Human gut microbes associated with obesity

Nature 444, 1022-1023 DOI: 10.1038/4441022a

Citation Report

#	Article	IF	CITATIONS
2	Effects of Feeding Increasing Proportions of Corn Grain on Concentration of Lipopolysaccharide in the Rumen Fluid and the Subsequent Alterations in Immune Responses in Goats. Asian-Australasian Journal of Animal Sciences, 1970, 26, 1437-1445.	2.4	27
3	Understanding and Addressing the Epidemic of Obesity: An Energy Balance Perspective. Endocrine Reviews, 2006, 27, 750-761.	8.9	476
4	Obesity and gut flora. Nature, 2006, 444, 1009-1010.	13.7	188
5	Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13780-13785.	3.3	3,871
6	Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 979-984.	3.3	2,197
7	In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7622-7627.	3.3	154
8	Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19392-19397.	3.3	327
9	Assessment of the diversity and stability of faecal bacteria from healthy adults using molecular methods. Microbial Ecology in Health and Disease, 2007, 19, 229-240.	3.8	12
10	A topâ€down systems biology view of microbiomeâ€mammalian metabolic interactions in a mouse model. Molecular Systems Biology, 2007, 3, 112.	3.2	420
11	The 10 remaining mysteries of inflammatory bowel disease. Gut, 2007, 57, 429-433.	6.1	54
12	Mucosa-Associated Bacterial Diversity in Relation to Human Terminal Ileum and Colonic Biopsy Samples. Applied and Environmental Microbiology, 2007, 73, 7435-7442.	1.4	190
13	Howardella ureilytica gen. nov., sp. nov., a Gram-positive, coccoid-shaped bacterium from a sheep rumen. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 2940-2945.	0.8	38
14	<i>Bacteroides</i> : the Good, the Bad, and the Nitty-Gritty. Clinical Microbiology Reviews, 2007, 20, 593-621.	5.7	1,630
15	Metabolic Syndrome in Insects Triggered by Gut Microbes. Journal of Diabetes Science and Technology, 2007, 1, 794-796.	1.3	9
16	Metabonomics in Diabetes Research. Journal of Diabetes Science and Technology, 2007, 1, 549-557.	1.3	23
17	Topâ€down versus bottomâ€up—rediscovering physiology via systems biology?. Molecular Systems Biology, 2007, 3, 113.	3.2	11
18	Exploring the link between gut microbes and obesity. Future Microbiology, 2007, 2, 261-263.	1.0	0
19	Gut microflora as a target for energy and metabolic homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2007, 10, 729-734.	1.3	270

	CHATION R	EPORT	
#	Article	IF	CITATIONS
20	The normal intestinal microbiota. Current Opinion in Infectious Diseases, 2007, 20, 508-513.	1.3	114
21	Human gut microbes associated with obesity. Yearbook of Endocrinology, 2007, 2007, 163-165.	0.0	3
22	lgA Response to Symbiotic Bacteria as a Mediator of Gut Homeostasis. Cell Host and Microbe, 2007, 2, 328-339.	5.1	729
23	Metabolomics. Cell Metabolism, 2007, 6, 348-351.	7.2	199
24	Bacterial genome sequencing and its use in infectious diseases. Lancet Infectious Diseases, The, 2007, 7, 711-723.	4.6	79
25	The Fecal Microbiota of Irritable Bowel Syndrome Patients Differs Significantly From That of Healthy Subjects. Gastroenterology, 2007, 133, 24-33.	0.6	882
26	Probiotics in Children. Pediatric Clinics of North America, 2007, 54, 949-967.	0.9	29
27	Metabonomic Investigations of Aging and Caloric Restriction in a Life-Long Dog Study. Journal of Proteome Research, 2007, 6, 1846-1854.	1.8	141
28	Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes. DNA Research, 2007, 14, 169-181.	1.5	760
29	Flore intestinale et obésité. Medecine Des Maladies Metaboliques, 2007, 1, 42-43.	0.1	0
30	Development of the Human Infant Intestinal Microbiota. PLoS Biology, 2007, 5, e177.	2.6	2,390
31	Fatty acid receptors as new therapeutic targets for diabetes. Expert Opinion on Therapeutic Targets, 2007, 11, 661-671.	1.5	91
32	The evolving role of infectomics in drug discovery. Expert Opinion on Drug Discovery, 2007, 2, 961-975.	2.5	5
33	Evolution of Symbiotic Bacteria in the Distal Human Intestine. PLoS Biology, 2007, 5, e156.	2.6	490
35	Dynamics of host defense: the view at the front lines. Nature Immunology, 2007, 8, 1153-1157.	7.0	9
36	Inter-species transplantation of gut microbiota from human to pigs. ISME Journal, 2007, 1, 156-162.	4.4	152
37	The Human Microbiome Project. Nature, 2007, 449, 804-810.	13.7	4,750
38	Infectious diarrhea in transplant recipients: current challenges and future directions. Transplant Infectious Disease, 2007, 9, 263-264.	0.7	2

#	Article	IF	CITATIONS
39	Interactions and competition within the microbial community of the human colon: links between diet and health. Environmental Microbiology, 2007, 9, 1101-1111.	1.8	518
40	Diversity of the human gastrointestinal tract microbiota revisited. Environmental Microbiology, 2007, 9, 2125-2136.	1.8	485
41	Importance of microbial colonization of the gut in early life to the development of immunity. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 622, 58-69.	0.4	190
43	Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice. Diabetologia, 2007, 50, 1867-1879.	2.9	108
44	Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007, 50, 2374-2383.	2.9	1,507
45	Microbial host interactions in IBD: Implications for pathogenesis and therapy. Current Gastroenterology Reports, 2007, 9, 497-507.	1.1	96
46	Bacterial vaginosis: Culture- and PCR-based characterizations of a complex polymicrobial disease's pathobiology. Current Infectious Disease Reports, 2007, 9, 485-500.	1.3	34
49	Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behavioral Ecology and Sociobiology, 2008, 62, 479-497.	0.6	165
50	The human gut microbiome: Implications for future health care. Current Gastroenterology Reports, 2008, 10, 396-403.	1.1	122
51	New horizons for the infectious diseases specialist: How gut microflora promote health and disease. Current Infectious Disease Reports, 2008, 10, 92-98.	1.3	22
52	Intestinal microflora and obesity in rats. Folia Microbiologica, 2008, 53, 225-228.	1.1	22
54	From bacterial genomics to metagenomics: concept, tools and recent advances. Indian Journal of Microbiology, 2008, 48, 173-194.	1.5	24
55	Obesity pandemics and the modification of digestive bacterial flora. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 631-634.	1.3	75
56	Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek, 2008, 94, 35-50.	0.7	182
57	Proteomic investigation of the adaptation of <i>Lactococcus lactis</i> to the mouse digestive tract. Proteomics, 2008, 8, 1661-1676.	1.3	31
58	Vitamin D discovery outpaces FDA decision making. BioEssays, 2008, 30, 173-182.	1.2	64
59	Personalizing foods: is genotype necessary?. Current Opinion in Biotechnology, 2008, 19, 121-128.	3.3	29
60	Human Symbiont Bacteroides thetaiotaomicron Synthesizes 2-Keto-3-Deoxy-D-Glycero-D- Galacto-Nononic Acid (KDN). Chemistry and Biology, 2008, 15, 893-897.	6.2	16

#	Article	IF	CITATIONS
61	Gut instincts: Explorations in intestinal physiology and drug delivery. International Journal of Pharmaceutics, 2008, 364, 213-226.	2.6	394
62	Evolution of Mammals and Their Gut Microbes. Science, 2008, 320, 1647-1651.	6.0	3,171
63	Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut, 2008, 57, 1185-1191.	6.1	239
64	The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the United States of America, 2008, 105, 17994-17999.	3.3	980
65	Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency. FEMS Microbiology Letters, 2008, 288, 85-91.	0.7	251
66	Species divergence and the measurement of microbial diversity. FEMS Microbiology Reviews, 2008, 32, 557-578.	3.9	400
67	Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Reviews, 2008, 32, 723-735.	3.9	1,331
68	Obesity – a social and physical risk. JDDG - Journal of the German Society of Dermatology, 2008, 6, 442-449.	0.4	4
69	Adipositas – ein gesellschaftliches und medizinisches Risiko. JDDG - Journal of the German Society of Dermatology, 2008, 6,	0.4	0
70	Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity, 2008, 32, 1720-1724.	1.6	1,024
71	Functional metagenomic profiling of nine biomes. Nature, 2008, 452, 629-632.	13.7	842
72	Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature, 2008, 452, 1012-1016.	13.7	254
73	Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 2008, 453, 396-400.	13.7	966
74	Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 2008, 455, 1109-1113.	13.7	1,745
75	Microbiology: The inside story. Nature, 2008, 453, 578-580.	13.7	80
76	Developmental Changes of Gut Microflora and Enzyme Activity in Rat Pups Exposed to Fatâ€rich Diet. Obesity, 2008, 16, 2610-2615.	1.5	65
77	Gut microbiota: a potential new territory for drug targeting. Nature Reviews Drug Discovery, 2008, 7, 123-129.	21.5	426
78	Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Reviews Immunology, 2008, 8, 411-420.	10.6	952

#	Article	IF	CITATIONS
79	Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology, 2008, 6, 121-131.	13.6	1,407
80	Microbial diversity and the genetic nature of microbial species. Nature Reviews Microbiology, 2008, 6, 431-440.	13.6	521
81	Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology, 2008, 6, 776-788.	13.6	1,342
82	'Til death do us part': coming to terms with symbiotic relationships. Nature Reviews Microbiology, 2008, 6, 721-724.	13.6	47
83	Probiotic and Prebiotic Influence Beyond the Intestinal Tract. Nutrition Reviews, 2007, 65, 469-489.	2.6	176
84	Malnutrition as an enteric infectious disease with long-term effects on child development. Nutrition Reviews, 2008, 66, 487-505.	2.6	399
85	Development of a real-time PCR method for <i>Firmicutes</i> and <i>Bacteroidetes</i> in faeces and its application to quantify intestinal population of obese and lean pigs. Letters in Applied Microbiology, 2008, 47, 367-373.	1.0	448
86	Dietary fibre and the gut microbiota. Nutrition Bulletin, 2008, 33, 201-211.	0.8	167
87	The species composition of the human intestinal microbiota differs between particleâ€associated and liquid phase communities. Environmental Microbiology, 2008, 10, 3275-3283.	1.8	135
88	A curve fitting approach to estimate the extent of fermentation of indigestible carbohydrates. European Journal of Clinical Investigation, 2008, 38, 863-868.	1.7	15
89	Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics, 2008, 9, 576.	1.2	72
90	Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiology, 2008, 8, 125.	1.3	982
91	Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs. Anaerobe, 2008, 14, 224-228.	1.0	75
92	High maternal body mass index increases the risk of neonatal early onset group B streptococcal disease. Acta Paediatrica, International Journal of Paediatrics, 2008, 97, 1386-1389.	0.7	17
93	Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices. Structure, 2008, 16, 1105-1115.	1.6	305
94	Autoantibodies against appetite-regulating peptide hormones and neuropeptides: Putative modulation by gut microflora. Nutrition, 2008, 24, 348-359.	1.1	154
95	Genes and Molecules of Lactobacilli Supporting Probiotic Action. Microbiology and Molecular Biology Reviews, 2008, 72, 728-764.	2.9	782
96	Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing. PLoS ONE, 2008, 3, e2836.	1.1	901

		CITATION REPORT	
#	Article	IF	Citations
97	Gut Microbiota and Its Possible Relationship With Obesity. Mayo Clinic Proceedings, 2008, 83	, 460-469. 1.4	499
98	Dualistic acidic and neutral glucose fermentation balance in small intestine: Simulation in vitro Pathophysiology, 2008, 15, 211-220.). 1.0	15
99	The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S Sequencing. PLoS Biology, 2008, 6, e280.	rRNA 2.6	2,013
100	The Microbes of the Intestine: An Introduction to Their Metabolic and Signaling Capabilities. Endocrinology and Metabolism Clinics of North America, 2008, 37, 857-871.	1.2	67
101	Asthma and obesity: Common early-life influences in the inception of disease. Journal of Allerg Clinical Immunology, 2008, 121, 1075-1084.	y and 1.5	117
102	Cardiovascular consequences of obesity and targets for treatment. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 53-61.	0.5	11
103	Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes Molecular Systems Biology, 2008, 4, 219.	. 3.2	304
104	Metagenomics Is Not Enough. DNA and Cell Biology, 2008, 27, 219-221.	0.9	13
105	Practical Approach for the Identification and Isomer Elucidation of Biomarkers Detected in a Metabonomic Study for the Discovery of Individuals at Risk for Diabetes by Integrating the Chromatographic and Mass Spectrometric Information. Analytical Chemistry, 2008, 80, 1280-	3.2 1289.	178
106	Eukaryotic-Microbiota Crosstalk: Potential Mechanisms for Health Benefits of Prebiotics and Probiotics. Annual Review of Nutrition, 2008, 28, 215-231.	4.3	83
107	Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice FASEB Journal, 2008, 22, 2416-2426.	0.2	430
108	Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Molecular Systems Biology, 2008, 4, 157.	3.2	392
110	Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing NKT cells. Journal of Hepatology, 2008, 49, 821-830.	hepatic 1.8	364
111	Vicious cycle composed of gut flora and visceral fat: A novel explanation of the initiation and progression of atherosclerosis. Medical Hypotheses, 2008, 70, 808-811.	0.8	6
112	A renaissance for the pioneering 16S rRNA gene. Current Opinion in Microbiology, 2008, 11, 4	42-446. 2.3	418
113	Rapid lab-on-a-chip profiling of human gut bacteria. Journal of Microbiological Methods, 2008, 82-90.	72, _{0.7}	16
114	Role of gut microflora in the development of obesity and insulin resistance following high-fat c feeding. Pathologie Et Biologie, 2008, 56, 305-309.	liet 2.2	210
115	The role of microbiota in infectious disease. Trends in Microbiology, 2008, 16, 107-114.	3.5	440

#	Article	IF	CITATIONS
116	The search for disease-associated compositional shifts in bowel bacterial communities of humans. Trends in Microbiology, 2008, 16, 488-495.	3.5	36
117	Splenda Alters Gut Microflora and Increases Intestinal P-Glycoprotein and Cytochrome P-450 in Male Rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1415-1429.	1.1	273
118	Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes, 2008, 57, 1470-1481.	0.3	3,897
119	Bacterial Tag–Encoded FLX Amplicon Pyrosequencing (bTEFAP) for Microbiome Studies: Bacterial Diversity in the Ileum of Newly Weaned <i>Salmonella</i> -Infected Pigs. Foodborne Pathogens and Disease, 2008, 5, 459-472.	0.8	373
120	An Invitation to the Marriage of Metagenomics and Metabolomics. Cell, 2008, 134, 708-713.	13.5	236
121	Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host and Microbe, 2008, 3, 213-223.	5.1	2,535
122	Metagenomic Approaches for Defining the Pathogenesis of Inflammatory Bowel Diseases. Cell Host and Microbe, 2008, 3, 417-427.	5.1	423
123	Mucosal Glycan Foraging Enhances Fitness and Transmission of a Saccharolytic Human Gut Bacterial Symbiont. Cell Host and Microbe, 2008, 4, 447-457.	5.1	732
124	Methods for generating and colonizing gnotobiotic zebrafish. Nature Protocols, 2008, 3, 1862-1875.	5.5	181
125	Nutrigenomics and personalized nutrition: science and concept. Personalized Medicine, 2008, 5, 447-455.	0.8	57
126	High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut, 2008, 57, 1605-1615.	6.1	528
127	Microbial Influences in Inflammatory Bowel Diseases. Gastroenterology, 2008, 134, 577-594.	0.6	1,683
128	The Gut Microbiota Predispose to the Pathophysiology of Acute Postradiotherapy Diarrhea. American Journal of Gastroenterology, 2008, 103, 1754-1761.	0.2	154
129	Infections and obesity: A multinational epidemiological study. Scandinavian Journal of Infectious Diseases, 2008, 40, 381-386.	1.5	49
130	Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Research, 2008, 36, e120-e120.	6.5	508
131	Species Variation in the Fecal Metabolome Gives Insight into Differential Gastrointestinal Function. Journal of Proteome Research, 2008, 7, 352-360.	1.8	170
132	Ecological Role of Lactobacilli in the Gastrointestinal Tract: Implications for Fundamental and Biomedical Research. Applied and Environmental Microbiology, 2008, 74, 4985-4996.	1.4	594
133	Urinary Metabolic Profiles of Inflammatory Bowel Disease in Interleukin-10 Gene-Deficient Mice. Analytical Chemistry, 2008, 80, 5524-5531.	3.2	70

#	Article	IF	Citations
134	The microbiome of the cloacal openings of the urogenital and anal tracts of the tammar wallaby, Macropus eugenii. Microbiology (United Kingdom), 2008, 154, 1535-1543.	0.7	13
135	Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Animal Health Research Reviews, 2008, 9, 217-225.	1.4	203
136	Lipopolysaccharide Increases Cell Surface P-glycoprotein That Exhibits Diminished Activity in Intestinal Epithelial Cells. Drug Metabolism and Disposition, 2008, 36, 2145-2149.	1.7	12
137	Predominant Role of Host Genetics in Controlling the Composition of Gut Microbiota. PLoS ONE, 2008, 3, e3064.	1.1	263
138	New challenges in studying nutrition-disease interactions in the developing world. Journal of Clinical Investigation, 2008, 118, 1322-1329.	3.9	66
139	Feeding Our Immune System: Impact on Metabolism. Clinical and Developmental Immunology, 2008, 2008, 1-19.	3.3	207
140	Symbiotic gut microbes modulate human metabolic phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2117-2122.	3.3	994
141	Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2716-2720.	0.8	127
142	Therapeutic correction of bacterial dysbiosis discovered by molecular techniques. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16413-16414.	3.3	80
143	Systemic Control of Plasmacytoid Dendritic Cells by CD8+ T Cells and Commensal Microbiota. Journal of Immunology, 2008, 180, 5843-5852.	0.4	64
144	The Human Intestinal Microbiota and Microbiome. , 0, , 635-644.		0
145	Gut Decontamination with Norfloxacin and Ampicillin Enhances Insulin Sensitivity in Mice. Nestle Nutrition Workshop Series Paediatric Programme, 2008, 62, 127-140.	1.5	47
146	Complete Genome Sequence and Comparative Analysis of the Wild-type Commensal Escherichia coli Strain SE11 Isolated from a Healthy Adult. DNA Research, 2008, 15, 375-386.	1.5	88
147	The Role of Microbiota and Probiotics in Stress-Induced Gastrointestinal Damage. Current Molecular Medicine, 2008, 8, 282-298.	0.6	161
148	The Human Microbiome Project: Getting to the Guts of the Matter in Cancer Epidemiology. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 2523-2524.	1.1	36
149	Nutrigenomic Analysis of Diet-Gene Interactions on Functional Supplements for Weight Management. Current Genomics, 2008, 9, 239-251.	0.7	19
150	Salivary Genomics, Transcriptomics and Proteomics: The Emerging Concept of the Oral Ecosystem and their Use in the Early Diagnosis of Cancer and other Diseases. Current Genomics, 2008, 9, 11-21.	0.7	102
151	Impact of the Intestinal Microbiota on the Development of Mucosal Defense. Clinical Infectious Diseases, 2008, 46, S80-S86.	2.9	40

#	Article	IF	CITATIONS
152	<i>Enterococcus faecalis</i> from newborn babies regulate endogenous PPARÎ ³ activity and IL-10 levels in colonic epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1943-1948.	3.3	123
153	Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. British Journal of Nutrition, 2008, 100, 1269-1275.	1.2	139
154	Defining Personal Nutrition and Metabolic Health Through Metabonomics. Ernst Schering Research Foundation Workshop, 2008, , 251-264.	0.7	12
155	Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 970-975.	0.8	109
156	Metabolomic strategies to identify tissue-specific effects of cardiovascular drugs. Expert Opinion on Drug Metabolism and Toxicology, 2008, 4, 665-680.	1.5	13
157	Resistance to diet-induced obesity in mice with a single substituted chromosome. Physiological Genomics, 2008, 35, 116-122.	1.0	30
158	Update on Obesity. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2027-2034.	1.8	214
160	Prebiotics and Lipid Metabolism. , 2008, , 201-218.		4
161	Topâ€down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Molecular Systems Biology, 2008, 4, 205.	3.2	86
162	Growth in the First Two Years of Life. , 2008, 61, 135-144.		4
162 163		0.3	4
	Growth in the First Two Years of Life. , 2008, 61, 135-144. Quantitative Analysis of Microbial Metabolism in the Human Large Intestine. Current Nutrition and	0.3	
163	Growth in the First Two Years of Life. , 2008, 61, 135-144. Quantitative Analysis of Microbial Metabolism in the Human Large Intestine. Current Nutrition and Food Science, 2008, 4, 109-126. Molecular pathogenesis of inflammatory bowel disease: relevance for novel therapies. Personalized		12
163 164	Growth in the First Two Years of Life. , 2008, 61, 135-144. Quantitative Analysis of Microbial Metabolism in the Human Large Intestine. Current Nutrition and Food Science, 2008, 4, 109-126. Molecular pathogenesis of inflammatory bowel disease: relevance for novel therapies. Personalized Medicine, 2008, 5, 609-626.	0.8	12 3
163 164 165	Growth in the First Two Years of Life. , 2008, 61, 135-144. Quantitative Analysis of Microbial Metabolism in the Human Large Intestine. Current Nutrition and Food Science, 2008, 4, 109-126. Molecular pathogenesis of inflammatory bowel disease: relevance for novel therapies. Personalized Medicine, 2008, 5, 609-626. The Evidence to Support Health Claims for Probiotics. Journal of Nutrition, 2008, 138, 1250S-1254S. Energy intake is associated with endotoxemia in apparently healthy men. American Journal of Clinical	0.8 1.3	12 3 102
163 164 165 166	Growth in the First Two Years of Life. , 2008, 61, 135-144. Quantitative Analysis of Microbial Metabolism in the Human Large Intestine. Current Nutrition and Food Science, 2008, 4, 109-126. Molecular pathogenesis of inflammatory bowel disease: relevance for novel therapies. Personalized Medicine, 2008, 5, 609-626. The Evidence to Support Health Claims for Probiotics. Journal of Nutrition, 2008, 138, 1250S-1254S. Energy intake is associated with endotoxemia in apparently healthy men. American Journal of Clinical Nutrition, 2008, 87, 1219-1223. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women.	0.8 1.3 2.2	12 3 102 498
163 164 165 166	Growth in the First Two Years of Life. , 2008, 61, 135-144. Quantitative Analysis of Microbial Metabolism in the Human Large Intestine. Current Nutrition and Food Science, 2008, 4, 109-126. Molecular pathogenesis of inflammatory bowel disease: relevance for novel therapies. Personalized Medicine, 2008, 5, 609-626. The Evidence to Support Health Claims for Probiotics. Journal of Nutrition, 2008, 138, 1250S-1254S. Energy intake is associated with endotoxemia in apparently healthy men. American Journal of Clinical Nutrition, 2008, 87, 1219-1223. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. American Journal of Clinical Nutrition, 2008, 88, 894-899.	0.8 1.3 2.2 2.2	12 3 102 498 716

#	Article	IF	CITATIONS
171	Castrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology, 2008, 24, 4-10.	1.0	348
172	Probiotics: sorting the evidence from the myths. Medical Journal of Australia, 2008, 189, 182-183.	0.8	0
173	Bitter Taste Receptors Influence Glucose Homeostasis. PLoS ONE, 2008, 3, e3974.	1.1	227
175	Application of Ecological Network Theory to the Human Microbiome. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-6.	0.6	31
176	Interactions of the Intestinal Epithelium with the Pathogen and the Indigenous Microbiota: A Three-Way Crosstalk. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-14.	0.6	47
177	Title is missing!. Kagaku To Seibutsu, 2008, 46, 162-165.	0.0	0
178	Probiotic Bacteria Influence the Composition and Function of the Intestinal Microbiota. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-9.	0.6	128
179	The Human Microbiome and Infectious Diseases: Beyond Koch. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-2.	0.6	11
180	Insights into the Roles of Gut Microbes in Obesity. Interdisciplinary Perspectives on Infectious Diseases, 2008, 2008, 1-9.	0.6	34
182	Influence of Fecal Sample Storage on Bacterial Community Diversity. Open Microbiology Journal, 2009, 3, 40-46.	0.2	118
183	Editors' Choice. Yearbook of Paediatric Endocrinology, 2009, , 199-210.	0.0	0
184	Microbial functionality in the human intestinal tract. Frontiers in Bioscience - Landmark, 2009, Volume, 3074.	3.0	17
185	Monitoring Healthy Metabolic Trajectories with Nutritional Metabonomics. Nutrients, 2009, 1, 101-110.	1.7	13
186	Role of Gut Microbiota in Early Infant Development. Clinical Medicine Pediatrics, 2009, 3, CMPed.S2008.	0.1	70
187	The Toll-Like Receptor Signaling Molecule Myd88 Contributes to Pancreatic Beta-Cell Homeostasis in Response to Injury. PLoS ONE, 2009, 4, e5063.	1.1	39
188	Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients. PLoS ONE, 2009, 4, e7125.	1.1	735
189	Bacterial Microbiota Profiling in Gastritis without Helicobacter pylori Infection or Non-Steroidal Anti-Inflammatory Drug Use. PLoS ONE, 2009, 4, e7985.	1.1	204
191	The gut microbiota ecology: a new opportunity for the treatment of metabolic diseases ?. Frontiers in Bioscience - Landmark, 2009, 14, 5107.	3.0	52

#	Article	IF	CITATIONS
192	Bifidobacteria: from ecology to genomics. Frontiers in Bioscience - Landmark, 2009, Volume, 4673.	3.0	33
193	Applications and Case Studies of the Next-Generation Sequencing Technologies in Food, Nutrition and Agriculture. Recent Patents on Food, Nutrition & Agriculture, 2009, 1, 75-79.	0.5	9
194	Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5859-5864.	3.3	612
195	Potentially Pathogenic Bacteria in Shower Water and Air of a Stem Cell Transplant Unit. Applied and Environmental Microbiology, 2009, 75, 5363-5372.	1.4	59
196	Tools for stools: the challenge of assessing human intestinal microbiota using molecular diagnostics. Expert Review of Molecular Diagnostics, 2009, 9, 353-365.	1.5	27
197	Identification of Marker Genes for Lipid-Lowering Effect of a Short-Chain Fructooligosaccharide by DNA Microarray Analysis. Journal of Dietary Supplements, 2009, 6, 254-262.	1.4	7
198	Drugs, bugs, and personalized medicine: Pharmacometabonomics enters the ring. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14187-14188.	3.3	83
199	Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14728-14733.	3.3	665
200	High-Throughput Quantitative Analysis of the Human Intestinal Microbiota with a Phylogenetic Microarray. Applied and Environmental Microbiology, 2009, 75, 3572-3579.	1.4	93
201	The emerging role of the microbial-gastrointestinal-neural axis. Gastroenterology Insights, 2009, 1, 3.	0.7	5
202	Worldwide Prevalence of Class 2 Integrases outside the Clinical Setting Is Associated with Human Impact. Applied and Environmental Microbiology, 2009, 75, 5100-5110.	1.4	41
203	Organization, Variation and Expression of the Human Genome as a Foundation of Genomic and Personalized Medicine. , 2009, , 4-21.		9
204	Establishment of an Analytical System for the Human Fecal Microbiota, Based on Reverse Transcription-Quantitative PCR Targeting of Multicopy rRNA Molecules. Applied and Environmental Microbiology, 2009, 75, 1961-1969.	1.4	237
205	Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. British Journal of Nutrition, 2009, 101, 1679-1687.	1.2	275
206	Management of the human mucosal defensive barrier: evidence for glycan legislation. Biological Chemistry, 2009, 390, 581-590.	1.2	43
207	The Hygiene Hypothesis: Do We Still Believe in It?. Nestle Nutrition Workshop Series Paediatric Programme, 2009, 64, 11-22.	1.5	41
208	The Intestinal Environment in Health and Disease – Recent Insights on the Potential of Intestinal Bacteria to Influence Human Health. Current Pharmaceutical Design, 2009, 15, 2051-2065.	0.9	76
209	Studying the Human Gut Microbiota in the Trans-Omics Era - Focus on Metagenomics and Metabonomics. Current Pharmaceutical Design, 2009, 15, 1415-1427.	0.9	76

		CITATION REP	ORT	
#	Article		IF	Citations
210	Gut Microbiota, Obesity and Diabetes. Annales Nestle, 2009, 67, 39-47.		0.1	4
211	Non-Digestible Food Ingredients, Colonic Microbiota and the Impact on Gut Health and Immun Role for Metabolomics. Current Drug Metabolism, 2009, 10, 41-54.	ity: A	0.7	136
212	The Gut Microbiota as a Target for Improved Surgical Outcome and Improved Patient Care. Cu Pharmaceutical Design, 2009, 15, 1537-1545.	rent	0.9	36
213	Reappraising the stereotypes of diabetes in the modern diabetogenic environment. Nature Rev Endocrinology, 2009, 5, 483-489.	iews	4.3	44
214	The Role of the Gut Microbiota in Energy Metabolism and Metabolic Disease. Current Pharmac Design, 2009, 15, 1546-1558.	eutical	0.9	775
215	Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Sa PLoS Computational Biology, 2009, 5, e1000352.	mples.	1.5	1,495
216	Drugs, ligation or both for the prevention of variceal rebleeding?. Gut, 2009, 58, 1045-1046.		6.1	3
217	Human Gut Bacterial Communities Are Altered by Addition of Cruciferous Vegetables to a Con Fruit- and Vegetable-Free Diet. Journal of Nutrition, 2009, 139, 1685-1691.	trolled	1.3	154
218	Gut microbial ecology. , 2009, , 38-67.			1
219	Chapter 1 Biomedical Agriculture. Advances in Agronomy, 2009, , 1-54.		2.4	10
220	Microbial diversity in the human intestine and novel insights from metagenomics. Frontiers in Bioscience - Landmark, 2009, Volume, 3214.		3.0	72
221	Gut microbiota and pregnancy, a matter of inner life. British Journal of Nutrition, 2009, 101, 15	79-1580.	1.2	8
222	Parasutterella excrementihominis gen. nov., sp. nov., a member of the family Alcaligenaceae iso from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2009, 5 1793-1797.	plated 59,	0.8	57
223	Microbiology and Aging. , 2009, , .			14
224	Review: Tools for the tract: understanding the functionality of the gastrointestinal tract. Therapeutic Advances in Gastroenterology, 2009, 2, S9-S22.		1.4	31
225	Primary immune deficiencies affecting lymphocyte differentiation: lessons from the spectrum or resulting infections. International Immunology, 2009, 21, 1003-1011.	of	1.8	19
226	The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiolo 2009, 9, 123.	ogy,	1.3	1,338
227	Sequence analysis of percent G+C fraction libraries of human faecal bacterial DNA reveals a hig number of Actinobacteria. BMC Microbiology, 2009, 9, 68.	h	1.3	57

#	Article	IF	CITATIONS
228	Characterization and quantification of feline fecal microbiota using cpn60 sequence-based methods and investigation of animal-to-animal variation in microbial population structure. Veterinary Microbiology, 2009, 137, 120-128.	0.8	68
229	Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology, 2009, 49, 1877-1887.	3.6	1,138
230	The gut-liver axis in nonalcoholic fatty liver disease: Another pathway to insulin resistance?. Hepatology, 2009, 49, 1790-1792.	3.6	36
231	Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases, 2009, 15, 1183-1189.	0.9	1,052
232	Bacteria-free solution derived from lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function. Inflammatory Bowel Diseases, 2009, 15, 1537-1547.	0.9	77
233	Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids, 2009, 37, 199-208.	1.2	158
234	Innate receptors and microbes in induction of autoimmunity. Current Opinion in Immunology, 2009, 21, 641-647.	2.4	33
235	Immune Responses to the Microbiota at the Intestinal Mucosal Surface. Immunity, 2009, 31, 368-376.	6.6	369
236	Study of Association Between Atrophic Gastritis and Body Mass Index: A Cross-Sectional Study in 10,197 Japanese Subjects. Digestive Diseases and Sciences, 2009, 54, 988-995.	1.1	22
237	The microbiome and obesity: Is obesity linked to our gut flora?. Current Gastroenterology Reports, 2009, 11, 307-313.	1.1	153
238	Genomic research for important pathogenic bacteria in China. Science in China Series C: Life Sciences, 2009, 52, 50-63.	1.3	6
239	Bariatric Surgery: A History of Empiricism, a Future in Science. Journal of Gastrointestinal Surgery, 2009, 13, 465-477.	0.9	23
240	Probiotics Improve Outcomes After Roux-en-Y Gastric Bypass Surgery: A Prospective Randomized Trial. Journal of Gastrointestinal Surgery, 2009, 13, 1198-1204.	0.9	178
241	A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 2009, 49, 163-180.	1.2	201
242	Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biology, 2009, 7, 79.	1.7	228
243	A hundred-year-old insight into the gut microbiome!. Gut Pathogens, 2009, 1, 21.	1.6	9
244	Effect of <i>Lactobacillus gasseri</i> BNR17 on blood glucose levels and body weight in a mouse model of type 2 diabetes. Journal of Applied Microbiology, 2009, 107, 1681-1686.	1.4	143
245	The microbial dimension in insect nutritional ecology. Functional Ecology, 2009, 23, 38-47.	1.7	709

#	Article	IF	Citations
246	Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. International Journal of Obesity, 2009, 33, 758-767.	1.6	295
247	Shotgun metaproteomics of the human distal gut microbiota. ISME Journal, 2009, 3, 179-189.	4.4	484
248	A core gut microbiome in obese and lean twins. Nature, 2009, 457, 480-484.	13.7	6,819
249	Getting to the core of the gut microbiome. Nature Biotechnology, 2009, 27, 344-346.	9.4	65
250	Missing lincs in the transcriptome. Nature Biotechnology, 2009, 27, 346-347.	9.4	7
251	The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 2009, 9, 313-323.	10.6	3,946
252	Do symbiotic bacteria subvert host immunity?. Nature Reviews Microbiology, 2009, 7, 367-374.	13.6	183
253	Probiotics \hat{a} ∈ " little evidence for a link to obesity. Nature Reviews Microbiology, 2009, 7, 901-901.	13.6	37
254	Probiotics and obesity: a link?. Nature Reviews Microbiology, 2009, 7, 616-616.	13.6	78
255	Interplay Between Weight Loss and Gut Microbiota Composition in Overweight Adolescents. Obesity, 2009, 17, 1906-1915.	1.5	392
256	What do we mean when we refer to <i>Bacteroidetes</i> populations in the human gastrointestinal microbiota?. FEMS Microbiology Letters, 2009, 299, 175-183.	0.7	39
257	Prevalence of metabolic syndrome and obesity in renal transplanted Mexican children. Pediatric Transplantation, 2009, 13, 579-584.	0.5	18
258	The phylogeography of Adelie penguin faecal flora. Environmental Microbiology, 2009, 11, 577-588.	1.8	69
259	Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environmental Microbiology, 2009, 11, 1736-1751.	1.8	420
260	Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environmental Microbiology, 2009, 11, 2194-2206.	1.8	252
261	Towards the human intestinal microbiota phylogenetic core. Environmental Microbiology, 2009, 11, 2574-2584.	1.8	773
262	Composition and function of the human-associated microbiota. Nutrition Reviews, 2009, 67, S164-S171.	2.6	59
263	Use of metagenomics to understand the genetic basis of malnutrition. Nutrition Reviews, 2009, 67, S201-S206.	2.6	32

#	Article	IF	CITATIONS
264	Probiotic fermented milks: Present and future. International Journal of Dairy Technology, 2009, 62, 472-483.	1.3	57
265	Novel 16S rRNA gene analyses reveal new <i>in vitro</i> effects of insoluble barley fibres on the human faecal microbiota. Letters in Applied Microbiology, 2009, 48, 433-439.	1.0	4
266	Physiopathologie de l'anorexie liée à l'âge. Nutrition Clinique Et Metabolisme, 2009, 23, 118-123.	0.2	2
267	Plant biomass degradation by gut microbiomes: more of the same or something new?. Current Opinion in Biotechnology, 2009, 20, 358-363.	3.3	102
268	Top-Down Systems Biology Modeling of Host Metabotypeâ^'Microbiome Associations in Obese Rodents. Journal of Proteome Research, 2009, 8, 2361-2375.	1.8	228
270	Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2365-2370.	3.3	1,641
271	Toll-like receptors as targets in chronic liver diseases. Gut, 2009, 58, 704-720.	6.1	290
272	Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Current Opinion in Pharmacology, 2009, 9, 737-743.	1.7	325
273	Intestinal microflora and metabolic diseases. Diabetes and Metabolism, 2009, 35, 262-272.	1.4	67
274	Looking for Darwin's footprints in the microbial world. Trends in Microbiology, 2009, 17, 196-204.	3.5	94
275	Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction. Nutrition, Metabolism and Cardiovascular Diseases, 2009, 19, 816-824.	1.1	128
276	Colonic fermentation – More than meets the nose. Medical Hypotheses, 2009, 73, 753-756.	0.8	26
277	Multiplex quantification of 16S rDNA of predominant bacteria group within human fecal samples by polymerase chain reaction – ligase detection reaction (PCR-LDR). Journal of Microbiological Methods, 2009, 76, 289-294.	0.7	9
278	Role of gut microbiota in Crohn's disease. Expert Review of Gastroenterology and Hepatology, 2009, 3, 535-546.	1.4	57
279	Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research, 2009, 19, 1141-1152.	2.4	805
280	Has the human stomach passed its sell by date?. Arab Journal of Gastroenterology, 2009, 10, 43-48.	0.4	0
281	Obesity Increases the Risks of Diverticulitis and Diverticular Bleeding. Gastroenterology, 2009, 136, 115-122.e1.	0.6	366
282	Microbes in Gastrointestinal Health and Disease. Gastroenterology, 2009, 136, 65-80.	0.6	1,150

	CITATION R	EPORT	
#	Article	IF	CITATIONS
283	Patterns and Scales in Gastrointestinal Microbial Ecology. Gastroenterology, 2009, 136, 1989-2002.	0.6	84
284	Obesity and the Microbiota. Gastroenterology, 2009, 136, 1476-1483.	0.6	172
285	Inflammation and Intestinal Metaplasia of the Distal Esophagus Are Associated With Alterations in the Microbiome. Gastroenterology, 2009, 137, 588-597.	0.6	392
286	High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Gastroenterology, 2009, 137, 1716-1724.e2.	0.6	1,344
287	Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutrition Journal, 2009, 8, 49.	1.5	150
288	Reproducible Community Dynamics of the Gastrointestinal Microbiota following Antibiotic Perturbation. Infection and Immunity, 2009, 77, 2367-2375.	1.0	489
290	Cross-talk in the gut. Genome Biology, 2009, 10, 203.	13.9	2
291	Using clouds for metagenomics: A case study. , 2009, , .		32
293	Le resvératrol en complément thérapeutiqueÂ: une piste pour la prévention du diabète de type 2Â?. Medecine Des Maladies Metaboliques, 2009, 3, 486-490.	0.1	1
294	The NIH Human Microbiome Project. Genome Research, 2009, 19, 2317-2323.	2.4	1,700
295	Human gut microbiome adopts an alternative state following small bowel transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17187-17192.	3.3	281
296	AMPK in Health and Disease. Physiological Reviews, 2009, 89, 1025-1078.	13.1	1,423
297	Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Archives of Physiology and Biochemistry, 2009, 115, 176-190.	1.0	70
298	Probiotic carbohydrates reduce intestinal permeability and inflammation in metabolic diseases. Gut, 2009, 58, 1044-1045.	6.1	34
299	Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 2009, 461, 1282-1286.	13.7	2,534
300	Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1805-1812.	0.8	97
302	Intestinal microbiota and its functions. Digestive and Liver Disease Supplements, 2009, 3, 30-34.	0.2	54
304	What can bariatric surgery teach us about the pathophysiology of type 2 diabetes?. Diabetes and Metabolism, 2009, 35, 499-507.	1.4	34

#	Article	IF	CITATIONS
305	Probiotic and Gut Lactobacilli and Bifidobacteria: Molecular Approaches to Study Diversity and Activity. Annual Review of Microbiology, 2009, 63, 269-290.	2.9	289
306	Modulation nutritionnelle de la flore intestinaleÂ: une nouvelle approche diététique dans la prise en charge de l'obésité�. Cahiers De Nutrition Et De Dietetique, 2009, 44, 42-46.	0.2	0
307	Flore intestinale et maladies métaboliques. Medecine Des Maladies Metaboliques, 2009, 3, 159-164.	0.1	0
308	Alterations in the Intestinal Microbiota and Functional Bowel Symptoms. Gastrointestinal Endoscopy Clinics of North America, 2009, 19, 141-150.	0.6	61
309	The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis. Current Opinion in Gastroenterology, 2009, 25, 496-502.	1.0	86
310	Functional food for pregnant, lactating women and in perinatal nutrition: a role for dietary fibres?. Current Opinion in Clinical Nutrition and Metabolic Care, 2009, 12, 565-574.	1.3	19
311	Immunology. Current Opinion in Gastroenterology, 2009, 25, 491-495.	1.0	2
312	Microbiota intestinal, obesidad y diabetes. Annales Nestlé (Ed Española), 2009, 67, 39-48.	0.1	2
313	Flore intestinale: deÂnouveaux concepts pourÂlaÂrégulation duÂmétabolisme énergétique. Sang Thrombose Vaisseaux, 2009, 21, 322-333.	0.1	0
314	Biotransformation of aesculin by human gut bacteria and identification of its metabolites in rat urine. World Journal of Gastroenterology, 2009, 15, 1518.	1.4	17
315	Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World Journal of Gastroenterology, 2009, 15, 81.	1.4	123
316	Microbiote intestinal, obésité et diabète. Annales Nestle [Ed Francaise], 2009, 67, 39-48.	0.0	0
317	4 Darmepithelzellen als interaktive Schnittstelle zwischen Bakterien und Immunsystem. , 2009, , .		0
318	24 Darmflora und Probiotika bei Adipositas und metabolischem Syndrom. , 2009, , .		0
319	The Impact of Probiotic on Gut Health. Current Drug Metabolism, 2009, 10, 68-78.	0.7	190
320	Nutriose® Soluble Fiber. , 2009, , .		2
321	The importance of the development of the intestinal microbiota in infancy. Current Opinion in Pediatrics, 2009, 21, 794-800.	1.0	135
322	Complete genome sequence of Eggerthella lenta type strain (VPI 0255T). Standards in Genomic Sciences, 2009, 1, 174-182.	1.5	37

