Finding function in novel targets: C. elegans as a model

Nature Reviews Drug Discovery 5, 387-399 DOI: 10.1038/nrd2031

Citation Report

#	ARTICLE	IF	CITATIONS
1	Towards high-throughput characterization of small molecule mechanisms of action. Molecular BioSystems, 2006, 2, 609.	2.9	28
2	Potential and limitations of genetic manipulation in animals. Drug Discovery Today: Technologies, 2006, 3, 173-180.	4.0	18
3	Caenorhabditis elegans: A versatile platform for drug discovery. Biotechnology Journal, 2006, 1, 1405-1418.	3.5	142
4	High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nature Protocols, 2006, 1, 1906-1914.	12.0	110
5	Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. Journal of Experimental Biology, 2006, 209, 4129-4139.	1.7	107
6	Metabotyping of <i>Caenorhabditis elegans</i> reveals latent phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19808-19812.	7.1	107
7	Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13891-13895.	7.1	291
8	The Concept Paper on the Helminth Drug Initiative. Onchocerciasis/lymphatic filariasis and schistosomiasis: opportunities and challenges for the discovery of new drugs/diagnostics. Expert Opinion on Drug Discovery, 2007, 2, S3-S7.	5.0	14
9	Cloning and functional characterization of a folate transporter from the nematodeCaenorhabditis elegans. American Journal of Physiology - Cell Physiology, 2007, 293, C670-C681.	4.6	23
10	Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans. Biochemical Journal, 2007, 404, 439-448.	3.7	69
11	Phosphatidylcholine Biosynthesis as a Potential Target for Inhibition of Metabolism in Parasitic Nematodes. Current Enzyme Inhibition, 2007, 3, 133-142.	0.4	9
12	<i>Caenorhabditis elegans </i> as a Model System for Parkinson's Disease. Neurodegenerative Diseases, 2007, 4, 199-217.	1.4	39
13	Similarities Between Angiogenesis and Neural Development: What Small Animal Models Can Tell Us. Current Topics in Developmental Biology, 2007, 80, 1-55.	2.2	54
14	The Ginkgo biloba extract EGb761 reduces stress sensitivity, ROS accumulation and expression of catalase and glutathione S-transferase 4 in Caenorhabditis elegans. Pharmacological Research, 2007, 55, 139-147.	7.1	115
15	Monogenic migraine syndromes highlight novel drug targets. Drug Development Research, 2007, 68, 432-440.	2.9	2
16	Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology, 2007, 234, 113-123.	4.2	147
17	Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nature Reviews Drug Discovery, 2007, 6, 569-582.	46.4	283
18	Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology, 2007, 8, 701-711.	4.2	84

#	Article	IF	CITATIONS
19	Life span and stress resistance of Caenorhabditis elegans are differentially affected by glutathione transferases metabolizing 4-hydroxynon-2-enal. Mechanisms of Ageing and Development, 2007, 128, 196-205.	4.6	76
20	Non-developmentally programmed cell death in Caenorhabditis elegans. Seminars in Cancer Biology, 2007, 17, 122-133.	9.6	22
21	A Computational Model forC. elegansLocomotory Behavior: Application to Multiworm Tracking. IEEE Transactions on Biomedical Engineering, 2007, 54, 1786-1797.	4.2	53
22	Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Archives of Toxicology, 2007, 81, 849-858.	4.2	157
23	Label-free cell-based assay using localized surface plasmon resonance biosensor. Analytica Chimica Acta, 2008, 614, 182-189.	5.4	70
24	Caenorhabditis Elegans Models of Parkinson's Disease. , 2008, , 347-360.		4
25	C. Elegans Genetic Strategies to Identify Novel Parkinson's Disease-associated Therapeutic Targets and Leads. , 2008, , 361-368.		0
26	Neurovascular signalling defects in neurodegeneration. Nature Reviews Neuroscience, 2008, 9, 169-181.	10.2	316
27	Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nature Protocols, 2008, 3, 588-596.	12.0	75
28	A C. elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nature Protocols, 2008, 3, 1925-1931.	12.0	63
29	Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule?. Nature Reviews Drug Discovery, 2008, 7, 205-220.	46.4	413
30	Beyond induced mutants: using worms to study natural variation in genetic pathways. Trends in Genetics, 2008, 24, 178-185.	6.7	46
31	Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes. , 2008, , .		21
32	Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicological Sciences, 2008, 106, 5-28.	3.1	832
33	Use of non-mammalian alternative models for neurotoxicological study. NeuroToxicology, 2008, 29, 546-555.	3.0	154
34	Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2008, 149, 314-323.	1.6	188
35	Tyrosine Phosphoproteomics and Identification of Substrates of Protein Tyrosine Phosphatase dPTP61F in <i>Drosophila</i> S2 Cells by Mass Spectrometry-Based Substrate Trapping Strategy. Journal of Proteome Research, 2008, 7, 1055-1066.	3.7	21
36	Edge Linking Based Method to Detect and Separate Individual C. Elegans Worms in Culture. , 2008, , .		5

#	Article	IF	CITATIONS
37	Fecundity and lifespan manipulations in Caenorhabditis elegans using exogenous peptides. Nematology, 2008, 10, 103-112.	0.6	9
38	High throughput quantification system for egg populations in caenorhabditis elegans. , 2008, , .		1
39	Caenorhabditis elegans Models of Human Neurodegenerative Diseases. , 2008, , 91-101.		1
40	Caenorhabditis elegans in Parkinson's Disease Drug Discovery: Addressing an Unmet Medical Need. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2008, 8, 284-293.	3.4	38
41	High-throughput in vivo genetic and drug screening using femtosecond laser microsurgery and microfluidics. , 2008, , .		0
42	Evolutionary conservation of drug action on lipoprotein metabolism-related targets. Journal of Lipid Research, 2008, 49, 74-83.	4.2	7
43	A transfer-less, multi-well liquid culture feeding system for screening small molecules that affect the longevity of <i>Caenorhabditis elegans</i> . BioTechniques, 2009, 47, ix-xv.	1.8	8
44	A shortcut to identifying small molecule signals that regulate behavior and development in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7708-7713.	7.1	221
45	Identification of Antifungal Compounds Active against Candida albicans Using an Improved High-Throughput Caenorhabditis elegans Assay. PLoS ONE, 2009, 4, e7025.	2.5	87
46	Animal Models for Alzheimer's Disease and Frontotemporal Dementia: A Perspective. ASN Neuro, 2009, 1, AN20090042.	2.7	31
47	Evaluation of the therapeutic potential of carbonic anhydrase inhibitors in two animal models of dystrophin deficient muscular dystrophy. Human Molecular Genetics, 2009, 18, 4089-4101.	2.9	23
48	Design and fabrication of cell alignment device based on electrolytically-generated air bubbles, and its practical realization using polystyrene microbeads. Mikrochimica Acta, 2009, 164, 263-268.	5.0	2
49	In vivo target validation using gene invalidation, RNA interference and protein functional knockout models: it is the time to combine. Current Opinion in Pharmacology, 2009, 9, 669-676.	3.5	23
50	The use of gene array technology and proteomics in the search of new targets of diseases for therapeutics. Toxicology Letters, 2009, 186, 45-51.	0.8	11
51	Synthesis and biological activity of the (25R)-cholesten-26-oic acids—ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans. Organic and Biomolecular Chemistry, 2009, 7, 909.	2.8	30
52	NON-LINEAR OPTICAL IMAGING OF OBESITY-RELATED HEALTH RISKS: REVIEW. Journal of Innovative Optical Health Sciences, 2009, 02, 9-25.	1.0	4
53	C. elegans Genetic Networks Predict Roles for O-GlcNAc Cycling in Key Signaling Pathways. Current Signal Transduction Therapy, 2010, 5, 60-73.	0.5	2
54	Wide Field-of-View Lensless Imaging of Caenorhabditis Elegans On a Chip. , 2010, , .		Ο

#	Article	IF	CITATIONS
55	Utility of Caenorhabditis elegans in high throughput neurotoxicological research. Neurotoxicology and Teratology, 2010, 32, 62-67.	2.4	52
56	Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicology and Teratology, 2010, 32, 68-73.	2.4	102
57	A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicology and Applied Pharmacology, 2010, 245, 153-159.	2.8	148
58	Revealing and avoiding bias in semantic similarity scores for protein pairs. BMC Bioinformatics, 2010, 11, 290.	2.6	38
59	A worm rich in protein: Quantitative, differential, and global proteomics in Caenorhabditis elegans. Journal of Proteomics, 2010, 73, 2186-2197.	2.4	14
60	Neuroprotective effects and mechanism of cognitive-enhancing choline analogs JWB 1-84-1 and JAY 2-22-33 in neuronal culture and Caenorhabditis elegans. Molecular Neurodegeneration, 2010, 5, 59.	10.8	16
61	Genetic and functional characterization of putative Ras/Raf interaction inhibitors in C. elegans and mammalian cells. Journal of Molecular Signaling, 2010, 5, 2.	0.5	34
62	Highâ€ŧhroughput screening and small animal models, where are we?. British Journal of Pharmacology, 2010, 160, 204-216.	5.4	228
63	Automatic identification of <i>Caenorhabditis elegans</i> in population images by shape energy features. Journal of Microscopy, 2010, 238, 173-184.	1.8	5
64	A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nature Chemical Biology, 2010, 6, 549-557.	8.0	164
65	Predictive models for neurotoxicity assessment. , 0, , 135-152.		4
66	Resveratrol Attenuates Radiation Damage in Caenorhabditis elegans by Preventing Oxidative Stress. Journal of Radiation Research, 2010, 51, 473-479.	1.6	45
67	Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z. PLoS ONE, 2010, 5, e15460.	2.5	160
68	Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans. Journal of Lipid Research, 2010, 51, 672-677.	4.2	99
69	Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20405-20410.	7.1	150
70	Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. Journal of Lipid Research, 2010, 51, 3091-3102.	4.2	142
71	ASNA-1 Activity Modulates Sensitivity to Cisplatin. Cancer Research, 2010, 70, 10321-10328.	0.9	26
72	Caenorhabditis elegans Generates Biologically Relevant Levels of Genotoxic Metabolites from Aflatoxin B1 but Not Benzo[a]pyrene In Vivo. Toxicological Sciences, 2010, 118, 444-453.	3.1	62

#	Article	IF	Citations
73	In vivo RNAi: Today and Tomorrow. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003640.	5.5	172
74	Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view. Lab on A Chip, 2010, 10, 1109.	6.0	52
75	Chemical enhancement of torsinA function in cell and animal models of torsion dystonia. DMM Disease Models and Mechanisms, 2010, 3, 386-396.	2.4	55
76	Antipsychotic Drugs Activate the <i>C. elegans</i> Akt Pathway via the DAF-2 Insulin/IGF-1 Receptor. ACS Chemical Neuroscience, 2010, 1, 463-473.	3.5	35
77	Quantitative Proteomics by Metabolic Labeling of Model Organisms. Molecular and Cellular Proteomics, 2010, 9, 11-24.	3.8	133
78	Gene–environment interactions: Neurodegeneration in non-mammals and mammals. NeuroToxicology, 2010, 31, 582-588.	3.0	18
79	Fluoxetine protects against amyloid-beta toxicity, in part via daf-16 mediated cell signaling pathway, in Caenorhabditis elegans. Neuropharmacology, 2010, 59, 358-365.	4.1	50
80	Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab on A Chip, 2010, 10, 220-226.	6.0	121
81	Novel Carbamates as Orally Active Acetylcholinesterase Inhibitors Found to Improve Scopolamine-Induced Cognition Impairment: Pharmacophore-Based Virtual Screening, Synthesis, and Pharmacology. Journal of Medicinal Chemistry, 2010, 53, 6490-6505.	6.4	80
82	Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Natural Product Reports, 2010, 27, 969.	10.3	41
83	Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food and Function, 2011, 2, 445.	4.6	68
84	Interfacing Multicellular Organisms with Polyelectrolyte Shells and Nanoparticles: A Caenorhabtidis elegans Study. Langmuir, 2011, 27, 7708-7713.	3.5	45
85	Full Assessment of Fate and Physiological Behavior of Quantum Dots Utilizing <i>Caenorhabditis elegans</i> as a Model Organism. Nano Letters, 2011, 11, 3174-3183.	9.1	212
86	Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale, 2011, 3, 2636.	5.6	46
87	Expanding the Genetic Code of an Animal. Journal of the American Chemical Society, 2011, 133, 14196-14199.	13.7	218
88	Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab on A Chip, 2011, 11, 3689.	6.0	103
89	The ameliorative and toxic effects of selenite on Caenorhabditis elegans. Food and Chemical Toxicology, 2011, 49, 812-819.	3.6	19
90	Yeast Informs Alzheimer's Disease. Science, 2011, 334, 1212-1213.	12.6	9

	Сітаті	CITATION REPORT	
#	ARTICLE Lens-free optical tomographic microscope with a large imaging volume on a chip. Proceedings of the	IF	CITATIONS
91	National Academy of Sciences of the United States of America, 2011, 108, 7296-7301.	7.1	208
92	Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallomics, 2011, 3, 271.	2.4	38
93	Phenotypic Screens with Model Organisms. , 2012, , 121-136.		2
94	Tasco®, a Product of Ascophyllum nodosum, Imparts Thermal Stress Tolerance in Caenorhabditis elegans. Marine Drugs, 2011, 9, 2256-2282.	4.6	16
95	Revelations from the Nematode <i>Caenorhabditis elegans</i> on the Complex Interplay of Metal Toxicological Mechanisms. Journal of Toxicology, 2011, 2011, 1-10.	3.0	44
96	Supplemental Cellular Protection by a Carotenoid Extends Lifespan via Ins/IGF-1 Signaling in <i>Caenorhabditis elegans</i> . Oxidative Medicine and Cellular Longevity, 2011, 2011, 1-9.	4.0	59
97	In vitro approaches to developmental neurotoxicity. , 2011, , 159-166.		1
98	Caenorhabditis elegans as a model to assess reproductive and developmental toxicity. , 2011, , 193-205.		1
99	Anti-Biofilm Compounds Derived from Marine Sponges. Marine Drugs, 2011, 9, 2010-2035.	4.6	109
100	Screening for Microbial Metabolites Affecting Phenotype of <i>Caenorhabditis elegans</i> . Biological and Pharmaceutical Bulletin, 2011, 34, 1619-1623.	1.4	7
101	Measuring Caenorhabditis elegans Life Span in 96 Well Microtiter Plates. Journal of Visualized Experiments, 2011, , .	0.3	92
102	Wide-field Lensless Fluorescent Imaging of Transgenic Caenorhabditis Elegans On a Chip. , 2011, , .		0
103	Oral fatty acid signaling and intestinal lipid processing: Support and supposition. Physiology and Behavior, 2011, 105, 27-35.	2.1	57
104	Nematode and snail metallothioneins. Journal of Biological Inorganic Chemistry, 2011, 16, 1057-1065.	2.6	30
105	Comparative toxicology of mercurials in <i>Caenorhabditis elegans</i> . Environmental Toxicology and Chemistry, 2011, 30, 2135-2141.	4.3	26
107	Chemistry and the Worm: <i>Caenorhabditis elegans</i> as a Platform for Integrating Chemical and Biological Research. Angewandte Chemie - International Edition, 2011, 50, 4774-4807.	13.8	115
108	Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chemistry, 2011, 124, 195-202.	8.2	170
109	Using <i>Caenorhabditis elegans</i> for antimicrobial drug discovery. Expert Opinion on Drug Discovery, 2011, 6, 645-652.	5.0	33

ARTICLE IF CITATIONS Development delay induced by low-keV energy ions in early larva of the nematodeCaenorhabditis 110 0.8 0 elegans. Invertebrate Reproduction and Development, 2011, 55, 131-137. Dissection of Genetic Pathways in C. elegans. Methods in Cell Biology, 2011, 106, 113-157. 1.1 Thermodynamic Evaluation of Ligand Binding in the Plant-like Phosphoethanolamine 112 Methyltransferases of the Parasitic Nematode Haemonchus contortus. Journal of Biological 3.4 15 Chemistry, 2011, 286, 38060-38068. Discovering the Targets of Drugs Via Computational Systems Biology. Journal of Biological Chemistry, 2011, 286, 23653-23658. Alzheimer's disease models and functional genomicsâ€"How many needles are there in the haystack?. 114 2.8 18 Frontiers in Physiology, 2012, 3, 320. Matching experiments across species using expression values and textual information. Bioinformatics, 2012, 28, i258-i264. 4.1 Chemosensory cue conditioning with stimulants in a Caenorhabditis elegans animal model of 116 1.2 27 addiction.. Behavioral Neuroscience, 2012, 126, 445-456. Evaluation of the toxicity of 2-aminoimidazole antibiofilm agents using both cellular and model 2.3 organism systems. Drug and Chemical Toxicology, 2012, 35, 310-315. The <i>Caenorhabiditis elegans </i>model as a reliable tool in neurotoxicology. Human and 118 2.2 59 Experimental Toxicology, 2012, 31, 236-243. PBT2 Reduces Toxicity in a C. elegans Model of polyQ Aggregation and Extends Lifespan, Reduces Striatal Atrophy and Improves Motor Performance in the R6/2 Mouse Model of Huntington's Disease. Journal of Huntington's Disease, 2012, 1, 211-219. RNAi of cat-2, a Putative Tyrosine Hydroxylase, Increases Alpha Synuclein Aggregation and Associated 120 1.4 23 Effects in Transgenic C. elégans. CNS and Neurological Disorders - Drug Targets, 2012, 11, 387-394. Novel structural arrangement of nematode cystathionine l²-synthases: characterization of <i>Caenorhabditis elegans</i> CBS-1. Biochémical Journal, 2012, 443, 535-547. Serotonin circuits and anxiety: what can invertebrates teach us?. Invertebrate Neuroscience, 2012, 12, 122 1.8 53 81-92. The role of mycelium production and a MAPK-mediated immune response in theC. elegans-Fusariummodel system. Medical Mycology, 2012, 50, 488-496. 124 High-Performance Visualization of Multi-Dimensional Gene Expression Data., 2012, , . 2 In Vivo Antioxidant Activities of Essential Oils and Their Constituents from Leaves of the Taiwanese 5.2 43 Cinnamomum osmophloeum. Journal of Agricultural and Food Chemistry, 2012, 60, 3092-3097. Characterizing temporal patterns in the swimming activity of Caenorhabditis elegans. Journal of the 126 0.7 7 Korean Physical Society, 2012, 60, 1840-1844. Impact of phosphine exposure on development in Caenorhabditis elegans: Involvement of oxidative stress and the role of glutathione. Pesticide Biochemistry and Physiology, 2012, 104, 38-43.

