Successful transduction of liver in hemophilia by AAV-I the host immune response

Nature Medicine 12, 342-347 DOI: 10.1038/nm1358

Citation Report

#	Article	IF	CITATIONS
1	Gene therapy for viral hepatitis. Expert Opinion on Biological Therapy, 2006, 6, 1263-1278.	3.1	5
2	Long-Term Increase in mVEGF164in Mouse Hindlimb Muscle Mediated by PhageÃ,C31 Integrase After Nonviral DNA Delivery. Human Gene Therapy, 2006, 17, 871-876.	2.7	32
3	Sleeping Beauty Transposon-Mediated Nonviral Gene Therapy. BioDrugs, 2006, 20, 219-229.	4.6	14
4	Gene therapy for treatment of inherited haematological disorders. Expert Opinion on Biological Therapy, 2006, 6, 509-522.	3.1	13
5	Long-Term Efficacy of Adeno-Associated Virus Serotypes 8 and 9 in Hemophilia A Dogs and Mice. Human Gene Therapy, 2006, 17, 427-439.	2.7	95
6	AAV-mediated gene transfer for retinal diseases. Expert Opinion on Biological Therapy, 2006, 6, 1279-1294.	3.1	36
8	Evidence of Multiyear Factor IX Expression by AAV-Mediated Gene Transfer to Skeletal Muscle in an Individual with Severe Hemophilia B. Molecular Therapy, 2006, 14, 452-455.	8.2	196
10	Multiyear therapeutic benefit of AAV serotypes 2, 6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood, 2006, 108, 107-115.	1.4	189
11	CAPitalizing on AAV. Blood, 2006, 108, 4-5.	1.4	2
12	A novel vicious cycle in rheumatoid arthritis. Blood, 2006, 108, 3-4.	1.4	6
13	Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood, 2006, 108, 3321-3328.	1.4	295
14	Gene therapy for hemophilia. Current Opinion in Hematology, 2006, 13, 301-307.	2.5	47
15	Coagulation deficiencies: a look to the future. Haemophilia, 2006, 12, 531-540.	2.1	3
17	Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nature Medicine, 2006, 12, 967-971.	30.7	193
18	Treatment of human disease by adeno-associated viral gene transfer. Human Genetics, 2006, 119, 571-603.	3.8	133
19	Gene therapy and transplantation in CNS repair: The visual system. Progress in Retinal and Eye Research, 2006, 25, 449-489.	15.5	97
20	Gene therapy for arthritis: What next?. Arthritis and Rheumatism, 2006, 54, 1714-1729.	6.7	59
21	Genetic Modification of Somatic Gut Mucosa. Journal of Pediatric Gastroenterology and Nutrition, 2006, 43, 158-159.	1.8	2

γατιών Ρερώ

ARTICLE IF CITATIONS # Transposons for Gene Therapy!. Current Gene Therapy, 2006, 6, 593-607. 22 2.0 108 The φC31 Integrase System for Gene Therapy. Current Gene Therapy, 2006, 6, 633-645. 24 Viral Vectors for Gene-Directed Enzyme Prodrug Therapy. Current Gene Therapy, 2006, 6, 647-670. 2.0 46 A Look to Future Directions in Gene Therapy Research for Monogenic Diseases. PLoS Genetics, 2006, 2, e133. Synthetic Intron Improves Transduction Efficiency of Trans-Splicing Adeno-Associated Viral Vectors. 26 2.7 30 Human Gene Therapy, 2006, 17, 1036-1042. 995. Effect of Viral Dose on Neutralizing Antibody Response and Transgene Expression after AAV1 Vector Re-Administration in Mice. Molecular Therapy, 2006, 13, S383. 8.2 Inadvertent Germline Transmission of AAV2 Vector: Findings in a Rabbit Model Correlate with Those in 28 8.2 62 a Human Clinical Trial. Molecular Therapy, 2006, 13, 1064-1073. Proteolytic Mapping of the Adeno-associated Virus Capsid. Molecular Therapy, 2006, 14, 809-821. 29 8.2 Angiogenesis Enhances Factor IX Delivery and Persistence from Retrievable Human Bioengineered 30 8.2 33 Muscle Implants. Molecular Therapy, 2006, 14, 442-451. 486. Efficient and Selective Gene Transfer Directed to Muscle by Tropism-Modified Adeno-Associated 8.2 Virus Vector. Molecular Therapy, 2006, 13, S188-S189. Potential Use of Gene Transfer in Athletic Performance Enhancement. Molecular Therapy, 2007, 15, 32 8.2 65 1751-1766. Gene Therapy in the Treatment of Heart Failure. Physiology, 2007, 22, 81-96. 3.1 Recombinant adeno-associated virus vectors for somatic gene therapy in dermatology. Expert Review 34 0.3 1 of Dermatology, 2007, 2, 167-177. Immunity to Adeno-Associated Virus-Mediated Gene Transfer in a Random-Bred Canine Model of 2.7 129 Duchenne Muscular Dystrophy. Human Gene Therapy, 2007, 18, 18-26. Phenotypic Correction of α-Sarcoglycan Deficiency by Intra-arterial Injection of a Muscle-specific 36 8.2 63 Serotype 1 rAAV Vector. Molecular Therapy, 2007, 15, 53-61. Muscle as a Target for Supplementary Factor IX Gene Transfer. Human Gene Therapy, 2007, 18, 603-613. Immune Responses to Lentiviral Vectors. Current Gene Therapy, 2007, 7, 306-315. 38 2.0 87 Emerging Adenoviral Vectors for Stable Correction of Genetic Disorders. Current Gene Therapy, 2007, 7,272-283.

#	Article	IF	CITATIONS
40	Targeting the heart with gene therapy-optimized gene delivery methods. Cardiovascular Research, 2007, 73, 453-462.	3.8	94
41	Immune Responses to Gene Product of Inducible Promoters. Current Gene Therapy, 2007, 7, 334-346.	2.0	41
42	Contrasting Effects of Human, Canine, and Hybrid Adenovirus Vectors on the Phenotypical and Functional Maturation of Human Dendritic Cells: Implications for Clinical Efficacy. Journal of Virology, 2007, 81, 3272-3284.	3.4	52
43	Gene Therapy in Disorders of Lipoprotein Metabolism. Current Gene Therapy, 2007, 7, 35-47.	2.0	15
44	Immune Responses to AAV in Clinical Trials. Current Gene Therapy, 2007, 7, 316-324.	2.0	176
45	AAV Vectors, Insertional Mutagenesis, and Cancer. Molecular Therapy, 2007, 15, 1740-1743.	8.2	43
46	AAV as An Immunogen. Current Gene Therapy, 2007, 7, 325-333.	2.0	67
47	Toll-like Receptors Impact on Safety and Efficacy of Gene Transfer Vectors. Molecular Therapy, 2007, 15, 1417-1422.	8.2	31
48	Pre-existing AAV Capsid-specific CD8+ T Cells are Unable to Eliminate AAV-transduced Hepatocytes. Molecular Therapy, 2007, 15, 792-800.	8.2	110
49	Stable Ethics: Enrolling Non-Treatment-Refractory Volunteers in Novel Gene Transfer Trials. Molecular Therapy, 2007, 15, 1904-1906.	8.2	18
50	Immune Responses to AAV Capsid: Are Mice Not Humans After All?. Molecular Therapy, 2007, 15, 649-650.	8.2	51
51	Gene therapy for liver enzyme deficiencies: what have we learned from models for Crigler–Najjar and tyrosinemia?. Expert Review of Gastroenterology and Hepatology, 2007, 1, 155-171.	3.0	10
52	Sustained AAV-mediated Dystrophin Expression in a Canine Model of Duchenne Muscular Dystrophy with a Brief Course of Immunosuppression. Molecular Therapy, 2007, 15, 1160-1166.	8.2	207
53	Enhanced Survival of the LINCL Mouse Following CLN2 Gene Transfer Using the rh.10 Rhesus Macaque-derived Adeno-associated Virus Vector. Molecular Therapy, 2007, 15, 481-491.	8.2	153
54	Activation of CFTR-specific T Cells in Cystic Fibrosis Mice Following Gene Transfer. Molecular Therapy, 2007, 15, 1694-1700.	8.2	22
55	Persistent Expression of hF.IX After Tolerance Induction by In Utero or Neonatal Administration of AAV-1-F.IX in Hemophilia B Mice. Molecular Therapy, 2007, 15, 1677-1685.	8.2	96
56	Major Subsets of Human Dendritic Cells Are Efficiently Transduced by Self-Complementary Adeno-Associated Virus Vectors 1 and 2. Journal of Virology, 2007, 81, 5385-5394.	3.4	50
57	Update on Progress and Hurdles in Novel Genetic Therapies for Hemophilia. Hematology American Society of Hematology Education Program, 2007, 2007, 466-472.	2.5	30

	CITATION	REPORT	
# 58	ARTICLE Cross-Presentation of Adeno-Associated Virus Serotype 2 Capsids Activates Cytotoxic T Cells But Does Not Render Hepatocytes Effective Cytolytic Targets. Human Gene Therapy, 2007, 18, 185-194.	IF 2.7	Citations
59	Using Homologous Recombination to Manipulate the Genome of Human Somatic Cells. Biotechnology and Genetic Engineering Reviews, 2007, 24, 195-212.	6.2	17
60	Synoviocyte Infection with Adeno-Associated Virus (AAV) Is Neutralized by Human Synovial Fluid from Arthritis Patients and Depends on AAV Serotype. Human Gene Therapy, 2007, 18, 525-535.	2.7	38
61	Expanding Adeno-associated Viral Vector Capacity: A Tale of Two Vectors. Biotechnology and Genetic Engineering Reviews, 2007, 24, 165-178.	6.2	48
62	Haemophilia therapies. Expert Opinion on Biological Therapy, 2007, 7, 651-663.	3.1	9
63	A single injection of double-stranded adeno-associated viral vector expressing CH normalizes growth in CH-deficient mice. Journal of Endocrinology, 2007, 196, 79-88.	2.6	10
64	Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13104-13109.	7.1	76
65	DNA Palindromes with a Modest Arm Length of ≳20 Base Pairs Are a Significant Target for Recombinant Adeno-Associated Virus Vector Integration in the Liver, Muscles, and Heart in Mice. Journal of Virology, 2007, 81, 11290-11303.	3.4	48
66	Gene Therapy for Duchenne Muscular Dystrophy. Archives of Neurology, 2007, 64, 1236.	4.5	49
67	Adeno-Associated Virus Type 2 (AAV2) Capsid-Specific Cytotoxic T Lymphocytes Eliminate Only Vector-Transduced Cells Coexpressing the AAV2 Capsid In Vivo. Journal of Virology, 2007, 81, 7540-7547.	3.4	87
68	Gene therapy for Duchenne muscular dystrophy. Future Neurology, 2007, 2, 87-96.	0.5	2
69	Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood, 2007, 110, 1132-1140.	1.4	216
70	microRNAs outwit immune limitations in gene therapy. Blood, 2007, 110, 4136-4137.	1.4	0
71	Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood, 2007, 109, 1414-1421.	1.4	246
72	The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+CD25+ regulatory T cells. Blood, 2007, 110, 1788-1796.	1.4	35
73	A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood, 2007, 110, 4144-4152.	1.4	246
74	Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood, 2007, 110, 2334-2341.	1.4	218
75	Treatment of heart failure by calcium cycling gene therapy. Future Cardiology, 2007, 3, 413-423.	1.2	14

	CITATION	Report	
#	ARTICLE Gene Therapy for Type I Glycogen Storage Diseases. Current Gene Therapy, 2007, 7, 79-88.	IF 2.0	Citations 27
77	Immune response after neonatal transfer of a human factor IX-expressing retroviral vector in dogs, cats, and mice. Thrombosis Research, 2007, 120, 269-280.	1.7	35
78	Viral-mediated gene therapy for the muscular dystrophies: Successes, limitations and recent advances. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 243-262.	3.8	90
79	AAV-PGIS gene transfer improves hypoxia-induced pulmonary hypertension in mice. Biochemical and Biophysical Research Communications, 2007, 363, 656-661.	2.1	15
81	Adeno-associated viral delivery of a metabolically regulated insulin transgene to hepatocytes. Molecular and Cellular Endocrinology, 2007, 273, 6-15.	3.2	14
82	Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet, The, 2007, 369, 2097-2105.	13.7	949
83	Enhanced Response to Enzyme Replacement Therapy in Pompe Disease after the Induction of Immune Tolerance. American Journal of Human Genetics, 2007, 81, 1042-1049.	6.2	118
84	Hematopoietic stem-cell gene therapy of hemophilia A incorporating a porcine factor VIII transgene and nonmyeloablative conditioning regimens. Blood, 2007, 110, 2855-2863.	1.4	90
85	Efficient induction of immune tolerance to coagulation factor IX following direct intramuscular gene transfer. Journal of Thrombosis and Haemostasis, 2007, 5, 1227-1236.	3.8	15
86	Rescue of Sight by Gene Therapy—Closer than It May Appear. Ophthalmic Genetics, 2007, 28, 127-133.	1.2	8
87	RNAi and Gene Therapy: A Mutual Attraction. Hematology American Society of Hematology Education Program, 2007, 2007, 473-481.	2.5	75
88	Comparative Analysis of Adeno-Associated Viral Vector Serotypes 1, 2, 5, 7, And 8 in Mouse Brain. Human Gene Therapy, 2007, 18, 195-206.	2.7	273
89	Gene therapy for mucopolysaccharidosis. Expert Opinion on Biological Therapy, 2007, 7, 1333-1345.	3.1	82
90	A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. Journal of Translational Medicine, 2007, 5, 45.	4.4	90
91	Long-Term Rescue of a Lethal Inherited Disease by Adeno-Associated Virus–Mediated Gene Transfer in a Mouse Model of Molybdenum-Cofactor Deficiency. American Journal of Human Genetics, 2007, 80, 291-297.	6.2	47
92	Engineering Adeno-Associated Virus for One-Step Purification via Immobilized Metal Affinity Chromatography. Human Gene Therapy, 2007, 18, 367-378.	2.7	54
94	Enhanced preparation of adeno-associated viral vectors by using high hydrostatic pressure to selectively inactivate helper adenovirus. Biotechnology and Bioengineering, 2007, 97, 1170-1179.	3.3	15
95	Gene therapy: The first two decades and the current state-of-the-art. Journal of Cellular Physiology, 2007, 213, 301-305.	4.1	105

#	Article	IF	Citations
96	An inventory of shedding data from clinical gene therapy trials. Journal of Gene Medicine, 2007, 9, 910-921.	2.8	62
97	Encapsulated human primary myoblasts deliver functional hFIX in hemophilic mice. Journal of Gene Medicine, 2007, 9, 1002-1010.	2.8	20
98	Gene transfer therapy for neurodegenerative disorders. Movement Disorders, 2007, 22, 1223-1228.	3.9	16
99	EDC/NHS-mediated heparinization of small intestinal submucosa for recombinant adeno-associated virus serotype 2 binding and transduction. Biomaterials, 2007, 28, 2350-2357.	11.4	21
100	Retracing events. Nature Biotechnology, 2007, 25, 949-949.	17.5	11
101	CD8+ T-cell responses to adeno-associated virus capsid in humans. Nature Medicine, 2007, 13, 419-422.	30.7	629
102	Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection. Nature Protocols, 2007, 2, 3153-3165.	12.0	126
103	Transgene expression levels and kinetics determine risk of humoral immune response modeled in factor IX knockout and missense mutant mice. Gene Therapy, 2007, 14, 429-440.	4.5	40
104	Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products. Gene Therapy, 2007, 14, 1249-1260.	4.5	94
105	Progress and Prospects: Gene Therapy Clinical Trials (Part 1). Gene Therapy, 2007, 14, 1439-1447.	4.5	106
106	Myocarditis following adeno-associated viral gene expression of human soluble TNF receptor (TNFRII-Fc) in baboon hearts. Gene Therapy, 2007, 14, 1613-1622.	4.5	33
107	Progress and Prospects: Gene Therapy Clinical Trials (Part 2). Gene Therapy, 2007, 14, 1555-1563.	4.5	77
108	AAV vectors and cardiovascular disease: Targeting TNF receptor in the heart: clue to way forward with AAV?. Gene Therapy, 2007, 14, 1611-1612.	4.5	10
109	Recombinant adeno-associated virus vector for gene transfer to the transplanted rat heart. Transplant International, 2007, 20, 550-557.	1.6	16
110	Staunch protections: the ethics of haemophilia gene transfer research. Haemophilia, 2008, 14, 5-14.	2.1	43
111	Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs. lentiviral vectors for hemophilia B gene therapy. Journal of Thrombosis and Haemostasis, 2007, 5, 16-24.	3.8	170
112	It's all about the clothing: capsid domination in the adeno-associated viral vector world. Journal of Thrombosis and Haemostasis, 2007, 5, 12-15.	3.8	22
113	Gene therapy, bioengineered clotting factors and novel technologies for hemophilia treatment. Journal of Thrombosis and Haemostasis, 2007, 5, 901-906.	3.8	54

#	Article	IF	CITATIONS
114	Neonatal immune tolerance for hemophilia: can we â€~tolerate' new paradigms for gene therapy trials?. Journal of Thrombosis and Haemostasis, 2007, 5, 1801-1804.	3.8	3
115	Gene Therapy for Cardiac Arrhythmias: A Dream Soon to Come True?. Journal of Cardiovascular Electrophysiology, 2007, 18, 553-559.	1.7	7
116	Separation of adeno-associated virus type 2 empty particles from genome containing vectors by anion-exchange column chromatography. Journal of Virological Methods, 2007, 140, 183-192.	2.1	129
117	Ex Vivo Gene Therapy for Hemophilia A That Enhances Safe Delivery and Sustained In Vivo Factor VIII Expression from Lentivirally Engineered Endothelial Progenitors. Stem Cells, 2007, 25, 2660-2669.	3.2	98
118	Directed evolution for drug and nucleic acid delivery. Advanced Drug Delivery Reviews, 2007, 59, 1562-1578.	13.7	28
120	Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy. Applied Microbiology and Biotechnology, 2007, 76, 761-772.	3.6	46
121	Advances in Gene-Based Therapy for Heart Failure. Journal of Cardiovascular Translational Research, 2008, 1, 127-136.	2.4	9
122	Performance of AAV8 vectors expressing human factor IX from a hepatic-selective promoter following intravenous injection into rats. Genetic Vaccines and Therapy, 2008, 6, 9.	1.5	20
123	Gene therapy for inborn errors of liver metabolism: progress towards clinical applications. Italian Journal of Pediatrics, 2008, 34, 2.	2.6	4
124	Developing strategies for detection of gene doping. Journal of Gene Medicine, 2008, 10, 3-20.	2.8	53
125	Coating of adenoâ€associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera. Journal of Gene Medicine, 2008, 10, 400-411.	2.8	55
126	Recent developments in adenoâ€associated virus vector technology. Journal of Gene Medicine, 2008, 10, 717-733.	2.8	165
127	Reshaping AAV vectors for liver gene therapy. Hepatology, 2008, 48, 1714-1717.	7.3	1
128	Application of heparinized cellulose affinity membranes in recombinant adeno-associated virus serotype 2 binding and delivery. Journal of Membrane Science, 2008, 310, 141-148.	8.2	15
129	Genetic modification of somatic stem cells. EMBO Reports, 2008, 9, S64-9.	4.5	9
130	Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors. Gene Therapy, 2008, 15, 553-560.	4.5	78
131	Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Therapy, 2008, 15, 1147-1155.	4.5	82
132	Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Therapy, 2008, 15, 808-816.	4.5	172

		CITATION REPORT		
#	Article		IF	CITATIONS
133	Potential of AAV vectors in the treatment of metabolic disease. Gene Therapy, 2008, 1	5, 831-839.	4.5	80
134	Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene T 15, 840-848.	herapy, 2008,	4.5	155
135	Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Therapy 858-863.	, 2008, 15,	4.5	285
136	AAV-mediated gene transfer for the treatment of hemophilia B: problems and prospect 2008, 15, 870-875.	s. Gene Therapy,	4.5	86
137	Strategies for improving the transduction efficiency of single-stranded adeno-associate vectors in vitro and in vivo. Gene Therapy, 2008, 15, 1287-1293.	2d virus	4.5	31
138	Ark floats gene therapy's boat, for now. Nature Biotechnology, 2008, 26, 1057-1058.		17.5	10
139	The ethics of human gene transfer. Nature Reviews Genetics, 2008, 9, 239-244.		16.3	51
140	Effect of viral dose on neutralizing antibody response and transgene expression after A re-administration in mice. Gene Therapy, 2008, 15, 54-60.	AV1 vector	4.5	51
141	Viral vector-based prime-boost immunization regimens: a possible involvement of T-cel Gene Therapy, 2008, 15, 393-403.	l competition.	4.5	19
142	How not to be seen: immune-evasion strategies in gene therapy. Gene Therapy, 2008,	15, 239-246.	4.5	32
143	Non-invasive viral gene transfer of factor IX to colonic epithelial cells in hemophilia B m of Thrombosis and Haemostasis, 2008, 6, 1033-1035.	ice. Journal	3.8	2
144	Gene therapy for haemophilia. British Journal of Haematology, 2008, 140, 479-487.		2.5	84
145	Back to the future: a recent history of haemophilia treatment. Haemophilia, 2008, 14,	10-18.	2.1	137
146	Progress in the molecular biology of inherited bleeding disorders. Haemophilia, 2008, 1	4, 130-137.	2.1	30
147	Barriers for retinal gene therapy: Separating fact from fiction. Vision Research, 2008, 4	8, 1671-1680.	1.4	38
148	Gene therapy for the fetus: is there a future?. Best Practice and Research in Clinical Ob Gynaecology, 2008, 22, 203-218.	stetrics and	2.8	53
149	Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection Journal of Controlled Release, 2008, 130, 129-138.	in vivo.	9.9	124
150	The Role of the Adeno-Associated Virus Capsid in Gene Transfer. Methods in Molecular 437, 51-91.	Biology, 2008,	0.9	84

ARTICLE IF CITATIONS Electroporation Protocols. Methods in Molecular Biology, 2008, 423, v-vii. 0.9 13 151 Efficient and Durable Gene Transfer to Transplanted Heart Using Adeno-associated Virus 9 Vector. 24 Journal of Heart and Lung Transplantation, 2008, 27, 554-560. The effect of pre-existing immunity on the capacity of influenza virosomes to induce cytotoxic T 153 3.8 5 lymphocyte activity. Vaccine, 2008, 26, 2314-2321. Cell and gene therapies in epilepsy – promising avenues or blind alleys?. Trends in Neurosciences, 2008, 154 31, 62-73. Design of a Phase 1/2 Trial of Intracoronary Administration of AAV1/SERCA2a in Patients With Heart 155 1.7 194 Failure. Journal of Cardiac Failure, 2008, 14, 355-367. Gene Therapy Using Adeno-Associated Virus Vectors. Clinical Microbiology Reviews, 2008, 21, 583-593. 13.6 734 157 Gene therapy of inherited diseases. Lancet, The, 2008, 371, 2044-2047. 13.7 85 Justice in translation: from bench to bedside in the developing world. Lancet, The, 2008, 372, 82-85. 13.7 158 Molecular Engineering of Viral Gene Delivery Vehicles. Annual Review of Biomedical Engineering, 159 12.3 140 2008, 10, 169-194. Strategies for manufacturing recombinant adeno-associated virus vectors for gene therapy applications exploiting baculovirus technology. Briefings in Functional Genomics & Proteomics, 2008, 3.8 7, 303-311. In Vitro and In Vivo Gene Therapy Vector Evolution via Multispecies Interbreeding and Retargeting of 162 3.4 546 Adeno-Associated Viruses. Journal of Virology, 2008, 82, 5887-5911. Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proceedings of the National Academy of Sciences of the 505 United States of America, 2008, 105, 7827-7832 Arthritis gene therapy's first death. Arthritis Research and Therapy, 2008, 10, 110. 164 3.5 78 Congenital Bleeding Disorders of the Vitamin Kâ€Dependent Clotting Factors. Vitamins and Hormones, 1.7 2008, 78, 281-374 Optimization of Self-complementary AAV Vectors for Liver-directed Expression Results in Sustained 166 8.2 141 Correction of Hemophilia B at Low Vector Dose. Molecular Therapy, 2008, 16, 280-289. Application of Doxorubicin-induced rAAV2-p53 gene delivery in combined chemotherapy and gene therapy for hepatocellular carcinoma. Cancer Biology and Therapy, 2008, 7, 303-309. Complete Correction of Hemophilia A with Adeno-Associated Viral Vectors Containing a Full-Size 168 2.7 48 Expression Cassette. Human Gene Therapy, 2008, 19, 648-654. Gene Therapy: Some History, Applications, Problems, and Prospects. Toxicologic Pathology, 2008, 36, 1.8 97-103.

#	Article	IF	CITATIONS
170	Reversing Advanced Heart Failure by Targeting Ca ²⁺ Cycling. Annual Review of Medicine, 2008, 59, 13-28.	12.2	44
171	Would gene therapy for the treatment of male infertility be safe?. Nature Reviews Urology, 2008, 5, 594-595.	1.4	6
172	Transient cytochalasin-D treatment induces apically administered rAAV2 across tight junctions for transduction of enterocytes. Journal of General Virology, 2008, 89, 3004-3008.	2.9	8
173	Characterization of Pulmonary T Cell Response to Helper-Dependent Adenoviral Vectors following Intranasal Delivery. Journal of Immunology, 2008, 180, 4098-4108.	0.8	25
174	Biodistribution and Safety Profile of Recombinant Adeno-Associated Virus Serotype 6 Vectors following Intravenous Delivery. Journal of Virology, 2008, 82, 7711-7715.	3.4	19
175	Adeno-Associated Virus Vectors: Versatile Tools for in vivo Gene Transfer. , 2008, 159, 63-77.		9
176	Prospects for the Therapeutic Application of Lentivirus-Based Gene Therapy to HIV-1 Infection. Current Gene Therapy, 2008, 8, 1-8.	2.0	15
177	Gene therapy: targeting the myocardium. Heart, 2008, 94, 89-99.	2.9	94
178	Sarcoglycans take center stage in gene transfer therapy. Neurology, 2008, 71, 234-235.	1.1	4
179	Complement Is an Essential Component of the Immune Response to Adeno-Associated Virus Vectors. Journal of Virology, 2008, 82, 2727-2740.	3.4	114
180	Safety and Efficacy of Regional Intravenous (RI) Versus Intramuscular (IM) Delivery of rAAV1 and rAAV8 to Nonhuman Primate Skeletal Muscle. Molecular Therapy, 2008, 16, 1291-1299.	8.2	89
181	Prolonged Susceptibility to Antibody-mediated Neutralization for Adeno-associated Vectors Targeted to the Liver. Molecular Therapy, 2008, 16, 138-145.	8.2	57
182	Transient Immunomodulation Allows Repeated Injections of AAV1 and Correction of Muscular Dystrophy in Multiple Muscles. Molecular Therapy, 2008, 16, 541-547.	8.2	51
183	Improving Safety of Gene Therapy. Current Drug Safety, 2008, 3, 46-53.	0.6	49
184	Molecular Genetic Testing of Hemostasis and Thrombosis in Developing Countries: Achievements, Hopes, and Challenges. Seminars in Thrombosis and Hemostasis, 2008, 34, 569-578.	2.7	1
185	AAV Vector-mediated Reversal of Hypoglycemia in Canine and Murine Glycogen Storage Disease Type Ia. Molecular Therapy, 2008, 16, 665-672.	8.2	85
186	Biodistribution of Adeno-associated Virus Type-2 in Nonhuman Primates after Convection-enhanced Delivery to Brain. Molecular Therapy, 2008, 16, 1267-1275.	8.2	61
187	En Route to Ethical Recommendations for Gene Transfer Clinical Trials. Molecular Therapy, 2008, 16, 432-438.	8.2	32

#	Article	IF	CITATIONS
188	Expression of shRNA From a Tissue-specific pol II Promoter Is an Effective and Safe RNAi Therapeutic. Molecular Therapy, 2008, 16, 1630-1636.	8.2	183
189	DNA Shuffling of Adeno-associated Virus Yields Functionally Diverse Viral Progeny. Molecular Therapy, 2008, 16, 1703-1709.	8.2	146
190	Lentiviral Vector–mediated SERCA2 Gene Transfer Protects Against Heart Failure and Left Ventricular Remodeling After Myocardial Infarction in Rats. Molecular Therapy, 2008, 16, 1026-1032.	8.2	80
191	Towards a rAAV-based gene therapy for ADA-SCID: from ADA deficiency to current and future treatment strategies. Pharmacogenomics, 2008, 9, 947-968.	1.3	8
192	Optimizing gene delivery vectors for the treatment of heart disease. Expert Opinion on Biological Therapy, 2008, 8, 911-922.	3.1	47
193	More trouble ahead; is gene therapy coming of age?. Expert Opinion on Biological Therapy, 2008, 8, 561-567.	3.1	9
194	The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, 554-565.	3.3	112
195	Apparently Nonspecific Enzyme Elevations After Portal Vein Delivery of Recombinant Adeno-Associated Virus Serotype 2 Vector in Hepatitis C Virus-Infected Chimpanzees. Human Gene Therapy, 2008, 19, 681-689.	2.7	7
196	GFP expression by intracellular gene delivery of GFP-coding fragments using nanocrystal quantum dots. Nanotechnology, 2008, 19, 495102.	2.6	15
198	Safety of adeno-associated viral vectors. Future Virology, 2008, 3, 491-503.	1.8	4
199	Development of gene therapy for blood disorders. Blood, 2008, 111, 4431-4444.	1.4	65
200	Intraarticular factor IX protein or gene replacement protects against development of hemophilic synovitis in the absence of circulating factor IX. Blood, 2008, 112, 4532-4541.	1.4	64
201	TLR3 signaling does not affect organ-specific immune responses to factor IX in AAV gene therapy. Blood, 2008, 112, 910-911.	1.4	6
202			1
	FIXing bleeding joints. Blood, 2008, 112, 4366-4366.	1.4	1
204	FIXing bleeding joints. Blood, 2008, 112, 4366-4366. Therapeutic Effects of Hepatocyte Transplantation on Hemophilia B. Transplantation, 2008, 86, 167-170.	1.4	35
204 205			
	Therapeutic Effects of Hepatocyte Transplantation on Hemophilia B. Transplantation, 2008, 86, 167-170. Successful in vivo propagation of factor IX-producing hepatocytes in mice: Potential for cell-based	1.0	35

#	Article	IF	CITATIONS
209	Taming uncertainty: risk and gene-transfer clinical research. , 0, , 51-71.		0
210	Looking backward: a model of value for translational trials. , 0, , 89-109.		1
211	Tropic of cancers: gene transfer in resource-poor settings. , 0, , 132-152.		0
212	Great Expectations and Hard Times: expectation management in gene transfer. , 0, , 153-177.		0
213	Human α-Iduronidase Gene Transfer Mediated by Adeno-Associated Virus Types 1, 2, and 5 in the Brain of Nonhuman Primates: Vector Diffusion and Biodistribution. Human Gene Therapy, 2009, 20, 350-360.	2.7	57
214	Cytotoxic T Lymphocyte Responses to Transgene Product, Not Adeno-Associated Viral Capsid Protein, Limit Transgene Expression in Mice. Human Gene Therapy, 2009, 20, 11-20.	2.7	20
215	rAAV.sFlt-1 Gene Therapy Achieves Lasting Reversal of Retinal Neovascularization in the Absence of a Strong Immune Response to the Viral Vector. , 2009, 50, 4279.		43
216	Cellular immune response to cryptic epitopes during therapeutic gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10770-10774.	7.1	74
217	Role of Cyclic AMP-Dependent Kinase Response Element-Binding Protein in Recombinant Adeno-Associated Virus-Mediated Transduction of Heart Muscle Cells. Human Gene Therapy, 2009, 20, 1005-1012.	2.7	5
218	Gene Therapy and Informed Consent Decision Making: Nursing Research Directions. Biological Research for Nursing, 2009, 11, 98-107.	1.9	2
219	Adeno-Associated Virus Capsid Structure Drives CD4-Dependent CD8+ T Cell Response to Vector Encoded Proteins. Journal of Immunology, 2009, 182, 6051-6060.	0.8	79
220	Gene Therapy Delivers. Human Gene Therapy, 2009, 20, 1222-1223.	2.7	8
221	A non-viral vector for potential DMD gene therapy study by targeting a minidystrophin-GFP fusion gene into the hrDNA locus. Acta Biochimica Et Biophysica Sinica, 2009, 41, 1053-1060.	2.0	10
222	Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16363-16368.	7.1	295
223	Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood, 2009, 114, 1461-1468.	1.4	130
224	Cytotoxic-T-Lymphocyte-Mediated Elimination of Target Cells Transduced with Engineered Adeno-Associated Virus Type 2 Vector In Vivo. Journal of Virology, 2009, 83, 6817-6824.	3.4	41
225	Undetectable Transcription of cap in a Clinical AAV Vector: Implications for Preformed Capsid in Immune Responses. Molecular Therapy, 2009, 17, 144-152.	8.2	80
226	Improved Induction of Immune Tolerance to Factor IX by Hepatic AAV-8 Gene Transfer. Human Gene Therapy, 2009, 20, 767-776.	2.7	81

#	Article	IF	CITATIONS
227	Accepting Risk in Clinical Research: Is the Gene Therapy Field Becoming Too Risk-averse?. Molecular Therapy, 2009, 17, 1842-1848.	8.2	37
228	Overview of gene therapy clinical progress including cancer treatment with gene-modified T cells. Hematology American Society of Hematology Education Program, 2009, 2009, 675-681.	2.5	12
229	Comparative Study of Anti-hepatitis B Virus RNA Interference by Double-stranded Adeno-associated Virus Serotypes 7, 8, and 9. Molecular Therapy, 2009, 17, 352-359.	8.2	61
230	Adeno-Associated Virus-Mediated Gene Transfer to Nonhuman Primate Liver Can Elicit Destructive Transgene-Specific T Cell Responses. Human Gene Therapy, 2009, 20, 930-942.	2.7	88
231	Transduction Efficiency and Immune Response Associated With the Administration of AAV8 Vector Into Dog Skeletal Muscle. Molecular Therapy, 2009, 17, 73-80.	8.2	88
232	Gene Therapy for Hemophilia: Clinical Trials and Technical Tribulations. Seminars in Thrombosis and Hemostasis, 2009, 35, 081-092.	2.7	38
233	Enhanced Factor VIII Heavy Chain for Gene Therapy of Hemophilia A. Molecular Therapy, 2009, 17, 417-424.	8.2	30
234	Host and Vector-dependent Effects on the Risk of Germline Transmission of AAV Vectors. Molecular Therapy, 2009, 17, 1022-1030.	8.2	33
235	Sexually Dimorphic Patterns of Episomal rAAV Genome Persistence in the Adult Mouse Liver and Correlation With Hepatocellular Proliferation. Molecular Therapy, 2009, 17, 1548-1554.	8.2	35
236	Impact of the Underlying Mutation and the Route of Vector Administration on Immune Responses to Factor IX in Gene Therapy for Hemophilia B. Molecular Therapy, 2009, 17, 1733-1742.	8.2	89
237	Detection of Intact rAAV Particles up to 6 Years After Successful Gene Transfer in the Retina of Dogs and Primates. Molecular Therapy, 2009, 17, 516-523.	8.2	73
238	Short-term Correction of Arginase Deficiency in a Neonatal Murine Model With a Helper-dependent Adenoviral Vector. Molecular Therapy, 2009, 17, 1155-1163.	8.2	29
239	AAV2/8-mediated Correction of OTC Deficiency Is Robust in Adult but Not Neonatal Spfash Mice. Molecular Therapy, 2009, 17, 1340-1346.	8.2	98
240	A Preclinical Animal Model to Assess the Effect of Pre-existing Immunity on AAV-mediated Gene Transfer. Molecular Therapy, 2009, 17, 1215-1224.	8.2	41
241	Large Animal Models of Genetic Disease: Pertinent IACUC Issues. ILAR Journal, 2009, 50, 225-228.	1.8	6
242	Protein Replacement Therapy and Gene Transfer in Canine Models of Hemophilia A, Hemophilia B, von Willebrand Disease, and Factor VII Deficiency. ILAR Journal, 2009, 50, 144-167.	1.8	71
243	Follistatin Gene Delivery Enhances Muscle Growth and Strength in Nonhuman Primates. Science Translational Medicine, 2009, 1, 6ra15.	12.4	144
244	Partial Rescue of Growth Failure in Growth Hormone (GH)-Deficient Mice by a Single Injection of a Double-Stranded Adeno-Associated Viral Vector Expressing the GH Gene Driven by a Muscle-Specific Regulatory Cassette. Human Gene Therapy, 2009, 20, 759-766.	2.7	26