#	Article	IF	CITATIONS
323	Signal Processing for Metagenomics: Extracting Information from the Soup. Current Genomics, 2009, 10, 493-510.	0.7	26
324	Intestinal Microbiota During Infancy and Its Implications for Obesity. Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, 249-256.	0.9	149
325	Vitamin D Deficiency: The Invisible Accomplice of Metabolic Endotoxemia?. Current Pharmaceutical Design, 2009, 15, 2751-2758.	0.9	25
327	Next-Generation DNA Sequencing Identifies Pathogens in Biosolids. Proceedings of the Water Environment Federation, 2010, 2010, 5606-5613.	0.0	0
328	Effect of overweight on gastrointestinal microbiology and immunology: correlation with blood biomarkers. British Journal of Nutrition, 2010, 103, 1070-1078.	1.2	50
329	Glycaemic index, appetite and body weight. Proceedings of the Nutrition Society, 2010, 69, 199-203.	0.4	18
330	Absence of intestinal microbiota does not protect mice from diet-induced obesity. British Journal of Nutrition, 2010, 104, 919-929.	1.2	369
331	Role of gut microbiota in the control of energy and carbohydrate metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 432-438.	1.3	77
332	Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2010, 13, 569-573.	1.3	89
333	Gut microbiota as a regulator of energy homeostasis and ectopic fat deposition: mechanisms and implications for metabolic disorders. Current Opinion in Lipidology, 2010, 21, 76-83.	1.2	151
334	Nutrigenomics and IBD. Journal of Clinical Gastroenterology, 2010, 44, S6-S9.	1.1	23
335	Probiotics: progress toward novel therapies for intestinal diseases. Current Opinion in Gastroenterology, 2010, 26, 95-101.	1.0	87
336	Obesity, Metabolic Syndrome, and Microbiota. Journal of Clinical Gastroenterology, 2010, 44, S16-S18.	1.1	98
337	The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Current Opinion in Gastroenterology, 2010, 26, 327-331.	1.0	133
338	Intestinal microbiota and overweight. Beneficial Microbes, 2010, 1, 407-421.	1.0	26
339	Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Beneficial Microbes, 2010, 1, 197-207.	1.0	117
340	Early nutritional environment: focus on health effects of microbiota and probiotics. Beneficial Microbes, 2010, 1, 383-390.	1.0	17
341	Changes in the Composition of the Human Fecal Microbiome After Bacteriotherapy for Recurrent Clostridium difficile-associated Diarrhea. Journal of Clinical Gastroenterology, 2010, 44, 354-360.	1.1	595

#	Article	IF	CITATIONS
342	Unconventional Wisdom About the Obesity Epidemic Symbol. American Journal of the Medical Sciences, 2010, 340, 481-491.	0.4	14
344	Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14691-14696.	3.3	4,561
345	Molecular Characterisation of the Faecal Microbiota in Patients with Type II Diabetes. Current Microbiology, 2010, 61, 69-78.	1.0	386
346	The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia, 2010, 53, 606-613.	2.9	270
347	Analysis of Oral Microbiota in Children with Dental Caries by PCR-DGGE and Barcoded Pyrosequencing. Microbial Ecology, 2010, 60, 677-690.	1.4	240
348	Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Current Opinion in Immunology, 2010, 22, 455-460.	2.4	177
349	Systems biology of the gut: the interplay of food, microbiota and host at the mucosal interface. Current Opinion in Biotechnology, 2010, 21, 539-550.	3.3	62
350	Development of gut microflora in obese and lean rats. Folia Microbiologica, 2010, 55, 373-375.	1.1	20
351	Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. Journal of Microbiology, 2010, 48, 712-714.	1.3	122
352	Novel perspectives in probiotic treatment: the efficacy and unveiled mechanisms of the physiological functions. Clinical Journal of Gastroenterology, 2010, 3, 117-127.	0.4	7
353	Sex-specific asymmetry within the cloacal microbiota of the striped plateau lizard, Sceloporus virgatus. Symbiosis, 2010, 51, 97-105.	1.2	32
354	Effects of Whole Grains on Coronary Heart Disease Risk. Current Atherosclerosis Reports, 2010, 12, 368-376.	2.0	119
355	Gut microbiota and obesity. Internal and Emergency Medicine, 2010, 5, 53-56.	1.0	55
356	Consumption of pasteurized human lysozyme transgenic goats' milk alters serum metabolite profile in young pigs. Transgenic Research, 2010, 19, 563-574.	1.3	50
357	Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics, 2010, 6, 362-374.	1.4	181
359	Métagénomique du microbiote intestinal : les applications potentielles. Gastroenterologie Clinique Et Biologique, 2010, 34, 24-30.	0.9	0
361	Nutrition entérale et microbiote. Gastroenterologie Clinique Et Biologique, 2010, 34, 61-66.	0.9	0
366	RÃ1es des probiotiques, prébiotiques et produits de fermentation au niveau du microbiote intestinal. Actualites Pharmaceutiques, 2010, 49, 43-44.	0.0	Ο

#	Article	IF	Citations
367	New Paradigms in the Management of Diverticular Disease. Current Problems in Surgery, 2010, 47, 680-735.	0.6	42
368	Metabolic effects of whole grain wheat and whole grain rye in the C57BL/6J mouse. Nutrition, 2010, 26, 230-239.	1.1	25
369	Obesity: Genes, brain, gut, and environment. Nutrition, 2010, 26, 459-473.	1.1	163
370	Introducing W.A.T.E.R.S.: a Workflow for the Alignment, Taxonomy, and Ecology of Ribosomal Sequences. BMC Bioinformatics, 2010, 11, 317.	1.2	29
371	Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics, 2010, 11, 488.	1.2	284
372	SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. BMC Genomics, 2010, 11, 512.	1.2	48
373	Microbial diversity in ostrich ceca as revealed by 16S ribosomal RNA gene clone library and detection of novel Fibrobacter species. Anaerobe, 2010, 16, 83-93.	1.0	60
374	Intestinal Lactobacillus sp. is associated with some cellular and metabolic characteristics of blood in elderly people. Anaerobe, 2010, 16, 240-246.	1.0	37
375	Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe, 2010, 16, 420-425.	1.0	85
376	Role of diet in the development of inflammatory bowel disease. Inflammatory Bowel Diseases, 2010, 16, 137-151.	0.9	199
377	Toll-like receptors in inflammatory bowel diseases: A decade later. Inflammatory Bowel Diseases, 2010, 16, 1583-1597.	0.9	282
379	Baboon vaginal microbiota: an overlooked aspect of primate physiology. American Journal of Primatology, 2010, 72, 467-474.	0.8	15
380	Fecal bacterial diversity of humanâ€habituated wild chimpanzees (<i>Pan troglodytes) Tj ETQq0 0 0 rgBT /Overlo Primatology, 2010, 72, 566-574.</i>	ock 10 Tf 5 0.8	0 267 Td (sc 24
381	Why bacteria matter in animal development and evolution. BioEssays, 2010, 32, 571-580.	1.2	257
382	Whole-body systems approaches for gut microbiota-targeted, preventive healthcare. Journal of Biotechnology, 2010, 149, 183-190.	1.9	47
383	Liver fatty acid-binding protein and obesity. Journal of Nutritional Biochemistry, 2010, 21, 1015-1032.	1.9	180
384	Metabolic syndrome, hormones, and maintenance of T cells during aging. Current Opinion in Immunology, 2010, 22, 541-548.	2.4	17
385	Application of probiotics in food products—challenges and new approaches. Current Opinion in Biotechnology, 2010, 21, 175-181.	3.3	124

#	Article	IF	CITATIONS
386	Programming infant gut microbiota: influence of dietary and environmental factors. Current Opinion in Biotechnology, 2010, 21, 149-156.	3.3	256
387	Elevated endotoxin levels in non-alcoholic fatty liver disease. Journal of Inflammation, 2010, 7, 15.	1.5	307
388	Structural shifts of gut microbiota as surrogate endpoints for monitoring host health changes induced by carcinogen exposure. FEMS Microbiology Ecology, 2010, 73, no-no.	1.3	44
389	Temporal shifts of the Norway lobster (Nephrops norvegicus) gut bacterial communities. FEMS Microbiology Ecology, 2010, 74, 472-484.	1.3	60
390	Pilot study: alterations of intestinal microbiota in obese humans are not associated with colonic inflammation or disturbances of barrier function. Alimentary Pharmacology and Therapeutics, 2010, 32, 1307-1314.	1.9	76
391	Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. Journal of Internal Medicine, 2010, 268, 320-328.	2.7	225
392	Phylogenetic analysis of <i>Bacteroidales</i> 16S rRNA gene sequences from human and animal effluents and assessment of ruminant faecal pollution by realâ€time PCR. Journal of Applied Microbiology, 2010, 108, 974-984.	1.4	99
393	Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity, 2010, 18, 190-195.	1.5	1,996
394	Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. European Journal of Clinical Nutrition, 2010, 64, 636-643.	1.3	565
395	Convergent temporal dynamics of the human infant gut microbiota. ISME Journal, 2010, 4, 151-158.	4.4	86
396	Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME Journal, 2010, 4, 17-27.	4.4	1,025
397	Postprandial remodeling of the gut microbiota in Burmese pythons. ISME Journal, 2010, 4, 1375-1385.	4.4	229
398	A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464, 59-65.	13.7	9,342
399	99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: The normal gut microbiota in health and disease. Clinical and Experimental Immunology, 2010, 160, 80-84.	1.1	31
400	Influence of microbial environment on autoimmunity. Nature Immunology, 2010, 11, 28-35.	7.0	129
401	Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunology, 2010, 11, 76-82.	7.0	1,013
402	The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology, 2010, 8, 523-529.	13.6	562
403	The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nature Reviews Microbiology, 2010, 8, 564-577.	13.6	329

IF ARTICLE CITATIONS # An integrative approach to understanding microbial diversity: from intracellular mechanisms to community structure. Ecology Letters, 2010, 13, 1073-1084. 404 3.0 80 Diversity and population structure of sewageâ€derived microorganisms in wastewater treatment plant influent. Environmental Microbiology, 2010, 12, 378-392. 1.8 342 High temporal and interâ€individual variation detected in the human ileal microbiota. Environmental 406 1.8 254 Microbiology, 2010, 12, 3213-3227. Gut microbiota and metabolic diseases: myth or reality?. Mediterranean Journal of Nutrition and Metabolism, 2010, 4, 75-77.

CITATION REPORT

 $_{408}$ (Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-like Receptor 5. Science) Tj ETQq0 0 0 rgBT $|_{0.2}^{0.2}$ rlock 10 Tf 50 58

409	Site and Strain-Specific Variation in Gut Microbiota Profiles and Metabolism in Experimental Mice. PLoS ONE, 2010, 5, e8584.	1.1	186
410	The Increase of Lactobacillus Species in the Gut Flora of Newborn Broiler Chicks and Ducks Is Associated with Weight Gain. PLoS ONE, 2010, 5, e10463.	1.1	125
411	Resistant Starches Types 2 and 4 Have Differential Effects on the Composition of the Fecal Microbiota in Human Subjects. PLoS ONE, 2010, 5, e15046.	1.1	508
412	Phylogenetic Characterization of Fecal Microbial Communities of Dogs Fed Diets with or without Supplemental Dietary Fiber Using 454 Pyrosequencing. PLoS ONE, 2010, 5, e9768.	1.1	223
413	Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. Journal of Clinical Investigation, 2010, 120, 4332-4341.	3.9	756
414	Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing1. Journal of Animal Science, 2010, 88, 3977-3983.	0.2	247
415	Nutrition, Malnutrition, and Probiotics. , 2010, , 411-419.		0
416	La microbiota intestinal: Un nuevo actor en el desarrollo de la obesidad. Revista Medica De Chile, 2010, 138, .	0.1	9
417	Application of Nutrigenomics in Gastrointestinal Health. , 2010, , 83-94.		0
418	Absence of Microbiota (Germ-Free Conditions) Accelerates the Atherosclerosis in ApoE-Deficient Mice Fed Standard Low Cholesterol Diet. Journal of Atherosclerosis and Thrombosis, 2010, 17, 796-804.	0.9	135
419	Probiotics and Prebiotics in Metabolic Disorders and Obesity. , 2010, , 237-258.		3
420	Comparative Metagenomic Study of Alterations to the Intestinal Microbiota and Risk of Nosocomial <i>Clostridum difficile</i> –Associated Disease. Journal of Infectious Diseases, 2010, 202, 1877-1884.	1.9	133
422	Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1296-1302.	0.8	97

#	Article	IF	CITATIONS
423	Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1108-1112.	0.8	49
424	Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes, 2010, 1, 138-147.	4.3	355
425	Metagenomics: seeking for the human gut microbial communities. Reviews in Medical Microbiology, 2010, 21, 51-55.	0.4	1
426	Probiotics and Obesity. Annals of Nutrition and Metabolism, 2010, 57, 20-23.	1.0	18
427	Disruption of NF-ÂB signalling by ancient microbial molecules: novel therapies of the future?. Gut, 2010, 59, 421-426.	6.1	20
428	Early-Life Influences in the Inception of Obesity and Asthma. Topics in Clinical Nutrition, 2010, 25, 128-135.	0.2	0
429	Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1527-1531.	0.8	66
430	You deserve what you eat: lessons learned from the study of the melanin-concentrating hormone (MCH)-deficient mice. Gut, 2010, 59, 1625-1634.	6.1	14
431	<i>Lactobacillus plantarum</i> strain No. 14 reduces adipocyte size in mice fed high-fat diet. Experimental Biology and Medicine, 2010, 235, 849-856.	1.1	146
432	Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Research, 2010, 38, 3869-3879.	6.5	85
433	Advanced computational algorithms for microbial community analysis using massive 16S rRNA sequence data. Nucleic Acids Research, 2010, 38, e205-e205.	6.5	43
434	Characterization of Variation in Rumen Methanogenic Communities under Different Dietary and Host Feed Efficiency Conditions, as Determined by PCR-Denaturing Gradient Gel Electrophoresis Analysis. Applied and Environmental Microbiology, 2010, 76, 3776-3786.	1.4	173
435	Recent Advances in Understanding the Microbiology of the Female Reproductive Tract and the Causes of Premature Birth. Infectious Diseases in Obstetrics and Gynecology, 2010, 2010, 1-10.	0.4	70
436	Antimicrobial Peptides in Gastrointestinal Inflammation. International Journal of Inflammation, 2010, 2010, 1-11.	0.9	37
437	Infectious Diseases and Prematurity. Infectious Diseases in Obstetrics and Gynecology, 2010, 2010, 1-2.	0.4	3
438	Obesity and the human microbiome. Current Opinion in Gastroenterology, 2010, 26, 5-11.	1.0	688
439	Differential protein abundance and function of UT-B urea transporters in human colon. American Journal of Physiology - Renal Physiology, 2010, 298, G345-G351.	1.6	24
440	Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study. British Journal of Nutrition, 2010, 103, 1792-1799.	1.2	311

#	Article	IF	CITATIONS
441	A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition. British Journal of Nutrition, 2010, 104, 701-708.	1.2	63
442	Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS ONE, 2010, 5, e10667.	1.1	1,107
443	Technology-driven research will dominate hypothesis-driven research: the future of microbiology. Future Microbiology, 2010, 5, 135-137.	1.0	18
444	Article Commentary: Highâ€Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Nutrition in Clinical Practice, 2010, 25, 310-311.	1.1	13
445	Bacteroides clarus sp. nov., Bacteroides fluxus sp. nov. and Bacteroides oleiciplenus sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1864-1869.	0.8	44
446	Antiobesity Effects of <i>Bifidobacterium breve</i> Strain B-3 Supplementation in a Mouse Model with High-Fat Diet-Induced Obesity. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1656-1661.	0.6	189
447	The gut microbiota modulates host energy and lipid metabolism in mice. Journal of Lipid Research, 2010, 51, 1101-1112.	2.0	508
448	Slackia piriformis sp. nov. and Collinsella tanakaei sp. nov., new members of the family Coriobacteriaceae, isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2639-2646.	0.8	70
449	ISâ€pro: highâ€ŧhroughput molecular fingerprinting of the intestinal microbiota. FASEB Journal, 2010, 24, 4556-4564.	0.2	82
450	Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition, 2010, 104, 83-92.	1.2	710
451	A Microbe-Dependent Viral Key to Crohn's Box. Science Translational Medicine, 2010, 2, 43ps39.	5.8	5
452	Paneth cell defensins and the regulation of the microbiome. Gut Microbes, 2010, 1, 401-406.	4.3	112
453	Relationship between Oral Malodor and the Global Composition of Indigenous Bacterial Populations in Saliva. Applied and Environmental Microbiology, 2010, 76, 2806-2814.	1.4	58
454	Polychlorinated Biphenyls Disrupt Intestinal Integrity via NADPH Oxidase-Induced Alterations of Tight Junction Protein Expression. Environmental Health Perspectives, 2010, 118, 976-981.	2.8	75
455	Comparative Metagenomics and Population Dynamics of the Gut Microbiota in Mother and Infant. Genome Biology and Evolution, 2010, 2, 53-66.	1.1	202
456	Pathophysiological Similarities and Synergisms in Alcoholic and Non-Alcoholic Steatohepatitis. Digestive Diseases, 2010, 28, 783-791.	0.8	13
457	Intestinal microbiota and blue baby syndrome. Gut Microbes, 2010, 1, 359-366.	4.3	22
458	Comparative Analyses of the Bacterial Microbiota of the Human Nostril and Oropharynx. MBio, 2010, 1,	1.8	266

#	Article	IF	CITATIONS
459	Les lipopolysaccharides bactériens et les maladies métaboliques. Cahiers De Nutrition Et De Dietetique, 2010, 45, 114-121.	0.2	0
460	Studies in Humans. , 2010, , 1255-1293.		2
461	The endocannabinoid system links gut microbiota to adipogenesis. Molecular Systems Biology, 2010, 6, 392.	3.2	547
462	Role of the gut microbiota in defining human health. Expert Review of Anti-Infective Therapy, 2010, 8, 435-454.	2.0	339
463	The role of the gut microbiota in nonalcoholic fatty liver disease. Nature Reviews Gastroenterology and Hepatology, 2010, 7, 691-701.	8.2	410
464	Metabolome-Wide Association Study Identifies Multiple Biomarkers that Discriminate North and South Chinese Populations at Differing Risks of Cardiovascular Disease: INTERMAP Study. Journal of Proteome Research, 2010, 9, 6647-6654.	1.8	116
465	Obesity, Diabetes, and Gut Microbiota. Diabetes Care, 2010, 33, 2277-2284.	4.3	557
466	Gut Microbiota, Lipopolysaccharides, and Innate Immunity in the Pathogenesis of Obesity and Cardiovascular Risk. Endocrine Reviews, 2010, 31, 817-844.	8.9	389
467	Insulin resistance, adipose depots and gut: Interactions and pathological implications. Digestive and Liver Disease, 2010, 42, 310-319.	0.4	27
469	Infectious Causes of Colorectal Cancer. Infectious Disease Clinics of North America, 2010, 24, 1019-1039.	1.9	19
470	Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut, 2010, 59, 1635-1642.	6.1	808
471	Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology (United) Tj ETQq1 1	0.784314 0.7	rg85/Overlo
472	Gut Microbiota in Health and Disease. Physiological Reviews, 2010, 90, 859-904.	13.1	3,287
473	A role for the gut microbiota in energy harvesting?. Gut, 2010, 59, 1589-1590.	6.1	28
474	Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5. Science, 2010, 328, 228-231.	6.0	1,804
475	The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Applied Physiology, Nutrition and Metabolism, 2010, 35, 9-16.	0.9	239
476	Metabolomics: towards understanding host–microbe interactions. Future Microbiology, 2010, 5, 153-161.	1.0	48
477	A common core microbiota between obese individuals and their lean relatives? Evaluation of the predisposition to obesity on the basis of the fecal microflora profile. Medical Hypotheses, 2010, 75, 350-352.	0.8	24

#	Article	IF	CITATIONS
478	High-protein/high red meat and high-carbohydrate weight-loss diets do not differ in their effect on faecal water genotoxicity tested by use of the WIL2-NS cell line and with other biomarkers of bowel health. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 703, 130-136.	0.9	15
479	Nutritional modulation of gut microbiota in the context of obesity and insulin resistance: Potential interest of prebiotics. International Dairy Journal, 2010, 20, 277-280.	1.5	41
480	The role and potential of probiotic bacteria in the gut, and the communication between gut microflora and gut/host. International Dairy Journal, 2010, 20, 262-268.	1.5	61
481	Addressing the gut microbiome and implications for obesity. International Dairy Journal, 2010, 20, 259-261.	1.5	10
482	Recent developments and perspectives in the investigation of probiotic effects. International Journal of Medical Microbiology, 2010, 300, 3-10.	1.5	79
483	Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. International Journal of Medical Microbiology, 2010, 300, 503-511.	1.5	67
485	Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie, 2010, 92, 753-761.	1.3	122
486	Diabetes and inflammation: Fundamental aspects and clinical implications. Diabetes and Metabolism, 2010, 36, 327-338.	1.4	121
487	Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 240-245.	1.2	61
488	Photoperiod modulates gut bacteria composition in male Siberian hamsters (Phodopus sungorus). Brain, Behavior, and Immunity, 2010, 24, 577-584.	2.0	68
489	Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations. Cell, 2010, 141, 1241-1252.	13.5	601
490	Complementary therapy for atopic dermatitis and other allergic skin diseases: facts and controversies. Clinics in Dermatology, 2010, 28, 57-61.	0.8	58
491	Intestinal Ecology in the Metabolic Syndrome. Cell Metabolism, 2010, 11, 345-346.	7.2	18
492	Enterolactone and breast cancer: methodological issues may contribute to conflicting results in observational studies. Nutrition Research, 2010, 30, 667-677.	1.3	22
493	Inflammatory Bowel Disease. Annual Review of Immunology, 2010, 28, 573-621.	9.5	1,642
494	Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Beneficial Microbes, 2010, 1, 189-196.	1.0	92
495	The evolution of animals and plants via symbiosis with microorganisms. Environmental Microbiology Reports, 2010, 2, 500-506.	1.0	133
498	Obesity and hyperinsulinemia in a family with pancreatic agenesis and MODY caused by the IPF1 mutation Pro63fsX60. Translational Research, 2010, 156, 7-14.	2.2	39

	CITATION R	EPORT	
#	Article	IF	CITATIONS
499	A new vision of immunity: homeostasis of the superorganism. Mucosal Immunology, 2010, 3, 450-460.	2.7	195
500	Dietary Components and Immune Function. , 2010, , .		13
501	Identifying biologically relevant differences between metagenomic communities. Bioinformatics, 2010, 26, 715-721.	1.8	916
502	The Foundations of Genomic and Personalized Medicine. , 2010, , 1-10.		12
503	Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss. Diabetes, 2010, 59, 3049-3057.	0.3	1,065
504	Cancer and Energy Balance, Epidemiology and Overview. , 2010, , .		5
505	Depletion of Liver Kupffer Cells Prevents the Development of Diet-Induced Hepatic Steatosis and Insulin Resistance. Diabetes, 2010, 59, 347-357.	0.3	426
506	Direct sequencing of the human microbiome readily reveals community differences. Genome Biology, 2010, 11, 210.	13.9	134
507	Genomic insights into early-onset obesity. Genome Medicine, 2010, 2, 36.	3.6	42
508	Gut microbiota in obesity and metabolic disorders. Proceedings of the Nutrition Society, 2010, 69, 434-441.	0.4	221
509	Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunology, 2010, 3, 148-158.	2.7	355
510	Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. American Journal of Physiology - Renal Physiology, 2010, 299, G440-G448.	1.6	747
511	Excess body weight and obesity—the link with gastrointestinal and hepatobiliary cancer. Nature Reviews Gastroenterology and Hepatology, 2011, 8, 224-238.	8.2	102
512	Chicory inulin does not increase stool weight or speed up intestinal transit time in healthy male subjects. Food and Function, 2011, 2, 72-77.	2.1	48
513	Gut Microbiota, Intestinal Permeability, Obesityâ€Induced Inflammation, and Liver Injury. Journal of Parenteral and Enteral Nutrition, 2011, 35, 14S-20S.	1.3	259
514	Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Research, 2011, 21, 126-136.	2.4	104
515	Ecology and Physiology of the Intestinal Tract. Current Topics in Microbiology and Immunology, 2011, 358, 247-272.	0.7	46
516	Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy and Environmental Science, 2011, 4, 4550.	15.6	109

#	Article	IF	CITATIONS
517	<i>Bifidobacterium longum</i> supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression. Experimental Biology and Medicine, 2011, 236, 823-831.	1.1	95
518	Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut, 2011, 60, 1214-1223.	6.1	391
519	Nuclear Magnetic Resonance (NMR)-Based Metabolomic Studies on Urine and Serum Biochemical Profiles after Chronic Cysteamine Supplementation in Rats. Journal of Agricultural and Food Chemistry, 2011, 59, 5572-5578.	2.4	19
520	Nod2 is essential for temporal development of intestinal microbial communities. Gut, 2011, 60, 1354-1362.	6.1	278
521	How Can Research on Plants Contribute to Promoting Human Health?. Plant Cell, 2011, 23, 1685-1699.	3.1	155
522	Gut Microbiota-targeted, Whole-Body Systems Biology for Understanding Traditional Chinese Medicine. World Science and Technology, 2011, 13, 202-212.	0.1	4
523	Liver fibrogenesis and metabolic factors. Clinics and Research in Hepatology and Gastroenterology, 2011, 35, S10-S20.	0.7	39
524	Gut microbiota, probiotics, and vitamin D: Interrelated exposures influencing allergy, asthma, and obesity?. Journal of Allergy and Clinical Immunology, 2011, 127, 1087-1094.	1.5	198
525	Feruloylated and Nonferuloylated Arabino-oligosaccharides from Sugar Beet Pectin Selectively Stimulate the Growth of Bifidobacterium spp. in Human Fecal in Vitro Fermentations. Journal of Agricultural and Food Chemistry, 2011, 59, 6511-6519.	2.4	70
526	Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews Endocrinology, 2011, 7, 639-646.	4.3	653
527	Obesity and energy balance: is the tail wagging the dog?. European Journal of Clinical Nutrition, 2011, 65, 1173-1189.	1.3	95
529	The Enteric Microbiota. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2011, 3, 1-88.	0.3	0
531	Global and Deep Molecular Analysis of Microbiota Signatures in Fecal Samples From Patients With Irritable Bowel Syndrome. Gastroenterology, 2011, 141, 1792-1801.	0.6	885
532	Ecology drives a global network of gene exchange connecting the human microbiome. Nature, 2011, 480, 241-244.	13.7	788
533	Competitive and cooperative metabolic interactions in bacterial communities. Nature Communications, 2011, 2, 589.	5.8	413
534	Contributions of Intestinal Bacteria to Nutrition and Metabolism in the Critically III. Surgical Clinics of North America, 2011, 91, 771-785.	0.5	157
535	Inflammatory Mechanisms in Obesity. Annual Review of Immunology, 2011, 29, 415-445.	9.5	2,936
536	Gut Microbiota and Inflammation. Nutrients, 2011, 3, 637-682.	1.7	363

#	Article	IF	Citations
537	Personalized Medicine: Progress and Promise. Annual Review of Genomics and Human Genetics, 2011, 12, 217-244.	2.5	256
538	Insights into â€~fermentonomics': evaluation of volatile organic compounds (VOCs) in human disease using an electronic â€~e-nose'. Journal of Medical Engineering and Technology, 2011, 35, 87-91.	0.8	48
540	Probiotic Bacteria and Enteric Infections. , 2011, , .		4
541	Pharmaconutrition for the Obese, Critically Ill Patient. Journal of Parenteral and Enteral Nutrition, 2011, 35, 60S-72S.	1.3	17
542	Metabolic Basis of Obesity. , 2011, , .		5
543	The Impact of a Consortium of Fermented Milk Strains on the Gut Microbiome of Gnotobiotic Mice and Monozygotic Twins. Science Translational Medicine, 2011, 3, 106ra106.	5.8	456
544	Nature Helps , 2011, , .		12
545	Bioactive food components and health properties of rice bran. Journal of the American Veterinary Medical Association, 2011, 238, 593-600.	0.2	99
546	NF-κB, Inflammation, and Metabolic Disease. Cell Metabolism, 2011, 13, 11-22.	7.2	1,564
547	Gut microbiota and the role of probiotics in therapy. Current Opinion in Pharmacology, 2011, 11, 593-603.	1.7	58
548	Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie, 2011, 93, 39-45.	1.3	126
549	Gut microbiota and probiotics in colon tumorigenesis. Cancer Letters, 2011, 309, 119-127.	3.2	184
550	Brain?Gut?Microbe Communication in Health and Disease. Frontiers in Physiology, 2011, 2, 94.	1.3	698
551	The Human Gutome: Nutrigenomics of the Host–Microbiome Interactions. OMICS A Journal of Integrative Biology, 2011, 15, 419-430.	1.0	55
552	Biology's response to dieting: the impetus for weight regain. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R581-R600.	0.9	348
553	Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 2011, 14, 82-91.	2.3	345
554	The application of amplicon length heterogeneity PCR (LH-PCR) for monitoring the dynamics of soil microbial communities associated with cadaver decomposition. Journal of Microbiological Methods, 2011, 84, 388-393.	0.7	48
555	Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of Microbiological Methods, 2011, 86, 42-51.	0.7	262

#	Article	IF	CITATIONS
556	Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends in Molecular Medicine, 2011, 17, 320-328.	3.5	222
557	Pediatric surgery and the human microbiome. Journal of Pediatric Surgery, 2011, 46, 577-584.	0.8	9
558	Effects of the gut microbiota on obesity and glucose homeostasis. Trends in Endocrinology and Metabolism, 2011, 22, 117-123.	3.1	263
559	Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends in Microbiology, 2011, 19, 349-359.	3.5	452
560	Investigating the biological and clinical significance of human dysbioses. Trends in Microbiology, 2011, 19, 427-434.	3.5	157
561	Dietary long-chain n-3 PUFA, gut microbiota and fat mass in early postnatal piglet development—exploring a potential interplay. Prostaglandins Leukotrienes and Essential Fatty Acids, 2011, 85, 345-351.	1.0	24
562	Commensal flora and the regulation of inflammatory and autoimmune responses. Seminars in Immunology, 2011, 23, 139-145.	2.7	79
563	A framework for identification of infections that contribute to human obesity. Lancet Infectious Diseases, The, 2011, 11, 963-969.	4.6	85
564	Proteomics, human gut microbiota and probiotics. Expert Review of Proteomics, 2011, 8, 279-288.	1.3	22
565	Immunostimulation in the era of the metagenome. Cellular and Molecular Immunology, 2011, 8, 213-225.	4.8	22
566	Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. Journal of Allergy and Clinical Immunology, 2011, 127, 1097-1107.	1.5	187
567	Predicting a Human Gut Microbiota's Response to Diet in Gnotobiotic Mice. Science, 2011, 333, 101-104.	6.0	480
568	Diversity of the autochthonous colonic microbiota. Gut Microbes, 2011, 2, 99-104.	4.3	149
569	Contribution of the Intestinal Microbiota to Human Health: From Birth to 100ÂYears of Age. Current Topics in Microbiology and Immunology, 2011, 358, 323-346.	0.7	51
570	Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System. PLoS Genetics, 2011, 7, e1002272.	1.5	650
571	Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science, 2011, 334, 105-108.	6.0	5,253
572	The Human Microbiome and Hostâ \in "Pathogen Interactions. , 2011, , 43-61.		5
573	Journal Walk Regarding the Expanding Role of Microbiota in Our Gut. Journal of Bacteriology and Virology, 2011, 41, 63.	0.0	5

# 574	ARTICLE Gut microbiome, obesity, and metabolic dysfunction. Journal of Clinical Investigation, 2011, 121, 2126-2132.	IF 3.9	CITATIONS 703
575	The ECSIM Concept (Environmental Control System for Intestinal Microbiota) and Its Derivative Versions to Help Better Understand Human Gut Biology. , 0, , .		4
578	Brine Shrimp Diversity in China Based on DNA Barcoding. , 0, , .		0
579	Restoration of host–microbiota homeostasis for attaining healthy aging: the role of milk and fermented milk. Mediterranean Journal of Nutrition and Metabolism, 2011, 4, 159-164.	0.2	Ο
580	Chemical signaling in the gastrointestinal tract. F1000 Biology Reports, 2011, 3, 4.	4.0	11
581	MICROBIOTA INTESTINAL: ROL EN OBESIDAD. Revista Chilena De Nutricion, 2011, 38, 228-233.	0.1	12
582	GROWTH AND DEVELOPMENT SYMPOSIUM: Promoting healthier humans through healthier livestock: Animal agriculture enters the metagenomics era12. Journal of Animal Science, 2011, 89, 835-844.	0.2	12
583	Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids. ISRN Allergy, 2011, 2011, 1-8.	3.1	72
584	Modulating gut microbiota as an anti-diabetic mechanism of berberine. Medical Science Monitor, 2011, 17, RA164-RA167.	0.5	109
585	Infectobesity: a New Area for Microbiological and Virological Research. Journal of Bacteriology and Virology, 2011, 41, 65.	0.0	13
586	Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Archives of Medical Science, 2011, 3, 501-507.	0.4	202
587	Effect of Antibiotic Growth Promoters on Intestinal Microbiota in Food Animals: A Novel Model for Studying the Relationship between Gut Microbiota and Human Obesity?. Frontiers in Microbiology, 2011, 2, 53.	1.5	34
588	The Intestinal Microbiota and Viral Susceptibility. Frontiers in Microbiology, 2011, 2, 92.	1.5	37
589	Environmental and Gut Bacteroidetes: The Food Connection. Frontiers in Microbiology, 2011, 2, 93.	1.5	989
590	Gut Microbiota of Healthy and Malnourished Children in Bangladesh. Frontiers in Microbiology, 2011, 2, 228.	1.5	157
591	Use of Probiotics as Prophylaxis for Postoperative Infections. Nutrients, 2011, 3, 604-612.	1.7	50
592	The Influence of Rickettsiologists on Post-Modern Microbiology. Frontiers in Cellular and Infection Microbiology, 2011, 1, 8.	1.8	9
593	Comparative Analysis of Korean Human Gut Microbiota by Barcoded Pyrosequencing. PLoS ONE, 2011, 6, e22109.	1.1	199

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
594	Microbial Dysbiosis in Colorectal Cancer (CRC) Patients. PLoS ONE, 2011, 6, e16393.	1	.1	706
595	Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Ch with Autism and Gastrointestinal Disturbances. PLoS ONE, 2011, 6, e24585.	nildren 1	.1	394
596	Restricting Microbial Exposure in Early Life Negates the Immune Benefits Associated with Gut Colonization in Environments of High Microbial Diversity. PLoS ONE, 2011, 6, e28279.	1	.1	118
597	Establishment of Normal Gut Microbiota Is Compromised under Excessive Hygiene Conditions ONE, 2011, 6, e28284.	s. PLoS 1	.1	120
598	Alteration of Local Microflora and $\hat{l}\pm$ -defensins Hyper-production in Colonic Adenoma Mucosa of Clinical Gastroenterology, 2011, 45, 602-610.	. Journal 1	.1	39
599	Obesity and the Gut Microbiota. Journal of Clinical Gastroenterology, 2011, 45, S128-S132.	1	.1	115
600	Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes. Current Opin Clinical Nutrition and Metabolic Care, 2011, 14, 483-490.	iion in 1	.3	116
601	The Human Microbiome and Surgical Disease. Annals of Surgery, 2011, 253, 1094-1101.	2	.1	59
602	Fecal Transplants Transfer More Than Microbiota. Infectious Diseases in Clinical Practice, 201 276-278.	1, 19, 0	0.1	2
603	Microbial Communities of the Upper Respiratory Tract and Otitis Media in Children. MBio, 202 e00245-10.	11, 2, 1	.8	193
604	Intestinal microbiota in inflammation and insulin resistance: relevance to humans. Current Op Clinical Nutrition and Metabolic Care, 2011, 14, 334-340.	vinion in 1	.3	57
605	Microbial Metabolomics. Current Genomics, 2011, 12, 391-403.	o	0.7	142
606	History of Tonsillectomy Is Associated With Irritable Bowel Syndrome. Journal of Clinical Gastroenterology, 2011, 45, 912.	1	.1	11
607	Obesity and Fatty Liver Are â€~Grease' for the Machinery of Hepatic Fibrosis. Digestive Dis 377-383.	seases, 2011, 29, o	.8	22
608	Bacteria and pH-Sensitive Polysaccharide-Polymer Films for Colon Targeted Delivery. Critical R in Therapeutic Drug Carrier Systems, 2011, 28, 395-445.	eviews 1	.2	16
609	MICROBIOTA INTESTINAL, METABOLISMO Y BALANCE CALÓRICO. Revista Chilena De Nutrici 477-481.	on, 2011, 38, o	0.1	0
610	Assessing Hepatic Metabolic Changes During Progressive Colonization of Germ-free Mouse by & & & & & & & & & & & & & & & & & &	у о	0.2	3
611	Gut microbiome dysbiosis and honeybee health. Journal of Applied Entomology, 2011, 135, 5.	24-533. o	9.8	148

#	Article	IF	Citations
612	Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?. Obesity Reviews, 2011, 12, 272-281.	3.1	248
613	Diabetes resolution and hyperinsulinaemia after metabolic Rouxâ€en‥ gastric bypass. Obesity Reviews, 2011, 12, e257-72.	3.1	80
614	Leaky gut and diabetes mellitus: what is the link?. Obesity Reviews, 2011, 12, 449-458.	3.1	182
615	PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity. Neurogastroenterology and Motility, 2011, 23, 169-e42.	1.6	36
616	The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiology Reviews, 2011, 35, 681-704.	3.9	232
617	Association between periodontal infection and obesity: results of the Health 2000 Survey. Journal of Clinical Periodontology, 2011, 38, 236-242.	2.3	45
618	Microbial shift and periodontitis. Periodontology 2000, 2011, 55, 36-47.	6.3	259
619	Design and in vitro evaluation of new rpoB-DGGE primers for ruminants. FEMS Microbiology Ecology, 2011, 76, 156-169.	1.3	7
620	Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiology Ecology, 2011, 76, 301-310.	1.3	324
621	Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology, 2011, 9, 279-290.	13.6	1,305
622	Pregravid Obesity Associates With Increased Maternal Endotoxemia and Metabolic Inflammation. Obesity, 2011, 19, 476-482.	1.5	208
623	Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. International Journal of Obesity, 2011, 35, 522-529.	1.6	446
624	Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME Journal, 2011, 5, 220-230.	4.4	1,352
625	Analysis of human and animal fecal microbiota for microbial source tracking. ISME Journal, 2011, 5, 362-365.	4.4	87
626	Unveiling an abundant core microbiota in the human adult colon by a phylogroup-independent searching approach. ISME Journal, 2011, 5, 519-531.	4.4	77
627	Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472, 57-63.	13.7	4,238
628	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	13.7	5,800
630	Fermentation potential of the gut microbiome: implications for energy homeostasis and weight management. Nutrition Reviews, 2011, 69, 99-106.	2.6	81

#	Article	IF	Citations
631	The human gut microbiome: are we our enterotypes?. Microbial Biotechnology, 2011, 4, 550-553.	2.0	59
632	The gut microbiome as therapeutic target. , 2011, 130, 202-212.		299
633	Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin. Physiology and Behavior, 2011, 105, 100-105.	1.0	122
634	Molecular detection of Torque teno virus in different breeds of swine. Virology Journal, 2011, 8, 503.	1.4	8
635	Impact of dietary counselling and probiotic intervention on maternal anthropometric measurements during and after pregnancy: A randomized placebo-controlled trial. Clinical Nutrition, 2011, 30, 156-164.	2.3	127
636	Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic?. American Journal of Obstetrics and Gynecology, 2011, 204, 479-487.	0.7	276
637	Progress in genomics, metabolism and biotechnology of bifidobacteria. International Journal of Food Microbiology, 2011, 149, 4-18.	2.1	72
638	Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. International Journal of Food Microbiology, 2011, 149, 73-80.	2.1	260
639	Metabolic activities and probiotic potential of bifidobacteria. International Journal of Food Microbiology, 2011, 149, 88-105.	2.1	213
640	Metabolic labeling of fucosylated glycoproteins in Bacteroidales species. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4989-4992.	1.0	45
641	High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chemico-Biological Interactions, 2011, 189, 1-8.	1.7	150
642	Interactions Between Gut Microbiota and Host Metabolism Predisposing to Obesity and Diabetes. Annual Review of Medicine, 2011, 62, 361-380.	5.0	515
643	Variation in Antibiotic-Induced Microbial Recolonization Impacts on the Host Metabolic Phenotypes of Rats. Journal of Proteome Research, 2011, 10, 3590-3603.	1.8	114
644	Colonization-Induced Host-Gut Microbial Metabolic Interaction. MBio, 2011, 2, e00271-10.	1.8	342
645	Interaction Between Obesity and the Gut Microbiota: Relevance in Nutrition. Annual Review of Nutrition, 2011, 31, 15-31.	4.3	358
646	Gut Microbiota and Its Pathophysiology in Disease Paradigms. Digestive Diseases, 2011, 29, 518-524.	0.8	50
647	Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Microbiology, 2011, 9, 356-368.	13.6	932
648	Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice. Diabetes, 2011, 60, 2775-2786.	0.3	881