#	Article	IF	CITATIONS
128	Studies toward the Unique Pederin Family Member Psymberin: Structure–Activity Relationships, Biochemical Studies, and Genetics Identify the Mode-of-Action of Psymberin. Journal of the American Chemical Society, 2012, 134, 18998-19003.	13.7	29
129	A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans. Lab on A Chip, 2012, 12, 2211.	6.0	113
130	A droplet-based microfluidic device for long-term culture and longitudinal observation of Caenorhabditis elegans. Biochip Journal, 2012, 6, 197-205.	4.9	20
131	Heavy metals, behavior, and neurodegeneration: using Caenorhabditis elegans to untangle a can of worms. , 2012, , 177-187.		0
132	WormScan: A Technique for High-Throughput Phenotypic Analysis of Caenorhabditis elegans. PLoS ONE, 2012, 7, e33483.	2.5	124
133	Meta-Analysis of Clobal Transcriptomics Suggests that Conserved Genetic Pathways are Responsible for Quercetin and Tannic Acid Mediated Longevity in C. elegans. Frontiers in Genetics, 2012, 3, 48.	2.3	29
134	Genome-Wide Analyses of Metal Responsive Genes in Caenorhabditis elegans. Frontiers in Genetics, 2012, 3, 52.	2.3	13
135	The <i>Caenorhabditis elegans</i> DAFâ€12 nuclear receptor: Structure, dynamics, and interaction with ligands. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1798-1809.	2.6	10
136	Exploring the behavior of Caenorhabditis Elegans by using a self-organizing map and hidden Markov model. Journal of the Korean Physical Society, 2012, 60, 604-612.	0.7	2
137	Role of the ubiquitin–proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cellular and Molecular Life Sciences, 2012, 69, 2691-2715.	5.4	22
138	Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radical Biology and Medicine, 2012, 52, 109-117.	2.9	52
139	<i>Drosophila</i> as a model to study the genetic mechanisms of obesityâ€associated heart dysfunction. Journal of Cellular and Molecular Medicine, 2012, 16, 966-971.	3.6	42
140	Engineered Unnatural Animals: Tools for Multicellular Biochemistry. ChemBioChem, 2012, 13, 186-188.	2.6	3
141	Midgutâ€enriched receptor protein tyrosine phosphatase PTP52F is required for <i>Drosophila</i> development during larva–pupa transition. FEBS Journal, 2013, 280, 476-488.	4.7	7
142	A novel method for investigation of uptake and distribution of polluting microelements and nanoparticles in soil-inhabiting nematodes. Microchemical Journal, 2013, 110, 558-567.	4.5	11
143	Current drug targets for helminthic diseases. Parasitology Research, 2013, 112, 1819-1831.	1.6	46
144	Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans. Pharmacological Research, 2013, 76, 41-48.	7.1	47
145	Alternative Models of Prion Diseases. , 2013, , 183-199.		0

#	Article	IF	CITATIONS
146	Effect of Nanoparticles on the Biochemical and Behavioral Aging Phenotype of the Nematode <i>Caenorhabditis elegans</i> . ACS Nano, 2013, 7, 10695-10703.	14.6	89
147	Overexpression of an antimicrobial peptide derived from C. elegans using an aggregation-prone protein coexpression system. AMB Express, 2013, 3, 45.	3.0	7
148	A synergistic approach towards understanding the functional significance of dopamine receptor interactions. Journal of Molecular Signaling, 2013, 8, 13.	0.5	7
149	Rational Design of Multifunctional Upconversion Nanocrystals/Polymer Nanocomposites for Cisplatin (IV) Delivery and Biomedical Imaging. Advanced Materials, 2013, 25, 4898-4905.	21.0	127
150	Microworms swallow the nanobait: the use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans. Nanoscale, 2013, 5, 11761.	5.6	30
151	<i>Caenorhabditis elegans</i> -based <i>in vivo</i> screening of bioactives from marine sponge-associated bacteria against <i>Vibrio alginolyticus</i> . Journal of Applied Microbiology, 2013, 115, 1329-1342.	3.1	26
152	Contributions of altered permeability of intestinal barrier and defecation behavior to toxicity formation from graphene oxide in nematode Caenorhabditis elegans. Nanoscale, 2013, 5, 9934.	5.6	170
153	The toxicological assessment of two anti-obesity drugs in C. elegans. Toxicology Research, 2013, 2, 145.	2.1	7
154	Correlation of chemical acute toxicity between the nematode and the rodent. Toxicology Research, 2013, 2, 403.	2.1	25
155	The humankind genome: from genetic diversity to the origin of human diseases. Genome, 2013, 56, 705-716.	2.0	18
156	Meiotic Development in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2013, 757, 133-170.	1.6	79
157	Involvement of AAT transporters in methylmercury toxicity in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2013, 435, 546-550.	2.1	16
158	Predictive Toxicology. , 2013, , 777-806.		3
159	Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans . Journal of Visualized Experiments, 2013, , .	0.3	62
160	Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends in Genetics, 2013, 29, 367-374.	6.7	172
161	Study of Zalema Grape Pomace: Phenolic Composition and Biological Effects in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry, 2013, 61, 5114-5121.	5.2	44
162	Nanosilver suppresses growth and induces oxidative damage to DNA in <i>Caenorhabditis elegans</i> . Journal of Applied Toxicology, 2013, 33, 1131-1142.	2.8	55
163	Microfluidic tools for developmental studies of small model organisms –nematodes, fruit flies, and zebrafish. Biotechnology Journal, 2013, 8, 192-205.	3.5	55

#	Article	IF	CITATIONS
164	27-Nor-Δ4-dafachronic acid is a synthetic ligand of Caenorhabditis elegans DAF-12 receptor. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2893-2896.	2.2	8
165	Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion. Lab on A Chip, 2013, 13, 650-661.	6.0	24
166	Bioactive components of the edible strain of red alga, Chondrus crispus, enhance oxidative stress tolerance in Caenorhabditis elegans. Journal of Functional Foods, 2013, 5, 1180-1190.	3.4	36
167	Screening of Isoquinoline Alkaloids for Potent Lipid Metabolism Modulation withCaenorhabditis elegans. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2405-2412.	1.3	10
168	Microfluidics-enabled method to identify modes of <i>Caenorhabditis elegans</i> paralysis in four anthelmintics. Biomicrofluidics, 2013, 7, 64103.	2.4	22
169	Smallâ€Moleculeâ€Mediated Axonal Branching in <i>Caenorhabditis elegans</i> . ChemBioChem, 2013, 14, 307-310.	2.6	6
170	Smallâ€Molecule Mechanism of Action Studies in <i>Caenorhabditis elegans</i> . ChemBioChem, 2013, 14, 2338-2344.	2.6	2
171	How Daphnia (Cladocera) Assays may be used as Bioindicators of Health Effects?. Journal of Biodiversity & Endangered Species, 2013, 01, .	0.1	7
172	Modeling Tumorigenesis in Drosophila: Current Advances and Future Perspectives. , 0, , .		6
173	Metal-induced neurodegeneration in C. elegans. Frontiers in Aging Neuroscience, 2013, 5, 18.	3.4	63
174	Ida-1, the Caenorhabditis elegans Orthologue of Mammalian Diabetes Autoantigen IA-2, Potentially Acts as a Common Modulator between Parkinson's Disease and Diabetes: Role of Daf-2/Daf-16 Insulin Like Signalling Pathway. PLoS ONE, 2014, 9, e113986.	2.5	20
175	Chronic Exposure to Perfluorooctane Sulfonate Induces Behavior Defects and Neurotoxicity through Oxidative Damages, In Vivo and In Vitro. PLoS ONE, 2014, 9, e113453.	2.5	57
176	Cyanobacterial Xenobiotics as Evaluated by a Caenorhabditis elegans Neurotoxicity Screening Test. International Journal of Environmental Research and Public Health, 2014, 11, 4589-4606.	2.6	29
177	Evaluation of the Toxicity of 5-Aryl-2-Aminoimidazole-Based Biofilm Inhibitors against Eukaryotic Cell Lines, Bone Cells and the Nematode Caenorhabditis elegans. Molecules, 2014, 19, 16707-16723.	3.8	9
179	Characterization of <i>Caenorhabditis elegans</i> behavior in response to chemical stress by using hidden Markov model. Modern Physics Letters B, 2014, 28, 1450136.	1.9	2
180	Worming our way to novel drug discovery with the Caenorhabditis elegans proteostasis network, stress response and insulin-signaling pathways. Expert Opinion on Drug Discovery, 2014, 9, 1021-1032.	5.0	11
181	WormNet v3: a network-assisted hypothesis-generating server for Caenorhabditis elegans. Nucleic Acids Research, 2014, 42, W76-W82.	14.5	59
182	Genetic revelation of hexavalent chromium toxicity using Caenorhabditis elegans as a biosensor. Journal of Exposure Science and Environmental Epidemiology, 2014, 24, 180-184.	3.9	15

#	Article	IF	CITATIONS
183	Automated, high-throughput, motility analysis in Caenorhabditis elegans and parasitic nematodes: Applications in the search for new anthelmintics. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 226-232.	3.4	61
184	Cross-organism toxicogenomics with group factor analysis. Systems Biomedicine (Austin, Tex), 2014, 2, 71-80.	0.7	6
185	Characterization of the reniform nematode genome by shotgun sequencing. Genome, 2014, 57, 209-221.	2.0	11
186	Polysaccharides from Medicinal Herbs As Potential Therapeutics for Aging and Age-Related Neurodegeneration. Rejuvenation Research, 2014, 17, 201-204.	1.8	20
187	Evolutionary profiling reveals the heterogeneous origins of classes of human disease genes: implications for modeling disease genetics in animals. BMC Evolutionary Biology, 2014, 14, 212.	3.2	40
188	MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network. Nucleic Acids Research, 2014, 42, W147-W153.	14.5	16
190	Effects of 5â€2-fluoro-2-deoxyuridine on mitochondrial biology in Caenorhabditis elegans. Experimental Gerontology, 2014, 56, 69-76.	2.8	39
191	Genetic screens in Caenorhabditis elegans models for neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1951-1959.	3.8	51
192	Caenorhabditis elegans in regenerative medicine: a simple model for a complex discipline. Drug Discovery Today, 2014, 19, 730-734.	6.4	6
193	Dispersed crude oil amplifies germ cell apoptosis in Caenorhabditis elegans, followed a CEP-1-dependent pathway. Archives of Toxicology, 2014, 88, 543-51.	4.2	14
194	C. elegans in high-throughput drug discovery. Advanced Drug Delivery Reviews, 2014, 69-70, 247-253.	13.7	197
195	Selenite protects <i><scp>C</scp>aenorhabditis elegans</i> from oxidative stress via <scp>DAF</scp> â€16 and <scp>TRXR</scp> â€1. Molecular Nutrition and Food Research, 2014, 58, 863-874.	3.3	35
196	Evaluation and identification of reliable reference genes for toxicological study in Caenorhabditis elegans. Molecular Biology Reports, 2014, 41, 3445-3455.	2.3	23
197	Nematode phospholipid metabolism: an example of closing the genome–structure–function circle. Trends in Parasitology, 2014, 30, 241-250.	3.3	15
198	Synthesis and toxicity testing of cysteine-functionalized single-walled carbon nanotubes with Caenorhabditis elegans. RSC Advances, 2014, 4, 5893.	3.6	30
199	Necrotic Cell Death in Caenorhabditis elegans. Methods in Enzymology, 2014, 545, 127-155.	1.0	18
200	Antioxidant Activity, Delayed Aging, and Reduced Amyloid-β Toxicity of Methanol Extracts of Tea Seed Pomace fromCamellia tenuifolia. Journal of Agricultural and Food Chemistry, 2014, 62, 10701-10707.	5.2	28
201	A fucose containing polymer-rich fraction from the brown alga Ascophyllum nodosum mediates lifespan increase and thermal-tolerance in Caenorhabditis elegans, by differential effects on gene and protein expression. Food and Function, 2014, 5, 275-284.	4.6	12

#	Article	IF	CITATIONS
202	LC–MS Proteomics Analysis of the Insulin/IGF-1-Deficient <i>Caenorhabditis elegans daf-2(e1370)</i> Mutant Reveals Extensive Restructuring of Intermediary Metabolism. Journal of Proteome Research, 2014, 13, 1938-1956.	3.7	59
203	Imaging Lipid Metabolism in Live <i>Caenorhabditis elegans</i> Using Fingerprint Vibrations. Angewandte Chemie - International Edition, 2014, 53, 11787-11792.	13.8	78
204	Bio-orthogonal labeling as a tool to visualize and identify newly synthesized proteins in Caenorhabditis elegans. Nature Protocols, 2014, 9, 2237-2255.	12.0	39
205	Characteristics and safety of nano-sized cellulose fibrils. Cellulose, 2014, 21, 3871-3886.	4.9	64
206	Crystal structure of a nematode-infecting virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12781-12786.	7.1	28
207	Benzofuran–Chalcone Hybrids as Potential Multifunctional Agents against Alzheimer's Disease: Synthesis and in vivo Studies with Transgenic <i>Caenorhabditis elegans</i> . ChemMedChem, 2014, 9, 2671-2684.	3.2	37
208	Curcumin-mediated oxidative stress resistance in <i>Caenorhabditis elegans</i> is modulated by <i>age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1</i> , and <i>mev-1</i> . Free Radical Research, 2014, 48, 371-379.	3.3	42
209	Antioxidant and antigenotoxic activities of ethanol extracts from Rhus chinensis Mill leaves. Food Science and Biotechnology, 2014, 23, 1213-1221.	2.6	11
210	Assessment of selenium toxicity on the life cycle of Caenorhabditis elegans. Ecotoxicology, 2014, 23, 1245-1253.	2.4	20
211	Mechanism of Longevity Extension of <i>Caenorhabditis elegans</i> Induced by Pentagalloyl Glucose Isolated from Eucalyptus Leaves. Journal of Agricultural and Food Chemistry, 2014, 62, 3422-3431.	5.2	49
212	Antiapoptotic Bclâ€2 homolog CEDâ€9 in <i>Caenorhabditis elegans</i> : Dynamics of BH3 and CEDâ€4 binding regions and comparison with mammalian antiapoptotic Bclâ€2 proteins. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1035-1047.	2.6	6
213	Non-microfluidic methods for imaging live C. elegans. Methods, 2014, 68, 542-547.	3.8	12
214	Elemental bioimaging of manganese uptake in C. elegans. Metallomics, 2014, 6, 617.	2.4	19
215	A Microfluidic Device for Caenorhabditis Elegans Based Chemical Testing. , 2014, , .		0
216	Green Tea Extract Induces the Resistance of Caenorhabditis elegans against Oxidative Stress. Antioxidants, 2014, 3, 129-143.	5.1	50
218	Screening Strategies for Drug Discovery and Target Identification. , 2015, , 135-166.		2
219	Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Scientific Reports, 2015, 5, 14395.	3.3	33
220	Caenorhabditis elegans as a useful model to assess the effect of spermiogenesis induced by three teratogens. Molecular and Cellular Toxicology, 2015, 11, 241-246.	1.7	0