#	Article	IF	CITATIONS
245	Delivery of gene-expressing fragments using quantum dot. Proceedings of SPIE, 2009, , .	0.8	2
246	Emerging strategies for cell and gene therapy of the muscular dystrophies. Expert Reviews in Molecular Medicine, 2009, 11, e18.	3.9	63
247	Gene Therapy in Large Animal Models of Human Cardiovascular Genetic Disease. ILAR Journal, 2009, 50, 199-205.	1.8	18
248	Gene therapy for diseases of the cornea – a review. Clinical and Experimental Ophthalmology, 2010, 38, 93-103.	2.6	27
249	Limbâ€girdle muscular dystrophy type 2D gene therapy restores αâ€sarcoglycan and associated proteins. Annals of Neurology, 2009, 66, 290-297.	5.3	204
250	Diverse IgG subclass responses to adenoâ€associated virus infection and vector administration. Journal of Medical Virology, 2009, 81, 65-74.	5.0	84
251	Subretinal delivery of adenoâ€associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. Journal of Gene Medicine, 2009, 11, 486-497.	2.8	55
252	Transient expression of genes delivered to newborn rat liver using recombinant adenoâ€associated virus 2/8 vectors. Journal of Gene Medicine, 2009, 11, 689-696.	2.8	22
253	AAV gene therapy as a means to increase apolipoprotein (Apo) Aâ€I and highâ€density lipoproteinâ€cholesterol levels: correction of murine ApoAâ€I deficiency. Journal of Gene Medicine, 2009, 11, 697-707.	2.8	16
254	Liverâ€restricted expression of the canine factor VIII gene facilitates prevention of inhibitor formation in factor VIIIâ€deficient mice. Journal of Gene Medicine, 2009, 11, 1020-1029.	2.8	36
255	Identification of the murine AAVrh32.33 capsidâ€specific CD8+ T cell epitopes. Journal of Gene Medicine, 2009, 11, 1095-1102.	2.8	10
256	Factor VIII Inhibitors: Risk Factors and Methods for Prevention and Immune Modulation. Clinical Reviews in Allergy and Immunology, 2009, 37, 114-124.	6.5	24
257	AAV-mediated gene therapy for metabolic diseases: dosage and reapplication studies in the molybdenum cofactor deficiency model. Genetic Vaccines and Therapy, 2009, 7, 9.	1.5	7
258	Gene therapy for haemophilia…yes, but…with nonâ€viral vectors?. Haemophilia, 2009, 15, 811-816.	2.1	11
259	Enhancing transduction of the liver by adeno-associated viral vectors. Gene Therapy, 2009, 16, 60-69.	4.5	69
260	Tailoring the AAV vector capsid for gene therapy. Gene Therapy, 2009, 16, 311-319.	4.5	152
261	AAV for pain: steps towards clinical translation. Gene Therapy, 2009, 16, 461-469.	4.5	42
262	Isolation and evaluation of novel adeno-associated virus sequences from porcine tissues. Gene Therapy, 2009, 16, 1320-1328.	4.5	45

.,		15	Circumo
#	ARTICLE	IF	CITATIONS
263	Crossing the Rubicon. Nature Biotechnology, 2009, 27, 42-44.	17.5	24
264	Looking ahead in cancer stem cell research. Nature Biotechnology, 2009, 27, 44-46.	17.5	193
265	Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nature Genetics, 2009, 41, 753-761.	21.4	800
266	Transient Transfection Methods for Clinical Adeno-Associated Viral Vector Production. Human Gene Therapy, 2009, 20, 698-706.	2.7	112
267	Cationic PMMA Nanoparticles Bind and Deliver Antisense Oligoribonucleotides Allowing Restoration of Dystrophin Expression in the mdx Mouse. Molecular Therapy, 2009, 17, 820-827.	8.2	70
268	Bioengineered Factor IX Molecules with Increased Catalytic Activity Improve the Therapeutic Index of Gene Therapy Vectors for Hemophilia B. Human Gene Therapy, 2009, 20, 479-485.	2.7	18
269	Immune barriers to successful gene therapy. Trends in Molecular Medicine, 2009, 15, 32-39.	6.7	48
270	Doxorubicin augments rAAV-2 transduction in rat neuronal cells. Neurochemistry International, 2009, 55, 521-528.	3.8	16
271	Prospects of RNAi and microRNA-based therapies for hepatitis C. Expert Opinion on Biological Therapy, 2009, 9, 713-724.	3.1	20
272	Effect of Adeno-Associated Virus Serotype and Genomic Structure on Liver Transduction and Biodistribution in Mice of Both Genders. Human Gene Therapy, 2009, 20, 908-917.	2.7	88
273	Antiviral Gene Therapy. Handbook of Experimental Pharmacology, 2009, , 265-297.	1.8	8
274	Gene Therapy: Design and Prospects for Craniofacial Regeneration. Journal of Dental Research, 2009, 88, 585-596.	5.2	66
275	Viruses and Nanotechnology. Current Topics in Microbiology and Immunology, 2009, , .	1.1	29
276	Musings on genome medicine: gene therapy. Genome Medicine, 2009, 1, 38.	8.2	1
277	Gene therapy of the rheumatic diseases: 1998 to 2008. Arthritis Research and Therapy, 2009, 11, 209.	3.5	34
278	Tumor Targeting Using Canine Parvovirus Nanoparticles. Current Topics in Microbiology and Immunology, 2009, 327, 123-141.	1.1	9
279	Antiviral Strategies. Handbook of Experimental Pharmacology, 2009, , .	1.8	3
280	Prenatal gene therapy for the early treatment of genetic disorders. Expert Review of Obstetrics and Gynecology, 2009, 4, 25-44.	0.4	6

#	Article	IF	CITATIONS
281	Novel Minicircle Vector for Gene Therapy in Murine Myocardial Infarction. Circulation, 2009, 120, S230-7.	1.6	91
282	Investigation of the Cause of Death in a Gene-Therapy Trial. New England Journal of Medicine, 2009, 361, 161-169.	27.0	85
283	Progress toward liverâ€based gene therapy. Hepatology Research, 2009, 39, 325-340.	3.4	24
284	Enhanced transthyretin tetramer stability following expression of an amyloid disease transsuppressor variant in mammalian cells. Journal of Gene Medicine, 2009, 11, 103-111.	2.8	3
285	Innate Immune Recognition of Viruses and Viral Vectors. Human Gene Therapy, 2009, 20, 293-301.	2.7	76
286	Strategies to Modulate Immune Responses: A New Frontier for Gene Therapy. Molecular Therapy, 2009, 17, 1492-1503.	8.2	56
287	AAV-1–mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood, 2009, 114, 2077-2086.	1.4	248
288	Silencing of T lymphocytes by antigen-driven programmed death in recombinant adeno-associated virus vector–mediated gene therapy. Blood, 2009, 113, 538-545.	1.4	48
289	Successful treatment of canine hemophilia by continuous expression of canine FVIIa. Blood, 2009, 113, 3682-3689.	1.4	79
290	Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood, 2009, 113, 797-806.	1.4	247
291	The therapeutic effect of bone marrow–derived liver cells in the phenotypic correction of murine hemophilia A. Blood, 2009, 114, 4552-4561.	1.4	41
292	Muscling through AAV immunity. Blood, 2009, 114, 2009-2010.	1.4	7
293	Blood, blood components, plasma, and plasma products. Side Effects of Drugs Annual, 2009, 31, 527-546.	0.6	3
294	Suppression of tissue inhibitor of metalloproteinase-1 by recombinant adeno-associated viruses carrying siRNAs in hepatic stellate cells. International Journal of Molecular Medicine, 2009, 24, 685-92.	4.0	9
295	Towards Liver-Directed Gene Therapy for Crigler-Najjar Syndrome. Current Gene Therapy, 2009, 9, 72-82.	2.0	34
296	Ex Vivo Liver – Directed Gene Therapy for the Treatment of Metabolic Diseases: Advances in Hepatocyte Transplantation and Retroviral Vectors. Current Gene Therapy, 2009, 9, 136-149.	2.0	33
297	DNA Transposons: Nature and Applications in Genomics. Current Genomics, 2010, 11, 115-128.	1.6	317
298	Preclinical and clinical progress in hemophilia gene therapy. Current Opinion in Hematology, 2010, 17, 387-392.	2.5	24

#	Article	IF	CITATIONS
299	Relevance of an Academic GMP Pan-European Vector Infra-Structure (PEVI). Current Gene Therapy, 2010, 10, 414-422.	2.0	4
300	Genetic Modification of Donor Hepatocytes Improves Therapeutic Efficacy for Hemophilia B in Mice. Cell Transplantation, 2010, 19, 1169-1180.	2.5	10
301	Effect of Administration Route on the Biodistribution and Shedding of Replication-Deficient AAV2: A Qualitative Modelling Approach. Current Gene Therapy, 2010, 10, 91-106.	2.0	14
302	AAV-2: how can the capsid be modified to improve the viral vector in gene therapy?. Future Virology, 2010, 5, 133-135.	1.8	0
303	Induction of immune tolerance to FIX by intramuscular AAV gene transfer is independent of the activation status of dendritic cells. Blood, 2010, 115, 500-509.	1.4	5
304	Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. Blood, 2010, 115, 5329-5337.	1.4	81
305	Factor IX ectopically expressed in platelets can be stored in α-granules and corrects the phenotype of hemophilia B mice. Blood, 2010, 116, 1235-1243.	1.4	54
306	Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B. Blood, 2010, 115, 4678-4688.	1.4	104
307	Eradication of neutralizing antibodies to factor VIII in canine hemophilia A after liver gene therapy. Blood, 2010, 116, 5842-5848.	1.4	144
309	Platelets as delivery systems for disease treatments. Advanced Drug Delivery Reviews, 2010, 62, 1196-1203.	13.7	47
310	In vivo non-viral gene delivery of human vascular endothelial growth factor improves revascularisation and restoration of euglycaemia after human islet transplantation into mouse liver. Diabetologia, 2010, 53, 1669-1679.	6.3	53
311	Multifunctional nanocomplexes for gene transfer and gene therapy. Cell Biology and Toxicology, 2010, 26, 69-81.	5.3	64
312	Prospects for gene therapy in inflammatory arthritis. Best Practice and Research in Clinical Rheumatology, 2010, 24, 541-552.	3.3	15
313	Direct, help-independent priming of CD8+ T cells by adeno-associated virus-transduced hepatocytes. Hepatology, 2010, 52, 1068-1077.	7.3	28
314	Sustained alphaâ€sarcoglycan gene expression after gene transfer in limbâ€girdle muscular dystrophy, type 2D. Annals of Neurology, 2010, 68, 629-638.	5.3	214
315	Differential antitumor effect of interleukinâ€12 family cytokines on orthotopic hepatocellular carcinoma. Journal of Gene Medicine, 2010, 12, 423-434.	2.8	26
316	AAV plasmid DNA simplifies liverâ€directed <i>in vivo</i> gene therapy: comparison of expression levels after plasmid DNAâ€, adenoâ€associated virus―and adenovirusâ€mediated liver transfection. Journal of Gene Medicine, 2010, 12, 810-817.	2.8	4
317	Gene therapy strategies for hemophilia: benefits versus risks. Journal of Gene Medicine, 2010, 12, 797-809.	2.8	38

	CITATION R	EPORT	
#	Article	IF	Citations
318	Tissue-specific gene delivery via nanoparticle coating. Biomaterials, 2010, 31, 998-1006.	11.4	123
319	LDLR-Gene therapy for familial hypercholesterolaemia: problems, progress, and perspectives. International Archive of Medicine, 2010, 3, 36.	1.2	42
320	Generation of a novel factor IX with augmented clotting activities in vitro and in vivo. Journal of Thrombosis and Haemostasis, 2010, 8, 1773-1783.	3.8	26
321	Adenoâ€associated virus gene transfer in Morquio A disease – effect of promoters and sulfataseâ€modifying factor 1. FEBS Journal, 2010, 277, 3608-3619.	4.7	31
322	Special lectures in haemophilia management. Haemophilia, 2010, 16, 22-28.	2.1	10
323	Unique strategies for therapeutic gene transfer in haemophilia A and haemophilia B. WFH Stateâ€ofâ€theâ€Art Session on Therapeutic Gene Transfer Buenos Aires, Argentina. Haemophilia, 2010, 16, 29-34.	2.1	37
324	Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Therapy, 2010, 17, 141-146.	4.5	112
325	AAV5-mediated gene transfer to the parotid glands of non-human primates. Gene Therapy, 2010, 17, 50-60.	4.5	16
326	DsAAV8-mediated expression of glucagon-like peptide-1 in pancreatic beta-cells ameliorates streptozotocin-induced diabetes. Gene Therapy, 2010, 17, 171-180.	4.5	26
327	High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency. Gene Therapy, 2010, 17, 503-510.	4.5	240
328	Neonatal gene transfer using lentiviral vector for murine Pompe disease: long-term expression and glycogen reduction. Gene Therapy, 2010, 17, 521-530.	4.5	34
329	Hydrostatic isolated limb perfusion with adeno-associated virus vectors enhances correction of skeletal muscle in Pompe disease. Gene Therapy, 2010, 17, 1500-1505.	4.5	10
330	Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors. Gene Therapy, 2010, 17, 872-879.	4.5	54
331	Gene doping detection: evaluation of approach for direct detection of gene transfer using erythropoietin as a model system. Gene Therapy, 2010, 17, 1022-1032.	4.5	66
332	Antigen-presenting cell function in the tolerogenic liver environment. Nature Reviews Immunology, 2010, 10, 753-766.	22.7	658
333	Gene Therapy in a Humanized Mouse Model of Familial Hypercholesterolemia Leads to Marked Regression of Atherosclerosis. PLoS ONE, 2010, 5, e13424.	2.5	69
334	Production, Purification and Characterization of Adeno-Associated Vectors. Current Gene Therapy, 2010, 10, 423-436.	2.0	113
335	Terapia gênica: o que é, o que não é e o que será. Estudos Avancados, 2010, 24, 31-69.	0.5	9

	CITATION R	EPORT	
#	Article	IF	Citations
336	Adeno-associated virus: a key to the human genome?. Future Virology, 2010, 5, 555-574.	1.8	52
337	Arthritis Gene Therapy Trials Reach Phase II. Journal of Rheumatology, 2010, 37, 683-685.	2.0	14
338	Development of Human Anti-Murine T-Cell Receptor Antibodies in Both Responding and Nonresponding Patients Enrolled in TCR Gene Therapy Trials. Clinical Cancer Research, 2010, 16, 5852-5861.	7.0	108
339	Duration of Expression and Activity of Sleeping Beauty Transposase in mouse liver following hydrodynamic DNA delivery. Molecular Therapy, 2010, 18, 1796-1802.	8.2	39
340	Genotyping of AAV Plasmid Stocks: Quality Control in Adeno-Associated Virus Vector Production. Journal of Molecular Microbiology and Biotechnology, 2010, 19, 204-212.	1.0	4
341	Safety and Efficacy of Subretinal Readministration of a Viral Vector in Large Animals to Treat Congenital Blindness. Science Translational Medicine, 2010, 2, 21ra16.	12.4	114
342	Comparison of Adeno-Associated Virus Pseudotype 1, 2, and 8 Vectors Administered by Intramuscular Injection in the Treatment of Murine Phenylketonuria. Human Gene Therapy, 2010, 21, 463-477.	2.7	40
343	Autologous Transplantation of Endothelial Progenitor Cells Genetically Modified by Adeno-Associated Viral Vector Delivering Insulin-Like Growth Factor-1 Gene After Myocardial Infarction. Human Gene Therapy, 2010, 21, 1327-1334.	2.7	33
344	Xenogeneic Liver Models for Gene Therapy. Human Gene Therapy, 2010, 21, 1-4.	2.7	24
345	Functional Differentiation Between Rep-Mediated Site-Specific Integration and Transcriptional Repression of the Adeno-Associated Viral p5 Promoter. Human Gene Therapy, 2010, 21, 728-738.	2.7	3
346	Safety of AAV Factor IX Peripheral Transvenular Gene Delivery to Muscle in Hemophilia B Dogs. Molecular Therapy, 2010, 18, 1318-1329.	8.2	66
347	MyD88-Dependent Silencing of Transgene Expression During the Innate and Adaptive Immune Response to Helper-Dependent Adenovirus. Human Gene Therapy, 2010, 21, 325-336.	2.7	31
348	Neonatal Gene Therapy of Glycogen Storage Disease Type la Using a Feline Immunodeficiency Virus–based Vector. Molecular Therapy, 2010, 18, 1592-1598.	8.2	23
349	Gene Expression in Lung and Liver After Intravenous Infusion of Polyethylenimine Complexes of Sleeping Beauty Transposons. Human Gene Therapy, 2010, 21, 210-220.	2.7	30
350	Structural Characterization of the Dual Glycan Binding Adeno-Associated Virus Serotype 6. Journal of Virology, 2010, 84, 12945-12957.	3.4	120
351	Novel Viral Vector Systems for Gene Therapy. Viruses, 2010, 2, 1002-1007.	3.3	35
352	AAV Provides an Alternative for Gene Therapy of the Peripheral Sensory Nervous System. Molecular Therapy, 2010, 18, 670-673.	8.2	17
353	Alternative Strategies for Gene Therapy of Hemophilia. Hematology American Society of Hematology Education Program, 2010, 2010, 197-202.	2.5	8

#	Article	IF	CITATIONS
354	Systematic Evaluation of AAV Vectors for Liver directed Gene Transfer in Murine Models. Molecular Therapy, 2010, 18, 118-125.	8.2	110
355	CLINICAL DEVELOPMENT OF AAV VECTORS. Gene Therapy and Regulation, 2010, 05, 5-30.	0.3	0
356	Expression of Human α1-Antitrypsin in Mice and Dogs Following AAV6 Vector-mediated Gene Transfer to the Lungs. Molecular Therapy, 2010, 18, 1165-1172.	8.2	40
357	Dystrophin Immunity in Duchenne's Muscular Dystrophy. New England Journal of Medicine, 2010, 363, 1429-1437.	27.0	546
358	Autoimmunity in a Genetic Disease — A Cautionary Tale. New England Journal of Medicine, 2010, 363, 1473-1475.	27.0	7
359	The Pleiotropic Effects of Natural AAV Infections on Liver-directed Gene Transfer in Macaques. Molecular Therapy, 2010, 18, 126-134.	8.2	123
360	Immune Responses to AAV in Canine Muscle Monitored by Cellular Assays and Noninvasive Imaging. Molecular Therapy, 2010, 18, 617-624.	8.2	40
362	Widespread Muscle Expression of an AAV9 Human Mini-dystrophin Vector After Intravenous Injection in Neonatal Dystrophin-deficient Dogs. Molecular Therapy, 2010, 18, 1501-1508.	8.2	140
363	Preexisting Immunity and Low Expression in Primates Highlight Translational Challenges for Liver-directed AAV8-mediated Gene Therapy. Molecular Therapy, 2010, 18, 1983-1994.	8.2	123
364	Proteasome Inhibitors Decrease AAV2 Capsid derived Peptide Epitope Presentation on MHC Class I Following Transduction. Molecular Therapy, 2010, 18, 135-142.	8.2	96
365	Directed Evolution of a Novel Adeno-associated Virus (AAV) Vector That Crosses the Seizure-compromised Blood–Brain Barrier (BBB). Molecular Therapy, 2010, 18, 570-578.	8.2	166
366	Lack of Immunotoxicity After Regional Intravenous (RI) Delivery of rAAV to Nonhuman Primate Skeletal Muscle. Molecular Therapy, 2010, 18, 151-160.	8.2	59
367	Manufacturing and Regulatory Strategies for Clinical AAV2-hRPE65. Current Gene Therapy, 2010, 10, 341-349.	2.0	33
368	Autoimmunity, Recessive Diseases, and Gene Replacement Therapy. Molecular Therapy, 2010, 18, 2045-2047.	8.2	6
369	Gene Therapy for Hemophilia. , 2010, , 233-249.		0
370	Gene Therapy for Duchenne Muscular Dystrophy. , 2010, , 261-277.		0
371	Could gene therapy be the future for muscular dystrophy?. Therapy: Open Access in Clinical Medicine, 2010, 7, 287-290.	0.2	3
372	Hepatic AAV Gene Transfer and the Immune System: Friends or Foes?. Molecular Therapy, 2010, 18, 1063-1066.	8.2	14

щ	Article	IF	Citations
# 373	Hyperactive Sleeping Beauty Transposase Enables Persistent Phenotypic Correction in Mice and a Canine Model for Hemophilia B. Molecular Therapy, 2010, 18, 1896-1906.	IF 8.2	75
374	High-efficiency Transduction and Correction of Murine Hemophilia B Using AAV2 Vectors Devoid of Multiple Surface-exposed Tyrosines. Molecular Therapy, 2010, 18, 2048-2056.	8.2	123
375	BALB/c Mice Show Impaired Hepatic Tolerogenic Response Following AAV Gene Transfer to the Liver. Molecular Therapy, 2010, 18, 766-774.	8.2	29
376	Aproximaciones de terapia génica para la diabetes tipo 1. Avances En DiabetologÃa, 2010, 26, 6-12.	0.1	0
377	Recent Advances in Lentiviral Vector Development and Applications. Molecular Therapy, 2010, 18, 477-490.	8.2	288
378	Sarcoplasmic reticulum Ca ²⁺ ATPase as a therapeutic target for heart failure. Expert Opinion on Biological Therapy, 2010, 10, 29-41.	3.1	146
379	Safety, Tolerability, and Clinical Outcomes after Intraarticular Injection of a Recombinant Adeno-associated Vector Containing a Tumor Necrosis Factor Antagonist Gene: Results of a Phase 1/2 Study. Journal of Rheumatology, 2010, 37, 692-703.	2.0	99
380	Prevalence of Serum IgG and Neutralizing Factors Against Adeno-Associated Virus (AAV) Types 1, 2, 5, 6, 8, and 9 in the Healthy Population: Implications for Gene Therapy Using AAV Vectors. Human Gene Therapy, 2010, 21, 704-712.	2.7	776
381	Status of Therapeutic Gene Transfer to Treat Canine Dilated Cardiomyopathy in Dogs. Veterinary Clinics of North America - Small Animal Practice, 2010, 40, 717-724.	1.5	4
382	Mutant Macaque Factor IX T262A: A Tool for Hemophilia B Gene Therapy Studies in Macaques. Thrombosis Research, 2010, 125, 533-537.	1.7	4
383	FIX-Triple, a gain-of-function factor IX variant, improves haemostasis in mouse models without increased risk of thrombosis. Thrombosis and Haemostasis, 2010, 104, 355-365.	3.4	15
384	Gene Therapy and Muscles: The Use of Adeno-associated Virus—Where are We Today?. Operative Techniques in Orthopaedics, 2010, 20, 136-143.	0.1	3
385	Cardiac Gene Therapy. Seminars in Thoracic and Cardiovascular Surgery, 2010, 22, 127-139.	0.6	16
386	Cell transfection using layer-by-layer (LbL) coated calixarene-based solid lipid nanoparticles (SLNs). Chemical Communications, 2010, 46, 5581.	4.1	26
387	Gene Therapy and Allergy. , 2010, , 211-222.		0
388	Combined Paracrine and Endocrine AAV9 mediated Expression of Hepatocyte Growth Factor for the Treatment of Renal Fibrosis. Molecular Therapy, 2010, 18, 1302-1309.	8.2	40
389	Gene Therapy for Leber's Congenital Amaurosis is Safe and Effective Through 1.5 Years After Vector Administration. Molecular Therapy, 2010, 18, 643-650.	8.2	503
390	Novel drugs to treat hemophilia. Expert Opinion on Emerging Drugs, 2010, 15, 597-613.	2.4	7

#	Article	IF	CITATIONS
391	Long-Term Luciferase Expression Monitored by Bioluminescence Imaging After Adeno-Associated Virus-Mediated Fetal Gene Delivery in Rhesus Monkeys (<i>Macaca mulatta</i>). Human Gene Therapy, 2010, 21, 143-148.	2.7	61
392	Liver-Directed Recombinant Adeno-Associated Viral Gene Delivery Rescues a Lethal Mouse Model of Methylmalonic Acidemia and Provides Long-Term Phenotypic Correction. Human Gene Therapy, 2010, 21, 1147-1154.	2.7	51
393	AAV-mediated gene therapy for liver diseases: the prime candidate for clinical application?. Expert Opinion on Biological Therapy, 2011, 11, 315-327.	3.1	28
394	Safety of Liver Gene Transfer Following Peripheral Intravascular Delivery of Adeno-Associated Virus (AAV)-5 and AAV-6 in a Large Animal Model. Human Gene Therapy, 2011, 22, 843-852.	2.7	25
395	HIV-1-Derived Lentiviral Vectors Directly Activate Plasmacytoid Dendritic Cells, Which in Turn Induce the Maturation of Myeloid Dendritic Cells. Human Gene Therapy, 2011, 22, 177-188.	2.7	40
396	Fetal gene therapy: recent advances and current challenges. Expert Opinion on Biological Therapy, 2011, 11, 1257-1271.	3.1	19
397	Preclinical Evaluation of a Recombinant Adeno-Associated Virus Vector Expressing Human Alpha-1 Antitrypsin Made Using a Recombinant Herpes Simplex Virus Production Method. Human Gene Therapy, 2011, 22, 155-165.	2.7	58
398	Heterologous Prime-Boost Immunizations with a Virosomal and an Alphavirus Replicon Vaccine. Molecular Pharmaceutics, 2011, 8, 65-77.	4.6	18
399	Transgene Loss and Changes in the Promoter Methylation Status as Determinants for Expression Duration in Nonviral Gene Transfer for Factor IX. Human Gene Therapy, 2011, 22, 101-106.	2.7	17
400	The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Human Molecular Genetics, 2011, 20, R14-R20.	2.9	125
402	Rescuing the Failing Heart by Targeted Gene Transfer. Journal of the American College of Cardiology, 2011, 57, 1169-1180.	2.8	61
403	Advances in Gene Delivery Systems. Pharmaceutical Medicine, 2011, 25, 293-306.	1.9	107
404	Radioprotective gene therapy. Expert Opinion on Biological Therapy, 2011, 11, 1135-1151.	3.1	15
405	Merry Christmas for Patients with Hemophilia B. New England Journal of Medicine, 2011, 365, 2424-2425.	27.0	23
406	Adenovirus-Associated Virus Vector–Mediated Gene Transfer in Hemophilia B. New England Journal of Medicine, 2011, 365, 2357-2365.	27.0	1,606
407	In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature, 2011, 475, 217-221.	27.8	523
408	Viral Vectors for Gene Therapy. Methods in Molecular Biology, 2011, , .	0.9	11
409	Proteases as therapeutics. Biochemical Journal, 2011, 435, 1-16.	3.7	188

#	Article	IF	CITATIONS
410	Competitive electroporation formulation for cell therapy. Cancer Gene Therapy, 2011, 18, 579-586.	4.6	20
411	Adeno-Associated Virus. Methods in Molecular Biology, 2011, , .	0.9	16
412	Delivery of Nucleic Acids and Gene Delivery. , 2011, , 411-444.		7
413	Intraperitoneal AAV9-shRNA inhibits target expression in neonatal skeletal and cardiac muscles. Biochemical and Biophysical Research Communications, 2011, 405, 204-209.	2.1	16
414	Embryonic Stem Cell Derivatives for Cardiac Therapy: Advantages, Limitations, and Long-Term Prospects. , 2011, , 53-66.		0
415	Prospects for the gene therapy of spinal muscular atrophy. Trends in Molecular Medicine, 2011, 17, 259-265.	6.7	29
416	Latest developments in the large-scale production of adeno-associated virus vectors in insect cells toward the treatment of neuromuscular diseases. Journal of Invertebrate Pathology, 2011, 107, S80-S93.	3.2	46
417	The next step in gene delivery: Molecular engineering of adeno-associated virus serotypes. Journal of Molecular and Cellular Cardiology, 2011, 50, 793-802.	1.9	62
418	Adipocytes as a vehicle for ex vivo gene therapy: Novel replacement therapy for diabetes and other metabolic diseases. Journal of Diabetes Investigation, 2011, 2, 333-340.	2.4	11
419	Good Manufacturing Practice Production of Self-Complementary Serotype 8 Adeno-Associated Viral Vector for a Hemophilia B Clinical Trial. Human Gene Therapy, 2011, 22, 595-604.	2.7	126
420	Gene Therapy Strategies Incorporating Large Transgenes. , 2011, , .		1
421	Gene and cell therapy based treatment strategies for inflammatory bowel diseases. World Journal of Gastrointestinal Pathophysiology, 2011, 2, 114.	1.0	21
422	Progress and Challenges in AAV-Mediated Gene Therapy for Duchenne Muscular Dystrophy. , 0, , .		2
423	Comparison of DNA Delivery and Expression Using Frequently Used Delivery Methods. , 2011, , .		0
424	Gene Therapy for Alpha-1-Antitrypsin Deficiency Diseases. , 2011, , .		0
425	Alpha-1 Antitrypsin Deficiency: Recent Developments in Gene Therapy Research. , 0, , .		0
426	Physiologically-Regulated Expression Vectors for Gene Therapy. , 2011, , .		0
427	Regenerative Medicine and Tissue Engineering for the Treatment of Diabetes. , 2011, , .		Ο

ARTICLE IF CITATIONS # Ultrasound-Mediated Gene Delivery., 0,,. 0 428 Can Viruses be Modified to Achieve Sustained Gene Transfer. Frontiers in Microbiology, 2011, 2, 152. 429 3.5 430 Innate Immune Responses to AAV Vectors. Frontiers in Microbiology, 2011, 2, 194. 3.5 127 Improved Immunological Tolerance Following Combination Therapy with CTLA-4/Ig and AAV-Mediated PD-L1/2 Muscle Gene Transfer. Frontiers in Microbiology, 2011, 2, 199. Immunity and AAV-Mediated Gene Therapy for Muscular Dystrophies in Large Animal Models and Human 432 3.5 46 Trials. Frontiers in Microbiology, 2011, 2, 201. Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity. 3.5 Frontiers in Microbiology, 2011, 2, 204. Immune Responses to rAAV6: The Influence of Canine Parvovirus Vaccination and Neonatal 434 3.5 14 Administration of Viral Vector. Frontiers in Microbiology, 2011, 2, 220. Prevention and Reversal of Antibody Responses Against Factor IX in Gene Therapy for Hemophilia B. 3.5 36 Frontiers in Microbiology, 2011, 2, 244. 436 Gene Therapy for Parkinson's Disease., 0, , . 1 Perinatal Gene Transfer to the Liver. Current Pharmaceutical Design, 2011, 17, 2528-2541. 1.9 Gene Therapy for Lysosomal Storage Diseases: Progress, Challenges and Future Prospects. Current 438 1.9 32 Pharmaceutical Design, 2011, 17, 2558-2574. Immune Responses to AAV in Clinical Trials. Current Gene Therapy, 2011, 11, 321-330. Adeno-associated Viral Vectors for Correction of Inborn Errors of Metabolism: Progressing Towards 440 1.9 17 Clinical Application. Current Pharmaceutical Design, 2011, 17, 2500-2515. Assessing the potential for AAV vector genotoxicity in a murine model. Blood, 2011, 117, 3311-3319. 441 1.4 Catalytic domain modification and viral gene delivery of activated factor VII confers hemostasis at 442 1.4 17 reduced expression levels and vector doses in vivo. Blood, 2011, 117, 3974-3982. Quest for safety at AAValon. Blood, 2011, 117, 3249-3250. 443 1.4 Interactions between AAV-2 and HSV-1: implications for hybrid vector design. Future Virology, 2011, 6, 444 1.8 2 483-501. 445 Gene therapy: therapeutic applications and relevance to pathology. Pathology, 2011, 43, 642-656.

CITATION REPORT ARTICLE IF CITATIONS Muscleâ€directed gene therapy for hemophilia B with more efficient and less immunogenic AAV vectors. 3.8 20 Journal of Thrombosis and Haemostasis, 2011, 9, 2009-2019. State-of-the-art gene-based therapies: the road ahead. Nature Reviews Genetics, 2011, 12, 316-328. 16.3 587 Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nature 16.3 797 Reviews Genetics, 2011, 12, 341-355. AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Therapy, 2011, 18, 38-42. Physiological and tissue-specific vectors for treatment of inherited diseases. Gene Therapy, 2011, 18, 4.5 47 117-127. Liver-specific microRNA-122 target sequences incorporated in AAV vectors efficiently inhibits 4.5 transgene expression in the liver. Gene Therapy, 2011, 18, 403-410. Capsid-expressing DNA in AAV vectors and its elimination by use of an oversize capsid gene for vector 4.5 31 production. Gene Therapy, 2011, 18, 411-417. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman 4.5 44 primates: implications for gene doping. Gene Therapy, 2011, 18, 709-718. Historical perspective and future direction of coagulation research. Journal of Thrombosis and 3.8 22 Haemostasis, 2011, 9, 352-363. Gene therapy for haemophilia: a long and winding road. Journal of Thrombosis and Haemostasis, 2011, 3.8 9, 2-11. A novel transfection method for eukaryotic cells using polyethylenimine coated albumin 12 1.4 microbubbles. Plasmid, 2011, 66, 19-25. PEG-modulated column chromatography for purification of recombinant adeno-associated virus 2.1 serotype 9. Journal of Virological Methods, 2011, 173, 99-107. Transduction of Human Adipose-Derived Mesenchymal Stem Cells by Recombinant Adeno-Associated 2.1 10 Virus Vectors. Tissue Engineering - Part C: Methods, 2011, 17, 949-959. Introduction to Viral Vectors. Methods in Molecular Biology, 2011, 737, 1-25. The function of dog models in developing gene therapy strategies for human health. Mammalian 2.2 20 Genome, 2011, 22, 476-485. Translational benefits of gene therapy to date. Clinical Oncology and Cancer Research, 2011, 8, 10. 0.1 Countering hepatitis B virus infection using RNAi: how far are we from the clinic?. Reviews in Medical

464Hepatic control elements promote longâ€term expression of human coagulation factor IX gene in
hydrodynamically transfected mice. Journal of Gene Medicine, 2011, 13, 365-372.2.88

8.3

25

#

446

447

448

449

450

452

454

456

458

460

463

Virology, 2011, 21, 383-396.