#	Article	IF	CITATIONS
649	New IBD genetics: common pathways with other diseases. Gut, 2011, 60, 1739-1753.	6.1	504
650	Prospects for the Future Using Genomics and Proteomics in Clinical Microbiology. Annual Review of Microbiology, 2011, 65, 169-188.	2.9	53
651	The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annual Review of Microbiology, 2011, 65, 411-429.	2.9	589
652	Metagenomics of the human microbiome. Biology Bulletin Reviews, 2011, 1, 83-93.	0.3	0
653	Altered Gut Flora Are Associated with Septic Complications and Death in Critically Ill Patients with Systemic Inflammatory Response Syndrome. Digestive Diseases and Sciences, 2011, 56, 1171-1177.	1.1	179
654	Methane on Breath Testing Is Associated with Constipation: A Systematic Review and Meta-analysis. Digestive Diseases and Sciences, 2011, 56, 1612-1618.	1.1	151
655	Comparative analysis of microbial diversity in Longitarsus flea beetles (Coleoptera: Chrysomelidae). Genetica, 2011, 139, 541-550.	0.5	39
656	Current and Future Drug Targets in Weight Management. Pharmaceutical Research, 2011, 28, 1792-1818.	1.7	66
657	Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn's disease using terminal restriction fragment length polymorphism analysis. Journal of Gastroenterology, 2011, 46, 479-486.	2.3	191
658	Natural selection at genomic regions associated with obesity and type-2 diabetes: East Asians and sub-Saharan Africans exhibit high levels of differentiation at type-2 diabetes regions. Human Genetics, 2011, 129, 407-418.	1.8	71
659	Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetologica, 2011, 48, 257-273.	1.2	199
661	Genotype Is a Stronger Determinant than Sex of the Mouse Gut Microbiota. Microbial Ecology, 2011, 61, 423-428.	1.4	201
662	Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation. Journal of Nutritional Biochemistry, 2011, 22, 53-59.	1.9	235
663	Intestinal microbiota in human health and disease: the impact of probiotics. Genes and Nutrition, 2011, 6, 209-240.	1.2	557
664	Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease?. Genes and Nutrition, 2011, 6, 241-260.	1.2	194
665	Gut microbiota and metabolic diseases: myth or reality?. Mediterranean Journal of Nutrition and Metabolism, 2011, 4, 75-77.	0.2	0
666	Restoration of host–microbiota homeostasis for attaining healthy aging: the role of milk and fermented milk. Mediterranean Journal of Nutrition and Metabolism, 2011, 4, 159-164.	0.2	0
667	A randomised controlled trial for overweight and obese parents to prevent childhood obesity - Early STOPP (STockholm Obesity Prevention Program). BMC Public Health, 2011, 11, 336.	1.2	41

	Сітатіс	on Report	
# 668	ARTICLE Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microbial Cell Factories, 2011, 10, S10.	lF 1.9	CITATIONS
669	Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction. Journal of Translational Medicine, 2011, 9, 202.	1.8	24
670	Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice. Nutrition and Metabolism, 2011, 8, 44.	1.3	15
671	Utilization of dietary glucose in the metabolic syndrome. Nutrition and Metabolism, 2011, 8, 74.	1.3	16
672	"Who owns your poop?": insights regarding the intersection of human microbiome research and the ELSI aspects of biobanking and related studies. BMC Medical Genomics, 2011, 4, 72.	0.7	69
673	Intestinal microflora and body mass index during the first three years of life: an observational study. Gut Pathogens, 2011, 3, 8.	1.6	126
674	The influence of the cage system and colonisation of Salmonella Enteritidis on the microbial gut flora of laying hens studied by T-RFLP and 454 pyrosequencing. BMC Microbiology, 2011, 11, 187.	1.3	68
675	Reduced Paneth cell antimicrobial protein levels correlate with activation of the unfolded protein response in the gut of obese individuals. Journal of Pathology, 2011, 225, 276-284.	2.1	94
676	Bacterial biofilms associated with food particles in the human large bowel. Molecular Nutrition and Food Research, 2011, 55, 969-978.	1.5	29
677	Lessons from probiotic–host interaction studies in murine models of experimental colitis. Molecular Nutrition and Food Research, 2011, 55, 1441-1453.	1.5	38
678	¹ H NMRâ€based metabonomic applications to decipher gut microbial metabolic influence on mammalian health. Magnetic Resonance in Chemistry, 2011, 49, S47-54.	1.1	26
679	The struggle within: Microbial influences on colorectal cancer. Inflammatory Bowel Diseases, 2011, 17, 396-409.	0.9	103
680	Systemic toll-like receptor ligands modify B-cell responses in human inflammatory bowel disease. Inflammatory Bowel Diseases, 2011, 17, 298-307.	0.9	50
681	Degradation of the extracellular matrix components by bacterial-derived metalloproteases. Inflammatory Bowel Diseases, 2011, 17, 1189-1200.	0.9	60
682	Missing environmental factor in inflammatory bowel disease. Inflammatory Bowel Diseases, 2011, 17, E82-E83.	0.9	16
683	Symbiosis and development: The hologenome concept. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 56-66.	3.6	169
684	Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. Journal of Nutritional Biochemistry, 2011, 22, 699-711.	1.9	157
685	Prospects for systems biology and modeling of the gut microbiome. Trends in Biotechnology, 2011, 29, 251-258.	4.9	74

		CITATION R	EPORT	
#	Article		IF	CITATIONS
686	Caspase deficiency alters the murine gut microbiome. Cell Death and Disease, 2011, 2, e	220-e220.	2.7	61
687	The metabolic activity of gut microbiota in obese children is increased compared with no children and exhibits more exhaustive substrate utilization. Nutrition and Diabetes, 201		1.5	137
688	Lactobacillus: Host–Microbe Relationships. Current Topics in Microbiology and Immur 119-154.	ıology, 2011, 358,	0.7	61
689	Dietary selenium affects host selenoproteome expression by influencing the gut microbi Journal, 2011, 25, 2492-2499.	ota. FASEB	0.2	175
690	Optimized application of penalized regression methods to diverse genomic data. Bioinfo 27, 3399-3406.	ormatics, 2011,	1.8	73
691	Using antimicrobial cultures, bacteriocins and bacteriophages to reduce carriage of fooc pathogens in cattle and swine. , 2011, , 204-224.	borne		2
692	Social evolution in multispecies biofilms. Proceedings of the National Academy of Science United States of America, 2011, 108, 10839-10846.	es of the	3.3	213
693	Cesarean delivery is associated with an increased risk of obesity in adulthood in a Brazili cohort study. American Journal of Clinical Nutrition, 2011, 93, 1344-1347.	an birth	2.2	86
694	Canaries in the coal mine: a cross-species analysis of the plurality of obesity epidemics. F the Royal Society B: Biological Sciences, 2011, 278, 1626-1632.	Proceedings of	1.2	123
695	How the insect immune system interacts with an obligate symbiotic bacterium. Proceed Royal Society B: Biological Sciences, 2011, 278, 333-338.	ings of the	1.2	59
696	The human metagenome: our other genome?. Human Molecular Genetics, 2011, 20, R14	42-R148.	1.4	33
697	Effects on weight gain and gut microbiota in rats given bacterial supplements and a high diet from fetal life through to 6 months of age. British Journal of Nutrition, 2011, 106, 8	n-energy-dense 87-895.	1.2	71
698	Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat Microbes, 2011, 2, 25-33.	model. Gut	4.3	144
699	The Type II Secretion System Is Essential for Erythrocyte Lysis and Gut Colonization by the Digestive Tract Symbiont <i>Aeromonas veronii</i> . Applied and Environmental Microbio 597-603.		1.4	45
700	The Extended Nutrigenomics – Understanding the Interplay between the Genomes of Microbes, and Human Host. Frontiers in Genetics, 2011, 2, 21.	Food, Gut	1.1	61
701	MetaRank: a rank conversion scheme for comparative analysis of microbial community c Bioinformatics, 2011, 27, 3341-3347.	ompositions.	1.8	5
702	The emerging relationship between the airway microbiota and chronic respiratory diseas implications. Expert Review of Respiratory Medicine, 2011, 5, 809-821.	e: clinical	1.0	89
703	Programming of Host Metabolism by the Gut Microbiota. Annals of Nutrition and Metab 44-52.	olism, 2011, 58,	1.0	201

#	Article	IF	CITATIONS
704	Macrophage Deletion of SOCS1 Increases Sensitivity to LPS and Palmitic Acid and Results in Systemic Inflammation and Hepatic Insulin Resistance. Diabetes, 2011, 60, 2023-2031.	0.3	72
705	Identification and Characterization of Potential Performance-Related Gut Microbiotas in Broiler Chickens across Various Feeding Trials. Applied and Environmental Microbiology, 2011, 77, 5868-5878.	1.4	256
706	α-Galactosidase/Sucrose Kinase (AgaSK), a Novel Bifunctional Enzyme from the Human Microbiome Coupling Galactosidase and Kinase Activities. Journal of Biological Chemistry, 2011, 286, 40814-40823.	1.6	32
707	Community Health Care: Therapeutic Opportunities in the Human Microbiome. Science Translational Medicine, 2011, 3, 78ps12.	5.8	82
708	Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos. PLoS ONE, 2011, 6, e17497.	1.1	459
709	Beneficial Microorganisms in Multicellular Life Forms. , 2011, , .		16
710	The Lifestyle of the Segmented Filamentous Bacterium: A Non-Culturable Gut-Associated Immunostimulating Microbe Inferred by Whole-Genome Sequencing. DNA Research, 2011, 18, 291-303.	1.5	93
711	Altered Gut Microbiota and Endocannabinoid System Tone in Obese and Diabetic Leptin-Resistant Mice: Impact on Apelin Regulation in Adipose Tissue. Frontiers in Microbiology, 2011, 2, 149.	1.5	267
712	Embryo protection in contemporary immunology. Communicative and Integrative Biology, 2011, 4, 369-372.	0.6	19
713	Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. Gut Microbes, 2011, 2, 178-182.	4.3	22
714	Reprogramming intestinal immunity is the answer to induced pathogenic inflammation. Immunotherapy, 2011, 3, 1415-1417.	1.0	3
715	Role of Dietary Factors and Food Habits in the Development of Childhood Obesity: A Commentary by the ESPGHAN Committee on Nutrition. Journal of Pediatric Gastroenterology and Nutrition, 2011, 52, 662-669.	0.9	121
716	Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. American Journal of Clinical Nutrition, 2011, 94, 58-65.	2.2	1,015
717	Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: a randomized, double-blind, controlled trial in healthy university students. American Journal of Clinical Nutrition, 2011, 93, 1305-1311.	2.2	52
718	Predominant Effect of Host Genetics on Levels of Lactobacillus johnsonii Bacteria in the Mouse Gut. Applied and Environmental Microbiology, 2011, 77, 6531-6538.	1.4	39
719	Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4523-4530.	3.3	625
720	New metabolic markers of heart disease. Science-Business EXchange, 2011, 4, 447-447.	0.0	0
721	Roundoc Rx: The Human Microbiome—Humans as Super-Organisms. Alternative and Complementary Therapies, 2011, 17, 70-75.	0.1	3

#	Article	IF	Citations
722	The emerging role of the intestine in metabolic diseases. Archives of Physiology and Biochemistry, 2011, 117, 165-176.	1.0	18
723	Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4578-4585.	3.3	2,108
725	The Yin and Yang of host-commensal mutualism. Gut Microbes, 2011, 2, 347-352.	4.3	10
726	Therapeutic transplantation of the distal gut microbiota. Mucosal Immunology, 2011, 4, 4-7.	2.7	75
727	Factors Causing Disturbances of the Gut Microbiota. , 2011, , 89-111.		0
728	Dysregulation of Allergic Airway Inflammation in the Absence of Microbial Colonization. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 198-205.	2.5	378
729	Targeting the innate immune system in pediatric inflammatory bowel disease. Expert Review of Gastroenterology and Hepatology, 2011, 5, 33-41.	1.4	10
730	Gut Microbes, Immunity, and Metabolism. , 2011, , 311-330.		1
731	Probiotics, Nuclear Receptor Signaling, and Anti-Inflammatory Pathways. Gastroenterology Research and Practice, 2011, 2011, 1-16.	0.7	54
732	Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice. PLoS Biology, 2011, 9, e1001212.	2.6	237
733	Anaerobic Respiration of Escherichia coli in the Mouse Intestine. Infection and Immunity, 2011, 79, 4218-4226.	1.0	111
734	The Impact of Gut Microbiota in Human Health and Diseases: Implication for Therapeutic Potential. Biomolecules and Therapeutics, 2011, 19, 155-173.	1.1	5
735	Towards an Evolutionary Model of Animal-Associated Microbiomes. Entropy, 2011, 13, 570-594.	1.1	48
736	The Pioneer Gut Microbiota in Human Neonates Vaginally Born at Term—A Pilot Study. Pediatric Research, 2011, 70, 282-286.	1.1	55
737	Intestinal antimicrobial peptides during homeostasis, infection, and disease. Frontiers in Immunology, 2012, 3, 310.	2.2	181
738	Intronic Cis-Regulatory Modules Mediate Tissue-Specific and Microbial Control of angptl4/fiaf Transcription. PLoS Genetics, 2012, 8, e1002585.	1.5	44
739	Consumption of Lysozyme-Rich Milk Can Alter Microbial Fecal Populations. Applied and Environmental Microbiology, 2012, 78, 6153-6160.	1.4	87
740	Influence of Adhesion and Bacteriocin Production by Lactobacillus salivarius on the Intestinal Epithelial Cell Transcriptional Response. Applied and Environmental Microbiology, 2012, 78, 5196-5203.	1.4	43

#	Article	IF	CITATIONS
741	Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut, 2012, 61, 543-553.	6.1	511
742	The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease. Frontiers in Physiology, 2012, 3, 402.	1.3	86
743	Management of metabolic syndrome through probiotic and prebiotic interventions. Indian Journal of Endocrinology and Metabolism, 2012, 16, 20.	0.2	72
744	Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E464-E474.	1.8	60
745	Chapter 12: Human Microbiome Analysis. PLoS Computational Biology, 2012, 8, e1002808.	1.5	408
746	Do Interactions Between Gut Ecology and Environmental Chemicals Contribute to Obesity and Diabetes?. Environmental Health Perspectives, 2012, 120, 332-339.	2.8	142
747	Structural Changes of Gut Microbiota during Berberine-Mediated Prevention of Obesity and Insulin Resistance in High-Fat Diet-Fed Rats. PLoS ONE, 2012, 7, e42529.	1.1	435
748	Is bile acid a determinant of the gut microbiota on a high-fat diet?. Gut Microbes, 2012, 3, 455-459.	4.3	170
749	Prebiotic Fiber Increases Hepatic Acetyl CoA Carboxylase Phosphorylation and Suppresses Glucose-Dependent Insulinotropic Polypeptide Secretion More Effectively When Used with Metformin in Obese Rats. Journal of Nutrition, 2012, 142, 213-220.	1.3	61
750	Bacteroides uniformis CECT 7771 Ameliorates Metabolic and Immunological Dysfunction in Mice with High-Fat-Diet Induced Obesity. PLoS ONE, 2012, 7, e41079.	1.1	311
751	Role of the Gut Microbiota in Age-Related Chronic Inflammation. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2012, 12, 361-367.	0.6	54
752	Abrupt Temporal Fluctuations in the Chicken Fecal Microbiota Are Explained by Its Gastrointestinal Origin. Applied and Environmental Microbiology, 2012, 78, 2941-2948.	1.4	116
753	Paratransgenesis: An Approach to Improve Colony Health and Molecular Insight in Honey Bees (Apis) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
754	Gut Microflora, Obesity, and Metabolic Diseases. Lippincott S Bone and Joint Newsletter, 2012, 38, 8-11.	0.0	0
755	Implementing the Low-FODMAP Diet. Lippincott S Bone and Joint Newsletter, 2012, 38, 4-5.	0.0	1
756	Are Antibiotics Effective for IBS?. Lippincott S Bone and Joint Newsletter, 2012, 38, 5-6.	0.0	0
757	Regulatory properties of the intestinal microbiome effecting the development and treatment of diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 73-80.	1.2	20
758	newsbites. Lippincott S Bone and Joint Newsletter, 2012, 38, 12.	0.0	0

#	Article	IF	Citations
759	Clinical Nutrition INSIGHT. Lippincott S Bone and Joint Newsletter, 2012, 38, 10-11.	0.0	0
760	The Low-FODMAP Diet. Lippincott S Bone and Joint Newsletter, 2012, 38, 1-4.	0.0	1
761	Nonceliac Gluten Sensitivity. Lippincott S Bone and Joint Newsletter, 2012, 38, 6-8.	0.0	0
762	Early gut colonization and subsequent obesity risk. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 278-284.	1.3	25
763	Taking a metagenomic view of human nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 448-454.	1.3	54
764	The Role of Whole Grains in Body Weight Regulation. Advances in Nutrition, 2012, 3, 697-707.	2.9	63
765	Effects of non-fermented and fermented soybean milk intake on faecal microbiota and faecal metabolites in humans. International Journal of Food Sciences and Nutrition, 2012, 63, 402-410.	1.3	50
766	Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer. PLoS ONE, 2012, 7, e39743.	1.1	821
767	Probiotics to Adolescents With Obesity. Journal of Pediatric Gastroenterology and Nutrition, 2012, 55, 673-678.	0.9	116
768	Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Research, 2012, 22, 1974-1984.	2.4	120
769	Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Research, 2012, 22, 2146-2152.	2.4	167
770	Intestinal MicrobiOMICS to Define Health and Disease in Human and Mice. Current Pharmaceutical Biotechnology, 2012, 13, 746-758.	0.9	34
771	Current and emerging concepts on the role of peripheral signals in the control of food intake and development of obesity. British Journal of Nutrition, 2012, 108, 778-793.	1.2	42
773	Stabilization of the murine gut microbiome following weaning. Gut Microbes, 2012, 3, 383-393.	4.3	126
774	Immunological Responses to Gut Bacteria. Journal of AOAC INTERNATIONAL, 2012, 95, 35-49.	0.7	12
775	Gut Microbiota, Diet, and Heart Disease. Journal of AOAC INTERNATIONAL, 2012, 95, 24-30.	0.7	30
778	Yeast Communities of Diverse Drosophila Species: Comparison of Two Symbiont Groups in the Same Hosts. Applied and Environmental Microbiology, 2012, 78, 7327-7336.	1.4	160
779	Comparative evaluation of establishing a human gut microbial community within rodent models. Gut Microbes, 2012, 3, 234-249.	4.3	113

		CITATION REPORT	
#	Article	IF	Citations
780	The gut microbiota and its relationship to diet and obesity. Gut Microbes, 2012, 3, 186-202.	4.3	382
781	A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. European Journal of Clinical Nutrition, 2012, 66, 53-60.	1.3	382
782	Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabete associated with obesity. Gut Microbes, 2012, 3, 279-288.	2S 4.3	682
783	Consumption of different soymilk formulations differentially affects the gut microbiomes of overweight and obese men. Gut Microbes, 2012, 3, 490-500.	4.3	58
784	Valsartan, independently of AT1 receptor or PPAR ^{î3} , suppresses LPS-induced macrophage activat improves insulin resistance in cocultured adipocytes. American Journal of Physiology - Endocrino and Metabolism, 2012, 302, E286-E296.	tion and logy 1.8	32
785	Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut pep and reduce metabolic endotoxemia in diet-induced obese mice. Nutrition and Diabetes, 2012, 2,	tides 1.5 e28-e28. 1.5	184
786	Obesity, Physical Inactivity, and Colonic Diverticular Disease Requiring Hospitalization in Womer Prospective Cohort Study. American Journal of Gastroenterology, 2012, 107, 296-302.	n: A 0.2	102
787	Visceral and subcutaneous adipose tissue from lean women respond differently to lipopolysaccharide-induced alteration of inflammation and glyceroneogenesis. Nutrition and Diabetes, 2012, 2, e51-e51.	1.5	22
788	Etiopatogenia de la obesidad. Revista Médica ClÃnica Las Condes, 2012, 23, 129-135.	0.2	1
789	Remodeling the intestinal ecosystem toward better performance and intestinal health. Journal of Applied Poultry Research, 2012, 21, 432-443.	F 0.6	9
790	Prebiotics and the Health Benefits of Fiber: Current Regulatory Status, Future Research, and Goa Journal of Nutrition, 2012, 142, 962-974.	ls,. 1.3	158
791	The gut microbiota, environment and diseases of modern society. Gut Microbes, 2012, 3, 374-38	32. 4.3	56
792	Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISM Journal, 2012, 6, 1848-1857.	1E 4.4	407
793	Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabe syndrome. Gut Microbes, 2012, 3, 29-34.	olic 4.3	151
794	Pyrosequencing as a tool for better understanding of human microbiomes. Journal of Oral Microbiology, 2012, 4, 10743.	1.2	121
795	Impact of a Resistant Dextrin on Intestinal Ecology: How Altering the Digestive Ecosystem with NUTRIOSE®, a Soluble Fibre with Prebiotic Properties, May Be Beneficial for Health. Journal of International Medical Research, 2012, 40, 211-224.	0.4	66
796	Intestinal Epithelial Barrier Dysfunction in Food Hypersensitivity. Journal of Allergy, 2012, 2012, 2	1-11. 0.7	34
797	<i>Bifidobacterium adolescentis</i> supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. British Journal of Nutritic 2012, 107, 1429-1434.	on, 1.2	130

#	Article	IF	CITATIONS
798	Endotoxin increase after fat overload is related to postprandial hypertriglyceridemia in morbidly obese patients. Journal of Lipid Research, 2012, 53, 973-978.	2.0	110
799	The gut microbiome: scourge, sentinel or spectator?. Journal of Oral Microbiology, 2012, 4, 9367.	1.2	48
800	SSuMMo: rapid analysis, comparison and visualization of microbial communities. Bioinformatics, 2012, 28, 679-686.	1.8	5
801	Characterization of Phascolarctobacterium succinatutens sp. nov., an Asaccharolytic, Succinate-Utilizing Bacterium Isolated from Human Feces. Applied and Environmental Microbiology, 2012, 78, 511-518.	1.4	175
802	Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME Journal, 2012, 6, 1858-1868.	4.4	195
803	Metagenomics to Unveil Microbiome of Human Body. Journal of Bacteriology & Parasitology, 2012, 04, .	0.2	0
804	Environmental Factors and Their Impact on the Intestinal Microbiota: A Role for Human Disease?. Digestive Diseases, 2012, 30, 20-27.	0.8	10
805	Importance of Commensal and Probiotic Bacteria in Human Health. Current Immunology Reviews, 2012, 8, 248-253.	1.2	6
807	Distinct Gut Microbiota in Southeastern African and Northern European Infants. Journal of Pediatric Gastroenterology and Nutrition, 2012, 54, 812-816.	0.9	143
808	Microbes On-Air. Journal of Clinical Gastroenterology, 2012, 46, S27-S28.	1.1	15
808 810	Microbes On-Air. Journal of Clinical Gastroenterology, 2012, 46, S27-S28. Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition, 2012, 51, 96-101.	1.1 0.6	15 76
	Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical		
810	Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition, 2012, 51, 96-101. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver	0.6	76
810 811	Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition, 2012, 51, 96-101. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World Journal of Hepatology, 2012, 4, 110. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology	0.6 0.8	76 96
810 811 812	Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition, 2012, 51, 96-101. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World Journal of Hepatology, 2012, 4, 110. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World Journal of Gastrointestinal Pathophysiology, 2012, 3, 27. The effect of brown midrib corn silage and dried distillers' grains with solubles on milk production, nitrogen utilization and microbial community structure in dairy cows. Canadian Journal of Animal	0.6 0.8 0.5	76 96 185
810811812813	Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition, 2012, 51, 96-101. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World Journal of Hepatology, 2012, 4, 110. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World Journal of Gastrointestinal Pathophysiology, 2012, 3, 27. The effect of brown midrib corn silage and dried distillers' grains with solubles on milk production, nitrogen utilization and microbial community structure in dairy cows. Canadian Journal of Animal Science, 2012, 92, 365-380.	0.6 0.8 0.5 0.7	76 96 185 26
 810 811 812 813 814 	Anti-diabetic effects of lactic acid bacteria in normal and type 2 diabetic mice. Journal of Clinical Biochemistry and Nutrition, 2012, 51, 96-101. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World Journal of Hepatology, 2012, 4, 110. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World Journal of Gastrointestinal Pathophysiology, 2012, 3, 27. The effect of brown midrib corn silage and dried distillers' grains with solubles on milk production, nitrogen utilization and microbial community structure in dairy cows. Canadian Journal of Animal Science, 2012, 92, 365-380. The oral microflora in obesity and type-2 diabetes. Journal of Oral Microbiology, 2012, 4, 19013.	0.6 0.8 0.5 0.7 1.2	 76 96 185 26 33

#	Article	IF	CITATIONS
819	Gut Microbiota and Obesity. Digestive Diseases, 2012, 30, 196-200.	0.8	17
820	Defining the human microbiome. Nutrition Reviews, 2012, 70, S38-S44.	2.6	789
821	The impact of nutrition on the human microbiome. Nutrition Reviews, 2012, 70, S10-S13.	2.6	213
822	Role of the intestinal microbiome in health and disease: from correlation to causation. Nutrition Reviews, 2012, 70, S45-S56.	2.6	333
823	Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. International Journal of Obesity, 2012, 36, 817-825.	1.6	567
824	Gut Microbial Activity, Implications for Health and Disease: The Potential Role of Metabolite Analysis. Journal of Proteome Research, 2012, 11, 5573-5585.	1.8	227
825	Gastrointestinal Microbial Ecology with Perspectives on Health and Disease. , 2012, , 1119-1134.		6
826	Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study. Archives of Disease in Childhood, 2012, 97, 610-616.	1.0	226
827	Inflammation and type 2 diabetes. Diabetes and Metabolism, 2012, 38, 183-191.	1.4	363
828	Upper Respiratory Tract Microbial Communities, Acute Otitis Media Pathogens, and Antibiotic Use in Healthy and Sick Children. Applied and Environmental Microbiology, 2012, 78, 6262-6270.	1.4	172
829	Human serum proteome analysis: new source of markers in metabolic disorders. Biomarkers in Medicine, 2012, 6, 759-773.	0.6	21
830	Total Parenteral Nutrition Induces a Shift in the Firmicutes to Bacteroidetes Ratio in Association with Paneth Cell Activation in Rats ,2. Journal of Nutrition, 2012, 142, 2141-2147.	1.3	57
831	Symptomatic atherosclerosis is associated with an altered gut metagenome. Nature Communications, 2012, 3, 1245.	5.8	970
832	The Hologenome Concept. , 2012, , 323-340.		2
833	Fecal microbiota transplantation and emerging applications. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 88-96.	8.2	552
834	Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Beneficial Microbes, 2012, 3, 13-22.	1.0	102
835	Metabolic Perturbance in Autism Spectrum Disorders: A Metabolomics Study. Journal of Proteome Research, 2012, 11, 5856-5862.	1.8	205
836	Microbiota in the Oral Subgingival Biofilm Is Associated With Obesity in Adolescence. Obesity, 2012, 20, 157-164.	1.5	105

#	Article	IF	CITATIONS
837	Women With and Without Metabolic Disorder Differ in Their Gut Microbiota Composition. Obesity, 2012, 20, 1082-1087.	1.5	82
838	Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biology, 2012, 13, R42.	13.9	797
839	Vaginal Microbiome: Rethinking Health and Disease. Annual Review of Microbiology, 2012, 66, 371-389.	2.9	584
840	Do we need antiâ€obesity drugs?. Diabetes/Metabolism Research and Reviews, 2012, 28, 8-20.	1.7	32
841	Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn's disease. Journal of Gastroenterology, 2012, 47, 1298-1307.	2.3	152
842	Microbiota Regulate Intestinal Absorption and Metabolism of Fatty Acids in the Zebrafish. Cell Host and Microbe, 2012, 12, 277-288.	5.1	717
843	Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Research International, 2012, 48, 916-929.	2.9	49
844	Innate Lymphoid Cell Interactions with Microbiota: Implications for Intestinal Health and Disease. Immunity, 2012, 37, 601-610.	6.6	244
845	The human microbiome: A hot spot of microbial horizontal gene transfer. Genomics, 2012, 100, 265-270.	1.3	109
846	Obesity: Underlying Mechanisms and the Evolving Influence of Diet. Current Nutrition Reports, 2012, 1, 205-214.	2.1	0
847	Distinct Urinary Metabolic Profile of Human Colorectal Cancer. Journal of Proteome Research, 2012, 11, 1354-1363.	1.8	184
848	Development of an IPTG inducible expression vector adapted for Bacteroides fragilis. Plasmid, 2012, 68, 86-92.	0.4	10
849	Efecto de los probióticos en el control de la obesidad en humanos: hipótesis no demostradas. Revista Espanola De Nutricion Humana Y Dietetica, 2012, 16, 100-107.	0.1	0
850	Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. American Journal of Clinical Nutrition, 2012, 95, 1278-1287.	2.2	109
851	Integrating next-generation sequencing and traditional tongue diagnosis to determine tongue coating microbiome. Scientific Reports, 2012, 2, 936.	1.6	109
852	Surgical systems biology and personalized longitudinal phenotyping in critical care. Personalized Medicine, 2012, 9, 593-608.	0.8	6
853	Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice, 2012, 27, 201-214.	1.1	596
854	Transient TLR Activation Restores Inflammatory Response and Ability To Control Pulmonary Bacterial Infection in Germfree Mice. Journal of Immunology, 2012, 188, 1411-1420.	0.4	184

#	Article	IF	CITATIONS
855	Of Microbes and Meals. Nutrition in Clinical Practice, 2012, 27, 215-225.	1.1	83
856	The Microbiota and Its Metabolites in Colonic Mucosal Health and Cancer Risk. Nutrition in Clinical Practice, 2012, 27, 624-635.	1.1	100
857	The Gut Microbiome and Obesity. Nestle Nutrition Institute Workshop Series, 2012, 73, 67-79.	1.5	24
858	Immuno-microbiota cross and talk: The new paradigm of metabolic diseases. Seminars in Immunology, 2012, 24, 67-74.	2.7	126
859	Gut–liver axis: The impact of gut microbiota on non alcoholic fatty liver disease. Nutrition, Metabolism and Cardiovascular Diseases, 2012, 22, 471-476.	1.1	358
860	Diverse microbial exposure – Consequences for vaccine development. Vaccine, 2012, 30, 4336-4340.	1.7	22
861	Role and function of macrophages in the metabolic syndrome. Biochemical Journal, 2012, 442, 253-262.	1.7	93
862	The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 577-589.	8.2	1,515
863	Enteric pathogens through life stages. Frontiers in Cellular and Infection Microbiology, 2012, 2, 114.	1.8	57
864	Phenazine Content in the Cystic Fibrosis Respiratory Tract Negatively Correlates with Lung Function and Microbial Complexity. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 738-745.	1.4	158
865	Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. British Journal of Nutrition, 2012, 107, 601-613.	1.2	240
866	Antioxidants included in the diet of fattening lambs: Effects on immune response, stress, welfare and distal gut microbiota. Animal Feed Science and Technology, 2012, 173, 177-185.	1.1	21
867	An evaluation of the effects of Lactobacillus ingluviei on body weight, the intestinal microbiome and metabolism in mice. Microbial Pathogenesis, 2012, 52, 61-68.	1.3	59
868	Cannabinoid signalling regulates inflammation and energy balance: The importance of the brain–gut axis. Brain, Behavior, and Immunity, 2012, 26, 691-698.	2.0	43
869	IgA synthesis: a form of functional immune adaptation extending beyond gut. Current Opinion in Immunology, 2012, 24, 261-268.	2.4	62
870	The function of our microbiota: who is out there and what do they do?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 104.	1.8	352
871	Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME Journal, 2012, 6, 692-702.	4.4	258
872	Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity, 2012, 37, 158-170.	6.6	817

ARTICLE IF CITATIONS # Gut microbiota, epithelial function and derangements in obesity. Journal of Physiology, 2012, 590, 873 1.3 92 441-446. Lateral gene transfer of an ABC transporter complex between major constituents of the human gut 874 1.3 microbiome. BMC Microbiology, 2012, 12, 248. Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC 875 1.3 88 Microbiology, 2012, 12, 283. Gut-central nervous system axis is a target for nutritional therapies. Nutrition Journal, 2012, 11, 22. The importance of the gut microbiota after bariatric surgery. Nature Reviews Gastroenterology and 877 8.2 216 Hepatology, 2012, 9, 590-598. The Microbiome in Infectious Disease and Inflammation. Annual Review of Immunology, 2012, 30, 878 688 759-795. Microbial culturomics: paradigm shift in the human gut microbiome study. Clinical Microbiology and 879 2.8 905 Infection, 2012, 18, 1185-1193. Epigenomic Factors in Human Obesity., 2012, , 273-296. 880 Antibiotics for Irritable Bowel Syndrome: Rationale and Current Evidence. Current Gastroenterology 881 1.1 37 Reports, 2012, 14, 439-445. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov... 0.8 238 International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 144-149. Data mining the human gut microbiota for therapeutic targets. Briefings in Bioinformatics, 2012, 13, 883 19 3.2 751-768. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiology Ecology, 1.3 2012, 80, 608-623. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249. 885 13.7 3,582 The Role of the Rumen Microbiota in Determining the Feed Efficiency of Dairy Cows., 2012, 203-210. 887 Pathogenesis of colonic diverticular disease. Langenbeck's Archives of Surgery, 2012, 397, 1025-1033. 0.8 41 Up-regulating the Human Intestinal Microbiome Using Whole Plant Foods, Polyphenols, and/or Fiber. 888 2.4 Journal of Agricultural and Food Chemistry, 2012, 60, 8776-8782. The relationship between gut microbiota and weight gain in humans. Future Microbiology, 2012, 7, 889 1.0 306 91-109. Impact of the Gut Microbiota on the Development of Obesity: Current Concepts. American Journal of Gastroenterology Supplements (Print), 2012, 1, 22-27.

		CITATION R	EPORT	
#	Article		IF	Citations
891	Obesity and the gut microbiome: Striving for causality. Molecular Metabolism, 2012, 1	, 21-31.	3.0	82
892	Human Gut Microbiota: Repertoire and Variations. Frontiers in Cellular and Infection M 2012, 2, 136.	icrobiology,	1.8	252
893	The Microbiota of the Gut in Preschool Children With Normal and Excessive Body Weig 2012, 20, 2257-2261.	şht. Obesity,	1.5	449
894	The interpersonal and intrapersonal diversity of human-associated microbiota in key bo Journal of Allergy and Clinical Immunology, 2012, 129, 1204-1208.	ody sites.	1.5	266
895	Preventing disease in the 21st century: The importance of maternal and early infant die Journal of Allergy and Clinical Immunology, 2012, 130, 733-734.	et and nutrition.	1.5	13
896	Analysis of the distribution of bacteria within urinary catheter biofilms using four differ molecular techniques. American Journal of Infection Control, 2012, 40, e249-e254.	ent	1.1	28
897	Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human ir bacteria. Anaerobe, 2012, 18, 445-453.	itestinal	1.0	64
898	Sampling and detection of skin Propionibacterium acnes: Current status. Anaerobe, 20)12, 18, 479-483.	1.0	45
899	Nous Sommes Tous des Bacteries: Implications for medicine, pharmacology and public Biochemical Pharmacology, 2012, 84, 1543-1550.	health.	2.0	13
900	Integrated and novel survey methods for rhinoceros populations confirm the extinction Rhinoceros sondaicus annamiticus from Vietnam. Biological Conservation, 2012, 155,		1.9	35
901	Dietary and commensal derived nutrients: shaping mucosal and systemic immunity. Cu Immunology, 2012, 24, 379-384.	irrent Opinion in	2.4	54
902	The golden age of DNA metasystematics. Trends in Genetics, 2012, 28, 535-537.		2.9	65
904	Chronic administration of dietary grape seed extract increases colonic expression of gu junction protein occludin and reduces fecal calprotectin: a secondary analysis of health Furth rats. Nutrition Research, 2012, 32, 787-794.	ıt tight ıy Wistar	1.3	45
905	The human gastrointestinal microbiota—An unexplored frontier for pharmaceutical d Pharmacological Research, 2012, 66, 443-447.	iscovery.	3.1	18
906	Study of the cultivable microflora of the large intestine of the rat under varied environ hyperbaric pressures. Journal of Microbiology, Immunology and Infection, 2012, 45, 28		1.5	11
907	Comparative meta-analysis of the effect of Lactobacillus species on weight gain in hun animals. Microbial Pathogenesis, 2012, 53, 100-108.	nans and	1.3	364
908	From Animalcules to an Ecosystem: Application of Ecological Concepts to the Human I Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 137-155.	Vicrobiome.	3.8	68
909	Toll-Like Receptors in Liver Fibrosis: Cellular Crosstalk and Mechanisms. Frontiers in Ph 3, 138.	ysiology, 2012,	1.3	144

# 910	ARTICLE Probiotics, Prebiotics, Energy Balance, and Obesity. Gastroenterology Clinics of North America, 2012, 41, 843-854.	IF 1.0	CITATIONS
911	Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes, 2012, 3, 463-467.	4.3	160
912	Early Development of Intestinal Microbiota. Gastroenterology Clinics of North America, 2012, 41, 717-731.	1.0	51
913	Killing as means of promoting biodiversity. Biochemical Society Transactions, 2012, 40, 1512-1516.	1.6	19
914	Microbes as Menaces, Mates & Marvels. Daedalus, 2012, 141, 67-76.	0.9	8
915	Colonic flora, Probiotics, Obesity and Diabetes. Frontiers in Endocrinology, 2012, 3, 87.	1.5	18
916	The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism: Clinical and Experimental, 2012, 61, 1058-1066.	1.5	426
918	High-Throughput Characterization and Comparison of Microbial Communities. , 2012, , 37-57.		0
919	Effects of a high-fat diet during pregnancy and lactation are modulated by E. coli in rat offspring. International Journal of Obesity, 2012, 36, 744-751.	1.6	15
920	Molecular analysis of gut microbiota in obesity among Indian individuals. Journal of Biosciences, 2012, 37, 647-657.	0.5	142
921	Gut microbiota: methodological aspects to describe taxonomy and functionality. Briefings in Bioinformatics, 2012, 13, 747-750.	3.2	7
922	Gut Microbiota Drives Metabolic Disease in Immunologically Altered Mice. Advances in Immunology, 2012, 116, 93-112.	1.1	40
923	Does Our Food (Environment) Change Our Gut Microbiome (â€~In-Vironment'): A Potential Role for Inflammatory Bowel Disease?. Digestive Diseases, 2012, 30, 33-39.	0.8	25
924	Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489, 220-230.	13.7	4,114
926	Quantitative UPLC-MS/MS analysis of the gut microbial co-metabolites phenylacetylglutamine, 4-cresyl sulphate and hippurate in human urine: INTERMAP Study. Analytical Methods, 2012, 4, 65-72.	1.3	30
927	Effects of Pediococcus parvulus 2.6 and its exopolysaccharide on plasma cholesterol levels and inflammatory markers in mice. AMB Express, 2012, 2, 66.	1.4	29
928	Probiotics in the Treatment of the Liver Diseases. Journal of the American College of Nutrition, 2012, 31, 14-23.	1.1	49
929	The Gut Microflora and Its Variety of Roles in Health and Disease. Current Topics in Microbiology and Immunology, 2012, 358, 273-289.	0.7	45

#	Article	IF	CITATIONS
930	Inflammatory Bowel Diseases Phenotype, C. difficile and NOD2 Genotype Are Associated with Shifts in Human Ileum Associated Microbial Composition. PLoS ONE, 2012, 7, e26284.	1.1	207
931	Surfactant Protein D Deficiency in Mice Is Associated with Hyperphagia, Altered Fat Deposition, Insulin Resistance, and Increased Basal Endotoxemia. PLoS ONE, 2012, 7, e35066.	1.1	14
932	Murine Gut Microbiota Is Defined by Host Genetics and Modulates Variation of Metabolic Traits. PLoS ONE, 2012, 7, e39191.	1.1	198
933	Characterization of the Active Microbiotas Associated with Honey Bees Reveals Healthier and Broader Communities when Colonies are Genetically Diverse. PLoS ONE, 2012, 7, e32962.	1.1	143
934	High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway. PLoS ONE, 2012, 7, e47713.	1.1	883
935	Bifidobacterium breve with α-Linolenic Acid and Linoleic Acid Alters Fatty Acid Metabolism in the Maternal Separation Model of Irritable Bowel Syndrome. PLoS ONE, 2012, 7, e48159.	1.1	30
936	Metabolomic Applications to Decipher Gut Microbial Metabolic Influence in Health and Disease. Frontiers in Physiology, 2012, 3, 113.	1.3	74
937	Is the Gut Microbiota a New Factor Contributing to Obesity and Its Metabolic Disorders?. Journal of Obesity, 2012, 2012, 1-14.	1.1	177
938	Gene–Environment Interaction in the Pathogenesis of Type 2 Diabetes. , 2012, , 211-224.		0
939	Human Gut Microbiota: Dysbiosis and Manipulation. Frontiers in Cellular and Infection Microbiology, 2012, 2, 123.	1.8	9
940	Gut microbiota and nonalcoholic fatty liver disease. Annals of Hepatology, 2012, 11, 440-449.	0.6	136
941	Steroid hormones interrelationships in the metabolic syndrome: An introduction to the ponderostat hypothesis. Hormones, 2012, 11, 272-289.	0.9	14
942	Infant gut microbial colonization and health: recent findings from metagenomics studies. Journal of Integrated OMICS, 2012, 2, .	0.5	4
943	Colorectal Cancer and the Preventive Effects of Food Components. , 0, , .		2
944	Usefulness of Probiotics for Neonates?. , 0, , .		1
945	Immune Disorders and Its Correlation with Gut Microbiome. Immune Network, 2012, 12, 129.	1.6	45
947	Vol 2, No 1 (2012). Journal of Integrated OMICS, 2012, 2, .	0.5	0
948	Our Genome and Our other Genome: Understanding humans as Symbionts with Microbes. Journal of Bacteriology and Virology, 2012, 42, 101.	0.0	1