#	Article	IF	CITATIONS
221	Seahorse Xf ^e 24 Extracellular Flux Analyzerâ€Based Analysis of Cellular Respiration in <i>Caenorhabditis elegans</i> . Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2015, 66, 25.7.1-15.	1.1	44
222	<i>Caenorhabditis elegans</i> as a Model for Toxic Effects of Nanoparticles: Lethality, Growth, and Reproduction. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2015, 66, 20.10.1-20.10.25.	1.1	21
223	<i>Drosophila</i> and <i>Caenorhabditis elegans</i> as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcoholism: Clinical and Experimental Research, 2015, 39, 1292-1311.	2.4	50
224	Quantification of Glutathione in <i>Caenorhabditis elegans</i> . Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2015, 64, 6.18.1-6.18.6.	1.1	27
225	The burrowing behavior of the nematode <i>Caenorhabditis elegans</i> : a new assay for the study of neuromuscular disorders. Genes, Brain and Behavior, 2015, 14, 357-368.	2.2	33
226	A Cultivated Form of a Red Seaweed (Chondrus crispus), Suppresses β-Amyloid-Induced Paralysis in Caenorhabditis elegans. Marine Drugs, 2015, 13, 6407-6424.	4.6	19
227	Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans. Toxins, 2015, 7, 5224-5235.	3.4	31
228	Effects of Microcystin-LR Exposure on Spermiogenesis in Nematode Caenorhabditis elegans. International Journal of Molecular Sciences, 2015, 16, 22927-22937.	4.1	9
229	Disruption of the C. elegans Intestinal Brush Border by the Fungal Lectin CCL2 Phenocopies Dietary Lectin Toxicity in Mammals. PLoS ONE, 2015, 10, e0129381.	2.5	37
230	Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes. PLoS ONE, 2015, 10, e0130940.	2.5	79
231	Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage. International Journal of Nanomedicine, 2015, 10, 5093.	6.7	56
232	Study of Cellular Processes in Higher Eukaryotes Using the Yeast Schizosaccharomyces pombe as a Model. , 2015, , .		5
233	A systems toxicology approach on the mechanism of uptake and toxicity of MWCNT in Caenorhabditis elegans. Chemico-Biological Interactions, 2015, 239, 153-163.	4.0	35
234	A Novel Cholinergic Action of Alcohol and the Development of Tolerance to That Effect in <i>Caenorhabditis elegans</i> . Genetics, 2015, 199, 135-149.	2.9	9
235	C. elegans as a model to study PTEN's regulation and function. Methods, 2015, 77-78, 180-190.	3.8	15
236	Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol. Scientific Reports, 2015, 5, 7930.	3.3	122
237	Multi-endpoint, High-Throughput Study of Nanomaterial Toxicity in <i>Caenorhabditis elegans</i> . Environmental Science & Technology, 2015, 49, 2477-2485.	10.0	91
238	Detection of Thiol Modifications by Hydrogen Sulfide. Methods in Enzymology, 2015, 555, 233-251.	1.0	12

		N KLFOKI	
#	Article	IF	Citations
239	In Vitro Screening for Drug Repositioning. Journal of Biomolecular Screening, 2015, 20, 167-179.	2.6	53
240	Reproductive Toxicity of Endosulfan: Implication From Germ Cell Apoptosis Modulated by Mitochondrial Dysfunction and Genotoxic Response Genes in <i>Caenorhabditis elegans</i> . Toxicological Sciences, 2015, 145, 118-127.	3.1	45
241	Synthetic DAF-12 modulators with potential use in controlling the nematode life cycle. Biochemical Journal, 2015, 465, 175-184.	3.7	11
242	Enhanced resolution through thick tissue with structured illumination and adaptive optics. Journal of Biomedical Optics, 2015, 20, 026006.	2.6	52
243	Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. Journal of Neurodevelopmental Disorders, 2015, 7, 18.	3.1	90
244	Modeling Huntington Disease in Yeast and Invertebrates. , 2015, , 557-572.		0
245	A microfluidic device for efficient chemical testing using Caenorhabditis elegans. Biomedical Microdevices, 2015, 17, 38.	2.8	14
246	Diversity-Oriented Approach for Chemical Biology. Chemical Record, 2015, 15, 495-510.	5.8	24
247	Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector. Lab on A Chip, 2015, 15, 2117-2124.	6.0	57
248	Perturbation of cellular mechanistic system by silver nanoparticle toxicity: Cytotoxic, genotoxic and epigenetic potentials. Advances in Colloid and Interface Science, 2015, 221, 4-21.	14.7	109
249	Insect-Derived Cecropins Display Activity against Acinetobacter baumannii in a Whole-Animal High-Throughput Caenorhabditis elegans Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 1728-1737.	3.2	52
250	NeuCode Labeling in Nematodes: Proteomic and Phosphoproteomic Impact of Ascaroside Treatment in Caenorhabditis elegans. Molecular and Cellular Proteomics, 2015, 14, 2922-2935.	3.8	20
251	Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nature Protocols, 2015, 10, 1860-1896.	12.0	234
252	Protective Effects of Bovine Serum Albumin on Superparamagnetic Iron Oxide Nanoparticles Evaluated in the Nematode <i>Caenorhabditis elegans</i> . ACS Biomaterials Science and Engineering, 2015, 1, 1129-1138.	5.2	46
253	A Transparent Window into Biology: A Primer on <i>Caenorhabditis elegans</i> . Genetics, 2015, 200, 387-407.	2.9	385
254	Whole-animal mounts of Caenorhabditis elegans for 3D imaging using atomic force microscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1971-1974.	3.3	11
255	A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans. , 2015, , .		1
256	Benzo-α-pyrene induced oxidative stress in Caenorhabditis elegans and the potential involvements of microRNA. Chemosphere, 2015, 139, 496-503.	8.2	27

#	Article	IF	CITATIONS
257	Serotonergic signalling suppresses ataxin 3 aggregation and neurotoxicity in animal models of Machado-Joseph disease. Brain, 2015, 138, 3221-3237.	7.6	74
258	Agar-polydimethylsiloxane devices for quantitative investigation of oviposition behaviour of adult <i>Drosophila melanogaster</i> . Biomicrofluidics, 2015, 9, 034112.	2.4	7
259	Characterization of the crawling activity of Caenorhabditis elegans using a hidden markov model. Theory in Biosciences, 2015, 134, 117-125.	1.4	6
260	Adsorbable organic bromine compounds (AOBr) in aquatic samples: a nematode-based toxicogenomic assessment of the exposure hazard. Environmental Science and Pollution Research, 2015, 22, 14862-14873.	5.3	0
261	The toxicity of crude 4-methylcyclohexanemethanol (MCHM): review of experimental data and results of predictive models for its constituents and a putative metabolite. Critical Reviews in Toxicology, 2015, 45, 1-55.	3.9	59
262	Natural photoreceptors and their application to synthetic biology. Trends in Biotechnology, 2015, 33, 80-91.	9.3	44
263	Synthesis and biological activity of 5-(4-methoxyphenyl)-oxazole derivatives. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 313-316.	2.2	23
264	Modular Assembly of Primary Metabolic Building Blocks: A Chemical Language in C.Âelegans. Chemistry and Biology, 2015, 22, 7-16.	6.0	49
265	Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environmental Science: Nano, 2015, 2, 54-59.	4.3	237
266	Developmental Effects of the ToxCastâ,,¢ Phase I and Phase II Chemicals in <i>Caenorhabditis elegans</i> and Corresponding Responses in Zebrafish, Rats, and Rabbits. Environmental Health Perspectives, 2016, 124, 586-593.	6.0	84
267	Microfluidic Approaches for Manipulating, Imaging, and Screening C. elegans. Micromachines, 2016, 7, 123.	2.9	58
268	Usefulness of silkworm as a host animal for understanding pathogenicity of <i>Cryptococcus neoformans </i> . Drug Discoveries and Therapeutics, 2016, 10, 9-13.	1.5	19
269	Antioxidant Activities and Reduced Amyloid-β Toxicity of 7-Hydroxycalamenene Isolated from the Essential Oil of Zelkova serrata Heartwood. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	4
270	Genome Editing in C. elegans and Other Nematode Species. International Journal of Molecular Sciences, 2016, 17, 295.	4.1	16
271	Microfluidic Device to Measure the Speed of C. elegans Using the Resistance Change of the Flexible Electrode. Micromachines, 2016, 7, 50.	2.9	13
272	BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models. PLoS ONE, 2016, 11, e0148379.	2.5	19
274	Linking Subcellular Disturbance to Physiological Behavior and Toxicity Induced by Quantum Dots in <i>Caenorhabditis elegans</i> . Small, 2016, 12, 3143-3154.	10.0	22
275	Behavioral analysis of the huntingtinâ€associated protein 1 ortholog trakâ€1 in <i>Caenorhabditis elegans</i> . Journal of Neuroscience Research, 2016, 94, 850-856.	2.9	0

#	Article	IF	CITATIONS
276	Screening lifespan-extending drugs in Caenorhabditis elegans via label propagation on drug-protein networks. BMC Systems Biology, 2016, 10, 131.	3.0	15
277	The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans. BMC Genomics, 2016, 17, 559.	2.8	133
278	ZnO nanoparticles enhanced germ cell apoptosis in Caenorhabditis elegans , in comparison with ZnCl 2. Toxicological Sciences, 2016, 156, kfw258.	3.1	13
279	A hybrid microfluidic device for on-demand orientation and multidirectional imaging of <i>C. elegans</i> organs and neurons. Biomicrofluidics, 2016, 10, 064111.	2.4	15
280	The resveratrol-enriched rice DJ526 boosts motor coordination and physical strength. Scientific Reports, 2016, 6, 23958.	3.3	17
281	A microfluidic device for automated, high-speed microinjection of <i>Caenorhabditis elegans</i> . Biomicrofluidics, 2016, 10, 011912.	2.4	28
282	An automated microfluidic system for screening <i>Caenorhabditis elegans</i> behaviors using electrotaxis. Biomicrofluidics, 2016, 10, 014117.	2.4	10
283	A Genome-Scale Database and Reconstruction of Caenorhabditis elegans Metabolism. Cell Systems, 2016, 2, 312-322.	6.2	46
284	Microfluidic Platforms for Quantitative Biology Studies in Model Organisms. , 2016, , 1-18.		3
285	Development of novel functional ingredients: Need for testing systems and solutions with Caenorhabditis elegans. Trends in Food Science and Technology, 2016, 54, 197-203.	15.1	26
286	Advanced Glycation End-Products and Their Receptors: Related Pathologies, Recent Therapeutic Strategies, and a Potential Model for Future Neurodegeneration Studies. Chemical Research in Toxicology, 2016, 29, 707-714.	3.3	34
287	Levodopa-Induced Motor and Dopamine Receptor Changes in <i>Caenorhabditis elegans</i> Overexpressing Human Alpha-Synuclein. Neurodegenerative Diseases, 2016, 16, 179-183.	1.4	11
288	HIV-1 Nef binds with human GCC185 protein and regulates mannose 6 phosphate receptor recycling. Biochemical and Biophysical Research Communications, 2016, 474, 137-145.	2.1	7
289	Transgenerational Reproductive Effects of Arsenite Are Associated with H3K4 Dimethylation and SPR-5 Downregulation in <i>Caenorhabditis elegans</i> . Environmental Science & Technology, 2016, 50, 10673-10681.	10.0	46
290	Mechanisms of spreading depolarization in vertebrate and insect central nervous systems. Journal of Neurophysiology, 2016, 116, 1117-1127.	1.8	48
291	Betulin inhibits virulence and biofilm of <i>Streptococcus pyogenes</i> by suppressing <i>ropB</i> core regulon, <i>sagA</i> and <i>dltA</i> . Pathogens and Disease, 2016, 74, ftw088.	2.0	24
292	On-chip microfluidic biocommunication assay for studying male-induced demise in C. elegans hermaphrodites. Lab on A Chip, 2016, 16, 4534-4545.	6.0	9
294	Acrylamide induces locomotor defects and degeneration of dopamine neurons in <i>Caenorhabditis elegans</i> . Journal of Applied Toxicology, 2016, 36, 60-67.	2.8	52

#	Article	IF	CITATIONS
295	C. elegans screening strategies to identify pro-longevity interventions. Mechanisms of Ageing and Development, 2016, 157, 60-69.	4.6	25
296	Mechanism of Different Stereoisomeric Astaxanthin in Resistance to Oxidative Stress in <i>Caenorhabditis elegans</i> . Journal of Food Science, 2016, 81, H2280-7.	3.1	36
298	The effects of short-term hypergravity on Caenorhabditis elegans. Life Sciences in Space Research, 2016, 10, 38-46.	2.3	7
299	Rotational manipulation of single cells and organisms using acoustic waves. Nature Communications, 2016, 7, 11085.	12.8	366
300	Benefits of Strategic Small-Scale Targeted Screening. Assay and Drug Development Technologies, 2016, 14, 329-332.	1.2	2
301	A novel approach using C. elegans DNA damage-induced apoptosis to characterize the dynamics of uptake transporters for therapeutic drug discoveries. Scientific Reports, 2016, 6, 36026.	3.3	20
302	Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model. Nature Communications, 2016, 7, 13023.	12.8	91
303	Drug screening using model systems: some basics. DMM Disease Models and Mechanisms, 2016, 9, 1241-1244.	2.4	10
304	Chronic Exposure to Perfluorooctane Sulfonate Reduces Lifespan of Caenorhabditis elegans Through Insulin/IGF-1 Signaling. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 119-123.	2.7	17
305	C(16)-C(22) oxygen-bridged analogues of ceDAF-12 and LXR ligands. Steroids, 2016, 112, 109-114.	1.8	7
306	The nematode Caenorhabditis elegans as an integrated toxicological tool to assess water quality and pollution. Science of the Total Environment, 2016, 569-570, 252-261.	8.0	21
307	A dendrimer-based highly sensitive and selective fluorescence-quenching sensor for Fe3+ both in solution and as film. Biosensors and Bioelectronics, 2016, 85, 785-791.	10.1	50
308	Antioxidation and anti-ageing activities of different stereoisomeric astaxanthin in vitro and in vivo. Journal of Functional Foods, 2016, 25, 50-61.	3.4	60
309	Real-time tracking mitochondrial dynamic remodeling with two-photon phosphorescent iridium (III) complexes. Biomaterials, 2016, 83, 321-331.	11.4	66
310	Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivo. Food Chemistry, 2016, 206, 146-155.	8.2	31
311	Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chemical Society Reviews, 2016, 45, 2075-2089.	38.1	198
312	C. elegans as a model organism for human mitochondrial associated disorders. Mitochondrion, 2016, 30, 117-125.	3.4	44
313	Glucose-induced abnormal egg-laying rate in <i>Caenorhabditis elegans</i> . Bioscience, Biotechnology and Biochemistry, 2016, 80, 1436-1439.	1.3	30

#	Article	IF	Citations
314	Microfluidics as a new tool in radiation biology. Cancer Letters, 2016, 371, 292-300.	7.2	15
315	Circumvention of Learning Increases Intoxication Efficacy of Nematicidal Engineered Bacteria. ACS Synthetic Biology, 2016, 5, 241-249.	3.8	6
316	David and Goliath: chemical perturbation of eukaryotes by bacteria. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 233-248.	3.0	5
317	Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode <i>C. elegans</i> . Nanotoxicology, 2016, 10, 426-435.	3.0	44
318	Gene expression profiling to investigate tyrosol-induced lifespan extension in Caenorhabditis elegans. European Journal of Nutrition, 2016, 55, 639-650.	3.9	9
319	<i>Subcellular Redox Targeting</i> : Bridging <i>in Vitro</i> and <i>in Vivo</i> Chemical Biology. ACS Chemical Biology, 2017, 12, 586-600.	3.4	22
320	C. elegans-on-a-chip for in situ and in vivo Ag nanoparticles' uptake and toxicity assay. Scientific Reports, 2017, 7, 40225.	3.3	38
321	Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanolâ€Response Behaviors in Model Organisms. Alcoholism: Clinical and Experimental Research, 2017, 41, 911-928.	2.4	43
322	An integrated microfluidic device for C. elegans early embryogenesis studies and drug assays. , 2017, , .		0
323	Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2017, 139, 245-253.	6.0	70
324	Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays. Nature Nanotechnology, 2017, 12, 684-691.	31.5	31
325	An Elegan(t) Screen for Drug-Microbe Interactions. Cell Host and Microbe, 2017, 21, 555-556.	11.0	2
326	Genetic kidney diseases: Caenorhabditis elegans as model system. Cell and Tissue Research, 2017, 369, 105-118.	2.9	17
327	Impact of Static Magnetic Field (SMF) on Microorganisms, Plants and Animals. , 2017, , 133-172.		9
328	A microfluidic diode for sorting and immobilization of Caenorhabditis elegans. Biomedical Microdevices, 2017, 19, 38.	2.8	8
329	VHL deficiency augments anthracycline sensitivity of clear cell renal cell carcinomas by down-regulating ALDH2. Nature Communications, 2017, 8, 15337.	12.8	43
330	Mitochondria and MAPK cascades modulate endosulfan-induced germline apoptosis in Caenorhabditis elegans. Toxicology Research, 2017, 6, 412-419.	2.1	15
331	4-Bromodiphenyl Ether Induces Germ Cell Apoptosis by Induction of ROS and DNA Damage in Caenorhabditis elegans. Toxicological Sciences, 2017, 157, 510-518.	3.1	12

