A distant upstream enhancer at the maize domestication plant and inflorescent architecture

Nature Genetics 38, 594-597

DOI: 10.1038/ng1784

Citation Report

#	Article	IF	CITATIONS
1	Microsatellite signature of ecological selection for salt tolerance in a wild sunflower hybrid species, Helianthus paradoxus. Molecular Ecology, 2006, 15, 4623-4634.	2.0	29
2	An adaptive path through jungle DNA. Nature Genetics, 2006, 38, 506-507.	9.4	3
3	mtDNA clock runs out for dopaminergic neurons. Nature Genetics, 2006, 38, 507-508.	9.4	15
4	Polyploidy and Crop Improvement. Crop Science, 2006, 46, S-3.	0.8	178
5	Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11376-11381.	3.3	536
6	Linkage Mapping of Domestication Loci in a Large Maize–Teosinte Backcross Resource. Genetics, 2007, 177, 1915-1928.	1.2	97
7	Patterns of Selection and Tissue-Specific Expression among Maize Domestication and Crop Improvement Loci. Plant Physiology, 2007, 144, 1642-1653.	2.3	17
8	Major Regulatory Genes in Maize Contribute to Standing Variation in Teosinte (Zea mays ssp.) Tj ETQq1 1 0.784:	314 rgBT 1.2	Overlock 10
9	Allele-Specific Expression Patterns Reveal Biases and Embryo-Specific Parent-of-Origin Effects in Hybrid Maize. Plant Cell, 2007, 19, 2391-2402.	3.1	157
10	The Genetic Architecture of Shoot Branching in Arabidopsis thaliana: A Comparative Assessment of Candidate Gene Associations vs. Quantitative Trait Locus Mapping. Genetics, 2007, 176, 1223-1236.	1.2	53
11	New Candidate Genes for Sex-Comb Divergence Between Drosophila mauritiana and Drosophila simulans. Genetics, 2007, 176, 2561-2576.	1.2	11
12	Molecular and cellular studies in evolutionary physiology of natural vertebrate populations: influences of individual variation and genetic components on sampling and measurements. Journal of Experimental Biology, 2007, 210, 1847-1857.	0.8	26
13	Arabidopsis TEOSINTE BRANCHED1-LIKE 1 Regulates Axillary Bud Outgrowth and is Homologous to Monocot TEOSINTE BRANCHED1. Plant and Cell Physiology, 2007, 48, 667-677.	1.5	202
14	From Crop Domestication to Super-domestication. Annals of Botany, 2007, 100, 893-901.	1.4	168
15	Using Reporter Gene Assays to Identify cis Regulatory Differences Between Humans and Chimpanzees. Genetics, 2007, 176, 2069-2076.	1.2	15
16	A new paradigm for developmental biology. Journal of Experimental Biology, 2007, 210, 1526-1547.	0.8	212
17	Genomeâ€wide Approaches to Investigate and Improve Maize Response to Drought. Crop Science, 2007, 47, S-120.	0.8	48
18	Cloning Qtls in Plants. , 2007, , 207-225.		33

#	Article	IF	CITATIONS
19	Architectural Evolution and its Implications for Domestication in Grasses. Annals of Botany, 2007, 100, 941-950.	1.4	115
20	Allelic variation and heterosis in maize: How do two halves make more than a whole?. Genome Research, 2007, 17, 264-275.	2.4	306
22	Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 2007, 58, 3841-3852.	2.4	329
23	Bridging Genomics and Genetic Diversity: Linkage Disequilibrium Structure and Association Mapping in Maize and Other Cereals. Crop Science, 2007, 47, S-60.	0.8	19
24	The evolutionary significance of cis-regulatory mutations. Nature Reviews Genetics, 2007, 8, 206-216.	7.7	1,356
25	Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature, 2007, 448, 587-590.	13.7	306
26	Brain Evolution: When Is a Group Not a Group?. Current Biology, 2007, 17, R883-R884.	1.8	10
27	Evolutionary Genetics: How Flies Get Naked. Current Biology, 2007, 17, R881-R883.	1.8	2
28	Floral displays: genetic control of grass inflorescences. Current Opinion in Plant Biology, 2007, 10, 26-31.	3. 5	93
29	Grass architecture: genetic and environmental control of branching. Current Opinion in Plant Biology, 2007, 10, 21-25.	3 . 5	56
30	Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 2007, 10, 156-161.	3 . 5	372
31	Transposable elements and the plant pan-genomes. Current Opinion in Plant Biology, 2007, 10, 149-155.	3. 5	220
32	Heterosis: revisiting the magic. Trends in Genetics, 2007, 23, 60-66.	2.9	517
33	The use of general and specific combining abilities in a context of gene expression relevant to plant breeding. Euphytica, 2008, 161, 115-122.	0.6	12
34	Using molecular markers for detecting domestication, improvement, and adaptation genes. Euphytica, 2008, 161, 1-17.	0.6	19
35	Noncoding RNA in development. Mammalian Genome, 2008, 19, 454-492.	1.0	423
36	Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 2008, 453, 391-395.	13.7	739
37	Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics, 2008, 40, 1360-1364.	9.4	411