#	Article	IF	Citations
949	Infectious Diseases in Children and Body Mass Index in Young Adults. Emerging Infectious Diseases, 2012, 18, 1490-1492.	2.0	2
950	Probiotics Applications in Autoimmune Diseases. , 0, , .		6
952	Comparison of the Fecal Microbiota in Feral and Domestic Goats. Genes, 2012, 3, 1-18.	1.0	19
953	The use of probiotics and safety concerns: A review. African Journal of Microbiology Research, 2012, 6, 6871-6877.	0.4	15
954	Intestinal Microbiota and Obesity. Handbook of Experimental Pharmacology, 2012, , 251-273.	0.9	69
955	The human microbiome: at the interface of health and disease. Nature Reviews Genetics, 2012, 13, 260-270.	7.7	2,798
956	Microbial interactions: from networks to models. Nature Reviews Microbiology, 2012, 10, 538-550.	13.6	2,693
957	Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488, 178-184.	13.7	2,618
958	Evaluation of gut bacterial populations using an electronic e-nose and field asymmetric ion mobility spectrometry: further insights into †fermentonomics'. Journal of Medical Engineering and Technology, 2012, 36, 333-337.	0.8	31
959	Metabolic diseases and pro- and prebiotics: Mechanistic insights. Nutrition and Metabolism, 2012, 9, 60.	1.3	83
961	Effect of <i>Lactobacillus plantarum</i> Pâ€8 on lipid metabolism in hyperlipidemic rat model. European Journal of Lipid Science and Technology, 2012, 114, 1230-1236.	1.0	57
962	How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 2012, 10, 323-335.	13.6	1,073
963	Host-Gut Microbiota Metabolic Interactions. Science, 2012, 336, 1262-1267.	6.0	3,693
964	Coffee, colon function and colorectal cancer. Food and Function, 2012, 3, 916.	2.1	74
965	Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. Journal of Physiology, 2012, 590, 447-458.	1.3	361
966	Intestinal bacterial population of healthy rats during the administration of chitosan and chitooligosaccharides. Folia Microbiologica, 2012, 57, 295-299.	1.1	24
967	The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes, Obesity and Metabolism, 2012, 14, 112-120.	2.2	283
968	Responses of Gut Microbiota to Diet Composition and Weight Loss in Lean and Obese Mice. Obesity, 2012, 20, 738-747.	1.5	352

#	Article	IF	CITATIONS
969	Distinct commensal bacteria associated with ingesta and mucosal epithelium in the gastrointestinal tracts of calves and chickens. FEMS Microbiology Ecology, 2012, 79, 337-347.	1.3	59
970	The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiology Ecology, 2012, 79, 697-708.	1.3	112
971	Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocolloids, 2012, 28, 275-283.	5.6	164
972	Gut bacteria profiles of Mus musculus at the phylum and family levels are influenced by saturation of dietary fatty acids. Anaerobe, 2012, 18, 331-337.	1.0	83
973	The potential for probiotic manipulation of the gastrointestinal microbiome. Current Opinion in Biotechnology, 2012, 23, 192-201.	3.3	66
974	Orally administered heat-killed Lactobacillus gasseri TMC0356 alters respiratory immune responses and intestinal microbiota of diet-induced obese mice. Journal of Applied Microbiology, 2012, 113, 155-162.	1.4	26
975	Evaluation of oral health related to body mass index. Oral Diseases, 2012, 18, 748-755.	1.5	38
976	Role of dietary beta-glucans in the prevention of the metabolic syndrome. Nutrition Reviews, 2012, 70, 444-458.	2.6	82
977	Structural alterations of faecal and mucosaâ€essociated bacterial communities in irritable bowel syndrome. Environmental Microbiology Reports, 2012, 4, 242-247.	1.0	100
978	Lineage-dependent ecological coherence in bacteria. FEMS Microbiology Ecology, 2012, 81, 574-582.	1.3	28
979	Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiology Letters, 2012, 334, 1-15.	0.7	357
980	Assessment of the human faecal microbiota: II. Reproducibility and associations of 16S rRNA pyrosequences. European Journal of Clinical Investigation, 2012, 42, 855-863.	1.7	41
981	Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by nextâ€generation DNA sequencing. Molecular Ecology, 2012, 21, 2039-2044.	2.0	375
982	Obesity and its associated disease: a role for microbiota?. Neurogastroenterology and Motility, 2012, 24, 305-311.	1.6	65
983	Intestinal aganglionosis is associated with early and sustained disruption of the colonic microbiome. Neurogastroenterology and Motility, 2012, 24, 874.	1.6	74
984	Analysis of the salivary microbiome using culture-independent techniques. Journal of Clinical Bioinformatics, 2012, 2, 4.	1.2	54
985	Characterization of the Gastrointestinal Microbiota in Health and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2012, 18, 372-390.	0.9	91
986	Ageing of the human metaorganism: the microbial counterpart. Age, 2012, 34, 247-267.	3.0	324

#	Article	IF	CITATIONS
987	Gut Microbiota as a Modulator of Cardiometabolic Risk: Mechanisms and Therapeutic Implications. Current Cardiovascular Risk Reports, 2012, 6, 71-79.	0.8	2
988	A Molecular Enrichment Strategy Based on cpn60 for Detection of Epsilon-Proteobacteria in the Dog Fecal Microbiome. Microbial Ecology, 2012, 63, 348-357.	1.4	32
989	Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Applied Microbiology and Biotechnology, 2012, 93, 993-1003.	1.7	168
990	Periodontitis and diabetes: a two-way relationship. Diabetologia, 2012, 55, 21-31.	2.9	1,085
991	Biogeography of the ecosystems of the healthy human body. Genome Biology, 2013, 14, R1.	13.9	540
992	Effects of probiotics in patients with diabetes mellitus type 2: study protocol for a randomized, double-blind, placebo-controlled trial. Trials, 2013, 14, 195.	0.7	32
993	Connecting the microbiome to obesity-associated cancers. Science-Business EXchange, 2013, 6, 743-743.	0.0	0
994	Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathogens, 2013, 5, 10.	1.6	351
995	The neurotoxic effect of clindamycin - induced gut bacterial imbalance and orally administered propionic acid on DNA damage assessed by the comet assay: protective potency of carnosine and carnitine. Gut Pathogens, 2013, 5, 9.	1.6	16
996	Metagenomic profile of gut microbiota in children during cholera and recovery. Gut Pathogens, 2013, 5, 1.	1.6	118
997	The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies. Journal of Biomedical Semantics, 2013, 4, 6.	0.9	26
998	Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake. ISME Journal, 2013, 7, 1944-1961.	4.4	75
999	Beyond the Paleolithic prescription: incorporating diversity and flexibility in the study of human diet evolution. Nutrition Reviews, 2013, 71, 501-510.	2.6	53
1000	Development of intestinal microbiota in infants and its impact on health. Trends in Microbiology, 2013, 21, 167-173.	3.5	462
1001	The Intestinal Microbiota in Chronic Liver Disease. Advances in Immunology, 2013, 117, 73-97.	1.1	48
1002	Functional food ingredients for the management of obesity and associated co-morbidities – A review. Journal of Functional Foods, 2013, 5, 997-1012.	1.6	135
1003	The gut microbiota and obesity: from correlation to causality. Nature Reviews Microbiology, 2013, 11, 639-647.	13.6	665
1004	The symbiotic rumen microbiome and cattle performance: a brief review. Animal Production Science, 2013, 53, 876.	0.6	13

#	Article	IF	CITATIONS
1005	Adiposity and Insulin Resistance in Humans: The Role of the Different Tissue and Cellular Lipid Depots. Endocrine Reviews, 2013, 34, 463-500.	8.9	204
1006	Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends in Endocrinology and Metabolism, 2013, 24, 537-545.	3.1	143
1007	Learned and unlearned concepts in periodontal diagnostics: a 50â€year perspective. Periodontology 2000, 2013, 62, 20-36.	6.3	51
1008	Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genomics, 2013, 14, 390.	1.2	105
1009	Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs. BMC Microbiology, 2013, 13, 30.	1.3	56
1010	Transglucosidase improves the gut microbiota profile of type 2 diabetes mellitus patients: a randomized double-blind, placebo-controlled study. BMC Gastroenterology, 2013, 13, 81.	0.8	54
1011	Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microbial Cell Factories, 2013, 12, 71.	1.9	188
1012	Understanding Vulvovaginal Candidiasis Through a Community Genomics Approach. Current Fungal Infection Reports, 2013, 7, 126-131.	0.9	13
1013	Diabetes, obesity and gut microbiota. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 73-83.	1.0	472
1014	Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environmental Microbiology Reports, 2013, 5, 765-775.	1.0	171
1015	Effects of the Intestinal Microbiota on Behavior and Brain Biochemistry. World Review of Nutrition and Dietetics, 2013, , 56-63.	0.1	0
1016	The Gordian Knot of dysbiosis, obesity and NAFLD. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 637-644.	8.2	134
1017	Effect of Soymilk Fermented with Lactobacillus plantarum P-8 on Lipid Metabolism and Fecal Microbiota in Experimental Hyperlipidemic Rats. Food Biophysics, 2013, 8, 43-49.	1.4	29
1018	Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Applied Microbiology and Biotechnology, 2013, 97, 6477-6488.	1.7	95
1019	Structural modulation of gut microbiota in life-long calorie-restricted mice. Nature Communications, 2013, 4, 2163.	5.8	404
1020	Evaluation of the bacterial distribution within the biofilm by denaturing gradient gel electrophoresis in the rat model of urinary catheters. International Urology and Nephrology, 2013, 45, 743-748.	0.6	1
1021	Nutrition, the gut microbiome and the metabolic syndrome. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 59-72.	1.0	95
1022	The gut microbiota profile is associated with insulin action in humans. Acta Diabetologica, 2013, 50, 753-761.	1.2	50

		TION REPORT	
#	Article	IF	CITATIONS
1023	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	13.7	3,641
1024	Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500, 585-588.	13.7	1,485
1025	Tyrosine kinase inhibitors as novel drugs for the treatment of diabetes. Expert Opinion on Investigational Drugs, 2013, 22, 751-763.	1.9	28
1026	Wealth management in the gut. Nature, 2013, 500, 538-539.	13.7	33
1027	The Human Gut Microbiome. JAMA Surgery, 2013, 148, 563.	2.2	211
1028	The Microbiome as a Therapeutic Target for Metabolic Diseases. Drug Development Research, 2013, 74, 376-384.	1.4	1
1029	Nutritional Targets for Modulation of the Microbiota in Obesity. Drug Development Research, 2013, 74, 393-402.	1.4	2
1030	Bridging immunity and lipid metabolism by gut microbiota. Journal of Allergy and Clinical Immunology, 2013, 132, 253-262.	1.5	61
1031	Is butyrate the link between diet, intestinal microbiota and obesityâ€related metabolic diseases?. Obesity Reviews, 2013, 14, 950-959.	y 3.1	206
1032	From gut changes to type 2 diabetes remission after gastric bypass surgeries. Frontiers of Medicine, 2013, 7, 191-200.	1.5	3
1033	Dysbiosis—A consequence of Paneth cell dysfunction. Seminars in Immunology, 2013, 25, 334-341.	2.7	87
1034	The gut microbiota and the liver. Pathophysiological and clinical implications. Journal of Hepatology, 2013, 58, 1020-1027.	1.8	119
1035	Microbiota in health and irritable bowel syndrome: current knowledge, perspectives and therapeutic options. Scandinavian Journal of Gastroenterology, 2013, 48, 995-1009.	0.6	60
1036	Le microbiote intestinal est l'avenir de la multirésistance bactérienne. Journal Des Anti-infectieux 2013, 15, 166-177.	x, 0.1	2
1037	Response to the Commentaries on the Paper: Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne. Journal of Investigative Dermatology, 2013, 133, 2295-2297.	0.3	9
1038	Alteration of the intestinal microbiome: fecal microbiota transplant and probiotics for <i>Clostridium difficile</i> and beyond. Expert Review of Gastroenterology and Hepatology, 2013, 7, 615-628.	1.4	18
1039	Gut microbiota and non-alcoholic fatty liver disease: new insights. Clinical Microbiology and Infection, 2013, 19, 338-348.	2.8	196
1040	Obesity and nosocomial infections. Journal of Hospital Infection, 2013, 85, 8-16.	1.4	57

#	Article	IF	CITATIONS
1041	The microbiome and cancer. Nature Reviews Cancer, 2013, 13, 800-812.	12.8	1,338
1042	Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity and Metabolism, 2013, 15, 61-70.	2.2	112
1043	Inflammation, Obesity, and Colon Cancer. , 2013, , 147-180.		1
1044	Diet-Microbiota Interactions and Their Implications for Healthy Living. Nutrients, 2013, 5, 234-252.	1.7	174
1045	Clinical Consequences of Diet-Induced Dysbiosis. Annals of Nutrition and Metabolism, 2013, 63, 28-40.	1.0	100
1046	Role of the intestinal microbiome in liver disease. Journal of Autoimmunity, 2013, 46, 66-73.	3.0	172
1047	Bacterial diversity and composition of an alkaline uranium mine tailings-water interface. Journal of Microbiology, 2013, 51, 558-569.	1.3	14
1048	Biological System Responses to Zearalenone Mycotoxin Exposure by Integrated Metabolomic Studies. Journal of Agricultural and Food Chemistry, 2013, 61, 11212-11221.	2.4	37
1049	Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. American Journal of Clinical Nutrition, 2013, 98, 16-24.	2.2	351
1050	Genomics and metagenomics in medical microbiology. Journal of Microbiological Methods, 2013, 95, 415-424.	0.7	69
1051	Interactions between gut microbiota, food and the obese host. Trends in Food Science and Technology, 2013, 34, 44-53.	7.8	21
1052	Analysis of fecal microbiota, organic acids and plasma lipids in hepatic cancer patients with or without liver cirrhosis. Clinical Nutrition, 2013, 32, 444-451.	2.3	15
1053	A metagenomic insight into our gut's microbiome. Gut, 2013, 62, 146-158.	6.1	302
1054	Microbial ecosystems therapeutics: a new paradigm in medicine?. Beneficial Microbes, 2013, 4, 53-65.	1.0	106
1055	Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genomics, 2013, 14, 641.	1.2	33
1056	The interaction between gut microbiota and age-related changes in immune function and inflammation. Immunity and Ageing, 2013, 10, 31.	1.8	88
1057	Clostridium Butyricum MIYAIRI 588 Improves High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Rats. Digestive Diseases and Sciences, 2013, 58, 3534-3544.	1.1	63
1058	Intestinal Microbiota Composition in Adults. World Review of Nutrition and Dietetics, 2013, , 17-24.	0.1	3

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1059	Metabolic Syndrome and Obesity in Adults. World Review of Nutrition and Dietetics, 2013	3, , 103-121.	0.1	1
1060	What Is the Future for Therapies Derived from the Microbiome (Pharmabiotics)?. World Re Nutrition and Dietetics, 2013, , 186-196.	eview of	0.1	Ο
1061	The modulatory role of high fat feeding on gastrointestinal signals in obesity. Journal of N Biochemistry, 2013, 24, 1663-1677.	utritional	1.9	77
1062	Identification of chicken intestinal microbiota correlated with the efficiency of energy extr from feed. Veterinary Microbiology, 2013, 164, 85-92.	action	0.8	155
1063	Emerging Aspects of Food and Nutrition on Gut Microbiota. Journal of Agricultural and Fo Chemistry, 2013, 61, 9559-9574.	bd	2.4	40
1064	Methane and Hydrogen Positivity on Breath Test Is Associated With Greater Body Mass In Fat. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E698-E702.	dex and Body	1.8	97
1065	Vitamin D and Prebiotics may benefit The Intestinal Microbacteria and improve Glucose He Prediabetes and Type 2 Diabetes. Endocrine Practice, 2013, 19, 497-510.	omeostasis in	1.1	25
1066	Related actions of probiotics and antibiotics on gut microbiota and weight modification. I Infectious Diseases, The, 2013, 13, 889-899.	ancet	4.6	154
1067	Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes, 2013, 62, 3341-33	49.	0.3	384
1068	Inflammation in Obesity and Diabetes: Islet Dysfunction and Therapeutic Opportunity. Ce 2013, 17, 860-872.	l Metabolism,	7.2	290
1069	Molecular monitoring of fecal microbiota in healthy adults following probiotic yogurt intal PharmaNutrition, 2013, 1, 123-129.	२९.	0.8	18
1070	How Microbiomes Influence Metazoan Development:Insights from History and <i>Drosophila</i> Modeling of Gut-Microbe Interactions. Annual Review of Cell and De Biology, 2013, 29, 571-592.	velopmental	4.0	128
1071	Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight associated with vancomycin treatment. Nutrition and Diabetes, 2013, 3, e87-e87.	gain	1.5	74
1072	The Colon: An Overlooked Site for Therapeutics in Dialysis Patients. Seminars in Dialysis, 2 323-332.	.013, 26,	0.7	71
1073	Protein Substrates of a Novel Secretion System Are Numerous in the Bacteroidetes Phylur Common a Cleavable C-Terminal Secretion Signal, Extensive Post-Translational Modificatio Cell-Surface Attachment. Journal of Proteome Research, 2013, 12, 4449-4461.		1.8	120
1074	Adjustment to dietary energy availability: from starvation to overnutrition. RSC Advances, 1636-1651.	2013, 3,	1.7	6
1075	Sucralose, A Synthetic Organochlorine Sweetener: Overview Of Biological Issues. Journal o Toxicology and Environmental Health - Part B: Critical Reviews, 2013, 16, 399-451.	of	2.9	109
1076	Immune responses and protection in children in developing countries induced by oral vace Vaccine, 2013, 31, 452-460.	tines.	1.7	86

#	Article	IF	CITATIONS
1077	Implications of the Human Microbiome Project for Epidemiology. American Journal of Epidemiology, 2013, 177, 197-201.	1.6	34
1078	Integrating nutrition and immunology: A new frontier. Journal of Insect Physiology, 2013, 59, 130-137.	0.9	125
1079	Organotins: A review of their reproductive toxicity, biochemistry, and environmental fate. Reproductive Toxicology, 2013, 36, 40-52.	1.3	118
1080	Toll-Like Receptors in Liver Disease. Advances in Clinical Chemistry, 2013, 59, 155-201.	1.8	75
1081	16 <scp>S rRNA</scp> survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids. Environmental Microbiology, 2013, 15, 535-547.	1.8	39
1082	Next-generation sequencing technologies and their impact on microbial genomics. Briefings in Functional Genomics, 2013, 12, 440-453.	1.3	65
1083	Diets rich in <i>n</i> -6 PUFA induce intestinal microbial dysbiosis in aged mice. British Journal of Nutrition, 2013, 110, 515-523.	1.2	84
1084	The gut microbiota, obesity and insulin resistance. Molecular Aspects of Medicine, 2013, 34, 39-58.	2.7	506
1085	Understanding the role of gut microbes and probiotics in obesity: How far are we?. Pharmacological Research, 2013, 69, 144-155.	3.1	81
1086	Therapeutic modulation of intestinal dysbiosis. Pharmacological Research, 2013, 69, 75-86.	3.1	142
1087	The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses. FEMS Microbiology Ecology, 2013, 83, 299-309.	1.3	166
1088	Comparison of three markers for the determination of bacterial protein in terminal ileal digesta in the growing pig. Journal of Animal Physiology and Animal Nutrition, 2013, 97, 951-959.	1.0	3
1089	Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. Journal of Functional Foods, 2013, 5, 116-123.	1.6	93
1090	Gut microbiota, immune development and function. Pharmacological Research, 2013, 69, 87-113.	3.1	200
1091	The role of gut microbiota in human obesity: Recent findings and future perspectives. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 160-168.	1.1	97
1092	Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut, 2013, 62, 220-226.	6.1	235
1093	Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME Journal, 2013, 7, 269-280.	4.4	462
1094	Biodiversity and functional genomics in the human microbiome. Trends in Genetics, 2013, 29, 51-58.	2.9	207

#	Article	IF	CITATIONS
1095	<i>Bifidobacterium</i> CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice. Obesity, 2013, 21, 2310-2321.	1.5	170
1096	Differential colonization with segmented filamentous bacteria and Lactobacillus murinus do not drive divergent development of diet-induced obesity in C57BL/6 mice. Molecular Metabolism, 2013, 2, 171-183.	3.0	29
1097	Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochemical and Biophysical Research Communications, 2013, 431, 258-263.	1.0	167
1098	InÂvitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe, 2013, 23, 74-81.	1.0	235
1099	Short chain fatty acids and their receptors: new metabolic targets. Translational Research, 2013, 161, 131-140.	2.2	251
1100	Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clinical Nutrition, 2013, 32, 935-940.	2.3	91
1101	Gut–Liver Axis: Role of Inflammasomes. Journal of Clinical and Experimental Hepatology, 2013, 3, 141-149.	0.4	34
1102	Relationship between energy dense diets and white adipose tissue inflammation in metabolic syndrome. Nutrition Research, 2013, 33, 1-11.	1.3	24
1103	Characterization of cecal microbiota of the emu (Dromaius novaehollandiae). Veterinary Microbiology, 2013, 166, 304-310.	0.8	35
1104	Catechin- and caffeine-rich teas for control of body weight in humans. American Journal of Clinical Nutrition, 2013, 98, 1682S-1693S.	2.2	92
1105	Microbiota Modulation: Can Probiotics Prevent/Treat Disease in Pediatrics?. Nestle Nutrition Institute Workshop Series, 2013, 77, 99-110.	1.5	8
1106	Systems biology approaches to epidemiological studies of complex diseases. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 677-686.	6.6	9
1107	Microbiota and Autoimmunity. Cold Spring Harbor Perspectives in Biology, 2013, 5, a007294-a007294.	2.3	74
1108	Mode of delivery and adiposity: Hong Kong's "Children of 1997―birth cohort. Annals of Epidemiology, 2013, 23, 693-699.	0.9	15
1109	Bifidogenic effect of whole-grain wheat during a 12-week energy-restricted dietary intervention in postmenopausal women. European Journal of Clinical Nutrition, 2013, 67, 1316-1321.	1.3	37
1110	Weight gain as a consequence of living a modern lifestyle: a discussion of barriers to effective weight control and how to overcome them. Journal of Chiropractic Humanities, 2013, 20, 27-35.	1.4	17
1111	Establishing a relationship between bacteria in the human gut and Complex Regional Pain Syndrome. Brain, Behavior, and Immunity, 2013, 29, 62-69.	2.0	18
1112	Fecal Microbiome and Volatile Organic Compound Metabolome in Obese Humans With Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 2013, 11, 868-875.e3.	2.4	564

#	Article	IF	CITATIONS
1113	Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1510-1519.	1.1	37
1114	Animal models of chemically induced intestinal inflammation: Predictivity and ethical issues. , 2013, 139, 71-86.		41
1115	Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing. Veterinary Microbiology, 2013, 167, 554-564.	0.8	51
1116	The Role of the Manipulation of the Gut Microbiota in Obesity. Current Infectious Disease Reports, 2013, 15, 25-30.	1.3	22
1117	Short communication: Effect of supplementation with Lactobacillus casei Shirota on insulin sensitivity, β-cell function, and markers of endothelial function and inflammation in subjects with metabolic syndrome—A pilot study. Journal of Dairy Science, 2013, 96, 89-95.	1.4	63
1118	Biotechnology and Applied Microbiology. , 2013, , 315-328.		1
1119	Role of Microorganisms in Adaptation, Development, and Evolution of Animals and Plants: The Hologenome Concept. , 2013, , 347-358.		11
1120	Rumen Symbioses. , 2013, , 533-544.		33
1121	Selecting age-related functional characteristics in the human gut microbiome. Microbiome, 2013, 1, 2.	4.9	45
1122	Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology, 2013, 58, 120-127.	3.6	602
1123	Hippurate: The Natural History of a Mammalian–Microbial Cometabolite. Journal of Proteome Research, 2013, 12, 1527-1546.	1.8	263
1126	Our Second Genome—Human Metagenome. Advances in Microbial Physiology, 2013, 62, 119-144.	1.0	23
1127	Gut microbiota, host health, and polysaccharides. Biotechnology Advances, 2013, 31, 318-337.	6.0	181
1128	Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice. Cell Metabolism, 2013, 17, 141-152.	7.2	464
1129	Nutrigenomics – Linking food to human metabolism. Trends in Food Science and Technology, 2013, 31, 6-12.	7.8	14
1130	Gut bacterial microbiota and obesity. Clinical Microbiology and Infection, 2013, 19, 305-313.	2.8	232
1131	The gut microbiota — masters of host development and physiology. Nature Reviews Microbiology, 2013, 11, 227-238.	13.6	2,711
1132	Implications of the human microbiome in inflammatory bowel diseases. FEMS Microbiology Letters, 2013, 342, 10-17.	0.7	50

	CITATION	Report	
#	Article	IF	CITATIONS
1133	Infant Gut Microbiota: Developmental Influences and Health Outcomes. , 2013, , 233-256.		13
1134	Overview of differences between microbial feed additives and probiotics for food regarding regulation, growth promotion effects and health properties and consequences for extrapolation of farm animal results to humans. Clinical Microbiology and Infection, 2013, 19, 321-330.	2.8	33
1135	Probiotics <i>L. plantarum</i> and <i>L. curvatus</i> in Combination Alter Hepatic Lipid Metabolism and Suppress Dietâ€Induced Obesity. Obesity, 2013, 21, 2571-2578.	1.5	182
1136	Linking the gut microbiota to human health. British Journal of Nutrition, 2013, 109, S21-S26.	1.2	240
1137	The defence of body weight: a physiological basis for weight regain after weight loss. Clinical Science, 2013, 124, 231-241.	1.8	231
1138	Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales. FEMS Microbiology Reviews, 2013, 37, 830-848.	3.9	22
1139	Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics Journal, 2013, 13, 514-522.	0.9	380
1140	The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome â€~at-risk' population. International Journal of Obesity, 2013, 37, 216-223.	1.6	367
1141	<i>In vitro</i> fermentation of commercial α-gluco-oligosaccharide by faecal microbiota from lean and observe human subjects. British Journal of Nutrition, 2013, 109, 1980-1989.	1.2	44
1142	The Gut Microbiota. , 2013, , 3-24.		18
1143	Effect of galactooligosaccharides and <i>Bifidobacterium animalis</i> Bb-12 on growth of <i>Lactobacillus amylovorus</i> DSM 16698, microbial community structure, and metabolite production in an <i>in vitro</i> colonic model set up with human or pig microbiota. FEMS Microbiology Ecology, 2013, 84, 110-123.	1.3	33
1144	Compression-based distance (CBD): a simple, rapid, and accurate method for microbiota composition comparison. BMC Bioinformatics, 2013, 14, 136.	1.2	5
1145	Gut microbiota and metabolic syndrome. Internal and Emergency Medicine, 2013, 8, 11-15.	1.0	66
1146	Probiotics and their Effects on Metabolic Diseases: An Update. Journal of Clinical and Diagnostic Research JCDR, 2013, 7, 173-7.	0.8	39
1147	Ageing and gut microbes: Perspectives for health maintenance and longevity. Pharmacological Research, 2013, 69, 11-20.	3.1	226
1148	Patterns and Processes in Parasite Co-Infection. Advances in Parasitology, 2013, 82, 321-369.	1.4	59
1149	Metabolic inflammation: Connecting obesity and insulin resistance. Annals of Medicine, 2013, 45, 242-253.	1.5	144
1150	Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Applied Microbiology and Biotechnology, 2013, 97, 1689-1697.	1.7	168

#	Article	IF	CITATIONS
1151	Plants, Diet, and Health. Annual Review of Plant Biology, 2013, 64, 19-46.	8.6	141
1152	Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity, 2013, 21, E607-15.	1.5	469
1153	Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poultry Science, 2013, 92, 272-276.	1.5	102
1154	If microbial ecosystem therapy can change your life, what's the problem?. BioEssays, 2013, 35, 508-512.	1.2	10
1155	Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in Diet-Induced Obese Mice Is Associated with Gut Microbial Changes and Reduction in Obesity. PLoS ONE, 2013, 8, e59470.	1.1	249
1156	The Effect of Chocolate on Human and Gut Microbial Metabolic Interactions: Emphasis on Human Health and Nutritional Status. , 2013, , 189-200.		0
1157	Pyrosequencing Analysis of the Salivary Microbiota of Healthy Chinese Children and Adults. Microbial Ecology, 2013, 65, 487-495.	1.4	55
1158	Effect of antibiotic treatment on intestinal microbial and enzymatic development in postnatally overfed obese rats. Obesity, 2013, 21, 1635-1642.	1.5	9
1159	Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiology and Behavior, 2013, 119, 92-96.	1.0	83
1160	Fructokinase, Fructans, Intestinal Permeability, and Metabolic Syndrome: An Equine Connection?. Journal of Equine Veterinary Science, 2013, 33, 120-126.	0.4	43
1161	Habitat degradation impacts black howler monkey (<i>Alouatta pigra</i>) gastrointestinal microbiomes. ISME Journal, 2013, 7, 1344-1353.	4.4	1,031
1162	Coprobacter fastidiosus gen. nov., sp. nov., a novel member of the family Porphyromonadaceae isolated from infant faeces. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4181-4188.	0.8	38
1163	Commensal bacteria at the interface of host metabolism and the immune system. Nature Immunology, 2013, 14, 676-684.	7.0	758
1164	Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 2013, 499, 97-101.	13.7	1,774
1165	Pathways in Microbe-Induced Obesity. Cell Metabolism, 2013, 17, 883-894.	7.2	240
1166	Colonizing the Embryonic Zebrafish Gut with Anaerobic Bacteria Derived from the Human Gastrointestinal Tract. Zebrafish, 2013, 10, 194-198.	0.5	37
1167	A Guide to Enterotypes across the Human Body: Meta-Analysis of Microbial Community Structures in Human Microbiome Datasets. PLoS Computational Biology, 2013, 9, e1002863.	1.5	446
1168	Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State. International Journal of Molecular Sciences, 2013, 14, 10497-10538.	1.8	358

#	Article	IF	CITATIONS
1169	Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, 2013, 358, v-vii.	0.7	8
1170	Intestinal epithelial barrier function in liver cirrhosis: an extensive review of the literature. Liver International, 2013, 33, 1457-1469.	1.9	101
1171	Quantitatively Different, yet Qualitatively Alike: A Meta-Analysis of the Mouse Core Gut Microbiome with a View towards the Human Gut Microbiome. PLoS ONE, 2013, 8, e62578.	1.1	182
1172	Beyond phylotyping: understanding the impact of gut microbiota on host biology. Neurogastroenterology and Motility, 2013, 25, 358-372.	1.6	48
1173	Longâ€ŧerm monitoring of the human intestinal microbiota composition. Environmental Microbiology, 2013, 15, 1146-1159.	1.8	195
1174	Microbes and obesity—interrelationship between infection, adipose tissue and the immune system. Clinical Microbiology and Infection, 2013, 19, 314-320.	2.8	68
1175	Histophysiology of Immune System and Barrier Organs in the Late Period of Orchiectomy in Wistar Rats. Bulletin of Experimental Biology and Medicine, 2013, 154, 480-484.	0.3	2
1176	Challenges and opportunities for faecal microbiota transplantation therapy. Epidemiology and Infection, 2013, 141, 2235-2242.	1.0	10
1177	Trends in microbiome research. Nature Biotechnology, 2013, 31, 277-277.	9.4	17
1178	Carbohydrates and satiety *. , 2013, , 166-181.		2
1179	Quantitative Genetic Background of the Host Influences Gut Microbiomes in Chickens. Scientific Reports, 2013, 3, 1163.	1.6	286
1180	Association of gut microbiota with post-operative clinical course in Crohn's disease. BMC Gastroenterology, 2013, 13, 131.	0.8	95
1181	Using phage display selected antibodies to dissect microbiomes for complete de novo genome sequencing of low abundance microbes. BMC Microbiology, 2013, 13, 270.	1.3	13
1182	Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62, 1112-1121.	6.1	632
1183	The intricate association between gut microbiota and development of Type 1, Type 2 and Type 3 diabetes. Expert Review of Clinical Immunology, 2013, 9, 1031-1041.	1.3	66
1184	The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 2013, 54, 2325-2340.	2.0	3,292
1185	Resistant Starch: Promise for Improving Human Health. Advances in Nutrition, 2013, 4, 587-601.	2.9	588
1186	Broilers fed dietary vitamins harbor higher diversity of cecal bacteria and higher ratio of Clostridium, Faecalibacterium, and Lactobacillus than broilers with no dietary vitamins revealed by 16S rRNA gene clone libraries. Poultry Science, 2013, 92, 2358-2366.	1.5	36

#	Article	IF	CITATIONS
1187	Resistant Starch Induces Catabolic but Suppresses Immune and Cell Division Pathways and Changes the Microbiome in the Proximal Colon of Male Pigs. Journal of Nutrition, 2013, 143, 1889-1898.	1.3	43
1188	Impact of Dietary Fiber Fermentation from Cereal Grains on Metabolite Production by the Fecal Microbiota from Normal Weight and Obese Individuals. Journal of Medicinal Food, 2013, 16, 862-867.	0.8	46
1189	Host-centric Proteomics of Stool: A Novel Strategy Focused on intestinal Responses to the Gut Microbiota. Molecular and Cellular Proteomics, 2013, 12, 3310-3318.	2.5	48
1190	Potential applications of gut microbiota to control human physiology. Antonie Van Leeuwenhoek, 2013, 104, 609-618.	0.7	23
1191	Modulating the Human Gut Microbiome as an Emerging Therapeutic Paradigm. Science Progress, 2013, 96, 224-236.	1.0	17
1193	Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization. Topics in Current Chemistry, 2013, 339, 145-199.	4.0	7
1194	Gut microbiota in health and disease. Revista De GastroenterologÃa De México (English Edition), 2013, 78, 240-248.	0.1	25
1195	Negative regulation of human mononuclear phagocyte function. Mucosal Immunology, 2013, 6, 205-223.	2.7	14
1196	Effect of acute and chronic red wine consumption on lipopolysaccharide concentrations. American Journal of Clinical Nutrition, 2013, 97, 1053-1061.	2.2	71
1197	Microbiota conservation and BMI signatures in adult monozygotic twins. ISME Journal, 2013, 7, 707-717.	4.4	311
1198	Simultaneous Quantification of Multiple Bacteria by the BactoChip Microarray Designed to Target Species-Specific Marker Genes. PLoS ONE, 2013, 8, e55764.	1.1	18
1199	Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Science and Medicine, 2013, 1, .	0.3	138
1200	Loss of NHE3 alters gut microbiota composition and influences <i>Bacteroides thetaiotaomicron</i> growth. American Journal of Physiology - Renal Physiology, 2013, 305, G697-G711.	1.6	87
1201	Effects of Bariatric Surgery on Adipokine-Induced Inflammation and Insulin Resistance. Frontiers in Endocrinology, 2013, 4, 69.	1.5	41
1202	PCR-DGGE Analysis of Bacterial Diversity of Intestinal System in Hyperlipidemia Rats. Advanced Materials Research, 2013, 726-731, 898-901.	0.3	0
1203	The association of gut microbiota with body weight and body mass index in preschool children of Estonia. Microbial Ecology in Health and Disease, 2013, 24, .	3.8	18
1204	Precancerous Lesions in Colorectal Cancer. Gastroenterology Research and Practice, 2013, 2013, 1-11.	0.7	27
1205	Dominant Fecal Microbiota in Newly Diagnosed Untreated Inflammatory Bowel Disease Patients. Gastroenterology Research and Practice, 2013, 2013, 1-13.	0.7	46

#	Article	IF	CITATIONS
1206	Smoking Cessation Induces Profound Changes in the Composition of the Intestinal Microbiota in Humans. PLoS ONE, 2013, 8, e59260.	1.1	305
1207	Mom Knows Best: The Universality of Maternal Microbial Transmission. PLoS Biology, 2013, 11, e1001631.	2.6	649
1208	Comparison of Gut Microbiota between Sasang Constitutions. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-9.	0.5	11
1209	Alteration of the intestinal barrier and GLP2 secretion in Berberine-treated type 2 diabetic rats. Journal of Endocrinology, 2013, 218, 255-262.	1.2	48
1210	Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. British Journal of Nutrition, 2013, 110, 711-720.	1.2	168
1211	Gut microbiota and metabolic disorders: how prebiotic can work?. British Journal of Nutrition, 2013, 109, S81-S85.	1.2	148
1212	Random Sampling Process Leads to Overestimation of β-Diversity of Microbial Communities. MBio, 2013, 4, e00324-13.	1.8	96
1213	Antimicrobials. Gut Microbes, 2013, 4, 48-53.	4.3	24
1214	Gut barrier dysfunction and microbial translocation in cancer cachexia. Current Opinion in Supportive and Palliative Care, 2013, 7, 361-367.	0.5	75
1215	Carbohydrates and the human gut microbiota. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 16, 453-460.	1.3	145
1216	Metabolic endotoxaemia. Current Opinion in Lipidology, 2013, 24, 78-85.	1.2	70
1217	Defining the Bacteroides Ribosomal Binding Site. Applied and Environmental Microbiology, 2013, 79, 1980-1989.	1.4	37
1218	A Consideration of Biomarkers to be Used for Evaluation of Inflammation in Human Nutritional Studies. British Journal of Nutrition, 2013, 109, S1-S34.	1.2	296
1219	Novel methods for pathogen control in livestock pre-harvest: an update * *Mandatory Disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, or exclusion of others that may be suitable, 2013, 275-304.		7
1220	A Comparison of Methods for Clustering 16S rRNA Sequences into OTUs. PLoS ONE, 2013, 8, e70837.	1.1	171
1221	Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genetics and Molecular Research, 2013, 12, 1766-1776.	0.3	74
1222	Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS ONE, 2013, 8, e71108.	1.1	652
1223	Effect of <i>Lactobacillus gasseri</i> BNR17 on Overweight and Obese Adults: A Randomized, Double-Blind Clinical Trial. Korean Journal of Family Medicine, 2013, 34, 80.	0.4	114

#	Article	IF	CITATIONS
1225	Molecular Studies Neglect Apparently Gram-Negative Populations in the Human Gut Microbiota. Journal of Clinical Microbiology, 2013, 51, 3286-3293.	1.8	48
1226	Prebiotic Properties of Galursan HF 7K on Mouse Gut Microbiota. Cellular Physiology and Biochemistry, 2013, 32, 96-110.	1.1	10
1227	Effects of Inulin-Type Fructans on Appetite, Energy Intake, and Body Weight in Children and Adults: Systematic Review of Randomized Controlled Trials. Annals of Nutrition and Metabolism, 2013, 63, 42-54.	1.0	63
1228	Perfil emocional matemÃ;tico y competencias profesionales. Revista Electronica Interuniversitaria De Formacion Del Profesorado, 2013, 16, .	0.2	1
1229	<i>Lactobacillus Salivarius</i> REN Inhibits Rat Oral Cancer Induced by 4-Nitroquioline 1-Oxide. Cancer Prevention Research, 2013, 6, 686-694.	0.7	68
1230	Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 2013, 7, 1429-1439.	1.3	55
1231	The Interplay Between Fiber and the Intestinal Microbiome in the Inflammatory Response. Advances in Nutrition, 2013, 4, 16-28.	2.9	146
1232	Habitual Dietary Intake Is Associated with Stool Microbiota Composition in Monozygotic Twins. Journal of Nutrition, 2013, 143, 417-423.	1.3	110
1233	The Use of Metagenomic Approaches to Analyze Changes in Microbial Communities. Microbiology Insights, 2013, 6, MBI.S10819.	0.9	66
1234	Exploring host–microbiota interactions in animal models and humans. Genes and Development, 2013, 27, 701-718.	2.7	413
1235	Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double-blind, placebo-controlled crossover study. Alimentary Pharmacology and Therapeutics, 2013, 38, 804-816.	1.9	112
1236	Faecal microbiota in lean and obese dogs. FEMS Microbiology Ecology, 2013, 84, 332-343.	1.3	103
1237	Dietary format alters fecal bacterial populations in the domestic cat (<i><scp>F</scp>elis catus</i>). MicrobiologyOpen, 2013, 2, 173-181.	1.2	64
1238	Interspecific variations in the gastrointestinal microbiota in penguins. MicrobiologyOpen, 2013, 2, 195-204.	1.2	95
1239	The association between caesarean section and childhood obesity revisited: a cohort study. Archives of Disease in Childhood, 2013, 98, 526-532.	1.0	45
1240	Comparative fermentation of insoluble carbohydrates in an in vitro human feces model spiked with <i>Lactobacillus acidophilus</i> NCFM. Starch/Staerke, 2013, 65, 346-353.	1.1	6
1241	Microbiota diversity and stability of the preterm neonatal ileum and colon of two infants. MicrobiologyOpen, 2013, 2, 215-225.	1.2	40
1242	Intestinal <i>Methanobrevibacter smithii</i> but not total bacteria is related to dietâ€induced weight gain in rats. Obesity, 2013, 21, 748-754.	1.5	53