#	Article	IF	CITATIONS
465	Longâ€ŧerm functional adenoâ€associated virusâ€microdystrophin expression in the dystrophic <i>CXMDj</i> dog. Journal of Gene Medicine, 2011, 13, 497-506.	2.8	57
466	Hepatocyteâ€targeted expression by integraseâ€defective lentiviral vectors induces antigenâ€specific tolerance in mice with low genotoxic risk. Hepatology, 2011, 53, 1696-1707.	7.3	123
467	Status of therapeutic gene transfer to treat cardiovascular disease in dogs and cats. Journal of Veterinary Cardiology, 2011, 13, 131-140.	0.9	4
468	Phenotypic Correction of a Mouse Model for Primary Hyperoxaluria With Adeno-associated Virus Gene Transfer. Molecular Therapy, 2011, 19, 870-875.	8.2	54
469	Retroviral Vectors Induce Epigenetic Chromatin Modifications and IL-10 Production in Transduced B Cells via Activation of Toll-like Receptor 2. Molecular Therapy, 2011, 19, 711-722.	8.2	15
470	Long-Term Cardiac pro-B-Type Natriuretic Peptide Gene Delivery Prevents the Development of Hypertensive Heart Disease in Spontaneously Hypertensive Rats. Circulation, 2011, 123, 1297-1305.	1.6	76
471	Cell Phones and Landlines: The Impact of Gene Therapy on the Cost and Availability of Treatment for Hemophilia. Molecular Therapy, 2011, 19, 1749-1750.	8.2	16
472	Capsid-specific T-cell Responses to Natural Infections With Adeno-associated Viruses in Humans Differ From Those of Nonhuman Primates. Molecular Therapy, 2011, 19, 2021-2030.	8.2	68
473	Recombinant AAV-directed gene therapy for type I glycogen storage diseases. Expert Opinion on Biological Therapy, 2011, 11, 1011-1024.	3.1	21
474	CNS-targeted Viral Delivery of G-CSF in an Animal Model for ALS: Improved Efficacy and Preservation of the Neuromuscular Unit. Molecular Therapy, 2011, 19, 284-292.	8.2	61
475	Intranasal Administration of Adeno-associated Virus Type 12 (AAV12) Leads to Transduction of the Nasal Epithelia and Can Initiate Transgene-specific Immune Response. Molecular Therapy, 2011, 19, 1990-1998.	8.2	18
476	A 10 Patient Case Report on the Impact of Plasmapheresis Upon Neutralizing Factors Against Adeno-associated Virus (AAV) Types 1, 2, 6, and 8. Molecular Therapy, 2011, 19, 2084-2091.	8.2	163
477	Activation of the NF-κB pathway by adeno-associated virus (AAV) vectors and its implications in immune response and gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3743-3748.	7.1	67
478	Efficacy and Safety of Long-term Prophylaxis in Severe Hemophilia A Dogs Following Liver Gene Therapy Using AAV Vectors. Molecular Therapy, 2011, 19, 442-449.	8.2	116
479	Hepatorenal Correction in Murine Glycogen Storage Disease Type I With a Double-stranded Adeno-associated Virus Vector. Molecular Therapy, 2011, 19, 1961-1970.	8.2	36
480	A Barrel of Monkeys: scAAV8 Gene Therapy for Hemophilia in Nonhuman Primates. Molecular Therapy, 2011, 19, 826-827.	8.2	4
481	Adeno-associated Virus Vectors Serotype 2 Induce Prolonged Proliferation of Capsid-Specific CD8+ T Cells in Mice. Molecular Therapy, 2011, 19, 536-546.	8.2	28
482	Preclinical Differences of Intravascular AAV9 Delivery to Neurons and Glia: A Comparative Study of Adult Mice and Nonhuman Primates. Molecular Therapy, 2011, 19, 1058-1069.	8.2	399

		CITATION REPORT		
# 483	ARTICLE Getting arthritis gene therapy into the clinic. Nature Reviews Rheumatology, 2011, 7, 2	44-249.	IF 8.0	CITATIONS
484	Recombinant Adeno-Associated Virus-Mediated <i>In Utero</i> Gene Transfer Gives The Transgene Expression in the Sheep. Human Gene Therapy, 2011, 22, 419-426.	erapeutic	2.7	44
485	Mycophenolate Mofetil Impairs Transduction of Single-Stranded Adeno-Associated Vira Human Gene Therapy, 2011, 22, 605-612.	Vectors.	2.7	33
486	Phase 2 Clinical Trial of a Recombinant Adeno-Associated Viral Vector Expressing α ₁ -Antitrypsin: Interim Results. Human Gene Therapy, 2011, 22, 1239-12	47.	2.7	297
487	Cardiac Gene Transfer of Short Hairpin RNA Directed Against Phospholamban Effectivel Gene Expression but Causes Cellular Toxicity in Canines. Human Gene Therapy, 2011, 2		2.7	43
488	Systemic Elimination of <i>de novo</i> Capsid Protein Synthesis from Replication-Comp Contamination in the Liver. Human Gene Therapy, 2011, 22, 625-632.	etent AAV	2.7	12
489	Rescue of Severe Infantile Hypophosphatasia Mice by AAV-Mediated Sustained Express Alkaline Phosphatase. Human Gene Therapy, 2011, 22, 1355-1364.	on of Soluble	2.7	39
490	New Adeno-Associated Virus Strategies to Support Momentum in the Clinic. Human Ge 22, 519-521.	ne Therapy, 2011,	2.7	9
491	Impact of Pre-Existing Immunity on Gene Transfer to Nonhuman Primate Liver with Ade Virus 8 Vectors. Human Gene Therapy, 2011, 22, 1389-1401.	no-Associated	2.7	170
492	Assessment of the Safety and Biodistribution of a Regulated AAV2 Gene Transfer Vectors to Murine Submandibular Glands. Toxicological Sciences, 2011, 123, 247-255.	r after Delivery	3.1	4
493	Long-term Safety and Efficacy Following Systemic Administration of a Self-complement Encoding Human FIX Pseudotyped With Serotype 5 and 8 Capsid Proteins. Molecular T 876-885.	ary AAV Vector herapy, 2011, 19,	8.2	280
494	Nonredundant Roles of IL-10 and TGF-β in Suppression of Immune Responses to Hepat Gene Transfer. Molecular Therapy, 2011, 19, 1263-1272.	ic AAV-Factor IX	8.2	61
495	Therapeutic approaches to muscular dystrophy. Human Molecular Genetics, 2011, 20,	₹69-R78.	2.9	92
496	Retention Behavior Using SiN Spacers Charging on nMOSFETs for Future Nonvolatile M Application. Journal of the Electrochemical Society, 2011, 158, H536.	emory	2.9	0
497	Combination therapy utilizing shRNA knockdown and an optimized resistant transgene diseases caused by misfolded proteins. Proceedings of the National Academy of Science States of America, 2011, 108, 14258-14263.		7.1	64
498	Adeno-Associated Virus Liver Transduction Efficiency Measured by <i>in Vivo</i> [¹⁸ F]FHBG Positron Emission Tomography Imaging in Rodents and Nonhu Human Gene Therapy, 2011, 22, 999-1009.	iman Primates.	2.7	14
499	Evaluation of Adeno-Associated Viral Vectors for Liver-Directed Gene Transfer in Dogs. I Therapy, 2011, 22, 985-997.	luman Gene	2.7	35
500	Self-complementary adeno-associated viral vectors for gene therapy of hemophilia B: pr challenges. Expert Review of Hematology, 2011, 4, 539-549.	ogress and	2.2	27

#	Article	IF	CITATIONS
501	The Complex and Evolving Story of T cell Activation to AAV Vector-encoded Transgene Products. Molecular Therapy, 2011, 19, 16-27.	8.2	113
502	Humoral and Cellular Capsid-Specific Immune Responses to Adeno-Associated Virus Type 1 in Randomized Healthy Donors. Journal of Immunology, 2012, 188, 6418-6424.	0.8	71
503	Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Human Molecular Genetics, 2012, 21, 2559-2571.	2.9	87
504	The Threefold Protrusions of Adeno-Associated Virus Type 8 Are Involved in Cell Surface Targeting as Well as Postattachment Processing. Journal of Virology, 2012, 86, 9396-9408.	3.4	40
505	Phoenix rising: gene therapy makes a comeback. Acta Biochimica Et Biophysica Sinica, 2012, 44, 632-640.	2.0	8
506	An AAV2/5 Vector Enhances Safety of Gene Transfer to the Mouse Salivary Gland. Journal of Dental Research, 2012, 91, 382-386.	5.2	8
507	Single Amino Acid Modification of Adeno-Associated Virus Capsid Changes Transduction and Humoral Immune Profiles. Journal of Virology, 2012, 86, 7752-7759.	3.4	84
508	Parvoviruses: structure and infection. Future Virology, 2012, 7, 253-278.	1.8	49
509	Self-complementary AAVs Induce More Potent Transgene Product-specific Immune Responses Compared to a Single-stranded Genome. Molecular Therapy, 2012, 20, 572-579.	8.2	45
510	AAV Vectors Containing rDNA Homology Display Increased Chromosomal Integration and Transgene Persistence. Molecular Therapy, 2012, 20, 1902-1911.	8.2	36
511	AAV-based neonatal gene therapy for hemophilia A: long-term correction and avoidance of immune responses in mice. Gene Therapy, 2012, 19, 1166-1176.	4.5	40
512	Present and Future of Adeno Associated Virus Based Gene Therapy Approaches. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2012, 6, 47-66.	0.6	32
513	Role of Molecular Genetics in Hemophilia: From Diagnosis to Therapy. Seminars in Thrombosis and Hemostasis, 2012, 38, 64-78.	2.7	28
514	Genetically engineered immune privileged Sertoli cells. Spermatogenesis, 2012, 2, 23-31.	0.8	22
515	Neutralizing Antibodies Against AAV Serotypes 1, 2, 6, and 9 in Sera of Commonly Used Animal Models. Molecular Therapy, 2012, 20, 73-83.	8.2	143
516	Sustained Reduction of Hyperbilirubinemia in Gunn Rats After Adeno-Associated Virus-Mediated Gene Transfer of Bilirubin UDP-Glucuronosyltransferase Isozyme 1A1 to Skeletal Muscle. Human Gene Therapy, 2012, 23, 1082-1089.	2.7	7
517	Immunosuppression Decreases Inflammation and Increases AAV6-hSERCA2a-Mediated SERCA2a Expression. Human Gene Therapy, 2012, 23, 722-732.	2.7	9
518	Native Molecular State of Adeno-Associated Viral Vectors Revealed by Single-Molecule Sequencing. Human Gene Therapy, 2012, 23, 46-55.	2.7	51

#	Article	IF	CITATIONS
519	A Personal Perspective on the Early, Early History ofIn Vivo(DNA-Based) Gene Therapy. Human Gene Therapy, 2012, 23, 541-546.	2.7	2
520	Long-Term Efficacy Following Readministration of an Adeno-Associated Virus Vector in Dogs with Glycogen Storage Disease Type Ia. Human Gene Therapy, 2012, 23, 407-418.	2.7	33
521	MyD88 Signaling in B Cells Regulates the Production of Th1-dependent Antibodies to AAV. Molecular Therapy, 2012, 20, 1571-1581.	8.2	53
522	Gene therapy in a murine model of methylmalonic acidemia using rAAV9-mediated gene delivery. Gene Therapy, 2012, 19, 385-391.	4.5	26
523	Absence of ocular malignant transformation after sub-retinal delivery of rAAV2/2 or integrating lentiviral vectors in p53-deficient mice. Gene Therapy, 2012, 19, 182-188.	4.5	15
524	Challenges for Gene Therapy of CNS Disorders and Implications for Parkinson's Disease Therapies. Human Gene Therapy, 2012, 23, 340-343.	2.7	9
525	Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Therapy, 2012, 19, 288-294.	4.5	183
526	Pharmacological Modulation of Humoral Immunity in a Nonhuman Primate Model of AAV Gene Transfer for Hemophilia B. Molecular Therapy, 2012, 20, 1410-1416.	8.2	90
527	Recombinant adeno-associated virus: clinical application and development as a gene-therapy vector. Therapeutic Delivery, 2012, 3, 835-856.	2.2	27
528	Intrathecal shRNA-AAV9 Inhibits Target Protein Expression in the Spinal Cord and Dorsal Root Ganglia of Adult Mice. Human Gene Therapy Methods, 2012, 23, 119-127.	2.1	21
529	Immunodominant Liver-Specific Expression Suppresses Transgene-Directed Immune Responses in Murine Pompe Disease. Human Gene Therapy, 2012, 23, 460-472.	2.7	72
530	Clinical Progress in Gene Therapy: Sustained Partial Correction of the Bleeding Disorder in Patients Suffering from Severe Hemophilia B. Human Gene Therapy, 2012, 23, 4-6.	2.7	12
531	The Liver as a Target Organ for Gene Therapy: State of the Art, Challenges, and Future Perspectives. Pharmaceuticals, 2012, 5, 1372-1392.	3.8	33
532	Induction of hepatocellular carcinoma by in vivo gene targeting. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11264-11269.	7.1	88
533	rAAV-Mediated Tumorigenesis: Still Unresolved After an AAV Assault. Molecular Therapy, 2012, 20, 2014-2017.	8.2	33
534	Splicing Modulation Mediated by Small Nuclear RNAs as Therapeutic Approaches for Muscular Dystrophies. Current Gene Therapy, 2012, 12, 179-191.	2.0	6
535	Gene Replacement Therapies for Duchenne Muscular Dystrophy Using Adeno-Associated Viral Vectors. Current Gene Therapy, 2012, 12, 139-151.	2.0	30
536	Adeno-Associated Virus Vectors: Immunobiology and Potential Use for Immune Modulation. Current Gene Therapy, 2012, 12, 333-343.	2.0	9

#	Article	IF	CITATIONS
538	Gene transfer: methods and applications. , 0, , 593-615.		0
539	The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy. Blood, 2012, 120, 4521-4523.	1.4	100
540	AAV-mediated gene transfer in the perinatal period results in expression of FVII at levels that protect against fatal spontaneous hemorrhage. Blood, 2012, 119, 957-966.	1.4	44
541	Gene therapy, an ongoing revolution. Blood, 2012, 119, 2973-2974.	1.4	5
542	The gene therapy journey for hemophilia: are we there yet?. Blood, 2012, 120, 4482-4487.	1.4	57
543	Adeno-Associated Virus Vectorology, Manufacturing, and Clinical Applications. Methods in Enzymology, 2012, 507, 229-254.	1.0	160
544	Targeted gene therapies: tools, applications, optimization. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 264-281.	5.2	30
545	Platelet-directed gene therapy overcomes inhibitory antibodies to factor VIII. Journal of Thrombosis and Haemostasis, 2012, 10, 1566-1569.	3.8	1
546	Long-Term Expression and Safety of Administration of AAVrh.10hCLN2 to the Brain of Rats and Nonhuman Primates for the Treatment of Late Infantile Neuronal Ceroid Lipofuscinosis. Human Gene Therapy Methods, 2012, 23, 324-335.	2.1	84
547	Correction of Pathological Accumulation of Glycosaminoglycans in Central Nervous System and Peripheral Tissues of MPSIIIA Mice Through Systemic AAV9 Gene Transfer. Human Gene Therapy, 2012, 23, 1237-1246.	2.7	102
548	A phase I trial of adeno-associated virus serotype 1-Î ³ -sarcoglycan gene therapy for limb girdle muscular dystrophy type 2C. Brain, 2012, 135, 483-492.	7.6	78
549	Animal Models of Hemophilia. Progress in Molecular Biology and Translational Science, 2012, 105, 151-209.	1.7	62
550	Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates. Gene Therapy, 2012, 19, 999-1009.	4.5	46
551	Engineering Multiple U7snRNA Constructs to Induce Single and Multiexon-skipping for Duchenne Muscular Dystrophy. Molecular Therapy, 2012, 20, 1212-1221.	8.2	48
552	Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Advanced Drug Delivery Reviews, 2012, 64, 1363-1384.	13.7	365
553	rAAV Vector Product Characterization and Stability Studies. Methods in Molecular Biology, 2012, 807, 405-428.	0.9	7
554	Genetic Therapeutic Approaches for Duchenne Muscular Dystrophy. Human Gene Therapy, 2012, 23, 676-687.	2.7	44
555	Multicomponent Synthetic Polymers with Viral-Mimetic Chemistry for Nucleic Acid Delivery. Molecular Pharmaceutics, 2012, 9, 1-13.	4.6	40

	CHAID	N REPORT	
#	Article	IF	CITATIONS
556	Gene therapy as a vaccine for HIV-1. Expert Opinion on Biological Therapy, 2012, 12, 1315-1321.	3.1	8
557	Ezetimibe: A biomarker for efficacy of liver directed UGT1A1 gene therapy for inherited hyperbilirubinemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1223-1229.	3.8	5
558	Phase 1 Gene Therapy for Duchenne Muscular Dystrophy Using a Translational Optimized AAV Vector. Molecular Therapy, 2012, 20, 443-455.	8.2	328
559	Past, present and future of hemophilia: a narrative review. Orphanet Journal of Rare Diseases, 2012, 7, 24.	2.7	190
560	Animal Models for Prenatal Gene Therapy: Choosing the Right Model. Methods in Molecular Biology, 2012, 891, 183-200.	0.9	5
561	Candidate Diseases for Prenatal Gene Therapy. , 2012, 891, 9-39.		16
562	Vector Systems for Prenatal Gene Therapy: Choosing Vectors for Different Applications. Methods in Molecular Biology, 2012, 891, 41-53.	0.9	4
563	NIH Oversight of Human Gene Transfer Research Involving Retroviral, Lentiviral, and Adeno-associated Virus Vectors and the Role of the NIH Recombinant DNA Advisory Committee. Methods in Enzymology, 2012, 507, 313-335.	1.0	16
564	Targeted gene delivery by free-tissue transfer in oncoplastic reconstruction. Lancet Oncology, The, 2012, 13, e392-e402.	10.7	8
565	The case for intrauterine gene therapy. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2012, 26, 697-709.	2.8	15
566	Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature, 2012, 481, 81-84.	27.8	488
567	Cocaine hydrolase gene therapy for cocaine abuse. Future Medicinal Chemistry, 2012, 4, 151-162.	2.3	17
568	AAV Capsid Structure and Cell Interactions. Methods in Molecular Biology, 2012, 807, 47-92.	0.9	152
569	Exploiting Natural Diversity of AAV for the Design of Vectors with Novel Properties. Methods in Molecular Biology, 2012, 807, 93-118.	0.9	18
570	Measuring Immune Responses to Recombinant AAV Gene Transfer. Methods in Molecular Biology, 2012, 807, 259-272.	0.9	28
571	Recent Progress in Gene Therapy for Hemophilia. Human Gene Therapy, 2012, 23, 557-565.	2.7	31
572	Animal Models for Prenatal Gene Therapy: The Nonhuman Primate Model. Methods in Molecular Biology, 2012, 891, 249-271.	0.9	7
573	Risks, Benefits and Ethical, Legal, and Societal Considerations for Translation of Prenatal Gene Therapy to Human Application. , 2012, 891, 371-387.		11

ARTICLE IF CITATIONS # Recombinant Adeno-Associated Viral Vector Reference Standards. Methods in Enzymology, 2012, 507, 1.0 2 574 297-311. Development of optimized AAV3 serotype vectors: mechanism of high-efficiency transduction of human 4.5 liver cancer cells. Gene Therapy, 2012, 19, 375-384. Haemophilia B: current pharmacotherapy and future directions. Expert Opinion on Pharmacotherapy, 576 1.8 22 2012, 13, 2053-2063. Successful attenuation of humoral immunity to viral capsid and transgenic protein following AAV-mediated gene transfer with a non-depleting CD4 antibody and cyclosporine. Gene Therapy, 2012, 19, 78-85. rAAV Human Trial Experience. Methods in Molecular Biology, 2012, 807, 429-457. 579 0.9 55 580 Preclinical Study Design for rAAV. Methods in Molecular Biology, 2012, 807, 317-337. Novel Approaches to Deliver Molecular Therapeutics in Cardiac Disease Using Adeno-Associated Virus 581 1 Vectors., 2012, , 391-458. Cardiac Gene Therapy., 2012, , 673-688. Development and Utility of an Internal Threshold Control (ITC) Real-Time PCR Assay for Exogenous 583 2.5 15 DNA Detection. PLoS ONE, 2012, 7, e36461. Long-Term Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of 584 2.5 Retinopathy. PLoS ONE, 2012, 7, e41511. Porcine Model of Hemophilia A. PLoS ONE, 2012, 7, e49450. 585 2.5 34 Gene-based continuous expression of FVIIa for the treatment of hemophilia. Frontiers in Bioscience -586 2.1 Scholar, 2012, S4, 287. Gene therapy in age related macular degeneration and hereditary macular disorders. Frontiers in 587 1.8 9 Bioscience - Élite, 2012, E4, 2546-2557. Regenerative nanomedicine and the treatment of degenerative retinal diseases. Wiley Interdisciplinary 588 6.1 23 Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 113-137. 589 Gene Therapy for Heart Failure. Circulation Research, 2012, 110, 777-793. 130 4.5Prospects for gene transfer for clinical heart failure. Gene Therapy, 2012, 19, 606-612. 23 Mapping a Neutralizing Epitope onto the Capsid of Adeno-Associated Virus Serotype 8. Journal of 591 3.4 86 Virology, 2012, 86, 7739-7751. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Therapy, 4.5 2012, 19, 694-700.

#	Article	IF	CITATIONS
593	Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Molecular Medicine, 2012, 4, 691-704.	6.9	403
594	Successful Regional Delivery and Long-term Expression of a Dystrophin Gene in Canine Muscular Dystrophy: A Preclinical Model for Human Therapies. Molecular Therapy, 2012, 20, 1501-1507.	8.2	77
595	Gene therapy for metabolic disorders: an overview with a focus on urea cycle disorders. Journal of Inherited Metabolic Disease, 2012, 35, 641-645.	3.6	13
596	Gene therapy for haemophilia: prospects and challenges to prevent or reverse inhibitor formation. British Journal of Haematology, 2012, 156, 295-302.	2.5	21
597	Micro RNAs as a new therapeutic target towards leukaemia signalling. Cellular Signalling, 2012, 24, 363-368.	3.6	16
598	Long-chain cationic derivatives of PTA (1,3,5-triaza-7-phosphaadamantane) as new components of potential non-viral vectors. International Journal of Pharmaceutics, 2012, 431, 176-182.	5.2	10
599	Plasma derivatives: New products and new approaches. Biologicals, 2012, 40, 191-195.	1.4	8
600	Gene therapy for haemophilia B. Haemophilia, 2012, 18, 13-17.	2.1	19
601	Implantable pneumatically actuated microsystem for renal pressure-mediated transfection in mice. Journal of Controlled Release, 2012, 159, 85-91.	9.9	10
602	Virus-mediated gene delivery for human gene therapy. Journal of Controlled Release, 2012, 161, 377-388.	9.9	248
603	Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20. Virology, 2012, 431, 40-49.	2.4	77
604	New genes for old: successful gene therapy for haemophilia B. Transfusion Medicine, 2012, 22, 3-4.	1.1	2
605	Gene therapy: Progress in childhood disease. Journal of Paediatrics and Child Health, 2012, 48, 466-471.	0.8	8
606	Nonâ€viral retinal gene therapy: a review. Clinical and Experimental Ophthalmology, 2012, 40, 39-47.	2.6	35
607	Double-stranded Let-7 mimics, potential candidates for cancer gene therapy. Journal of Physiology and Biochemistry, 2012, 68, 107-119.	3.0	17
608	Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution. Virology Journal, 2013, 10, 50.	3.4	11
610	Transgene Site-Specific Integration: Problems and Solutions. Topics in Current Genetics, 2013, , 3-39.	0.7	3
611	Lessons Learned from the Clinical Development and Market Authorization of Glybera. Human Gene Therapy Clinical Development, 2013, 24, 55-64.	3.1	154

		CITATION REPORT	
#	Article	IF	CITATIONS
612	Bioengineering of AAV2 Capsid at Specific Serine, Threonine, or Lysine Residues Improves Its Transduction Efficiency <i>in Vitro</i> and <i>in Vivo</i> . Human Gene Therapy Methods, 2013, 24, 80-93.	2.1	73
613	Gene therapy clinical trials worldwide to 2012 – an update. Journal of Gene Medicine, 2013, 15, 65-77.	2.8	1,057
614	Stem Cells and Cancer Stem Cells, Volume 10. , 2013, , .		0
616	Animal Models of Hemophilia and Related Bleeding Disorders. Seminars in Hematology, 2013, 50, 175-184.	3.4	34
619	Adeno-associated Virus-mediated Rescue of Neonatal Lethality in Argininosuccinate Synthetase-deficient Mice. Molecular Therapy, 2013, 21, 1823-1831.	8.2	39
620	Role of antigen-specific regulatory CD4+CD25+ T cells in tolerance induction after neonatal IP administration of AAV-hF.IX. Gene Therapy, 2013, 20, 987-996.	4.5	14
621	Modulation of CD8+ T cell responses to AAV vectors with IgG-derived MHC class II epitopes. Molecular Therapy, 2013, 21, 1727-1737.	8.2	38
622	The Mesenchymal Stem Cells Derived from Transgenic Mice Carrying Human Coagulation Factor VIII Can Correct Phenotype in Hemophilia A Mice. Journal of Genetics and Genomics, 2013, 40, 617-628.	3.9	15
623	The Choroid Plexus and Cerebrospinal Fluid: Emerging Roles in Development, Disease, and Therapy. Journal of Neuroscience, 2013, 33, 17553-17559.	3.6	151
624	Hemophilia clinical gene therapy: brief review. Translational Research, 2013, 161, 307-312.	5.0	14
625	Overexpression of factor VII ameliorates bleeding diathesis of factor VIII-deficient mice with inhibitors. Thrombosis Research, 2013, 131, 444-449.	1.7	1
626	Intraperitoneal Administration of AAV9-shRNA Inhibits Target Gene Expression in the Dorsal Root Ganglia of Neonatal Mice. Molecular Pain, 2013, 9, 1744-8069-9-36.	2.1	19
627	Generation of a tumor- and tissue-specific episomal non-viral vector system. BMC Biotechnology, 2013, 13, 49.	3.3	15
628	PCR-based detection of gene transfer vectors: application to gene doping surveillance. Analytical and Bioanalytical Chemistry, 2013, 405, 9641-9653.	3.7	18
629	An adaptable system for improving transposonâ€based gene expression in vivo via transient transgene repression. FASEB Journal, 2013, 27, 3753-3762.	0.5	8
630	Gene Transfer in the Liver Using Recombinant Adenoâ€Associated Virus. Current Protocols in Microbiology, 2013, 29, Unit14D.6.	6.5	10
631	Gene therapy on the move. EMBO Molecular Medicine, 2013, 5, 1642-1661.	6.9	238
632	Displaying High-affinity Ligands on Adeno-associated Viral Vectors Enables Tumor Cell-specific and Safe Gene Transfer. Molecular Therapy, 2013, 21, 109-118.	8.2	128

#	Article	IF	CITATIONS
633	Targeted Modifications in Adeno-Associated Virus Serotype 8 Capsid Improves Its Hepatic Gene Transfer Efficiency <i>In Vivo</i> . Human Gene Therapy Methods, 2013, 24, 104-116.	2.1	43
634	Siteâ€Specific Modification of Adenoâ€Associated Viruses via a Genetically Engineered Aldehyde Tag. Small, 2013, 9, 421-429.	10.0	50
635	Gene Therapy for Mucopolysaccharidosis Type VI Is Effective in Cats Without Pre-Existing Immunity to AAV8. Human Gene Therapy, 2013, 24, 163-169.	2.7	38
636	<i>Ex vivo</i> intracoronary gene transfer of adeno-associated virus 2 leads to superior transduction over serotypes 8 and 9 in rat heart transplants. Transplant International, 2013, 26, 1126-1137.	1.6	8
637	Use of a Lower Dosage Liver-Detargeted AAV Vector to Prevent Hamster Muscular Dystrophy. Human Gene Therapy, 2013, 24, 424-430.	2.7	7
638	Phase 3 Study of Recombinant Factor IX Fc Fusion Protein in Hemophilia B. New England Journal of Medicine, 2013, 369, 2313-2323.	27.0	307
639	Minimal modification in the factor VIII B-domain sequence ameliorates the murine hemophilia A phenotype. Blood, 2013, 121, 4396-4403.	1.4	70
640	Genetically Engineered Mesenchymal Stem Cells for Cell and Gene Therapy. , 2013, , 321-354.		0
641	Arthritis gene therapy and its tortuous path into the clinic. Translational Research, 2013, 161, 205-216.	5.0	70
642	Targeting Sarcoplasmic Reticulum Calcium ATPase by Gene Therapy. Human Gene Therapy, 2013, 24, 937-947.	2.7	23
643	Kinetics of Adeno-Associated Virus Serotype 2 (AAV2) and AAV8 Capsid Antigen Presentation <i>In Vivo</i> Are Identical. Human Gene Therapy, 2013, 24, 545-553.	2.7	23
644	The upstream enhancer elements of the G6PC promoter are critical for optimal G6PC expression in murine glycogen storage disease type Ia. Molecular Genetics and Metabolism, 2013, 110, 275-280.	1.1	21
645	Atomic modeling of cryo-electron microscopy reconstructions – Joint refinement of model and imaging parameters. Journal of Structural Biology, 2013, 182, 10-21.	2.8	35
646	Current prospects and challenges for epilepsy gene therapy. Experimental Neurology, 2013, 244, 27-35.	4.1	17
647	KCTD9 contributes to liver injury through NK cell activation during hepatitis B virus-induced acute-on-chronic liver failure. Clinical Immunology, 2013, 146, 207-216.	3.2	33
648	Will gene therapy trump factor treatment in hemophilia?. Expert Review of Hematology, 2013, 6, 43-48.	2.2	1
649	Immune responses in liver-directed lentiviral gene therapy. Translational Research, 2013, 161, 230-240.	5.0	21
650	Gene doping: gene delivery for olympic victory. British Journal of Clinical Pharmacology, 2013, 76, 292-298.	2.4	11

#	ARTICLE Comparison of gene transfer to the murine liver following intraperitoneal and intraportal delivery	IF	Citations
651	of hepatotropic AAV pseudo-serotypes. Gene Therapy, 2013, 20, 460-464.	4.5	57
652	Prospects, promise and problems on the road to effective vaccines and related therapies for substance abuse. Expert Review of Vaccines, 2013, 12, 323-332.	4.4	28
654	Treatment of Diabetes and Long-Term Survival After Insulin and Glucokinase Gene Therapy. Diabetes, 2013, 62, 1718-1729.	0.6	59
656	Gene transfer for congestive heart failure: update 2013. Translational Research, 2013, 161, 313-320.	5.0	9
657	Virus-mimetic polyplex particles for systemic and inflammation-specific targeted delivery of large genetic contents. Gene Therapy, 2013, 20, 1042-1052.	4.5	11
658	Sperm viral infection and male infertility: focus on HBV, HCV, HIV, HPV, HSV, HCMV, and AAV. Journal of Reproductive Immunology, 2013, 100, 20-29.	1.9	113
659	Treatment of Hemophilia A Using B Cell-Directed Protein Delivery. , 2013, , 239-249.		0
660	Nanomedicine in Ophthalmology. , 2013, , 689-715.		3
661	Assessment of a passive immunity mouse model to quantitatively analyze the impact of neutralizing antibodies on adeno-associated virus-mediated gene transfer. Journal of Immunological Methods, 2013, 387, 114-120.	1.4	9
662	Enhanced gene expression of systemically administered plasmid DNA in the liver with therapeutic ultrasound and microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 88-96.	3.0	7
663	Adenoâ€associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Reviews in Medical Virology, 2013, 23, 399-413.	8.3	78
664	Regenerative Therapies for Liver Diseases. , 2013, , 203-231.		0
665	Minimizing the Inhibitory Effect of Neutralizing Antibody for Efficient Gene Expression in the Liver With Adeno-associated Virus 8 Vectors. Molecular Therapy, 2013, 21, 318-323.	8.2	70
666	Multiple Recombinant Adeno-Associated Viral Vector Serotypes Display PersistentIn VivoGene Expression in Vector-Transduced Rat Stifle Joints. Human Gene Therapy Methods, 2013, 24, 185-194.	2.1	6
667	NADH-dehydrogenase Type-2 Suppresses Irreversible Visual Loss and Neurodegeneration in the EAE Animal Model of MS. Molecular Therapy, 2013, 21, 1876-1888.	8.2	28
668	Liver Gene Therapy Approaches for Acute Intermittent Porphyria: Metabolic Correction and Immunological Hurdles. Handbook of Porphyrin Science, 2013, , 415-450.	0.8	0
669	Adeno-associated virus structural biology as a tool in vector development. Future Virology, 2013, 8, 1183-1199.	1.8	68
670	Humoral Immune Response to AAV. Frontiers in Immunology, 2013, 4, 341.	4.8	190