#	ARTICLE	IF	CITATIONS
38	Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40, 1370-1374.	9.4	706
39	Evaluating the role of natural selection in the evolution of gene regulation. Heredity, 2008, 100, 191-199.	1.2	150
40	Global analysis of gene expression in cotton fibers from wild and domesticated <i>Gossypium barbadense </i> . Evolution & Development, 2008, 10, 567-582.	1.1	77
41	The quest for adaptive evolution: a theoretical challenge in a maze of data. Current Opinion in Plant Biology, 2008, 11, 110-115.	3.5	16
42	Revealing the architecture of gene regulation: the promise of eQTL studies. Trends in Genetics, 2008, 24, 408-415.	2.9	463
43	Epigenetics and Plant Breeding. , 2008, , 49-177.		27
44	Molecular Plant Breeding as the Foundation for 21st Century Crop Improvement. Plant Physiology, 2008, 147, 969-977.	2.3	576
45	Natural Variation in Gene Expression Between Wild and Weedy Populations of <i>Helianthus annuus</i> . Genetics, 2008, 179, 1881-1890.	1.2	64
46	Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends in Plant Science, 2008, 13, 72-77.	4.3	104
47	Evolutionary Genetics of Genome Merger and Doubling in Plants. Annual Review of Genetics, 2008, 42, 443-461.	3.2	618
48	Modulating Rice Stress Tolerance by Transcription Factors. Biotechnology and Genetic Engineering Reviews, 2008, 25, 381-404.	2.4	49
49	Fine Mapping of Spr3, a Locus for Spreading Panicle from African Cultivated Rice (Oryza glaberrima) Tj ETQq1 🛚	1 0.784314	rgBT Overlo
50	Recent Insights Into the Evolution of Genetic Diversity of Maize. , 2008, 4, 119-130.		0
51	Patterns of Molecular Evolution Associated With Two Selective Sweeps in the Tb1–Dwarf8 Region in Maize. Genetics, 2008, 180, 1107-1121.	1.2	32
52	Gene Content and Distribution in the Nuclear Genome of Fragaria vesca. Plant Genome, 2009, 2, .	1.6	20
53	Adaptive Variation Regulates the Expression of the Human SGK1 Gene in Response to Stress. PLoS Genetics, 2009, 5, e1000489.	1.5	43
54	Using Association Mapping in Teosinte to Investigate the Function of Maize Selection-Candidate Genes. PLoS ONE, 2009, 4, e8227.	1.1	13
55	Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9979-9986.	3.3	133

#	Article	IF	Citations
56	Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in <i>Brassica napus</i> . Genetics, 2009, 182, 851-861.	1.2	362
57	Hormonal Regulation of Branching in Grasses Â. Plant Physiology, 2009, 149, 46-55.	2.3	179
58	Fine Mapping and Haplotype Structure Analysis of a Major Flowering Time Quantitative Trait Locus on Maize Chromosome 10. Genetics, 2009, 183, 1555-1563.	1.2	60
59	Genes and Mutations Underlying Domestication Transitions in Grasses. Plant Physiology, 2009, 149, 63-70.	2.3	78
60	The Genetic Signatures of Noncoding RNAs. PLoS Genetics, 2009, 5, e1000459.	1.5	639
61	A genome-wide library of CB4856/N2 introgression lines of Caenorhabditis elegans. Nucleic Acids Research, 2009, 37, e110-e110.	6.5	114
62	A cellular study of teosinteZea mayssubsp.parviglumis(Poaceae) caryopsis development showing several processes conserved in maize. American Journal of Botany, 2009, 96, 1798-1807.	0.8	19
63	Identification of a <i>Cis</i> -Acting Regulatory Polymorphism in a Eucalypt <i>COBRA</i> -Like Gene Affecting Cellulose Content. Genetics, 2009, 183, 1153-1164.	1.2	89
64	A transcriptomic analysis of superhybrid rice <i>LYP9</i> and its parents. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7695-7701.	3.3	184
65	Copia and Gypsy retrotransposons activity in sunflower (Helianthus annuus L.). BMC Plant Biology, 2009, 9, 150.	1.6	38
66	Application of non-coding DNA regions in intraspecific analyses. Plant Systematics and Evolution, 2009, 282, 281-294.	0.3	53
67	Proteomic analysis of early germs with high-oil and normal inbred lines in maize. Molecular Biology Reports, 2009, 36, 813-821.	1.0	25
68	Natural variation in maize architecture is mediated by allelic differences at the PINOID coâ€ortholog <i>barren inflorescence2</i> . Plant Journal, 2009, 58, 618-628.	2.8	36
69	Evolutionary fate of rhizome-specific genes in a non-rhizomatous Sorghum genotype. Heredity, 2009, 102, 266-273.	1.2	30
70	The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics, 2009, 10, 565-577.	7.7	1,061
71	SAD, a stearoyl-acyl carrier protein desaturase highly expressed in high-oil maize inbred lines. Russian Journal of Plant Physiology, 2009, 56, 709-715.	0.5	11
72	The molecular bases of cereal domestication and the history of rice. Comptes Rendus - Biologies, 2009, 332, 267-272.	0.1	15
73	Little Effect of the tan Locus on Pigmentation in Female Hybrids between Drosophila santomea and D. melanogaster. Cell, 2009, 139, 1180-1188.	13.5	10