#	Article	IF	Citations
332	Caenorhabditis elegans as a powerful alternative model organism to promote research in genetic toxicology and biomedicine. Archives of Toxicology, 2017, 91, 2029-2044.	4.2	39
333	Drosophila melanogaster "a potential model organism―for identification of pharmacological properties of plants/plant-derived components. Biomedicine and Pharmacotherapy, 2017, 89, 1331-1345.	5.6	45
334	Caenorhabditis elegans as a model for exploring the efficacy of synthesized organoruthenium complexes for aging and Alzheimer's disease a neurodegenerative disorder: A systematic approach. Journal of Organometallic Chemistry, 2017, 838, 12-23.	1.8	14
335	Improvement of chitinase Pachi with nematicidal activities by random mutagenesis. International Journal of Biological Macromolecules, 2017, 96, 171-176.	7.5	12
336	Imaging metals in Caenorhabditis elegans. Metallomics, 2017, 9, 357-364.	2.4	12
337	Cross-reactivities of mammalian MAPKs antibodies in rotifer and copepod: Application in mechanistic studies in aquatic ecotoxicology. Marine Pollution Bulletin, 2017, 124, 614-623.	5.0	16
338	Separation, Sizing, and Quantitation of Engineered Nanoparticles in an Organism Model Using Inductively Coupled Plasma Mass Spectrometry and Image Analysis. ACS Nano, 2017, 11, 526-540.	14.6	38
339	Activity of gallic acid and its ester derivatives in <i>Caenorhabditis elegans</i> and zebrafish (<i>Danio rerio</i>) models. Future Medicinal Chemistry, 2017, 9, 1863-1872.	2.3	23
340	Quantitative proteomics of model organisms. Current Opinion in Systems Biology, 2017, 6, 58-66.	2.6	11
341	Effective drug combination for <i>Caenorhabditis elegans</i> nematodes discovered by output-driven feedback system control technique. Science Advances, 2017, 3, eaao1254.	10.3	38
342	Long-range correlations and fractal dynamics in <i>C. elegans</i> : Changes with aging and stress. Physical Review E, 2017, 96, 022417.	2.1	13
343	An enhanced C. elegans based platform for toxicity assessment. Scientific Reports, 2017, 7, 9839.	3.3	99
344	Natural diversity facilitates the discovery of conserved chemotherapeutic response mechanisms. Current Opinion in Genetics and Development, 2017, 47, 41-47.	3.3	11
345	We Are Not Alone: The iMOP Initiative and Its Roles in a Biology- and Disease-Driven Human Proteome Project. Journal of Proteome Research, 2017, 16, 4273-4280.	3.7	8
346	Microcystin-LR exposure induces oxidative damage in Caenorhabditis elegans : Protective effect of lutein extracted from marigold flowers. Food and Chemical Toxicology, 2017, 109, 60-67.	3.6	19
347	Liver Disease in Alpha-1 Antitrypsin Deficiency: Current Approaches and Future Directions. Current Pathobiology Reports, 2017, 5, 243-252.	3.4	45
348	C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking. Methods in Molecular Biology, 2017, 1652, 43-61.	0.9	10
349	Application of Evolving Computational and Biological Platforms for Chemical Safety Assessment. , 2017, , 843-873.		2

			0
# 350	ARTICLE Exploiting Analysis of Heterogeneity to Increase the Information Content Extracted from Fluorescence Micrographs of Transgenic Zebrafish Embryos. Assay and Drug Development	IF 1.2	CITATIONS
000	Technologies, 2017, 15, 257-266.	1,2	
352	<i>Caenorhabditis elegans</i> models of tauopathy. FASEB Journal, 2017, 31, 5137-5148.	0.5	29
353	Delivery of Native Proteins into C. elegans Using a Transduction Protocol Based on Lipid Vesicles. Scientific Reports, 2017, 7, 15045.	3.3	16
354	Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer's disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2341-2350.	3.3	60
355	The <i>C. elegans</i> model in toxicity testing. Journal of Applied Toxicology, 2017, 37, 50-59.	2.8	372
356	Reproductive toxicity induced by nickel nanoparticles in <i>Caenorhabditis elegans</i> . Environmental Toxicology, 2017, 32, 1530-1538.	4.0	41
357	Expanding the nematode model system: The molecular basis of inflammation and infection recovery in <i>C. elegans</i> . Virulence, 2017, 8, 244-245.	4.4	4
358	AGEs/RAGE-Related Neurodegeneration: <i>daf-16</i> as a Mediator, Insulin as an Ameliorant, and <i>C. elegans</i> as an Expedient Research Model. Chemical Research in Toxicology, 2017, 30, 38-42.	3.3	3
359	In-vivo high resolution AFM topographic imaging of Caenorhabditis elegans reveals previously unreported surface structures of cuticle mutants. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 183-189.	3.3	28
360	Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. Mutation Research - Reviews in Mutation Research, 2017, 773, 242-262.	5.5	25
361	Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing. SLAS Technology, 2017, 22, 431-436.	1.9	4
362	The Nematode Caenorhabditis Elegans - A Versatile In Vivo Model to Study Host-microbe Interactions. Journal of Visualized Experiments, 2017, , .	0.3	5
363	Toxicity of Selected Imidazolium-based Ionic Liquids on <i>Caenorhabditis elegans</i> : a Quantitative Structure-Activity Relationship Study. Chinese Journal of Chemical Physics, 2017, 30, 423-428.	1.3	13
364	Aflatoxin B1-Induced Developmental and DNA Damage in Caenorhabditis elegans. Toxins, 2017, 9, 9.	3.4	28
365	InÂVitro and Alternative Approaches to Developmental Neurotoxicity. , 2017, , 241-253.		5
366	Double Stranded RNA in Human Seminal Plasma. Frontiers in Genetics, 2017, 8, 154.	2.3	8
367	Alkyl Protocatechuate-Loaded Nanostructured Lipid Systems as a Treatment Strategy for Paracoccidioides brasiliensis and Paracoccidioides lutzii In Vitro. Frontiers in Microbiology, 2017, 8, 1048.	3.5	12
368	Adverse Effects of Hydroalcoholic Extracts and the Major Components in the Stems of <i>Impatiens balsamina </i> L. on <i>Caenorhabditis elegans </i> . Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	1.2	15

#	Article	IF	CITATIONS
369	Ephemeral-habitat colonization and neotropical species richness of Caenorhabditis nematodes. BMC Ecology, 2017, 17, 43.	3.0	34
371	Sexual Dimorphisms in the Nervous System of the Nematode Caenorhabditis elegans. , 2017, , 149-159.		1
372	Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans . International Journal of Nanomedicine, 2017, Volume 12, 5941-5957.	6.7	21
374	Preliminary characterization of the structure and immunostimulatory and anti-aging properties of the polysaccharide fraction of <i>Haematococcus pluvialis</i> . RSC Advances, 2018, 8, 9243-9252.	3.6	27
375	Zic Genes in Nematodes: A Role in Nervous System Development and Wnt Signaling. Advances in Experimental Medicine and Biology, 2018, 1046, 59-68.	1.6	2
377	Antioxidation and anti-aging activities of astaxanthin geometrical isomers and molecular mechanism involved in Caenorhabditis elegans. Journal of Functional Foods, 2018, 44, 127-136.	3.4	45
378	Recombinant buckwheat glutaredoxin intake increases lifespan and stress resistance via hsf-1 upregulation in Caenorhabditis elegans. Experimental Gerontology, 2018, 104, 86-97.	2.8	12
379	Lifetime eco-nanotoxicology in an adult organism: where and when is the invertebrate <i>C. elegans</i> vulnerable?. Environmental Science: Nano, 2018, 5, 616-622.	4.3	17
380	Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms of Disease. Energy, Environment, and Sustainability, 2018, , 199-225.	1.0	5
381	<i>Caenorhabditis elegans</i> : A Convenient In Vivo Model for Assessing the Impact of Food Bioactive Compounds on Obesity, Aging, and Alzheimer's Disease. Annual Review of Food Science and Technology, 2018, 9, 1-22.	9.9	101
382	Subcellular Nanorheology Reveals Lysosomal Viscosity as a Reporter for Lysosomal Storage Diseases. Nano Letters, 2018, 18, 1351-1359.	9.1	35
383	Cross-species molecular dissection across alcohol behavioral domains. Alcohol, 2018, 72, 19-31.	1.7	12
384	Integrated Microfluidic Device for Drug Studies of Early <i>C. Elegans</i> Embryogenesis. Advanced Science, 2018, 5, 1700751.	11.2	12
385	New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. European Journal of Medicinal Chemistry, 2018, 150, 946-957.	5.5	21
386	Bioaccessibility and biological activity of Melissa officinalis , Lavandula latifolia and Origanum vulgare extracts: Influence of an in vitro gastrointestinal digestion. Journal of Functional Foods, 2018, 44, 146-154.	3.4	34
387	Exploration of the molecular basis of blast injury in a biofidelic model of traumatic brain injury. Shock Waves, 2018, 28, 115-126.	1.9	3
388	Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans. Chemosphere, 2018, 190, 375-382.	8.2	76
389	Forward and reverse genetics approaches to uncover metabolic aging pathways in Caenorhabditis elegans. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2697-2706.	3.8	28

#	Article	IF	Citations
390	Echinacoside, a phenylethanoid glycoside from Cistanche deserticola, extends lifespan of Caenorhabditis elegans and protects from Aβ-induced toxicity. Biogerontology, 2018, 19, 47-65.	3.9	42
391	Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. European Journal of Pharmacology, 2018, 819, 169-180.	3.5	63
392	Frailty and Caenorhabditis elegans as a Benchtop Animal Model for Screening Drugs Including Natural Herbs. Frontiers in Nutrition, 2018, 5, 111.	3.7	15
393	Diisopropylphenyl-imidazole (DII): A new compound that exerts anthelmintic activity through novel molecular mechanisms. PLoS Neglected Tropical Diseases, 2018, 12, e0007021.	3.0	14
394	Caenorhabditis elegans as a Model Host to Monitor the Candida Infection Processes. Journal of Fungi (Basel, Switzerland), 2018, 4, 123.	3.5	33
395	Automated Behavioral Analysis of Large C. elegans Populations Using a Wide Field-of-view Tracking Platform. Journal of Visualized Experiments, 2018, , .	0.3	7
396	Evaluation of antioxidant and neuroprotective activities of <i>Cassia fistula</i> (L.) using the <i>Caenorhabditis elegans</i> model. PeerJ, 2018, 6, e5159.	2.0	26
397	C.el Phosphatome: A Catalogue of Actual and Pseudo Phosphatases Based on In-Silico Studies in Caenorhabditis elegans. Protein Journal, 2018, 37, 572-580.	1.6	1
398	Salvia hispanica L. (chia) seeds oil extracts reduce lipid accumulation and produce stress resistance in Caenorhabditis elegans. Nutrition and Metabolism, 2018, 15, 83.	3.0	19
399	The Nif3-Family Protein YqfO03 from Pseudomonas syringae MB03 Has Multiple Nematicidal Activities against Caenorhabditis elegans and Meloidogyne incognita. International Journal of Molecular Sciences, 2018, 19, 3915.	4.1	13
400	Synergistic Effect of Quinic Acid Derived From Syzygium cumini and Undecanoic Acid Against Candida spp. Biofilm and Virulence. Frontiers in Microbiology, 2018, 9, 2835.	3.5	52
401	8-Channel single embryo pipette for accurate C. elegans bioassays. , 2018, , .		0
402	Microfluidic Devices Developed for and Inspired by Thermotaxis and Chemotaxis. Micromachines, 2018, 9, 149.	2.9	13
403	Comparative genomic analysis of the human and nematode <i>Caenorhabditis elegans</i> uncovers potential reproductive genes and disease associations in humans. Physiological Genomics, 2018, 50, 1002-1014.	2.3	21
404	How early media exposure may affect cognitive function: A review of results from observations in humans and experiments in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9851-9858.	7.1	70
405	Identification of small-molecule ion channel modulators in C. elegans channelopathy models. Nature Communications, 2018, 9, 3941.	12.8	19
406	CRISPR-Cas9 human gene replacement and phenomic characterization in <i>Caenorhabditis elegans</i> to understand the functional conservation of human genes and decipher variants of uncertain significance. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	38
407	Line excitation array detection fluorescence microscopy at 0.8 million frames per second. Nature Communications, 2018, 9, 4499.	12.8	21

#	Article	IF	CITATIONS
408	Feature Selection to Predict Compound's Effect on Aging. , 2018, , .		5
409	Toward the Synthesis and Improved Biopotential of an N-methylated Analog of a Proline-Rich Cyclic Tetrapeptide from Marine Bacteria. Marine Drugs, 2018, 16, 305.	4.6	19
410	Glyphosate-based herbicides modulate oxidative stress response in the nematode Caenorhabditis elegans. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2018, 214, 1-8.	2.6	24
411	Dynamic microfluidic nanocalorimetry system for measuring <i>Caenorhabditis elegans</i> metabolic heat. Lab on A Chip, 2018, 18, 1641-1651.	6.0	17
412	Constituent and effects of polysaccharides isolated from Sophora moorcroftiana seeds on lifespan, reproduction, stress resistance, and antimicrobial capacity in Caenorhabditis elegans. Chinese Journal of Natural Medicines, 2018, 16, 252-260.	1.3	17
413	Antioxidant and anti-aging potential of Juniper berry (Juniperus communis L.) essential oil in Caenorhabditis elegans model system. Industrial Crops and Products, 2018, 120, 113-122.	5.2	40
414	Antimicrobial blue light photoinactivation of <i>Pseudomonas aeruginosa</i> : Quorum sensing signaling molecules, biofilm formation and pathogenicity. Journal of Biophotonics, 2018, 11, e201800079.	2.3	36
415	Neuroprotective effect of Decalepis hamiltonii aqueous root extract and purified 2-hydroxy-4-methoxy benzaldehyde on 6-OHDA induced neurotoxicity in Caenorhabditis elegans. Biomedicine and Pharmacotherapy, 2018, 105, 997-1005.	5.6	23
416	Nematicidal activity of â€~major royal jelly protein'-containing glycoproteins from Acacia honey. Experimental Parasitology, 2018, 192, 52-59.	1.2	10
417	Essential Oil Composition, In Vivo Antioxidant, and Antimicrobial Activities of Pimpinella pruatjan from West Java, Indonesia. Natural Products Journal, 2018, 8, 61-69.	0.3	6
418	System-specific neurodegeneration following glucotoxicity in the C. elegans model. NeuroToxicology, 2018, 68, 88-90.	3.0	5
419	TiO2 nanoparticles enhance bioaccumulation and toxicity of heavy metals in Caenorhabditis elegans via modification of local concentrations during the sedimentation process. Ecotoxicology and Environmental Safety, 2018, 162, 160-169.	6.0	29
420	C. elegans—An Emerging Model to Study Metal-Induced RAGE-Related Pathologies. International Journal of Environmental Research and Public Health, 2018, 15, 1407.	2.6	6
421	Caenorhabditis elegans respond to high-glucose diets through a network of stress-responsive transcription factors. PLoS ONE, 2018, 13, e0199888.	2.5	57
422	Resveratrol attenuates iron-induced toxicity in a chronic post-treatment paradigm in Caenorhabditis elegans. Free Radical Research, 2018, 52, 939-951.	3.3	10
423	2,2′,4,4′-tetrabromodiphenyl ether induces germ cell apoptosis through oxidative stress by a MAPK-mediated p53-independent pathway. Environmental Pollution, 2018, 242, 887-893.	7.5	21
424	Microfluidics for mechanobiology of model organisms. Methods in Cell Biology, 2018, 146, 217-259.	1.1	13
425	Genetic and cellular sensitivity of <i>Caenorhabditis elegans</i> to the chemotherapeutic agent cisplatin. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	13