#	Article	IF	CITATIONS
671	Immunological Monitoring to Rationally Guide AAV Gene Therapy. Frontiers in Immunology, 2013, 4, 273.	4.8	14
672	Stem cell – based gene therapy. Biopolymers and Cell, 2013, 29, 21-32.	0.4	0
673	Short-Fiber Protein of Ad40 Confers Enteric Tropism and Protection Against Acidic Gastrointestinal Conditions. Human Gene Therapy Methods, 2013, 24, 195-204.	2.1	13
674	Gene therapy for hemophilia. Current Opinion in Hematology, 2013, 20, 410-416.	2.5	6
675	Arsenic Trioxide Stabilizes Accumulations of Adeno-Associated Virus Virions at the Perinuclear Region, Increasing Transduction <i>In Vitro</i> and <i>In Vivo</i> . Journal of Virology, 2013, 87, 4571-4583.	3.4	35
676	Vector Decoys Trick the Immune Response. Science Translational Medicine, 2013, 5, 194fs28.	12.4	4
677	Biodistribution of AAV8 Vectors Expressing Human Low-Density Lipoprotein Receptor in a Mouse Model of Homozygous Familial Hypercholesterolemia. Human Gene Therapy Clinical Development, 2013, 24, 154-160.	3.1	34
678	Capsid Antibodies to Different Adeno-Associated Virus Serotypes Bind Common Regions. Journal of Virology, 2013, 87, 9111-9124.	3.4	102
679	Current Challenges and Future Directions in Recombinant AAV-Mediated Gene Therapy of Duchenne Muscular Dystrophy. Pharmaceuticals, 2013, 6, 813-836.	3.8	31
680	Gene therapy for hemophilia. Journal of Thrombosis and Haemostasis, 2013, 11, 99-110.	3.8	41
681	The prevalence of neutralizing antibodies against AAV serotype 1 in healthy subjects in China: Implications for gene therapy and vaccines using AAV1 vector. Journal of Medical Virology, 2013, 85, 1550-1556.	5.0	15
682	Effects of Immunosuppression on Circulating Adeno-Associated Virus Capsid-Specific T cells in Humans. Human Gene Therapy, 2013, 24, 431-442.	2.7	17
683	Perioperative haemostatic management of haemophilic mice using normal mouse plasma. Haemophilia, 2013, 19, e335-e343.	2.1	2
684	Safety and Liver Transduction Efficacy of rAAV5- <i>cohPBGD</i> in Nonhuman Primates: A Potential Therapy for Acute Intermittent Porphyria. Human Gene Therapy, 2013, 24, 1007-1017.	2.7	50
685	Effective gene therapy for haemophilic mice with pathogenic factor <scp>IX</scp> antibodies. EMBO Molecular Medicine, 2013, 5, 1698-1709.	6.9	108
686	Enhanced T Cell Function in a Mouse Model of Human Glycosylation. Journal of Immunology, 2013, 191, 228-237.	0.8	20
687	Adjunctive β2â€agonists reverse neuromuscular involvement in murine Pompe disease. FASEB Journal, 2013, 27, 34-44.	0.5	40
688	Not Reinventing the Wheel: Applying the 3Rs Concepts to Viral Vector Gene Therapy Biodistribution Studies. Human Gene Therapy Clinical Development, 2013, 24, 1-4.	3.1	6

#	Article	IF	CITATIONS
689	Intravenous Adeno-Associated Virus Serotype 8 Encoding Urocortin-2 Provides Sustained Augmentation of Left Ventricular Function in Mice. Human Gene Therapy, 2013, 24, 777-785.	2.7	19
690	Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue. Gene Therapy, 2013, 20, 417-424.	4.5	122
691	Gene Transfer Therapy by Either Type 1 or Type 2 Adeno-Associated Virus Expressing Human Prostaglandin I ₂ Synthase Gene is Effective for Treatment of Pulmonary Arterial Hypertension. Journal of Cardiovascular Pharmacology and Therapeutics, 2013, 18, 54-59.	2.0	10
692	Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys. Science Translational Medicine, 2013, 5, 194ra92.	12.4	267
693	Toward a gene therapy for neurological and somatic MPSIIIA. Rare Diseases (Austin, Tex), 2013, 1, e27209.	1.8	7
694	Turning the Corner with Viral-based Gene Therapy—Development of the Rogue Biopharmaceutical. , 2013, , 259-285.		1
695	Improved adeno-associated virus (AAV) serotype 1 and 5 vectors for gene therapy. Scientific Reports, 2013, 3, 1832.	3.3	43
697	Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells. Blood, 2013, 121, 2224-2233.	1.4	149
698	Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood, 2013, 122, 23-36.	1.4	703
699	Stealth gene therapy. Blood, 2013, 121, 2168-2169.	1.4	0
700	Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood, 2013, 122, 863-871.	1.4	932
701	Incorporation of the factor IX Padua mutation into FIX-Triple improves clotting activity in vitro and in vivo. Thrombosis and Haemostasis, 2013, 110, 244-256.	3.4	38
702	Extracorporeal Delivery of rAAV with Metabolic Exchange and Oxygenation. Scientific Reports, 2013, 3, 1538.	3.3	2
703	Gene Therapy for Tolerance. Transplantation, 2013, 95, 70-77.	1.0	19
704	Gene Therapy for Hereditary Hearing Loss. Perspectives on Hearing and Hearing Disorders Research and Research Diagnostics, 2013, 17, 5.	0.4	0
705	Developments in the treatment of hemophilia B: focus on emerging gene therapy. The Application of Clinical Genetics, 2013, 6, 91.	3.0	11
706	Transduction of Photoreceptors With Equine Infectious Anemia Virus Lentiviral Vectors: Safety and Biodistribution of StarGen for Stargardt Disease. , 2013, 54, 4061.		98
707	Adeno-associated virus capsid antigen presentation is dependent on endosomal escape. Journal of Clinical Investigation, 2013, 123, 1390-1401.	8.2	51

#	Article	IF	CITATIONS
708	Activation of the Cellular Unfolded Protein Response by Recombinant Adeno-Associated Virus Vectors. PLoS ONE, 2013, 8, e53845.	2.5	38
709	Characterization of Naturally-Occurring Humoral Immunity to AAV in Sheep. PLoS ONE, 2013, 8, e75142.	2.5	14
710	Adeno-Associated Viral Vector Serotype 5 Poorly Transduces Liver in Rat Models. PLoS ONE, 2013, 8, e82597.	2.5	17
711	A Novel Cell-Sheet Technology That Achieves Durable Factor VIII Delivery in a Mouse Model of Hemophilia A. PLoS ONE, 2013, 8, e83280.	2.5	31
712	Immunology of AAV-Mediated Gene Transfer in the Eye. Frontiers in Immunology, 2013, 4, 261.	4.8	85
713	Clinical and Translational Challenges in Gene Therapy of Cardiovascular Diseases. , 0, , .		1
714	Efficient AAV Vector Production System: Towards Gene Therapy For Duchenne Muscular Dystrophy. , 2013, , .		2
716	B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14033.	4.1	101
717	Developmental stage determines efficiency of gene transfer to muscle satellite cells by in utero delivery of adeno-associated virus vector serotype 2/9. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14040.	4.1	19
718	AAV-Mediated Delivery of Zinc Finger Nucleases Targeting Hepatitis B Virus Inhibits Active Replication. PLoS ONE, 2014, 9, e97579.	2.5	95
719	Product-Related Impurities in Clinical-Grade Recombinant AAV Vectors: Characterization and Risk Assessment. Biomedicines, 2014, 2, 80-97.	3.2	115
720	Challenges and Prospects for Helper-Dependent Adenoviral Vector-Mediated Gene Therapy. Biomedicines, 2014, 2, 132-148.	3.2	9
721	Immune Responses to AAV-Vectors, the Glybera Example from Bench to Bedside. Frontiers in Immunology, 2014, 5, 82.	4.8	91
722	Delivery Techniques in Gene Therapy: A Brief Overview. , 2014, 4, .		3
723	A Novel Homologous Model for Gene Therapy of Dwarfism by Non-Viral Transfer of the Mouse Growth Hormone Gene into Immunocompetent Dwarf Mice. Current Gene Therapy, 2014, 14, 44-51.	2.0	10
725	Development and Challenges of Nanovectors in Gene Therapy. Nano LIFE, 2014, 04, 1441007.	0.9	7
726	Improving clinical efficacy of adeno associated vectors by rational capsid bioengineering. Journal of Biomedical Science, 2014, 21, 103.	7.0	20
727	Preclinical Toxicity Evaluation of AAV for Pain: Evidence from Human AAV Studies and from the Pharmacology of Analgesic Drugs. Molecular Pain, 2014, 10, 1744-8069-10-54.	2.1	20

			0
#	ARTICLE	IF	CITATIONS
729	Inflammation Converts Human Mesoangioblasts Into Targets of Alloreactive Immune Responses: Implications for Allogeneic Cell Therapy of DMD. Molecular Therapy, 2014, 22, 1342-1352.	8.2	20
730	Gene therapy for haemophilia. , 2014, , CD010822.		2
731	Translational Data from AAV-Mediated Gene Therapy of Hemophilia B in Dogs. Human Gene Therapy Clinical Development, 2014, , 150127063140004.	3.1	2
732	Vascular Delivery of rAAVrh74.MCK.GALGT2 to the Gastrocnemius Muscle of the Rhesus Macaque Stimulates the Expression of Dystrophin and Laminin α2 Surrogates. Molecular Therapy, 2014, 22, 713-724.	8.2	61
733	Cellular Immune Response Against Firefly Luciferase After <i>Sleeping Beauty</i> –Mediated Gene Transfer <i>In Vivo</i> . Human Gene Therapy, 2014, 25, 955-965.	2.7	23
734	Pre-Clinical Assessment of Immune Responses to Adeno-Associated Virus (AAV) Vectors. Frontiers in Immunology, 2014, 5, 28.	4.8	31
735	Cell-Mediated Immunity to AAV Vectors, Evolving Concepts and Potential Solutions. Frontiers in Immunology, 2014, 5, 350.	4.8	69
736	Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors. Frontiers in Immunology, 2014, 5, 9.	4.8	93
737	Clinical Applications Involving CNS Gene Transfer. Advances in Genetics, 2014, 87, 71-124.	1.8	54
738	Cellular unfolded protein response against viruses used in gene therapy. Frontiers in Microbiology, 2014, 5, 250.	3.5	15
739	Recent Trends of Polymer Mediated Liposomal Gene Delivery System. BioMed Research International, 2014, 2014, 1-15.	1.9	17
740	Promyelocytic Leukemia Protein Is a Cell-Intrinsic Factor Inhibiting Parvovirus DNA Replication. Journal of Virology, 2014, 88, 925-936.	3.4	23
741	CD8+ T Cell Recognition of Epitopes Within the Capsid of Adeno-associated Virus 8–based Gene Transfer Vectors Depends on Vectors' Genome. Molecular Therapy, 2014, 22, 42-51.	8.2	30
742	Reprogramming Adipose Tissue-Derived Mesenchymal Stem Cells into Pluripotent Stem Cells by a Mutant Adeno-Associated Viral Vector. Human Gene Therapy Methods, 2014, 25, 72-82.	2.1	10
743	Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nature Communications, 2014, 5, 3075.	12.8	116
744	Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genetics in Medicine, 2014, 16, e1-e29.	2.4	318
745	Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model. Gene Therapy, 2014, 21, 363-370.	4.5	14
746	What Is Suppression of Anti–Adeno-Associated Virus Capsid T-Cells Achieving?. Human Gene Therapy, 2014, 25, 178-179.	2.7	3

#	Article	IF	CITATIONS
747	Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B. New England Journal of Medicine, 2014, 371, 1994-2004.	27.0	1,063
748	Long-term correction of biochemical and neurological abnormalities in MLD mice model by neonatal systemic injection of an AAV serotype 9 vector. Gene Therapy, 2014, 21, 427-433.	4.5	32
749	Cardiovascular gene therapy for myocardial infarction. Expert Opinion on Biological Therapy, 2014, 14, 183-195.	3.1	49
750	Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. Biochemistry (Moscow), 2014, 79, 928-946.	1.5	15
751	Parkinson's Disease Gene Therapy: Success by Design Meets Failure by Efficacy. Molecular Therapy, 2014, 22, 487-497.	8.2	141
752	Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease. International Journal of Biochemistry and Cell Biology, 2014, 56, 141-152.	2.8	5
753	Viral Mimicking Ternary Polyplexes: A Reduction ontrolled Hierarchical Unpacking Vector for Gene Delivery. Advanced Materials, 2014, 26, 1534-1540.	21.0	119
754	Our Journey to Successful Gene Therapy for Hemophilia B. Human Gene Therapy, 2014, 25, 923-926.	2.7	13
755	Gene Therapy for Hemophilia: The Clot Thickens. Human Gene Therapy, 2014, 25, 915-922.	2.7	14
756	The prevalence of neutralizing antibodies against adenoâ€associated virus capsids is reduced in young Japanese individuals. Journal of Medical Virology, 2014, 86, 1990-1997.	5.0	54
757	Progress in Gene Therapy for Heart Failure. Journal of Cardiovascular Pharmacology, 2014, 63, 95-106.	1.9	5
758	Promising coagulation factor VIII bypassing strategies for patients with haemophilia A. Blood Coagulation and Fibrinolysis, 2014, 25, 539-552.	1.0	2
759	Genome Editing of Mouse Fibroblasts by Homologous Recombination for Sustained Secretion of PDGF-B and Augmentation of Wound Healing. Plastic and Reconstructive Surgery, 2014, 134, 389e-401e.	1.4	12
760	Safety and Effects of the Vector for the Leber Hereditary Optic Neuropathy Gene Therapy Clinical Trial. JAMA Ophthalmology, 2014, 132, 409.	2.5	83
761	Alprolix (recombinant Factor IX Fc fusion protein): extended half-life product for the prophylaxis and treatment of hemophilia B. Expert Review of Hematology, 2014, 7, 559-571.	2.2	20
762	Feasibility and Safety of Systemic rAAV9-h <i>NAGLU</i> Delivery for Treating Mucopolysaccharidosis IIIB: Toxicology, Biodistribution, and Immunological Assessments in Primates. Human Gene Therapy Clinical Development, 2014, 25, 72-84.	3.1	79
763	Reducing TRPC1 Expression through Liposome-Mediated siRNA Delivery Markedly Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension in a Murine Model. Stem Cells International, 2014, 2014, 1-19.	2.5	22
764	The Liver and Immune Tolerance. , 2014, , 79-94.		2

#	Article	IF	CITATIONS
765	Current management of hemophilia B: recommendations, complications and emerging issues. Expert Review of Hematology, 2014, 7, 573-581.	2.2	24
766	Plasmapheresis Eliminates the Negative Impact of AAV Antibodies on Microdystrophin Gene Expression Following Vascular Delivery. Molecular Therapy, 2014, 22, 338-347.	8.2	124
768	Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery. Journal of Virological Methods, 2014, 196, 163-173.	2.1	75
769	Progress towards gene therapy for haemophilia B. International Journal of Hematology, 2014, 99, 372-376.	1.6	8
770	Safety profile of recombinant adeno-associated viral vectors: focus on alipogene tiparvovec (Glybera [®]). Expert Review of Clinical Pharmacology, 2014, 7, 53-65.	3.1	81
771	Engineering adeno-associated viruses for clinical gene therapy. Nature Reviews Genetics, 2014, 15, 445-451.	16.3	641
772	Similar Therapeutic Efficacy Between a Single Administration of Gene Therapy and Multiple Administrations of Recombinant Enzyme in a Mouse Model of Lysosomal Storage Disease. Human Gene Therapy, 2014, 25, 609-618.	2.7	30
773	lmmune Responses to Intramuscular Administration of Alipogene Tiparvovec (AAV1-LPL ^{S447X}) in a Phase II Clinical Trial of Lipoprotein Lipase Deficiency Gene Therapy. Human Gene Therapy, 2014, 25, 180-188.	2.7	118
774	Cationic lipid nanosystems as carriers for nucleic acids. New Biotechnology, 2014, 31, 44-54.	4.4	35
775	Gene therapy as a new treatment option for inherited monogenic diseases. European Journal of Internal Medicine, 2014, 25, 31-36.	2.2	20
776	Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature, 2014, 506, 382-386.	27.8	376
777	Gene Therapy for the Nervous System: Challenges and New Strategies. Neurotherapeutics, 2014, 11, 817-839.	4.4	70
778	Novel antiâ€ŧumor mechanism of galanin receptor type 2 in head and neck squamous cell carcinoma cells. Cancer Science, 2014, 105, 72-80.	3.9	12
779	Immunological Ignorance Allows Long-Term Gene Expression After Perinatal Recombinant Adeno-Associated Virus-Mediated Gene Transfer to Murine Airways. Human Gene Therapy, 2014, 25, 517-528.	2.7	16
780	Manufacturing and Characterization of a Recombinant Adeno-Associated Virus Type 8 Reference Standard Material. Human Gene Therapy, 2014, 25, 977-987.	2.7	80
781	Oral gene therapy for hemophilia B using chitosanâ€formulated FIX mutants. Journal of Thrombosis and Haemostasis, 2014, 12, 932-942.	3.8	17
782	Vector Design Tour de Force: Integrating Combinatorial and Rational Approaches to Derive Novel Adeno-associated Virus Variants. Molecular Therapy, 2014, 22, 1900-1909.	8.2	59
783	Adeno-Associated Virus Vectors as Therapeutic and Investigational Tools in the Cardiovascular System. Circulation Research, 2014, 114, 1827-1846.	4.5	111

#	Article	IF	CITATIONS
784	Gene therapy for the neurological manifestations in lysosomal storage disorders. Journal of Lipid Research, 2014, 55, 1827-1838.	4.2	22
785	Copackaging of Multiple Adeno-Associated Viral Vectors in a Single Production Step. Human Gene Therapy Methods, 2014, 25, 269-276.	2.1	4
786	Neutralizing antibodies against AAV2, AAV5Âand AAV8 in healthy and HIV-1-infected subjects in China: implications for gene therapy using AAV vectors. Gene Therapy, 2014, 21, 732-738.	4.5	71
787	Recombinant Adeno-Associated Virus Utilizes Cell-Specific Infectious Entry Mechanisms. Journal of Virology, 2014, 88, 12472-12484.	3.4	28
789	Liver-Specific Transcriptional Modules Identified by Genome-Wide In Silico Analysis Enable Efficient Gene Therapy in Mice and Non-Human Primates. Molecular Therapy, 2014, 22, 1605-1613.	8.2	71
790	Current status of haemophilia gene therapy. Haemophilia, 2014, 20, 43-49.	2.1	78
791	rAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study. Gene Therapy, 2014, 21, 618-628.	4.5	58
792	Safety and efficacy of high-dose adeno-associated virus 9 encoding sarcoplasmic reticulum Ca2+ adenosine triphosphatase delivered byÂmolecular cardiac surgery with recirculating delivery in ovine ischemic cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1065-1073.e2.	0.8	30
793	Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery inÂvivo. Biomaterials, 2014, 35, 7598-7609.	11.4	112
794	21: GENE THERAPY FOR HEMOPHILIA A AND B. ICP Textbooks in Biomolecular Sciences, 2014, , 391-402.	0.1	0
795	An AAV9 coding for frataxin clearly improved the symptoms and prolonged the life of Friedreich ataxia mouse models. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14044.	4.1	45
796	Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side effects. Molecular Therapy - Methods and Clinical Development, 2014, 1, 9.	4.1	92
797	Bioengineered coagulation factor VIII enables long-term correction of murine hemophilia A following liver-directed adeno-associated viral vector delivery. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14036.	4.1	35
801	Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood, 2014, 123, 3195-3199.	1.4	73
802	Preâ€existing immunity to adenoâ€associated virus (AAV)2 limits transgene expression following intracerebral AAV2â€based gene delivery in a 6â€hydroxydopamine model of Parkinson's disease. Journal of Gene Medicine, 2014, 16, 300-308.	2.8	10
803	Gene therapy: progress and predictions. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143003.	2.6	108
804	Emerging genetic and pharmacologic therapies for controlling hemostasis: beyond recombinant clotting factors. Hematology American Society of Hematology Education Program, 2015, 2015, 33-40.	2.5	17
805	New approaches to gene and cell therapy for hemophilia. Journal of Thrombosis and Haemostasis, 2015, 13, S133-S142.	3.8	24

#	Article	IF	CITATIONS
806	Gene therapy in an era of emerging treatment options for hemophilia B. Journal of Thrombosis and Haemostasis, 2015, 13, S151-S160.	3.8	27
807	Adeno-associated Virus as a Mammalian DNA Vector. Microbiology Spectrum, 2015, 3, .	3.0	68
808	A natural choice for hemophilia B. Blood, 2015, 125, 1509-1510.	1.4	0
809	AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15029.	4.1	59
810	Progress and challenges in gene therapy for Crigler–Najjar syndrome. Expert Opinion on Orphan Drugs, 2015, 3, 1387-1396.	0.8	0
811	Synergistic Efficacy from Gene Therapy with Coreceptor Blockade and a β2-Agonist in Murine Pompe Disease. Human Gene Therapy, 2015, 26, 743-750.	2.7	14
812	Longâ€ŧerm glycemic control with hepatic insulin gene therapy in streptozotocinâ€diabetic mice. Journal of Gene Medicine, 2015, 17, 141-152.	2.8	13
813	Challenges of experimental gene therapy for urea cycle disorders. Journal of Pediatric Biochemistry, 2015, 04, 065-073.	0.2	0
814	Gene therapy for hemophilia. Frontiers in Bioscience - Landmark, 2015, 20, 556-603.	3.0	51
815	AAV Biology, Infectivity and Therapeutic Use from Bench to Clinic. , 0, , .		15
816	Emerging Vaccine Technologies. Vaccines, 2015, 3, 429-447.	4.4	28
817	Recent advances in gene therapy for lysosomal storage disorders. The Application of Clinical Genetics, 2015, 8, 157.	3.0	36
818	Adeno-associated Virus as a Mammalian DNA Vector. , 0, , 827-849.		4
819	Site-Specific Impact of a Regional Hydrodynamic Injection: Computed Tomography Study during Hydrodynamic Injection Targeting the Swine Liver. Pharmaceutics, 2015, 7, 334-343.	4.5	9
820	Perspectivas da terapia gênica. , 2015, 94, 211.	0.1	2
821	Recombinant adeno-associated virus vectors in the treatment of rare diseases. Expert Opinion on Orphan Drugs, 2015, 3, 675-689.	0.8	20
822	Somatic Genome Manipulation. , 2015, , .		2
823	Evaluation of Readministration of a Recombinant Adeno-Associated Virus Vector Expressing Acid Alpha-Glucosidase in Pompe Disease: Preclinical to Clinical Planning. Human Gene Therapy Clinical Development, 2015, 26, 185-193.	3.1	74

#	Article	IF	CITATIONS
824	Enhanced selective gene delivery to neural stem cells <i>in vivo</i> by an adeno-associated viral variant. Development (Cambridge), 2015, 142, 1885-1892.	2.5	41
825	SAFETY, BIODISTRIBUTION, AND EFFICACY OF AN AAV-5 VECTOR ENCODING HUMAN INTERFERON-BETA (ART-I02) DELIVERED VIA INTRA-ARTICULAR INJECTION IN RHESUS MONKEYS WITH COLLAGEN-INDUCED ARTHRITIS. Human Gene Therapy Clinical Development, 0, , 150513063103005.	3.1	0
826	Viral Vectors for Delivery of Antiviral Sequences. , 2015, , 95-126.		3
827	Prevalence of neutralizing antibodies against liver-tropic adeno-associated virus serotype vectors in 100 healthy Chinese and its potential relation to body constitutions. Journal of Integrative Medicine, 2015, 13, 341-346.	3.1	24
828	Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annual Review of Biomedical Engineering, 2015, 17, 63-89.	12.3	369
829	Selecting the Best AAV Capsid for Human Studies. Molecular Therapy, 2015, 23, 1800-1801.	8.2	11
830	Engineered AAV vectors for improved central nervous system gene delivery. Neurogenesis (Austin, Tex) Tj ETQq0	0 0 rgBT / 1.5	Overlock 10
831	Viral vector-mediated transgenic cell therapy in regenerative medicine: safety of the process. Expert Opinion on Biological Therapy, 2015, 15, 559-567.	3.1	12
832	Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Therapy, 2015, 22, 116-126.	4.5	134
833	Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opinion on Biological Therapy, 2015, 15, 417-430.	3.1	43
834	Gene Transfer for Clinical Congestive Heart Failure. , 2015, , 215-226.		2
835	Gene Replacement Therapy for Genetic Hepatocellular Jaundice. Clinical Reviews in Allergy and Immunology, 2015, 48, 243-253.	6.5	19

836	Biochemical, histological and functional correction of mucopolysaccharidosis Type IIIB by intra-cerebrospinal fluid gene therapy. Human Molecular Genetics, 2015, 24, 2078-2095.	2.9	48
837	Induction of Sustained Hypercholesterolemia by Single Adeno-Associated Virus–Mediated Gene Transfer of Mutant hPCSK9. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 50-59.	2.4	141
838	Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. Journal of Controlled Release, 2015, 201, 1-13.	9.9	106
839	Gene Therapies for Hepatitis C Virus. Advances in Experimental Medicine and Biology, 2015, 848, 1-29.	1.6	8
840	Hemophilia Gene Therapy. , 2015, , 207-213.		0

841 Immune System Obstacles to InÂvivo Gene Transfer with Adeno-Associated Virus Vectors. , 2015, , 45-64.

#	Article	IF	CITATIONS
842	Safety, Biodistribution, and Efficacy of an AAV-5 Vector Encoding Human Interferon-Beta (ART-I02) Delivered via Intra-Articular Injection in Rhesus Monkeys with Collagen-Induced Arthritis. Human Gene Therapy Clinical Development, 2015, 26, 103-112.	3.1	17
843	Novel Adeno-associated Viruses Derived From Pig Tissues Transduce Most Major Organs in Mice. Scientific Reports, 2014, 4, 6644.	3.3	23
844	Lysosomal storage disease: Gene therapy on both sides of the blood–brain barrier. Molecular Genetics and Metabolism, 2015, 114, 83-93.	1.1	45
845	Prediction of adeno-associated virus neutralizing antibody activity for clinical application. Gene Therapy, 2015, 22, 984-992.	4.5	40
846	Obstacles and future of gene therapy for hemophilia. Expert Opinion on Orphan Drugs, 2015, 3, 997-1010.	0.8	28
847	The Current and Future Landscape of SERCA Gene Therapy for Heart Failure: A Clinical Perspective. Human Gene Therapy, 2015, 26, 293-304.	2.7	33
848	Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Human Molecular Genetics, 2015, 24, 4353-4364.	2.9	78
849	Intrinsic Transgene Immunogenicity Gears CD8+ T-cell Priming After rAAV-Mediated Muscle Gene Transfer. Molecular Therapy, 2015, 23, 697-706.	8.2	15
850	Unique Roles of TLR9- and MyD88-Dependent and -Independent Pathways in Adaptive Immune Responses to AAV-Mediated Gene Transfer. Journal of Innate Immunity, 2015, 7, 302-314.	3.8	62
851	Calcium-ion-modulated ceramic hydroxyapatite resin for the scalable purification of recombinant Adeno-Associated Virus serotype 9. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 990, 15-22.	2.3	6
852	Principles and Practice of Molecular Therapies. , 2015, , 1035-1052.		0
853	AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood, 2015, 125, 1553-1561.	1.4	143
854	Development of Recombinant Adeno-Associated Virus Serotype 2/8 Carrying Kringle Domains of Human Plasminogen for Sustained Expression and Cancer Therapy. Human Gene Therapy, 2015, 26, 603-613.	2.7	10
855	Haemophilia gene therapy: Progress and challenges. Blood Reviews, 2015, 29, 321-328.	5.7	32
856	Employing a Gain-of-Function Factor IX Variant R338L to Advance the Efficacy and Safety of Hemophilia B Human Gene Therapy: Preclinical Evaluation Supporting an Ongoing Adeno-Associated Virus Clinical Trial. Human Gene Therapy, 2015, 26, 69-81.	2.7	94
857	Moving Forward Toward a Cure for Hemophilia B. Molecular Therapy, 2015, 23, 809-811.	8.2	5
858	Vector-Mediated Antibody Gene Transfer for Infectious Diseases. Advances in Experimental Medicine and Biology, 2015, 848, 149-167.	1.6	12
859	Gene therapy approaches to regenerating the musculoskeletal system. Nature Reviews Rheumatology, 2015, 11, 234-242.	8.0	183

#	Article	IF	CITATIONS
860	Therapeutic Germ Line Alteration: Has CRISPR/Cas9 Technology Forced the Question?. Human Gene Therapy, 2015, 26, 245-246.	2.7	10
861	Liverâ€ŧargeted gene therapy: Approaches and challenges. Liver Transplantation, 2015, 21, 718-737.	2.4	25
862	Adeno-Associated Virus at 50: A Golden Anniversary of Discovery, Research, and Gene Therapy Success—A Personal Perspective. Human Gene Therapy, 2015, 26, 257-265.	2.7	209
863	Biological therapies for inherited diseases: social and bioethical considerations. Hemophilia as an example. Expert Opinion on Biological Therapy, 2015, 15, 713-722.	3.1	2
864	Adenoâ€Associated Virus Vector–Based Gene Therapy for Monogenetic Metabolic Diseases of the Liver. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 433-440.	1.8	18
866	Gene Therapy for Sensorineural Hearing Loss. Ear and Hearing, 2015, 36, 1-7.	2.1	51
867	Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming. Cellular Reprogramming, 2015, 17, 131-140.	0.9	70
868	Comparative Study of Liver Gene Transfer With AAV Vectors Based on Natural and Engineered AAV Capsids. Molecular Therapy, 2015, 23, 1877-1887.	8.2	94
869	E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal—Tailored Acceleration of AAV Evolution. Molecular Therapy, 2015, 23, 1819-1831.	8.2	88
870	Intravenous AAV8 Encoding Urocortin-2 Increases Function of the Failing Heart in Mice. Human Gene Therapy, 2015, 26, 347-356.	2.7	20
871	Hitting the Target Without Pulling the Trigger. Molecular Therapy, 2015, 23, 4-6.	8.2	3
872	Evolving targeted therapies for right ventricular failure. Expert Opinion on Biological Therapy, 2015, 15, 1263-1283.	3.1	2
873	Translational Data from Adeno-Associated Virus-Mediated Gene Therapy of Hemophilia B in Dogs. Human Gene Therapy Clinical Development, 2015, 26, 5-14.	3.1	29
874	Prevalence of Anti–Adeno-Associated Virus Serotype 8 Neutralizing Antibodies and Arylsulfatase B Cross-Reactive Immunologic Material in Mucopolysaccharidosis VI Patient Candidates for a Gene Therapy Trial. Human Gene Therapy, 2015, 26, 145-152.	2.7	19
876	Non-viral therapeutic approaches to ocular diseases: An overview and future directions. Journal of Controlled Release, 2015, 219, 471-487.	9.9	40
877	Determination of Anti-Adeno-Associated Virus Vector Neutralizing Antibody Titer with an <i>In Vitro</i> Reporter System. Human Gene Therapy Methods, 2015, 26, 45-53.	2.1	82
878	Site-Directed Mutagenesis of Surface-Exposed Lysine Residues Leads to Improved Transduction by AAV2, But Not AAV8, Vectors in Murine Hepatocytes <i>In Vivo</i> . Human Gene Therapy Methods, 2015, 26, 211-220.	2.1	27
879	Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors. Molecular Therapy, 2015, 23, 1867-1876.	8.2	73

#	Article	IF	CITATIONS
880	Gene therapy returns to centre stage. Nature, 2015, 526, 351-360.	27.8	943
881	Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral Vectors. Human Gene Therapy Methods, 2015, 26, 228-242.	2.1	107
882	Humoral and Cell-Mediated Immune Response, and Growth Factor Synthesis After Direct Intraarticular Injection of rAAV2-IGF-I and rAAV5-IGF-I in the Equine Middle Carpal Joint. Human Gene Therapy, 2015, 26, 161-171.	2.7	15
883	Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovascular Research, 2015, 108, 4-20.	3.8	129
884	The spread of adenoviral vectors to central nervous system through pathway of cochlea in mimetic aging and young rats. Gene Therapy, 2015, 22, 866-875.	4.5	6
885	Systemic Vascular Transduction by Capsid Mutant Adeno-Associated Virus After Intravenous Injection. Human Gene Therapy, 2015, 26, 767-776.	2.7	11
886	Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11276-11281.	7.1	30
887	Hydrodynamic Delivery. Advances in Genetics, 2015, 89, 89-111.	1.8	18
888	Adeno-associated virus-mediated cancer gene therapy: Current status. Cancer Letters, 2015, 356, 347-356.	7.2	65
889	Adeno-Associated Virus Serotype 1 (AAV1)- and AAV5-Antibody Complex Structures Reveal Evolutionary Commonalities in Parvovirus Antigenic Reactivity. Journal of Virology, 2015, 89, 1794-1808.	3.4	64
890	Genetic Manipulation Via Gene Transfer. , 2015, , 75-84.		1
891	Gene therapy for rhesus monkeys heterozygous for LDL receptor deficiency by balloon catheter hepatic delivery of helper-dependent adenoviral vector. Gene Therapy, 2015, 22, 87-95.	4.5	19
892	Enhanced cellular secretion of AAV2 by expression of foreign viral envelope proteins. Biochemical Engineering Journal, 2015, 93, 108-114.	3.6	1
893	Genome-wide Computational Analysis Reveals Cardiomyocyte-specific Transcriptional Cis-regulatory Motifs That Enable Efficient Cardiac Gene Therapy. Molecular Therapy, 2015, 23, 43-52.	8.2	36
894	Pharmaceutical Biotechnology. , 0, , .		7
895	The interplay of post-translational modification and gene therapy. Drug Design, Development and Therapy, 2016, 10, 861.	4.3	5
896	Liver-targeted hydrodynamic gene therapy: Recent advances in the technique. World Journal of Gastroenterology, 2016, 22, 8862.	3.3	30
897	Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element. International Journal of Medical Sciences, 2016, 13, 286-291.	2.5	22

#	Article	IF	CITATIONS
898	RNAi-based Gene Therapy for Blood Genetic Diseases. , 2016, , .		1
899	Gene therapy for metabolic diseases. Translational Science of Rare Diseases, 2016, 1, 73-89.	1.5	23
900	Simple Purification of Adeno-Associated Virus-DJ for Liver-Specific Gene Expression. Yonsei Medical Journal, 2016, 57, 790.	2.2	5
901	Helper-Dependent Adenoviral Vectors. , 2016, , 423-450.		4
902	Bone Marrow Mesenchymal Stem Cells Expressing Baculovirus-Engineered Bone Morphogenetic Protein-7 Enhance Rabbit Posterolateral Fusion. International Journal of Molecular Sciences, 2016, 17, 1073.	4.1	7
903	Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function. PLoS Genetics, 2016, 12, e1006082.	3.5	40
904	Successful Phenotype Improvement following Gene Therapy for Severe Hemophilia A in Privately Owned Dogs. PLoS ONE, 2016, 11, e0151800.	2.5	25
905	Nanoparticle Coated Viral Vectors for Gene Therapy. Current Biotechnology, 2016, 5, 44-53.	0.4	11
906	Long-term, high-level hepatic secretion of acid α-glucosidase for Pompe disease achieved in non-human primates using helper-dependent adenovirus. Gene Therapy, 2016, 23, 743-752.	4.5	22
907	Transposon-mediated Generation of Cellular and Mouse Models of Splicing Mutations to Assess the Efficacy of snRNA-based Therapeutics. Molecular Therapy - Nucleic Acids, 2016, 5, e392.	5.1	2
908	Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A. Molecular Therapy - Methods and Clinical Development, 2016, 3, 15056.	4.1	26
909	Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16019.	4.1	70
910	Adeno-Associated Virus Gene Therapy for Liver Disease. Human Gene Therapy, 2016, 27, 947-961.	2.7	106
912	Gene therapy for haemophilia. The Cochrane Library, 2016, 12, CD010822.	2.8	9
913	Impact of intravenous infusion time on AAV8 vector pharmacokinetics, safety, and liver transduction in cynomolgus macaques. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16079.	4.1	14
914	Emerging therapies for acute intermittent porphyria. Expert Reviews in Molecular Medicine, 2016, 18, e17.	3.9	32
915	Current animal models of hemophilia: the state of the art. Thrombosis Journal, 2016, 14, 22.	2.1	21
916	Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid. Molecular Therapy, 2016, 24, 1042-1049.	8.2	91