#	Article	IF	Citations
74	Wheat and Barley Genome Sequencing., 2009, , 713-742.		11
75	Inherited Variation in Gene Expression. Annual Review of Genomics and Human Genetics, 2009, 10, 313-332.	2.5	71
76	Genetic Diversity, Linkage Disequilibrium and Association Mapping. , 2009, , 201-219.		6
77	What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?. Plant Cell, 2009, 21, 1877-1896.	3.1	401
78	Quantitative Genomics: Analyzing Intraspecific Variation Using Global Gene Expression Polymorphisms or eQTLs. Annual Review of Plant Biology, 2009, 60, 93-114.	8.6	159
79	Identification of Differentially Expressed Genes in Axillary Tillers of Perennial Ryegrass. Proceedings of the Latvian Academy of Sciences, 2009, 63, 25-28.	0.0	0
80	QTLNetworkR: an interactive R package for QTL visualization. Journal of Zhejiang University: Science B, 2010, 11, 512-515.	1.3	2
81	Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L Theoretical and Applied Genetics, 2010, 120, 401-413.	1.8	79
82	Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biology, 2010, 10, 143.	1.6	179
83	Transcriptional Enhancers in Animal Development and Evolution. Current Biology, 2010, 20, R754-R763.	1.8	403
84	Allele mining in crops: Prospects and potentials. Biotechnology Advances, 2010, 28, 451-461.	6.0	123
85	Reciprocal insights into adaptation from agricultural and evolutionary studies in tomato. Evolutionary Applications, 2010, 3, 409-421.	1.5	19
86	Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biology, 2010, 8, 139.	1.7	87
87	Evidence of selection at the <i>ramosa1</i> locus during maize domestication. Molecular Ecology, 2010, 19, 1296-1311.	2.0	62
88	An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley. PLoS ONE, 2010, 5, e8598.	1.1	77
89	Assessing the Influence of Adjacent Gene Orientation on the Evolution of Gene Upstream Regions in Arabidopsis thaliana. Genetics, 2010, 185, 695-701.	1.2	4
90	Variable Transcription Factor Binding: A Mechanism of Evolutionary Change. PLoS Biology, 2010, 8, e1000342.	2.6	23
91	Comparative Transcriptional Profiling and Preliminary Study on Heterosis Mechanism of Super-Hybrid Rice. Molecular Plant, 2010, 3, 1012-1025.	3.9	100

#	ARTICLE	IF	CITATIONS
93	The Vpp1, Esr6a, Esr6b and OCL4 promoters are active in distinct domains of maize endosperm. Plant Science, 2010, 179, 86-96.	1.7	5
94	Nucleotide diversity and linkage disequilibrium in five Lolium perenne genes with putative role in shoot morphology. Plant Science, 2010, 179, 194-201.	1.7	20
95	Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics, 2011, 43, 1160-1163.	9.4	639
96	Biodiversity, evolution and adaptation of cultivated crops. Comptes Rendus - Biologies, 2011, 334, 450-457.	0.1	68
97	Developmental Genetics and New Sequencing Technologies: The Rise of Nonmodel Organisms. Developmental Cell, 2011, 21, 65-76.	3.1	24
98	Cereal Domestication and Evolution of Branching: Evidence for Soft Selection in the Tb1 Orthologue of Pearl Millet (Pennisetum glaucum [L.] R. Br.). PLoS ONE, 2011, 6, e22404.	1.1	37
99	Association Mapping for Enhancing Maize (<i>Zea mays</i> L.) Genetic Improvement. Crop Science, 2011, 51, 433-449.	0.8	305
100	Specific expression of <i>LATERAL SUPPRESSOR</i> is controlled by an evolutionarily conserved 3′ enhancer. Plant Journal, 2011, 68, 400-412.	2.8	27
101	Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress. Molecular Ecology, 2011, 20, 4683-4694.	2.0	68
102	INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genetics, 2011, 43, 169-172.	9.4	302
103	Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics, 2011, 43, 159-162.	9.4	987
104	Gene Duplication in Mimulus Underlies Parallel Floral Evolution via Independent trans-Regulatory Changes. Current Biology, 2011, 21, 700-704.	1.8	67
105	The Same Regulatory Point Mutation Changed Seed-Dispersal Structures in Evolution and Domestication. Current Biology, 2011, 21, 1215-1219.	1.8	72
106	Enhancer–promoter interference and its prevention in transgenic plants. Plant Cell Reports, 2011, 30, 723-731.	2.8	31
107	The Genetic Basis of Rapidly Evolving Male Genital Morphology in <i>Drosophila</i> . Genetics, 2011, 189, 357-374.	1.2	44
108	A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 2011, 6, e19379.	1.1	5,470
109	Changes in expression pattern of the <i>teosinte branched1â€</i> like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. American Journal of Botany, 2011, 98, 227-243.	0.8	65
110	Independent recruitments of a translational regulator in the evolution of self-fertile nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19672-19677.	3.3	37

#	ARTICLE	IF	CITATIONS
111	Robustness and evolvability in the B-system of flower development. Annals of Botany, 2011, 107, 1545-1556.	1.4	19
112	Genome-Wide Association Study Identifies Candidate Genes That Affect Plant Height in Chinese Elite Maize (Zea mays L.) Inbred Lines. PLoS ONE, 2011, 6, e29229.	1.1	110
113	Do Large Effect QTL Fractionate? A Case Study at the Maize Domestication QTL <i>teosinte branched1</i> . Genetics, 2011, 188, 673-681.	1.2	85
114	Two transposable element insertions are causative mutations for the major domestication gene teosinte branched 1 in modern maize. Cell Research, 2011, 21, 1267-1270.	5.7	33
115	QTL Controlling Masculinization of Ear Tips in a Maize (<i>Zea mays</i> L.) Intraspecific Cross. G3: Genes, Genomes, Genetics, 2011, 1, 337-341.	0.8	6
116	A QTL Study for Regions Contributing to <i>Arabidopsis thaliana</i> Root Skewing on Tilted Surfaces. G3: Genes, Genomes, Genetics, 2011, 1, 105-115.	0.8	32
117	Diverse Roles of Strigolactone Signaling in Maize Architecture and the Uncoupling of a Branching-Specific Subnetwork \hat{A} \hat{A} . Plant Physiology, 2012, 160, 1303-1317.	2.3	120
118	Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Research, 2012, 22, 2436-2444.	2.4	125
119	Evidence for a Natural Allelic Series at the Maize Domestication Locus <i>teosinte branched1</i> Genetics, 2012, 191, 951-958.	1.2	24
120	Fine Mapping and Candidate Gene Prediction of a Pleiotropic Quantitative Trait Locus for Yield-Related Trait in Zea mays. PLoS ONE, 2012, 7, e49836.	1.1	34
121	Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris). Annals of Botany, 2012, 110, 1573-1580.	1.4	100
122	3C Technologies in plants. Methods, 2012, 58, 204-211.	1.9	13
123	<i>TaCKX6â€D1</i> , the ortholog of rice <i>OsCKX2</i> , is associated with grain weight in hexaploid wheat. New Phytologist, 2012, 195, 574-584.	3.5	219
124	Advances in identifying and exploiting natural genetic variation. , 2012, , 195-205.		0
126	Crop Traits crop/cropping trait: Gene Isolation crop/cropping trait gene isolation., 2012,, 2689-2720.		0
127	Genome-Wide Association Studies Identified Three Independent Polymorphisms Associated with α-Tocopherol Content in Maize Kernels. PLoS ONE, 2012, 7, e36807.	1.1	140
128	A bivariate variance components model for mapping iQTLs underlying endosperm traits. Frontiers in Bioscience - Elite, 2012, E4, 2464-2475.	0.9	0
129	Comparative studies of gene expression and the evolution of gene regulation. Nature Reviews Genetics, 2012, 13, 505-516.	7.7	399