#	Article	IF	CITATIONS
426	Whole-Genome Analysis of Bacillus thuringiensis Revealing Partial Genes as a Source of Novel Cry Toxins. Applied and Environmental Microbiology, 2018, 84, .	3.1	23
427	Automated screening of <i>C. elegans</i> neurodegeneration mutants enabled by microfluidics and image analysis algorithms. Integrative Biology (United Kingdom), 2018, 10, 539-548.	1.3	17
428	Modeling Parkinson's Disease in C. elegans. Journal of Parkinson's Disease, 2018, 8, 17-32.	2.8	114
429	<i>Caenorhabditis elegans</i> as an emerging model system in environmental epigenetics. Environmental and Molecular Mutagenesis, 2018, 59, 560-575.	2.2	39
430	Alternative Strategies to Regulate Quorum Sensing and Biofilm Formation of Pathogenic Pseudomonas by Quorum Sensing Inhibitors of Diverse Origins. , 2018, , 33-61.		5
431	Nonmammalian Models of Huntington's Disease. Methods in Molecular Biology, 2018, 1780, 75-96.	0.9	3
432	Biological Concerns on the Selection of Animal Models for Teratogenic Testing. Methods in Molecular Biology, 2018, 1797, 61-93.	0.9	2
433	A C. elegans Model for the Study of RAGE-Related Neurodegeneration. Neurotoxicity Research, 2019, 35, 19-28.	2.7	3
434	Effectively controlled microfluidic trap for spatiotemporal analysis of the electrotaxis of <i>Caenorhabditis elegans </i> . Electrophoresis, 2019, 40, 431-436.	2.4	5
435	Steroids originating from bacterial bile acid degradation affect Caenorhabditis elegans and indicate potential risks for the fauna of manured soils. Scientific Reports, 2019, 9, 11120.	3.3	17
436	Global Proteomic Response of Caenorhabditis elegans Against PemKSa Toxin. Frontiers in Cellular and Infection Microbiology, 2019, 9, 172.	3.9	11
437	Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. Marine Pollution Bulletin, 2019, 146, 574-583.	5.0	44
438	Zymolytic Grain Extract (ZGE) Significantly Extends the Lifespan and Enhances the Environmental Stress Resistance of Caenorhabditis elegans. International Journal of Molecular Sciences, 2019, 20, 3489.	4.1	8
439	Dynamics of Heat Shock Proteins in Immunity and Aging. Heat Shock Proteins, 2019, , 91-100.	0.2	3
440	<i>Caenorhabditis elegans</i> as a tool for environmental risk assessment: emerging and promising applications for a "nobelized worm― Critical Reviews in Toxicology, 2019, 49, 411-429.	3.9	53
441	The in-silico characterization of the Caenorhabditis elegans matrisome and proposal of a novel collagen classification. Matrix Biology Plus, 2019, 1, 100001.	3.5	55
442	Advances in exploring the therapeutic potential of marine natural products. Pharmacological Research, 2019, 147, 104373.	7.1	72
443	Market power and risk-taking of banks: Some semiparametric evidence from emerging economies. Emerging Markets Review, 2019, 41, 100630.	4.4	8

ARTICLE IF CITATIONS # Effect of Euphorbia factor L1 on intestinal barrier impairment and defecation dysfunction in 5.3 12 444 Caenorhabditis elegans. Phytomedicine, 2019, 65, 153102. Nanoformulation as a tool for improvement of thiamethoxam encapsulation and evaluation of 445 ecotoxicological impacts. Energy, Ecology and Environment, 2019, 4, 310-317. Gliadin Intake Causes Disruption of the Intestinal Barrier and an Increase in Germ Cell Apoptosis in A 446 4.1 8 Caenorhabditis Elegans Model. Nutrients, 2019, 11, 2587. The toxicological paradigms of aluminum and the etiology of Alzheimer's disease in the nematode 447 1.9 <i>Caenorhabditis elegans</i>. Environmental Quality Management, 2019, 29, 147-154. Protective effect of neglected plant Diplocyclos palmatus on quorum sensing mediated infection of Serratia marcescens and UV-A induced photoaging in model Caenorhabditis elegans. Journal of 448 3.8 40 Photochemistry and Photobiology B: Biology, 2019, 201, 111637. Novel steroidal saponin isolated from Trillium tschonoskii maxim. exhibits anti-oxidative effect via 449 5.3 autophagy induction in cellular and Caenorhabditis elegans models. Phytomedicine, 2019, 65, 153088. Improved Biocompatibility of Aminoâ€Functionalized Graphene Oxide in <i>Caenorhabditis elegans</i>. 450 10.0 22 Small, 2019, 15, e1902699. Aging by pollutants: introducing the aging dose (AD)50. Environmental Sciences Europe, 2019, 31, . 5.5 Inducing Mild Traumatic Brain Injury in C. elegans via Cavitation-Free Surface Acoustic Wave-Driven 452 3.3 20 Ultrasonic Irradiation. Scientific Reports, 2019, 9, 12775. <i>Caenorhabditis elegans</i> As a Promising Alternative Model for Environmental Chemical Mixture 10.0 Effect Assessmentâ€"A Comparative Study. Environmental Science & amp; Technology, 2019, 53, 12725-12733. Unravelling the wound healing ability and mode of action of pyridine carboxamide oxime using 454 3 4.3Caenorhabditis elegans as potential prescreen wound model. Life Sciences, 2019, 235, 116859. Automated Platform for Long-Term Culture and High-Content Phenotyping of Single C. elegans 3.3 Worms. Scientific Reports, 2019, 9, 14340. High-Content and High-Throughput <i>In Vivo</i> Drug Screening Platforms Using Microfluidics. 456 1.2 29 Assay and Drug Development Technologies, 2019, 17, 8-13. Rosmarinic acid improved antioxidant properties and healthspan via the IIS and MAPK pathways in <i>Caenorhabditis elegans</i>. BioFactors, 2019, 45, 774-787. 5.4 Simple techniques to study multifaceted diabesity in the fly model. Toxicology Mechanisms and 458 2.7 5 Methods, 2019, 29, 549-560. Hybrid Assembly of the Genome of the Entomopathogenic Nematode <i>Steinernema carpocapsae</i> 1.8 18 Identifies the X-Chromosome. G3: Genes, Genomes, Genetics, 2019, 9, 2687-2697. Expanding the Biological Application of Fluorescent Benzothiadiazole Derivatives: A Phenotypic Screening Strategy for Anthelmintic Drug Discovery Using Caenorhabditis elegans. SLAS Discovery, 2019, 24, 755-765. 460 2.7 9 Investigating ROS, RNS, and H2S-Sensitive Signaling Proteins. Methods in Molecular Biology, 2019, 1990, 27-42.

#	Article	IF	CITATIONS
462	Caenorhabditis elegans and its applicability to studies on restless legs syndrome. Advances in Pharmacology, 2019, 84, 147-174.	2.0	5
463	Air Pollution Alters Caenorhabditis elegans Development and Lifespan: Responses to Traffic-Related Nanoparticulate Matter. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1189-1197.	3.6	27
464	In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and Androgen Receptors. International Journal of Molecular Sciences, 2019, 20, 1209.	4.1	25
465	Intergenerational reproductive toxicity of chlordecone in male Caenorhabditis elegans. Environmental Science and Pollution Research, 2019, 26, 11279-11287.	5.3	14
466	Selenium Stimulates Cadmium Detoxification in <i>Caenorhabditis elegans</i> through Thiols-Mediated Nanoparticles Formation and Secretion. Environmental Science & Technology, 2019, 53, 2344-2352.	10.0	19
467	Assessing effects of germline exposure to environmental toxicants by high-throughput screening in C. elegans. PLoS Genetics, 2019, 15, e1007975.	3.5	37
468	Oxidative stress response, epigenetic and behavioral alterations in Caenorhabditis elegans exposed to organophosphorus pesticide quinalphos. Biocatalysis and Agricultural Biotechnology, 2019, 17, 702-709.	3.1	13
469	Ingredients in Zijuan Pu'er Tea Extract Alleviate β-Amyloid Peptide Toxicity in a Caenorhabditis elegans Model of Alzheimer's Disease Likely through DAF-16. Molecules, 2019, 24, 729.	3.8	25
470	An industry perspective: A streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity. NeuroToxicology, 2019, 73, 17-30.	3.0	31
471	C. elegans expressing D76N l²2-microglobulin: a model for in vivo screening of drug candidates targeting amyloidosis. Scientific Reports, 2019, 9, 19960.	3.3	14
472	Modeling succinate dehydrogenase loss disorders in C. elegans through effects on hypoxia-inducible factor. PLoS ONE, 2019, 14, e0227033.	2.5	4
473	Alleviation of symptoms of Alzheimer's disease by diminishing Aβ neurotoxicity and neuroinflammation. Chemical Science, 2019, 10, 10149-10158.	7.4	30
474	Transgenerational effects of diesel particulate matter on Caenorhabditis elegans through maternal and multigenerational exposure. Ecotoxicology and Environmental Safety, 2019, 170, 635-643.	6.0	33
475	Metal contaminated soil leachates from an art glass factory elicit stress response, alter fatty acid metabolism and reduce lifespan in Caenorhabditis elegans. Science of the Total Environment, 2019, 651, 2218-2227.	8.0	18
476	Distinct transcriptional response of Caenorhabditis elegans to different exposure routes of perfluorooctane sulfonic acid. Environmental Research, 2019, 168, 406-413.	7.5	16
477	Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin. Environmental Pollution, 2019, 244, 947-957.	7.5	41
478	Indigenous Preparations of Bryonia laciniosa, Quercus infectoria, Putranjiva roxburghii and Mesua ferrea Induce Developmental Toxicity in C. elegans. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 657-667.	1.0	2
479	Caenorhabditis elegans-on-a-chip: microfluidic platforms for high-resolution imaging and phenotyping. , 2020, , 363-390.		4

ARTICLE IF CITATIONS Toxicological assessment and underlying mechanisms of tetrabromobisphenol A exposure on the soil 480 8.2 17 nematode Caenorhabditis elegans. Chemosphere, 2020, 242, 125078. Airborne toluene exposure causes germline apoptosis and neuronal damage that promotes 481 neurobehavioural changes in Caenorhabditis elegans. Environmental Pollution, 2020, 256, 113406. Microfluidic system for Caenorhabditis elegansculture and oxygen consumption rate measurements. 482 6.0 11 Lab on A Chip, 2020, 20, 126-135. PDMS filter structures for size-dependent larval sorting and on-chip egg extraction of C. elegans. Lab 483 on A Chip, 2020, 20, 155-167. Laboratory biases hinder Ecoâ€Evoâ€Devo integration: Hints from the microbial world. Journal of 484 1.3 4 Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 14-24. Piperazine designer drugs elicit toxicity in the alternative in vivo model <scp><i>Caenorhabditis elegans</i></scp>. Journal of Applied Toxicology, 2020, 40, 363-372. 2.8 Omics approach reveals perturbation of metabolism and phenotype in Caenorhabditis elegans 486 8.0 34 triggered by perfluorinated compounds. Science of the Total Environment, 2020, 703, 135500. Systematic phenomics analysis of autism-associated genes reveals parallel networks underlying reversible impairments in habituation. Proceedings of the National Academy of Sciences of the United 487 7.1 57 States of America, 2020, 117, 656-667. Loss of egli-1, the Caenorhabditis elegans Orthologue of a Downstream Target of SMN, Leads to 488 4.0 2 Abnormalities in Sensorimotor Integration. Molecular Neurobiology, 2020, 57, 1553-1569. The Role of Neurotransmitters in the Protection of Caenorhabditis Elegans for Salmonella Infection 489 by Lactobacillus. Frontiers in Cellular and Infection Microbiology, 2020, 10, 554052. Defining Caenorhabditis elegans as a model system to investigate lipoic acid metabolism. Journal of 490 2 3.4 Biological Chemistry, 2020, 295, 14973-14986. Involvement of dopamine receptor in the actions of non-psychoactive phytocannabinoids. Biochemical 2.1 and Biophysical Research Communications, 2020, 533, 1366-1370. Effects of Airborne Nanoparticles on the Nervous System: Amyloid Protein Aggregation, 492 4.1 12 Neurodegeneration and Neurodegenerative Diseases. Nanomaterials, 2020, 10, 1349. Force microscopy of the Caenorhabditis elegans embryonic eggshell. Microsystems and 14 Nanoengineering, 2020, 6, 29. Sub-nanowatt resolution direct calorimetry for probing real-time metabolic activity of individual C. 494 12.8 22 elegans worms. Nature Communications, 2020, 11, 2983. Identification of Flavoanoids From Finger Citron and Evaluation on Their Antioxidative and Antiaging Activities. Frontiers in Nutrition, 2020, 7, 584900. Caenorhabditis elegans Models to Investigate the Mechanisms Underlying Tau Toxicity in Tauopathies. 496 2.311 Brain Sciences, 2020, 10, 838. Caenorhabditis elegans as a Model Organism to Evaluate the Antioxidant Effects of Phytochemicals. 497 3.8 34 Molecules, 2020, 25, 3194.

#	ARTICLE	IF	CITATIONS
498	The FDA-approved drugs ticlopidine, sertaconazole, and dexlansoprazole can cause morphological changes in C.Âelegans. Chemosphere, 2020, 261, 127756.	8.2	7
499	Caenorhabditis elegans as a model system for studying aging-associated neurodegenerative diseases. Translational Medicine of Aging, 2020, 4, 60-72.	1.3	27
500	A robust and miniaturized screening platform to study natural products affecting metabolism and survival in Caenorhabditis elegans. Scientific Reports, 2020, 10, 12323.	3.3	18
501	PiquiÃ; Shells (<i>Caryocar villosum</i>): A Fruit by-Product with Antioxidant and Antiaging Properties in <i>Caenorhabditis elegans</i> . Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	4.0	10
502	Identification of Uric Acid Gluconucleoside–Ascaroside Conjugates in <i>Caenorhabditis elegans</i> by Combining Synthesis and MicroED. Organic Letters, 2020, 22, 6724-6728.	4.6	15
503	Counteracting Environmental Chemicals with Coenzyme Q10: An Educational Primer for Use with "Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the Caenorhabditis elegans Germline― Genetics, 2020, 216, 879-890.	2.9	2
504	Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Frontiers in Cellular Neuroscience, 2020, 14, 581907.	3.7	25
505	Paper-Based Analytical Device for Real-Time Monitoring of Egg Hatching in the Model Nematode <i>Caenorhabditis elegans</i> . ACS Sensors, 2020, 5, 1750-1757.	7.8	1
506	Assessing motor-related phenotypes of Caenorhabditis elegans with the wide field-of-view nematode tracking platform. Nature Protocols, 2020, 15, 2071-2106.	12.0	23
507	An approach usingCaenorhabditis elegansscreening novel targets to suppress tumour cell proliferation. Cell Proliferation, 2020, 53, e12832.	5.3	4
508	Molecular Muscle Experiment: Hardware and Operational Lessons for Future Astrobiology Space Experiments. Astrobiology, 2020, 20, 935-943.	3.0	8
509	Montmorency tart cherry (Prunus cerasus L.) acts as a calorie restriction mimetic that increases intestinal fat and lifespan in Caenorhabditis elegans. Journal of Functional Foods, 2020, 68, 103890.	3.4	9
510	Silica nanoparticles enhance germ cell apoptosis by inducing reactive oxygen species (ROS) formation in <i>Caenorhabditis elegans</i> . Journal of Toxicological Sciences, 2020, 45, 117-129.	1.5	21
511	Growth and Activity of Caenorhabditis elegans Exposed to Mechanical Vibration During the Embryonic Period. Biotechnology and Bioprocess Engineering, 2020, 25, 126-131.	2.6	6
512	Habituation in high-throughput genetic model organisms as a tool to investigate the mechanisms of neurodevelopmental disorders. Neurobiology of Learning and Memory, 2020, 171, 107208.	1.9	10
513	Defects in CISD-1, a mitochondrial iron-sulfur protein, lower glucose level and ATP production in Caenorhabditis elegans. Biomedical Journal, 2020, 43, 32-43.	3.1	10
514	Microfluidic Device for Microinjection of Caenorhabditis elegans. Micromachines, 2020, 11, 295.	2.9	9
515	Animal models of central nervous system disorders. , 2020, , 621-650.		0