#	Article	IF	CITATIONS
917	Gene Therapy for Hemophilia. Human Gene Therapy, 2016, 27, 305-308.	2.7	12
918	Reduced retinal transduction and enhanced transgene-directed immunogenicity with intravitreal delivery of rAAV following posterior vitrectomy in dogs. Gene Therapy, 2016, 23, 548-556.	4.5	24
919	Identification and Validation of Small Molecules That Enhance Recombinant Adeno-associated Virus Transduction following High-Throughput Screens. Journal of Virology, 2016, 90, 7019-7031.	3.4	39
920	Current and future prospects for hemophilia gene therapy. Expert Review of Hematology, 2016, 9, 649-659.	2.2	13
921	Gene Therapy for Coagulation Disorders. Circulation Research, 2016, 118, 1443-1452.	4.5	17
922	Fetal Stem Cells in Regenerative Medicine. Pancreatic Islet Biology, 2016, , .	0.3	6
923	In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. Molecular Therapy, 2016, 24, 1247-1257.	8.2	98
924	Characterization of the Adeno-Associated Virus 1 and 6 Sialic Acid Binding Site. Journal of Virology, 2016, 90, 5219-5230.	3.4	63
925	Perinatal Gene Therapy. Pancreatic Islet Biology, 2016, , 361-402.	0.3	1
926	Gene Therapy for Alpha-1 Antitrypsin Deficiency Lung Disease. Annals of the American Thoracic Society, 2016, 13, S352-S369.	3.2	38
927	The emerging role of viral vectors as vehicles for DMD gene editing. Genome Medicine, 2016, 8, 59.	8.2	18
928	Gene Therapy for Bleeding Disorders. , 2016, , 321-336.		0
929	In vivo tissue-tropism of adeno-associated viral vectors. Current Opinion in Virology, 2016, 21, 75-80.	5.4	249
930	Baboon envelope pseudotyped lentiviral vectors efficiently transduce human B cells and allow active factor IX B cell secretion in vivo in NOD/SCIDγcâ€∤―mice. Journal of Thrombosis and Haemostasis, 2016, 14, 2478-2492.	3.8	41
931	Successful correction of hemophilia by <scp>CRISPR</scp> /Cas9 genome editing <i>inÂvivo</i> : delivery vector and immune responses areÂthe key to success. EMBO Molecular Medicine, 2016, 8, 439-441.	6.9	13
932	State of the art: gene therapy of haemophilia. Haemophilia, 2016, 22, 66-71.	2.1	29
933	Stimulation of AAV Gene Editing via DSB Repair. Advances in Experimental Medicine and Biology, 2016, , 125-137.	1.6	1
934	Synergistic inhibition of PARPâ€1 and NFâ€₽B signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy. European Journal of Immunology, 2016, 46, 154-166	2.9	7

#	Article	IF	CITATIONS
935	2017 Clinical trials update: Innovations in hemophilia therapy. American Journal of Hematology, 2016, 91, 1252-1260.	4.1	82
936	Disulfide-functional poly(amido amine)s with tunable degradability for gene delivery. Journal of Controlled Release, 2016, 244, 357-365.	9.9	53
937	Generation and characterization of anti-Adeno-associated virus serotype 8 (AAV8) and anti-AAV9 monoclonal antibodies. Journal of Virological Methods, 2016, 236, 105-110.	2.1	22
938	Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16068.	4.1	48
939	Novel Therapies for Heart Failure – Where Do They Stand? –. Circulation Journal, 2016, 80, 1882-1891.	1.6	24
940	Development of Optimized AAV Serotype Vectors for High-Efficiency Transduction at Further Reduced Doses. Human Gene Therapy Methods, 2016, 27, 143-149.	2.1	17
941	Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats. International Journal of Molecular Medicine, 2016, 38, 1786-1794.	4.0	17
943	Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16002.	4.1	198
944	Intramuscular administration of AAV overcomes pre-existing neutralizing antibodies in rhesus macaques. Vaccine, 2016, 34, 6323-6329.	3.8	36
945	Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system. Science Translational Medicine, 2016, 8, 337rv5.	12.4	129
946	A translationally optimized AAV-UGT1A1 vector drives safe and long-lasting correction of Crigler-Najjar syndrome. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16049.	4.1	50
947	A universal system to select gene-modified hepatocytes in vivo. Science Translational Medicine, 2016, 8, 342ra79.	12.4	38
948	Clinical development of gene therapy: results and lessons from recent successes. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16034.	4.1	183
949	Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model. Molecular Therapy - Oncolytics, 2016, 3, 16017.	4.4	21
950	Blocking senseâ€strand activity improves potency, safety and specificity of antiâ€hepatitis B virus short hairpin <scp>RNA</scp> . EMBO Molecular Medicine, 2016, 8, 1082-1098.	6.9	24
951	Osteoprotegerin gene-modified BMSCs with hydroxyapatite scaffold for treating critical-sized mandibular defects in ovariectomized osteoporotic rats. Acta Biomaterialia, 2016, 42, 378-388.	8.3	62
952	Phase I open label liver-directed gene therapy clinical trial for acute intermittent porphyria. Journal of Hepatology, 2016, 65, 776-783.	3.7	119
953	Gene therapy: Myth or reality?. Comptes Rendus - Biologies, 2016, 339, 314-318.	0.2	6

#	Article	IF	CITATIONS
954	Liver-Specific Allergen Gene Transfer by Adeno-Associated Virus Suppresses Allergic Airway Inflammation in Mice. Human Gene Therapy, 2016, 27, 631-642.	2.7	7
955	Prospect and progress of gene therapy in acute intermittent porphyria. Expert Opinion on Orphan Drugs, 2016, 4, 711-717.	0.8	2
956	Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies. Journal of Thrombosis and Haemostasis, 2016, 14, 894-905.	3.8	34
957	Liver cell-targeted delivery of therapeutic molecules. Critical Reviews in Biotechnology, 2016, 36, 132-143.	9.0	43
958	Genetic manipulation of brain endothelial cells in vivo. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 381-394.	3.8	15
959	Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure. Gene Therapy, 2016, 23, 313-319.	4.5	79
960	Biologics to Treat Substance Use Disorders. , 2016, , .		3
961	Development of next generation adeno-associated viral vectors capable of selective tropism and efficient gene delivery. Biomaterials, 2016, 80, 134-145.	11.4	33
962	Recent Developments in Gene Therapy for Homozygous Familial Hypercholesterolemia. Current Atherosclerosis Reports, 2016, 18, 22.	4.8	39
964	Rapid and Long-Term Immunity Elicited by DNA-Encoded Antibody Prophylaxis and DNA Vaccination Against Chikungunya Virus. Journal of Infectious Diseases, 2016, 214, 369-378.	4.0	77
965	Adeno-Associated Virus: The Naturally Occurring Virus Versus the Recombinant Vector. Human Gene Therapy, 2016, 27, 1-6.	2.7	20
966	Neutralizing Antibodies Against Adeno-Associated Viral Capsids in Patients with <i>mut</i> Methylmalonic Acidemia. Human Gene Therapy, 2016, 27, 345-353.	2.7	30
967	Cationized gelatin hydrogels mixed with plasmid DNA induce stronger and more sustained gene expression than atelocollagen at calvarial bone defects <i>in vivo</i> . Journal of Biomaterials Science, Polymer Edition, 2016, 27, 419-430.	3.5	21
968	Pre-existing Antibody: Biotherapeutic Modality-Based Review. AAPS Journal, 2016, 18, 311-320.	4.4	58
970	Copackaged AAV9 Vectors Promote Simultaneous Immune Tolerance and Phenotypic Correction of Pompe Disease. Human Gene Therapy, 2016, 27, 43-59.	2.7	44
971	Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1. Gene Therapy, 2016, 23, 129-134.	4.5	37
972	Adeno-associated viral vectors for the treatment of hemophilia. Human Molecular Genetics, 2016, 25, R36-R41.	2.9	56
973	Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors. Methods in Molecular Biology, 2016, 1382, 21-39.	0.9	64

		CITATION R	EPORT	
#	Article		IF	CITATIONS
974	Controlled release strategies for rAAV-mediated gene delivery. Acta Biomaterialia, 2016, 2	29, 1-10.	8.3	40
975	rAAV-CFTRΔR Rescues the Cystic Fibrosis Phenotype in Human Intestinal Organoids and (Mice. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 288-298.	Cystic Fibrosis	5.6	55
976	Progress and challenges in viral vector manufacturing. Human Molecular Genetics, 2016,	25, R42-R52.	2.9	165
977	New and improved AAVenues: current status of hemophilia B gene therapy. Expert Opinic Biological Therapy, 2016, 16, 79-92.	on on	3.1	17
978	Gene therapy for hemophilia: past, present and future. Seminars in Hematology, 2016, 53	3, 46-54.	3.4	33
979	Synthetic Biology—Toward Therapeutic Solutions. Journal of Molecular Biology, 2016, 4	28, 945-962.	4.2	27
980	Progress toward improved therapies for inborn errors of metabolism. Human Molecular G 2016, 25, R27-R35.	enetics,	2.9	16
981	Gene Therapy and Cell Therapy Through the Liver. , 2016, , .			0
982	Oral-tolerization Prevents Immune Responses and Improves Transgene Persistence Follov Transfer Mediated by Adeno-associated Viral Vector. Molecular Therapy, 2016, 24, 87-95.	ving Gene	8.2	15
983	Development of Patient-specific AAV Vectors After Neutralizing Antibody Selection for En Muscle Gene Transfer. Molecular Therapy, 2016, 24, 53-65.	hanced	8.2	45
984	Deriving Osteogenic Cells from Induced Pluripotent Stem Cells for Bone Tissue Engineeri Engineering - Part B: Reviews, 2017, 23, 1-8.	ıg. Tissue	4.8	35
985	Targeted delivery of AAV-transduced mesenchymal stromal cells to hepatic tissue forex vi therapy. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1354-1364.		2.7	8
986	Adeno-associated virus serotype rh.10 displays strong muscle tropism following intraperi delivery. Scientific Reports, 2017, 7, 40336.	coneal	3.3	18
987	Syngeneic AAV Pseudo-particles Potentiate Gene Transduction of AAV Vectors. Molecular Methods and Clinical Development, 2017, 4, 149-158.	Therapy -	4.1	10
988	Mechanism of Deletion Removing All Dystrophin Exons in a Canine Model for DMD Implic Concerted Evolution of X Chromosome Pseudogenes. Molecular Therapy - Methods and C Development, 2017, 4, 62-71.	ates Clinical	4.1	6
989	Class I-restricted T-cell responses to a polymorphic peptide in a gene therapy clinical trial α-1-antitrypsin deficiency. Proceedings of the National Academy of Sciences of the Unite America, 2017, 114, 1655-1659.	for d States of	7.1	52
990	Delivering efficient liver-directed AAV-mediated gene therapy. Gene Therapy, 2017, 24, 26	53-264.	4.5	11
991	Effective Depletion of Pre-existing Anti-AAV Antibodies Requires Broad Immune Targeting Therapy - Methods and Clinical Development, 2017, 4, 159-168.	. Molecular	4.1	30

#	Article	IF	CITATIONS
992	The Balance between CD8+ T Cell-Mediated Clearance of AAV-Encoded Antigen in the Liver and Tolerance Is Dependent on the Vector Dose. Molecular Therapy, 2017, 25, 880-891.	8.2	50
993	Neutralizing antibodies against adeno-associated viruses in Sjögren's patients: implications for gene therapy. Gene Therapy, 2017, 24, 241-244.	4.5	7
994	Seek and destroy: targeted adeno-associated viruses for gene delivery to hepatocellular carcinoma. Drug Delivery, 2017, 24, 289-299.	5.7	18
995	Toward Personalized Gene Therapy: Characterizing the Host Genetic Control of Lentiviral-Vector-Mediated Hepatic Gene Delivery. Molecular Therapy - Methods and Clinical Development, 2017, 5, 83-92.	4.1	14
996	Gene Therapy for Hemophilia. Molecular Therapy, 2017, 25, 1163-1167.	8.2	74
997	Preclinical study of rAAV2-sTRAIL: pharmaceutical efficacy, biodistribution and safety in animals. Cancer Gene Therapy, 2017, 24, 251-258.	4.6	5
998	AAV-ID: A Rapid and Robust Assay for Batch-to-Batch Consistency Evaluation of AAV Preparations. Molecular Therapy, 2017, 25, 1375-1386.	8.2	50
999	Gene Delivery of Activated Factor VII Using Alternative Adeno-Associated Virus Serotype Improves Hemostasis in Hemophiliac Mice with FVIII Inhibitors and Adeno-Associated Virus Neutralizing Antibodies. Human Gene Therapy, 2017, 28, 654-666.	2.7	15
1000	AAV Capsid Engineering: Zooming in on the Target. Human Gene Therapy, 2017, 28, 373-374.	2.7	1
1001	CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Human Genetics, 2017, 136, 875-883.	3.8	56
1002	Plasmacytoid and conventional dendritic cells cooperate in crosspriming AAV capsid-specific CD8+ T cells. Blood, 2017, 129, 3184-3195.	1.4	83
1003	CRISPR/Cas9: at the cutting edge of hepatology. Gut, 2017, 66, 1329-1340.	12.1	31
1004	AAV-mediated delivery of optogenetic constructs to the macaque brain triggers humoral immune responses. Journal of Neurophysiology, 2017, 117, 2004-2013.	1.8	31
1005	Transgene Expression in Dogs After Liver-Directed Hydrodynamic Delivery ofSleeping BeautyTransposons Using Balloon Catheters. Human Gene Therapy, 2017, 28, 541-550.	2.7	11
1006	A 5′ Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors <i>in vivo</i> . Human Gene Therapy, 2017, 28, 125-134.	2.7	21
1007	miRNA-mediated post-transcriptional silencing of transgenes leads to increased adeno-associated viral vector yield and targeting specificity. Gene Therapy, 2017, 24, 462-469.	4.5	12
1008	Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders. , 2017, , .		3
1009	Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Failure Reviews, 2017, 22, 795-823.	3.9	7

~			~	
		ON	REPC	NDT
\sim	плп		NLFC	ואנ

#	Article	IF	CITATIONS
1010	Gene and Cell Doping: The New Frontier - Beyond Myth or Reality. Medicine and Sport Science, 2017, 62, 91-106.	1.4	15
1011	Prolonged Expression of Secreted Enzymes in Dogs After Liver-Directed Delivery of <i>Sleeping Beauty</i> Transposons: Implications for Non-Viral Gene Therapy of Systemic Disease. Human Gene Therapy, 2017, 28, 551-564.	2.7	8
1012	CRISPR/Cas9-mediated correction of human genetic disease. Science China Life Sciences, 2017, 60, 447-457.	4.9	34
1013	An Engineered Virus Library as a Resource for the Spectrum-wide Exploration of Virus and Vector Diversity. Cell Reports, 2017, 19, 1698-1709.	6.4	49
1014	Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. Journal of Inherited Metabolic Disease, 2017, 40, 497-517.	3.6	89
1015	Efficient production of recombinant adeno-associated viral vector, serotype DJ/8, carrying the GFP gene. Virus Research, 2017, 238, 63-68.	2.2	11
1016	Improving the Quality of Adeno-Associated Viral Vector Preparations: The Challenge of Product-Related Impurities. Human Gene Therapy Methods, 2017, 28, 101-108.	2.1	47
1017	Regulatory and Exhausted T Cell Responses to AAV Capsid. Human Gene Therapy, 2017, 28, 338-349.	2.7	35
1018	Improvement of Adeno-Associated Virus-Mediated Liver Transduction Efficacy by Regional Administration in <i>Macaca fascicularis</i> . Human Gene Therapy Clinical Development, 2017, 28, 68-73.	3.1	7
1019	Recombinant Adeno-Associated Viral Integration and Genotoxicity: Insights from Animal Models. Human Gene Therapy, 2017, 28, 314-322.	2.7	162
1020	Impact of AAV Capsid-Specific T-Cell Responses on Design and Outcome of Clinical Gene Transfer Trials with Recombinant Adeno-Associated Viral Vectors: An Evolving Controversy. Human Gene Therapy, 2017, 28, 328-337.	2.7	85
1021	Differential Prevalence of Antibodies Against Adeno-Associated Virus in Healthy Children and Patients with Mucopolysaccharidosis III: Perspective for AAV-Mediated Gene Therapy. Human Gene Therapy Clinical Development, 2017, 28, 187-196.	3.1	31
1022	Open-angle glaucoma: therapeutically targeting the extracellular matrix of the conventional outflow pathway. Expert Opinion on Therapeutic Targets, 2017, 21, 1037-1050.	3.4	41
1023	Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annual Review of Virology, 2017, 4, 511-534.	6.7	147
1024	Preclinical and clinical advances in transposon-based gene therapy. Bioscience Reports, 2017, 37, .	2.4	68
1025	Roadmap for an early gene therapy for cystic fibrosis airway disease. Prenatal Diagnosis, 2017, 37, 1181-1190.	2.3	15
1026	Novel approaches to hemophilia therapy: successes and challenges. Blood, 2017, 130, 2251-2256.	1.4	95
1029	Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial. Human Gene Therapy, 2017, 28, 1061-1074.	2.7	170

	Сітатіо	on Report	
#	Article	IF	CITATIONS
1030	Advances in Gene Therapy for Hemophilia. Human Gene Therapy, 2017, 28, 1004-1012.	2.7	54
1031	Emerging Gene Therapies for Genetic Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 649-670.	1.8	86
1032	Dual-functional aluminum(III)-based electrochemiluminescent detection of gene mutation. Mikrochimica Acta, 2017, 184, 4611-4618.	5.0	0
1033	Transposons: Moving Forward from Preclinical Studies to Clinical Trials. Human Gene Therapy, 2017, 28, 1087-1104.	2.7	56
1034	Gene Therapy for Hemophilia. Hematology/Oncology Clinics of North America, 2017, 31, 853-868.	2.2	30
1035	Therapeutic Gene Editing in Muscles and Muscle Stem Cells. Research and Perspectives in Neurosciences, 2017, , 103-123.	0.4	1
1036	Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes. Molecular Therapy - Methods and Clinical Development, 2017, 6, 183-193.	4.1	7
1037	An Immune-Competent Murine Model to Study Elimination of AAV-Transduced Hepatocytes by Capsid-Specific CD8+ T Cells. Molecular Therapy - Methods and Clinical Development, 2017, 5, 142-152.	4.1	13
1039	Gene Therapy in Tyrosinemia: Potential and Pitfalls. Advances in Experimental Medicine and Biology, 2017, 959, 231-243.	1.6	3
1040	Non-clinical Safety and Efficacy of an AAV2/8 Vector Administered Intravenously for Treatment of Mucopolysaccharidosis Type VI. Molecular Therapy - Methods and Clinical Development, 2017, 6, 143-158.	4.1	36
1041	Repeated AAV-mediated gene transfer by serotype switching enables long-lasting therapeutic levels of hUgt1a1 enzyme in a mouse model of Crigler–Najjar Syndrome Type I. Gene Therapy, 2017, 24, 649-660	4.5	27
1042	Hemophilia Gene Therapy: Ready for Prime Time?. Human Gene Therapy, 2017, 28, 1013-1023.	2.7	25
1043	Application of polyploid adeno-associated virus vectors for transduction enhancement and neutralizing antibody evasion. Journal of Controlled Release, 2017, 262, 348-356.	9.9	21
1044	Suppression of Oncolytic Adenovirus-Mediated Hepatotoxicity by Liver-Specific Inhibition of NF-κB. Molecular Therapy - Oncolytics, 2017, 7, 76-85.	4.4	3
1045	Hemophilia B Gene Therapy with a High-Specific-Activity Factor IX Variant. New England Journal of Medicine, 2017, 377, 2215-2227.	27.0	549
1046	AAV5–Factor VIII Gene Transfer in Severe Hemophilia A. New England Journal of Medicine, 2017, 377, 2519-2530.	27.0	529
1047	Current and Future Treatments for Lysosomal Storage Disorders. Current Treatment Options in Neurology, 2017, 19, 45.	1.8	9
1048	Strategy to detect pre-existing immunity to AAV gene therapy. Gene Therapy, 2017, 24, 768-778.	4.5	71

#	Article	IF	CITATIONS
1049	Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. Journal of Inherited Metabolic Disease, 2017, 40, 543-554.	3.6	67
1050	Evaluation of engineered AAV capsids for hepatic factor IX gene transfer in murine and canine models. Journal of Translational Medicine, 2017, 15, 94.	4.4	16
1052	Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications. Gene Therapy, 2017, 24, 49-59.	4.5	40
1053	Engineering a gene silencing viral construct that targets the cat hypothalamus to induce permanent sterility: An update. Reproduction in Domestic Animals, 2017, 52, 354-358.	1.4	10
1054	Novel factor VIII variants with a modified furin cleavage site improve the efficacy of gene therapy for hemophilia A. Journal of Thrombosis and Haemostasis, 2017, 15, 110-121.	3.8	41
1055	Gene and Cell Therapy for Inborn Errors of Metabolism. , 2017, , 155-171.		1
1056	TALEN/CRISPR-mediated engineering of a promoterless anti-viral RNAi hairpin into an endogenous miRNA locus. Nucleic Acids Research, 2017, 45, e3-e3.	14.5	8
1057	<i>Ex vivo</i> and <i>in vivo</i> genome editing: a regulatory scientific framework from early development to clinical implementation. Regenerative Medicine, 2017, 12, 1015-1030.	1.7	6
1058	Differential prevalence of antibodies against adeno-associated virus in healthy children and patients with mucopolysaccharidosis III: perspective for AAV-mediated gene therapy. Human Gene Therapy Clinical Development, 2017, , .	3.1	0
1059	Hemophilia gene therapy comes of age. Hematology American Society of Hematology Education Program, 2017, 2017, 587-594.	2.5	36
1060	Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors. Blood Advances, 2017, 1, 2019-2031.	5.2	90
1061	Optimized AAV rh.10 Vectors That Partially Evade Neutralizing Antibodies during Hepatic Gene Transfer. Frontiers in Pharmacology, 2017, 8, 441.	3.5	13
1062	Regulatory and Scientific Advancements in Gene Therapy: State-of-the-Art of Clinical Applications and of the Supporting European Regulatory Framework. Frontiers in Medicine, 2017, 4, 182.	2.6	41
1063	Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options. Frontiers in Cellular Neuroscience, 2017, 11, 31.	3.7	42
1064	Retinal Gene Therapy: Surgical Vector Delivery in the Translation to Clinical Trials. Frontiers in Neuroscience, 2017, 11, 174.	2.8	86
1065	And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Frontiers in Neuroscience, 2017, 11, 663.	2.8	70
1066	Gene Therapy for Liver Disease. , 2017, , 837-851.		1
1067	Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep. PLoS ONE, 2017, 12, e0171132.	2.5	22

#	Article	IF	CITATIONS
1068	Safety of Intradiaphragmatic Delivery of Adeno-Associated Virus-Mediated Alpha-Glucosidase (rAAV1-CMV- <i>hGAA</i>) Gene Therapy in Children Affected by Pompe Disease. Human Gene Therapy Clinical Development, 2017, 28, 208-218.	3.1	83
1069	Hemophilia gene therapy comes of age. Blood Advances, 2017, 1, 2591-2599.	5.2	55
1070	Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus. Antiviral Research, 2018, 152, 58-67.	4.1	65
1071	Low Seroprevalence of Neutralizing Antibodies Targeting Two Clade F AAV in Humans. Human Gene Therapy Clinical Development, 2018, , .	3.1	1
1072	Oligonucleotide conjugated multi-functional adeno-associated viruses. Scientific Reports, 2018, 8, 3589.	3.3	40
1073	A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent InÂVivo Genome Editing. Cell Reports, 2018, 22, 2227-2235.	6.4	543
1074	Influence of Pre-existing Anti-capsid Neutralizing and Binding Antibodies on AAV Vector Transduction. Molecular Therapy - Methods and Clinical Development, 2018, 9, 119-129.	4.1	125
1075	A Novel Approach to the Treatment of Plasma Protein Deficiency: <i>Ex Vivo</i> -Manipulated Adipocytes for Sustained Secretion of Therapeutic Proteins. Chemical and Pharmaceutical Bulletin, 2018, 66, 217-224.	1.3	7
1076	Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Therapy, 2018, 25, 139-156.	4.5	44
1077	Assessment of Humoral, Innate, and T-Cell Immune Responses to Adeno-Associated Virus Vectors. Human Gene Therapy Methods, 2018, 29, 86-95.	2.1	46
1078	Low Seroprevalence of Neutralizing Antibodies Targeting Two Clade F AAV in Humans. Human Gene Therapy Clinical Development, 2018, 29, 60-67.	3.1	12
1079	Presumed missense and synonymous mutations in <scp>ATP</scp> 7B gene cause exon skipping in Wilson disease. Liver International, 2018, 38, 1504-1513.	3.9	21
1080	AAV8 virions hijack serum proteins to increase hepatocyte binding for transduction enhancement. Virology, 2018, 518, 95-102.	2.4	19
1081	Severe Toxicity in Nonhuman Primates and Piglets with Systemic High-Dose Administration of Adeno-Associated Virus Serotype 9–Like Vectors: Putting Patients First. Human Gene Therapy, 2018, 29, 283-284.	2.7	25
1082	Gene therapies for hemophilia hit the mark in clinical trials. Nature Medicine, 2018, 24, 121-122.	30.7	14
1083	Target-Cell-Directed Bioengineering Approaches for Gene Therapy of Hemophilia A. Molecular Therapy - Methods and Clinical Development, 2018, 9, 57-69.	4.1	31
1084	Persistence of plasmidâ€nediated expression of transgenes in human mesenchymal stem cells depends primarily on CpG levels of both vector and transgene. Journal of Gene Medicine, 2018, 20, e3009.	2.8	6
1085	Emerging Issues in AAV-Mediated InÂVivo Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2018, 8, 87-104.	4.1	578

# 1086	ARTICLE Universal Method for the Purification of Recombinant AAV Vectors of Differing Serotypes. Molecular Therapy - Methods and Clinical Development, 2018, 9, 33-46.	IF 4.1	Citations 88
1087	Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency. Molecular Therapy, 2018, 26, 801-813.	8.2	95
1088	Gene Therapy with BMN 270 Results in Therapeutic Levels of FVIII in Mice and Primates and Normalization of Bleeding in Hemophilic Mice. Molecular Therapy, 2018, 26, 496-509.	8.2	52
1089	CRISPR/Cas9 therapeutics for liver diseases. Journal of Cellular Biochemistry, 2018, 119, 4265-4278.	2.6	9
1090	Gene therapy comes of age. Science, 2018, 359, .	12.6	936
1091	Biology of the Adrenal Gland Cortex Obviates Effective Use of Adeno-Associated Virus Vectors to Treat Hereditary Adrenal Disorders. Human Gene Therapy, 2018, 29, 403-412.	2.7	29
1092	Inhibition of antigen presentation during AAV gene therapy using virus peptides. Human Molecular Genetics, 2018, 27, 601-613.	2.9	14
1093	A Rationally Engineered Capsid Variant of AAV9 for Systemic CNS-Directed and Peripheral Tissue-Detargeted Gene Delivery in Neonates. Molecular Therapy - Methods and Clinical Development, 2018, 9, 234-246.	4.1	42
1094	RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nature Communications, 2018, 9, 1674.	12.8	123
1095	AAV6 K531 serves a dual function in selective receptor and antibody ADK6 recognition. Virology, 2018, 518, 369-376.	2.4	20
1096	Practical Implications of Factor IX Gene Transfer for Individuals with Hemophilia B: A Clinical Perspective. Human Gene Therapy Clinical Development, 2018, 29, 80-89.	3.1	10
1097	Mutagenic Analysis of an Adeno-Associated Virus Variant Capable of Simultaneously Promoting Immune Resistance and Robust Gene Delivery. Human Gene Therapy, 2018, 29, 25-41.	2.7	6
1098	Current strides in AAV-derived vectors and SIN channels further relieves the limitations of gene therapy. Egyptian Journal of Medical Human Genetics, 2018, 19, 69-75.	1.0	0
1099	Gene therapy for hemophilia. Pediatric Blood and Cancer, 2018, 65, e26865.	1.5	30
1100	Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1408.	6.6	96
1101	Bioengineered AAV Capsids with Combined High Human Liver Transduction InÂVivo and Unique Humoral Seroreactivity. Molecular Therapy, 2018, 26, 289-303.	8.2	130
1102	Gene therapy with adeno-associated virus vector 5–human factor IX in adults with hemophilia B. Blood, 2018, 131, 1022-1031.	1.4	236
1103	MicroRNA-based therapeutics in cardiovascular disease: screening and delivery to the target. Biochemical Society Transactions, 2018, 46, 11-21.	3.4	115

#	Article	IF	CITATIONS
1104	Gene Therapy for Hemophilia: Progress to Date. BioDrugs, 2018, 32, 9-25.	4.6	18
1105	Extracellular vesicles: nature's nanoparticles for improving gene transfer with adenoâ€associated virus vectors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1488.	6.1	29
1106	Double-stranded RNA innate immune response activation from long-term adeno-associated virus vector transduction. JCI Insight, 2018, 3, .	5.0	74
1107	Adeno-Associated Virus Neutralizing Antibodies in Large Animals and Their Impact on Brain Intraparenchymal Gene Transfer. Molecular Therapy - Methods and Clinical Development, 2018, 11, 65-72.	4.1	38
1108	A Molecular Epidemiological Investigation of Carriage of the Adeno-Associated Virus in Murine Rodents and House Shrews in China. Intervirology, 2018, 61, 143-148.	2.8	3
1109	Development of a Novel Recombinant Adeno-Associated Virus Production System Using Human Bocavirus 1 Helper Genes. Molecular Therapy - Methods and Clinical Development, 2018, 11, 40-51.	4.1	21
1110	Gene Therapy for Spinal Muscular Atrophy: An Emerging Treatment Option for a Devastating Disease. Journal of Managed Care & Specialty Pharmacy, 2018, 24, S3-S16.	0.9	34
1111	Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathogens, 2018, 14, e1007395.	4.7	37
1112	2018 White Paper on Recent Issues in Bioanalysis: focus on flow cytometry, gene therapy, cut points and key clarifications on BAV (Part 3 – LBA/cell-based assays: immunogenicity, biomarkers and PK) Tj ETQq0 0 0	ng₿T /Ov	erkkønck 10 Tf
1113	Response letter. Journal of Inherited Metabolic Disease, 2018, 41, 915-915.	3.6	1
1114	Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nature Communications, 2018, 9, 4098.	12.8	184
1115	Considerations for Preclinical Safety Assessment of Adeno-Associated Virus Gene Therapy Products. Toxicologic Pathology, 2018, 46, 1020-1027.	1.8	22
1116	Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology, 2018, 15, 66.	2.0	30
1117	Development of a Chemiluminescent ELISA Method for the Detection of Total Anti-Adeno Associated Virus Serotype 9 (AAV9) Antibodies. Human Gene Therapy Methods, 2018, 29, 237-250.	2.1	15
1118	Effects of Lentivirus-Mediated C3 Expression on Trabecular Meshwork Cells and Intraocular Pressure. , 2018, 59, 4937.		14
1119	Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Science Translational Medicine, 2018, 10, .	12.4	59
1120	Genetic Strategies for HIV Treatment and Prevention. Molecular Therapy - Nucleic Acids, 2018, 13, 514-533.	5.1	16
1121	Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization. Gene Therapy, 2018, 25, 454-472.	4.5	8

#	Article	IF	CITATIONS
1122	Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers. Frontiers in Pharmacology, 2018, 9, 971.	3.5	157
1123	Building immune tolerance through DNA vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9652-9654.	7.1	5
1125	Adeno-associated Virus Vectors in Gene Therapy. , 2018, , 29-56.		1
1126	Viral- and Non-viral-Based Hybrid Vectors for Gene Therapy. , 2018, , 111-130.		2
1127	Emerging therapies for hemophilia: controversies and unanswered questions. F1000Research, 2018, 7, 489.	1.6	29
1128	Genomic Editing—From Human Health to the "Perfect Child― , 2018, , 1-30.		0
1129	Synthetic DNA delivery by electroporation promotes robust in vivo sulfation of broadly neutralizing anti-HIV immunoadhesin eCD4-lg. EBioMedicine, 2018, 35, 97-105.	6.1	15
1130	Engineered DNA plasmid reduces immunity to dystrophin while improving muscle force in a model of gene therapy of Duchenne dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9182-E9191.	7.1	17
1131	Humoral Immune Response After Intravitreal But Not After Subretinal AAV8 in Primates and Patients. , 2018, 59, 1910.		64
1132	Blood-brain barrier shuttle peptides enhance AAV transduction in the brain after systemic administration. Biomaterials, 2018, 176, 71-83.	11.4	46
1133			
	Miracle of haemophilia drugs: Personal views about a few main players. Haemophilia, 2018, 24, 557-562.	2.1	21
1134	Miracle of haemophilia drugs: Personal views about a few main players. Haemophilia, 2018, 24, 557-562. Evolving Complexity in Hemophilia Management. Pediatric Clinics of North America, 2018, 65, 407-425.	2.1 1.8	21 10
1134 1135			
	Evolving Complexity in Hemophilia Management. Pediatric Clinics of North America, 2018, 65, 407-425. Lessons learned from lung and liver in-vivo gene therapy: implications for the future. Expert Opinion	1.8	10
1135	Evolving Complexity in Hemophilia Management. Pediatric Clinics of North America, 2018, 65, 407-425. Lessons learned from lung and liver in-vivo gene therapy: implications for the future. Expert Opinion on Biological Therapy, 2018, 18, 959-972. Creating an arsenal of Adeno-associated virus (AAV) gene delivery stealth vehicles. PLoS Pathogens,	1.8	10 36
1135 1136	 Evolving Complexity in Hemophilia Management. Pediatric Clinics of North America, 2018, 65, 407-425. Lessons learned from lung and liver in-vivo gene therapy: implications for the future. Expert Opinion on Biological Therapy, 2018, 18, 959-972. Creating an arsenal of Adeno-associated virus (AAV) gene delivery stealth vehicles. PLoS Pathogens, 2018, 14, e1006929. Polyester-based nanoparticles for nucleic acid delivery. Materials Science and Engineering C, 2018, 92, 	1.8 3.1 4.7	10 36 22
1135 1136 1137	Evolving Complexity in Hemophilia Management. Pediatric Clinics of North America, 2018, 65, 407-425. Lessons learned from lung and liver in-vivo gene therapy: implications for the future. Expert Opinion on Biological Therapy, 2018, 18, 959-972. Creating an arsenal of Adeno-associated virus (AAV) gene delivery stealth vehicles. PLoS Pathogens, 2018, 14, e1006929. Polyester-based nanoparticles for nucleic acid delivery. Materials Science and Engineering C, 2018, 92, 983-994.	1.8 3.1 4.7 7.3	10 36 22 47