#	Article	IF	Citations
130	<i>ZmcrtRB3</i> Encodes a Carotenoid Hydroxylase that Affects the Accumulation of α arotene in Maize Kernel ^F . Journal of Integrative Plant Biology, 2012, 54, 260-269.	4.1	49
131	A Sequential Quantitative Trait Locus Fineâ€Mapping Strategy Using Recombinantâ€Derived Progeny ^F . Journal of Integrative Plant Biology, 2012, 54, 228-237.	4.1	55
132	Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics, 2012, 124, 585-596.	1.8	42
133	Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theoretical and Applied Genetics, 2012, 124, 867-874.	1.8	72
134	Diagnostics in Plant Breeding. , 2013, , .		2
135	Spatial and temporal expression modes of MicroRNAs in an elite rice hybrid and its parental lines. Planta, 2013, 238, 259-269.	1.6	17
136	Crop crop/cropping Responses to Available Soil Water crop/cropping Responses to available soil water. , 2013, , 615-637.		0
138	Grass Meristems I: Shoot Apical Meristem Maintenance, Axillary Meristem Determinacy and the Floral Transition. Plant and Cell Physiology, 2013, 54, 302-312.	1.5	109
139	Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics, 2013, 101, 157-162.	1.3	54
140	Polymorphism pattern at a miniature invertedâ€repeat transposable element locus downstream of the domestication gene <i>Teosinteâ€branched1</i> in wild and domesticated pearl millet. Molecular Ecology, 2013, 22, 327-340.	2.0	7
141	Incomplete transfer of accessory loci influencing <i><scp>S</scp>b<scp>MATE</scp></i> expression underlies genetic background effects for aluminum tolerance in sorghum. Plant Journal, 2013, 73, 276-288.	2.8	31
142	<i>ZmGA3ox2</i> , a candidate gene for a major <scp>QTL</scp> , <scp><i>qPH3.1</i></scp> , for plant height in maize. Plant Journal, 2013, 73, 405-416.	2.8	138
144	Expression QTL mapping in grapevineâ€"Revisiting the genetic determinism of grape skin colour. Plant Science, 2013, 207, 18-24.	1.7	28
145	Carrying Capacity for Aquaculture, Modeling Frameworks for Determination of., 2013,, 417-448.		13
147	Crop Traits crop/cropping trait: Gene Isolation crop/cropping trait gene isolation., 2013,, 667-698.		0
148	Retrotransposon-related genetic distance and hybrid performance in sunflower (Helianthus annuus) Tj $$ ETQq 1 1	0.784314 	rgBT /Overlo
152	Molecular Genetic Basis of the Domestication Syndrome in Cereals. , 2013, , 319-340.		3
153	Ancient cis-regulatory constraints and the evolution of genome architecture. Trends in Genetics, 2013, 29, 521-528.	2.9	30

#	Article	IF	CITATIONS
154	Grasses provide new insights into regulation of shoot branching. Trends in Plant Science, 2013, 18, 41-48.	4.3	124
155	From Many, One: Genetic Control of Prolificacy during Maize Domestication. PLoS Genetics, 2013, 9, e1003604.	1.5	111
156	Genome-Wide Association Study and Pathway-Level Analysis of Tocochromanol Levels in Maize Grain. G3: Genes, Genomes, Genetics, 2013, 3, 1287-1299.	0.8	152
157	Transcription Start Site Evolution in Drosophila. Molecular Biology and Evolution, 2013, 30, 1966-1974.	3.5	29
158	Genetic control of inflorescence architecture during rice domestication. Nature Communications, 2013, 4, 2200.	5.8	134
159	Qualitative and Quantitative Trait Polymorphisms in Maize. , 2013, , 405-442.		1
160	Genetic Control of Maize Shoot Apical Meristem Architecture. G3: Genes, Genomes, Genetics, 2014, 4, 1327-1337.	0.8	13
161	Expression patterns of micro <scp>RNA</scp> s in different organs and developmental stages of a superhybrid rice <scp>LYP</scp> 9 and its parental lines. Plant Biology, 2014, 16, 878-887.	1.8	1
162	Mining Natural Variation for Maize Improvement: Selection on Phenotypes and Genes., 2014,, 615-649.		24
163	Distinct double flower varieties in Camellia japonica exhibit both expansion and contraction of C-class gene expression. BMC Plant Biology, 2014, 14, 288.	1.6	40
164	Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biology, 2014, 15, R40.	13.9	419
165	The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize. BMC Genetics, 2014, 15, 23.	2.7	53
166	Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nature Communications, 2014, 5, 3352.	5.8	177
167	Next generation genetic mapping of the Ligon-lintless-2 (Li 2) locus in upland cotton (Gossypium) Tj ETQq $1\ 1$	0.784314 rgl	BT_{6}Overlock
168	Nucleotide diversity in lignification genes and QTNs for lignin quality in a multi-parental population of Eucalyptus urophylla. Tree Genetics and Genomes, 2014, 10, 1281-1290.	0.6	5
169	Genetic Dissection of a Genomic Region with Pleiotropic Effects on Domestication Traits in Maize Reveals Multiple Linked QTL. Genetics, 2014, 198, 345-353.	1.2	34
170	Genetic Control of Heterochrony in <i>Eucalyptus globulus</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1235-1245.	0.8	36
171	Comparison of the MpEF1α and CaMV35 promoters for application in Marchantia polymorpha overexpression studies. Transgenic Research, 2014, 23, 235-244.	1.3	93

