
1143	Inhibitoren für Hydrolasen mit Acylenzym-Zwischenstufe. , 2023, , 419-452.		0