#	Article	IF	CITATIONS
1141	Small Molecule Catalysts with Therapeutic Potential. Molecules, 2018, 23, 765.	3.8	3
1142	Recent progress and considerations for AAV gene therapies targeting the central nervous system. Journal of Neurodevelopmental Disorders, 2018, 10, 16.	3.1	108
1143	How will the field of gene therapy survive its success?. Bioengineering and Translational Medicine, 2018, 3, 166-177.	7.1	39
1144	Helper-free Production of Laboratory Grade AAV and Purification by Iodixanol Density Gradient Centrifugation. Molecular Therapy - Methods and Clinical Development, 2018, 10, 1-7.	4.1	59
1145	Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Molecular Therapy, 2018, 26, 2337-2356.	8.2	306
1146	Dosage Thresholds and Influence of Transgene Cassette in Adeno-Associated Virus–Related Toxicity. Human Gene Therapy, 2018, 29, 1235-1241.	2.7	56
1147	An Observational Study from Long-Term AAV Re-administration in Two Hemophilia Dogs. Molecular Therapy - Methods and Clinical Development, 2018, 10, 257-267.	4.1	28
1148	Gene therapy for hemophilia: what does the future hold?. Therapeutic Advances in Hematology, 2018, 9, 273-293.	2.5	79
1149	Mapping an Adeno-associated Virus 9-Specific Neutralizing Epitope To Develop Next-Generation Gene Delivery Vectors. Journal of Virology, 2018, 92, .	3.4	33
1150	Haemophilia gene therapy: From trailblazer to gamechanger. Haemophilia, 2018, 24, 50-59.	2.1	21
1151	Past, present and future of haemophilia gene therapy: From vectors and transgenes to known and unknown outcomes. Haemophilia, 2018, 24, 60-67.	2.1	35
1152	Age-Related Seroprevalence of Antibodies Against AAV-LKO3 in a UK Population Cohort. Human Gene Therapy, 2019, 30, 79-87.	2.7	51
1153	Advances and challenges for hemophilia gene therapy. Human Molecular Genetics, 2019, 28, R95-R101.	2.9	73
1154	Adeno-Associated Virus (AAV)-Mediated Gene Therapy for Disorders of Inherited and Non-Inherited Origin. , 2019, , .		2
1155	In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Scientific Reports, 2019, 9, 11592.	3.3	15
1156	Nucleic Acid-Based Therapy: Development of a Nonviral-Based Delivery Approach. , 0, , .		0
1157	Molecular characterization of novel Adeno-associated virus variants infecting human tissues. Virus Research, 2019, 272, 197716.	2.2	3
1158	Immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the immune response to the administration of gene therapy. Nature Biomedical Engineering, 2019, 3, 806-816.	22.5	77

		CITATION REPOR	RT	
#	ARTICLE	IF		CITATIONS
1159	Gene Therapy for Pompe Disease: The Time is now. Human Gene Therapy, 2019, 30, 1245-1262	2. 2.7	7 :	20
1160	Clinical advances in gene therapy updates on clinical trials of gene therapy in haemophilia. Haemophilia, 2019, 25, 738-746.	2.1	1 4	57
1161	Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and G Where Are We, and How Did We Get Here?. Annual Review of Virology, 2019, 6, 601-621.	lybera): 6.7	7 :	217
1162	Prevalence of Anti-Adeno-Associated Virus Immune Responses in International Cohorts of Healt Donors. Molecular Therapy - Methods and Clinical Development, 2019, 14, 126-133.	hy 4.1	1 1	100
1163	Genes, pathways and risk prediction in Alzheimer's disease. Human Molecular Genetics, 20 R235-R240.	19, 28, 2.9	9 :	16
1164	Gene Therapy. New England Journal of Medicine, 2019, 381, 455-464.	27.	.0	343
1165	Therapeutic hFIX Activity Achieved after Single AAV5-hFIX Treatment in Hemophilia B Patients a with Pre-existing Anti-AAV5 NABs. Molecular Therapy - Methods and Clinical Development, 201-27-36.		1 ;	89
1166	Next-generation AAV vectors—do not judge a virus (only) by its cover. Human Molecular Gene 2019, 28, R3-R14.	etics, 2.9	9 :	105
1167	MicroRNA‑802 increases hepatic oxidative stress and induces insulin resistance in high‑fat Molecular Medicine Reports, 2019, 20, 1230-1240.	fed mice. 2.4	4 :	11
1168	Recent advances towards gene therapy for propionic acidemia: translation to the clinic. Expert of Precision Medicine and Drug Development, 2019, 4, 229-237.	Review 0.7	7	0
1169	From Clinical Trials to Clinical Practice: Practical Considerations for Gene Replacement Therapy SMA Type 1. Pediatric Neurology, 2019, 100, 3-11.	in 2.1	1 :	142
1170	Enhanced Factor IX Activity following Administration of AAV5-R338L "Padua―Factor IX ver Human Factor IX in NHPs. Molecular Therapy - Methods and Clinical Development, 2019, 15, 22		1 :	19
1171	Gene therapy for hemophilia: Progress to date and challenges moving forward. Transfusion and Apheresis Science, 2019, 58, 602-612.	1.0	с с	23
1172	Molecular Engineering of Adeno-Associated Virus Capsid Improves Its Therapeutic Gene Transfe Murine Models of Hemophilia and Retinal Degeneration. Molecular Pharmaceutics, 2019, 16, 4	er in 738-4750. 4.6	6	15
1173	TLR9 signaling mediates adaptive immunity following systemic AAV gene therapy. Cellular Imm 2019, 346, 103997.	unology, 3.0	0 :	33
1175	Selection of an Efficient AAV Vector for Robust CNS Transgene Expression. Molecular Therapy - Methods and Clinical Development, 2019, 15, 320-332.	4.1	1 3	89
1176	Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII Reports, 2019, 9, 16838.	. Scientific 3.8	3 4	46
1177	Gene Therapy: Principles and Clinical Potential. , 2019, , 540-560.			0

#	Article	IF	CITATIONS
1178	Rational Engineering and Preclinical Evaluation of Neddylation and SUMOylation Site Modified Adeno-Associated Virus Vectors in Murine Models of Hemophilia B and Leber Congenital Amaurosis. Human Gene Therapy, 2019, 30, 1461-1476.	2.7	16
1179	<i>In Vivo</i> Gene Therapy for Mucopolysaccharidosis Type III (Sanfilippo Syndrome): A New Treatment Horizon. Human Gene Therapy, 2019, 30, 1211-1221.	2.7	25
1180	Transduction of Craniofacial Motoneurons Following Intramuscular Injections of Canine Adenovirus Type-2 (CAV-2) in Rhesus Macaques. Frontiers in Neuroanatomy, 2019, 13, 84.	1.7	8
1181	Prevalence and Relevance of Pre-Existing Anti-Adeno-Associated Virus Immunity in the Context of Gene Therapy for Crigler–Najjar Syndrome. Human Gene Therapy, 2019, 30, 1297-1305.	2.7	39
1182	Clinical Considerations for Capsid Choice in the Development of Liver-Targeted AAV-Based Gene Transfer. Molecular Therapy - Methods and Clinical Development, 2019, 15, 170-178.	4.1	55
1183	Current Status on Clinical Development of Adeno-Associated Virus-Mediated Liver-Directed Gene Therapy for Inborn Errors of Metabolism. Human Gene Therapy, 2019, 30, 1204-1210.	2.7	22
1184	Superior human hepatocyte transduction with adeno-associated virus vector serotype 7. Gene Therapy, 2019, 26, 504-514.	4.5	13
1185	Raising Gene Therapy for Unmet Medical Needs in Japan. JMA Journal, 2019, 2, 73-79.	0.8	0
1186	Transposon mediated reprogramming of buffalo fetal fibroblasts to induced pluripotent stem cells in feeder free culture conditions. Research in Veterinary Science, 2019, 123, 252-260.	1.9	11
1187	Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature Medicine, 2019, 25, 249-254.	30.7	611
1188	Viral Vector-Based Delivery of CRISPR/Cas9 and Donor DNA for Homology-Directed Repair in an InÂVitro Model for Canine Hemophilia B. Molecular Therapy - Nucleic Acids, 2019, 14, 364-376.	5.1	36
1189	Adeno-associated Virus (AAV) versus Immune Response. Viruses, 2019, 11, 102.	3.3	94
1190	Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 2019, 18, 358-378.	46.4	1,267
1191	Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2019, 12, 184-201.	4.1	39
1192	Preclinical Development of an AAV8-hUGT1A1 Vector for the Treatment of Crigler-Najjar Syndrome. Molecular Therapy - Methods and Clinical Development, 2019, 12, 157-174.	4.1	45
1193	The Impact of Pre-existing Immunity on the Non-clinical Pharmacodynamics of AAV5-Based Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2019, 13, 440-452.	4.1	57
1194	Gene Therapy for X-Linked Myotubular Myopathy. , 2019, , 565-577.		0
1195	RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nature Reviews Cardiology, 2019, 16, 661-674.	13.7	218

#	Article	IF	CITATIONS
1196	Taste Receptor Cells in Mice Express Receptors for the Hormone Adiponectin. Chemical Senses, 2019, 44, 409-422.	2.0	9
1197	Systemic delivery of Eg5 shRNA-expressing plasmids using PEGylated DC-Chol/DOPE cationic liposome: Long-term silencing and anticancer effects in vivo. Biochemical Pharmacology, 2019, 166, 192-202.	4.4	10
1198	Design of Muscle Gene Therapy Expression Cassette. , 2019, , 141-156.		1
1199	Gene Therapy in Pediatric Liver Disease. , 2019, , 799-829.		2
1200	Threshold for Pre-existing Antibody Levels Limiting Transduction Efficiency of Systemic rAAV9 Gene Delivery: Relevance for Translation. Molecular Therapy - Methods and Clinical Development, 2019, 13, 453-462.	4.1	18
1201	Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy. Human Gene Therapy Methods, 2019, 30, 71-80.	2.1	8
1202	Gene Therapy: Paving New Roads in the Treatment of Hemophilia. Seminars in Thrombosis and Hemostasis, 2019, 45, 743-750.	2.7	13
1203	Gene Therapy Today and Tomorrow. Diseases (Basel, Switzerland), 2019, 7, 37.	2.5	3
1204	Adenovirusâ€associated antibodies in UK cohort of hemophilia patients: A seroprevalence study of the presence of adenovirusâ€associated virus vector–serotypes AAV5 and AAV8 neutralizing activity and antibodies in patients with hemophilia A. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 261-267.	2.3	36
1205	Anti-EpCAM-conjugated adeno-associated virus serotype 2 for systemic delivery of EGFR shRNA: Its retargeting and antitumor effects on OVCAR3 ovarian cancer in vivo. Acta Biomaterialia, 2019, 91, 258-269.	8.3	13
1206	Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nature Communications, 2019, 10, 1842.	12.8	126
1207	Oracle or false prophet? Can we predict AAV efficacy based on preexisting antibody titers?. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 149-151.	2.3	2
1208	Adeno-associated virus as a gene therapy vector: strategies to neutralize the neutralizing antibodies. Clinical and Experimental Medicine, 2019, 19, 289-298.	3.6	20
1209	Recent advances in the development of gene delivery systems. Biomaterials Research, 2019, 23, 8.	6.9	276
1210	Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. Tissue Engineering - Part B: Reviews, 2019, 25, 259-290.	4.8	20
1211	Pre-existing antibodies to candidate gene therapy vectors (adeno-associated vector serotypes) in domestic cats. PLoS ONE, 2019, 14, e0212811.	2.5	10
1212	X-linked myotubular myopathy. Neurology, 2019, 92, e1852-e1867.	1.1	66
1213	Alpha-1-Antitrypsin Promoter Improves the Efficacy of an Adeno-Associated Virus Vector for the Treatment of Mitochondrial Neurogastrointestinal Encephalomyopathy. Human Gene Therapy, 2019, 30, 985-998.	2.7	16

			2
#	Article	IF	CITATIONS
1214	Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet HIV,the, 2019, 6, e230-e239.	4.7	84
1215	Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron, 2019, 101, 839-862.	8.1	234
1216	Five Years of Successful Inducible Transgene Expression Following Locoregional Adeno-Associated Virus Delivery in Nonhuman Primates with No Detectable Immunity. Human Gene Therapy, 2019, 30, 802-813.	2.7	26
1217	Next Generation of Adeno-Associated Virus Vectors for Gene Therapy for Human Liver Diseases. Gastroenterology Clinics of North America, 2019, 48, 319-330.	2.2	16
1218	Viral Vectors for Muscle Gene Therapy. , 2019, , 179-192.		0
1219	Detection of Biologically Relevant Low-Titer Neutralizing Antibodies Against Adeno-Associated Virus Require Sensitive <i>In Vitro</i> Assays. Human Gene Therapy Methods, 2019, 30, 35-43.	2.1	23
1220	Adeno-Associated Virus Vectors. Methods in Molecular Biology, 2019, , .	0.9	2
1221	AAV-Mediated Gene Delivery to the Liver: Overview of Current Technologies and Methods. Methods in Molecular Biology, 2019, 1950, 333-360.	0.9	22
1222	Immunoadsorption enables successful rAAV5-mediated repeated hepatic gene delivery in nonhuman primates. Blood Advances, 2019, 3, 2632-2641.	5.2	41
1223	Etranacogene dezaparvovec (AMT-061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B. Blood Advances, 2019, 3, 3241-3247.	5.2	85
1224	Bioanalysis of adeno-associated virus gene therapy therapeutics: regulatory expectations. Bioanalysis, 2019, 11, 2011-2024.	1.5	15
1225	Molecular Dynamics Simulation Reveals Exposed Residues in the Ligand-Binding Domain of the Low-Density Lipoprotein Receptor that Interacts with Vesicular Stomatitis Virus-G Envelope. Viruses, 2019, 11, 1063.	3.3	4
1226	In-Vivo Gene Therapy with Foamy Virus Vectors. Viruses, 2019, 11, 1091.	3.3	16
1227	The Influence of Murine Genetic Background in Adeno-Associated Virus Transduction of the Mouse Brain. Human Gene Therapy Clinical Development, 2019, 30, 169-181.	3.1	16
1228	AAV Gene Transfer with Tandem Promoter Design Prevents Anti-transgene Immunity and Provides Persistent Efficacy in Neonate Pompe Mice. Molecular Therapy - Methods and Clinical Development, 2019, 12, 85-101.	4.1	52
1229	Update on clinical gene therapy for hemophilia. Blood, 2019, 133, 407-414.	1.4	140
1230	Gene therapy for blood diseases. Current Opinion in Biotechnology, 2019, 60, 39-45.	6.6	27
1231	Entering the Modern Era of Gene Therapy. Annual Review of Medicine, 2019, 70, 273-288.	12.2	311

#	Article	IF	CITATIONS
1232	Prevalence and long-term monitoring of humoral immunity against adeno-associated virus in Duchenne Muscular Dystrophy patients. Cellular Immunology, 2019, 342, 103780.	3.0	33
1233	Safe and stable noninvasive focal gene delivery to the mammalian brain following focused ultrasound. Journal of Neurosurgery, 2019, 130, 989-998.	1.6	51
1234	Immunomodulatory, liver depot gene therapy for Pompe disease. Cellular Immunology, 2019, 342, 103737.	3.0	15
1235	Liver induced transgene tolerance with AAV vectors. Cellular Immunology, 2019, 342, 103728.	3.0	45
1236	Complexity of immune responses to AAV transgene products – Example of factor IX. Cellular Immunology, 2019, 342, 103658.	3.0	37
1237	Advances in gene therapy for hemophilia: basis, current status, and future perspectives. International Journal of Hematology, 2020, 111, 31-41.	1.6	36
1238	No light without the dark: Perspectives and hindrances for translation of cardiac optogenetics. Progress in Biophysics and Molecular Biology, 2020, 154, 39-50.	2.9	13
1239	Distinct transduction of muscle tissue in mice after systemic delivery of AAVpo1 vectors. Gene Therapy, 2020, 27, 170-179.	4.5	8
1240	Fetal Gene Therapy. , 2020, , 560-571.e2.		0
1241	A Molecular Revolution in the Treatment of Hemophilia. Molecular Therapy, 2020, 28, 997-1015.	8.2	66
1242	Type I IFN Sensing by cDCs and CD4+ T Cell Help Are Both Requisite for Cross-Priming of AAV Capsid-Specific CD8+ T Cells. Molecular Therapy, 2020, 28, 758-770.	8.2	45
1243	Chiral pH-sensitive cyclobutane β-amino acid-based cationic amphiphiles: Possible candidates for use in gene therapy. Journal of Molecular Liquids, 2020, 297, 111856.	4.9	7
1244	AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Molecular Therapy, 2020, 28, 723-746.	8.2	363
1245	Recommendations for the Development of Cell-Based Anti-Viral Vector Neutralizing Antibody Assays. AAPS Journal, 2020, 22, 24.	4.4	31
1246	Immune Responses to Viral Gene Therapy Vectors. Molecular Therapy, 2020, 28, 709-722.	8.2	382
1247	The Effect of CpG Sequences on Capsid-Specific CD8+ T Cell Responses to AAV Vector Gene Transfer. Molecular Therapy, 2020, 28, 771-783.	8.2	44
1248	Multiyear Follow-up of AAV5-hFVIII-SQ Gene Therapy for Hemophilia A. New England Journal of Medicine, 2020, 382, 29-40.	27.0	316
1249	Prednisolone Does Not Regulate Factor VIII Expression in Mice Receiving AAV5-hFVIII-SQ: Valoctocogene Roxaparvovec. Molecular Therapy - Methods and Clinical Development, 2020, 17, 13-20.	4.1	7

#	Article	IF	CITATIONS
1250	Gene Therapy with Single-Subunit Yeast NADH-Ubiquinone Oxidoreductase (NDI1) Improves the Visual Function in Experimental Autoimmune Encephalomyelitis (EAE) Mice Model of Multiple Sclerosis (MS). Molecular Neurobiology, 2020, 57, 1952-1965.	4.0	11
1251	Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. , 2020, 207, 107453.		108
1252	An engineered serum albumin-binding AAV9 capsid achieves improved liver transduction after intravenous delivery in mice. Gene Therapy, 2020, 27, 237-244.	4.5	5
1253	Advancements in AAV-mediated Gene Therapy for Pompe Disease. Journal of Neuromuscular Diseases, 2020, 7, 15-31.	2.6	41
1254	Current progress and future direction in the treatment for hemophilia. International Journal of Hematology, 2020, 111, 16-19.	1.6	2
1255	A Fixed-Depth Microneedle Enhances Reproducibility and Safety for Corneal Gene Therapy. Cornea, 2020, 39, 362-369.	1.7	6
1256	Factor VIII: the protein, cloning its gene, synthetic factor and now – 35Âyears later – gene therapy; what happened in between?. British Journal of Haematology, 2020, 189, 400-407.	2.5	6
1257	Breaking the sound barrier: Towards next-generation AAV vectors for gene therapy of hearing disorders. Hearing Research, 2022, 413, 108092.	2.0	9
1258	Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes, 2020, 11, 1113.	2.4	37
1259	Engineering and InÂVitro Selection of a Novel AAV3B Variant with High Hepatocyte Tropism and Reduced Seroreactivity. Molecular Therapy - Methods and Clinical Development, 2020, 19, 347-361.	4.1	19
1260	Immune responses to retinal gene therapy using adeno-associated viral vectors – Implications for treatment success and safety. Progress in Retinal and Eye Research, 2021, 83, 100915.	15.5	105
1261	Characterization of hepatic macrophages and evaluation of inflammatory response in heme oxygenase-1 deficient mice exposed to scAAV9 vectors. PLoS ONE, 2020, 15, e0240691.	2.5	1
1262	Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Therapy, 2022, 29, 3-12.	4.5	53
1263	Development of a Clinical Candidate AAV3 Vector for Gene Therapy of Hemophilia B. Human Gene Therapy, 2020, 31, 1114-1123.	2.7	19
1264	Blockade of the costimulatory CD28â€87 family signal axis enables repeated application of AAV8 gene vectors. Journal of Thrombosis and Haemostasis, 2020, 18, 1075-1080.	3.8	9
1265	Towards Clinical Implementation of Adeno-Associated Virus (AAV) Vectors for Cancer Gene Therapy: Current Status and Future Perspectives. Cancers, 2020, 12, 1889.	3.7	36
1266	Timing of Intensive Immunosuppression Impacts Risk of Transgene Antibodies after AAV Gene Therapy in Nonhuman Primates. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1129-1138.	4.1	34
1267	Immunomodulatory Effects of Hydroxychloroquine and Chloroquine in Viral Infections and Their Potential Application in Retinal Gene Therapy. International Journal of Molecular Sciences, 2020, 21, 4972.	4.1	24

#	Article	IF	CITATIONS
1268	Comparative analysis of adeno-associated virus serotypes for gene transfer in organotypic heart slices. Journal of Translational Medicine, 2020, 18, 437.	4.4	15
1269	High Levels of Frataxin Overexpression Lead to Mitochondrial and Cardiac Toxicity in Mouse Models. Molecular Therapy - Methods and Clinical Development, 2020, 19, 120-138.	4.1	39
1270	Efficacy of adeno-associated virus gene therapy in a MNGIE murine model enhanced by chronic exposure to nucleosides. EBioMedicine, 2020, 62, 103133.	6.1	11
1271	MicroRNA-mediated inhibition of transgene expression reduces dorsal root ganglion toxicity by AAV vectors in primates. Science Translational Medicine, 2020, 12, .	12.4	96
1272	Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. Journal of Personalized Medicine, 2020, 10, 258.	2.5	17
1273	An InÂVitro Whole-Organ Liver Engineering for Testing of Genetic Therapies. IScience, 2020, 23, 101808.	4.1	8
1274	Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials, 2020, 258, 120282.	11.4	58
1275	Advances with RNAi-Based Therapy for Hepatitis B Virus Infection. Viruses, 2020, 12, 851.	3.3	49
1276	The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes, 2020, 11, 915.	2.4	3
1277	Optimization of the quality by design approach for gene therapy products: A case study for adeno-associated viral vectors. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 155, 88-102.	4.3	15
1278	Development of AAV Variants with Human Hepatocyte Tropism and Neutralizing Antibody Escape Capacity. Molecular Therapy - Methods and Clinical Development, 2020, 18, 259-268.	4.1	20
1279	Induction of ER Stress by an AAV5 BDD FVIII Construct Is Dependent on the Strength of the Hepatic-Specific Promoter. Molecular Therapy - Methods and Clinical Development, 2020, 18, 620-630.	4.1	23
1280	Novel Lung Tropic Adeno-Associated Virus Capsids for Therapeutic Gene Delivery. Human Gene Therapy, 2020, 31, 996-1009.	2.7	5
1281	Gene therapy for Alzheimer's disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Human Molecular Genetics, 2020, 29, 2920-2935.	2.9	55
1282	Hemophilia: A Review of Perioperative Management for Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 2022, 36, 246-257.	1.3	10
1283	Gene and Cell-Based Therapies for Parkinson's Disease: Where Are We?. Neurotherapeutics, 2020, 17, 1539-1562.	4.4	20
1284	Guest Editor: G. Castaman GENE THERAPY FOR HEMOPHILIA: FACTS AND QUANDARIES IN THE 21ST CENTURY. Mediterranean Journal of Hematology and Infectious Diseases, 2020, 12, e2020069.	1.3	18
1285	Efficient whole brain transduction by systemic infusion of minimally purified AAV-PHP.eB. Journal of Neuroscience Methods, 2020, 346, 108914.	2.5	40

#	Article	IF	CITATIONS
1286	Bound Protein- and Peptide-Based Strategies for Adeno-Associated Virus Vector-Mediated Gene Therapy: Where Do We Stand Now?. Human Gene Therapy, 2020, 31, 1146-1154.	2.7	5
1287	Adeno-Associated Virus Vector Mobilization, Risk Versus Reality. Human Gene Therapy, 2020, 31, 1054-1067.	2.7	7
1288	Gene Therapy: Contest between Adeno-Associated Virus and Host Cells and the Impact of UFMylation. Molecular Pharmaceutics, 2020, 17, 3649-3653.	4.6	1
1289	Restoring the natural tropism of AAV2 vectors for human liver. Science Translational Medicine, 2020, 12, .	12.4	41
1290	Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. Science China Life Sciences, 2022, 65, 718-730.	4.9	16
1291	Current Status and Challenges Associated with CNS-Targeted Gene Delivery across the BBB. Pharmaceutics, 2020, 12, 1216.	4.5	42
1292	Minimal Essential Human Factor VIII Alterations Enhance Secretion and Gene Therapy Efficiency. Molecular Therapy - Methods and Clinical Development, 2020, 19, 486-495.	4.1	11
1293	Gene therapy for haemophilia. The Cochrane Library, 2020, 2020, CD010822.	2.8	5
1294	Evading the AAV Immune Response in Mucopolysaccharidoses. International Journal of Molecular Sciences, 2020, 21, 3433.	4.1	4
1295	Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Archiv European Journal of Physiology, 2020, 472, 527-545.	2.8	12
1296	A Small-Molecule-Responsive Riboswitch Enables Conditional Induction of Viral Vector-Mediated Gene Expression in Mice. ACS Synthetic Biology, 2020, 9, 1292-1305.	3.8	33
1297	Low-frequency ultrasound-mediated cytokine transfection enhances T cell recruitment at local and distant tumor sites. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12674-12685.	7.1	61
1298	IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nature Medicine, 2020, 26, 1096-1101.	30.7	193
1299	B Cell Depletion Eliminates FVIII Memory B Cells and Enhances AAV8-coF8 Immune Tolerance Induction When Combined With Rapamycin. Frontiers in Immunology, 2020, 11, 1293.	4.8	16
1300	Subacute Liver Failure Following Gene Replacement Therapy for Spinal Muscular Atrophy Type 1. Journal of Pediatrics, 2020, 225, 252-258.e1.	1.8	79
1301	Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy. JAMA Neurology, 2020, 77, 1122.	9.0	226
1302	Recent developments with advancing gene therapy to treat chronic infection with hepatitis B virus. Current Opinion in HIV and AIDS, 2020, 15, 200-207.	3.8	6
1303	Factor IX alteration p.Arg338Gln (FIX Shanghai) potentiates FIX clotting activity and causes thrombosis. Haematologica, 2020, 106, 264-268.	3.5	12

#	Article	IF	CITATIONS
1304	Attenuation of Heparan Sulfate Proteoglycan Binding Enhances InÂVivo Transduction of Human Primary Hepatocytes with AAV2. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1139-1154.	4.1	29
1305	Viral vectors for gene delivery to the inner ear. Hearing Research, 2020, 394, 107927.	2.0	26
1306	FVIII activity following FVIII protein infusion or FVIII gene transfer predicts the bleeding risk in hemophilia A rats. Journal of Thrombosis and Haemostasis, 2020, 18, 1586-1597.	3.8	2
1307	Endothelial cells derived from patients' induced pluripotent stem cells for sustained factor VIII delivery and the treatment of hemophilia A. Stem Cells Translational Medicine, 2020, 9, 686-696.	3.3	19
1308	Detection of intraâ€articular gene therapy in horses using quantitative real time PCR in synovial fluid and plasma. Drug Testing and Analysis, 2020, 12, 743-751.	2.6	21
1309	Maintenance of Plasmid Expression in vivo Depends Primarily on the CpG Contents of the Vector and Transgene. Molecular Biology, 2020, 54, 427-435.	1.3	1
1310	Long-Term Follow-Up of the First in Human Intravascular Delivery of AAV for Gene Transfer: AAV2-hFIX16 for Severe Hemophilia B. Molecular Therapy, 2020, 28, 2073-2082.	8.2	123
1311	Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 532-557.	4.1	67
1312	AAV Vectors: Are They Safe?. Human Gene Therapy, 2020, 31, 697-699.	2.7	24
1313	Isolating Human Monoclonal Antibodies Against Adeno-Associated Virus From Donors With Pre-existing Immunity. Frontiers in Immunology, 2020, 11, 1135.	4.8	7
1314	Codon Modification and PAMPs in Clinical AAV Vectors: The Tortoise or the Hare?. Molecular Therapy, 2020, 28, 701-703.	8.2	48
1315	Tetramer-Based Enrichment of Preexisting Anti-AAV8 CD8+ T Cells in Human Donors Allows the Detection of a TEMRA Subpopulation. Frontiers in Immunology, 2019, 10, 3110.	4.8	15
1316	Membrane fusion FerA domains enhance adeno-associated virus vector transduction. Biomaterials, 2020, 241, 119906.	11.4	6
1317	Management of Neuroinflammatory Responses to AAV-Mediated Gene Therapies for Neurodegenerative Diseases. Brain Sciences, 2020, 10, 119.	2.3	74
1318	Mucopolysaccharidosis IVA: Diagnosis, Treatment, and Management. International Journal of Molecular Sciences, 2020, 21, 1517.	4.1	61
1319	Hemophilia therapy: the future has begun. Haematologica, 2020, 105, 545-553.	3.5	132
1320	Utility of microminipigs for evaluating liver-mediated gene expression in the presence of neutralizing antibody against vector capsid. Gene Therapy, 2020, 27, 427-434.	4.5	6
1321	Benchmarking of Scale-X Bioreactor System in Lentiviral and Adenoviral Vector Production. Human Gene Therapy, 2020, 31, 376-384.	2.7	17

#	Article	IF	CITATIONS
1322	Engineering adeno-associated virus vectors for gene therapy. Nature Reviews Genetics, 2020, 21, 255-272.	16.3	634
1323	Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nature Biomedical Engineering, 2020, 4, 97-110.	22.5	293
1324	Capsid-specific removal of circulating antibodies to adeno-associated virus vectors. Scientific Reports, 2020, 10, 864.	3.3	72
1326	Muscle-Directed Delivery of an AAV1 Vector Leads to Capsid-Specific T Cell Exhaustion in Nonhuman Primates and Humans. Molecular Therapy, 2020, 28, 747-757.	8.2	23
1327	Translational Potential of Immune Tolerance Induction by AAV Liver-Directed Factor VIII Gene Therapy for Hemophilia A. Frontiers in Immunology, 2020, 11, 618.	4.8	22
1328	Sustained Correction of a Murine Model of Phenylketonuria following a Single Intravenous Administration of AAVHSC15-PAH. Molecular Therapy - Methods and Clinical Development, 2020, 17, 568-580.	4.1	17
1329	Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Frontiers in Immunology, 2020, 11, 670.	4.8	198
1330	The Immune Response to the fVIII Gene Therapy in Preclinical Models. Frontiers in Immunology, 2020, 11, 494.	4.8	14
1331	Intrastromal Gene Therapy Prevents and Reverses Advanced Corneal Clouding in a Canine Model of Mucopolysaccharidosis I. Molecular Therapy, 2020, 28, 1455-1463.	8.2	26
1332	Gene Therapy Clinical Trials. , 2020, , 285-301.		3
1333	Uncertainty in an era of transformative therapy for haemophilia: Addressing the unknowns. Haemophilia, 2021, 27, 103-113.	2.1	28
1334	Delivering on the promise of gene therapy for haemophilia. Haemophilia, 2021, 27, 114-121.	2.1	21
1335	Hemophilia gene therapy—New country initiatives. Haemophilia, 2021, 27, 132-141.	2.1	15
1336	Quality Control Testing, Characterization and Critical Quality Attributes of Adenoâ€Associated Virus Vectors Used for Human Gene Therapy. Biotechnology Journal, 2021, 16, e2000022.	3.5	48
1337	The evolving landscape of gene therapy for congenital haemophilia: An unprecedented, problematic but promising opportunity for worldwide clinical studies. Blood Reviews, 2021, 46, 100737.	5.7	7
1338	Separating Empty and Full Recombinant Adenoâ€Associated Virus Particles Using Isocratic Anion Exchange Chromatography. Biotechnology Journal, 2021, 16, e2000015.	3.5	35
1339	Gene Transfer in Adeno-Associated Virus Seropositive Rhesus Macaques Following Rapamycin Treatment and Subcutaneous Delivery of AAV6, but Not Retargeted AAV6 Vectors. Human Gene Therapy, 2021, 32, 96-112.	2.7	11
1340	BAX 335 hemophilia B gene therapy clinical trial results: potential impact of CpG sequences on gene expression. Blood, 2021, 137, 763-774.	1.4	94

#	Article	IF	CITATIONS
1341	Journey to the Center of the Cell: Tracing the Path of AAV Transduction. Trends in Molecular Medicine, 2021, 27, 172-184.	6.7	42
1342	Discussing investigational AAV gene therapy with hemophilia patients: A guide. Blood Reviews, 2021, 47, 100759.	5.7	40
1343	The Challenge of Gene Therapy for Neurological Diseases: Strategies and Tools to Achieve Efficient Delivery to the Central Nervous System. Human Gene Therapy, 2021, 32, 349-374.	2.7	21
1344	New application of the CRISPR as9 system for siteâ€specific exogenous gene doping analysis. Drug Testing and Analysis, 2021, 13, 871-875.	2.6	8
1345	Early Phase Clinical Immunogenicity of Valoctocogene Roxaparvovec, an AAV5-Mediated Gene Therapy for Hemophilia A. Molecular Therapy, 2021, 29, 597-610.	8.2	42
1346	Adeno-associated virus (AAV) capsid engineering in liver-directed gene therapy. Expert Opinion on Biological Therapy, 2021, 21, 1-18.	3.1	12
1347	Liver-directed gene-based therapies for inborn errors of metabolism. Expert Opinion on Biological Therapy, 2021, 21, 229-240.	3.1	11
1348	Generation of Murine Induced Pluripotent Stem Cells through Transposon-Mediated Reprogramming. Methods in Molecular Biology, 2021, , 791-809.	0.9	2
1349	Advances in gene therapy for hemophilia. Japanese Journal of Thrombosis and Hemostasis, 2021, 32, 17-25.	0.1	0
1350	Targeting Age-Related Neurodegenerative Diseases byÂAAV-Mediated Gene Therapy. Advances in Experimental Medicine and Biology, 2021, 1286, 213-223.	1.6	1
1351	Gene Therapy and Gene Editing for Cancer Therapeutics. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 116-204.	0.1	0
1352	Overcoming innate immune barriers that impede AAV gene therapy vectors. Journal of Clinical Investigation, 2021, 131, .	8.2	72
1353	Validation of an IFN-gamma ELISpot assay to measure cellular immune responses against viral antigens in non-human primates. Gene Therapy, 2022, 29, 41-54.	4.5	18
1354	Administration of Ocular Gene Therapy. International Ophthalmology Clinics, 2021, 61, 131-149.	0.7	0
1355	Ocular Inflammation and Treatment Emergent Adverse Events in Retinal Gene Therapy. International Ophthalmology Clinics, 2021, 61, 151-177.	0.7	12
1356	Gene Therapy Vectors. , 2021, , 1-6.		0
1358	Gene Therapy for Inherited Bleeding Disorders. Seminars in Thrombosis and Hemostasis, 2021, 47, 161-173.	2.7	11
1359	Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Science Translational Medicine, 2021, 13, .	12.4	99