#	Article	IF	CITATIONS
172	Genetic and Hormonal Regulation of Maize Inflorescence Development. Advances in Botanical Research, 2014, 72, 263-296.	0.5	8
173	Genomic regions underlying agronomic traits in linseed (<i>Linum usitatissimum</i> L.) as revealed by association mapping. Journal of Integrative Plant Biology, 2014, 56, 75-87.	4.1	99
174	A Genome-Wide Scan for Evidence of Selection in a Maize Population Under Long-Term Artificial Selection for Ear Number. Genetics, 2014, 196, 829-840.	1.2	63
175	Maize orthologs of rice <i>GS5</i> and their transâ€regulator are associated with kernel development. Journal of Integrative Plant Biology, 2015, 57, 943-953.	4.1	55
176	Association analysis of five candidate genes with plant height and dry matter yield in perennial ryegrass. Plant Breeding, 2015, 134, 454-460.	1.0	9
178	Flowering Plants. Monocots., 2015, , .		144
179	Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. Journal of Experimental Botany, 2015, 66, 3917-3930.	2.4	53
180	Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine. BMC Plant Biology, 2015, 15, 253.	1.6	41
181	DNase I hypersensitivity mapping, genomic footprinting, and transcription factor networks in plants. Current Plant Biology, 2015, 3-4, 40-47.	2.3	33
182	The upstream regulatory sequence of the light harvesting complex Lhcf2 gene of the marine diatom Phaeodactylum tricornutum enhances transcription in an orientation- and distance-independent fashion. Marine Genomics, 2015, 24, 69-79.	0.4	15
184	Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. Journal of Experimental Botany, 2015, 66, 1271-1290.	2.4	46
185	An-2 Encodes a Cytokinin Synthesis Enzyme that Regulates Awn Length and Grain Production in Rice. Molecular Plant, 2015, 8, 1635-1650.	3.9	116
186	Tillering in the in sugary 1 in the invariant to signal. Plant Signaling and Behavior, 2015, 10, e1078954.	1.2	14
187	Genome-Wide Prediction and Validation of Intergenic Enhancers in Arabidopsis Using Open Chromatin Signatures. Plant Cell, 2015, 27, 2415-2426.	3.1	136
188	Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC Genomics, 2015, 16, 601.	1.2	26
189	Distinct Regulatory Changes Underlying Differential Expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR Genes Associated with Petal Variations in Zygomorphic Flowers of <i>Petrocosmea</i> spp. of the Family Gesneriaceae Â. Plant Physiology, 2015, 169. 2138-2151.	2.3	48
190	Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biology, 2015, 16, 168.	3.8	52
191	Exploring an Emerging Issue: Crop Epigenetics. Plant Molecular Biology Reporter, 2015, 33, 751-755.	1.0	5

#	Article	IF	CITATIONS
192	The genome of black raspberry (<i>Rubus occidentalis</i>). Plant Journal, 2016, 87, 535-547.	2.8	111
193	Small interfering <scp>RNA</scp> s from bidirectional transcripts of <i>Gh<scp>MML</scp>3_A12</i> regulate cotton fiber development. New Phytologist, 2016, 210, 1298-1310.	3.5	124
194	Establishing the Architecture of Plant Gene Regulatory Networks. Methods in Enzymology, 2016, 576, 251-304.	0.4	8
195	eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato. Plant Physiology, 2016, 172, 328-340.	2.3	87
196	Plant Enhancers: A Call for Discovery. Trends in Plant Science, 2016, 21, 974-987.	4.3	115
197	Genetic Architecture of Domestication-Related Traits in Maize. Genetics, 2016, 204, 99-113.	1.2	39
198	DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nature Communications, 2016, 7, 12790.	5.8	51
199	The Footprint of Polygenic Adaptation on Stress-Responsive <i>Cis< i>-Regulatory Divergence in the<i>Arabidopsis Genus< i>. Molecular Biology and Evolution, 2016, 33, 2088-2101.</i></i>	3.5	50
200	Genetic basis for glandular trichome formation in cotton. Nature Communications, 2016, 7, 10456.	5.8	130
201	Miniature Inverted-repeat Transposable Elements (MITEs) and their effects on the regulation of major genes in cereal grass genomes. Molecular Breeding, 2016, 36, 1.	1.0	8
202	The Genetic Basis of Haploid Induction in Maize Identified with a Novel Genome-Wide Association Method. Genetics, 2016, 202, 1267-1276.	1.2	61
203	Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. Plant Physiology, 2016, 170, 2187-2203.	2.3	77
204	Functional molecular markers for crop improvement. Critical Reviews in Biotechnology, 2016, 36, 917-930.	5.1	63
205	The Role of TCP Transcription Factors in Shaping Flower Structure, Leaf Morphology, and Plant Architecture. , 2016, , 249-267.		24
206	Towards genome-wide prediction and characterization of enhancers in plants. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 131-139.	0.9	53
207	Landscape Genomics of Angiosperm Trees: From Historic Roots to Discovering New Branches of Adaptive Evolution. Plant Genetics and Genomics: Crops and Models, 2017, , 303-333.	0.3	8
208	Unconscious selection drove seed enlargement in vegetable crops. Evolution Letters, 2017, 1, 64-72.	1.6	37
209	Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Reports, 2017, 36, 1187-1213.	2.8	81