	CITATION	Report	
#	Article	IF	Citations
516	An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. International Journal of Molecular Sciences, 2020, 21, 4537.	4.1	13
517	Use of Phycobiliproteins from Atacama Cyanobacteria as Food Colorants in a Dairy Beverage Prototype. Foods, 2020, 9, 244.	4.3	55
518	Optimization in continuous phaseâ€ŧransition extraction of crude flavonoids from finger citron fruit and evaluation on their antiaging activities. Food Science and Nutrition, 2020, 8, 1636-1648.	3.4	12
519	Effects of lowâ€dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and <scp><i>Caenorhabditis elegans</i></scp> . Birth Defects Research, 2020, 112, 445-479.	1.5	42
520	Bioelectronics for Millimeter-Sized Model Organisms. IScience, 2020, 23, 100917.	4.1	5
521	Caenorhabditis elegans as a model system for human diseases. Current Opinion in Biotechnology, 2020, 63, 118-125.	6.6	63
522	A novel micro-injection droplet microfluidic system for studying locomotive behavior responses to Cu2+ induced neurotoxin in individual C.elegans. Analytica Chimica Acta, 2020, 1106, 61-70.	5.4	6
523	Surface-Related Toxicity of Polystyrene Beads to Nematodes and the Role of Food Availability. Environmental Science & Technology, 2020, 54, 1790-1798.	10.0	94
524	Caenorhabitidis elegans as an animal model in toxicological studies. , 2020, , 533-544.		1
525	A novel antioxidant peptide purified from defatted round scad (Decapterus maruadsi) protein hydrolysate extends lifespan in Caenorhabditis elegans. Journal of Functional Foods, 2020, 68, 103907.	3.4	27
526	Structural identification and UPLC-ESI-QTOF-MS2 analysis of flavonoids in the aquatic plant Landoltia punctata and their in vitro and in vivo antioxidant activities. Food Chemistry, 2021, 343, 128392.	8.2	16
527	Overexpression of FKH-2/FOXG1 is neuroprotective in a C. elegans model of Machado-Joseph disease. Experimental Neurology, 2021, 337, 113544.	4.1	3
528	Neuroligin dependence of social behaviour in <i>Caenorhabditis elegans</i> provides a model to investigate an autism-associated gene. Human Molecular Genetics, 2021, 29, 3546-3553.	2.9	6
529	Investigation of cardiolipin oxidation products as a new endpoint for oxidative stress in C. elegans by means of online two-dimensional liquid chromatography and high-resolution mass spectrometry. Free Radical Biology and Medicine, 2021, 162, 216-224.	2.9	12
530	Onâ€Chip Rotation of <i>Caenorhabditis elegans</i> Using Microfluidic Vortices. Advanced Materials Technologies, 2021, 6, .	5.8	6
531	Gentamicin encapsulated within a biopolymer for the treatment of <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> infected skin ulcers. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 93-111.	3.5	27
532	Male reproductive toxicity involved in spermatogenesis induced by perfluorooctane sulfonate and perfluorooctanoic acid in Caenorhabditis elegans. Environmental Science and Pollution Research, 2021, 28, 1443-1453.	5.3	19
533	Biophysical phenotyping of C. elegans in a microfluidic chip for high-throughput drug screening. , 2021, , 261-293.		1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
534	Predictive models for nanotoxicology: in vitro, in vivo, and computational models. , 202	1,,683-710.		3
535	Beyond Proteostasis: Lipid Metabolism as a New Player in ER Homeostasis. Metabolites,	2021, 11, 52.	2.9	30
536	Efficacy of astaxanthin from different sources: Reports on the suitability for human heal nutrition. , 2021, , 391-409.	th and		1
537	Benzo[a]pyrene and Caenorhabditis elegans: defining the genotoxic potential in an orgathe classical CYP1A1 pathway. Archives of Toxicology, 2021, 95, 1055-1069.	anism lacking	4.2	17
538	A New Measure to Characterize the Self-Similarity of Binary Time Series and its Applicati Access, 2021, 9, 73799-73807.	on. IEEE	4.2	3
539	Micro systems for the study of behavioral responses of C. elegans to various physical ar stimuli. , 2021, , 323-339.	d chemical		1
540	Research on Sex Selection Drugs: Haryana Paves the Way. , 2021, , 79-119.			0
541	Microfluidic devices for immobilization and micromanipulation of single cells and small o 2021, , 391-412.	brganisms. ,		0
542	Recent developments in astaxanthin production from Phaffia rhodozyma and its applica 225-251.	tions. , 2021, ,		5
543	Caenorhabditis elegans to Model the Capacity of Ascorbic Acid to Reduce Acute Nitrite Different Feed Conditions: Multivariate Analytics on Behavioral Imaging. International Jc Environmental Research and Public Health, 2021, 18, 2068.	Toxicity under urnal of	2.6	2
544	Rebaudioside A Enhances Resistance to Oxidative Stress and Extends Lifespan and Heal Caenorhabditis elegans. Antioxidants, 2021, 10, 262.	thspan in	5.1	16
545	The utilization of small nonâ€mammals in traumatic brain injury research: A systematic Neuroscience and Therapeutics, 2021, 27, 381-402.	review. CNS	3.9	7
546	Modelling epilepsy in the mouse: challenges and solutions. DMM Disease Models and M 14, .	echanisms, 2021,	2.4	33
547	Molecular Basis of Neuronal Autophagy in Ageing: Insights from Caenorhabditis elegans 10, 694.	. Cells, 2021,	4.1	10
548	C. elegans: A biosensor for host–microbe interactions. Lab Animal, 2021, 50, 127-135		0.4	11
549	Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining. S Reports, 2021, 11, 6852.	cientific	3.3	4
552	InÂvivo testing of mucus-permeating nanoparticles for oral insulin delivery using Caeno elegans as a model under hyperglycemic conditions. Acta Pharmaceutica Sinica B, 2021	habditis , 11, 989-1002.	12.0	15
553	Bacterial Quality, Prevalence of Pathogens, and Molecular Characterization of Biofilm-Pr Staphylococcus aureus from Korean Dairy Farm Environments. Animals, 2021, 11, 1306		2.3	4

#	Article	IF	CITATIONS
554	Induction of stress resistance and extension of lifespan in Chaenorhabditis elegans serotonin-receptor knockout strains by withanolide A. Phytomedicine, 2021, 84, 153482.	5.3	9
555	Quo Vadis Caenorhabditis elegans Metabolomics—A Review of Current Methods and Applications to Explore Metabolism in the Nematode. Metabolites, 2021, 11, 284.	2.9	20
556	Novel Features for Binary Time Series Based on Branch Length Similarity Entropy. Entropy, 2021, 23, 480.	2.2	2
558	The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy. Ageing Research Reviews, 2021, 67, 101271.	10.9	115
559	Acute Toxicity and Transgenerational Effects of Perfluorobutane Sulfonate on <i>Caenorhabditis elegans</i> . Environmental Toxicology and Chemistry, 2021, 40, 1971-1980.	4.3	14
560	Dissecting lipid droplet biology with coherent Raman scattering microscopy. Journal of Cell Science, 2022, 135, .	2.0	16
561	Superoxide dismutase 1 (SOD1) and cadmium: A three models approach to the comprehension of its neurotoxic effects. NeuroToxicology, 2021, 84, 125-135.	3.0	5
562	Withanone Ameliorates Stress Symptoms in Caenorhabditis Elegans by Acting through Serotonin Receptors. Pharmacopsychiatry, 2021, 54, 215-223.	3.3	0
563	BODIPY-Appended Pt(II) Complexes with High Toxicities and Anti-chemoresistance Performances in a Cisplatin Resistant <i>In Vivo</i> Model. Inorganic Chemistry, 2021, 60, 10047-10055.	4.0	3
564	Impact of Tuning the Surface Charge Distribution on Colloidal Iron Oxide Nanoparticle Toxicity Investigated in Caenorhabditis elegans. Nanomaterials, 2021, 11, 1551.	4.1	7
567	In Vivo Biointeraction and Alleviation of Toxicity of MWCNTs upon Functionalization with ssDNA in a Caenorhabditis elegans Model. Journal of Electronic Materials, 2021, 50, 4974-4990.	2.2	2
568	How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs. Communications Physics, 2021, 4, .	5.3	29
569	Identification of simple arylfluorosulfates as potent agents against resistant bacteria. Proceedings of the United States of America, 2021, 118, .	7.1	26
570	Perfluorooctanoic acid (PFOA) induces behavioural, reproductive and developmental toxicological impacts in Caenorhabditis elegans at concentrations relevant to the contaminated areas. Environmental Advances, 2021, 4, 100053.	4.8	6
571	Bioassays to screen the toxicity in drinking water samples collected in Brazilian rural area. Toxicology Research, 2021, 10, 856-867.	2.1	11
572	The triterpenoid ursolic acid ameliorates stress in Caenorhabditis elegans by affecting the depression-associated genes skn-1 and prdx2. Phytomedicine, 2021, 88, 153598.	5.3	13
573	An In Vivo Microfluidic Study of Bacterial Load Dynamics and Absorption in the C. elegans Intestine. Micromachines, 2021, 12, 832.	2.9	9
574	Antiaging Effects of Vicatia thibetica de Boiss Root Extract on Caenorhabditis elegans and Doxorubicin-Induced Premature Aging in Adult Mice. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13	4.0	1

#	Article	IF	Citations
575	In vivo Toxicity Evaluation of a Nano-drug Delivery System Using a Caenorhabditis elegans Model System. Chemical Research in Chinese Universities, 2022, 38, 1018-1024.	2.6	0
576	An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans. BMC Biology, 2021, 19, 170.	3.8	2
577	Drosophila: A model to study the pathogenesis of Parkinson's disease. CNS and Neurological Disorders - Drug Targets, 2021, 20, 259-277.	1.4	4
578	Harnessing model organism genomics to underpin the machine learning-based prediction of essential genes in eukaryotes – Biotechnological implications. Biotechnology Advances, 2022, 54, 107822.	11.7	9
580	A liquid-culture-based screening approach to study compounds affecting inflammatory processes in <i>Caenorhabditis elegans</i> . Biological Chemistry, 2022, 403, 123-129.	2.5	1
581	Soybeans agroindustrial residues as Staphylococcus epidermidis and S. aureus biofilm inhibitors. Industrial Crops and Products, 2021, 170, 113713.	5.2	5
582	Integrating transcriptomics and behavior tests reveals how the C. elegans responds to copper induced aging. Ecotoxicology and Environmental Safety, 2021, 222, 112494.	6.0	16
583	Fundamentals and applications of acoustics in microfluidics. , 2022, , 297-321.		5
584	Pseudo toxicity abatement effect of norfloxacin and copper combined exposure on Caenorhabditis elegans. Chemosphere, 2022, 287, 132019.	8.2	10
585	Ursolic acid enhances stress resistance, reduces ROS accumulation and prolongs life span in <i>C. elegans</i> serotonin-deficient mutants. Food and Function, 2021, 12, 2242-2256.	4.6	11
586	An optimized assay for early and rapid assessment of behavioral alterations using Caenorhabditis elegans as an alternate animal model. Science Archives, 2021, 02, 56-61.	0.1	0
587	The Potential of Rna Interference for the Management of Phytoparasitic Nematodes. , 2008, , 185-203.		1
588	Evaluation of Carotenoids Protection Against Oxidative Stress in the Animal Model Caenorhabditis elegans. Methods in Molecular Biology, 2020, 2083, 387-401.	0.9	3
589	Small-Molecule Probes of Plant Glycopolymer Metabolism. , 2017, , .		2
590	Nematode C. elegans: Genetic Dissection of Pathways Regulating Seizure and Epileptic-Like Behaviors. , 2017, , 327-344.		2
591	The impact of manganese on neurotransmitter systems. Journal of Trace Elements in Medicine and Biology, 2020, 61, 126554.	3.0	35
592	Fukugiside, a biflavonoid from Garcinia travancorica inhibits biofilm formation of Streptococcus pyogenes and its associated virulence factors. Journal of Medical Microbiology, 2018, 67, 1391-1401.	1.8	14
597	Multimodal imaging and high-throughput image-processing for drug screening on living organisms on-chip. Journal of Biomedical Optics, 2018, 24, 1.	2.6	8

#	ARTICLE	IF	CITATIONS
598	In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence. PLoS ONE, 2009, 4, e6622.	2.5	135
599	A Comparative Study of Fat Storage Quantitation in Nematode Caenorhabditis elegans Using Label and Label-Free Methods. PLoS ONE, 2010, 5, e12810.	2.5	202
600	Laterally Orienting C. elegans Using Geometry at Microscale for High-Throughput Visual Screens in Neurodegeneration and Neuronal Development Studies. PLoS ONE, 2012, 7, e35037.	2.5	55
601	Monascus-Fermented Dioscorea Enhances Oxidative Stress Resistance via DAF-16/FOXO in Caenorhabditis elegans. PLoS ONE, 2012, 7, e39515.	2.5	22
602	Liuwei Dihuang (LWDH), a Traditional Chinese Medicinal Formula, Protects against β-Amyloid Toxicity in Transgenic Caenorhabditis elegans. PLoS ONE, 2012, 7, e43990.	2.5	78
603	High Concentration of Vitamin E Decreases Thermosensation and Thermotaxis Learning and the Underlying Mechanisms in the Nematode Caenorhabditis elegans. PLoS ONE, 2013, 8, e71180.	2.5	25
604	An Automated Microfluidic Multiplexer for Fast Delivery of C. elegans Populations from Multiwells. PLoS ONE, 2013, 8, e74480.	2.5	18
605	Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture. PLoS ONE, 2015, 10, e0132896.	2.5	20
606	Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms. PLoS ONE, 2018, 13, e0193989.	2.5	25
607	Germline Modification and Engineering in Avian Species. Molecules and Cells, 2015, 38, 743-749.	2.6	17
608	Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX: Alternatives To Animal Experimentation, 2011, 28, 17-44.	1.5	79
609	Questioning the preclinical paradigm: natural, extreme biology as an alternative discovery platform. Aging, 2014, 6, 913-920.	3.1	16
610	A Transparent window into biology: A primer on Caenorhabditis elegans. WormBook, 2015, , 1-31.	5.3	113
611	Modeling Host-Microbiome Interactions in <i>Caenorhabditis elegans</i> . Journal of Nematology, 2017, 49, 348-356.	0.9	32
612	Multitarget Network Strategies to Influence Memory and Forgetting: The Ras/Mapk Pathway as a Novel Option. Mini-Reviews in Medicinal Chemistry, 2015, 15, 696-704.	2.4	11
613	The Phosphobase Methylation Pathway in Caernorhabditis elegans: A New Route to Phospholipids in Animals. Current Chemical Biology, 2011, 5, 183-188.	0.5	2
614	Worms in Space for Outreach on Earth: Space Life Science Activities for the Classroom. Gravitational and Space Research: Publication of the American Society for Gravitational and Space Research, 2018, 6, 74-82.	0.8	1
615	Temporal Profile of Brain Gene Expression After Prey Catching Conditioning in an Anuran Amphibian. Frontiers in Neuroscience, 2019, 13, 1407.	2.8	3

		CITATION R	EPORT	
#	Article		IF	CITATIONS
616	Let research on subterranean habitats resonate!. Subterranean Biology, 0, 36, 63-71.		5.0	6
617	Fine Particulate Matter-induced Toxic Effects in an Animal Model of Caenorhabditis ele and Air Quality Research, 2019, 19, 1068-1078.	gans. Aerosol	2.1	20
618	Characterizing the Effect of Static Magnetic Fields on <i>C. elegans&ar Using Microfluidics. Advances in Bioscience and Biotechnology (Print), 2015, 06, 583-</i>	np;lt;/i> 591.	0.7	12
619	Caenorhabditis elegans as a Biological Model for Multilevel Biomarker Analysis in Envir Toxicology and Risk Assessment. Toxicological Research, 2008, 24, 235-243.	onmental	2.1	11
620	Simple Evaluation of Listeria monocytogenes Pathogenesis Using Caenorhabditis elega Model. Food Science of Animal Resources, 2019, 39, 84-92.	ıns Animal	4.1	9
621	Chlorophyll enhances oxidative stress tolerance in <i>Caenorhabditis elegans</i> and endoted by the stress of the st	ktends its	2.0	41
622	Arbutin increases <i>Caenorhabditis elegans</i> longevity and stress resistance. PeerJ,	2017, 5, e4170.	2.0	11
623	Didymin improves UV irradiation resistance in <i>C. elegans</i> . PeerJ, 2019, 6, e6218		2.0	6
624	Comprehensive phenotyping and transcriptome profiling to study nanotoxicity in <i>C PeerJ, 2020, 8, e8684.</i>	elegans.	2.0	12
625	<i>Caenorhabditis elegans</i> provides an efficient drug screening platform for <i>GN disorders and highlights the potential role of caffeine in controlling dyskinesia. Human Genetics, 2022, 31, 929-941.</i>	AO1-related Molecular	2.9	32
627	Risperidone Induced Alterations in Feeding and Locomotion Behavior of Caenorhabditi Current Research in Toxicology, 2021, 2, 367-374.	s elegans.	2.7	1
628	Significance of probiotics in remodeling the gut consortium to enhance the immunity Caenorhabditis elegans. Genesis, 2021, 59, e23454.	of	1.6	0
629	Parkinson's disease and microRNAs - Lessons from model organisms and human studie Gerontology, 2021, 155, 111585.	s. Experimental	2.8	5
632	High-Content Screening in Forward (Phenotypic Screening with Organisms) and Rever	se (Structural) Tj ETQq1 1	. 0.784314	rgBT /Over
633	Caenorhabditis elegans as a Predictive Model for Methylmercury-Induced Neurotoxicit 319-333.	ı., 2012, ,		0
634	Analysis of responses to physical stimuli in Caenorhabditis elegans using a microfluidic Journal of the Korean Society of Visualization, 2015, 13, 22-27.	system.	0.1	0
635	Remote focal scanning and sub-volume optical projection tomography. , 2016, , .			0
636	Advances in the Use of Caenorhabditis Choose in the Nutritional Study of Obesity. Jou & Metabolism, 2017, 08, .	nal of Diabetes	0.2	0