#	Article	IF	CITATIONS
1360	Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy, 2021, 6, 53.	17.1	514
1361	Evolving AAV-delivered therapeutics towards ultimate cures. Journal of Molecular Medicine, 2021, 99, 593-617.	3.9	41
1362	No CpGs for AAVs?. Blood, 2021, 137, 721-723.	1.4	4
1363	Cas9-directed immune tolerance in humans—a model to evaluate regulatory T cells in gene therapy?. Gene Therapy, 2021, 28, 549-559.	4.5	28
1364	Enhancement of liver-directed transgene expression at initial and repeat doses of AAV vectors admixed with ImmTOR nanoparticles. Science Advances, 2021, 7, .	10.3	28
1365	Considering the potential for gene-based therapy in prostate cancer. Nature Reviews Urology, 2021, 18, 170-184.	3.8	13
1366	Gene Therapy For Hemophilia B Using CB 2679d-GT: A Novel Factor IX Variant With Higher Potency Than Factor IX Padua. Blood, 2021, 137, 2902-2906.	1.4	8
1367	Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Advanced Drug Delivery Reviews, 2021, 170, 214-237.	13.7	35
1368	AAV8 locoregional delivery induces long-term expression of an immunogenic transgene in macaques despite persisting local inflammation. Molecular Therapy - Methods and Clinical Development, 2021, 20, 660-674.	4.1	5
1369	Efficacy of AAV8-hUCT1A1Âwith Rapamycin in neonatal, suckling, and juvenile rats to model treatment in pediatric CNs patients. Molecular Therapy - Methods and Clinical Development, 2021, 20, 287-297.	4.1	9
1370	Immunotherapy perspectives in the new era of B-cell editing. Blood Advances, 2021, 5, 1770-1779.	5.2	6
1371	Patient Preferences to Assess Value IN Gene Therapies: Protocol Development for the PAVING Study in Hemophilia. Frontiers in Medicine, 2021, 8, 595797.	2.6	8
1372	Overcoming Immunological Challenges Limiting Capsid-Mediated Gene Therapy With Machine Learning. Frontiers in Immunology, 2021, 12, 674021.	4.8	12
1373	Humoral immune responses to <scp>AAV</scp> gene therapy in the ocular compartment. Biological Reviews, 2021, 96, 1616-1644.	10.4	20
1374	T Cell-Mediated Immune Responses to AAV and AAV Vectors. Frontiers in Immunology, 2021, 12, 666666.	4.8	37
1375	Engineered adeno-associated virus 3 vector with reduced reactivity to serum antibodies. Scientific Reports, 2021, 11, 9322.	3.3	14
1376	CRISPR technologies for the treatment of Duchenne muscular dystrophy. Molecular Therapy, 2021, 29, 3179-3191.	8.2	31
1377	Immunomodulation in Administration of rAAV: Preclinical and Clinical Adjuvant Pharmacotherapies. Frontiers in Immunology, 2021, 12, 658038.	4.8	31

#	Article	IF	CITATIONS
1378	Design of a novel electrospun PVA platform for gene therapy applications using the CHAT peptide. International Journal of Pharmaceutics, 2021, 598, 120366.	5.2	9
1379	Cell-Mediated Immunity to NAGLU Transgene Following Intracerebral Gene Therapy in Children With Mucopolysaccharidosis Type IIIB Syndrome. Frontiers in Immunology, 2021, 12, 655478.	4.8	16
1380	A new "FIX―for hemophilia B gene therapy. Blood, 2021, 137, 2860-2861.	1.4	2
1381	Vectored Immunotherapeutics for Infectious Diseases: Can rAAVs Be The Game Changers for Fighting Transmissible Pathogens?. Frontiers in Immunology, 2021, 12, 673699.	4.8	16
1382	Clinical Experience With Gene Therapy in Older Patients With Spinal Muscular Atrophy. Pediatric Neurology, 2021, 118, 1-5.	2.1	21
1383	Challenges Posed by Immune Responses to AAV Vectors: Addressing Root Causes. Frontiers in Immunology, 2021, 12, 675897.	4.8	46
1384	Investigation of waterâ€insoluble hydrophobic polyethylenimines as <scp>RNAi</scp> vehicles in chronic myeloid leukemia therapy. Journal of Biomedical Materials Research - Part A, 2021, 109, 2306-2321.	4.0	7
1385	Effect of CpG Depletion of Vector Genome on CD8+ T Cell Responses in AAV Gene Therapy. Frontiers in Immunology, 2021, 12, 672449.	4.8	35
1386	Development of Gene Therapy Vectors: Remaining Challenges. Journal of Pharmaceutical Sciences, 2021, 110, 1915-1920.	3.3	13
1387	Viral Vector Delivery of DREADDs for CNS Therapy. Current Gene Therapy, 2021, 21, 191-206.	2.0	4
1388	Investigating Immune Responses to the scAAV9-HEXM Gene Therapy Treatment in Tay–Sachs Disease and Sandhoff Disease Mouse Models. International Journal of Molecular Sciences, 2021, 22, 6751.	4.1	7
1390	Endoscopic-mediated, biliary hydrodynamic injection mediating clinically relevant levels of gene delivery in pig liver. Gastrointestinal Endoscopy, 2021, 94, 1119-1130.e4.	1.0	4
1391	Emerging Immunogenicity and Genotoxicity Considerations of Adeno-Associated Virus Vector Gene Therapy for Hemophilia. Journal of Clinical Medicine, 2021, 10, 2471.	2.4	47
1392	Haemophilia. Nature Reviews Disease Primers, 2021, 7, 45.	30.5	103
1394	Immune function in X-linked retinoschisis subjects in an AAV8-RS1 phase I/IIa gene therapy trial. Molecular Therapy, 2021, 29, 2030-2040.	8.2	17
1395	Liver-Specific Nonviral Gene Delivery of Fibroblast Growth Factor 21 Protein Expression in Mice Regulates Body Mass and White/Brown Fat Respiration. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 157-165.	2.5	3
1396	Mucopolysaccharidoses type I gene therapy. Journal of Inherited Metabolic Disease, 2021, 44, 1088-1098.	3.6	6
1397	Boosting transfection efficiency: A systematic study using layer-by-layer based gene delivery platform. Materials Science and Engineering C, 2021, 126, 112161.	7.3	7

#	Article	IF	CITATIONS
1398	Host Immune Responses after Suprachoroidal Delivery of AAV8 in Nonhuman Primate Eyes. Human Gene Therapy, 2021, 32, 682-693.	2.7	27
1400	Gene therapy for hemophilia: a review on clinical benefit, limitations, and remaining issues. Blood, 2021, 138, 923-931.	1.4	67
1401	Manufacturing Challenges and Rational Formulation Development for AAV Viral Vectors. Journal of Pharmaceutical Sciences, 2021, 110, 2609-2624.	3.3	103
1402	Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Molecular Genetics and Metabolism, 2021, 134, 117-131.	1.1	13
1403	Paving the way towards precise and safe CRISPR genome editing. Biotechnology Advances, 2021, 49, 107737.	11.7	19
1404	Correction of Familial LCAT Deficiency by AAV-hLCAT Prevents Renal Injury and Atherosclerosis in Hamsters—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2141-2148.	2.4	4
1405	Therapeutics Development for Alagille Syndrome. Frontiers in Pharmacology, 2021, 12, 704586.	3.5	7
1406	Adeno-Associated Vector-Delivered CRISPR/SaCas9 System Reduces Feline Leukemia Virus Production In Vitro. Viruses, 2021, 13, 1636.	3.3	5
1407	Novel vectors and approaches for gene therapy in liver diseases. JHEP Reports, 2021, 3, 100300.	4.9	57
1408	Current and Next Steps Toward Prediction of Human Dose for Gene Therapy Using Translational Doseâ€Response Studies. Clinical Pharmacology and Therapeutics, 2021, 110, 1176-1179.	4.7	15
1409	Detailed Protocol for the Novel and Scalable Viral Vector Upstream Process for AAV Gene Therapy Manufacturing. Human Gene Therapy, 2021, 32, 850-861.	2.7	16
1410	The AAV9 Variant Capsid AAV-F Mediates Widespread Transgene Expression in Nonhuman Primate Spinal Cord After Intrathecal Administration. Human Gene Therapy, 2022, 33, 61-75.	2.7	16
1411	Efficient DNA Condensation Induced by Chiral β-Amino Acid-Based Cationic Surfactants. ACS Applied Bio Materials, 2021, 4, 7034-7043.	4.6	8
1412	Clinical Trial and Postmarketing Safety of Onasemnogene Abeparvovec Therapy. Drug Safety, 2021, 44, 1109-1119.	3.2	62
1413	Gene Therapy for Neuronopathic Mucopolysaccharidoses: State of the Art. International Journal of Molecular Sciences, 2021, 22, 9200.	4.1	9
1414	Identification of the insertion site of transgenic DNA based on cyclization of the target gene with the flanking sequence and nested inverse PCR. Talanta Open, 2021, 3, 100033.	3.7	3
1415	The intersection of vector biology, gene therapy, and hemophilia. Research and Practice in Thrombosis and Haemostasis, 2021, 5, e12586.	2.3	13
1416	A quantitative PCR screening method for adenoâ€associated viral vector 2â€mediated gene doping. Drug Testing and Analysis, 2022, 14, 963-972.	2.6	10

#	Article	IF	CITATIONS
1417	Monitoring cell-mediated immune responses in AAV gene therapy clinical trials using a validated IFN-Î ³ ELISpot method. Molecular Therapy - Methods and Clinical Development, 2021, 22, 183-195.	4.1	14
1418	Developing a second-generation clinical candidate AAV vector for gene therapy of familial hypercholesterolemia. Molecular Therapy - Methods and Clinical Development, 2021, 22, 1-10.	4.1	14
1419	Advances in the management of haemophilia: emerging treatments and their mechanisms. Journal of Biomedical Science, 2021, 28, 64.	7.0	18
1420	Repeated Systemic Dosing of Adeno-Associated Virus Vectors in Immunocompetent Mice After Blockade of T Cell Costimulatory Pathways. Human Gene Therapy, 2022, 33, 290-300.	2.7	6
1421	Reduced Immunogenicity of Intraparenchymal Delivery of Adeno-Associated Virus Serotype 2 Vectors: Brief Overview. Current Gene Therapy, 2021, 21, .	2.0	2
1422	An artificial virus-like triblock protein shows low in vivo humoral immune response and high stability. Materials Science and Engineering C, 2021, 129, 112348.	7.3	1
1423	Coagulation factor IX gene transfer to non-human primates using engineered AAV3 capsid and hepatic optimized expression cassette. Molecular Therapy - Methods and Clinical Development, 2021, 23, 98-107.	4.1	7
1424	Patents, ethics, biosafety and regulation using CRISPR technology. Progress in Molecular Biology and Translational Science, 2021, 181, 345-365.	1.7	4
1425	Gene Therapy for Sjögren's Syndrome. , 2021, , 217-235.		0
1426	Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery. Scientific Reports, 2021, 11, 1934.	3.3	12
1428	Systemic Gene Delivery for Muscle Gene Therapy. , 2010, , 163-179.		1
1429	Hepatic Gene Therapy. Molecular Pathology Library, 2011, , 343-370.	0.1	1
1430	Electroporation Formulation for Cell Therapy. Methods in Molecular Biology, 2014, 1121, 55-60.	0.9	9
1431	Large-Scale Production of Recombinant Adeno-Associated Viral Vectors. Methods in Molecular Biology, 2008, 433, 79-96.	0.9	13
1432	Local Gene Delivery and Methods to Control Immune Responses in Muscles of Normal and Dystrophic Dogs. Methods in Molecular Biology, 2011, 709, 265-275.	0.9	6
1433	Clinical Trials of GMP Products in the Gene Therapy Field. Methods in Molecular Biology, 2011, 737, 425-442.	0.9	4
1434	Analyzing Cellular Immunity to AAV in a Canine Model Using ELISPOT Assay. Methods in Molecular Biology, 2012, 792, 65-74.	0.9	3
1435	Biodistribution and Shedding of AAV Vectors. Methods in Molecular Biology, 2012, 807, 339-359.	0.9	16

#	Article	IF	CITATIONS
1436	Portal Vein Delivery of Viral Vectors for Gene Therapy for Hemophilia. Methods in Molecular Biology, 2014, 1114, 413-426.	0.9	10
1437	Viral Gene Transfer of Enzymes. , 2016, , 167-185.		1
1438	AAV Vector-Based Gene Therapy, Progress and Current Challenges. , 2017, , 77-112.		2
1439	Gene Doping. Handbook of Experimental Pharmacology, 2009, , 485-512.	1.8	2
1440	Clinical Applications of Gene Therapy. , 2010, , 139-281.		2
1441	Chitosan-Based Systems for Gene Delivery. , 2019, , 229-267.		6
1442	Gene therapy and gene editing. , 2020, , 463-477.		2
1443	The Treatment of Genetic Disease. , 2007, , 393-418.		1
1444	Preclinical models to assess the immunogenicity of AAV vectors. Cellular Immunology, 2019, 342, 103722.	3.0	14
1445	Hydrodynamic limb vein injection of AAV8 canine myostatin propeptide gene in normal dogs enhances muscle growth. Human Gene Therapy, 2008, .	2.7	5
1446	Adeno-associated virus serotype 2 induces cell-mediated immune responses directed against multiple epitopes of the capsid protein VP1. Journal of General Virology, 2009, 90, 2622-2633.	2.9	34
1453	Haemophilia, the journey in search of a cure. 1960–2020. British Journal of Haematology, 2020, 191, 573-578.	2.5	6
1454	Dual muscle-liver transduction imposes immune tolerance for muscle transgene engraftment despite preexisting immunity. JCI Insight, 2019, 4, .	5.0	17
1455	Hyperactivity of factor IX Padua (R338L) depends on factor VIIIa cofactor activity. JCI Insight, 2019, 4, .	5.0	24
1456	CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome). JCI Insight, 2016, 1, e86696.	5.0	56
1457	Exposure to wild-type AAV drives distinct capsid immunity profiles in humans. Journal of Clinical Investigation, 2018, 128, 5267-5279.	8.2	76
1458	Gene therapy for severe combined immunodeficiency: are we there yet?. Journal of Clinical Investigation, 2007, 117, 1456-1465.	8.2	196
1459	Long-term expression of murine activated factor VII is safe, but elevated levels cause premature mortality. Journal of Clinical Investigation, 2008, 118, 1825-1834.	8.2	35

#	Article	IF	CITATIONS
1460	Therapeutic application of RNAi: is mRNA targeting finally ready for prime time?. Journal of Clinical Investigation, 2007, 117, 3633-3641.	8.2	132
1461	Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. Journal of Clinical Investigation, 2009, 119, 1688-1695.	8.2	161
1462	The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. Journal of Clinical Investigation, 2009, 119, 2388-2398.	8.2	257
1463	LRH-1–dependent glucose sensing determines intermediary metabolism in liver. Journal of Clinical Investigation, 2012, 122, 2817-2826.	8.2	94
1464	Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration. Journal of Clinical Investigation, 2015, 125, 105-116.	8.2	143
1465	Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy. Journal of Clinical Investigation, 2013, 123, 3254-3271.	8.2	176
1466	Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. Journal of Clinical Investigation, 2015, 125, 870-880.	8.2	287
1467	The gene therapy journey for hemophilia: are we there yet?. Hematology American Society of Hematology Education Program, 2012, 2012, 375-81.	2.5	20
1468	The gene therapy journey for hemophilia: are we there yet?. Hematology American Society of Hematology Education Program, 2012, 2012, 375-381.	2.5	14
1469	Efficient liver gene transfer with foamy virus vectors. Medical Science Monitor Basic Research, 2013, 19, 214-220.	2.6	5
1470	No Immune Responses by the Expression of the Yeast Ndil Protein in Rats. PLoS ONE, 2011, 6, e25910.	2.5	16
1471	Combined Cocaine Hydrolase Gene Transfer and Anti-Cocaine Vaccine Synergistically Block Cocaine-Induced Locomotion. PLoS ONE, 2012, 7, e43536.	2.5	28
1472	Optimization of the Capsid of Recombinant Adeno-Associated Virus 2 (AAV2) Vectors: The Final Threshold?. PLoS ONE, 2013, 8, e59142.	2.5	85
1473	An Experimental and Computational Evolution-Based Method to Study a Mode of Co-evolution of Overlapping Open Reading Frames in the AAV2 Viral Genome. PLoS ONE, 2013, 8, e66211.	2.5	13
1474	IL12-Mediated Liver Inflammation Reduces the Formation of AAV Transcriptionally Active Forms but Has No Effect over Preexisting AAV Transgene Expression. PLoS ONE, 2013, 8, e67748.	2.5	18
1475	A Novel Cationic Microbubble Coated with Stearic Acid-Modified Polyethylenimine to Enhance DNA Loading and Gene Delivery by Ultrasound. PLoS ONE, 2013, 8, e76544.	2.5	29
1476	Quantitative Analysis of α-L-Iduronidase Expression in Immunocompetent Mice Treated with the Sleeping Beauty Transposon System. PLoS ONE, 2013, 8, e78161.	2.5	18
1477	Proteomics Analysis of Co-Purifying Cellular Proteins Associated with rAAV Vectors. PLoS ONE, 2014, 9, e86453.	2.5	22

		CITATION REPORT		
#	Article		IF	CITATIONS
1478	Recombinant AAV Vectors for Enhanced Expression of Authentic IgG. PLoS ONE, 2016	, 11, e0158009.	2.5	16
1479	The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses. 1 2015, 11, e1005281.	PLoS Pathogens,	4.7	25
1480	Intrapleural Gene Therapy for Alpha-1 Antitrypsin Deficiency-Related Lung Disease. Chr Obstructive Pulmonary Diseases (Miami, Fla), 2018, 5, 244-257.	onic	0.7	14
1481	The practical application of gene vectors in cancer therapy. Integrative Cancer Science Therapeutics, 2018, 5, .	and	0.1	2
1482	Death switch for gene therapy: application to erythropoietin transgene expression. Bra of Medical and Biological Research, 2010, 43, 634-644.	ızilian Journal	1.5	5
1483	Advances in Gene Delivery Systems. Pharmaceutical Medicine, 2011, 25, 293-306.		1.9	82
1484	Generation of Targeted Adeno-Associated Virus (AAV) Vectors for Human Gene Therap Pharmaceutical Design, 2015, 21, 3248-3256.	y. Current	1.9	16
1485	Developing Immunologically Inert Adeno-Associated Virus (AAV) Vectors for Gene Ther Possibilities and Limitations. Current Pharmaceutical Biotechnology, 2014, 14, 1072-1		1.6	26
1486	Hepatic Gene Transfer as a Means of Tolerance Induction to Transgene Products. Curre Therapy, 2009, 9, 104-114.	ent Gene	2.0	108
1487	AAVs Anatomy: Roadmap for Optimizing Vectors for Translational Success. Current Ge 10, 319-340.	ne Therapy, 2010,	2.0	85
1488	Efficacy and Safety of Sleeping Beauty Transposon-Mediated Gene Transfer in Preclinic Studies. Current Gene Therapy, 2011, 11, 341-349.	al Animal	2.0	55
1489	Basic Biology of Adeno-Associated Virus (AAV) Vectors Used in Gene Therapy. Current 2014, 14, 86-100.	Gene Therapy,	2.0	156
1490	The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vecto Transfer. Current Gene Therapy, 2015, 15, 381-394.	r-Mediated Gene	2.0	43
1491	Gene Therapy for Hemophilia A: Where We Stand. Current Gene Therapy, 2020, 20, 14	2-151.	2.0	7
1492	Adeno-Associated Viral Vector Mediated Expression of Broadly- Neutralizing Antibodies HIV-Hitting a Fast-Moving Target. Current HIV Research, 2020, 18, 114-131.	s Against	0.5	6
1493	Interception of Cocaine by Enzyme or Antibody Delivered with Viral Gene Transfer: A N for Preventing Relapse in Recovering Drug Users. CNS and Neurological Disorders - Dru 10, 880-891.		1.4	12
1494	The Development of Drug Therapies for Frontotemporal Dementia Caused by Program 2015, , 231-291.	lin Mutations. ,		2
1495	Determination of Anti-Adeno-Associated Viral Vector Neutralizing Antibodies in Patient Failure in the Cardiovascular Foundation of Colombia (ANVIAS): Study Protocol. JMIR R Protocols, 2016, 5, e102.	ts With Heart esearch	1.0	6

#	Article	IF	CITATIONS
1496	Gene therapy using AAV vectors. Drug Delivery System, 2007, 22, 643-650.	0.0	4
1497	Coagulation Factor IX for Hemophilia B Therapy. Acta Naturae, 2012, 4, 62-73.	1.7	28
1498	Advancements in adeno-associated viral gene therapy approaches: exploring a new horizon. F1000 Medicine Reports, 2011, 3, 17.	2.9	27
1499	Neurotrophin-3-mediated locomotor recovery: a novel therapeutic strategy targeting lumbar neural circuitry after spinal cord injury. Neural Regeneration Research, 2020, 15, 2241.	3.0	5
1500	Development of Novel Recombinant Aav Vectors and Strategies for the Potential Gene Therapy of Hemophilia. Journal of Genetic Syndromes & Gene Therapy, 2012, 01, .	0.2	10
1501	Liver-Directed Adeno-Associated Viral Gene Therapy for Hemophilia. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, 1-9.	0.2	23
1502	Optimal Immunofluorescent Staining for Human Factor IX and Infiltrating T Cells following Gene Therapy for Hemophilia B. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, .	0.2	10
1503	Helper-Dependent Adenoviral Vectors. Journal of Genetic Syndromes & Gene Therapy, 2011, 2, .	0.2	20
1504	A new era of gene editing for the treatment of human diseases. Swiss Medical Weekly, 2019, 149, w20021.	1.6	16
1505	Recent Advances in the Development of Bio-Reducible Polymers for Efficient Cancer Gene Delivery Systems. , 2019, 2, 6-13.		6
1506	Structure of the gene therapy vector, adeno-associated virus with its cell receptor, AAVR. ELife, 2019, 8, .	6.0	60
1507	Dexamethasone Transiently Enhances Transgene Expression in the Liver When Administered at Late-Phase Post Long-Term Adeno-Associated Virus Transduction. Human Gene Therapy, 2022, 33, 119-130.	2.7	5
1508	Capsid-Engineering for Central Nervous System-Directed Gene Therapy with Adeno-Associated Virus Vectors. Human Gene Therapy, 2021, 32, 1096-1119.	2.7	5
1509	Scientific and Regulatory Policy Committee Points to Consider: Nonclinical Research and Development of In Vivo Gene Therapy Products, Emphasizing Adeno-Associated Virus Vectors. Toxicologic Pathology, 2022, 50, 118-146.	1.8	12
1510	Macrophage Depletion via Clodronate Pretreatment Reduces Transgene Expression from AAV Vectors In Vivo. Viruses, 2021, 13, 2002.	3.3	4
1511	Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional Changes via Single-Cell RNA Sequencing. Frontiers in Immunology, 2021, 12, 730825.	4.8	31
1512	Inherent hepatocytic heterogeneity determines expression and retention of edited F9 alleles post-AAV/CRISPR infusion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2110887118.	7.1	1
1513	Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. Molecular Therapy - Methods and Clinical Development, 2021, 23, 370-389.	4.1	16

#	Article	IF	CITATIONS
1514	Long-Term Increase in mVEGF164 in Mouse Hindlimb Muscle Mediated by Phage oC31 Integrase After Nonviral DNA Delivery. Human Gene Therapy, 2006, .	2.7	0
1515	Brief Report: Synthetic Intron Improves Transduction Efficiency ofTrans-Splicing Adeno-associated Viral Vectors. Human Gene Therapy, 2006, 17, 060928063342004.	2.7	18
1516	Immunity to Adeno-Associated Virus-Mediated Gene Transfer in a Random-Bred Canine Model of Duchenne Muscular Dystrophy. Human Gene Therapy, 2006, .	2.7	77
1517	Gene therapy of muscular dystrophy: systemic gene delivery to skeletal muscles. Drug Delivery System, 2007, 22, 140-147.	0.0	0
1519	Virus-mediated Gene Delivery to Neuronal Progenitors. Advances in Experimental Medicine and Biology, 2008, 613, 147-153.	1.6	0
1520	Tratamiento de la enfermedad genética. , 2008, , 389-414.		0
1522	Factor IX Gene Therapy for Hemophilia. Methods in Molecular Biology, 2008, 423, 375-382.	0.9	5
1523	Gentherapie. , 2008, , 379-394.		0
1524	Gene transfer techniques using AAV vectors. Japanese Journal of Thrombosis and Hemostasis, 2008, 19, 265-270.	0.1	0
1525	Genetic engineering in sport. BMJ, The, 0, , 0807282.	6.0	0
1526	DNA: promise and peril. Choice Reviews, 2008, 45, 45-6207-45-6207.	0.2	3
1527	Gene Transfer for Parkinson's Disease. , 2009, , 1719-1729.		0
1529	Gene Delivery to Cardiovascular Tissue. , 2009, , 25-54.		0
1532	Modulating Immune Responses in Muscle Gene Therapy. , 2010, , 181-204.		0
1533	Development of AAV vectors for the therapy of autoimmune and inflammatory diseases. , 2010, , 161-180.		0
1534	Gene Therapy for Nonneoplastic Hematologic and Histiocytic Disorders. Molecular Pathology Library, 2010, , 597-608.	0.1	0
1535	β-Adrenergic Receptor Signaling Regulates rAAV Transduction through Calcineurin in Heart Muscle Cells. Journal of Genetic Syndromes & Gene Therapy, 2010, 01, .	0.2	2
1536	Gene therapy for arthritis. , 2010, , 1-18.		0

#	Article	IF	CITATIONS
1539	CUESTIONAMIENTOS ÉTICOS RELACIONADOS CON LA TERAPIA GÉNICA PARA EL TRATAMIENTO DE ENFERMEDADES HEREDITARIAS. Revista Luna Azul, 2011, , .	0.0	0
1542	Doping genético e possÃveis metodologias de detecção. Revista Brasileira De Ciencias Do Esporte, 2011, 33, 1055-1069.	0.4	0
1543	Advancements in Non Viral Gene Therapy for Hemophilia. Journal of Genetic Syndromes & Gene Therapy, 2012, 01, .	0.2	1
1544	Advances in Overcoming Immune Responses following Hemophilia Gene Therapy. Journal of Genetic Syndromes & Gene Therapy, 2012, 01, .	0.2	4
1545	Long Term Expression and Safety of Administration of AAVrh.10hCLN2 to the Brain of Rats and Non-human Primates for the Treatment of Late Infantile Neuronal Lipofuscinosis. Human Gene Therapy Methods, 0, , 121017063203000.	2.1	0
1546	Induction of Immunological Tolerance to Transgene Products. , 2013, , 297-311.		0
1547	Recombinant AAV Vectors as Tools to Study and Treat Human Disorders. , 2013, 01, .		0
1549	Gene Therapists Determined to Stop the Bleeding!. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, .	0.2	0
1550	Utility of adeno-associated viruses to target members of the TGF- <i>β</i> superfamily in prostate cancer therapy. Advances in Bioscience and Biotechnology (Print), 2013, 04, 8-14.	0.7	0
1551	Muscle Gene Therapy for Hemophilia. Journal of Genetic Syndromes & Gene Therapy, 2013, S1, .	0.2	1
1552	Adenoviral Vectors for Hemophilia Gene Therapy. Journal of Genetic Syndromes & Gene Therapy, 2013, 01, .	0.2	0
1553	Phenotypic Correction of Murine Hemophilia A Using Cell-Based Therapy. Stem Cells and Cancer Stem Cells, 2014, , 131-141.	0.1	0
1555	Development of cell-based therapy for hemophilic arthropathy. Japanese Journal of Thrombosis and Hemostasis, 2014, 25, 516-522.	0.1	0
1556	Feasibility and Safety of Systemic rAAV9-hNAGLU Delivery for Treating MPS IIIB: Toxicology, Bio-distribution and Immunological Assessments in Primates. Human Gene Therapy Clinical Development, 0, , 150127063140004.	3.1	1
1557	Adeno-associated virus vectors for human gene therapy. World Journal of Medical Genetics, 2015, 5, 28.	1.0	2
1558	Somatic Gene Therapy Using Viral Vectors: Theoretical and Clinical Implications in Relation to Treatment of Genetic Conditions in Humans. , 2015, , 35-67.		0
1559	Gene Therapy for Blood Disorders. , 2015, 12, .		0
1561	AAV Vector-Mediated Liver Gene Therapy and Its Implementation for Hemophilia. , 2016, , 59-73.		2

ARTICLE IF CITATIONS Importance of Routine Histopathology of Gallbladder after Elective Cholecystectomy for Gallstones. 1562 0.1 0 Annals of King Edward Medical University, 2016, 22, . Helper-Dependent Adenoviral Vectors for Gene Therapy of Inherited Diseases., 2017, , 61-75. è;€å•ç—...ã®éºä¼åæ2»ç™,. Japanese Journal of Thrombosis and Hemostasis, 2018, 29, 760-764. 0 1564 0.1 Adeno-Associated Viruses (AAV) and Host Immunity $\hat{a} \in$ A Race Between the Hare and the Hedgehog. 1567 4.8 Frontiers in Immunology, 2021, 12, 753467. Modulating Immune Responses to AAV by expanded polyclonal T-regulatory cells and capsid specific 1568 chimeric antigen receptor T-regulatory cells. Molecular Therapy - Methods and Clinical Development, 4.1 16 2021, 23, 490-506. The Liver as a Lymphoid Organ., 2020, , 17-33. Design and Implementation of "Winning Luding Bridge―Immersion FPS Game Based on Unity3D 1570 0 Technology. , 2021, , . Gene therapy and editing in the treatment of hereditary blood disorders: Medical and ethical aspects. 1571 Clinical Ethics, 0, , 147775092110572. Neue Behandlungskonzepte durch Gentherapie., 2007, , 2068-2079. 0 1572 The Jeremiah Metzger Lecture: gene therapy for inherited disorders: from Christmas disease to Leber's 1574 amaurosis. Transactions of the American Clinical and Climatological Association, 2009, 120, 331-59. Hemophilia: an amazing 35-year journey from the depths of HIV to the threshold of cure. Transactions 1576 0.5 17 of the American Clinical and Climatological Association, 2010, 121, 61-73; discussion 74-5. Adeno-associated virus vector integration. Current Opinion in Molecular Therapeutics, 2009, 11, 442-7. 1577 2.8 Advances in Overcoming Immune Responses following Hemophilia Gene Therapy. Journal of Genetic 1578 0.2 10 Syndromes & Gene Therapy, 2011, S1, . Coagulation Factor IX for Hemophilia B Therapy. Acta Naturae, 2012, 4, 62-73. 1579 1.7 16 Evading the immune response upon in vivo gene therapy with viral vectors. Current Opinion in 1581 2.8 47 Molecular Therapeutics, 2009, 11, 493-503. Two decades of clinical gene therapy-success is finally mounting. Discovery Medicine, 2010, 9, 105-11. 58 Gene and cell therapies for the failing heart to prevent sudden arrhythmic death. Minerva 1583 1.2 0 Cardioangiologica, 2012, 60, 363-73. Adenoviral Vectors for Hemophilia Gene Therapy. Journal of Genetic Syndromes & Gene Therapy, 2013, 2, 1589 0.2 017.