#	Article	IF	CITATIONS
210	Combining QTL and candidate gene analysis with phenotypic model to unravel the relationship between lodging and related traits in soybean. Molecular Breeding, 2017, 37, 1.	1.0	6
211	A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nature Communications, 2017, 8, 14789.	5.8	149
212	Duplication of an upstream silencer of FZP increases grain yield in rice. Nature Plants, 2017, 3, 885-893.	4.7	121
213	Ideal crop plant architecture is mediated by <i>tassels replace upper ears1,</i> a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8656-E8664.	3.3	83
215	The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice. Plant Physiology, 2017, 175, 774-785.	2.3	114
217	Polyploidy and Genomic Changes. , 2017, , 69-87.		0
218	Determination of the Genetic Architecture Underlying Short Wavelength Sensitivity in Lake Malawi Cichlids. Journal of Heredity, 2017, 108, 379-390.	1.0	12
219	Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences. Frontiers in Plant Science, 2017, 8, 900.	1.7	61
220	Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biology, 2017, 18, 137.	3.8	134
221	Evolutionary history of the NAM-B1 gene in wild and domesticated tetraploid wheat. BMC Genetics, 2017, 18, 118.	2.7	16
222	Relationships between Gene Structure andÂGenome Instability in Flowering Plants. Molecular Plant, 2018, 11, 407-413.	3.9	10
223	Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture. Plant and Cell Physiology, 2018, 59, 448-457.	1.5	37
224	<i>ZmCCT9</i> enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E334-E341.	3.3	210
225	Genome-wide Analysis of Transcriptional Variability in a Large Maize-Teosinte Population. Molecular Plant, 2018, 11, 443-459.	3.9	87
226	Complex Relationships between Chromatin Accessibility, Sequence Divergence, and Gene Expression in Arabidopsis thaliana. Molecular Biology and Evolution, 2018, 35, 837-854.	3.5	33
227	Weeding out bad alleles. Nature Plants, 2018, 4, 193-194.	4.7	3
228	Retrotransposon-related genetic distance among inbred lines of sweet corn (Zea mays var.) Tj ETQq0 0 0 rgBT /Ov 16, 50-58.	verlock 10 0.4	Tf 50 107 To 1
229	Integrating Coexpression Networks with GWAS to Prioritize Causal Genes in Maize. Plant Cell, 2018, 30, 2922-2942.	3.1	137

#	Article	IF	Citations
231	Abundant Small Genetic Alterations after Upland Cotton Domestication. BioMed Research International, 2018, 2018, 1-7.	0.9	2
232	Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nature Communications, 2018, 9, 4157.	5.8	63
233	Genomewide Selection for Unfavorably Correlated Traits in Maize. Crop Science, 2018, 58, 1587-1593.	0.8	7
234	On the Road to Breeding 4.0: Unraveling the Good, the Bad, and the Boring of Crop Quantitative Genomics. Annual Review of Genetics, 2018, 52, 421-444.	3.2	182
235	Genomic approaches for studying crop evolution. Genome Biology, 2018, 19, 140.	3.8	54
236	The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nature Communications, 2018, 9, 4526.	5.8	146
237	Enhancer-Promoter Interaction of <i>SELF PRUNING 5G</i> Shapes Photoperiod Adaptation. Plant Physiology, 2018, 178, 1631-1642.	2.3	34
238	Population Genomics of Crop Domestication: Current State and Perspectives. Population Genomics, 2018, , 685-707.	0.2	1
239	Genome-Wide Identification and Expression Profiling of the TCP Family Genes in Spike and Grain Development of Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2018, 9, 1282.	1.7	46
240	Differential transcriptome patterns associated with early seedling development in a wild and a domesticated common bean (Phaseolus vulgaris L.) accession. Plant Science, 2018, 274, 153-162.	1.7	9
242	Molecular cloning and sequence variance analysis of the TEOSINTE BRANCHED1 (TB1) gene in bermudagrass [Cynodon dactylon (L.) Pers]. Journal of Plant Physiology, 2018, 229, 142-150.	1.6	7
243	ldentification and Fine-Mapping of a Major Maize Leaf Width QTL in a Re-sequenced Large Recombinant Inbred Lines Population. Frontiers in Plant Science, 2018, 9, 101.	1.7	21
244	Signatures of Selection in the Genomes of Chinese Chestnut (Castanea mollissima Blume): The Roots of Nut Tree Domestication. Frontiers in Plant Science, 2018, 9, 810.	1.7	18
245	Phytoplasma effector SWP1 induces witches' broom symptom by destabilizing the TCP transcription factor BRANCHED1. Molecular Plant Pathology, 2018, 19, 2623-2634.	2.0	61
246	Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays). BMC Plant Biology, 2018, 18, 17.	1.6	33
247	A 55ÂK SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 2018, 131, 2439-2450.	1.8	95
248	Keystone Genes. Trends in Ecology and Evolution, 2018, 33, 689-700.	4.2	26
249	Molecular Functions of Rice Cytosol-Localized RING Finger Protein 1 in Response to Salt and Drought and Comparative Analysis of Its Grass Orthologs. Plant and Cell Physiology, 2019, 60, 2394-2409.	1.5	6