#	Article	IF	CITATIONS
640	<i>α</i> -Mangostin Promotes DAF-16-Mediated Thermotolerance in <i>Caenorhabditis elegans</i> . Food and Nutrition Sciences (Print), 2018, 09, 693-702.	0.4	0
641	A microfluidic array for high-content screening at whole-organism resolution. , 2018, , .		1
642	Caenorhabditis elegans Nematode: A Versatile Model to Evaluate the Toxicity of Nanomaterials In Vivo. , 2019, , 323-345.		1
644	Detection of Lipid Depot Within Drosophila. Springer Protocols, 2020, , 111-122.	0.3	0
645	The Matrisome of Model Organisms: From In-Silico Prediction to Big-Data Annotation. Biology of Extracellular Matrix, 2020, , 17-42.	0.3	7
646	Gain of Function of Malate Dehydrogenase 2 and Familial Hyperglycemia. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 668-684.	3.6	4
647	Salmonella Typhimurium infection causes defects and fastening of Caenorhabditis elegans developmental stages. Microbes and Infection, 2022, 24, 104894.	1.9	4
648	The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Frontiers in Pharmacology, 2021, 12, 710976.	3.5	14
649	Caenorhabditis elegans: A Tool for Antimicrobial Drug Discovery. , 2020, , 559-596.		0
650	Caenorhabditis elegans: A Model Organism to Decipher Biological Activities of Nanoparticles. , 2020, , 139-175.		0
651	Xanthotoxin induced photoactivated toxicity, oxidative stress and cellular apoptosis in Caenorhabditis elegans under ultraviolet A. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 251, 109217.	2.6	6
652	The Nucleus of Intestinal Cells of the Bacterivore Nematode Caenorhabditis elegans as a Sensitive Sensor of Environmental Pollutants. Methods in Molecular Biology, 2020, 2175, 207-217.	0.9	2
653	Caenorhabditis elegans: Evaluation of Nanoparticle Toxicity. , 2020, , 333-369.		1
655	From sequence to information. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190448.	4.0	5
656	Volume holographic optical element for light sheet fluorescence microscopy. Optics Letters, 2020, 45, 6478.	3.3	6
657	Omics Technology: Role and Future in Providing Biotic and Abiotic Stress Tolerance to Plants. Rhizosphere Biology, 2021, , 151-168.	0.6	1
658	Experimental studies with nematodes in ecotoxicology: an overview. Journal of Nematology, 2015, 47, 11-27.	0.9	24
659	Modeling Host-Microbiome Interactions in. Journal of Nematology, 2017, 49, 348-356.	0.9	18

ARTICLE IF CITATIONS and Neurodegeneration. Advances in Medicine and Biology, 2012, 44, 1-46. 0.2 0 660 In vivo imaging of fluorescent single-walled carbon nanotubes within C.Âelegans nematodes in the 5.5 near-infrared window. Materials Today Bio, 2021, 12, 100175. Perfluorooctane sulfonate (PFOS) induces several behavioural defects in Caenorhabditis elegans that 664 8.2 7 can also be transferred to the next generations. Chemosphere, 2022, 291, 132896. In Silico Investigation of Conserved miRNAs and Their Targets From the Expressed Sequence Tags in 2.0 Neospora Caninum Genome. Bioinformatics and Biology Insights, 2021, 15, 117793222110467. Ginkgo seed extract promotes longevity and stress resistance of <i>Caenorhabditis elegans</i>. Food 666 4.6 6 and Function, 2021, 12, 12395-12406. Polyphenols from traditional Chinese medicine and Mediterranean diet are effective against Al² toxicity <i>in vitro</i> and <i>in vivo</i> in <i>Caenorhabditis elegans</i>. Food and Function, 2022, 13, 4.6 1206-1217. Drug discovery from natural products – Old problems and novel solutions for the treatment of 668 2.8 19 neurodegenerative diseases. Journal of Pharmaceutical and Biomedical Analysis, 2022, 210, 114553. The Impact of Background-Level Carboxylated Single-Walled Carbon Nanotubes (SWCNTsâ[°]COOH) on Induced Toxicity in Caenorhabditis elegans and Human Cells. International Journal of Environmental 9 2.6 Research and Public Health, 2022, 19, 1218. Anti-Larval and Anti-Algal Natural Products from Marine Microorganisms as Sources of Anti-Biofilm 670 4.6 12 Agents. Marine Drugs, 2022, 20, 90. Confounds of using the unc-58 selection marker highlights the importance of genotyping co-CRISPR 671 2.5 genes. PLoS ONE, 2022, 17, e0253351. Oxidative stress suppression in C. elegans by peptides from dogfish skin via regulation of 672 3 4.6 transcription factors DAF-16 and HSF-1. Food and Function, 2022, 13, 716-724. Novel antioxidant peptides from Yak bones collagen enhanced the capacities of antiaging and 3.4 antioxidant in Caenorhabditis elegans. Journal of Functional Foods, 2022, 89, 104933 Insights into cisplatin-induced neurotoxicity and mitochondrial dysfunction in <i>Caenorhabditis 674 2.4 3 elegans</i>. DMM Disease Models and Mechanisms, 2022, , . Lifespan extension and anti-oxidant effects of carotenoid pigments in Caenorhabditis elegans. Bioresource Technology Reports, 2022, 17, 100962. 2.7 A perspective of active microfluidic platforms as an enabling tool for applications in other fields. 676 7 2.6 Journal of Micromechanics and Microengineering, 2022, 32, 043001. Translational relevance of forward genetic screens in animal models for the study of psychiatric 6.1 disease. Neuroscience and Biobehavioral Reviews, 2022, 135, 104559. Meta-lens light-sheet fluorescence microscopy for <i>in vivo</i> imaging. Nanophotonics, 2022, 11, 679 6.0 20 1949-1959. Host Genetic Determinants of the Microbiome Across Animals: From <i>Caenorhabditis elegans</i> Cattle. Annual Review of Animal Biosciences, 2022, 10, 203-226.

#	Article	IF	CITATIONS
681	Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics. Biomolecules, 2022, 12, 342.	4.0	19
682	The Endogenous Metabolite Glycerophosphocholine Promotes Longevity and Fitness in Caenorhabditis elegans. Metabolites, 2022, 12, 177.	2.9	7
683	Caenorhabditis elegans as a powerful tool in natural product bioactivity research. Applied Biological Chemistry, 2022, 65, .	1.9	10
684	Demystifying the O-GlcNAc Code: A Systems View. Chemical Reviews, 2022, 122, 15822-15864.	47.7	30
685	Curcumin and Quercetin-Loaded Lipid Nanocarriers: Development of Omega-3 Mucoadhesive Nanoemulsions for Intranasal Administration. Nanomaterials, 2022, 12, 1073.	4.1	10
686	The Role of Alternative Toxicological Trials in Drug Discovery Programs. The Case of <i>Caenorhabditis elegans</i> and Other Methods. Current Medicinal Chemistry, 2022, 29, 5270-5288.	2.4	8
687	Mechanism of Longevity Extension of Caenorhabditis elegans Induced by Schizophyllum commune Fermented Supernatant With Added Radix Puerariae. Frontiers in Nutrition, 2022, 9, 847064.	3.7	15
688	Rapid assessment of the temporal function and phenotypic reversibility of neurodevelopmental disorder risk genes in <i>Caenorhabditis elegans</i> . DMM Disease Models and Mechanisms, 2022, 15, .	2.4	1
689	Epigenetic effects of graphene oxide and its derivatives: A mini-review. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2022, 878, 503483.	1.7	4
690	Apigenin glycosides from green pepper enhance longevity and stress resistance in Caenorhabditis elegans. Nutrition Research, 2022, 102, 23-34.	2.9	9
691	Novel Extraction Method for Combined Lipid and Metal Speciation From Caenorhabditis elegans With Focus on Iron Redox Status and Lipid Profiling. Frontiers in Chemistry, 2021, 9, 788094.	3.6	4
692	Sulforaphane Targets TRA-1/GLI Upstream of DAF-16/FOXO to Promote C. elegans Longevity and Healthspan. Frontiers in Cell and Developmental Biology, 2021, 9, 784999.	3.7	5
694	Lysinibacillus sphaericus mediates stress responses and attenuates arsenic toxicity in Caenorhabditis elegans. Science of the Total Environment, 2022, 835, 155377.	8.0	6
695	Water quality assessment in the region of Vale dos Sinos trough the alternative model Caenorhabditis elegans. Journal of Environmental Analysis and Progress, 2022, 7, 062-072.	0.2	1
696	Tetrachlorobisphenol A mediates reproductive toxicity in Caenorhabditis elegans via DNA damage-induced apoptosis. Chemosphere, 2022, 300, 134588.	8.2	10
708	Chondroitin sulfate E alleviates β-amyloid toxicity in transgenic Caenorhabditis elegans by inhibiting its aggregation. International Journal of Biological Macromolecules, 2022, 209, 1280-1287.	7.5	9
709	How to keep up with the analysis of classic and emerging neurotoxins: Age-resolved fitness tests in the animal model - a step-by-step protocol EXCLI Journal, 2022, 21, 344-353.	0.7	1
710	Iron overload and neurodegenerative diseases: What can we learn from <i>Caenorhabditis elegans</i> ?. Toxicology Research and Application, 2022, 6, 239784732210918.	0.6	2

#	Article	IF	CITATIONS
711	Using a Caenorhabditis elegans Parkinson's Disease Model to Assess Disease Progression and Therapy Efficiency. Pharmaceuticals, 2022, 15, 512.	3.8	8
712	Sublethal Toxicity of Fluorine-Free Firefighting Foams in Soil Invertebrate <i>Caenorhabditis elegans</i> . Environmental Science and Technology Letters, 2022, 9, 561-566.	8.7	7
713	Cross-species metabolomic analysis of tau- and DDT-related toxicity. , 2022, 1, .		5
714	Natural Bioactive Products and Alzheimer's Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models. Diseases (Basel, Switzerland), 2022, 10, 28.	2.5	4
715	Assessment of the Effects of Organic vs. Inorganic Arsenic and Mercury in Caenorhabditis elegans. Current Research in Toxicology, 2022, , 100071.	2.7	6
716	In vivo toxicity assessment of eugenol and vanillin-functionalised silica particles using Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2022, 238, 113601.	6.0	4
717	Caenorhabditis elegans as an in vivo model for food bioactives: A review. Current Research in Food Science, 2022, 5, 845-856.	5.8	8
719	The evolving role of the Caenorhabditis elegans model as a tool to advance studies in nutrition and health. Nutrition Research, 2022, 106, 47-59.	2.9	8
720	1-Mesityl-3-(3-Sulfonatopropyl) Imidazolium Protects Against Oxidative Stress and Delays Proteotoxicity in C. elegans. Frontiers in Pharmacology, 0, 13, .	3.5	3
721	Acute, Sublethal, and Developmental Toxicity of Kratom (Mitragyna speciosa Korth.) Leaf Preparations on Caenorhabditis elegans as an Invertebrate Model for Human Exposure. International Journal of Environmental Research and Public Health, 2022, 19, 6294.	2.6	3
722	Effects of 10ÂT static magnetic field on the function of sperms and their offspring in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2022, 240, 113671.	6.0	2
723	Characterization of Nematicidal Activity and Nematode-Toxic Metabolites of a Soilborne Brevundimonas bullata Isolate. Pathogens, 2022, 11, 708.	2.8	0
724	Nematode surface functionalization with hydrogel sheaths tailored in situ. Materials Today Bio, 2022, 15, 100328.	5.5	1
725	cep-1 mediated the mitohormesis effect of Shengmai formula in regulating Caenorhabditis elegans lifespan. Biomedicine and Pharmacotherapy, 2022, 152, 113246.	5.6	2
726	Î'-Carotene Genetically-Enriched Lyophilized Orange Juice Increases Antioxidant Capacity and Reduces Î'-Amyloid Proteotoxicity and Fat Accumulation in Caenorhabditis Elegans. SSRN Electronic Journal, 0, ,	0.4	0
727	Heparan sulfate proteoglycans mediate prion-like α-synuclein toxicity in Parkinson's in vivo models. Life Science Alliance, 2022, 5, e202201366.	2.8	11
728	Paecilomyces variotii extract increases lifespan and protects against oxidative stress in Caenorhabditis elegans through SKN-1, but not DAF-16. Arabian Journal of Chemistry, 2022, 15, 104073.	4.9	1
729	Exposome, Molecular Pathways and One Health: The Invertebrate Caenorhabditis elegans. International Journal of Molecular Sciences, 2022, 23, 9084.	4.1	4

#	Article	IF	CITATIONS
730	Dietary Methylglyoxal Exposure Induces Alzheimer's Disease by Promoting Amyloid β Accumulation and Disrupting Autophagy in <i>Caenorhabditis elegans</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 10011-10021.	5.2	4
731	Mitochonic Acid 5 Improves Duchenne Muscular Dystrophy and Parkinson's Disease Model of Caenorhabditis elegans. International Journal of Molecular Sciences, 2022, 23, 9572.	4.1	6
732	A new use for old drugs: identifying compounds with an anti-obesity effect using a high through-put semi-automated Caenorhabditis elegans screening platform. Heliyon, 2022, 8, e10108.	3.2	5
733	Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. Environmental Pollution, 2022, 311, 119927.	7.5	11
734	In vivo antioxidant effect of edible cricket (Gryllodes sigillatus) peptides using a Caenorhabditis elegans model. Food Hydrocolloids for Health, 2022, 2, 100083.	3.9	12
735	Genetic Analysis of Development. , 2022, , 803-870.		0
736	Three-Dimensional Arenas for the Assessment of Caenorhabditis elegans Behavior. International Journal of Bioprinting, 2022, 8, 610.	3.4	1
738	Reciprocating intestinal flows enhance glucose uptake in C. elegans. Scientific Reports, 2022, 12, .	3.3	6
739	Manganese-Induced Toxicity in C. elegans: What Can We Learn from the Transcriptome?. International Journal of Molecular Sciences, 2022, 23, 10748.	4.1	4
740	Pollutants corrupt resilience pathways of aging in the nematode C. elegans. IScience, 2022, 25, 105027.	4.1	6
741	LC-MS/MS Insight into Vitamin C Restoration to Metabolic Disorder Evoked by Amyloid β in Caenorhabditis elegans CL2006. Metabolites, 2022, 12, 841.	2.9	6
742	CYP35 family in Caenorhabditis elegans biological processes: fatty acid synthesis, xenobiotic metabolism, and stress responses. Archives of Toxicology, 2022, 96, 3163-3174.	4.2	6
743	<i>Caenorhabditis elegans</i> as an emerging model in food and nutrition research: importance of standardizing base diet. Critical Reviews in Food Science and Nutrition, 0, , 1-19.	10.3	4
744	A multiplex gene expression assay for direct measurement of RNA transcripts in crude lysates of the nematode <i>Caenorhabditis elegans</i> used as bioanalytical tool. Environmental Toxicology and Chemistry, 0, , .	4.3	0
745	A new diterpenoid from the leaves and twigs of <i>Croton lachnocarpus</i> Benth. Natural Product Research, 0, , 1-7.	1.8	0
746	Evidence for Complex Interplay between Quorum Sensing and Antibiotic Resistance in Pseudomonas aeruginosa. Microbiology Spectrum, 2022, 10, .	3.0	8
747	β-carotene genetically-enriched lyophilized orange juice increases antioxidant capacity and reduces β-amyloid proteotoxicity and fat accumulation in Caenorhabditis elegans. Food Chemistry Molecular Sciences, 2022, 5, 100141.	2.1	1
748	Inferring a spatial code of cell-cell interactions across a whole animal body. PLoS Computational Biology, 2022, 18, e1010715.	3.2	14