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1243	Evolution of the gut microbiota and the influence of diet. Beneficial Microbes, 2013, 4, 31-	37.	1.0	31
1244	Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a l metabolic organ. Therapeutic Advances in Gastroenterology, 2013, 6, 295-308.	idden	1.4	642
1245	Reshaping the Gut Microbiota at an Early Age: Functional Impact on Obesity Risk?. Annals o and Metabolism, 2013, 63, 17-26.	of Nutrition	1.0	34
1246	Maximum Likelihood Estimation of Frequencies of Known Haplotypes from Pooled Sequence Molecular Biology and Evolution, 2013, 30, 1145-1158.	e Data.	3.5	63
1247	Oral Administration of Live Exopolysaccharide-Producing Pediococcus parvulus, but Not Pu Exopolysaccharide, Suppressed Enterobacteriaceae without Affecting Bacterial Diversity in Mice. Applied and Environmental Microbiology, 2013, 79, 5030-5037.		1.4	15
1248	Obesity as a Risk Factor for Clostridium difficile Infection. Clinical Infectious Diseases, 2013 489-493.	, 57,	2.9	97
1249	The effect of high-fat diet on the composition of the gut microbiota in cloned and non-clon lean and obese phenotype. Gut Microbes, 2013, 4, 371-381.	ed pigs of	4.3	22
1250	Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. International Jou Obesity, 2013, 37, 1460-1466.	rnal of	1.6	315
1251	Surprisingly extensive mixed phylogenetic and ecological signals among bacterial Operation Taxonomic Units. Nucleic Acids Research, 2013, 41, 5175-5188.	ıal	6.5	121
1252	Evidence for metabolic endotoxemia in obese and diabetic Gambian women. Nutrition and 2013, 3, e83-e83.	Diabetes,	1.5	75
1253	Use of pigs as a potential model for research into dietary modulation of the human gut mic Nutrition Research Reviews, 2013, 26, 191-209.	robiota.	2.1	275
1254	Valsartan restores inflammatory response by macrophages in adipose and hepatic tissues c LPS-infused mice. Adipocyte, 2013, 2, 28-32.	f	1.3	11
1255	Involvement of dietary salt in shaping bacterial communities in European sea bass (Dicentr	archus) Tj ETQq0 0 0 rg	BT /Overlc 1.6	ock 10 Tf 50 14
1256	The environment ontology: contextualising biological and biomedical entities. Journal of Bio Semantics, 2013, 4, 43.	omedical	0.9	244
1257	Past, Present and Future of Nutrigenomics and its Influence on Drug Development. Current Discovery Technologies, 2013, 10, 35-46.	Drug	0.6	0
1258	Aetiological factors behind adipose tissue inflammation: an unexplored research area. Publi Nutrition, 2013, 16, 27-35.	c Health	1.1	14
1259	Relevance of Commensal Microbiota in the Treatment and Prevention of Inflammatory Bow Inflammatory Bowel Diseases, 2013, 19, 2478-2489.	el Disease.	0.9	19
1260	Inter-individual differences in response to dietary intervention: integrating omics platforms personalised dietary recommendations. Proceedings of the Nutrition Society, 2013, 72, 20	towards 7-218.	0.4	69

#	Article	IF	CITATIONS
1261	Effects of heat-inactivatedLactobacillus gasseriTMC0356 on metabolic characteristics and immunity of rats with the metabolic syndrome. British Journal of Nutrition, 2013, 109, 263-272.	1.2	21
1262	Physiologically based pharmacokinetic models for the optimization of antiretroviral therapy: recent progress and future perspective. Future Virology, 2013, 8, 871-890.	0.9	10
1263	B Cells Secrete Eotaxin-1 in Human Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2013, 19, 922-933.	0.9	17
1264	Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes. Antibiotics, 2013, 2, 367-399.	1.5	100
1265	Antibiotic resistance shaping multi-level population biology of bacteria. Frontiers in Microbiology, 2013, 4, 15.	1.5	153
1266	The Role of Gut Microbiota on Insulin Resistance. Nutrients, 2013, 5, 829-851.	1.7	184
1267	What does irritable bowel syndrome share with non-alcoholic fatty liver disease?. World Journal of Gastroenterology, 2013, 19, 5402.	1.4	29
1268	Identifying bacteria and studying bacterial diversity using the 16S ribosomal RNA gene-based sequencing techniques: A review. African Journal of Microbiology Research, 2013, 7, 5533-5540.	0.4	9
1270	Effects of probiotics on nonalcoholic fatty liver disease: A meta-analysis. World Journal of Gastroenterology, 2013, 19, 6911.	1.4	291
1271	Current Status and Future Promise of the Human Microbiome. Pediatric Gastroenterology, Hepatology and Nutrition, 2013, 16, 71.	0.4	74
1272	Targeting the Microbiota to Address Diet-Induced Obesity: A Time Dependent Challenge. PLoS ONE, 2013, 8, e65790.	1.1	132
1273	Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis. PLoS ONE, 2013, 8, e55468.	1.1	169
1274	Shedding Light on the Microbial Community of the Macropod Foregut Using 454-Amplicon Pyrosequencing. PLoS ONE, 2013, 8, e61463.	1.1	41
1275	Impact of Colonoscopy Bowel Preparation on Intestinal Microbiota. PLoS ONE, 2013, 8, e62815.	1.1	85
1276	Intestinal Microbiota in Healthy U.S. Young Children and Adults—A High Throughput Microarray Analysis. PLoS ONE, 2013, 8, e64315.	1.1	196
1277	Community Flux Balance Analysis for Microbial Consortia at Balanced Growth. PLoS ONE, 2013, 8, e64567.	1.1	169
1278	Gut Microbiota Contributes to the Growth of Fast-Growing Transgenic Common Carp (Cyprinus) Tj ETQq0 0 0 rg	BT /Overlo	ock 10 Tf 50 1

1279	Bacterial Diversity in Meconium of Preterm Neonates and Evolution of Their Fecal Microbiota during the First Month of Life. PLoS ONE, 2013, 8, e66986.	1.1	315	
------	--	-----	-----	--

#	Article	IF	CITATIONS
1280	Impact of Maternal Obesity on Inhaled Corticosteroid Use in Childhood: A Registry Based Analysis of First Born Children and a Sibling Pair Analysis. PLoS ONE, 2013, 8, e67368.	1.1	7
1281	Long-Term Temporal Analysis of the Human Fecal Microbiota Revealed a Stable Core of Dominant Bacterial Species. PLoS ONE, 2013, 8, e69621.	1.1	152
1282	The Microbial Community in the Feces of the White Rhinoceros (Ceratotherium simum) as Determined by Barcoded Pyrosequencing Analysis. PLoS ONE, 2013, 8, e70103.	1.1	42
1283	Topographical Body Fat Distribution Links to Amino Acid and Lipid Metabolism in Healthy Non-Obese Women. PLoS ONE, 2013, 8, e73445.	1.1	34
1284	The Effect of Dietary Supplementation with Spent Cider Yeast on the Swine Distal Gut Microbiome. PLoS ONE, 2013, 8, e75714.	1.1	37
1285	Mother-to-Infant Transmission of Intestinal Bifidobacterial Strains Has an Impact on the Early Development of Vaginally Delivered Infant's Microbiota. PLoS ONE, 2013, 8, e78331.	1.1	231
1286	Post-Weaning Diet Affects Faecal Microbial Composition but Not Selected Adipose Gene Expression in the Cat (Felis catus). PLoS ONE, 2013, 8, e80992.	1.1	19
1287	Altered Antibody Profiles against Common Infectious Agents in Chronic Disease. PLoS ONE, 2013, 8, e81635.	1.1	10
1288	The Microbiome of the Middle Meatus in Healthy Adults. PLoS ONE, 2013, 8, e85507.	1.1	177
1289	Molecular Characterization of the Fecal Microbiota in Patients with Nonalcoholic Steatohepatitis – A Longitudinal Study. PLoS ONE, 2013, 8, e62885.	1.1	266
1290	Obesity in the United States – Dysbiosis from Exposure to Low-Dose Antibiotics?. Frontiers in Public Health, 2013, 1, 69.	1.3	84
1291	Lactic Acid Bacteria in Philippine Traditional Fermented Foods. , 0, , .		10
1292	2011 AND 2012 EARLY CAREERS ACHIEVEMENT AWARDS: Use of genomic biology to study companion animal intestinal microbiota1. Journal of Animal Science, 2013, 91, 2504-2511.	0.2	11
1293	Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Annals of Hepatology, 2013, 12, 256-262.	0.6	252
1294	Gut microbes spur liver cancer in obese mice. Nature, 2013, , .	13.7	0
1295	Probiotics and Liver Disease. , 2013, 17, 62-67.		41
1296	Analysis of Oropharyngeal Microbiota between the Patients with Bronchial Asthma and the Non-Asthmatic Persons. Journal of Bacteriology and Virology, 2013, 43, 270.	0.0	14
1298	Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World Journal of Gastroenterology, 2014, 20, 1756.	1.4	91

	Сітатіо	n Report	
#	Article	IF	Citations
1299	Serum-derived bovine immunoglobulin/ protein isolate: postulated mechanism of action for management of enteropathy. Clinical and Experimental Gastroenterology, 2014, 7, 181.	1.0	29
1300	Propensity to high-fat diet-induced obesity in mice is associated with the indigenous opportunistic bacteria on the interior of Peyer's patches. Journal of Clinical Biochemistry and Nutrition, 2014, 55, 120-128.	0.6	45
1301	Machine Learning Techniques Accurately Classify Microbial Communities by Bacterial Vaginosis Characteristics. PLoS ONE, 2014, 9, e87830.	1.1	63
1302	Potential Role of the Bovine Rumen Microbiome in Modulating Milk Composition and Feed Efficiency. PLoS ONE, 2014, 9, e85423.	1.1	417
1303	Seasonal Variation in Human Gut Microbiome Composition. PLoS ONE, 2014, 9, e90731.	1.1	246
1304	A Rosemary Extract Rich in Carnosic Acid Selectively Modulates Caecum Microbiota and Inhibits β-Glucosidase Activity, Altering Fiber and Short Chain Fatty Acids Fecal Excretion in Lean and Obese Female Rats. PLoS ONE, 2014, 9, e94687.	1.1	55
1305	Early-Life Environmental Variation Affects Intestinal Microbiota and Immune Development in New-Born Piglets. PLoS ONE, 2014, 9, e100040.	1.1	181
1306	Changes in Cecal Microbiota and Mucosal Gene Expression Revealed New Aspects of Epizootic Rabbit Enteropathy. PLoS ONE, 2014, 9, e105707.	1.1	58
1307	Faecal Microbiota of Cats with Insulin-Treated Diabetes Mellitus. PLoS ONE, 2014, 9, e108729.	1.1	26
1308	Maternal Obesity Is Associated with Alterations in the Gut Microbiome in Toddlers. PLoS ONE, 2014, 9, e113026.	1.1	149
1309	The Antipsychotic Olanzapine Interacts with the Gut Microbiome to Cause Weight Gain in Mouse. PLoS ONE, 2014, 9, e115225.	1.1	147
1310	A Microbiological Explanation for the Obesity Pandemic?. Canadian Journal of Infectious Diseases and Medical Microbiology, 2014, 25, 294-295.	0.7	1
1311	Anti-inflammatory and Anti-Allergic Properties of Donkey's and Goat's Milk. Endocrine, Metabolic an Immune Disorders - Drug Targets, 2014, 14, 27-37.	d 0.6	46
1312	Bovine immunoglobulin protein isolates for the nutritional management of enteropathy. World Journal of Gastroenterology, 2014, 20, 11713.	1.4	32
1313	The gut microbiota in mouse models of inflammatory bowel disease. Frontiers in Cellular and Infection Microbiology, 2014, 4, 28.	1.8	143
1314	Gut Microbiota: The Next-Gen Frontier in Preventive and Therapeutic Medicine?. Frontiers in Medicine, 2014, 1, 15.	1.2	39
1315	Metagenomic analysis of the medicinal leech gut microbiota. Frontiers in Microbiology, 2014, 5, 151.	1.5	27
1316	The Role of Intestinal Bacteria Overgrowth in Obesity-Related Nonalcoholic Fatty Liver Disease. Nutrients, 2014, 6, 5583-5599.	1.7	85

ARTICLE IF CITATIONS Interplay between Intestinal Microbiota and Host Immune System. Journal of Bacteriology and 1317 0.0 12 Virology, 2014, 44, 1. The Importance of Microbiota and Host Interactions Throughout Life., 2014, , 489-511. Perturbation of the Human Microbiome as a Contributor to Inflammatory Bowel Disease. Pathogens, 1319 1.2 32 2014, 3, 510-527. Linking obesity with type 2 diabetes: the role of T-bet. Diabetes, Metabolic Syndrome and Obesity: 1.1 Targets and Therapy, 2014, 7, 331. Comparison of Faecal Microbial Community of Lantang, Bama, Erhualian, Meishan, Xiaomeishan, Duroc, 1321 2.4 64 Landrace, and Yorkshire Sows. Asian-Australasian Journal of Animal Sciences, 2014, 27, 898-906. Nonalcoholic Fatty Liver Disease and the Gut Microbiota: Exploring the Connection., 2014, 04, . Nonalcoholic Fatty Liver Disease (NAFLD), a Manifestation of the Metabolic Syndrome: New 1323 Perspectives on the Nutritional Therapy. Endocrinology & Metabolic Syndrome: Current Research, 0.3 4 2014,03,. Three Measurable and Modifiable Enteric Microbial Biotransformations Relevant to Cancer 1324 0.7 19 Prevention and Treatment. Global Advances in Health and Medicine, 2014, 3, 33-43. Obesity, fatty liver disease and intestinal microbiota. World Journal of Gastroenterology, 2014, 20, 1325 1.4 148 16452. Higher blood glucose level associated with body mass index and gut microbiota in elderly people. 3.8 Microbial Ecology in Health and Disease, 2014, 25, Cholesterol cholelithiasis in pregnant women: pathogenesis, prevention and treatment. Annals of 1328 0.6 62 Hepatology, 2014, 13, 728-745. Probiotics in human milk and probiotic supplementation in infant nutrition: a workshop report. 1329 1.2 British Journal of Nutrition, 2014, 112, 1119-1128. The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes, 2014, 1330 4.3 140 5,719-728. Bariatric Surgery versus Intensive Medical Therapy for Diabetes. New England Journal of Medicine, 63 2014, 371, 680-682. The potential beneficial role of faecal microbiota transplantation in diseases other than Clostridium 1332 2.8 36 difficile infection. Clinical Microbiology and Infection, 2014, 20, 1119-1125. Metabolic tinkering by the gut microbiome. Gut Microbes, 2014, 5, 369-380. Effect of zinc on growth performance, gut morphometry, and cecal microbial community in broilers 1334 challenged with Salmonella enterica serovar typhimurium. Journal of Microbiology, 2014, 52, 1.364 1002-1011. GA-based selection of vaginal microbiome features associated with bacterial vaginosis. , 2014, 2014, 265-268.

#	Article	IF	CITATIONS
1336	Replication of Obesity and Associated Signaling Pathways Through Transfer of Microbiota From Obese-Prone Rats. Diabetes, 2014, 63, 1624-1636.	0.3	171
1337	Metaâ€analyses of human gut microbes associated with obesity and IBD. FEBS Letters, 2014, 588, 4223-4233.	1.3	697
1338	Antiâ€obesity effect of feeding probiotic dahi containing <i>Lactobacillus casei </i> <scp>NCDC</scp> 19 in high fat dietâ€induced obese mice. International Journal of Dairy Technology, 2014, 67, 504-509.	1.3	29
1339	Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterology, 2014, 14, 189.	0.8	1,187
1341	Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Molecular Neurodegeneration, 2014, 9, 36.	4.4	250
1342	Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4268-4273.	3.3	264
1343	An Expanded Genomic Representation of the Phylum Cyanobacteria. Genome Biology and Evolution, 2014, 6, 1031-1045.	1.1	326
1344	Dietary intervention rescues maternal obesity induced behavior deficits and neuroinflammation in offspring. Journal of Neuroinflammation, 2014, 11, 156.	3.1	130
1345	The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 2014, 14, 311.	1.3	178
1346	B cells promote obesity-associated periodontitis and oral pathogen-associated inflammation. Journal of Leukocyte Biology, 2014, 96, 349-357.	1.5	33
1347	Effect of <i>Lactobacillus rhamnosus</i> CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. British Journal of Nutrition, 2014, 111, 1507-1519.	1.2	272
1348	Emerging science of the human microbiome. Gut Microbes, 2014, 5, 446-457.	4.3	46
1349	Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutrition and Diabetes, 2014, 4, e121-e121.	1.5	503
1350	Bacterial bile salt hydrolase in host metabolism: Potential for influencing gastrointestinal microbe-host crosstalk. Gut Microbes, 2014, 5, 669-674.	4.3	99
1351	Epigenetic Events Associated with Obesity and Diabetes. , 2014, , 195-217.		0
1352	Biological Diversity and Public Health. Annual Review of Public Health, 2014, 35, 153-167.	7.6	40
1353	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 2014, 18, 773-786.	1.5	64
1355	Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians. Journal of Exposure Science and Environmental Epidemiology, 2014, 24, 135-144.	1.8	18

#	Article	IF	CITATIONS
1356	Nonâ€alcoholic fatty liver disease in obese adults: clinical aspects and current management strategies. Clinical Obesity, 2014, 4, 243-253.	1.1	31
1357	The role of metagenomics in understanding the human microbiome in health and disease. Virulence, 2014, 5, 413-423.	1.8	87
1358	Host-Microbe Interactions in Microgravity: Assessment and Implications. Life, 2014, 4, 250-266.	1.1	27
1359	The Presence of Methanogenic Bacteria, Identified During Clinical Breath Testing, Is Not Associated with a Higher Body Mass Index in a U.S. Midwestern Population. Bariatric Surgical Patient Care, 2014, 9, 169-172.	0.1	1
1360	Systematic Analysis of the Association between Gut Flora and Obesity through High-Throughput Sequencing and Bioinformatics Approaches. BioMed Research International, 2014, 2014, 1-10.	0.9	91
1361	Obesity as a Consequence of Gut Bacteria and Diet Interactions. ISRN Obesity, 2014, 2014, 1-8.	2.2	41
1362	Gut Microbioma Population: An Indicator Really Sensible to Any Change in Age, Diet, Metabolic Syndrome, and Life-Style. Mediators of Inflammation, 2014, 2014, 1-11.	1.4	57
1363	Diet and the development of the human intestinal microbiome. Frontiers in Microbiology, 2014, 5, 494.	1.5	391
1364	Meta-Omic Platforms to Assist in the Understanding of NAFLD Gut Microbiota Alterations: Tools and Applications. International Journal of Molecular Sciences, 2014, 15, 684-711.	1.8	26
1365	Applications of Next-Generation Sequencing Technologies to the Study of the Human Microbiome. Comprehensive Analytical Chemistry, 2014, , 75-106.	0.7	0
1366	From Immunology to Eco-Immunology: More than a New Name. , 2014, , 1-19.		12
1367	Clues to Arsenicâ \in ^{IM} s Toxicity: Microbiome Alterations in the Mouse Gut. Environmental Health Perspectives, 2014, 122, A82.	2.8	2
1368	Pyrosequencing reveals diverse fecal microbiota in Simmental calves during early development. Frontiers in Microbiology, 2014, 5, 622.	1.5	78
1369	Gut Microbiota in Human Health and Diseases. , 2014, , 469-469.		0
1370	symbiotic glance at the complexities of signature microbiomic interventions: Infusing balance. South African Journal of Science, 2014, 110, 5.	0.3	0
1371	Modulation of Gut Microbiota in the Management of Metabolic Disorders: The Prospects and Challenges. International Journal of Molecular Sciences, 2014, 15, 4158-4188.	1.8	95
1372	Gut Microbes and Host Physiology: What Happens When You Host Billions of Guests?. Frontiers in Endocrinology, 2014, 5, 91.	1.5	25
1373	Microbial Dysbiosis Is Associated with Human Breast Cancer. PLoS ONE, 2014, 9, e83744.	1.1	384

#	Article	IF	CITATIONS
1374	A Physicians' Wish List for the Clinical Application of Intestinal Metagenomics. PLoS Medicine, 2014, 11, e1001627.	3.9	9
1375	Metabonomic Phenotyping for the Gut Microbiota and Mammal Interactions. Advanced Topics in Science and Technology in China, 2014, , 189-201.	0.0	0
1376	Non-alcoholic fatty liver disease in patients with diabetes mellitus. Expert Review of Endocrinology and Metabolism, 2014, 9, 503-514.	1.2	0
1378	Faecal microbiota of domestic cats fed raw whole chicks <i>v.</i> an extruded chicken-based diet. Journal of Nutritional Science, 2014, 3, e22.	0.7	20
1379	Geranium dielsianum extract powder (MISKAMISKATM) improves the intestinal environment through alteration of microbiota and microbial metabolites in rats. Journal of Functional Foods, 2014, 11, 12-19.	1.6	10
1380	Clostridium ramosum Promotes High-Fat Diet-Induced Obesity in Gnotobiotic Mouse Models. MBio, 2014, 5, e01530-14.	1.8	176
1381	Old Dog, New Trick: A Direct Role for Leptin in Regulating Microbiota Composition. Endocrinology, 2014, 155, 653-655.	1.4	4
1382	Fibre digestibility, abundance of faecal bacteria and plasma acetate concentrations in overweight adult mares. Journal of Nutritional Science, 2014, 3, e10.	0.7	17
1383	<i>Mariner</i> â€based transposon mutagenesis for <i>Bacteroides</i> species. Journal of Basic Microbiology, 2014, 54, 558-567.	1.8	13
1384	Spatial and Temporal Features of the Growth of a Bacterial Species Colonizing the Zebrafish Gut. MBio, 2014, 5, .	1.8	93
1385	Gut Microbiota as an Epigenetic Regulator: Pilot Study Based on Whole-Genome Methylation Analysis. MBio, 2014, 5, .	1.8	172
1386	Correlates of gut community composition across an ant species (<i><scp>C</scp>ephalotes) Tj ETQq1 1 0.78431 1284-1300.</i>	.4 rgBT /O 2.0	verlock 10 82
1387	Endotoxemia unrequired in the pathogenesis of pediatric nonalcoholic steatohepatitis. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 1292-1298.	1.4	57
1388	Understanding the Apothecaries Within: The Necessity of a Systematic Approach for Defining the Chemical Output of the Human Microbiome. Clinical and Translational Science, 2014, 7, 74-81.	1.5	12
1389	Variable selection in regression with compositional covariates. Biometrika, 2014, 101, 785-797.	1.3	158
1390	Fas (<scp>CD</scp> 95) expression in myeloid cells promotes obesityâ€induced muscle insulin resistance. EMBO Molecular Medicine, 2014, 6, 43-56.	3.3	34
1391	A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiology Ecology, 2014, 87, 357-367.	1.3	338
1392	Gut microbiota, nutrient sensing and energy balance. Diabetes, Obesity and Metabolism, 2014, 16, 68-76.	2.2	83

#	Article	IF	Citations
1393	Augmented hepatic <scp>T</scp> ollâ€like receptors by fatty acids trigger the proâ€inflammatory state of nonâ€alcoholic fatty liver disease in mice. Hepatology Research, 2014, 44, 920-934.	1.8	30
1394	Review article: associations between <i>Helicobacter pylori</i> and obesity - an ecological study. Alimentary Pharmacology and Therapeutics, 2014, 40, 24-31.	1.9	89
1395	Transgenerational inheritance of prenatal obesogen exposure. Molecular and Cellular Endocrinology, 2014, 398, 31-35.	1.6	67
1396	Bugs and Food: A Recipe for Cancer?. Cell Metabolism, 2014, 20, 937-938.	7.2	5
1397	<i>Lactobacillus plantarum</i> LG42 isolated from gajami sik-hae decreases body and fat pad weights in diet-induced obese mice. Journal of Applied Microbiology, 2014, 116, 145-156.	1.4	54
1398	<i>Doenjang</i> , a Fermented Korean Soybean Paste, Inhibits Lipopolysaccharide Production of Gut Microbiota in Mice. Journal of Medicinal Food, 2014, 17, 67-75.	0.8	30
1399	Gut microbiota and cardiometabolic outcomes: influence of dietary patterns and their associated components. American Journal of Clinical Nutrition, 2014, 100, 369S-377S.	2.2	61
1400	Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. Journal of Applied Microbiology, 2014, 117, 1750-1760.	1.4	155
1401	Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity. PLoS ONE, 2014, 9, e92193.	1.1	451
1402	Nonalcoholic fatty liver disease: Diagnosis, pathogenesis, and management. Turkish Journal of Gastroenterology, 2014, 25, 127-132.	0.4	38
1403	Flos Lonicera Ameliorates Obesity and Associated Endotoxemia in Rats through Modulation of Gut Permeability and Intestinal Microbiota. PLoS ONE, 2014, 9, e86117.	1.1	84
1404	Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics, 2014, 15, 933.	1.2	64
1405	The effect of Lactobacillus rhamnosus hsryfm 1301 on the intestinal microbiota of a hyperlipidemic rat model. BMC Complementary and Alternative Medicine, 2014, 14, 386.	3.7	67
1406	Temporal variability is a personalized feature of the human microbiome. Genome Biology, 2014, 15, 531.	3.8	355
1407	Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice. Genome Biology, 2014, 15, 552.	3.8	134
1408	Host Demise as a Beneficial Function of Indigenous Microbiota in Human Hosts. MBio, 2014, 5, .	1.8	39
1409	†The way to a man's heart is through his gut microbiota' – dietary pro- and prebiotics for the management of cardiovascular risk. Proceedings of the Nutrition Society, 2014, 73, 172-185.	0.4	108
1410	Is There a Paradox in Obesity?. Cardiology in Review, 2014, 22, 163-170.	0.6	85

#	Article	IF	Citations
1411	Potential of novel dextran oligosaccharides as prebiotics for obesity management through <i>in vitro</i> experimentation. British Journal of Nutrition, 2014, 112, 1303-1314.	1.2	35
1412	Gut microbiota composition and its effects on obesity and insulin resistance. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 312-318.	1.3	51
1413	The Differences in Colonic Mucosal Microbiota Between Normal Individual and Colon Cancer Patients by Polymerase Chain Reaction-denaturing Gradient Gel Electrophoresis. Journal of Clinical Gastroenterology, 2014, 48, 138-144.	1.1	28
1414	Assessment of the Capability of a Gelling Complex Made of Tara Gum and the Exopolysaccharides Produced by the Microorganism Streptococcus thermophilus ST10 to Prospectively Restore the Gut Physiological Barrier. Journal of Clinical Gastroenterology, 2014, 48, S56-S61.	1.1	19
1415	Effect of diet on the intestinal microbiota and its activity. Current Opinion in Gastroenterology, 2014, 30, 189-195.	1.0	74
1416	Intestinal Microbiota. Journal of Clinical Gastroenterology, 2014, 48, 657-666.	1.1	19
1417	Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 139-144.	1.3	214
1418	A Hypothesis. Diseases of the Colon and Rectum, 2014, 57, 539-543.	0.7	47
1419	Microbiome in Reflux Disorders and Esophageal Adenocarcinoma. Cancer Journal (Sudbury, Mass), 2014, 20, 207-210.	1.0	75
1420	The Microbiome and Obesity—An Established Risk for Certain Types of Cancer. Cancer Journal (Sudbury, Mass), 2014, 20, 176-180.	1.0	54
1421	The microbiota and helminths: sharing the same niche in the human host. Parasitology, 2014, 141, 1255-1271.	0.7	88
1422	The role of the gut microbiome in the development and progression of liver cirrhosis and hepatocellular carcinoma. Gut Microbes, 2014, 5, 441-445.	4.3	66
1423	Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology, 2014, 5, 190.	1.5	250
1426	The Health Advantage of a Vegan Diet: Exploring the Gut Microbiota Connection. Nutrients, 2014, 6, 4822-4838.	1.7	175
1427	Exploring the influence of the gut microbiota and probiotics on health: a symposium report. British Journal of Nutrition, 2014, 112, S1-S18.	1.2	81
1428	The Gut Microbiota and Effects on Metabolism. , 2014, , 508-526.		4
1429	Whole Grains in the Prevention and Treatment of Abdominal Obesity. , 2014, , 515-528.		2
1430	Gut microbiota and metabolic syndrome. World Journal of Gastroenterology, 2014, 20, 16079.	1.4	405

#	Article	IF	CITATIONS
1431	Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. British Journal of Nutrition, 2014, 111, 1905-1917.	1.2	152
1432	Effect of oligofructose supplementation on body weight in overweight and obese children: a randomised, double-blind, placebo-controlled trial. British Journal of Nutrition, 2014, 112, 2068-2074.	1.2	47
1433	Inulin and Health Benefits. , 2014, , 1-36.		0
1434	Gut Microbiota in Metabolic Syndrome. , 2014, , 171-181.		1
1436	Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective. World Journal of Gastroenterology, 2014, 20, 17737-17745.	1.4	143
1437	Body Weight Selection Affects Quantitative Genetic Correlated Responses in Gut Microbiota. PLoS ONE, 2014, 9, e89862.	1.1	59
1438	Remodeling Intestinal Flora with Sleeve Gastrectomy in Diabetic Rats. Journal of Diabetes Research, 2014, 2014, 1-5.	1.0	5
1439	Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis. BioMed Research International, 2014, 2014, 1-18.	0.9	142
1440	Characterization of bacterial community shift in human Ulcerative Colitis patients revealed by Illumina based 16S rRNA gene amplicon sequencing. Gut Pathogens, 2014, 6, 22.	1.6	84
1441	Host lifestyle affects human microbiota on daily timescales. Genome Biology, 2014, 15, R89.	13.9	735
1442	Overfeeding and genetics affect the composition of intestinal microbiota in <i>Anas platyrhynchos</i> (Pekin) and <i>Cairina moschata</i> (Muscovy) ducks. FEMS Microbiology Ecology, 2014, 87, 204-216.	1.3	46
1443	Evaluation of immune response, microbiota, and blood markers after probiotic bacteria administration in obese mice induced by a high-fat diet. Nutrition, 2014, 30, 1423-1432.	1.1	47
1444	Comment to: Luo et al. (2013) Int J Cardiol. 168(4):4454–6. International Journal of Cardiology, 2014, 172, 512-514.	0.8	5
1445	The anti-obesity effect of Ephedra sinica through modulation of gut microbiota in obese Korean women. Journal of Ethnopharmacology, 2014, 152, 532-539.	2.0	76
1446	Bariatric surgery decreased the serum level of an endotoxin-associated marker: lipopolysaccharide-binding protein. Surgery for Obesity and Related Diseases, 2014, 10, 1182-1187.	1.0	46
1447	Serum immunoglobulin levels predict fibrosis in patients with non-alcoholic fatty liver disease. Journal of Hepatology, 2014, 60, 1055-1062.	1.8	85
1448	A Clinician's Primer on the Role of the Microbiome in Human Health and Disease. Mayo Clinic Proceedings, 2014, 89, 107-114.	1.4	187
1449	Salecan diet increases short chain fatty acids and enriches beneficial microbiota in the mouse cecum. Carbohydrate Polymers, 2014, 102, 772-779.	5.1	37

#	Article	IF	CITATIONS
1450	What is the role of obesity in the aetiology of arsenic-related disease?. Environment International, 2014, 66, 115-123.	4.8	18
1451	Obesity and NAFLD. Clinics in Liver Disease, 2014, 18, 59-71.	1.0	87
1452	Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiology Reviews, 2014, 38, 90-118.	3.9	174
1453	Fecal Biomarkers for Research on Dietary and Lifestyle Risk Factors in Colorectal Cancer Etiology. Current Colorectal Cancer Reports, 2014, 10, 114-131.	1.0	5
1454	Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Beneficial Microbes, 2014, 5, 33-43.	1.0	107
1455	Microbiota and nonalcoholic steatohepatitis. Seminars in Immunopathology, 2014, 36, 115-132.	2.8	35
1456	Does interleukin-17 play the villain in nonalcoholic steatohepatitis?. Hepatology, 2014, 59, 1671-1672.	3.6	9
1457	Role of the Microbiome in Energy Regulation and Metabolism. Gastroenterology, 2014, 146, 1525-1533.	0.6	354
1458	Excess body weight during pregnancy and offspring obesity: Potential mechanisms. Nutrition, 2014, 30, 245-251.	1.1	29
1459	Nonalcoholic fatty liver disease and bariatric surgery in adolescents. Seminars in Pediatric Surgery, 2014, 23, 49-57.	0.5	21
1460	Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. Journal of Nutritional Biochemistry, 2014, 25, 489-495.	1.9	120
1461	Gut microbiota-based translational biomarkers to prevent metabolic syndrome via nutritional modulation. FEMS Microbiology Ecology, 2014, 87, 303-314.	1.3	44
1462	How do gut microbes break down dietary fiber?. Trends in Biochemical Sciences, 2014, 39, 156-158.	3.7	21
1463	Analysis of the Gut Microbiota by High-Throughput Sequencing of the V5–V6 Regions of the 16S rRNA Gene in Donkey. Current Microbiology, 2014, 68, 657-662.	1.0	41
1464	Mechanisms of Liver Injury in Non-Alcoholic Steatohepatitis. Current Hepatology Reports, 2014, 13, 119-129.	0.4	37
1465	Caecal environment of rats fed far East Asian-modelled diets. Applied Microbiology and Biotechnology, 2014, 98, 4701-4709.	1.7	11
1466	The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2014, 2, 4.	4.9	607
1467	DNA barcoding to map the microbial communities: current advances and future directions. Applied Microbiology and Biotechnology, 2014, 98, 3425-3436.	1.7	40

#	Article	IF	CITATIONS
1468	Effect of aerobic exercise and low carbohydrate diet on pre-diabetic non-alcoholic fatty liver disease in postmenopausal women and middle aged men – the role of gut microbiota composition: study protocol for the AELC randomized controlled trial. BMC Public Health, 2014, 14, 48.	1.2	29
1469	Eisenbergiella tayi gen. nov., sp. nov., isolated from human blood. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 907-914.	0.8	51
1470	Combined effects of oligofructose and <i>Bifidobacterium animalis</i> on gut microbiota and glycemia in obese rats. Obesity, 2014, 22, 763-771.	1.5	124
1471	Diet Effects in Gut Microbiome and Obesity. Journal of Food Science, 2014, 79, R442-51.	1.5	88
1472	Microbial Enterotypes, Inferred by the Prevotella-to-Bacteroides Ratio, Remained Stable during a 6-Month Randomized Controlled Diet Intervention with the New Nordic Diet. Applied and Environmental Microbiology, 2014, 80, 1142-1149.	1.4	142
1473	Role of the Microbiota in Immunity and Inflammation. Cell, 2014, 157, 121-141.	13.5	3,494
1474	Gut microbiota and liver disease. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 1139-1148.	1.4	84
1475	Glucose metabolism: Focus on gut microbiota, the endocannabinoid system and beyond. Diabetes and Metabolism, 2014, 40, 246-257.	1.4	104
1476	Establishment of Intestinal Microbiota during Early Life: a Longitudinal, Explorative Study of a Large Cohort of Danish Infants. Applied and Environmental Microbiology, 2014, 80, 2889-2900.	1.4	391
1477	Peripheral targets in obesity treatment: a comprehensive update. Obesity Reviews, 2014, 15, 487-503.	3.1	30
1478	Microbiome: A complicated relationship status. Nature, 2014, 508, S61-S63.	13.7	16
1479	Compositional and Functional Features of the Gastrointestinal Microbiome and Their Effects on Human Health. Gastroenterology, 2014, 146, 1449-1458.	0.6	386
1480	The Multifaceted Role of the Intestinal Microbiota in Colon Cancer. Molecular Cell, 2014, 54, 309-320.	4.5	284
1481	Obesity and Cancer: A Gut Microbial Connection. Cancer Research, 2014, 74, 1885-1889.	0.4	61
1482	Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice. Journal of Nutritional Biochemistry, 2014, 25, 893-902.	1.9	83
1483	Les probiotiques et leur place en médecine humaine. Journal Des Anti-infectieux, 2014, 16, 33-43.	0.1	5
1484	Alteration of the intestinal microbiota as a cause of and a potential therapeutic option in irritable bowel syndrome. Beneficial Microbes, 2014, 5, 247-261.	1.0	37
1485	Managing the manager: Gut microbes, stem cells and metabolism. Diabetes and Metabolism, 2014, 40, 186-190.	1.4	14

#	Article	IF	CITATIONS
1486	Antibiotics Help Control Rotavirus Infections and Enhance Antirotaviral Immunity: Are You Serious?. Journal of Infectious Diseases, 2014, 210, 167-170.	1.9	3
1487	Integrative Weight Management. , 2014, , .		2
1488	Mathematical modeling of primary succession of murine intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 439-444.	3.3	183
1489	Identification of tannin–degrading microorganisms in the gut of plateau pikas (Ochotona curzoniae) and root voles (Microtus oeconomus). Symbiosis, 2014, 63, 1-9.	1.2	9
1490	Targeting inflammation in the treatment of type 2 diabetes: time to start. Nature Reviews Drug Discovery, 2014, 13, 465-476.	21.5	571
1491	Gut microbiota–generated metabolites in animal health and disease. Nature Chemical Biology, 2014, 10, 416-424.	3.9	539
1492	Microbial glycan microarrays define key features of host-microbial interactions. Nature Chemical Biology, 2014, 10, 470-476.	3.9	191
1493	Introduction to Integrative Weight Management. , 2014, , 1-8.		1
1494	Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiology, 2014, 9, 399-410.	1.0	129
1495	The marriage of nutrigenomics with the microbiome: the case of infant-associated bifidobacteria and milk. American Journal of Clinical Nutrition, 2014, 99, 697S-703S.	2.2	36
1496	The Human Gut Microbiome and Its Role in Obesity and the Metabolic Syndrome. , 2014, , 71-105.		4
1497	Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. Proceedings of the Nutrition Society, 2014, 73, 441-451.	0.4	33
1498	Gut Microbiota, Low-grade Inflammation, and Metabolic Syndrome. Toxicologic Pathology, 2014, 42, 49-53.	0.9	137
1499	The microbiome: stress, health and disease. Mammalian Genome, 2014, 25, 49-74.	1.0	361
1500	Emerging roles of the microbiome in cancer. Carcinogenesis, 2014, 35, 249-255.	1.3	202
1501	Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505, 559-563.	13.7	7,592
1502	Cultivable internal bacterial flora of ticks isolated in Hungary. Experimental and Applied Acarology, 2014, 63, 107-122.	0.7	24
1503	The gut microbiome as novel cardio-metabolic target: the time has come!. European Heart Journal, 2014, 35, 883-887.	1.0	67

	Стато	N REPORT	
# 1504	ARTICLE The effects of co-administration of probiotics with herbal medicine on obesity, metabolic endotoxemia and dysbiosis: A randomized double-blind controlled clinical trial. Clinical Nutrition, 2014, 33, 973-981.	IF 2.3	CITATIONS
1505	Mechanisms of Obesity-Induced Gastrointestinal Neoplasia. Gastroenterology, 2014, 146, 357-373.	0.6	157
1506	Gastrointestinal changes after bariatric surgery. Diabetes and Metabolism, 2014, 40, 87-94.	1.4	93
1507	Intestinal microbiota, diet and health. British Journal of Nutrition, 2014, 111, 387-402.	1.2	371
1508	A Systems Biology Approach to Study Metabolic Syndrome. , 2014, , .		5
1509	Bile Acid Signaling in Metabolic Disease and Drug Therapy. Pharmacological Reviews, 2014, 66, 948-983.	7.1	680
1510	Determining Microbial Products and Identifying Molecular Targets in the Human Microbiome. Cell Metabolism, 2014, 20, 731-741.	7.2	82
1511	High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nature Communications, 2014, 5, 3889.	5.8	361
1512	The role of obesity in oesophageal cancer development. Therapeutic Advances in Gastroenterology, 2014, 7, 247-268.	1.4	67
1514	Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus. Clinical and Experimental Immunology, 2014, 177, 24-29.	1.1	85
1515	Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. International Journal of Obesity, 2014, 38, 1525-1531.	1.6	211
1516	Temporal analysis of the effect of extruded flaxseed on the swine gut microbiota. Canadian Journal of Microbiology, 2014, 60, 649-659.	0.8	11
1517	Isolated faecal bacterial communities found for Weddell seals, Leptonychotes weddellii, at White Island, McMurdo Sound, Antarctica. Polar Biology, 2014, 37, 1857-1864.	0.5	14
1518	Alterations in cecal microbiota of Jinhua piglets fostered by a Yorkshire sow. Science Bulletin, 2014, 59, 4304-4311.	1.7	9
1519	Doenjang, a Korean soybean paste, ameliorates TNBS-induced colitis in mice by suppressing gut microbial lipopolysaccharide production and NF-κB activation. Journal of Functional Foods, 2014, 11, 417-427.	1.6	18
1520	Far from the Eyes, Close to the Heart: Dysbiosis of Gut Microbiota and Cardiovascular Consequences. Current Cardiology Reports, 2014, 16, 540.	1.3	81
1521	Methodological and metabolic considerations in the study of caffeine-containing energy drinks. Nutrition Reviews, 2014, 72, 137-145.	2.6	12
1522	Exopolysaccharide-Producing Probiotic Lactobacilli Reduce Serum Cholesterol and Modify Enteric Microbiota in ApoE-Deficient Mice. Journal of Nutrition, 2014, 144, 1956-1962.	1.3	80