#	Article	IF	Citations
251	Boosting Macroevolution: Genomic Changes Triggering Qualitative Expansions of Regulatory Potential. Fascinating Life Sciences, 2019, , 175-207.	0.5	0
252	The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nature Communications, 2019, 10, 3810.	5.8	116
253	Global Quantitative Mapping of Enhancers in Rice by STARR-seq. Genomics, Proteomics and Bioinformatics, 2019, 17, 140-153.	3.0	43
254	Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nature Communications, 2019, 10, 2632.	5.8	93
255	Long-range interactions between proximal and distal regulatory regions in maize. Nature Communications, 2019, 10, 2633.	5.8	79
256	Natural Variations at TIG1 Encoding a TCP Transcription Factor Contribute to Plant Architecture Domestication in Rice. Molecular Plant, 2019, 12, 1075-1089.	3.9	70
257	Chromatin Evolution-Key Innovations Underpinning Morphological Complexity. Frontiers in Plant Science, 2019, 10, 454.	1.7	10
258	A <i>Very Oil Yellow1</i> Modifier of the <i>Oil Yellow1-N1989</i> Impact of <i>Cis</i> -regulatory Variation in Maize. G3: Genes, Genomes, Genetics, 2019, 9, 375-390.	0.8	9
260	Mapping and Dynamics of Regulatory DNA in Maturing Arabidopsis thaliana Siliques. Frontiers in Plant Science, 2019, 10, 1434.	1.7	13
261	GmBRC1 is a Candidate Gene for Branching in Soybean (Glycine max (L.) Merrill). International Journal of Molecular Sciences, 2019, 20, 135.	1.8	23
262	Understanding Grass Domestication through Maize Mutants. Trends in Genetics, 2019, 35, 118-128.	2.9	27
263	Ectopic Expression of a Maize Gene Is Induced by Composite Insertions Generated Through Alternative Transposition. Genetics, 2020, 216, 1039-1049.	1.2	9
264	Exaptive Evolution of Target of Rapamycin Signaling in Multicellular Eukaryotes. Developmental Cell, 2020, 54, 142-155.	3.1	59
265	The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis, 2020, 58, e23399.	0.8	18
266	3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biology, 2020, 21, 143.	3.8	60
267	Effects of Nonstarch Genetic Modifications on Starch Structure and Properties. Foods, 2020, 9, 222.	1.9	6
268	Evolution of Plant Architecture in Oryza Driven by the PROG1 Locus. Frontiers in Plant Science, 2020, 11, 876.	1.7	5
269	The regulatory landscape of early maize inflorescence development. Genome Biology, 2020, 21, 165.	3.8	32

#	Article	IF	CITATIONS
270	Genomeâ€wide expression quantitative trait locus studies facilitate isolation of causal genes controlling panicle structure. Plant Journal, 2020, 103, 266-278.	2.8	9
271	Molecular mapping and identification of quantitative trait loci for domestication traits in the field cress (Lepidium campestre L.) genome. Heredity, 2020, 124, 579-591.	1.2	3
272	Molecular characterization of teosinte branched gene governing branching architecture in cultivated maize and wild relatives. 3 Biotech, 2020, 10, 77.	1.1	6
273	The contribution of cis- and trans-acting variants to gene regulation in wild and domesticated barley under cold stress and control conditions. Journal of Experimental Botany, 2020, 71, 2573-2584.	2.4	15
274	UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize. PLoS Genetics, 2020, 16, e1008764.	1.5	31
275	Freeze substitution Hi-C, a convenient and cost-effective method for capturing the natural 3D chromatin conformation from frozen samples. Journal of Genetics and Genomics, 2021, 48, 237-247.	1.7	2
276	Harnessing Knowledge from Maize and Rice Domestication for New Crop Breeding. Molecular Plant, 2021, 14, 9-26.	3.9	58
277	Fine Mapping and Candidate Gene Prediction of the Quantitative Trait Locus qPL8 for Panicle Length in Rice. Phyton, 2021, 90, 789-802.	0.4	3
278	Rural Financial Development Impacts on Agricultural Technology Innovation: Evidence from China. International Journal of Environmental Research and Public Health, 2021, 18, 1110.	1.2	39
279	Largeâ€fragment insertion activates gene <i>GaFZ</i> (<i>Ga08G0121</i>) and is associated with the fuzz and trichome reduction in cotton (<i>Gossypium arboreum</i>). Plant Biotechnology Journal, 2021, 19, 1110-1124.	4.1	17
280	Gene duplication at the <i>Fascicled ear1</i> locus controls the fate of inflorescence meristem cells in maize. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
281	Developmental genetics of maize vegetative shoot architecture. Molecular Breeding, 2021, 41, 1.	1.0	8
283	A Genetic Linkage Map of BC2 Population Reveals QTL Associated with Plant Architecture Traits in Lagerstroemia. Forests, 2021, 12, 322.	0.9	2
284	Enhancers as potential targets for engineering salinity stress tolerance in crop plants. Physiologia Plantarum, 2021, 173, 1382-1391.	2.6	5
285	A cis-regulatory atlas in maize at single-cell resolution. Cell, 2021, 184, 3041-3055.e21.	13.5	176
286	Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Research, 2021, 31, 1245-1257.	2.4	29
287	History of plant genetic mutations \hat{A}_{\pm} human influences. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 554.	0.9	1
288	An epigenetic basis of inbreeding depression in maize. Science Advances, 2021, 7, .	4.7	10