#	Article	IF	CITATIONS
749	Quantitative description of neuronal calcium dynamics in C. elegans' thermoreception. BioSystems, 2023, 223, 104814.	2.0	0
750	Behavioural, developmental and reproductive toxicological impacts of perfluorobutanoic acid (PFBA) in Caenorhabditis elegans. Environmental Challenges, 2023, 10, 100662.	4.2	2
752	The FMRFamide-like peptide FLP-1 modulates larval development by regulating the production and secretion of the insulin-like peptide DAF-28 in <i>Caenorhabditis elegans</i> . Bioscience, Biotechnology and Biochemistry, 2023, 87, 171-178.	1.3	2
753	A Decade of CRISPR-Cas Gnome Editing in C. elegans. International Journal of Molecular Sciences, 2022, 23, 15863.	4.1	1
754	Neurogenetic Analysis in Caenorhabditis elegans. Learning Materials in Biosciences, 2023, , 13-46.	0.4	0
755	AdoR-1 (Adenosine Receptor) Contributes to Protection against Paraquat-Induced Oxidative Stress in Caenorhabditis elegans. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	4.0	0
757	Unconventional Myosins from Caenorhabditis elegans as a Probe to Study Human Orthologues. Biomolecules, 2022, 12, 1889.	4.0	1
758	Triphenyl phosphate induced reproductive toxicity through the JNK signaling pathway in Caenorhabditis elegans. Journal of Hazardous Materials, 2023, 446, 130643.	12.4	5
760	Anti-aging effects of dietary phytochemicals: From <i>Caenorhabditis elegans</i> , <i>Drosophila melanogaster</i> , rodents to clinical studies. Critical Reviews in Food Science and Nutrition, 0, , 1-26.	10.3	3
761	Application of Caenorhabditis elegans in Lipid Metabolism Research. International Journal of Molecular Sciences, 2023, 24, 1173.	4.1	8
762	See the Unseen: Redâ€Emissive Carbon Dots for Visualizing the Nucleolar Structures in Two Model Animals and In Vivo Drug Toxicity. Small, 2023, 19, .	10.0	13
763	Lipidomic and Metallomic Alteration of <i>Caenorhabditis elegans</i> after Acute and Chronic Manganese, Iron, and Zinc Exposure with a Link to Neurodegenerative Disorders. Journal of Proteome Research, 0, , .	3.7	1
764	Araçá (Psidium Cattleianum Sabine) ethanol extracts increase lifespan and alleviate oxidative stress in Caenorhabditis elegans. Journal of Agriculture and Food Research, 2023, 11, 100505.	2.5	0
765	Ecotoxicity induced by total, water soluble and insoluble components of atmospheric fine particulate matter exposure in Caenorhabditis elegans. Chemosphere, 2023, 316, 137672.	8.2	3
766	Invertebrate and Vertebrate Models of Tauopathies. , 2011, , 69-85.		0
767	Nematode gene annotation by machine-learning-assisted proteotranscriptomics enables proteome-wide evolutionary analysis. Genome Research, 2023, 33, 112-128.	5.5	1
768	Chemical Composition and Transgenerational Effects on Caenorhabditis elegans of Seasonal Fine Particulate Matter. Toxics, 2023, 11, 116.	3.7	4
769	Gut-to-Brain α-Synuclein Transmission in Parkinson's Disease: Evidence for Prion-like Mechanisms. International Journal of Molecular Sciences, 2023, 24, 7205.	4.1	5

#	Article	IF	CITATIONS
770	Worm Generator: A System for High-Throughput <i>in Vivo</i> Screening. Nano Letters, 2023, 23, 1280-1288.	9.1	5
771	DoE development of ionic gradient liposomes: A successful approach to improve encapsulation, prolong anesthesia and decrease the toxicity of etidocaine. International Journal of Pharmaceutics, 2023, 634, 122672.	5.2	1
772	Theory and practice of using cell strainers to sort Caenorhabditis elegans by size. PLoS ONE, 2023, 18, e0280999.	2.5	0
773	<i>In vivo</i> quantitative high-throughput screening for drug discovery and comparative toxicology. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	3
774	Impact of SMFs on Microorganisms, Plants, and Animals. , 2023, , 187-237.		2
775	Role of Animal Models in Parkinson's Disease (PD): What role they play in preclinical translational research. CNS and Neurological Disorders - Drug Targets, 2023, 22, .	1.4	0
776	Geniposide-Rich <i>Gardenia jasminoides</i> Ellis Fruit Extract Increases Healthspan in <i>Caenorhabditis elegans</i> . Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2023, 78, 1108-1115.	3.6	1
777	Investigation into the communication between unheated and heat-stressed Caenorhabditis elegans via volatile stress signals. Scientific Reports, 2023, 13, .	3.3	2
778	Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in <i>Caenorhabditis elegans</i> . ACS Omega, 2023, 8, 8936-8959.	3.5	2
779	Chromene-dihydropyrimidinone and xanthene-dihydropyrimidinone hybrids: design, synthesis, and antibiofilm activities. New Journal of Chemistry, 0, , .	2.8	1
780	Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules, 2023, 13, 478.	4.0	6
781	Nematode Pheromones: Structures and Functions. Molecules, 2023, 28, 2409.	3.8	2
782	<i>Saccharomyces cerevisiae</i> : a patulin degradation candidate both <i>in vitro</i> and <i>in vivo</i> . Food and Function, 2023, 14, 3083-3091.	4.6	0
783	Akkermansia muciniphila Cell-Free Supernatant Improves Glucose and Lipid Metabolisms in Caenorhabditis elegans. Nutrients, 2023, 15, 1725.	4.1	2
784	Biochemical Characterization of <i>Caenorhabditis elegans</i> Ferritins. Biochemistry, 0, , .	2.5	2
785	Controlling the structure of supramolecular fibre formation for benzothiazole based hydrogels with antimicrobial activity against methicillin resistant <i>Staphylococcus aureus</i> . Journal of Materials Chemistry B, 2023, 11, 3958-3968.	5.8	2
786	Tire components, age and temperature accelerate neurodegeneration in C. elegans models of Alzheimer's and Parkinson's disease. Environmental Pollution, 2023, 328, 121660.	7.5	1
788	Transcriptomic and physiological analysis of the effect of octanoic acid on Meloidogyne incognita. Pesticide Biochemistry and Physiology, 2023, 193, 105432.	3.6	1

#	Article	IF	CITATIONS
789	Evaluation of mutagenic susceptibility of different stages in germ cell development of Caenorhabditis elegans using whole genome sequencing. Archives of Toxicology, 0, , .	4.2	0
790	The recurrent pathogenic Pro890Leu substitution in CLTC causes a generalized defect in synaptic transmission in Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 0, 16, .	2.9	Ο
791	The nematode worm Caenorhabditis elegans as an animal experiment replacement for assessing the virulence of different Salmonella enterica strains. Frontiers in Microbiology, 0, 14, .	3.5	0
792	Environmental and health impacts of functional graphenic materials and their ultrasonically altered products. NanoImpact, 2023, 31, 100471.	4.5	0
793	Automated recognition and analysis of body bending behavior in C. elegans. BMC Bioinformatics, 2023, 24, .	2.6	0
795	Exosome-mediated delivery of superoxide dismutase for anti-aging studies in Caenorhabditis elegans. International Journal of Pharmaceutics, 2023, 641, 123090.	5.2	3
796	A robotic system for automated genetic manipulation and analysis of <i>Caenorhabditis elegans</i> . , 2023, 2, .		2
797	Population Dynamics and Feeding Preferences of Three Bacterial-Feeding Nematodes on Different Bacteria Species. Agronomy, 2023, 13, 1808.	3.0	1
798	The diverse family of Cys-loop receptors in Caenorhabditis elegans: insights from electrophysiological studies. Biophysical Reviews, 0, , .	3.2	1
799	Zein-based nanospheres and nanocapsules for the encapsulation and oral delivery of quercetin. International Journal of Pharmaceutics, 2023, 643, 123216.	5.2	5
800	Mass Spectrometry-Based Multi-omics Integration with a Single Set of <i>C. elegans</i> Samples. Analytical Chemistry, 2023, 95, 10930-10938.	6.5	1
801	Integrated Analysis of Transcriptome and Metabolome Provides Insight into Camellia oleifera Oil Alleviating Fat Accumulation in High-Fat Caenorhabditis elegans. International Journal of Molecular Sciences, 2023, 24, 11615.	4.1	2
802	Semen <i>Ziziphus jujube</i> Saponins Protects HaCaT Cells against UV Damage and Alleviates the Aging of <i>Caenorhabditis elegans</i> . ACS Omega, 2023, 8, 28080-28089.	3.5	1
803	Using the Model Organism Caenorhabditis elegans to Explore Neuromuscular Function. Neuromethods, 2023, , 275-297.	0.3	0
804	Insights into the genetic influences of the microbiota on the life span of a host. Frontiers in Microbiology, 0, 14, .	3.5	0
805	The worm Adult Activity Test (wAAT): A de novo mathematical model for detecting acute chemical effects in <scp><i>Caenorhabditis elegans</i></scp> . Journal of Applied Toxicology, 2023, 43, 1899-1915.	2.8	1
806	Identification of a Protein Arginine Methyltransferase 7 (PRMT7)/Protein Arginine Methyltransferase 9 (PRMT9) Inhibitor. Journal of Medicinal Chemistry, 2023, 66, 13665-13683.	6.4	2
807	Based on the Nano-QSAR model: Prediction of factors influencing damage to C. elegans caused by metal oxide nanomaterials and validation of toxic effects. Nano Today, 2023, 52, 101967.	11.9	1

#	Article	IF	CITATIONS
809	The role of <i>Caenorhabditis elegans</i> in the discovery of natural products for healthy aging. Natural Product Reports, 0, , .	10.3	1
810	The hologenome of <i>Daphnia magna</i> reveals possible DNA methylation and microbiome-mediated evolution of the host genome. Nucleic Acids Research, 0, , .	14.5	0
811	Urine Excretion, Organ Distribution, and Placental Transfer of 6PPD and 6PPD-Quinone in Mice and Potential Developmental Toxicity through Nuclear Receptor Pathways. Environmental Science & Technology, 2023, 57, 13429-13438.	10.0	6
812	Invertebrates as a study model of anaerobic infections. , 2017, 60, 29-39.		0
813	Nearâ€Infrared Photothermal Manipulates Cellular Excitability and Animal Behavior in <i>Caenorhabditis elegans</i> . Small Methods, 2023, 7, .	8.6	0
814	Cellâ€based allometry: an approach for evaluation of complexity in morphogenesis. Quantitative Biology, 2023, 11, 183-203.	0.5	0
815	Model nematodes as a practical innovation to promote high throughput screening of natural products for anthelmintics discovery in South Asia: Current challenges, proposed practical and conceptual solutions. Molecular and Biochemical Parasitology, 2023, 256, 111594.	1.1	0
816	Free radical-mediated extraction of polysaccharides from Gelidium amansii and their modulation on abnormal glycometabolism in Caenorhabditis elegans. International Journal of Biological Macromolecules, 2023, 252, 126402.	7.5	2
817	The Y-ome Conundrum: Insights into Uncharacterized Genes and Approaches for Functional Annotation. Molecular and Cellular Biochemistry, 0, , .	3.1	0
818	Use of fine capillaries for cryopreservation of Caenorhabditis elegans by vitrification. Cryobiology, 2023, 113, 104585.	0.7	0
819	Evaluation of the Reproductive Toxicity of Fluopimomide in Meloidogyne incognita and Caenorhabditis elegans. Agronomy, 2023, 13, 2471.	3.0	0
820	Sublethal perfluorooctanoic acid and perfluorooctanesulfonic acid delay <i>C. elegans</i> larval development and population growth but do not alter egg hatching. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2024, 87, 22-32.	2.3	0
821	Environmental carcinogen benzo[a]pyrene alters neutral lipid storage via a cyp-35A2 mediated pathway in Caenorhabditis elegans. Environmental Pollution, 2023, 339, 122731.	7.5	0
822	Kahweol, a coffee diterpene, increases lifespan via insulin/insulin-like growth factor-1 and AMP-activated protein kinase signaling pathways in Caenorhabditis elegans. Current Research in Food Science, 2023, 7, 100618.	5.8	0
823	Elegant Nematodes Improve Our Understanding of Human Neuronal Diseases, the Role of Pollutants and Strategies of Resilience. Environmental Science & amp; Technology, 2023, 57, 16755-16763.	10.0	1
824	The incomparable fascination of comparative physiology: 40 years with animals in the field and laboratory. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 0, , .	1.6	2
825	Microbiological hazards associated with the use of water in the postâ€harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVHs). PartÂ1 (outbreak data analysis,) Tj ETQq0 0	0 ng&T /Ov	endzock 10 Tf

826	<i>Lippia origanoides</i> essential oil increases longevity and ameliorates β-amyloid peptide-induced toxicity in <i>Caenorhabditis elegans</i> . Natural Product Research, 0, , 1-9.	1.8	0	
-----	---	-----	---	--

CITATI	Report
CHAH	REPORT

#	Article	IF	CITATIONS
827	Effects of synergistic Fenton-microwave treatment on the antioxidant stress of soluble polysaccharides and the physicochemical properties of insoluble polysaccharides from Gelidium amansii. International Journal of Biological Macromolecules, 2024, 254, 128366.	7.5	1
828	Volume holographic illuminator for Airy light-sheet microscopy. Optics Express, 2024, 32, 167.	3.4	0
829	FoxO signaling pathway stimulation by Bacillus smithii XY1 contributes to alleviating copper-induced neurotoxicity. Journal of Hazardous Materials, 2024, 465, 133345.	12.4	0
830	<i>Caenorhabditis elegans</i> as a suitable model to evaluate the toxicity of water from Rolante River, southern Brazil. Toxicology Research, 0, , .	2.1	0
832	The peptide Acein promotes dopamine secretion through clec-126 to extend the lifespan of elderly C. elegans. Aging, 0, , .	3.1	0
833	Spatiotemporal Tracking of Nearâ€Infrared Fluorescent Singleâ€Walled Carbon Nanotubes in <i>C. Elegans</i> Nematodes Confined in a Microfluidics Platform. Advanced Materials Technologies, 2024, 9, .	5.8	1
834	Amyotrophic Lateral Sclerosis Mechanism: Insights from the Caenorhabditis elegans Models. Cells, 2024, 13, 99.	4.1	0
835	Integrating evolutionarily conserved mechanism of response to radiation for exploring novel Caenorhabditis elegans radiation-responsive genes for estimation of radiation dose associated with spaceflight. Chemosphere, 2024, 351, 141148.	8.2	1
837	An Update on the Chemical Constituents and Biological Properties of Selected Species of an Underpinned Genus of Red Algae: Chondrus. Marine Drugs, 2024, 22, 47.	4.6	0
838	Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and C. elegans-Based Innovations. Biosensors, 2024, 14, 55.	4.7	0
839	Effect of milk exposure on the redox profile of Caenorhabditis elegans. Scientific Reports, 2024, 14, .	3.3	0
840	Development Features on the Selection of Animal Models for Teratogenic Testing. Methods in Molecular Biology, 2024, , 67-104.	0.9	0
842	Application of Evolving New Approach Methodologies for Chemical Safety Assessment. , 2024, , 977-1015.		0
843	A free and user-friendly software protocol for the quantification of microfauna swimming behavior. BioTechniques, 2024, 76, 174-182.	1.8	0
844	Glucose stockpile in the intestinal apical brush border in C. elegans. Biochemical and Biophysical Research Communications, 2024, 706, 149762.	2.1	0
845	<i>In vitro</i> and <i>in vivo</i> evaluation of novel chromeno[2,3- <i>d</i>]pyrimidinones as therapeutic agents for triple negative breast cancer. RSC Medicinal Chemistry, 2024, 15, 1362-1380.	3.9	0
846	<i>C. elegans</i> : a prominent platform for modeling and drug screening in neurological disorders. Expert Opinion on Drug Discovery, 2024, 19, 565-585.	5.0	0
847	In vivo and in vitro toxicity of nanomaterials in animal systems. , 2024, , 159-169.		0