#	Article	IF	CITATIONS
1523	The Effects of Gastrointestinal Surgery on Gut Microbiota: Potential Contribution to Improved Insulin Sensitivity. Current Atherosclerosis Reports, 2014, 16, 454.	2.0	68
1524	Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E836-45.	3.3	595
1525	From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. American Journal of Physiology - Cell Physiology, 2014, 307, C979-C985.	2.1	128
1526	Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. Cell, 2014, 159, 514-529.	13.5	984
1527	Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. American Journal of Physiology - Renal Physiology, 2014, 306, G826-G838.	1.6	79
1528	Short-Chain Fructo-oligosaccharide and Inulin Modulate Inflammatory Responses and Microbial Communities in Caco2-bbe Cells and in a Mouse Model of Intestinal Injury. Journal of Nutrition, 2014, 144, 1725-1733.	1.3	42
1529	Altered Tissue Metabolites Correlate with Microbial Dysbiosis in Colorectal Adenomas. Journal of Proteome Research, 2014, 13, 1921-1929.	1.8	52
1530	Structural changes in the gut microbiome of constipated patients. Physiological Genomics, 2014, 46, 679-686.	1.0	271
1531	Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food and Function, 2014, 5, 436.	2.1	177
1532	Self-organizing approach for meta-genomes. Computational Biology and Chemistry, 2014, 53, 118-124.	1.1	2
1533	Thermogenic changes after gastric bypass, adjustable gastric banding or dietÂalone. Surgery, 2014, 156, 806-813.	1.0	30
1534	Irritable Bowel Syndrome. Journal of Parenteral and Enteral Nutrition, 2014, 38, 781-799.	1.3	32
1535	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 0, , .	1.5	5
1536	The Microbiome and the Lung. Annals of the American Thoracic Society, 2014, 11, S227-S232.	1.5	97
1537	Alteration of Gut Bacteria and Metabolomes after Glucaro-1,4-lactone Treatment Contributes to the Prevention of Hypercholesterolemia. Journal of Agricultural and Food Chemistry, 2014, 62, 7444-7451.	2.4	15
1538	Role of the Immune System in Obesity-Associated Inflammation and Insulin Resistance. , 2014, , 281-293.		1
1539	The Gut Microbiome, Kidney Disease, and Targeted Interventions. Journal of the American Society of Nephrology: JASN, 2014, 25, 657-670.	3.0	553
1540	The weighty costs of non-caloric sweeteners. Nature, 2014, 514, 176-177.	13.7	17

#	Article	IF	Citations
1541	High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature, 2014, 514, 508-512.	13.7	366
1542	Finding the Missing Links among Metabolites, Microbes, and the Host. Immunity, 2014, 40, 824-832.	6.6	256
1543	Temporal Dynamics of the Cecal Gut Microbiota of Juvenile Arctic Ground Squirrels: a Strong Litter Effect across the First Active Season. Applied and Environmental Microbiology, 2014, 80, 4260-4268.	1.4	15
1544	Yellow pea fiber improves glycemia and reduces Clostridium leptum in diet-induced obese rats. Nutrition Research, 2014, 34, 714-722.	1.3	36
1545	Combining sitagliptin/metformin with a functional fiber delays diabetes progression in Zucker rats. Journal of Endocrinology, 2014, 220, 361-373.	1.2	27
1546	Chemoprevention in Gastrointestinal Physiology and Disease. Natural products and microbiome. American Journal of Physiology - Renal Physiology, 2014, 307, G1-G15.	1.6	49
1548	Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice. Cell Reports, 2014, 8, 137-149.	2.9	43
1549	Oxidative Stress and Inflammation in Non-communicable Diseases - Molecular Mechanisms and Perspectives in Therapeutics. Advances in Experimental Medicine and Biology, 2014, , .	0.8	16
1550	Key Elements of Plant-Based Diets Associated with Reduced Risk of Metabolic Syndrome. Current Diabetes Reports, 2014, 14, 524.	1.7	38
1551	Conducting a Microbiome Study. Cell, 2014, 158, 250-262.	13.5	625
1552	Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays, 2014, 36, 940-949.	1.2	328
1553	Geographical variation of human gut microbial composition. Biology Letters, 2014, 10, 20131037.	1.0	158
1554	Alterations of the human gut microbiome in liver cirrhosis. Nature, 2014, 513, 59-64.	13.7	1,782
1555	Intestinal dysbiosis and bacterial enteroinvasion in a murine model of Hirschsprung's disease. Journal of Pediatric Surgery, 2014, 49, 1242-1251.	0.8	68
1556	Molecular Bases and Role of Viruses in the Human Microbiome. Journal of Molecular Biology, 2014, 426, 3892-3906.	2.0	113
1557	Systematic review: faecal microbiota transplantation therapy for digestive and nondigestive disorders in adults and children. Alimentary Pharmacology and Therapeutics, 2014, 39, 1003-1032.	1.9	130
1558	Minireview: Gut Microbiota: The Neglected Endocrine Organ. Molecular Endocrinology, 2014, 28, 1221-1238.	3.7	835
1559	Intestinal and Systemic Inflammatory Responses Are Positively Associated with Sulfidogenic Bacteria Abundance in High-Fat–Fed Male C57BL/6J Mice. Journal of Nutrition, 2014, 144, 1181-1187.	1.3	56

#	Article	IF	CITATIONS
1560	Leptin Acts Independently of Food Intake to Modulate Gut Microbial Composition in Male Mice. Endocrinology, 2014, 155, 748-757.	1.4	60
1561	Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metabolism, 2014, 20, 779-786.	7.2	614
1562	The Gut-Adipose-Liver Axis in the Metabolic Syndrome. Physiology, 2014, 29, 304-313.	1.6	65
1564	Gastrointestinal Microbiota–Mediated Control of Enteric Pathogens. Annual Review of Genetics, 2014, 48, 361-382.	3.2	53
1565	Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using highâ€ŧhroughput parallel pyrosequencing. Molecular Ecology, 2014, 23, 5048-5060.	2.0	66
1566	Gut microbiota and obesity: Role in aetiology and potential therapeutic target. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2014, 28, 585-597.	1.0	92
1567	Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics, 2014, 15, 511.	1.2	244
1568	Short-term periodic consumption of multiprobiotic from childhood improves insulin sensitivity, prevents development of non-alcoholic fatty liver disease and adiposity in adult rats with glutamate-induced obesity. BMC Complementary and Alternative Medicine, 2014, 14, 247.	3.7	49
1569	Gut microbiota, probiotics and diabetes. Nutrition Journal, 2014, 13, 60.	1.5	266
1570	Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome, 2014, 2, 19.	4.9	228
1571	Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 2014, 514, 181-186.	13.7	1,529
1572	Human oral viruses are personal, persistent and gender-consistent. ISME Journal, 2014, 8, 1753-1767.	4.4	159
1574	The development of probiotic treatment in obesity: a review. Beneficial Microbes, 2014, 5, 19-28.	1.0	62
1575	Impact of Probiotics on Risk Factors for Cardiovascular Diseases. A Review. Critical Reviews in Food Science and Nutrition, 2014, 54, 175-189.	5.4	75
1576	Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society, 2014, 73, 477-489.	0.4	126
1577	Modulation of the Gut Microbiota by Nutrients with Prebiotic and Probiotic Properties. Advances in Nutrition, 2014, 5, 624S-633S.	2.9	92
1578	Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Applied Microbiology and Biotechnology, 2014, 98, 1-10.	1.7	96
1579	Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Applied Microbiology and Biotechnology, 2014, 98, 6817-6829.	1.7	112

#	Article	IF	CITATIONS
1580	Fecal microbiome analysis as a diagnostic test for diverticulitis. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 1927-1936.	1.3	102
1581	Are stool samples suitable for studying the link between gut microbiota and obesity?. European Journal of Epidemiology, 2014, 29, 307-309.	2.5	55
1582	Culturomics and pyrosequencing evidence of the reduction in gut microbiota diversity in patients with broad-spectrum antibiotics. International Journal of Antimicrobial Agents, 2014, 44, 117-124.	1.1	84
1583	CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome, 2014, 2, 11.	4.9	225
1584	Exploration of bacterial community classes in major human habitats. Genome Biology, 2014, 15, R66.	13.9	109
1585	Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunological Reviews, 2014, 260, 35-49.	2.8	60
1586	Gastrointestinal hormones and the dialogue between gut and brain. Journal of Physiology, 2014, 592, 2927-2941.	1.3	143
1587	Bacterial DNA Translocation Holds Increased Insulin Resistance and Systemic Inflammatory Levels in Morbid Obese Patients. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2575-2583.	1.8	34
1588	Correlation network analysis reveals relationships between diet-induced changes in human gut microbiota and metabolic health. Nutrition and Diabetes, 2014, 4, e122-e122.	1.5	84
1589	Interplay between Anthocyanins and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2014, 62, 6898-6902.	2.4	250
1590	An increase in the <i>Akkermansia</i> spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014, 63, 727-735.	6.1	1,288
1591	Navigating the Pediatric Microbiome: Emerging Evidence and Clinical Implications. Current Pediatrics Reports, 2014, 2, 93-101.	1.7	2
1592	Pediatric Fecal Microbiota Transplantation. Current Pediatrics Reports, 2014, 2, 227-234.	1.7	2
1593	The intestinal microbiome of fish under starvation. BMC Genomics, 2014, 15, 266.	1.2	242
1594	Evaluation of yellow pea fibre supplementation on weight loss and the gut microbiota: a randomized controlled trial. BMC Gastroenterology, 2014, 14, 69.	0.8	11
1595	Inflammasome activation and metabolic disease progression. Cytokine and Growth Factor Reviews, 2014, 25, 699-706.	3.2	26
1596	Endotoxemia of Metabolic Syndrome: A Pivotal Mediator of Meta-Inflammation. Metabolic Syndrome and Related Disorders, 2014, 12, 454-456.	0.5	34
1597	Metatranscriptomics of the Human Oral Microbiome during Health and Disease. MBio, 2014, 5, e01012-14.	1.8	311

#	Article	IF	CITATIONS
1598	Synbiotic <i>Lactobacillus acidophilus</i> NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial. FEMS Microbiology Ecology, 2014, 90, 225-236.	1.3	40
1599	Mapping the Inner Workings of the Microbiome: Genomic- and Metagenomic-Based Study of Metabolism and Metabolic Interactions in the Human Microbiome. Cell Metabolism, 2014, 20, 742-752.	7.2	76
1600	Metabolomic Strategy for the Detection of Metabolic Effects of Spermine Supplementation in Weaned Rats. Journal of Agricultural and Food Chemistry, 2014, 62, 9035-9042.	2.4	17
1601	Graphene oxide as an anaerobic membrane scaffold for the enhancement of <i>B. adolescentis</i> proliferation and antagonistic effects against pathogens <i>E. coli</i> and <i>S. aureus</i> . Nanotechnology, 2014, 25, 165101.	1.3	50
1602	The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opinion on Biological Therapy, 2014, 14, 467-482.	1.4	116
1603	You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutrition and Diabetes, 2014, 4, e135-e135.	1.5	106
1604	Carbon Dioxide and Hydrogen Sulfide Associations with Regional Bacterial Diversity Patterns in Microbially Induced Concrete Corrosion. Environmental Science & Technology, 2014, 48, 7357-7364.	4.6	33
1605	Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. Journal of Nutritional Biochemistry, 2014, 25, 270-280.	1.9	130
1606	The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatric Research, 2014, 76, 2-10.	1.1	194
1607	Correlation between the human fecal microbiota and depression. Neurogastroenterology and Motility, 2014, 26, 1155-1162.	1.6	765
1608	Microbiota and diabetes: an evolving relationship. Gut, 2014, 63, 1513-1521.	6.1	631
1609	The gastrointestinal microbiota and multi-strain probiotic therapy: In children and adolescent obesity. Advances in Integrative Medicine, 2014, 1, 2-8.	0.4	4
1610	Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells. Cytokine and Growth Factor Reviews, 2014, 25, 227-233.	3.2	14
1611	The clinical significance of the gut microbiota in cystic fibrosis and the potential for dietary therapies. Clinical Nutrition, 2014, 33, 571-580.	2.3	52
1612	Designing future prebiotic fiber to target metabolic syndrome. Nutrition, 2014, 30, 497-502.	1.1	46
1613	Molecular comparative assessment of the microbial ecosystem in rumen and faeces of goats fed alfalfa hay alone or combined with oats. Anaerobe, 2014, 29, 52-58.	1.0	21
1614	Gut microbiota and GLP-1. Reviews in Endocrine and Metabolic Disorders, 2014, 15, 189-196.	2.6	192
1615	Caesarean delivery is associated with childhood general obesity but not abdominal obesity in <scp>I</scp> ranian elementary school children. Acta Paediatrica, International Journal of Paediatrics, 2014, 103, e383-7.	0.7	13

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
1616	Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1981-1992.	nica Et 1.8	3	141
1617	Microbial Population Dynamics in the Hemolymph of Manduca sexta Infected with Xenorhabdu nematophila and the Entomopathogenic Nematode Steinernema carpocapsae. Applied and Environmental Microbiology, 2014, 80, 4277-4285.	IS 1.4	1	27
1618	Molecular mechanisms and physiology of disease. , 2014, , .			1
1619	Species matter: the role of competition in the assembly of congeneric bacteria. ISME Journal, 2 531-540.	014, 8, 4.4	4	38
1620	Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology, 2 59, 1738-1749.	2014, 3.6	6	258
1621	Intestinal dysbiosis: Novel mechanisms by which gut microbes trigger and prevent disease. Pre Medicine, 2014, 65, 133-137.	ventive 1.6	5	45
1622	Microbiota-liver axis in hepatic disease. Hepatology, 2014, 59, 328-339.	3.6	6	272
1623	Friendly pathogens: prevent or provoke autoimmunity. Critical Reviews in Microbiology, 2014, 273-280.	40, 2.7	7	11
1626	Fecal Microbiota Transplantation: An Interview with Alexander Khoruts. Global Advances in Hea and Medicine, 2014, 3, 73-80.	ilth o.'	7	3
1627	Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. Journal Clinical Investigation, 2014, 124, 3391-3406.	of 3.9	9	227
1628	Mechanistic links between gut microbial community dynamics, microbial functions and metabo health. World Journal of Gastroenterology, 2014, 20, 16498.	blic 1.4	1	89
1629	Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World Journal Gastroenterology, 2014, 20, 7381.	of 1.4	1	296
1630	Novel Gut-Based Pharmacology of Metformin in Patients with Type 2 Diabetes Mellitus. PLoS C 9, e100778.	DNE, 2014, 1.1	L	218
1631	Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Research and Therapy, 2014, 16, S4.	1 1.6	5	62
1632	The Role of the gut Microbiome in the Pathogenesis and Treatment of Obesity. Global Advance Health and Medicine, 2014, 3, 44-57.	es in O.	7	43
1633	Genetically identical co-housed pigs as models for dietary studies of gut microbiomes. Microbio Science and Medicine, 2014, 1, .	ome o.:	3	3
1634	Exploring the origins of asthma: Lessons from twin studies. European Clinical Respiratory Journ 2014, 1, 25535.	al, O.'	7	18
1635	Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota. Beneficial Microbes, 2014, 5, 121-128.	1.0)	74

#	Article	IF	CITATIONS
1636	Antimicrobial Peptides and Gut Microbiota in Homeostasis and Pathology. , 2014, , 171-218.		0
1639	Polysaccharides from Mushrooms: A Natural Source of Bioactive Carbohydrates. , 2014, , 168-189.		Ο
1640	Infl uence of the Intestinal Microbiota on the Critically. , 2014, , 301-314.		1
1642	Mode of delivery at birth and the metabolic syndrome in midlife: the role of the birth environment in a prospective birth cohort study. BMJ Open, 2014, 4, e005031.	0.8	15
1643	Delivery by Caesarean Section and Infant Cardiometabolic Status at One Year of Age. Journal of Obstetrics and Gynaecology Canada, 2014, 36, 864-869.	0.3	4
1644	Gut Microbiota: In Sickness and in Health. , 2014, , 43-48.		0
1645	Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 2015, 28, 42-66.	2.1	251
1646	Obesity and Cancer: Concepts and Challenges. Indian Journal of Surgical Oncology, 2015, 6, 390-398.	0.3	16
1647	Obesity and complicated diverticular disease of the colon. CirugÃa Y Cirujanos (English Edition), 2015, 83, 292-296.	0.0	4
1648	Could the beneficial effects of dietary calcium on obesity and diabetes control be mediated by changes in intestinal microbiota and integrity?. British Journal of Nutrition, 2015, 114, 1756-1765.	1.2	53
1649	Obesity and intestinal epithelial deletion of the insulin receptor, but not the IGF 1 receptor, affect radiation-induced apoptosis in colon. American Journal of Physiology - Renal Physiology, 2015, 309, G578-G589.	1.6	10
1650	Effect of the Gut Microbiota on Obesity and Its Underlying Mechanisms: an Update. Biomedical and Environmental Sciences, 2015, 28, 839-847.	0.2	8
1651	Systematic Review of the Relation Between Intestinal Microbiota and Toll-Like Receptors in the Metabolic Syndrome: What Do We Know So Far?. GE Portuguese Journal of Gastroenterology, 2015, 22, 240-258.	0.3	6
1652	Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of <i>Carassius auratus</i> Induced by Pentachlorophenol Exposure. Environmental Science & Technology, 2015, 49, 11894-11902.	4.6	107
1653	Systems biology of host–microbe metabolomics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 195-219.	6.6	80
1654	Betaâ€diversity metrics of the upper digestive tract microbiome are associated with body mass index. Obesity, 2015, 23, 862-869.	1.5	29
1655	Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Alimentary Pharmacology and Therapeutics, 2015, 42, 1051-1063.	1.9	167
1657	The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Scientific Reports, 2015, 5, 13212.	1.6	105

#	Article	IF	CITATIONS
1658	Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Scientific Reports, 2015, 5, 18563.	1.6	133
1659	Intestinal Immunity and Gut Microbiota as Therapeutic Targets for Preventing Atherosclerotic Cardiovascular Diseases. Circulation Journal, 2015, 79, 1882-1890.	0.7	57
1660	Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes and Environments, 2015, 30, 126-132.	0.7	270
1661	Microbiota prevents cholesterol loss from the body by regulating host gene expression in mice. Scientific Reports, 2015, 5, 10512.	1.6	46
1662	Sample storage conditions significantly influence faecal microbiome profiles. Scientific Reports, 2015, 5, 16350.	1.6	350
1663	Microorganisms in Fermented Foods and Beverages. , 2015, , 16-125.		3
1664	Obesity changes the human gut mycobiome. Scientific Reports, 2015, 5, 14600.	1.6	231
1665	Requirements for a Successful Future of Probiotics. , 2015, , 147-153.		1
1666	Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clinical Science, 2015, 129, 1083-1096.	1.8	75
1667	Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Scientific Reports, 2015, 5, 14682.	1.6	107
1668	Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease, 2015, 26, 26191.	3.8	949
1669	Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle. Scientific Reports, 2015, 5, 15878.	1.6	140
1672	Gut Microbiota Alterations can predict Hospitalizations in Cirrhosis Independent of Diabetes Mellitus. Scientific Reports, 2015, 5, 18559.	1.6	74
1673	The gut microbiota modulates host amino acid and glutathione metabolism in mice. Molecular Systems Biology, 2015, 11, 834.	3.2	291
1674	Childhood Obesity: A Role for Gut Microbiota?. International Journal of Environmental Research and Public Health, 2015, 12, 162-175.	1.2	58
1676	Effect of ethnicity and socioeconomic variation to the gut microbiota composition among pre-adolescent in Malaysia. Scientific Reports, 2015, 5, 13338.	1.6	68
1677	Modulation of gut microbiota in rats fed highâ€fat diets by processing wholeâ€grain barley to barley malt. Molecular Nutrition and Food Research, 2015, 59, 2066-2076.	1.5	181
1678	The Microbiome in Mental Health: Potential Contribution of Gut Microbiota in Disease and Pharmacotherapy Management. Pharmacotherapy, 2015, 35, 910-916.	1.2	42

#	Article	IF	CITATIONS
1679	An allosteric model for control of pore opening by substrate binding in the <scp>E</scp> <scp>ut</scp> <scp>L</scp> microcompartment shell protein. Protein Science, 2015, 24, 956-975.	3.1	38
1680	New frontiers in fibre. Nutrition Bulletin, 2015, 40, 247-252.	0.8	2
1681	Gut microbiota and allogeneic transplantation. Journal of Translational Medicine, 2015, 13, 275.	1.8	71
1682	The Roles and Mechanisms of Cellular Senescence: Obesity-induced Gut Microbial Metabolite Promotes Liver Cancer through Senescence Secretome. Journal of the Society of Japanese Women Scientists, 2015, 15, 9-19.	0.0	0
1683	Dietary Microbial Metabolites, Short-chain Fatty Acids and Host Energy Regulation. Journal of Lipid Nutrition, 2015, 24, 33-40.	0.1	0
1684	The functional impact of the intestinal microbiome on mucosal immunity and systemic autoimmunity. Current Opinion in Rheumatology, 2015, 27, 381-387.	2.0	65
1685	Fusobacterium nucleatum. European Journal of Cancer Prevention, 2015, 24, 373-385.	0.6	64
1686	Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. European Journal of Gastroenterology and Hepatology, 2015, 27, 840-845.	0.8	120
1687	Increased Butyrate Production During Longâ€Term Fermentation of <i>In Vitroâ€</i> Digested High Amylose Cornstarch Residues with Human Feces. Journal of Food Science, 2015, 80, M1997-2004.	1.5	5
1688	Practical approach to nonâ€alcoholic fatty liver disease in patients with diabetes. Diabetic Medicine, 2015, 32, 1121-1133.	1.2	15
1689	<i>Lactobacillus rhamnosus</i> GG Dosage Affects the Adjuvanticity and Protection Against Rotavirus Diarrhea in Gnotobiotic Pigs. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 834-843.	0.9	33
1690	Fecal Microbiota Composition of Breastâ€Fed Infants Is Correlated With Human Milk Oligosaccharides Consumed. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 825-833.	0.9	201
1691	The intestinal microbiome and health. Current Opinion in Infectious Diseases, 2015, 28, 464-470.	1.3	136
1692	Effect of Intestinal Microbiota on Exercise Performance in Mice. Journal of Strength and Conditioning Research, 2015, 29, 552-558.	1.0	131
1694	The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, 496-503.	2.3	34
1695	Dysbiosis. Journal of Clinical Gastroenterology, 2015, 49, S20-S24.	1.1	23
1696	Maternal High-fat Diet Accelerates Development of Crohn's Disease-like Ileitis in TNFΔARE/WT Offspring. Inflammatory Bowel Diseases, 2015, 21, 2016-2025.	0.9	16
1697	The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment. Psychosomatic Medicine, 2015, 77, 969-981.	1.3	237

#	Article	IF	CITATIONS
1698	Phylum Level Change in the Cecal and Fecal Gut Communities of Rats Fed Diets Containing Different Fermentable Substrates Supports a Role for Nitrogen as a Factor Contributing to Community Structure. Nutrients, 2015, 7, 3279-3299.	1.7	13
1699	Translational research into gut microbiota: new horizons on obesity treatment: updated 2014. Archives of Endocrinology and Metabolism, 2015, 59, 154-160.	0.3	27
1700	THE IMPORTANCE OF METAGENOMICS RESEARCH IN HUMAN ECOLOGICAL NICHES AND THEIR ROLE IN THE DIAGNOSIS OF NONINFECTIOUS DISEASES. Health Problems of Civilization, 2015, 2, 43-49.	0.1	0
1701	Composition Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes. Journal of Diabetes and Obesity, 2015, 2, 108-114.	0.2	159
1702	Gut Microbiota as Potential Orchestrators of Irritable Bowel Syndrome. Gut and Liver, 2015, 9, 318-31.	1.4	114
1703	Probiotics as a complementary therapeutic approach in nonalcoholic fatty liver disease. World Journal of Hepatology, 2015, 7, 559.	0.8	39
1704	Gut chemosensing mechanisms. Journal of Clinical Investigation, 2015, 125, 908-917.	3.9	194
1705	The Gut Microflora and its Metabolites Regulate the Molecular Crosstalk between Diabetes and Neurodegeneration. Journal of Diabetes & Metabolism, 2015, 06, .	0.2	2
1706	Mucosal Immunity. , 2015, , 70-77.e3.		0
1707	Anaerobic Infections. , 2015, , 2736-2743.e1.		5
1708	Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates. Frontiers in Immunology, 2015, 6, 512.	2.2	145
1709	A Potential Synergy between Incomplete Arsenic Methylation Capacity and Demographic Characteristics on the Risk of Hypertension: Findings from a Cross-Sectional Study in an Arsenic-Endemic Area of Inner Mongolia, China. International Journal of Environmental Research and Public Health, 2015, 12, 3615-3632.	1.2	30
1710	Impact of Cadmium Exposure on the Association between Lipopolysaccharide and Metabolic Syndrome. International Journal of Environmental Research and Public Health, 2015, 12, 11396-11409.	1.2	14
1711	Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling. Microorganisms, 2015, 3, 213-235.	1.6	38
1712	The Gut Microbiota as a Therapeutic Target in IBD and Metabolic Disease: A Role for the Bile Acid Receptors FXR and TGR5. Microorganisms, 2015, 3, 641-666.	1.6	61
1713	Gut Microbiota and Host Reaction in Liver Diseases. Microorganisms, 2015, 3, 759-791.	1.6	47
1713 1714	Gut Microbiota and Host Reaction in Liver Diseases. Microorganisms, 2015, 3, 759-791. Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms, 2015, 3, 866-889.	1.6 1.6	47 176

		CITATION REPORT		
#	Article		IF	CITATIONS
1716	The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients, 2015	5, 7, 17-44.	1.7	1,108
1717	Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary Î Independent of Mouse Strain. Nutrients, 2015, 7, 764-784.	±-Mangostin is	1.7	19
1718	The Infant Gut Microbiome: Evidence for Obesity Risk and Dietary Intervention. Nutrier 2237-2260.	ıts, 2015, 7,	1.7	128
1719	Apples and Cardiovascular Health—Is the Gut Microbiota a Core Consideration?. Nutr 3959-3998.	rients, 2015, 7,	1.7	121
1720	Interaction of Intestinal Microorganisms with the Human Host in the Framework of Au Diseases. Frontiers in Immunology, 2015, 6, 594.	toimmune	2.2	30
1721	Geriatric Respondents and Non-Respondents to Probiotic Intervention Can be Differen Inherent Gut Microbiome Composition. Frontiers in Microbiology, 2015, 6, 944.	tiated by	1.5	19
1722	Human microbiomes and their roles in dysbiosis, common diseases, and novel therape Frontiers in Microbiology, 2015, 6, 1050.	utic approaches.	1.5	258
1723	Metabolomic insights into the intricate gut microbial–host interaction in the develo and type 2 diabetes. Frontiers in Microbiology, 2015, 6, 1151.	oment of obesity	1.5	108
1724	Cellular senescence and liver cancer: a gut microbial connection. Inflammation and Reg 2015, 35, 106-113.	generation,	1.5	3
1725	Characterization of the Gut Microbiota of Papua New Guineans Using Reverse Transcri Quantitative PCR. PLoS ONE, 2015, 10, e0117427.	ption	1.1	22
1726	High Fat Diet Causes Depletion of Intestinal Eosinophils Associated with Intestinal Perr ONE, 2015, 10, e0122195.	neability. PLoS	1.1	97
1727	Long-Lasting Effects of Early-Life Antibiotic Treatment and Routine Animal Handling or Composition and Immune System in Pigs. PLoS ONE, 2015, 10, e0116523.	Gut Microbiota	1.1	115
1728	Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associat Parameters. PLoS ONE, 2015, 10, e0126931.	ed Metabolic	1.1	353
1729	Rumen Microbiome from Steers Differing in Feed Efficiency. PLoS ONE, 2015, 10, e012	29174.	1.1	307
1730	Defined Nutrient Diets Alter Susceptibility to Clostridium difficile Associated Disease ir Model. PLoS ONE, 2015, 10, e0131829.	ı a Murine	1.1	31
1731	Perilipin-2 Modulates Lipid Absorption and Microbiome Responses in the Mouse Intest 2015, 10, e0131944.	ine. PLoS ONE,	1.1	43
1732	Physical Activity Differentially Affects the Cecal Microbiota of Ovariectomized Female Bred for High and Low Aerobic Capacity. PLoS ONE, 2015, 10, e0136150.	Rats Selectively	1.1	64
1733	A Metagenomic Investigation of the Duodenal Microbiota Reveals Links with Obesity. I 10, e0137784.	PLoS ONE, 2015,	1.1	101

#	Article	IF	Citations
1734	Co-Administration of Cholesterol-Lowering Probiotics and Anthraquinone from Cassia obtusifolia L. Ameliorate Non-Alcoholic Fatty Liver. PLoS ONE, 2015, 10, e0138078.	1.1	58
1735	Antepartum Antibiotic Treatment Increases Offspring Susceptibility to Experimental Colitis: A Role of the Gut Microbiota. PLoS ONE, 2015, 10, e0142536.	1.1	137
1736	Prawn Shell Chitosan Has Anti-Obesogenic Properties, Influencing Both Nutrient Digestibility and Microbial Populations in a Pig Model. PLoS ONE, 2015, 10, e0144127.	1.1	34
1737	Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol. PLoS ONE, 2015, 10, e0144270.	1.1	104
1738	Identification and Phylogeny of the First T Cell Epitope Identified from a Human Gut Bacteroides Species. PLoS ONE, 2015, 10, e0144382.	1.1	6
1739	Gut Dysbiosis in Patients with Anorexia Nervosa. PLoS ONE, 2015, 10, e0145274.	1.1	179
1740	Selective Spectrum Antibiotic Modulation of the Gut Microbiome in Obesity and Diabetes Rodent Models. PLoS ONE, 2015, 10, e0145499.	1.1	39
1741	Comparison of Microbiomes from Different Niches of Upper and Lower Airways in Children and Adolescents with Cystic Fibrosis. PLoS ONE, 2015, 10, e0116029.	1.1	133
1742	The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments. PLoS ONE, 2015, 10, e0117441.	1.1	349
1743	Non-Celiac Gluten Sensitivity Triggers Gut Dysbiosis, Neuroinflammation, Gut-Brain Axis Dysfunction, and Vulnerability for Dementia. CNS and Neurological Disorders - Drug Targets, 2015, 14, 110-131.	0.8	61
1744	Role of the normal gut microbiota. World Journal of Gastroenterology, 2015, 21, 8787.	1.4	1,775
1745	Maternal Obesity and Rectovaginal Group B Streptococcus Colonization at Term. Infectious Diseases in Obstetrics and Gynecology, 2015, 2015, 1-5.	0.4	26
1746	Gut Microbiota: Association with NAFLD and Metabolic Disturbances. BioMed Research International, 2015, 2015, 1-9.	0.9	55
1747	Application of Berberine on Treating Type 2 Diabetes Mellitus. International Journal of Endocrinology, 2015, 2015, 1-12.	0.6	179
1748	The Multifaceted Role of Commensal Microbiota in Homeostasis and Gastrointestinal Diseases. Journal of Immunology Research, 2015, 2015, 1-14.	0.9	33
1749	Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption. BioMed Research International, 2015, 2015, 1-12.	0.9	252
1750	Effect of Weight-Reduction in Obese Mice Lacking Toll-Like Receptor 5 and C57BL/6 Mice Fed a Low-Fat Diet. Mediators of Inflammation, 2015, 2015, 1-12.	1.4	2
1751	New insights into the impact of <i>Lactobacillus</i> population on host-bacteria metabolic interplay. Oncotarget, 2015, 6, 30545-30556.	0.8	45

#	Article	IF	CITATIONS
1752	Relationship between intestinal microbiota and colorectal cancer. World Journal of Gastrointestinal Oncology, 2015, 7, 233.	0.8	34
1753	Intestinal Microbiota Metabolism and Atherosclerosis. Chinese Medical Journal, 2015, 128, 2805-2811.	0.9	36
1754	Pharmacometabolomics: Applications and Challenges. Current Pharmacogenomics and Personalized Medicine, 2015, 13, 9-13.	0.2	2
1755	Effect of Lactobacillus plantarum FH185 on the Reduction of Adipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity. Korean Journal for Food Science of Animal Resources, 2015, 35, 171-178.	1.5	13
1756	Beyond gut microbiota: understanding obesity and type 2 diabetes. Hormones, 2015, 14, 358-69.	0.9	25
1757	Characterization of the human gut microbiome during travelers' diarrhea. Gut Microbes, 2015, 6, 110-119.	4.3	111
1758	Fermented Green Tea Extract Alleviates Obesity and Related Complications and Alters Gut Microbiota Composition in Diet-Induced Obese Mice. Journal of Medicinal Food, 2015, 18, 549-556.	0.8	113
1759	Human Microbiota-Associated Swine: Current Progress and Future Opportunities. ILAR Journal, 2015, 56, 63-73.	1.8	91
1760	Association between caesarean section and childhood obesity: a systematic review and metaâ€analysis. Obesity Reviews, 2015, 16, 295-303.	3.1	205
1761	Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Scientific Reports, 2015, 5, 10189.	1.6	78
1762	Application of metagenomics in the human gut microbiome. World Journal of Gastroenterology, 2015, 21, 803.	1.4	292
1763	A Method for Determining Taxonomical Contributions to Group Differences in Microbiomic Investigations. Journal of Computational Biology, 2015, 22, 930-939.	0.8	1
1764	Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome. PLoS ONE, 2015, 10, e0124599.	1.1	330
1765	Intestinal microbiota-related effects on graft-versus-host disease. International Journal of Hematology, 2015, 101, 428-437.	0.7	51
1766	Application of Metagenomic Technologies for Antimicrobial Resistance and Food Safety Research and Beyondâ [~] †â [~] †CYC and XY contributed equally to this review. The opinions expressed in this review are entirely those of the authors and do not represent those of the USDA , 2015, , 401-422.		0
1767	Microbiome models, on computers and in lab dishes, see progress. Nature Medicine, 2015, 21, 543-544.	15.2	0
1768	Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clinical Therapeutics, 2015, 37, 984-995.	1.1	437
1769	The Howler Monkey as a Model for Exploring Host-Gut Microbiota Interactions in Primates. , 2015, , 229-258.		8

#	Article	IF	CITATIONS
1770	The Gut Microbiota and Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 275-284.	2.3	166
1771	Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. Journal of Nutritional Biochemistry, 2015, 26, 929-937.	1.9	158
1772	Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiology and Behavior, 2015, 152, 381-388.	1.0	98
1773	Chronic Superantigen Exposure Induces Systemic Inflammation, Elevated Bloodstream Endotoxin, and Abnormal Glucose Tolerance in Rabbits: Possible Role in Diabetes. MBio, 2015, 6, e02554.	1.8	44
1774	Recent advances in bariatric/metabolic surgery: appraisal of clinical evidence. Journal of Biomedical Research, 2015, 29, 98.	0.7	26
1775	Endogenous Microbiota of the Genitourinary Tract. , 2015, , 95-107.		1
1776	Malnutrition, Immunodeficiency, and Mucosal Infection. , 2015, , 1461-1479.		1
1777	Disturbance of the intestinal microbial community by ursolic acid contributes to its function as a regulator of fat deposition. Journal of Functional Foods, 2015, 14, 456-468.	1.6	11
1778	Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience, 2015, 300, 128-140.	1.1	209
1779	The demographic determinants of human microbiome health. Trends in Microbiology, 2015, 23, 134-141.	3.5	17
1780	Dietary <i>trans</i> -10, <i>cis</i> -12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. British Journal of Nutrition, 2015, 113, 728-738.	1.2	89
1781	Oral supplementation with l-glutamine alters gut microbiota of obese and overweight adults: A pilot study. Nutrition, 2015, 31, 884-889.	1.1	67
1782	Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biology, 2015, 16, 62.	3.8	131
1783	Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis. Archives of Medical Research, 2015, 46, 392-407.	1.5	82
1784	Gut Microbial Succession Follows Acute Secretory Diarrhea in Humans. MBio, 2015, 6, e00381-15.	1.8	150
1785	New insight into the gut microbiome through metagenomics. Advances in Genomics and Genetics, 0, , 77.	0.8	10
1786	The gut microbiome in NAFLD and ALD. Clinical Liver Disease, 2015, 6, 55-58.	1.0	16
1787	The role of fatty acids in insulin resistance. Lipids in Health and Disease, 2015, 14, 121.	1.2	368

# 1789	ARTICLE Comparative study of fecal microbiota in patients with type II diabetes after consumption of apple juice for 4 weeks. Food Science and Biotechnology, 2015, 24, 2083-2094.	IF 1.2	Citations
1790	Gut Microbiota Interacts With Brain Microstructure and Function. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4505-4513.		130
1791	Fecal Microbiota Transplant: Benefits and Risks. Open Forum Infectious Diseases, 2015, 2, ofv005.	0.4	18
1792	Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell, 2015, 163, 1360-1374.	13.5	581
1793	Bugs and Guts. Nutrition in Clinical Practice, 2015, 30, 747-759.	1.1	24
1794	Effect of roughage on rumen microbiota composition in the efficient feed converter and sturdy Indian Jaffrabadi buffalo (Bubalus bubalis). BMC Genomics, 2015, 16, 1116.	1.2	45
1795	MtHc: a motif-based hierarchical method for clustering massive 16S rRNA sequences into OTUs. Molecular BioSystems, 2015, 11, 1907-1913.	2.9	21
1796	Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary and Pancreatic Diseases International, 2015, 14, 572-581.		61
1797	Pathogenic Microorganisms and Pancreatic Cancer. Gastrointestinal Tumors, 2015, 2, 41-47.	0.3	31
1799	Cross-sectional analysis of nutrition and serum uric acid in two Caucasian cohorts: the AusDiab Study and the TromsÃ, study. Nutrition Journal, 2015, 14, 49.		47
1800	Metabolic Mechanisms in Obesity and Type 2 Diabetes: Insights from Bariatric/Metabolic Surgery. Obesity Facts, 2015, 8, 350-363.	1.6	53
1801	The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases. Current Opinion in Pharmacology, 2015, 25, 36-44.	1.7	22
1802	Nutrients, Foods, and Colorectal Cancer Prevention. Gastroenterology, 2015, 148, 1244-1260.e16.	0.6	466
1803	New Molecular Techniques to Study the Skin Microbiota of Diabetic Foot Ulcers. Advances in Wound Care, 2015, 4, 38-49.	2.6	63
1804	Microbiota and the human nature: know thyself. Environmental Microbiology, 2015, 17, 10-15.	1.8	12
1805	Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Critical Reviews in Microbiology, 2015, 41, 326-340.	2.7	97
1806	New Aspects on the Metabolic role of Intestinal Microbiota in the Development of Atherosclerosis. Metabolism: Clinical and Experimental, 2015, 64, 476-481.	1.5	53
1807	Barcoded pyrosequencing-based metagenomic analysis of the faecal microbiome of three purebred pig lines after cohabitation. Applied Microbiology and Biotechnology, 2015, 99, 5647-5656.	1.7	30

		CITATION RE	PORT	
#	ARTICLE	= 127	IF	CITATIONS
1808	Using metabolomics to analyse the role of gut microbiota in nutrition and disease. , 2015, , 11	o-136.		1
1809	Dynamics of Infant Gut Microbiota Are Influenced by Delivery Mode and Gestational Duration a Associated with Subsequent Adiposity. MBio, 2015, 6, .	nd Are	1.8	271
1810	Chlorogenic Acid in Whole Body and Tissue-Specific Glucose Regulation. , 2015, , 777-785.			6
1811	Shifts in microbiota species and fermentation products in a dietary model enriched in fat and s Beneficial Microbes, 2015, 6, 97-111.	ucrose.	1.0	28
1812	The MetaProteomeAnalyzer: A Powerful Open-Source Software Suite for Metaproteomics Data Analysis and Interpretation. Journal of Proteome Research, 2015, 14, 1557-1565.		1.8	169
1813	Surgery in the treatment of type 2 diabetes mellitus. Scandinavian Journal of Surgery, 2015, 10	4, 40-47.	1.3	34
1814	Lactobacillus brevis OK56 ameliorates high-fat diet-induced obesity in mice by inhibiting NF-κB activation and gut microbial LPS production. Journal of Functional Foods, 2015, 13, 183-191.		1.6	35
1815	The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. F Endocrine and Metabolic Disorders, 2015, 16, 55-65.	Reviews in	2.6	207
1816	Modulation of the Intestinal Microbiota Is Associated with Lower Plasma Cholesterol and Weight Gain in Hamsters Fed Chardonnay Grape Seed Flour. Journal of Agricultural and Food Chemistry, 2015, 63, 1460-1467.		2.4	46
1818	How informative is the mouse for human gut microbiota research?. DMM Disease Models and Mechanisms, 2015, 8, 1-16.		1.2	990
1819	Beneficial effects of soy milk and fiber on high cholesterol diet-induced alteration of gut microb and inflammatory gene expression in rats. Food and Function, 2015, 6, 492-500.	viota	2.1	97
1820	The intestinal microbiota composition and weight development in children: the KOALA Birth Co Study. International Journal of Obesity, 2015, 39, 16-25.	hort	1.6	117
1821	Metabonomics and Gut Microbiota in Nutrition and Disease. Molecular and Integrative Toxicolo 2015, , .	ogy,	0.5	5
1822	An Apple a Day Keeps the Doctor Away $\hat{a} \in$ Inter-Relationship Between Apple Consumption, the Microbiota and Cardiometabolic Disease Risk Reduction. , 2015, , 173-194.	e Gut		9
1823	Divergence across diet, time and populations rules out parallel evolution in the gut microbiome Trinidadian guppies. ISME Journal, 2015, 9, 1508-1522.	es of	4.4	133
1824	The intestinal microbiota: its role in health and disease. European Journal of Pediatrics, 2015, 1 151-167.	74,	1.3	144
1825	Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link?. Molecul and Cellular Endocrinology, 2015, 418, 55-65.	ar	1.6	244
1826	Antioxidant polyphenol-rich extracts from the medicinal plants Antirhea borbonica, Doratoxylor apetalum and Gouania mauritiana protect 3T3-L1 preadipocytes against H2O2, TNFα and LPS mediators by regulating the expression of superoxide dismutase and NF-Î ^o B genes. Journal of Inflammation, 2015, 12, 10.		1.5	71