ARTICLE IF CITATIONS # Lessons Learned from Animal Models of Inherited Bleeding Disorders. Hematology Education, 2014, 8, 1591 0.0 1 39-46. Recent Advances in the Development of Bio-Reducible Polymers for Efficient Cancer Gene Delivery 1594 Systems., 2019, 2, 6-13. Integrative approaches to enhance adeno-associated viral gene delivery. Journal of Controlled 1595 9.9 7 Release, 2022, 341, 44-50. Short-Term Steroid Treatment of Rhesus Macaque Increases Transduction. Human Gene Therapy, 2022, 1596 33, 131-147. Multiyear Factor VIII Expression after AAV Gene Transfer for Hemophilia A. New England Journal of 1597 27.0 127 Medićine, 2021, 385, 1961-1973. Preclinical assessment of an optimized AAV-FVIII vector in mice and non-human primates for the 1598 4.1 treatment of hemophilia A. Molecular Therapy - Methods and Clinical Development, 2022, 24, 20-29. Challenges Posed by Gene Manipulations and Sport Performance., 2022, , 47-59. 1599 0 Selective Microvascular Tissue Transfection Using Minicircle DNA for Systemic Delivery of Human Coagulation Factor IX in a Rat Model Using a Therapeutic Flap. Plastic and Reconstructive Surgery, 1.4 2021, Publish Ahead of Print, . Eliminating Panglossian thinking in development of AAV therapeutics. Molecular Therapy, 2021, 29, 1601 8.2 12 3325-3327. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of Controlled Release, 2022, 342, 345-361 Gene Therapy Vectors., 2021, , 689-694. 1603 0 MiR-24-3p Attenuates Doxorubicin-induced Cardiotoxicity via the Nrf2 Pathway in Mice. Current 1604 1.8 Medical Science, 2022, 42, 48-55. Differential TÂcell immune responses to deamidated adeno-associated virus vector. Molecular Therapy -1605 4.1 14 Methods and Clinical Development, 2022, 24, 255-267. Towards translational optogenetics. Nature Biomedical Engineering, 2023, 7, 349-369. 22.5 54 Non-Viral Delivery of RNA Gene Therapy to the Central Nervous System. Pharmaceutics, 2022, 14, 165. 1607 4.5 6 Chimeric Mice Engrafted With Canine Hepatocytes Exhibits Similar AAV Transduction Efficiency to Hemophilia B Dog. Frontiers in Pharmacology, 2022, 13, 815317. Direct Cellular Delivery of Exogenous Genetic Material and Protein via Colloidal Nano-Assemblies 1609 8.0 10 with Biopolymer. ACS Applied Materials & amp; Interfaces, 2022, 14, 3199-3206. CAR-T Regulatory (CAR-Treg) Cells: Engineering and Applications. Biomedicines, 2022, 10, 287. 3.2

#	Article	IF	CITATIONS
1611	Viral Infections and Male Infertility: A Comprehensive Review of the Role of Oxidative Stress. Frontiers in Reproductive Health, 2022, 4, .	1.9	13
1612	Higher Seroprevalence of Anti-Adeno-Associated Viral Vector Neutralizing Antibodies Among Racial Minorities in the United States. Human Gene Therapy, 2022, 33, 442-450.	2.7	11
1613	Confirmatory detection of neutralizing antibodies to AAV gene therapy using a cell-based transduction inhibition assay. Molecular Therapy - Methods and Clinical Development, 2022, 24, 222-229.	4.1	4
1614	AAV2-VEGF-B gene therapy failed to induce angiogenesis in ischemic porcine myocardium due to inflammatory responses. Gene Therapy, 2022, 29, 643-652.	4.5	7
1616	Antiviral Targeting of Varicella Zoster Virus Replication and Neuronal Reactivation Using CRISPR/Cas9 Cleavage of the Duplicated Open Reading Frames 62/71. Viruses, 2022, 14, 378.	3.3	2
1617	Epigenetic Silencing of Recombinant Adeno-associated Virus Genomes by NP220 and the HUSH Complex. Journal of Virology, 2022, 96, JVI0203921.	3.4	20
1618	Rational Use of Immunosuppressive Corticosteroids in Liver-Directed Adeno-Associated Virus Gene Therapy Studies. Human Gene Therapy, 2022, 33, 116-118.	2.7	1
1619	Valoctocogene Roxaparvovec Gene Therapy for Hemophilia A. New England Journal of Medicine, 2022, 386, 1013-1025.	27.0	157
1621	The Effect of Rapamycin and Ibrutinib on Antibody Responses to Adeno-Associated Virus Vector-Mediated Gene Transfer. Human Gene Therapy, 2022, 33, 614-624.	2.7	16
1622	Challenges to Gene Editing Approaches in the Retina. Klinische Monatsblatter Fur Augenheilkunde, 2022, 239, 275-283.	0.5	1
1623	Immunological barriers to haematopoietic stem cell gene therapy. Nature Reviews Immunology, 2022, 22, 719-733.	22.7	22
1624	Global Seroprevalence of Pre-existing Immunity Against AAV5 and Other AAV Serotypes in People with Hemophilia A. Human Gene Therapy, 2022, 33, 432-441.	2.7	37
1625	Electroporation-Mediated Delivery of Cas9 Ribonucleoproteins Results in High Levels of Gene Editing in Primary Hepatocytes. CRISPR Journal, 2022, 5, 397-409.	2.9	6
1626	Durability of transgene expression after rAAV gene therapy. Molecular Therapy, 2022, 30, 1364-1380.	8.2	20
1627	Overcoming the Challenges Imposed by Humoral Immunity to AAV Vectors to Achieve Safe and Efficient Gene Transfer in Seropositive Patients. Frontiers in Immunology, 2022, 13, 857276.	4.8	20
1628	Testing preexisting antibodies prior to AAV gene transfer therapy: rationale, lessons and future considerations. Molecular Therapy - Methods and Clinical Development, 2022, 25, 74-83.	4.1	27
1629	Development of an mRNA replacement therapy for phenylketonuria. Molecular Therapy - Nucleic Acids, 2022, 28, 87-98.	5.1	22
1630	Hemophilia gene therapy: ushering in a new treatment paradigm?. Hematology American Society of Hematology Education Program, 2021, 2021, 226-233.	2.5	12

#	Article	IF	CITATIONS
1631	Impact of novel hemophilia therapies around the world. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12695.	2.3	19
1632	MSD-based assays facilitate a rapid and quantitative serostatus profiling for the presence of anti-AAV antibodies. Molecular Therapy - Methods and Clinical Development, 2022, 25, 360-369.	4.1	4
1633	Defenestrated endothelium delays liver-directed gene transfer in hemophilia A mice. Blood Advances, 2022, 6, 3729-3734.	5.2	2
1634	Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nature Medicine, 2022, 28, 1022-1030.	30.7	34
1646	Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. International Journal of Molecular Sciences, 2022, 23, 4824.	4.1	3
1647	20 Years of Legislation - How Australia Has Responded to the Challenge of Regulating Genetically Modified Organisms in the Clinic. Frontiers in Medicine, 2022, 9, .	2.6	2
1648	Harnessing the liver to induce antigen-specific immune tolerance. Seminars in Immunopathology, 2022, 44, 475-484.	6.1	8
1649	Haemophilia gene therapy—Update on new country initiatives. Haemophilia, 2022, 28, 61-67.	2.1	8
1650	Gene therapy – are we ready now?. Haemophilia, 2022, 28, 35-43.	2.1	5
1651	Cryo-electron Microscopy of Adeno-associated Virus. Chemical Reviews, 2022, 122, 14018-14054.	47.7	15
1652	2021 White Paper on Recent Issues in Bioanalysis: TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point AppropriatenessÂ(<u>Part 3</u> – Recommendations on Gene Therapy,) Tj ETQ)գ մ.Ֆ 0 rgl	BT1‡Overlock
1654	In the Acute Phase of Trypanosoma cruzi Infection, Liver Lymphoid and Myeloid Cells Display an Ambiguous Phenotype Combining Pro- and Anti-Inflammatory Markers. Frontiers in Immunology, 2022, 13, .	4.8	2
1657	A Machine Learning Framework Predicts the Clinical Severity of Hemophilia B Caused by Point-Mutations. Frontiers in Bioinformatics, 0, 2, .	2.1	4
1658	Neonatal gene therapy achieves sustained disease rescue of maple syrup urine disease in mice. Nature Communications, 2022, 13, .	12.8	8
1659	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	4.5	32
1660	Worldwide use of factor IX Padua for hemophilia B gene therapy. Molecular Therapy, 2022, 30, 2394-2396.	8.2	3
1662	Advances in Hemophilia A Management. Advances in Pediatrics, 2022, 69, 133-147.	1.4	4
1663	Treatment of metabolic disorders using genomic technologies: Lessons from methylmalonic acidemia. Journal of Inherited Metabolic Disease, 2022, 45, 872-888.	3.6	5

#	Article	IF	CITATIONS
1664	Organoid transduction using recombinant adenoâ€associated viral vectors: Challenges and opportunities. BioEssays, 2022, 44, .	2.5	2
1665	Intraosseous delivery of platelet-targeted factor VIII lentiviral vector in humanized NBSGW mice. Blood Advances, 2022, 6, 5556-5569.	5.2	2
1666	Ultrasound-Targeted Microbubble Destruction: Modulation in the Tumor Microenvironment and Application in Tumor Immunotherapy. Frontiers in Immunology, 0, 13, .	4.8	8
1669	Pre-existing Reactivity to an IgG4 Fc-Epitope: Characterization and Mitigation of Interference in a Bridging Anti-drug Antibody Assay. AAPS Journal, 2022, 24, .	4.4	1
1670	IL-15 blockade and rapamycin rescue multifactorial loss of factor VIII from AAV-transduced hepatocytes in hemophilia A mice. Molecular Therapy, 2022, 30, 3552-3569.	8.2	16
1671	Clinical enrollment assay to detect preexisting neutralizing antibodies to AAV6 with demonstrated transgene expression in gene therapy trials. Gene Therapy, 2023, 30, 150-159.	4.5	6
1672	Hemophilia A/B. Hematology/Oncology Clinics of North America, 2022, 36, 797-812.	2.2	0
1673	Phase 1–2 Trial of AAVS3 Gene Therapy in Patients with Hemophilia B. New England Journal of Medicine, 2022, 387, 237-247.	27.0	67
1674	Single-shot AAV-vectored vaccine against SARS-CoV-2 with fast and long-lasting immunity. Acta Pharmaceutica Sinica B, 2023, 13, 2219-2233.	12.0	9
1677	Secretion of functional α1-antitrypsin is cell type dependent: Implications for intramuscular delivery for gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2
1678	Polymeric nanoparticles for dual-targeted theranostic gene delivery to hepatocellular carcinoma. Science Advances, 2022, 8, .	10.3	18
1679	Immune Responses and Immunosuppressive Strategies for Adeno-Associated Virus-Based Gene Therapy for Treatment of Central Nervous System Disorders: Current Knowledge and Approaches. Human Gene Therapy, 2022, 33, 1228-1245.	2.7	11
1680	Progress, and prospects in the therapeutic armamentarium of persons with congenital hemophilia. Defining the place for liver-directed gene therapy. Blood Reviews, 2022, , 101011.	5.7	3
1681	Risk assessment in gene therapy and somatic genome-editing: An expert interview study. Gene and Genome Editing, 2022, 3-4, 100011.	2.6	3
1682	Immunogenicity and toxicity of AAV gene therapy. Frontiers in Immunology, 0, 13, .	4.8	75
1683	Prevalence of Anti-Adeno-Associated Virus Serotype 9 Antibodies in Adult Patients with Spinal Muscular Atrophy. Human Gene Therapy, 2022, 33, 968-976.	2.7	7
1684	Potential mechanisms by which adenoâ€associated virus type 2 causes unexplained hepatitis in children. Journal of Medical Virology, 2022, 94, 5623-5624.	5.0	6
1685	Harnessing nucleic acid technologies for human health on earth and in space. Life Sciences in Space Research, 2022, 35, 113-126.	2.3	2

# 1686	ARTICLE Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Molecular Therapy - Methods and Clinical Development, 2022, 26, 471-494.	IF 4.1	CITATIONS
1687	Adeno-Associated Virus Gene Therapy for Hemophilia. Annual Review of Medicine, 2023, 74, 231-247.	12.2	26
1688	Systemic gene therapy for methylmalonic acidemia using the novel adeno-associated viral vector 44.9. Molecular Therapy - Methods and Clinical Development, 2022, 27, 61-72.	4.1	4
1689	Gene therapy in haemophilia: literature review and regional perspectives for Turkey. Therapeutic Advances in Hematology, 2022, 13, 204062072211045.	2.5	2
1690	Rational engineering of adenoâ€associated virus capsid enhances human hepatocyte tropism and reduces immunogenicity. Cell Proliferation, 2022, 55, .	5.3	3
1691	Characteristics of BAY 2599023 in the Current Treatment Landscape of Hemophilia A Gene Therapy. Current Gene Therapy, 2022, 22, .	2.0	0
1692	Pre-existing humoral immunity and complement pathway contribute to immunogenicity of adeno-associated virus (AAV) vector in human blood. Frontiers in Immunology, 0, 13, .	4.8	19
1693	Changing trends in the development of AAV-based gene therapies: a meta-analysis of past and present therapies. Gene Therapy, 2023, 30, 323-335.	4.5	12
1694	The More Recent History of Hemophilia Treatment. Seminars in Thrombosis and Hemostasis, 2022, 48, 904-910.	2.7	13
1695	To Clot or Not to Clot: Deepening Our Understanding of Alterations in the Hemostatic System. Toxicologic Pathology, 2022, 50, 890-894.	1.8	1
1696	A systematic review of adeno-associated virus gene therapies in neurology: the need for consistent safety monitoring of a promising treatment. Journal of Neurology, Neurosurgery and Psychiatry, 0, , jnnp-2022-329431.	1.9	2
1697	Organoids and microphysiological systems: Promising models for accelerating AAV gene therapy studies. Frontiers in Immunology, 0, 13, .	4.8	7
1698	A versatile toolkit for overcoming AAV immunity. Frontiers in Immunology, 0, 13, .	4.8	12
1699	Expression of a Secretable, Cell-Penetrating CDKL5 Protein Enhances the Efficacy of Gene Therapy for CDKL5 Deficiency Disorder. Neurotherapeutics, 2022, 19, 1886-1904.	4.4	5
1701	Liver Gene Therapy. Human Gene Therapy, 2022, 33, 879-888.	2.7	9
1702	AAV vectors: The Rubik's cube of human gene therapy. Molecular Therapy, 2022, 30, 3515-3541.	8.2	87
1703	Gene Therapy and Hemophilia: Where Do We Go from Here?. Journal of Blood Medicine, 0, Volume 13, 559-580.	1.7	3
1704	Efficacy of gene delivery to the brain using AAV and ultrasound depends on serotypes and brain areas. Journal of Controlled Release, 2022, 351, 667-680.	9.9	18

#	Article	IF	Citations
1705	Comprehensive analysis and prediction of long-term durability of factor IX activity following etranacogene dezaparvovec gene therapy in the treatment of hemophilia B. Current Medical Research and Opinion, 2023, 39, 227-237.	1.9	14
1707	First-in-human inÂvivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Molecular Therapy, 2022, 30, 3587-3600.	8.2	16
1708	The seroprevalence of neutralizing antibodies against the adeno-associated virus capsids in Japanese hemophiliacs. Molecular Therapy - Methods and Clinical Development, 2022, 27, 404-414.	4.1	7
1709	Construction of an rAAV Producer Cell Line through Synthetic Biology. ACS Synthetic Biology, 2022, 11, 3285-3295.	3.8	13
1710	IgG-cleavage protein allows therapeutic AAV gene delivery in passively immunized MPS IIIA mice. Gene Therapy, 0, , .	4.5	2
1711	rAAV immunogenicity, toxicity, and durability in 255 clinical trials: A meta-analysis. Frontiers in Immunology, 0, 13, .	4.8	37
1712	Administration and Detection of Gene Therapy in Horses: a systematic review. Drug Testing and Analysis, 0, , .	2.6	1
1713	Screening chimeric GAA variants in preclinical study results in hematopoietic stem cell gene therapy candidate vectors for Pompe disease. Molecular Therapy - Methods and Clinical Development, 2022, 27, 464-487.	4.1	4
1714	Seroprevalence of Adeno-Associated Virus Neutralizing Antibodies in Males with Duchenne Muscular Dystrophy. Human Gene Therapy, 2023, 34, 430-438.	2.7	5
1715	Ancestral library identifies conserved reprogrammable liver motif on AAV capsid. Cell Reports Medicine, 2022, 3, 100803.	6.5	7
1716	Strategies to improve safety profile of AAV vectors. Frontiers in Molecular Medicine, 0, 2, .	1.9	4
1717	Development and validation of methods that enable high-quality droplet digitalÂPCR and hematological profiling data from microvolume blood samples. Bioanalysis, 2022, 14, 1197-1211.	1.5	0
1718	Vector genome loss and epigenetic modifications mediate decline in transgene expression of AAV5 vectors produced in mammalian and insect cells. Molecular Therapy, 2022, 30, 3570-3586.	8.2	12
1719	First-in-Patient Dose Prediction for Adeno-Associated Virus-Mediated Hemophilia Gene Therapy Using Allometric Scaling. Molecular Pharmaceutics, 2023, 20, 758-766.	4.6	4
1720	Interspecies normalization of doseâ€response relationship for adenoâ€associated virusâ€mediated haemophilia gene therapy—Application to human dose prediction. British Journal of Clinical Pharmacology, 2023, 89, 1393-1401.	2.4	2
1721	Immune profiling of adeno-associated virus response identifies B cell-specific targets that enable vector re-administration in mice. Gene Therapy, 2023, 30, 429-442.	4.5	2
1722	Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Progress in Retinal and Eye Research, 2023, 95, 101136.	15.5	24
1724	Gene and Cell Therapy: How to Build a BioDrug. Pediatric Oncology, 2022, , 51-88.	0.5	0

#	ARTICLE A sensitive and drug tolerant assay for detecting anti-AAV9 antibodies using affinity capture elution.	IF 1.4	CITATIONS 3
1723	Journal of Immunological Methods, 2023, 512, 113397. Neurologic Recovery in MPS I and MPS II Mice by AAV9-Mediated Gene Transfer to the CNS After the Development of Cognitive Dysfunction. Human Gene Therapy, 2023, 34, 8-18.	2.7	2
1728	Stable and durable factor IX levels in patients with hemophilia B over 3 years after etranacogene dezaparvovec gene therapy. Blood Advances, 2023, 7, 5671-5679.	5.2	16
1729	Clinical Pharmacology Considerations on Recombinant Adenoâ€Associated Virus–Based Gene Therapy. Journal of Clinical Pharmacology, 2022, 62, .	2.0	7
1730	The HLA class-II immunopeptidomes of AAV capsids proteins. Frontiers in Immunology, 0, 13, .	4.8	3
1731	Transient expression of factor VIII and a chronic high-fat diet induces ER stress and late hepatocyte oncogenesis. Molecular Therapy, 2022, 30, 3510-3512.	8.2	1
1732	Gene therapy for hemophilia. Hematology American Society of Hematology Education Program, 2022, 2022, 569-578.	2.5	26
1733	Binding and neutralizing anti-AAV antibodies: Detection and implications for rAAV-mediated gene therapy. Molecular Therapy, 2023, 31, 616-630.	8.2	15
1734	GALILEO-1: a Phase I/II safety and efficacy study of FLT201 gene therapy for Gaucher disease type 1. Future Rare Diseases, 2023, 3, .	0.4	3
1735	Gene therapy for liver diseases — progress and challenges. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 288-305.	17.8	16
1736	Big stride in gene therapy for hemophilia B in China. Blood Science, 0, Publish Ahead of Print, .	0.9	1
1737	Towards the Clinical Application of Gene Therapy for Genetic Inner Ear Diseases. Journal of Clinical Medicine, 2023, 12, 1046.	2.4	8
1738	Evaluation of rAAVrh74 gene therapy vector seroprevalence by measurement of total binding antibodies in patients with Duchenne muscular dystrophy. Therapeutic Advances in Neurological Disorders, 2023, 16, 175628642211497.	3.5	8
1739	Valoctocogene roxaparvovec gene transfer in participants with HIV. Blood Advances, 2023, 7, 1525-1530.	5.2	1
1740	Mitigating Serious Adverse Events in Gene Therapy with AAV Vectors: Vector Dose and Immunosuppression. Drugs, 2023, 83, 287-298.	10.9	7
1741	Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs, 2023, 37, 311-329.	4.6	19
1742	Rescue of infant progressive familial intrahepatic cholestasis type 3 mice by repeated dosing of AAV gene therapy. JHEP Reports, 2023, 5, 100713.	4.9	4
1743	Immune responses in the mammalian inner ear and their implications for AAV-mediated inner ear gene therapy. Hearing Research, 2023, 432, 108735.	2.0	7

#	Article	IF	CITATIONS
1744	Gene therapy for hemophilia: looking beyond factor expression. Experimental Biology and Medicine, 2022, 247, 2223-2232.	2.4	1
1745	Reversible stabilization of DNA/PEI complexes by reducible click-linkage between DNA and polymer. A new polyplex concept for lowering polymer quantity. Gene Therapy, 0, , .	4.5	1
1746	Multiplexing AAV Serotype-Specific Neutralizing Antibodies in Preclinical Animal Models and Humans. Biomedicines, 2023, 11, 523.	3.2	1
1747	Adeno-associated virus-vectored delivery of HIV biologics: the promise of a "single-shot―functional cure for HIV infection. Journal of Virus Eradication, 2023, 9, 100316.	0.5	2
1748	Gene Therapy with Etranacogene Dezaparvovec for Hemophilia B. New England Journal of Medicine, 2023, 388, 706-718.	27.0	76
1749	Programming the Cellular Uptake of Protein-Based Viromimetic Nanoparticles for Enhanced Delivery. Biomacromolecules, 2023, 24, 1563-1573.	5.4	0
1750	A Single Surface-Exposed Amino Acid Determines Differential Neutralization of AAV1 and AAV6 by Human Alpha-Defensins. Journal of Virology, 2023, 97, .	3.4	2
1751	Assessment of Pre-Clinical Liver Models Based on Their Ability to Predict the Liver-Tropism of Adeno-Associated Virus Vectors. Human Gene Therapy, 2023, 34, 273-288.	2.7	8
1752	Immune transgene-dependent myocarditis in macaques after systemic administration of adeno-associated virus expressing human acid alpha-glucosidase. Frontiers in Immunology, 0, 14, .	4.8	6
1753	Successful liver transduction by reâ€administration of different adenoâ€associated virus vector serotypes in mice. Journal of Gene Medicine, 2023, 25, .	2.8	2
1754	Non-structural genes of novel lemur adenoviruses reveal codivergence of virus and host. Virus Evolution, 2023, 9, .	4.9	1
1755	Successful AAV8 readministration: Suppression of capsidâ€specific neutralizing antibodies by a combination treatment of bortezomib and CD20 mAb in a mouse model of Pompe disease. Journal of Gene Medicine, 2023, 25, .	2.8	2
1756	Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics, 2023, 15, 1111.	4.5	2
1757	AAV genome modification for efficient AAV production. Heliyon, 2023, 9, e15071.	3.2	1
1758	Comparison of Pre-existing Anti-AAV8 Total Antibody Screening and Confirmatory Assays with a Cell-Based Neutralizing Assay in Normal Human Serum. AAPS Journal, 2023, 25, .	4.4	3
1759	Adeno-associated virus 2 infection in children with non-A–E hepatitis. Nature, 2023, 617, 555-563.	27.8	51
1760	Targeting IgE and Th2-Cytokines in Allergy: Brief Updates on Monoclonal Antibodies and Antibody Gene Therapy. Allergies, 2023, 3, 90-104.	0.8	1
1761	Proof-of-concept study for liver-directed miQURE technology in a dyslipidemic mouse model. Molecular Therapy - Nucleic Acids, 2023, 32, 454-467.	5.1	0

#	Article	IF	CITATIONS
1762	Optogenetic Control of Muscles: Potential Uses and Limitations. Human Gene Therapy, 2023, 34, 416-429.	2.7	3
1763	Immunology of Retinitis Pigmentosa and Gene Therapy–Associated Uveitis. Cold Spring Harbor Perspectives in Medicine, 2024, 14, a041305.	6.2	1
1764	Barriers in Heart Failure Gene Therapy and Approaches to Overcome Them. Heart Lung and Circulation, 2023, , .	0.4	1
1765	Pre-existing immunity does not impair the engraftment of CRISPR-Cas9-edited cells in rhesus macaques conditioned with busulfan or radiation. Molecular Therapy - Methods and Clinical Development, 2023, 29, 483-493.	4.1	3
1766	Complement Activation by Adeno-Associated Virus-Neutralizing Antibody Complexes. Human Gene Therapy, 2023, 34, 554-566.	2.7	6
1767	Evaluation of Cellular Immune Response to Adeno-Associated Virus-Based Gene Therapy. AAPS Journal, 2023, 25, .	4.4	6
1768	Gene Therapeutic Strategies for Peripheral Artery Disease and New Opportunities Provided by Adeno-Associated Virus Vectors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2023, 43, 836-851.	2.4	2
1769	Gene therapies for mucopolysaccharidoses. Journal of Inherited Metabolic Disease, 2024, 47, 135-144.	3.6	2
1770	Nucleic Acid Therapeutics. , 2022, , 350-402.		0
1771	Immune Responses to Muscle-Directed Adeno-Associated Viral Gene Transfer in Clinical Studies. Human Gene Therapy, 2023, 34, 365-371.	2.7	8
1772	Challenges in HIV-1 Latent Reservoir and Target Cell Quantification in CAR-T Cell and Other Lentiviral Gene Modifying HIV Cure Strategies. Viruses, 2023, 15, 1126.	3.3	2
1773	Assessment of Residual Full-Length SV40 Large T Antigen in Clinical-Grade Adeno-Associated Virus Vectors Produced in 293T Cells. Human Gene Therapy, 2023, 34, 697-704.	2.7	0
1774	Liver lobe-specific hydrodynamic gene delivery to baboons: A preclinical trial for hemophilia gene therapy. Molecular Therapy - Nucleic Acids, 2023, 32, 903-913.	5.1	2
1775	Immunogenicity of Therapeutic Biological Modalities - Lessons from Hemophilia A Therapies. Journal of Pharmaceutical Sciences, 2023, , .	3.3	0
1776	Corneal gene therapy: Structural and mechanistic understanding. Ocular Surface, 2023, 29, 279-297.	4.4	2
1777	Liver directed adenoâ€essociated viral vectors to treat metabolic disease. Journal of Inherited Metabolic Disease, 2024, 47, 22-40.	3.6	3
1778	Analysis of Adeno-Associated Virus Serotype 8 (AAV8)-antibody complexes using epitope mapping by molecular imprinting leads to the identification of Fab peptides that potentially evade AAV8 neutralisation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 52, 102691.	3.3	0
1779	Therapeutic targeting non-coding RNAs. , 2023, , 349-417.		0

#	Article	IF	Citations
1780	Analytical ultracentrifugation sedimentation velocity for the characterization of recombinant adeno-associated virus vectors sub-populations. European Biophysics Journal, 2023, 52, 367-377.	2.2	6
1781	Critical challenges and advances in recombinant adenoâ€associated virus (rAAV) biomanufacturing. Biotechnology and Bioengineering, 2023, 120, 2601-2621.	3.3	8
1782	Adeno-associated virus vectors and neurotoxicity—lessons from preclinical and human studies. Gene Therapy, 0, , .	4.5	2
1783	Gene therapy for hemophilia, a clinical viewpoint. Journal of the Formosan Medical Association, 2023, ,	1.7	1
1784	Transcriptomic Analysis Reveals the Inability of Recombinant AAV8 to Activate Human Monocyte-Derived Dendritic Cells. International Journal of Molecular Sciences, 2023, 24, 10447.	4.1	0
1785	Stateâ€ofâ€theâ€art 2023 on gene therapy for phenylketonuria. Journal of Inherited Metabolic Disease, 2024, 47, 80-92.	3.6	5
1786	Mathematical modelling of gene delivery in patients with haemophilia B. Chemical Engineering Science, 2023, 281, 119073.	3.8	0
1787	Clinical Pharmacology and Translational Considerations in the Development of <scp>CRISPRâ€Based</scp> Therapies. Clinical Pharmacology and Therapeutics, 2023, 114, 591-603.	4.7	2
1788	Gene therapy for heart failure and cardiomyopathies. Revista Espanola De Cardiologia (English Ed), 2023, 76, 1042-1054.	0.6	0
1790	Liver injury in cynomolgus monkeys following intravenous and intrathecal scAAV9 gene therapy delivery. Molecular Therapy, 2023, 31, 2999-3014.	8.2	6
1791	Genetic Therapy Approaches for Ornithine Transcarbamylase Deficiency. Biomedicines, 2023, 11, 2227.	3.2	3
1792	Paving the way for future gene therapies: A case study of scientific spillover from delandistrogene moxeparvovec. Molecular Therapy - Methods and Clinical Development, 2023, 30, 474-483.	4.1	0
1793	Gene Therapy in Patients with the Crigler–Najjar Syndrome. New England Journal of Medicine, 2023, 389, 620-631.	27.0	12
1794	The HLA class I immunopeptidomes of AAV capsid proteins. Frontiers in Immunology, 0, 14, .	4.8	0
1795	Genomic editing: From human health to the $\hat{a} \in \hat{c}$ eperfect child $\hat{a} \in \hat{c}$, 2023, , 1-32.		0
1796	Cardiac gene therapy treats diabetic cardiomyopathy and lowers blood glucose. JCI Insight, 2023, 8, .	5.0	3
1797	Fetal gene therapy. Journal of Inherited Metabolic Disease, 2024, 47, 192-210.	3.6	1
1798	<scp>MiR133b</scp> â€mediated inhibition of <scp>EGFRâ€PTK</scp> pathway promotes <scp>rAAV2</scp> transduction by facilitating intracellular trafficking and augmenting secondâ€strand synthesis. Journal of Cellular and Molecular Medicine, 2023, 27, 2714-2729.	3.6	1

# 1799	ARTICLE Awareness of individual goals, preferences, and priorities of persons with severe congenital haemophilia A for a tailored shared decision-making approach to liver-directed gene therapy. A practical guideline. Blood Reviews, 2023, , 101118.	IF 5.7	CITATIONS 0
1800	Hemophilia Gene Therapy: The End of the Beginning?. Human Gene Therapy, 2023, 34, 782-792.	2.7	3
1801	Prospective approaches to gene therapy computational modeling – spotlight on viral gene therapy. Journal of Pharmacokinetics and Pharmacodynamics, 0, , .	1.8	0
1802	Efficient gene transduction in pigs and macaques with the engineered AAV vector AAV.GT5 for hemophilia B gene therapy. Molecular Therapy - Methods and Clinical Development, 2023, 30, 502-514.	4.1	0
1804	Emerging and potential use of CRISPR in human liver disease. Hepatology, 0, , .	7.3	0
1805	Understanding and Tackling Immune Responses to Adeno-Associated Viral Vectors. Human Gene Therapy, 2023, 34, 836-852.	2.7	2
1807	261st ENMC International Workshop: Management of safety issues arising following AAV gene therapy. 17th-19th June 2022, Hoofddorp, The Netherlands. Neuromuscular Disorders, 2023, 33, 884-896.	0.6	2
1810	A sensitive AAV transduction inhibition assay assists evaluation of critical factors for detection and concordance of pre-existing antibodies. Molecular Therapy - Methods and Clinical Development, 2023, 31, 101126.	4.1	0
1811	Rationale for using centralized transduction inhibition assays in three phase 3 rAAV gene therapy clinical trials. Molecular Therapy - Methods and Clinical Development, 2023, 31, 101119.	4.1	0
1812	Prednisolone and rapamycin reduce the plasma cell gene signature and may improve AAV gene therapy in cynomolgus macaques. Gene Therapy, 0, , .	4.5	0
1813	Adenoâ€associated virusâ€vectored erythropoietin gene therapy for anemia in cats with chronic kidney disease. Journal of Veterinary Internal Medicine, 2023, 37, 2200-2210.	1.6	0
1814	Discovering human cellâ€compatible gene therapy virus variants via optimized screening in mouse models. Cell Proliferation, 2024, 57, .	5.3	0
1815	Giroctocogene fitelparvovec gene therapy for severe hemophilia A: 104-week analysis of the phase 1/2 AltaÂstudy. Blood, 2024, 143, 796-806.	1.4	0
1816	Rational Design of AAV-rh74, AAV3B, and AAV8 with Limited Liver Targeting. Viruses, 2023, 15, 2168.	3.3	0
1817	Overcoming biological barriers by virus-like drug particles for drug delivery. Advanced Drug Delivery Reviews, 2023, 203, 115134.	13.7	1
1818	Interspecies Scaling of Transgene Products for Viral Vector Gene Therapies: Method Assessment Using Data from Eleven Viral Vectors. AAPS Journal, 2023, 25, .	4.4	0
1819	Integrated vector genomes may contribute to long-term expression in primate liver after AAV administration. Nature Biotechnology, 0, , .	17.5	5
1820	Successes and challenges in clinical gene therapy. Gene Therapy, 2023, 30, 738-746.	4.5	7

# 1821	ARTICLE Materials for Gene Delivery Systems. , 2023, , 411-437.	IF	CITATIONS
1822	Etranacogene dezaparvovec for the treatment of adult patients with severe and moderately severe hemophilia B. Expert Review of Hematology, 2023, 16, 919-932.	2.2	0
1823	Preclinical evaluation of the efficacy and safety of AAV1-hOTOF in mice and nonhuman primates. Molecular Therapy - Methods and Clinical Development, 2023, 31, 101154.	4.1	3
1825	Development of capsid- and genome-modified optimized AAVrh74 vectors for muscle gene therapy. Molecular Therapy - Methods and Clinical Development, 2023, 31, 101147.	4.1	0
1827	Gene therapy vector-related myocarditis. International Journal of Cardiology, 2024, 398, 131617.	1.7	2
1828	tRNA therapeutics for genetic diseases. Nature Reviews Drug Discovery, 2024, 23, 108-125.	46.4	1
1829	TLR9-independent CD8+ TÂcell responses in hepatic AAV gene transfer through IL-1R1-MyD88 signaling. Molecular Therapy, 2024, 32, 325-339.	8.2	2
1830	Bibliometric analysis of global research trends in adeno-associated virus vector for gene therapy (1991-2022). Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	1
1831	Adeno-associated viruses for gene therapy – clinical implications and liver-related complications, a guide for hepatologists. Journal of Hepatology, 2024, 80, 352-361.	3.7	3
1832	Current limitations of gene therapy for rare pediatric diseases: Lessons learned from clinical experience with AAV vectors. Archives De Pediatrie, 2023, 30, 8S46-8S52.	1.0	1
1833	Deciphering conundrums of AAV liver-directed gene therapy: focus on hemophilia. Journal of Thrombosis and Haemostasis, 2023, , .	3.8	0
1834	AAV Immunotoxicity: Implications in Anti-HBV Gene Therapy. Microorganisms, 2023, 11, 2985.	3.6	0
1835	Hepatotoxicity in Adeno-Associated Viral Vector Gene Therapy. Current Hepatology Reports, 0, , .	0.9	0
1837	Infusion reactions to adenoâ€associated virus (AAV)â€based gene therapy: Mechanisms, diagnostics, treatment and review of the literature. Journal of Medical Virology, 2023, 95, .	5.0	0
1838	Viral Vectors in Gene Replacement Therapy. Biochemistry (Moscow), 2023, 88, 2157-2178.	1.5	0
1840	AAV for Gene Therapy in Ocular Diseases: Progress and Prospects. Research, 2023, 6, .	5.7	0
1841	Intrathecal Delivery of Viral Vector-Mediated Gene Therapy. , 2023, , 399-412.		0
1842	Liverâ€directed gene therapy for inherited metabolic diseases. Journal of Inherited Metabolic Disease, 2024, 47, 9-21.	3.6	1

#	Article	IF	CITATIONS
1843	Practical Considerations for Delandistrogene Moxeparvovec Gene Therapy in Patients With Duchenne Muscular Dystrophy. Pediatric Neurology, 2024, 153, 11-18.	2.1	1
1844	Efficacy and Safety of Adeno-Associated Virus-Based Clinical Gene Therapy for Hemophilia: A Systematic Review and Meta-Analysis. Human Gene Therapy, 2024, 35, 93-103.	2.7	0
1845	Upregulation of CD8+ regulatory T cells following liver-directed AAV gene therapy. Cellular Immunology, 2024, 397-398, 104806.	3.0	1
1846	Genetic modification of mice using CRISPR-Cas9: Best practices and practical concepts explained. , 2024, , 425-452.		0
1847	A new immune pathway mediating AAV immune responses. Molecular Therapy, 2024, 32, 269-270.	8.2	0
1848	AAV1-hOTOF gene therapy for autosomal recessive deafness 9: a single-arm trial. Lancet, The, 2024, , .	13.7	3
1849	Development of an Enzyme-Linked Immunosorbent Spot Assay for the Assessment of Adeno-Associated Virus Peptides to Examine Immune Safety. Human Gene Therapy, 0, , .	2.7	0
1850	Advanced Therapy Medicinal Products: Clinical, Non-clinical, and Quality Considerations. , 2024, , 323-399.		0
1851	Comparative dose effectiveness of intravenous and intrathecal AAV9.CB7.hIDS, RGX-121, in mucopolysaccharidosis type II mice. Molecular Therapy - Methods and Clinical Development, 2024, 32, 101201.	4.1	0
1852	AAV mediated gene therapy for haemophilia B: From the early attempts to modern trials. Thrombosis Research, 2024, 236, 242-249.	1.7	0
1853	Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms, 2024, 12, 384.	3.6	0
1854	AAV-delivered muscone-induced transgene system for treating chronic diseases in mice via inhalation. Nature Communications, 2024, 15, .	12.8	0
1855	Multicenter assessment and longitudinal study of the prevalence of antibodies and related adaptive immune responses to AAV in adult males with hemophilia. Gene Therapy, 0, , .	4.5	0
1857	Minimally Invasive Bladder Stimulation via Upconversion Nanoparticle-Mediated Optogenetics. ACS Applied Nano Materials, 2024, 7, 5652-5660.	5.0	0
1858	In vitro and in vivo modeling systems of supratentorial ependymomas. Frontiers in Oncology, 0, 14, .	2.8	0
1859	Breaking ground in haemophilia B gene therapy: insights from the HOPE-B trial and beyond. Lancet Haematology,the, 2024, 11, e243-e244.	4.6	0
1860	Clinical Pharmacology Perspective on Development of Adenoâ€Associated Virus Vectorâ€Based Retina Gene Therapy. Clinical Pharmacology and Therapeutics, 0, , .	4.7	0
1861	Role of FoxP3 ⁺ Regulatory T Cells in Modulating Immune Responses to Adeno-Associated Virus Gene Therapy. Human Gene Therapy, 0, , .	2.7	0

#	Article	IF	CITATIONS
1862	Riboswitch-controlled IL-12 gene therapy reduces hepatocellular cancer in mice. Frontiers in Immunology, 0, 15, .	4.8	0
1864	Gene Therapy and Gene Editing for Cancer Therapeutics. , 2023, , 711-800.		0
1865	Fidanacogene Elaparvovec: First Approval. Drugs, 0, , .	10.9	0