#	Article	IF	CITATIONS
289	Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression. Plant Journal, 2021, 107, 1631-1647.	2.8	17
290	The native cistrome and sequence motif families of the maize ear. PLoS Genetics, 2021, 17, e1009689.	1.5	19
291	The Plant Genome: Decoding the Transcriptional Hardwiring. , 0, , 196-228.		4
292	Developmental and Reproductive Traits in the Triticeae. , 2009, , 591-609.		3
293	Large-Scale Discovery of Non-conventional Peptides in Maize and Arabidopsis through an Integrated Peptidogenomic Pipeline. Molecular Plant, 2020, 13, 1078-1093.	3.9	58
294	Manipulation of plant architecture to enhance crop disease control CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	39
295	Assessing the regulatory potential of transposable elements using chromatin accessibility profiles of maize transposons. Genetics, 2021, 217, 1-13.	1.2	14
302	The Evolutionary Fate of Phenotypic Plasticity and Functional Traits under Domestication in Manioc: Changes in Stem Biomechanics and the Appearance of Stem Brittleness. PLoS ONE, 2013, 8, e74727.	1.1	34
303	Natural variation in teosinte at the domestication locus < i>teosinte branched $1 < i < i < i < i < i < i < i < i < i < $	0.9	13
305	Scientific, Botanical, and Biological Research on Maize. , 2010, , 85-147.		0
306	Populus Genomic Resources., 2011,, 29-61.		0
307	Effects of regulatory evolution on morphological diversity. Biodiversity Science, 2014, 22, 72.	0.2	0
314	Impact of transposable elements on the evolution of complex living systems and their epigenetic control. BioSystems, 2021, 210, 104566.	0.9	6
315	Maize Breeding and Genomics: An Historical Overview and Perspectives., 2007,, 129-146.		1
316	Chromatin and regulatory differentiation between bundle sheath and mesophyll cells in maize. Plant Journal, 2022, 109, 675-692.	2.8	16
317	Gene network simulations provide testable predictions for the molecular domestication syndrome. Genetics, 2022, 220, .	1.2	8
319	The Impact of Fasciation on Maize Inflorescence Architecture. Journal of Plant Biology, 2022, 65, 87-98.	0.9	6
320	Axillary Bud Fate Shapes Plant Architecture in Horticultural Crops. Horticulturae, 2022, 8, 130.	1.2	3

#	Article	IF	CITATIONS
321	Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize. Journal of Advanced Research, 2022, 41, 179-190.	4.4	10
322	Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant Cell, 2022, 34, 718-741.	3.1	125
323	Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. BMC Plant Biology, 2022, 22, 72.	1.6	9
325	The power of classic maize mutants: Driving forward our fundamental understanding of plants. Plant Cell, 2022, 34, 2505-2517.	3.1	10
326	Transposon Insertion Drove the Loss of Natural Seed Shattering during Foxtail Millet Domestication. Molecular Biology and Evolution, 2022, 39, .	3.5	8
357	Large-scale discovery of non-conventional peptides in grape (<i>Vitis vinifera</i> L.) through peptidogenomics. Horticulture Research, 2022, 9, uhac023.	2.9	6
358	The miR319/TaGAMYB3 module regulates plant architecture and improves grain yield in common wheat (<i>Triticum aestivum</i>). New Phytologist, 2022, 235, 1515-1530.	3.5	12
359	Deciphering Pleiotropic Signatures of Regulatory SNPs in Zea mays L. Using Multi-Omics Data and Machine Learning Algorithms. International Journal of Molecular Sciences, 2022, 23, 5121.	1.8	2
360	Unintended Consequences of Plant Domestication. Plant and Cell Physiology, 2022, 63, 1573-1583.	1.5	4
361	Molecular genetic variation of animals and plants under domestication. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
362	Environmental factors have a major effect in shaping the gene expression of Siberian larch in the Altai Mountains of China. Plant Genome, 2022, 15, .	1.6	2
364	A singleâ€nucleotide polymorphism in <i>WRKY33</i> promoter is associated with the cold sensitivity in cultivated tomato. New Phytologist, 2022, 236, 989-1005.	3.5	18
366	Identification of small effect quantitative trait loci of plant architectural, flowering, and early maturity traits in reciprocal interspecific introgression population in cotton. Frontiers in Plant Science, 0, 13, .	1.7	2
367	2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of revolution in rice (<i>Oryza sativa</i> L.). Critical Reviews in Biotechnology, 2024, 44, 139-162.	5.1	16
368	Cytogenetics and Consequences of Polyploidization on Different Biotic-Abiotic Stress Tolerance and the Potential Mechanisms Involved. Plants, 2022, 11, 2684.	1.6	7
370	Deciphering the regulatory network of miR156 in plant architecture and abiotic stress resistance of alfalfa (Medicago sativa) by transcriptome sequencing. Industrial Crops and Products, 2022, 189, 115828.	2.5	3
371	Trans-driven variation in expression is common among detoxification genes in the extreme generalist herbivore Tetranychus urticae. PLoS Genetics, 2022, 18, e1010333.	1.5	12
372	Interspecies transfer of <i>RAMOSA1</i> orthologs and promoter <i>cis</i> sequences impacts maize inflorescence architecture. Plant Physiology, 0, , .	2.3	0

#	Article	IF	CITATIONS
374	<i>ci>cis</i> -Regulatory Elements in Plant Development, Adaptation, and Evolution. Annual Review of Plant Biology, 2023, 74, 111-137.	8.6	28
375	Identification of a new QTL underlying seminal root number in a maize-teosinte population. Frontiers in Plant Science, $0,14,.$	1.7	2
377	Tiller Number 1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nature Communications, 2023, 14 , .	5.8	12
378	Elucidating the patterns of pleiotropy and its biological relevance in maize. PLoS Genetics, 2023, 19, e1010664.	1.5	0
383	Drought stress in maize: stress perception to molecular response and strategies for its improvement. Functional and Integrative Genomics, 2023, 23, .	1.4	1