#	Article	IF	CITATIONS
1827	Gut microbiota composition correlates with changes in body fat content due to weight loss. Beneficial Microbes, 2015, 6, 431-439.	1.0	128
1828	Increased risk of bacterial infections among the obese with chronic diseases. Journal of Nutrition, Health and Aging, 2015, 19, 595-600.	1.5	4
1829	Differential effects of probiotics, prebiotics, and synbiotics on gut microbiota and gene expression in rats. Journal of Functional Foods, 2015, 13, 204-213.	1.6	19
1830	Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery. Diabetologia, 2015, 58, 211-220.	2.9	54
1831	Dietary Requirement for Serum-Derived Bovine Immunoglobulins in the Clinical Management of Patients with Enteropathy. Digestive Diseases and Sciences, 2015, 60, 13-23.	1.1	22
1832	Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiology Ecology, 2015, 91, 1-9.	1.3	232
1833	Gut microbiota: a key player in health and disease. A review focused on obesity. Journal of Physiology and Biochemistry, 2015, 71, 509-525.	1.3	167
1834	Dietary effects on human gut microbiome diversity. British Journal of Nutrition, 2015, 113, S1-S5.	1.2	350
1835	Microbiology of Oral Biofilm-Dependent Diseases: Have We Made Significant Progress to Understand and Treat These Diseases?. Current Oral Health Reports, 2015, 2, 37-47.	0.5	15
1836	Human Microbiome: When a Friend Becomes an Enemy. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 287-298.	1.0	53
1837	Human gut microbiota: does diet matter?. Proceedings of the Nutrition Society, 2015, 74, 23-36.	0.4	112
1838	Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Molecular Nutrition and Food Research, 2015, 59, 1004-1008.	1.5	80
1840	The multifactorial interplay of diet, the microbiome and appetite control: current knowledge and future challenges. Proceedings of the Nutrition Society, 2015, 74, 235-244.	0.4	14
1841	Obesity and the microbiome. Expert Review of Gastroenterology and Hepatology, 2015, 9, 1087-1099.	1.4	127
1842	Lean rats gained more body weight from a high-fructooligosaccharide diet. Food and Function, 2015, 6, 2315-2321.	2.1	19
1843	Antibiotic-induced imbalances in gut microbiota aggravates cholesterol accumulation and liver injuries in rats fed a high-cholesterol diet. Applied Microbiology and Biotechnology, 2015, 99, 9111-9122.	1.7	25
1845	Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans. Translational Research, 2015, 166, 401-411.	2.2	59
1846	Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism, 2015, 22, 228-238.	7.2	638

#	ARTICLE Crohn associated microbial communities associated to colonic mucosal biopsies in patients of the	IF 1.2	Citations 37
1848	western Mediterranean. Systematic and Applied Microbiology, 2015, 38, 442-452. The gut microbiota in human energy homeostasis and obesity. Trends in Endocrinology and Metabolism, 2015, 26, 493-501.	3.1	350
1849	Kiwifruit fermentation drives positive gut microbial and metabolic changes irrespective of initial microbiota composition. Bioactive Carbohydrates and Dietary Fibre, 2015, 6, 37-45.	1.5	18
1850	The Riddle of Nonalcoholic Fatty Liver Disease: Progression From Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis. Journal of Clinical and Experimental Hepatology, 2015, 5, 147-158.	0.4	114
1851	Relationship between Obesity, Gut Microbiome and Hepatocellular Carcinoma Development. Digestive Diseases, 2015, 33, 346-350.	0.8	24
1852	Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food and Function, 2015, 6, 2487-2495.	2.1	113
1853	Hops Î ² -acids and zinc bacitracin affect the performance and intestinal microbiota of broilers challenged with Eimeria acervulina and Eimeria tenella. Animal Feed Science and Technology, 2015, 207, 181-189.	1.1	13
1854	Modulation of intestinal microbiota in mice by kefir administration. Food Science and Biotechnology, 2015, 24, 1397-1403.	1.2	36
1855	Metabolites of Rehmannia glutinosa Libosch extract by intestinal bacteria from normal and chronic kidney disease rats in vitro. Analytical Methods, 2015, 7, 5325-5333.	1.3	1
1856	Microbiology and Ecology Are Vitally Important to Premedical Curricula. Evolution, Medicine and Public Health, 2015, 2015, eov014.	1.1	5
1857	Reticulate Evolution. Interdisciplinary Evolution Research, 2015, , .	0.2	19
1858	Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem. Current Obesity Reports, 2015, 4, 363-370.	3.5	591
1859	Lactation and Intestinal Microbiota: How Early Diet Shapes the Infant Gut. Journal of Mammary Gland Biology and Neoplasia, 2015, 20, 149-158.	1.0	54
1860	Clinical Implications of Basic Science Discoveries: Immune Homeostasis and the Microbiome—Dietary and Therapeutic Modulation and Implications for Transplantation. American Journal of Transplantation, 2015, 15, 1755-1758.	2.6	9
1861	Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere, 2015, 141, 62-70.	4.2	99
1862	Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Computational and Structural Biotechnology Journal, 2015, 13, 390-401.	1.9	182
1863	Coptisine attenuates obesity-related inflammation through LPS/TLR-4-mediated signaling pathway in Syrian golden hamsters. Fìtoterapìâ, 2015, 105, 139-146.	1.1	70
1864	A Nutritional Anthropology of the Human Gut Microbiota. , 2015, , 17-26.		0

#	Article		CITATIONS
1865	MetaRank: Ranking Microbial Taxonomic Units or Functional Groups for Comparative Analysis of Metagenomes. , 2015, , 442-447.		0
1866	Acid suppression medications are associated with suboptimal weight loss after laparoscopic Roux-en-Y gastric bypass in patients older than 40 years. Surgery for Obesity and Related Diseases, 2015, 11, 585-590.	1.0	9
1867	Comment on: Acid suppression medications are associated with suboptimal weight loss after laparoscopic Roux-en-Y gastric bypass in patients older than 40 years. Surgery for Obesity and Related Diseases, 2015, 11, 590-591.	1.0	0
1868	The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. International Journal of Obesity, 2015, 39, 1565-1574.	1.6	120
1869	Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications, 2015, 6, 7489.	5.8	926
1870	Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. American Journal of Physiology - Renal Physiology, 2015, 308, G840-G851.	1.6	249
1871	Can we change our microbiome to prevent colorectal cancer development?. Acta Oncológica, 2015, 54, 1085-1095.	0.8	18
1872	Gut–liver axis, nutrition, and non-alcoholic fatty liver disease. Clinical Biochemistry, 2015, 48, 923-930.	0.8	233
1873	Inter- and intra-individual variations in seasonal and daily stabilities of the human gut microbiota in Japanese. Archives of Microbiology, 2015, 197, 919-934.	1.0	115
1874	Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 2015, 52, 7577-7587.	1.4	793
1875	Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 2015, 33, 496-503.	4.9	2,453
1876	Development of a bread delivery vehicle for dietary prebiotics to enhance food functionality targeted at those with metabolic syndrome. Gut Microbes, 2015, 6, 300-309.	4.3	15
1877	Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery. Nature Communications, 2015, 6, 7715.	5.8	156
1878	Impact of yogurt on appetite control, energy balance, and body composition. Nutrition Reviews, 2015, 73, 23-27.	2.6	29
1879	Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes. Adipocyte, 2015, 4, 81-88.	1.3	76
1880	Symbiosis—Evolution's Co-Author. Interdisciplinary Evolution Research, 2015, , 41-80.	0.2	11
1881	Gnotobiotics. , 2015, , 1263-1296.		3
1882	Dietary saponins from four popular herbal tea exert prebiotic-like effects on gut microbiota in C57BL/6 mice. Journal of Functional Foods, 2015, 17, 892-902.	1.6	53

#	Article	IF	CITATIONS
1883	Impact of a 6-week very low-calorie diet and weight reduction on the serum and fecal metabolome of overweight subjects. European Food Research and Technology, 2015, 240, 583-594.	1.6	11
1884	Role of Microbiota in Regulating Host Lipid Metabolism and Disease Risk. Molecular and Integrative Toxicology, 2015, , 235-260.	0.5	1
1885	Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease. FASEB Journal, 2015, 29, 3612-3625.	0.2	20
1886	A Vision for Investigating the Microbiology of Health and Disease. Journal of Infectious Diseases, 2015, 212, S26-S30.	1.9	4
1887	Gut microbiome, gut function, and probiotics: Implications for health. Indian Journal of Gastroenterology, 2015, 34, 93-107.	0.7	30
1888	The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients, 2015, 7, 2930-2946.	1.7	656
1889	Reviewing clinical studies of probiotics as dietary supplements: probiotics for oral healthcare, rheumatoid arthritis, cancer prevention, metabolic diseases and postoperative infections. , 2015, , 211-223.		0
1890	Alcoholic Liver Disease: The Gut Microbiome and Liver Cross Talk. Alcoholism: Clinical and Experimental Research, 2015, 39, 763-775.	1.4	226
1891	Weight Loss and the Prevention and Treatment of Type 2 Diabetes Using Lifestyle Therapy, Pharmacotherapy, and Bariatric Surgery: Mechanisms of Action. Current Obesity Reports, 2015, 4, 287-302.	3.5	97
1892	A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes, 2015, 6, 137-142.	4.3	59
1893	Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics, 2015, 15, 3424-3438.	1.3	126
1894	Probiotics. Disease-a-Month, 2015, 61, 259-290.	0.4	33
1895	Effect of Prebiotic Fiber Intake on Adiposity and Inflammation in Overweight and Obese Children: Assessing the Role of the Gut Microbiota. Canadian Journal of Diabetes, 2015, 39, S43.	0.4	7
1896	Type 1 diabetes and gut microbiota: Friend or foe?. Pharmacological Research, 2015, 98, 9-15.	3.1	48
1897	Role of probiotics in reducing the risk of gestational diabetes. Diabetes, Obesity and Metabolism, 2015, 17, 713-719.	2.2	42
1898	Origin of Typical Disease Sequelae. , 2015, , 173-235.		0
1900	Urinary metabolic signatures of human adiposity. Science Translational Medicine, 2015, 7, 285ra62.	5.8	178
1901	The role of the gut microbiota in metabolic health. FASEB Journal, 2015, 29, 3111-3123.	0.2	167

CITATION REPORT ARTICLE IF CITATIONS Changes in human gut microbiota influenced by probiotic fermented milk ingestion. Journal of Dairy 60 1.4 Science, 2015, 98, 3568-3576. Analysis of swine fecalÂmicrobiota at various growth stages. Archives of Microbiology, 2015, 197, 1.0 68 753-759. First insights into the microbial diversity in the omasum and reticulum of bovine using Illumina 1.0 44 sequencing. Journal of Applied Genetics, 2015, 56, 393-401. Whole-genome assembly of Akkermansia muciniphila sequenced directly from human stool. Biology 1.9 Direct, 2015, 10, 5. The gut microbiome in cardio-metabolic health. Genome Medicine, 2015, 7, 33. 3.6 92 Manipulation of the Quorum Sensing Signal AI-2 Affects the Antibiotic-Treated Gut Microbiota. Cell 313 Reports, 2015, 10, 1861-1871. Human Experimental Endotoxemia in Modeling the Pathophysiology, Genomics, and Therapeutics of Innate Immunity in Complex Cardiometabolic Diseases. Arteriosclerosis, Thrombosis, and Vascular 1.1 46 Biology, 2015, 35, 525-534. Effects of Processing on Physicochemical Properties and Efficacy of Î²-Glucan from Oat and Barley. 0.7 24 Cereal Foods World, 2015, 60, 4-8. Understanding the Benefits of Bariatric Surgery on Gut Physiology: Implications for Obesity, Type 2 0.5 0 Diabetes, and Cardiovascular Disease. Molecular and Integrative Toxicology, 2015, , 343-370. Microbiotaâ[®] implications for immunity and transplantation. Nature Reviews Nephrology, 2015, 11, 4.1 342-353. Comparison of the gut microbiota of people in France and Saudi Arabia. Nutrition and Diabetes, 2015, 5, 100 1.5 e153-e153. Mongolians core gut microbiota and its correlation with seasonal dietary changes. Scientific 1.6 126 Reports, 2014, 4, 5001. Antibiotics, Pediatric Dysbiosis, and Disease. Cell Host and Microbe, 2015, 17, 553-564. 5.1 428 Exercise training modifies gut microbiota in normal and diabetic mice. Applied Physiology, Nutrition and Metabolism, 2015, 40, 749-752. 162 Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. 437 1.8 European Journal of Nutrition, 2015, 54, 325-341. Sewage Reflects the Microbiomes of Human Populations. MBio, 2015, 6, e02574. 1.8

1919	9 Le microbiote cutané : étude de la diversité microbienne et de son rÃ1e dans la pathogénicité. Revue Francophone Des Laboratoires, 2015, 2015, 51-58.		0	
1920	Gut Microbiota and Metabolic Diseases: From Pathogenesis to Therapeutic Perspective. Molecular and	0.5	7	

Integrative Toxicology, 2015, , 199-234.

#

1902

1903

1905

1906

1907

1908

1909

1910

1911

1913

1915

1917

#	Article		CITATIONS
1921	Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutrition Reviews, 2015, 73, 376-385.	2.6	119
1922	Composition of bacterial and archaeal communities during landfill refuse decomposition processes. Microbiological Research, 2015, 181, 105-111.	2.5	64
1923	Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes, 2015, 6, 149-155.	4.3	152
1924	Impact of a probiotic, inulin, or their combination on the piglets' microbiota at different intestinal locations. Beneficial Microbes, 2015, 6, 473-483.	1.0	19
1925	Dietary Gut Microbial Metabolites, Short-chain Fatty Acids, and Host Metabolic Regulation. Nutrients, 2015, 7, 2839-2849.	1.7	674
1926	Fermented Rhizoma Atractylodis Macrocephalae alleviates high fat diet-induced obesity in association with regulation of intestinal permeability and microbiota in rats. Scientific Reports, 2015, 5, 8391.	1.6	78
1928	Progress and Challenges in Developing Metabolic Footprints from Diet in Human Gut Microbial Cometabolism ,. Journal of Nutrition, 2015, 145, 1123S-1130S.	1.3	40
1929	Microbiota Regulation of the Mammalian Gut–Brain Axis. Advances in Applied Microbiology, 2015, 91, 1-62.	1.3	207
1930	Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. Journal of Nutritional Biochemistry, 2015, 26, 651-660.	1.9	372
1931	Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin. Proceedings of the Nutrition Society, 2015, 74, 258-267.	0.4	19
1932	Why Is Initial Bacterial Colonization of the Intestine Important to Infants' and Children's Health?. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 294-307.	0.9	252
1933	DIETARY FIBER. ACSM's Health and Fitness Journal, 2015, 19, 9-16.	0.3	4
1934	Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance. Gut Microbes, 2015, 6, 24-32.	4.3	37
1935	Impact of diet on the human intestinal microbiota. Current Opinion in Food Science, 2015, 2, 71-77.	4.1	44
1936	Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Current Obesity Reports, 2015, 4, 250-261.	3.5	154
1937	Virulence Characterization and Molecular Subtyping of Typical and Atypical Escherichia coli O157:H7 and O157:H(â^`) Isolated from Fecal Samples and Beef Carcasses in Mexico. Journal of Food Protection, 2015, 78, 264-272.	0.8	6
1938	The human gut microbiome, a taxonomic conundrum. Systematic and Applied Microbiology, 2015, 38, 276-286.	1.2	113
1939	Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. Journal of Functional Foods, 2015, 14, 424-434.	1.6	59

#	Article	IF	CITATIONS
1940	Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut. Ecotoxicology, 2015, 24, 2125-2132.	1.1	46
1941	Modulation of gut microbiota by polyphenols from adlay (<i>Coix lacryma-jobi</i> L.) Tj ETQq1 1 0.784314 rgBT and Nutrition, 2015, 66, 783-789.	/Overlock 1.3	10 Tf 50 70 <mark>7</mark> 27
1942	Subchronic Exposure of Mice to Cadmium Perturbs Their Hepatic Energy Metabolism and Gut Microbiome. Chemical Research in Toxicology, 2015, 28, 2000-2009.	1.7	174
1943	Real-Time Assessment of Wellness and Disease in Daily Life. Big Data, 2015, 3, 203-208.	2.1	14
1944	Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life. American Journal of Clinical Nutrition, 2015, 102, 1381-1388.	2.2	169
1945	Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology, 2015, 15, 100.	0.8	436
1947	Oral administration of <i>Bifidobacterium breve</i> B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. Journal of Nutritional Science, 2015, 4, e17.	0.7	81
1948	Probiotic B420 and prebiotic polydextrose improve efficacy of antidiabetic drugs in mice. Diabetology and Metabolic Syndrome, 2015, 7, 75.		49
1949	Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicology and Applied Pharmacology, 2015, 289, 397-408.	1.3	89
1950	Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders. Trends in Molecular Medicine, 2015, 21, 702-714.	3.5	368
1951	The relevance of intestinal dysbiosis in liver transplant candidates. Transplant Infectious Disease, 2015, 17, 174-184.	0.7	20
1952	Microbiota-Dependent Hepatic Lipogenesis Mediated by Stearoyl CoA Desaturase 1 (SCD1) Promotes Metabolic Syndrome in TLR5-Deficient Mice. Cell Metabolism, 2015, 22, 983-996.	7.2	129
1953	The effect of prebiotic supplementation with inulin on cardiometabolic health: Rationale, design, and methods of a controlled feeding efficacy trial in adults at risk of type 2 diabetes. Contemporary Clinical Trials, 2015, 45, 328-337.	0.8	35
1954	Responses in gut microbiota and fat metabolism to a halogenated methane analogue in S prague D awley rats. Microbial Biotechnology, 2015, 8, 519-526.	2.0	13
1955	Cesarean delivery and metabolic risk factors in young adults: a Brazilian birth cohort study. American Journal of Clinical Nutrition, 2015, 102, 295-301.	2.2	25
1956	Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacology Research and Perspectives, 2015, 3, e00155.	1.1	64
1957	Changes seen in gut bacteria content and distribution with obesity: causation or association?. Postgraduate Medicine, 2015, 127, 863-868.	0.9	48
1958	Ecology of bacteria in the human gastrointestinal tract—identification of keystone and foundation taxa. Microbiome, 2015, 3, 44.	4.9	118

#	Article	IF	Citations
1961	Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Translational Psychiatry, 2015, 5, e652-e652.	2.4	154
1962	Obesity in school-aged children and its correlation with Gut E.coli and Bifidobacteria: a case–control study. BMC Pediatrics, 2015, 15, 64.	0.7	55
1963	Deviations in human gut microbiota: a novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Alimentary Pharmacology and Therapeutics, 2015, 42, 71-83.	1.9	218
1964	Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutrition in Clinical Practice, 2015, 30, 787-797.	1.1	187
1965	Bariatric surgery and diabetes remission: how far have we progressed?. Expert Review of Endocrinology and Metabolism, 2015, 10, 545-559.	1.2	0
1966	Consumption of spicy foods and total and cause specific mortality: population based cohort study. BMJ, The, 2015, 351, h3942.	3.0	138
1967	Oral and faecal microbiota in volunteers with hypertension in a double blind, randomised placebo controlled trial with probiotics and fermented bilberries. Journal of Functional Foods, 2015, 18, 275-288.	1.6	10
1968	What is known about the mechanisms of dietary influences in Crohn's disease?. Nutrition, 2015, 31, 1195-1203.	1.1	6
1969	Fecal Microbial Community Structure Is Stable over Time and Related to Variation in Macronutrient and Micronutrient Intakes in Lactating Women. Journal of Nutrition, 2015, 145, 2379-2388.	1.3	65
1970	Caring for children with NAFLD and navigating their care into adulthood. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 617-628.	8.2	17
1971	<i>In vitro</i> study of the prebiotic xylooligosaccharide (XOS) on the growth of <i>Bifidobacterium</i> spp and <i>Lactobacillus</i> spp. International Journal of Food Sciences and Nutrition, 2015, 66, 919-922.	1.3	71
1972	The consumption of a bread enriched with dietary fibre and l-carnitine improves glucose homoeostasis and insulin sensitivity in patients with metabolic syndrome. Journal of Cereal Science, 2015, 64, 159-167.	1.8	6
1973	The human gut mycobiome: pitfalls and potentialsa mycologists perspective. Mycologia, 2015, 107, 1057-1073.	0.8	154
1974	The intestinal microbiome in human disease and how it relates to arthritis and spondyloarthritis. Best Practice and Research in Clinical Rheumatology, 2015, 29, 202-212.	1.4	32
1975	Microbiota Organ and Bariatric Surgery. , 2015, , 43-55.		0
1976	Oral Exposure of Mice to Carbendazim Induces Hepatic Lipid Metabolism Disorder and Gut Microbiota Dysbiosis. Toxicological Sciences, 2015, 147, 116-126.	1.4	127
1977	Monosodium L-Glutamate and Dietary Fat Differently Modify the Composition of the Intestinal Microbiota in Growing Pigs. Obesity Facts, 2015, 8, 87-100.	1.6	48
1978	Xenobiotics: Interaction with the Intestinal Microflora. ILAR Journal, 2015, 56, 218-227.	1.8	92

		CITATION R	REPORT	
#	Article		IF	CITATIONS
1979	The Intestinal Microbiota in Inflammatory Bowel Disease. ILAR Journal, 2015, 56, 192-204	4.	1.8	152
1980	Agavins reverse the metabolic disorders in overweight mice through the increment of she fatty acids and hormones. Food and Function, 2015, 6, 3720-3727.	ort chain	2.1	29
1981	Structure and Function of a Nonruminant Gut: A Porcine Model. , 2015, , 47-75.			8
1982	Metal Oxide Nanoparticles Induce Minimal Phenotypic Changes in a Model Colon Gut Mi Environmental Engineering Science, 2015, 32, 602-612.	crobiota.	0.8	72
1983	In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. Biological Inorganic Chemistry, 2015, 20, 1319-1326.	. Journal of	1.1	58
1984	Microbial diversity $\hat{a} \in $ exploration of natural ecosystems and microbiomes. Current Opin Genetics and Development, 2015, 35, 66-72.	nion in	1.5	105
1985	The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasi Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E840-E851.	s. American	1.8	57
1986	Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. American Journal of Clinical Nutrition, 2015, 102, 1313-1		2.2	96
1987	Gene-Environment Interactions Controlling Energy and Glucose Homeostasis and the Developmental Origins of Obesity. Physiological Reviews, 2015, 95, 47-82.		13.1	124
1988	Brain and liver fatty acid composition changes upon consumption of <i>Lactobacillus rhamnosus</i> LA68. International Journal of Food Sciences and Nutrition, 2015, 66, 93-5	97.	1.3	9
1989	Insights Into the Role of the Microbiome in Obesity and Type 2 Diabetes. Diabetes Care,	2015, 38, 159-165.	4.3	519
1990	Influence of Intestinal Microbiota on Body Weight Gain: a Narrative Review of the Literat Surgery, 2015, 25, 346-353.	ure. Obesity	1.1	48
1991	Howler Monkeys. , 2015, , .			5
1993	Fiber supplementation influences phylogenetic structure and functional capacity of the h intestinal microbiome: follow-up of a randomized controlled trial. American Journal of Cli Nutrition, 2015, 101, 55-64.	numan nical	2.2	130
1994	Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome. Digestive and Liv 2015, 47, 181-190.	ver Disease,	0.4	551
1995	Chronic exposure to Low dose bacterial lipopolysaccharide inhibits leptin signaling in vag neurons. Physiology and Behavior, 2015, 139, 188-194.	gal afferent	1.0	99
1996	Deciphering the human microbiome using next-generation sequencing data and bioinfor approaches. Methods, 2015, 79-80, 52-59.	matics	1.9	39
1997	Microbiome and cancer. Seminars in Immunopathology, 2015, 37, 65-72.		2.8	56

#	Article	IF	CITATIONS
1998	The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics, 2015, 33, 673-689.	1.7	1,843
1999	MECHANISMS IN ENDOCRINOLOGY: Gut microbiota in patients with type 2 diabetes mellitus. European Journal of Endocrinology, 2015, 172, R167-R177.		183
2000	Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surgery for Obesity and Related Diseases, 2015, 11, 45-53.	1.0	45
2001	Gut microbiome and nonalcoholic fatty liver diseases. Pediatric Research, 2015, 77, 245-251.	1.1	123
2002	In-depth diversity analysis of the bacterial community resident in the camel rumen. Systematic and Applied Microbiology, 2015, 38, 67-76.	1.2	92
2003	Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics, 2015, 31, 647-655.	1.8	195
2004	Obesity—a disease with many aetiologies disguised in the same oversized phenotype: has the overeating theory failed?. Nephrology Dialysis Transplantation, 2015, 30, 1656-1664.	0.4	25
2005	Streptozotocin-induced type-1-diabetes disease onset in Sprague–Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity. Microbiology (United Kingdom), 2015, 161, 182-193.	0.7	70
2006	Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical and Experimental Immunology, 2015, 179, 363-377.	1.1	218
2007	Probiotics and Pregnancy. Current Diabetes Reports, 2015, 15, 567.	1.7	33
2008	Obesity and diabetes: from genetics to epigenetics. Molecular Biology Reports, 2015, 42, 799-818.	1.0	142
2009	A metabolomic and pharmacokinetic study on the mechanism underlying the lipid-lowering effect of orally administered berberine. Molecular BioSystems, 2015, 11, 463-474.	2.9	62
2010	Molecular details of a starch utilization pathway in the human gut symbiont <scp><i>E</i></scp> <i>ubacterium rectale</i> . Molecular Microbiology, 2015, 95, 209-230.	1.2	104
2011	Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic lowâ€grade inflammation and the development of obesity and diabetes. Diabetes/Metabolism Research and Reviews, 2015, 31, 545-561.	1.7	150
2012	Sorghum resistant starch reduces adiposity in high-fat diet-induced overweight and obese rats via mechanisms involving adipokines and intestinal flora. Food and Agricultural Immunology, 2015, 26, 120-130.	0.7	45
2013	The ASMBS Textbook of Bariatric Surgery. , 2015, , .		15
2014	A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased <i>Akkermansia</i> spp. population in the gut microbiota of mice. Gut, 2015, 64, 872-883.	6.1	910
2015	Obesity, inflammation, and the gut microbiota. Lancet Diabetes and Endocrinology,the, 2015, 3, 207-215.	5.5	617

ARTICLE IF CITATIONS # Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Scientific Reports, 2016 129 1.6 2014, 4, 5922. Phylogenetics and the Human Microbiome. Systematic Biology, 2015, 64, e26-e41. 2.7 Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high 2018 703 4.4 fat diet-fed mice. ISME Journal, 2015, 9, 1-15. Obesity-Associated Gut Microbiota., 2015,, 149-171. 2019 A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. 2020 1.5 113 Nutritional Neuroscience, 2015, 18, 49-65. Of the bugs that shape us: maternal obesity, the gut microbiome, and long-term disease risk. Pediatric Research, 2015, 77, 196-204. 2021 1.1 118 Bifidogenic characteristic and protective effect of saba starch on survival of Lactobacillus 2022 5.1 14 plantarum CIF17AN2 during vacuum-drying and storage. Carbohydrate Polymers, 2015, 117, 255-261. Molecular ecological tools to decipher the role of our microbial mass in obesity. Beneficial 2023 1.0 28 Microbes, 2015, 6, 61-81. 2024 Gut microbiome in liver disease. Journal of Laboratory and Precision Medicine, 2016, 1, 5-5. 1.1 1 Effect of Young Barley Leaf Extract Powder on the Fecal Gut Microbiota and Cecal Short-Chain Fatty 0.1 Acids in Rats. Journal of the Japanese Society for Food Science and Technology, 2016, 63, 510-515. 2026 6. Die physiologische Standortflora., 2016, , 61-82. 0 Germ-Free Animals., 2016, , 109-140. 2027 Patents in the Field of Probiotics, Prebiotics, Synbiotics: A Review. Journal of Food Microbiology 2028 0.4 18 Safety & Hygiene, 2016, 01, . Gut microbiome and omics: a new definition to ruminant production and health. Animal Frontiers, 0.8 2016, 6, 8-12. The Gut Impacts Diabetic Management Tomorrow: The Recent Messages from Intestine and Microbiota. 2030 0.35 Journal of Clinical Nutrition & Dietetics, 2016, 02, . Determinants of body weight regulation in humans. Archives of Endocrinology and Metabolism, 2016, 39 60, 152-162. The Synergistic Contribution of Lactobacillus and Dietary Phytophenols in Host Health., 0, , . 2032 0 Distinctly altered gut microbiota in the progression of liver disease. Oncotarget, 2016, 7, 19355-19366.

#	Article	IF	CITATIONS
2034	Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World Journal of Gastroenterology, 2016, 22, 2219-2241.	1.4	249
2035	Correlating the Gut Microbiome to Health and Disease. , 2016, , 261-291.		5
2036	Comparison of Fecal Microbiota of Mongolian and Thoroughbred Horses by High-throughput Sequencing of the V4 Region of the 16S rRNA Gene. Asian-Australasian Journal of Animal Sciences, 2016, 29, 1345-1352.	2.4	39
2038	The gut microbiota: a key regulator of metabolic diseases. BMB Reports, 2016, 49, 536-541.	1.1	46
2039	The Role of the Microbiota and Potential for Dietary Intervention in Chronic Fatigue Syndrome. , 2016, , 439-463.		4
2040	The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome. PLoS ONE, 2016, 11, e0146509.	1.1	145
2041	Probiotic: effectiveness nutrition in cancer treatment and prevention. Nutricion Hospitalaria, 2016, 33, 1430-1437.	0.2	20
2042	Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis. Oncotarget, 2016, 7, 48941-48952.	0.8	19
2043	Interferon Tau Affects Mouse Intestinal Microbiota and Expression of IL-17. Mediators of Inflammation, 2016, 2016, 1-9.	1.4	21
2044	The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterology Research and Practice, 2016, 2016, 1-13.	0.7	142
2045	The Microbial Hypothesis: Contributions of Adenovirus Infection and Metabolic Endotoxaemia to the Pathogenesis of Obesity. International Journal of Chronic Diseases, 2016, 2016, 1-11.	1.9	6
2046	Dietary Chitosan Supplementation Increases Microbial Diversity and Attenuates the Severity of <i>Citrobacter rodentium</i> Infection in Mice. Mediators of Inflammation, 2016, 2016, 1-7.	1.4	17
2047	Potential Nociceptive Regulatory Effect of ProbioticLactobacillus rhamnosusPB01 (DSM 14870) on Mechanical Sensitivity in Diet-Induced Obesity Model. Pain Research and Management, 2016, 2016, 1-7.	0.7	10
2048	Group B Streptococcus Colonization among Pregnant Women Attending Antenatal Care at Tertiary Hospital in Rural Southwestern Uganda. International Journal of Microbiology, 2016, 2016, 1-7.	0.9	18
2049	Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. Journal of Obesity, 2016, 2016, 1-27.	1.1	202
2050	Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus. Journal of Diabetes Research, 2016, 2016, 1-9.	1.0	10
2051	Effects of a Multispecies Probiotic Mixture on Glycemic Control and Inflammatory Status in Women with Gestational Diabetes: A Randomized Controlled Clinical Trial. Journal of Nutrition and Metabolism, 2016, 2016, 1-8.	0.7	100
2052	A Nested Case-Control Study of Association between Metabolome and Hypertension Risk. BioMed Research International, 2016, 2016, 1-7.	0.9	37

#	Article	IF	CITATIONS
2053	A Metagenomic Insight Into the Human Microbiome. , 2016, , 107-119.		15
2054	Six-week Diet Correction for Body Weight Reduction and Its Subsequent Changes of Gut Microbiota: A Case Report. Clinical Nutrition Research, 2016, 5, 137.	0.5	2
2055	Piceatannol Exerts Anti-Obesity Effects in C57BL/6 Mice through Modulating Adipogenic Proteins and Gut Microbiota. Molecules, 2016, 21, 1419.	1.7	72
2056	Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World Journal of Gastroenterology, 2016, 22, 8698.	1.4	84
2057	Lactobacillus fermentum CRL1446 Ameliorates Oxidative and Metabolic Parameters by Increasing Intestinal Feruloyl Esterase Activity and Modulating Microbiota in Caloric-Restricted Mice. Nutrients, 2016, 8, 415.	1.7	37
2058	Effects of dietary fiber preparations made from maize starch on the growth and activity of selected bacteria from the Firmicutes, Bacteroidetes, and Actinobacteria phyla in fecal samples from obese children Acta Biochimica Polonica, 2016, 63, 261-6.	0.3	15
2059	Gut Microbiota of Obese, Type 2 Diabetic Individuals is Enriched in Faecalibacterium prausnitzii, Akkermansia muciniphila and Peptostreptococcus anaerobius after Weight Loss. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2016, 16, 99-106.	0.6	100
2060	Human microbiome studies in Korea. Allergy Asthma & Respiratory Disease, 2016, 4, 311.	0.3	4
2061	The New Era of Treatment for Obesity and Metabolic Disorders: Evidence and Expectations for Gut Microbiome Transplantation. Frontiers in Cellular and Infection Microbiology, 2016, 6, 15.	1.8	60
2062	The Role of Gut Microflora and the Cholinergic Anti-inflammatory Neuroendocrine System in Diabetes Mellitus. Frontiers in Endocrinology, 2016, 7, 55.	1.5	20
2063	Obesity: An Immunometabolic Perspective. Frontiers in Endocrinology, 2016, 7, 157.	1.5	77
2064	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
2065	High Molecular Weight Barley β-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk. Frontiers in Microbiology, 2016, 7, 129.	1.5	133
2066	Bacteria within the Gastrointestinal Tract Microbiota Correlated with Improved Growth and Feed Conversion: Challenges Presented for the Identification of Performance Enhancing Probiotic Bacteria. Frontiers in Microbiology, 2016, 7, 187.	1.5	195
2067	Postoperative Changes in Fecal Bacterial Communities and Fermentation Products in Obese Patients Undergoing Bilio-Intestinal Bypass. Frontiers in Microbiology, 2016, 7, 200.	1.5	94
2068	Gut Microbiome and Kidney Disease in Pediatrics: Does Connection Exist?. Frontiers in Microbiology, 2016, 7, 235.	1.5	7
2069	Gnotobiotic Rodents: An In Vivo Model for the Study of Microbe–Microbe Interactions. Frontiers in Microbiology, 2016, 7, 409.	1.5	57
2070	Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiology 2016, 7, 1612 Frontiers in Microbiology 2016, 7, 1612	1.5	64

#	Article	IF	CITATIONS
2071	Impact of Different Fecal Processing Methods on Assessments of Bacterial Diversity in the Human Intestine. Frontiers in Microbiology, 2016, 7, 1643.	1.5	39
2072	Evaluating the Contribution of Gut Microbiota to the Variation of Porcine Fatness with the Cecum and Fecal Samples. Frontiers in Microbiology, 2016, 07, 2108.	1.5	66
2073	Independent and Combined Effects of Lactitol, Polydextrose, and Bacteroides thetaiotaomicron on Postprandial Metabolism and Body Weight in Rats Fed a High-Fat Diet. Frontiers in Nutrition, 2016, 3, 15.	1.6	12
2074	Effect of probiotic and prebiotic fermented milk on skin and intestinal conditions in healthy young female students. Bioscience of Microbiota, Food and Health, 2016, 35, 105-112.	0.8	34
2075	Diversity of Bacterial Communities on Four Frequently Used Surfaces in a Large Brazilian Teaching Hospital. International Journal of Environmental Research and Public Health, 2016, 13, 152.	1.2	21
2076	Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanism and Application of Metabolomics. International Journal of Molecular Sciences, 2016, 17, 300.	1.8	65
2077	Gut Microbiota and Lifestyle Interventions in NAFLD. International Journal of Molecular Sciences, 2016, 17, 447.	1.8	75
2078	The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease. International Journal of Molecular Sciences, 2016, 17, 1225.	1.8	50
2079	Increased Expression Profile and Functionality of TLR6 in Peripheral Blood Mononuclear Cells and Hepatocytes of Morbidly Obese Patients with Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2016, 17, 1878.	1.8	28
2080	Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules, 2016, 21, 844.	1.7	285
2081	CST, an Herbal Formula, Exerts Anti-Obesity Effects through Brain-Gut-Adipose Tissue Axis Modulation in High-Fat Diet Fed Mice. Molecules, 2016, 21, 1522.	1.7	26
2082	Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis. Molecules, 2016, 21, 1558.	1.7	112
2083	Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients, 2016, 8, 126.	1.7	158
2084	Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders. Nutrients, 2016, 8, 173.	1.7	216
2085	The Intestinal Microbiota in Metabolic Disease. Nutrients, 2016, 8, 202.	1.7	211
2086	Beneficial Effect of Synbiotic Supplementation on Hepatic Steatosis and Anthropometric Parameters, But Not on Gut Permeability in a Population with Nonalcoholic Steatohepatitis. Nutrients, 2016, 8, 397.	1.7	85
2087	Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease. Nutrients, 2016, 8, 684.	1.7	57
2088	Nanosized Drug Delivery Systems in Gastrointestinal Targeting: Interactions with Microbiota. Pharmaceuticals, 2016, 9, 62.	1.7	40

#	Article	IF	CITATIONS
2090	Analysis of Gut Microbiota in Coronary Artery Disease Patients: a Possible Link between Gut Microbiota and Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 2016, 23, 908-921.	0.9	224
2091	Gut Microbiota and Coronary Artery Disease. International Heart Journal, 2016, 57, 663-671.	0.5	55
2092	Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. PLoS ONE, 2016, 11, e0151829.	1.1	284
2093	The Role of the Gut Microbiome on Chronic Kidney Disease. Advances in Applied Microbiology, 2016, 96, 65-94.	1.3	86
2094	A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics. PLoS ONE, 2016, 11, e0160533.	1.1	92
2095	Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. Journal of Clinical Biochemistry and Nutrition, 2016, 59, 65-70.	0.6	171
2096	Characterization of Microbiota in Children with Chronic Functional Constipation. PLoS ONE, 2016, 11, e0164731.	1.1	87
2097	Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights. PLoS Computational Biology, 2016, 12, e1004977.	1.5	434
2098	Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing. PLoS ONE, 2016, 11, e0149564.	1.1	229
2099	Helicobacter pylori Eradication Causes Perturbation of the Human Gut Microbiome in Young Adults. PLoS ONE, 2016, 11, e0151893.	1.1	109
2100	Long-Term Green Tea Supplementation Does Not Change the Human Gut Microbiota. PLoS ONE, 2016, 11, e0153134.	1.1	63
2101	Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?. Frontiers in Physiology, 2016, 7, 51.	1.3	156
2102	Host-Microbiome Interaction and Cancer: Potential Application in Precision Medicine. Frontiers in Physiology, 2016, 7, 606.	1.3	40
2103	Emergent Sources of Prebiotics: Seaweeds and Microalgae. Marine Drugs, 2016, 14, 27.	2.2	204
2104	Fructooligosaccharides. Studies in Natural Products Chemistry, 2016, , 209-229.	0.8	16
2105	Enteric Ecosystem Disruption in Autism Spectrum Disorder: Can the Microbiota and Macrobiota be Restored?. Current Pharmaceutical Design, 2016, 22, 6107-6121.	0.9	18
2107	The Infant Microbiome. Nursing Research, 2016, 65, 76-88.	0.8	203
2108	Metagenome-wide association studies: fine-mining the microbiome. Nature Reviews Microbiology, 2016, 14, 508-522.	13.6	356

#	Article	IF	CITATIONS
2109	Pharmacokinetics of blackberry anthocyanins consumed with or without ethanol: A randomized and crossover trial. Molecular Nutrition and Food Research, 2016, 60, 2319-2330.	1.5	36
2110	Effects of Prebiotic and Synbiotic Supplementation on Inflammatory Markers and Anthropometric Indices After Roux-en-Y Gastric Bypass. Journal of Clinical Gastroenterology, 2016, 50, 208-217.	1.1	45
2111	Gut associated bacteria are critical to metabolism, inflammation and health. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 245-249.	1.3	13
2112	Oral imazalil exposure induces gut microbiota dysbiosis and colonic inflammation in mice. Chemosphere, 2016, 160, 349-358.	4.2	100
2113	Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. Journal of Molecular Biology, 2016, 428, 3230-3252.	2.0	375
2114	A Systematic Review of the Sinonasal Microbiome in Chronic Rhinosinusitis. American Journal of Rhinology and Allergy, 2016, 30, 161-166.	1.0	39
2115	Microbiota and Liver. , 2016, , 25-34.		1
2116	The human gut microbiota and its interactive connections to diet. Journal of Human Nutrition and Dietetics, 2016, 29, 539-546.	1.3	62
2117	Baboon vaginal microbial flora. Journal of Medical Primatology, 2016, 45, 147-155.	0.3	5
2118	The Built Environment Is a Microbial Wasteland. MSystems, 2016, 1, .	1.7	33
2120	Effects of bitter melon (<i>Momordica charantia</i> L.) on the gut microbiota in high fat diet and low dose streptozocin-induced rats. International Journal of Food Sciences and Nutrition, 2016, 67, 686-695.	1.3	31
2121	Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens. SpringerPlus, 2016, 5, 911.	1.2	80
2122	Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Molecular Nutrition and Food Research, 2016, 60, 2256-2266.	1.5	117
2123	Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory Bowel Diseases, 2016, 22, 1137-1150.	0.9	555
2124	Gut microbiota in early pediatric multiple sclerosis: a caseâ^'control study. European Journal of Neurology, 2016, 23, 1308-1321.	1.7	260
2125	Persistent influence of maternal obesity on offspring health: Mechanisms from animal models and clinical studies. Molecular and Cellular Endocrinology, 2016, 435, 7-19.	1.6	39
2126	The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate?. European Journal of Clinical Nutrition, 2016, 70, 1348-1353.	1.3	45
2127	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	13.7	1,602

щ		15	CITATION
#	ARTICLE Microbiome-wide association studies link dynamic microbial consortia to disease. Nature, 2016, 535,	IF	CITATIONS
2128	94-103.	13.7	595
2129	Vaginal and Rectal Clostridium sordellii and Clostridium perfringens Presence Among Women in the United States. Obstetrics and Gynecology, 2016, 127, 360-368.	1.2	22
2130	Comparing three preparation methods of standard substances for intestinal <i>bifidobacteria</i> of childhood obesity. Acta Paediatrica, International Journal of Paediatrics, 2016, 105, e496-8.	0.7	3
2131	Overweight and the feline gut microbiome – a pilot study. Journal of Animal Physiology and Animal Nutrition, 2016, 100, 478-484.	1.0	25
2132	The effect of arabinoxylooligosaccharides on gastric sensoryâ€motor function and nutrient tolerance in man. Neurogastroenterology and Motility, 2016, 28, 1194-1203.	1.6	5
2133	Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease. Drug Metabolism and Disposition, 2016, 44, 1839-1850.	1.7	248
2134	Gut microbiota and type 2 diabetes mellitus. EndocrinologÃa Y Nutrición (English Edition), 2016, 63, 560-568.	0.5	64
2135	Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance. Obesity Facts, 2016, 9, 379-391.	1.6	48
2136	Role of Gut Microbiome in the Modulation of Environmental Toxicants and Therapeutic Agents. , 2016, , 491-518.		2
2137	Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults—Randomized Controlled Trial. EBioMedicine, 2016, 13, 190-200.	2.7	108
2138	Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biology, 2016, 17, 163.	3.8	264
2139	Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Medicine, 2016, 8, 67.	3.6	260
2140	Stanford's Outcomes Research in Kids (STORK): a prospective study of healthy pregnant women and their babies in Northern California. BMJ Open, 2016, 6, e010810.	0.8	16
2141	Influence of habitual dietary fibre intake on the responsiveness of the gut microbiota to a prebiotic: protocol for a randomised, double-blind, placebo-controlled, cross-over, single-centre study. BMJ Open, 2016, 6, e012504.	0.8	12
2142	The Gastrointestinal Microbiome. , 2016, , 126-137.		1
2143	Gut Microbiota and the Liver. Journal of Clinical Gastroenterology, 2016, 50, S183-S187.	1.1	7
2144	The Gut Microbiome. , 2016, , 799-808.		2
2145	Correlation between microbiota and growth in Mangrove Killifish (Kryptolebias marmoratus) and Atlantic cod (Gadus morhua). Scientific Reports, 2016, 6, 21192.	1.6	29

#	Article	IF	CITATIONS
2146	Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Scientific Reports, 2016, 6, 23001.	1.6	78
2147	Beyond Metabolomics: A Review of Multi-Omics-Based Approaches. , 2016, , 289-312.		34
2148	A general framework for association analysis of microbial communities on a taxonomic tree. Bioinformatics, 2017, 33, 1278-1285.	1.8	41
2149	Fine Classification of Human Gut Microbiota by Using Hierarchical Clustering Approach. , 2016, , .		0
2152	The impact of sequence database choice on metaproteomic results in gut microbiota studies. Microbiome, 2016, 4, 51.	4.9	124
2153	The Microbiome and Primary Sclerosing Cholangitis. Seminars in Liver Disease, 2016, 36, 340-348.	1.8	15
2154	Constraint-based stoichiometric modelling from single organisms to microbial communities. Journal of the Royal Society Interface, 2016, 13, 20160627.	1.5	96
2156	Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutrition Research Reviews, 2016, 29, 234-248.	2.1	160
2157	Microbes, Metabolites and Health. , 2016, , 13-48.		0
2158	Lifestyle and geographic insights into the distinct gut microbiota in elderly women from two different geographic locations. Journal of Physiological Anthropology, 2016, 35, 31.	1.0	48
2159	Dissecting the interplay between intestinal microbiota and host immunity in health and disease: Lessons learned from germfree and gnotobiotic animal models. European Journal of Microbiology and Immunology, 2016, 6, 253-271.	1.5	142
2160	The importance and strategy of diabetes prevention. Chronic Diseases and Translational Medicine, 2016, 2, 204-207.	0.9	10
2161	Dietary lipid emulsions and endotoxemia. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D306.	0.6	9
2162	Gut microbiota influences pathological angiogenesis in obesityâ€driven choroidal neovascularization. EMBO Molecular Medicine, 2016, 8, 1366-1379.	3.3	133
2163	Gut Microbiota and Obesity. Journal of Clinical Gastroenterology, 2016, 50, S157-S158.	1.1	14
2164	Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis. Inflammatory Bowel Diseases, 2016, 22, 2767-2787.	0.9	41
2165	The role of short-chain fatty acid on blood pressure regulation. Current Opinion in Nephrology and Hypertension, 2016, 25, 379-383.	1.0	98
2167	Next generation biodiversity analysis. , 0, , 175-194.		Ο

		CITATION REI	PORT	
#	Article		IF	CITATIONS
2168	Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 2016, 65,	1906-1915.	6.1	463
2169	Spectral consensus strategy for accurate reconstruction of large biological networks. BM Bioinformatics, 2016, 17, 493.	с	1.2	10
2170	MetaMIS: a metagenomic microbial interaction simulator based on microbial community Bioinformatics, 2016, 17, 488.	profiles. BMC	1.2	70
2171	Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 2016, 34, 260-268.		0.8	425
2172	Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATC microbiome bacterium. Anaerobe, 2016, 39, 117-123.	C 8482, a gut	1.0	26
2173	Intestinal removal of free fatty acids from hosts by <i>Lactobacilli</i> for the treatment o FEBS Open Bio, 2016, 6, 64-76.	f obesity.	1.0	50
2174	Active Lactobacillus rhamnosus LA68 or Lactobacillus plantarum WCFS1 administration p influences liver fatty acid composition in mice on a HFD regime. Food and Function, 2016	ositively , 7, 2840-2848.	2.1	15
2175	Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Ac Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Ol Foods for Human Nutrition, 2016, 71, 190-196.	tinobacteria besity. Plant	1.4	38
2176	Connections Between the Gut Microbiome and Metabolic Hormones in Early Pregnancy in and Obese Women. Diabetes, 2016, 65, 2214-2223.	1 Overweight	0.3	223
2177	Critical review evaluating the pig as a model for human nutritional physiology. Nutrition Reviews, 2016, 29, 60-90.	lesearch	2.1	204
2178	Impact of gut microbiota on diabetes mellitus. Diabetes and Metabolism, 2016, 42, 303-3	\$15.	1.4	169
2179	The Gut Microbiota and Obesity in Humans. , 2016, , 27-47.			0
2180	Toward a Predictive Understanding of Earth's Microbiomes to Address 21st Century (2016, 7, .	Challenges. MBio,	1.8	124
2181	Gut Microbiota as a Target in the Pathogenesis of Metabolic Disorders: A New Approach t Therapeutic Agents. Hormone and Metabolic Research, 2016, 48, 349-358.	o Novel	0.7	104
2182	Comparison of Diet versus Exercise on Metabolic Function and Gut Microbiota in Obese F and Science in Sports and Exercise, 2016, 48, 1688-1698.	ats. Medicine	0.2	97
2183	The crosstalk between gut microbiota and obesity and related metabolic disorders. Future Microbiology, 2016, 11, 825-836.	2	1.0	25
2184	The importance of the microbiome in epidemiologic research. Annals of Epidemiology, 20	16, 26, 301-305.	0.9	35
2185	Different subtype strains of <i>Akkermansia muciniphila</i> abundantly colonize in south Journal of Applied Microbiology, 2016, 120, 452-459.	ern China.	1.4	47

IF

ARTICLE

CITATIONS

2186	Diverticular Disease. , 2016, , 645-667.		2
2187	Effect of Lactobacillus mali APS1 and L.   kefiranofaciens M1 on obesity and glucose homeostasis in diet-induced obese mice. Journal of Functional Foods, 2016, 23, 580-589.	1.6	20
2188	Impact of Dietary Lipids on Colonic Function and Microbiota: An Experimental Approach Involving Orlistat-Induced Fat Malabsorption in Human Volunteers. Clinical and Translational Gastroenterology, 2016, 7, e161.	1.3	64
2189	The Microbiome in Obesity, Diabetes, and NAFLD: What is Your Gut Telling Us?. Current Hepatology Reports, 2016, 15, 96-102.	0.4	4
2190	Nondigestible Fructans Alter Gastrointestinal Barrier Function, Gene Expression, Histomorphology, and the Microbiota Profiles of Diet-Induced Obese C57BL/6J Mice. Journal of Nutrition, 2016, 146, 949-956.	1.3	62
2191	Effect of Antibiotic Treatment on the Gastrointestinal Microbiome of Free-Ranging Western Lowland Gorillas (Gorilla g. gorilla). Microbial Ecology, 2016, 72, 943-954.	1.4	19
2192	The respiratory microbiome: an underappreciated player inÂtheÂhuman response to inhaled pollutants?. Annals of Epidemiology, 2016, 26, 355-359.	0.9	55
2193	Modeling Sustainable Food Systems. Environmental Management, 2016, 57, 956-975.	1.2	137
2194	Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiology, 2016, 11, 585-600.	1.0	54
2195	Oats—From Farm to Fork. Advances in Food and Nutrition Research, 2016, 77, 1-55.	1.5	56
2196	Intricacies of assessing the human microbiome in epidemiologic studies. Annals of Epidemiology, 2016, 26, 311-321.	0.9	46
2197	Probiotic Strain <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> CECT 8145 Reduces Fat Content and Modulates Lipid Metabolism and Antioxidant Response in <i>Caenorhabditis elegans</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 3462-3472.	2.4	58
2198	Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia. Molecular Metabolism, 2016, 5, 392-403.	3.0	50
2199	From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Molecular Psychiatry, 2016, 21, 738-748.	4.1	683
2200	Mediterranean diet and faecal microbiota: a transversal study. Food and Function, 2016, 7, 2347-2356.	2.1	120
2201	The Role of the Gut Microbiota in Childhood Obesity. Childhood Obesity, 2016, 12, 292-299.	0.8	35
2202	Analysis of the microbial diversity in faecal material of the endangered blue whale, Balaenoptera musculus. Antonie Van Leeuwenhoek, 2016, 109, 1063-1069.	0.7	13
2203	Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet. Proceedings of the Nutrition Society, 2016, 75, 306-318.	0.4	89

#	Article	IF	CITATIONS
2204	<i>Akkermansia Muciniphila</i> Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in <i>Apoe</i> ^{â^'/â^'} Mice. Circulation, 2016, 133, 2434-2446.	1.6	529
2205	Impact of early gut microbiota on immune and metabolic development and function. Seminars in Fetal and Neonatal Medicine, 2016, 21, 380-387.	1.1	83
2206	Impact of Hypocaloric Hyperproteic Diet on Gut Microbiota in Overweight or Obese Patients with Nonalcoholic Fatty Liver Disease: A Pilot Study. Digestive Diseases and Sciences, 2016, 61, 2721-2731.	1.1	56
2207	Microbial-Derived Metabolites Reflect an Altered Intestinal Microbiota during Catch-Up Growth in Undernourished Neonatal Mice. Journal of Nutrition, 2016, 146, 940-948.	1.3	19
2208	Bugging inflammation: role of the gut microbiota. Clinical and Translational Immunology, 2016, 5, e72.	1.7	49
2209	Effect of long-term antibiotic use on weight in adolescents with acne. Journal of Antimicrobial Chemotherapy, 2016, 71, 1098-1105.	1.3	5
2210	Zinc transporter Slc39a14 regulates inflammatory signaling associated with hypertrophic adiposity. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E258-E268.	1.8	57
2212	Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food and Function, 2016, 7, 2374-2388.	2.1	71
2213	Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 176-187.	1.4	31
2214	Effects of sardine-enriched diet on metabolic control, inflammation and gut microbiota in drug-naÃ ⁻ ve patients with type 2 diabetes: a pilot randomized trial. Lipids in Health and Disease, 2016, 15, 78.	1.2	103
2215	The Gut Microbiota and their Metabolites: Potential Implications for the Host Epigenome. Advances in Experimental Medicine and Biology, 2016, 902, 33-44.	0.8	49
2216	Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clinical Science, 2016, 130, 943-986.	1.8	281
2217	InÂvitro analysis of partially hydrolyzed guar gum fermentation on identified gut microbiota. Anaerobe, 2016, 42, 60-66.	1.0	19
2218	Early Childhood Diarrhea Predicts Cognitive Delays in Later Childhood Independently of Malnutrition. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1004-1010.	0.6	58
2219	Microbiota y diabetes mellitus tipo 2. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2016, 63, 560-568.	0.8	111
2220	Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice. American Journal of Physiology - Renal Physiology, 2016, 311, G286-G304.	1.6	59
2221	Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biology, 2016, 17, 189.	3.8	183
2222	Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, 2016, , .	0.2	2

#	Article	IF	CITATIONS
2223	Epigenetics, Obesity, and Colon Cancer. Energy Balance and Cancer, 2016, , 211-233.	0.2	0
2224	Neonatal Androgen Exposure Causes Persistent Gut Microbiota Dysbiosis Related to Metabolic Disease in Adult Female Rats. Endocrinology, 2016, 157, 4888-4898.	1.4	76
2225	Nutrition challenges ahead. EFSA Journal, 2016, 14, e00504.	0.9	7
2226	Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. International Review of Cell and Molecular Biology, 2016, 324, 67-124.	1.6	12
2227	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	15.2	952
2229	Exposure to inorganic arsenic can lead to gut microbe perturbations and hepatocellular carcinoma. Acta Pharmaceutica Sinica B, 2016, 6, 426-429.	5.7	43
2230	Altered gut microbiota in female mice with persistent low body weights following removal of post-weaning chronic dietary restriction. Genome Medicine, 2016, 8, 103.	3.6	20
2231	Hypogonadism alters cecal and fecal microbiota in male mice. Gut Microbes, 2016, 7, 533-539.	4.3	46
2232	Interplays Between Gut Microbiota and Gene Expression Regulation by miRNAs: Towards a Symbiotic Vision of Host and Guest. , 2016, , 53-65.		1
2233	Bead-beating artefacts in the Bacteroidetes to Firmicutes ratio of the human stool metagenome. Journal of Microbiological Methods, 2016, 129, 78-80.	0.7	19
2234	Modulation of type 1 and type 2 diabetes risk by the intestinal microbiome. Pediatric Diabetes, 2016, 17, 469-477.	1.2	58
2240	Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Molecular Metabolism, 2016, 5, 759-770.	3.0	142
2241	Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice. Journal of Nutritional Biochemistry, 2016, 36, 42-50.	1.9	54
2242	Promising therapies for treatment of nonalcoholic steatohepatitis. Expert Opinion on Emerging Drugs, 2016, 21, 343-357.	1.0	28
2243	Non-alcoholic fatty liver and the gut microbiota. Molecular Metabolism, 2016, 5, 782-794.	3.0	193
2244	The programming effects of nutritionâ€induced catchâ€up growth on gut microbiota and metabolic diseases in adult mice. MicrobiologyOpen, 2016, 5, 296-306.	1.2	23
2245	Family Ecologies and Child Risk for Obesity: Focus on Regulatory Processes. Family Relations, 2016, 65, 94-107.	1.1	24
2246	The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of Internal Medicine, 2016, 280, 339-349.	2.7	212

	CHANO	N REPORT	
#	Article	IF	Citations
2247	Getting fat from an inflamed relationship? The revenge of the holobiont. BioEssays, 2016, 38, 119-119.	1.2	6
2248	The esophageal microbiota in health and disease. Annals of the New York Academy of Sciences, 2016, 1381, 21-33.	1.8	119
2249	The interplay between microbiota and inflammation: lessons from peritonitis and sepsis. Clinical and Translational Immunology, 2016, 5, e90.	1.7	36
2250	Extrahepatic Diseases and NAFLD: The Triangular Relationship between NAFLD, Type 2-Diabetes and Dysbiosis. Digestive Diseases, 2016, 34, 11-18.	0.8	33
2251	Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models?. Trends in Food Science and Technology, 2016, 57, 256-264.	7.8	26
2252	Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence. Trends in Food Science and Technology, 2016, 57, 233-243.	7.8	22
2253	The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Medicine, 2016, 8, 77.	3.6	282
2254	Obesity, NASH, and HCC. , 2016, , 275-286.		0
2255	Functional Defecation Disorders and Excessive Body Weight: A Systematic Review. Pediatrics, 2016, 138,	1.0	27
2256	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	6.0	158
2257	Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk. Current Diabetes Reports, 2016, 16, 93.	1.7	28
2258	Role of microbiota function during early life on child's neurodevelopment. Trends in Food Science and Technology, 2016, 57, 273-288.	7.8	23
2260	Effects of <i>Maydis stigma</i> polysaccharide on the intestinal microflora in type-2 diabetes. Pharmaceutical Biology, 2016, 54, 3086-3092.	1.3	29
2261	Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. MBio, 2016, 7, .	1.8	430
2262	Alzheimer's disease and gut microbiota. Science China Life Sciences, 2016, 59, 1006-1023.	2.3	254
2263	Gut Microbiome Associates With Lifetime Cardiovascular Disease Risk Profile Among Bogalusa Heart Study Participants. Circulation Research, 2016, 119, 956-964.	2.0	264
2264	Excess Omega-6 Polyunsaturated Fatty Acid Intake Is Associated with Negative Cardiovascular, Intestinal and Metabolic Outcomes in Mice. Canadian Journal of Diabetes, 2016, 40, 278-279.	0.4	4
2265	Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension, 2016, 68, 974-981.	1.3	293

ARTICLE IF CITATIONS Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled 2266 437 1.6 Receptors and Gut Microbiota. Scientific Reports, 2016, 6, 37589. High-throughput sequencing technology to reveal the composition and function of cecal microbiota 2267 1.3 in Dagu chicken. BMC Microbiology, 2016, 16, 259. Differential fecal microbiota are retained in broiler chicken lines divergently selected for fatness 2268 1.6 83 traits. Scientific Reports, 2016, 6, 37376. Regression analysis for microbiome compositional data. Annals of Applied Statistics, 2016, 10, . 2269 0.5 Beneficial effects of voglibose administration on body weight and lipid metabolism 2270 0.7 23 <i>via</i> gastrointestinal bile acid modification. Endocrine Journal, 2016, 63, 691-702. Improvements in Metabolic Health with Consumption of Ellagic Acid and Subsequent Conversion into 2271 128 Urolithins: Evidence and Mechanisms. Advances in Nutrition, 2016, 7, 961-972. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis. 2272 3.6 230 Hepatology, 2016, 64, 2015-2027. - Nutrigenetics and Crohn's Disease. , 2016, , 172-187. 2274 Gut Microbiota and HCC., 2016, , 149-155. 0 Helicobacter pylori Infection Aggravates Diet-induced Insulin Resistance in Association With Gut 2.7 Microbiota of Mice. EBioMedicine, 2016, 12, 247-254. Microbial diversity in individuals and their household contacts following typical antibiotic courses. 2276 4.9 135 Microbiome, 2016, 4, 39. European Obesity Summit (EOS) - Joint Congress of EASOand IFSO-EC, Gothenburg, Sweden, June 1 - 4, 2277 1.6 2016: Abstracts. Obesity Facts, 2016, 9, 1-376. Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the 2278 1.6 31 human microbiota. Biochemical Society Transactions, 2016, 44, 109-115. Entropy-Based Network Representation of the Individual Metabolic Phenotype. Journal of Proteome 2279 1.8 23 Research, 2016, 15, 3298-3307. Progress in Our Understanding of the Gut Microbiome: Implications for the Clinician. Current 2281 1.1 15 Gastroenterology Reports, 2016, 18, 49. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. 2282 3.0 132 Molecular Metabolism, 2016, 5, 795-803 Metabolic Damage Presents Differently in Young and Early-Aged C57BL/6 Mice Fed a High-Fat Diet. 2283 0.7 18 International Journal of Gerontology, 2016, 10, 105-111. Hypoglycemic activity of the Baker's yeast \hat{l}^2 -glucan in obese/type 2 diabetic mice and the underlying 2284 1.5 mechanism. Molecular Nutrition and Food Research, 2016, 60, 2678-2690.

#	Article	IF	CITATIONS
2285	Decoding molecular interactions in microbial communities. FEMS Microbiology Reviews, 2016, 40, 648-663.	3.9	71
2286	Intestinal microbiota could transfer host Gut characteristics from pigs to mice. BMC Microbiology, 2016, 16, 238.	1.3	54
2288	Fecal Microbiota-based Therapeutics for Recurrent Clostridium difficile Infection, Ulcerative Colitis and Obesity. EBioMedicine, 2016, 13, 37-45.	2.7	65
2289	Gut dysbiosis impairs recovery after spinal cord injury. Journal of Experimental Medicine, 2016, 213, 2603-2620.	4.2	236
2290	Therapeutic modulation of gut microbiota in inflammatory bowel disease: More questions to be answered. Journal of Digestive Diseases, 2016, 17, 800-810.	0.7	33
2291	Bariatric surgery and type 2 diabetes: are there weight lossâ€independent therapeutic effects of upper gastrointestinal bypass?. Journal of Internal Medicine, 2016, 280, 476-486.	2.7	52
2293	Nutritional and Therapeutic Significance of Protein-based Bioactive Compounds Liberated by Fermentation. , 2016, , 299-312.		2
2294	Gut Microbiota in Obesity and Undernutrition. Advances in Nutrition, 2016, 7, 1080-1089.	2.9	103
2295	Bugs, guts and brains, and the regulation of food intake and body weight. International Journal of Obesity Supplements, 2016, 6, S8-S14.	12.5	22
2296	Polymorphic Variation in FFA Receptors: Functions and Consequences. Handbook of Experimental Pharmacology, 2016, 236, 133-158.	0.9	3
2297	The Gut Microbiota. Gastroenterology Clinics of North America, 2016, 45, 601-614.	1.0	34
2298	Cesarean section may increase the risk of both overweight and obesity in preschool children. BMC Pregnancy and Childbirth, 2016, 16, 338.	0.9	43
2299	Microbiome. , 2016, , 14-18.		0
2300	Human Microbiome <i>Fusobacterium Nucleatum</i> in Esophageal Cancer Tissue Is Associated with Prognosis. Clinical Cancer Research, 2016, 22, 5574-5581.	3.2	322
2301	Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Molecular Metabolism, 2016, 5, 1175-1186.	3.0	216
2302	Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Scientific Reports, 2016, 6, 32953.	1.6	104
2303	Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine, 2016, 8, 343ra81.	5.8	763
2304	Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Scientific Reports, 2016, 6, 31208.	1.6	179

#	Article	IF	CITATIONS
2305	The gut microbiota: a major player in the toxicity of environmental pollutants?. Npj Biofilms and Microbiomes, 2016, 2, 16003.	2.9	470
2306	Parental Obesity: Intergenerational Programming and Consequences. , 2016, , .		2
2307	Illumina Miseq platform analysis caecum bacterial communities of rex rabbits fed with different antibiotics. AMB Express, 2016, 6, 100.	1.4	30
2308	The Gut Microbiota and Atherosclerosis: The State of the Art and Novel Perspectives. Cardiovascular Innovations and Applications, 2016, 1, .	0.1	3
2309	Culture of previously uncultured members of the human gut microbiota by culturomics. Nature Microbiology, 2016, 1, 16203.	5.9	735
2311	Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction. Scientific Reports, 2016, 6, 22474.	1.6	132
2312	Gut microbiota Modulated by Probiotics and Garcinia cambogia Extract Correlate with Weight Gain and Adipocyte Sizes in High Fat-Fed Mice. Scientific Reports, 2016, 6, 33566.	1.6	45
2313	Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. Journal of Ethnopharmacology, 2016, 194, 717-726.	2.0	86
2314	Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease. Scientific Reports, 2016, 6, 32002.	1.6	260
2315	In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota. Food and Function, 2016, 7, 4637-4643.	2.1	78
2316	Tiny microbes, enormous impacts: what matters in gut microbiome studies?. Genome Biology, 2016, 17, 217.	3.8	128
2317	Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Applied Microbiology and Biotechnology, 2016, 100, 10081-10093.	1.7	94
2318	Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice. Scientific Reports, 2016, 6, 31786.	1.6	86
2319	The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food and Function, 2016, 7, 4869-4879.	2.1	155
2320	Correlations of Fecal Metabonomic and Microbiomic Changes Induced by High-fat Diet in the Pre-Obesity State. Scientific Reports, 2016, 6, 21618.	1.6	131
2321	Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Scientific Reports, 2016, 6, 33251.	1.6	117
2322	Unique Features of Ethnic Mongolian Gut Microbiome revealed by metagenomic analysis. Scientific Reports, 2016, 6, 34826.	1.6	78
2323	The Pace of Technologic Change. American Journal of Preventive Medicine, 2016, 51, 816-824.	1.6	144

#	Article	IF	CITATIONS
2324	Soy and Gut Microbiota: Interaction and Implication for Human Health. Journal of Agricultural and Food Chemistry, 2016, 64, 8695-8709.	2.4	92
2325	Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria. Journal of Nutrition, 2016, 146, 2445-2460.	1.3	16
2329	The Role of Vitamins in the Pathogenesis of Non-alcoholic Fatty Liver Disease. Integrative Medicine Insights, 2016, 11, IMI.S31451.	4.2	45
2330	Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 2016, 4, 3-16.	0.5	150
2331	Impact of high fat diets, prebiotics and probiotics on gut microbiota and immune function, with relevance to elderly populations. Nutrition and Aging (Amsterdam, Netherlands), 2016, 3, 171-192.	0.3	2
2332	Nutritionists' Health Study cohort: a web-based approach of life events, habits and health outcomes. BMJ Open, 2016, 6, e012081.	0.8	14
2333	Gut microbiota in health and disease: an overview focused on metabolic inflammation. Beneficial Microbes, 2016, 7, 181-194.	1.0	77
2334	Faecal microbiota transplantation: applications and limitations in treating gastrointestinal disorders. BMJ Open Gastroenterology, 2016, 3, e000087.	1.1	53
2335	The human gut microbiome of Latin America populations: a landscape to be discovered. Current Opinion in Infectious Diseases, 2016, 29, 528-537.	1.3	20
2336	Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathogens, 2016, 8, 64.	1.6	195
2337	Antibiotic Treatment of Small Intestinal Bacterial Overgrowth. Topics in Clinical Nutrition, 2016, 31, 296-313.	0.2	0
2339	Randomized clinical trial. European Journal of Gastroenterology and Hepatology, 2016, 28, 1087-1093.	0.8	2
2340	Gut microbiota and metabolic disease: from pathogenesis to new therapeutic strategies. Reviews in Medical Microbiology, 2016, 27, 141-152.	0.4	15
2341	Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans – towards treatment with probiotics. Beneficial Microbes, 2016, 7, 11-22.	1.0	63
2342	The Gut Microbiome and Obesity. Current Oncology Reports, 2016, 18, 45.	1.8	230
2343	What's bugging your teen?—The microbiota and adolescent mental health. Neuroscience and Biobehavioral Reviews, 2016, 70, 300-312.	2.9	44
2344	High-throughput sequencing of microbial diversity in implant-associated infection. Infection, Genetics and Evolution, 2016, 43, 307-311.	1.0	4
2345	The role of the gut microbiota in NAFLD. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 412-425.	8.2	728

		CITATION REPORT		
#	Article		IF	CITATIONS
2346	Grapes and Gastrointestinal Health: Implications with Intestinal and Systemic Diseases	., 2016, , 119-138.		1
2347	The intestinal microbiome and surgical disease. Current Problems in Surgery, 2016, 53	, 257-293.	0.6	24
2348	The gut microbiome as a virtual endocrine organ with implications for farm and domes endocrinology. Domestic Animal Endocrinology, 2016, 56, S44-S55.	tic animal	0.8	42
2349	A 52-week safety study in cynomolgus macaques for genetically modified rice expressi protein. Food and Chemical Toxicology, 2016, 95, 1-11.	ng Cry1Ab/1Ac	1.8	18
2350	The Future of Vascular Biology and Medicine. Circulation, 2016, 133, 2603-2609.		1.6	16
2351	The Potential Role of Yogurt in Weight Management and Prevention of Type 2 Diabete American College of Nutrition, 2016, 35, 717-731.	rs. Journal of the	1.1	47
2352	New insights into therapeutic strategies for gut microbiota modulation in inflammator Clinical and Translational Immunology, 2016, 5, e87.	y diseases.	1.7	85
2353	The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms interventions. Nature Reviews Rheumatology, 2016, 12, 446-455.	and	3.5	112
2354	Grapes and Health. , 2016, , .			8
2355	Importance of the fat content within the cheese-matrix for blood lipid profile, faecal fa and gut microbiome in growing pigs. International Dairy Journal, 2016, 61, 67-75.	t excretion,	1.5	15
2356	Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide International Journal of Biological Macromolecules, 2016, 89, 489-498.		3.6	68
2357	Intestinal Dysbiosis Contributes to the Delayed Gastrointestinal Transit in High-Fat Die Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 328-339.	t Fed Mice.	2.3	101
2358	Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology 283-293.	y, 2016, 31,	1.6	463
2359	Low-Density Lipoprotein Receptor Signaling Mediates the Triglyceride-Lowering Action <i>Akkermansia muciniphila</i> in Genetic-Induced Hyperlipidemia. Arteriosclerosis, Th Vascular Biology, 2016, 36, 1448-1456.	of nrombosis, and	1.1	60
2360	Effect of yeast supplementation on hindgut microbiota and digestibility of horses subj abrupt change of hays. Livestock Science, 2016, 186, 34-40.	ected to an	0.6	12
2361	Analysis of the rumen bacteria and methanogenic archaea of yak (Bos grunniens) stee Qinghai-Tibetan Plateau. Livestock Science, 2016, 188, 61-71.	rs grazing on the	0.6	66
2362	The Gastrointestinal Tract: an Initial Organ of Metabolic Hypertension?. Cellular Physio Biochemistry, 2016, 38, 1681-1694.	logy and	1.1	33
2363	Caenorhabditis elegans susceptibility to gut Enterococcus faecalis infection is associat metabolism and epithelial junction integrity. BMC Microbiology, 2016, 16, 6.	ted with fat	1.3	43

	CHATON	REPORT	
#	Article	IF	CITATIONS
2364	Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiology, 2016, 16, 33.	1.3	78
2365	Antibiotics, obesity and the link to microbes - what are we doing to our children?. BMC Medicine, 2016, 14, 57.	2.3	103
2366	Deep-fried oil consumption in rats impairs glycerolipid metabolism, gut histology and microbiota structure. Lipids in Health and Disease, 2016, 15, 86.	1.2	38
2367	The obese gut microbiome across the epidemiologic transition. Emerging Themes in Epidemiology, 2016, 13, 2.	1.2	40
2368	Whole genome sequencing of "Faecalibaculum rodentium―ALO17, isolated from C57BL/6J laboratory mouse feces. Gut Pathogens, 2016, 8, 3.	1.6	35
2369	Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains. Microbiome, 2016, 4, 18.	4.9	58
2370	Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metabolism, 2016, 23, 1216-1223.	7.2	274
2371	Crossover Control Study of the Effect of Personal Care Products Containing Triclosan on the Microbiome. MSphere, 2016, 1, .	1.3	62
2373	Consumption of lily bulb modulates fecal ratios of firmicutes and bacteroidetes phyla in rats fed a high-fat diet. Food Science and Biotechnology, 2016, 25, 153-156.	1.2	18
2374	Immunity-Based Evolutionary Interpretation of Diet-Induced Thermogenesis. Cell Metabolism, 2016, 23, 971-979.	7.2	14
2375	Structure and functional characterization of a bile acid 7α dehydratase <scp>B</scp> ai <scp>E</scp> in secondary bile acid synthesis. Proteins: Structure, Function and Bioinformatics, 2016, 84, 316-331.	1.5	35
2376	Bifidobacteria possess inhibitory activity against dipeptidyl peptidase-IV. Letters in Applied Microbiology, 2016, 62, 250-255.	1.0	13
2377	The Liver in Systemic Diseases. , 2016, , .		2
2378	Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology. BioEssays, 2016, 38, 455-464.	1.2	63
2379	Prevention of antibioticâ€associated metabolic syndrome in mice by intestinal alkaline phosphatase. Diabetes, Obesity and Metabolism, 2016, 18, 519-527.	2.2	32
2380	Gut Microbiota and Metabolic Endotoxemia in Young Obese Mexican Subjects. Obesity Facts, 2016, 9, 1-11.	1.6	858
2381	The Gut Epithelial Receptor LRRC19 Promotes the Recruitment of Immune Cells and Gut Inflammation. Cell Reports, 2016, 14, 695-707.	2.9	36
2382	New therapeutic approaches for the treatment of obesity. Science Translational Medicine, 2016, 8, 323rv2.	5.8	78

#	Article	IF	CITATIONS
2383	Fecal microbiota transplantation: in perspective. Therapeutic Advances in Gastroenterology, 2016, 9, 229-239.	1.4	302
2384	Current understanding of metformin effect on the control of hyperglycemia in diabetes. Journal of Endocrinology, 2016, 228, R97-R106.	1.2	162
2385	Mechanism Underlying the Weight Loss and Complications of Roux-en-Y Gastric Bypass. Review. Obesity Surgery, 2016, 26, 410-421.	1.1	127
2386	Extrusion of barley and oat influence the fecal microbiota and SCFA profile of growing pigs. Food and Function, 2016, 7, 1024-1032.	2.1	31
2387	Effects of whey peptide extract on the growth of probiotics and gut microbiota. Journal of Functional Foods, 2016, 21, 507-516.	1.6	52
2388	Can We Prevent Obesity-Related Metabolic Diseases by Dietary Modulation of the Gut Microbiota?. Advances in Nutrition, 2016, 7, 90-101.	2.9	112
2389	Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe, 2016, 38, 50-60.	1.0	93
2390	Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism: Clinical and Experimental, 2016, 65, 48-65.	1.5	145
2391	Lactobacillus sakei OK67 ameliorates high-fat diet–induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutrition Research, 2016, 36, 337-348.	1.3	136
2392	Influences of graphene on microbial community and antibiotic resistance genes in mouse gut as determined by high-throughput sequencing. Chemosphere, 2016, 144, 1306-1312.	4.2	49
2393	Bile Acids, the Microbiome and Metabolic Disease-Implications for Surgery. , 2016, , 81-90.		0
2394	Bile acids synthesis decreases after laparoscopic sleeve gastrectomy. Surgery for Obesity and Related Diseases, 2016, 12, 763-769.	1.0	25
2395	Pancreatic regulation of glucose homeostasis. Experimental and Molecular Medicine, 2016, 48, e219-e219.	3.2	541
2396	Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal Immunology, 2016, 9, 1455-1465.	2.7	130
2397	Obesity and Cancer—Opportunities to Break the Link. Current Breast Cancer Reports, 2016, 8, 22-31.	0.5	5
2398	Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced ChangesÂin Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease. American Journal of Pathology, 2016, 186, 765-776.	1.9	80
2399	Preventing Obesity Across Generations: Evidence for Early Life Intervention. Annual Review of Public Health, 2016, 37, 253-271.	7.6	60
2400	Has provoking microbiota aggression driven the obesity epidemic?. BioEssays, 2016, 38, 122-128.	1.2	31

#	Article	IF	CITATIONS
2401	Can attention to the intestinal microbiota improve understanding and treatment of anorexia nervosa?. Expert Review of Gastroenterology and Hepatology, 2016, 10, 565-569.	1.4	33
2402	The Effects of Bowel Preparation on Microbiota-Related Metrics Differ in Health and in Inflammatory Bowel Disease and for the Mucosal and Luminal Microbiota Compartments. Clinical and Translational Gastroenterology, 2016, 7, e143.	1.3	76
2403	Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration. Journal of Hepatology, 2016, 64, 641-650.	1.8	102
2404	Gut microbiome and metabolic syndrome. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2016, 10, S150-S157.	1.8	147
2405	Effects of Cocoa Husk Feeding on the Composition of Swine Intestinal Microbiota. Journal of Agricultural and Food Chemistry, 2016, 64, 2046-2052.	2.4	46
2406	Obesity, Asthma, and the Microbiome. Physiology, 2016, 31, 108-116.	1.6	26
2407	From pathogens to microbiota: How Drosophila intestinal stem cells react to gut microbes. Developmental and Comparative Immunology, 2016, 64, 22-38.	1.0	79
2408	Metabolic effects of dietary carbohydrates: The importance of food digestion. Food Research International, 2016, 88, 336-341.	2.9	30
2409	Infant Gut Microbiota Development Is Driven by Transition to Family Foods Independent of Maternal Obesity. MSphere, 2016, 1, .	1.3	175
2410	The Role of Probiotics on the Microbiota. Nutrition in Clinical Practice, 2016, 31, 387-400.	1.1	44
2411	The Carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis, 2016, 247, 64-69.	0.4	116
2412	Intestinal microbiota in liver disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 133-142.	1.0	65
2413	Dysbiosis in gastrointestinal disorders. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 3-15.	1.0	86
2414	Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Medicine, 2016, 8, 17.	3.6	219
2416	The Porosity of Autonomy: Social and Biological Constitution of the Patient in Biomedicine. American Journal of Bioethics, 2016, 16, 34-45.	0.5	33
2417	Pathogenesis of NAFLD and NASH. , 2016, , 71-101.		5
2418	In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals. Food and Function, 2016, 7, 1833-1838.	2.1	17
2419	Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro. Food and Function, 2016, 7, 1501-1507.	2.1	77

	Cita	ATION REPORT	
# 2420	ARTICLE Metagenomic Analysis Reveals Dynamic Changes of Whole Gut Microbiota in the Acute Phase of Intensive Care Unit Patients. Digestive Diseases and Sciences, 2016, 61, 1628-1634.	IF 1.1	Citations 173
2421	Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 161-172.	1.0	26
2422	Metabolomics in diabetes, a review. Annals of Medicine, 2016, 48, 89-102.	1.5	93
2423	Chitosan lowers body weight through intestinal microbiota and reduces IL-17 expression via mTOR signalling. Journal of Functional Foods, 2016, 22, 166-176.	1.6	31
2424	Exploring and Understanding the Biochemical Diversity of the Human Microbiota. Cell Chemical Biology, 2016, 23, 18-30.	2.5	115
2425	Nutraceuticals for body-weight management: The role of green tea catechins. Physiology and Behavior, 2016, 162, 83-87.	1.0	41
2426	The Bladder Is Not Sterile: History and Current Discoveries on the Urinary Microbiome. Current Bladder Dysfunction Reports, 2016, 11, 18-24.	0.2	122
2427	The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus arctos. Cell Reports, 2016, 14, 1655-1661.	2.9	290
2428	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2016, , 447-459.		4
2429	Probiotics in prevention and treatment of obesity: a critical view. Nutrition and Metabolism, 2016, 13, 14.	1.3	235
2430	Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns. Cell Reports, 2016, 14, 2142-2153.	2.9	231
2431	Gut microbiota, obesity and diabetes. Postgraduate Medical Journal, 2016, 92, 286-300.	0.9	377
2432	Clinical implications of antibiotic impact on gastrointestinal microbiota and <i>Clostridium difficile</i> infection. Expert Review of Gastroenterology and Hepatology, 2016, 10, 1145-1152.	1.4	30
2433	Exploring the Microbiome in Heart Failure. Current Heart Failure Reports, 2016, 13, 103-109.	1.3	67
2434	Structures, isolation and health-promoting properties of pectic polysaccharides from cell wall-rich food by-products: a source of functional ingredients. Current Opinion in Food Science, 2016, 8, 50-55.	4.1	11
2435	Obesity-Dependent Increases in Oocyte mRNAs Are Associated With Increases in Proinflammatory Signaling and Gut Microbial Abundance of Lachnospiraceae in Female Mice. Endocrinology, 2016, 157, 1630-1643.	1.4	43
2436	Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020.	1.0	419
2437	Aflatoxin B ₁ Induced Compositional Changes in Gut Microbial Communities of Male F344 Rats. Toxicological Sciences, 2016, 150, 54-63.	1.4	78

#	Article	IF	CITATIONS
2438	Does the intestinal microbial community of Korean Crohn's disease patients differ from that of western patients?. BMC Gastroenterology, 2016, 16, 28.	0.8	36
2439	Resistant potato starches (type 4 RS) exhibit varying effects on laxation with and without phylum level changes in microbiota: A randomised trial in young adults. Journal of Functional Foods, 2016, 23, 1-11.	1.6	14
2440	Obesity and Asthma: Microbiome–Metabolome Interactions. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 609-617.	1.4	73
2441	Changes in the Intestinal Microbiome and Alcoholic and Nonalcoholic Liver Diseases: Causes or Effects?. Gastroenterology, 2016, 150, 1745-1755.e3.	0.6	104
2442	Characterization of the gut microbiome in epidemiologic studies: the multiethnic cohort experience. Annals of Epidemiology, 2016, 26, 373-379.	0.9	42
2443	Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes, 2016, 7, 101-114.	4.3	107
2444	Perinatal Lead Exposure Alters Gut Microbiota Composition and Results in Sex-specific Bodyweight Increases in Adult Mice. Toxicological Sciences, 2016, 151, 324-333.	1.4	113
2445	Role of the microbiome in the normal and aberrant glycemic response. Clinical Nutrition Experimental, 2016, 6, 59-73.	2.0	29
2446	Duodenal-Jejunal Bypass Preferentially Elevates Serum Taurine-Conjugated Bile Acids and Alters Gut Microbiota in a Diabetic Rat Model. Obesity Surgery, 2016, 26, 1890-1899.	1.1	26
2447	Composition and stability of intestinal microbiota of healthy children within a Dutch population. FASEB Journal, 2016, 30, 1512-1522.	0.2	45
2448	Influence of Gut Microbiota on Hepatic Lipogenesis and Disease Pathogenesis. , 2016, , 189-209.		1
2449	The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clinics in Liver Disease, 2016, 20, 225-243.	1.0	85
2450	Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota. Journal of Proteome Research, 2016, 15, 563-571.	1.8	20
2451	Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?. Journal of Ethnopharmacology, 2016, 179, 253-264.	2.0	147
2452	Hepatic De Novo Lipogenesis and Regulation of Metabolism. , 2016, , .		7
2453	Marine-derived bioactive compounds with anti-obesity effect: A review. Journal of Functional Foods, 2016, 21, 372-387.	1.6	60
2454	Cardiovascular benefits of probiotics: a review of experimental and clinical studies. Food and Function, 2016, 7, 632-642.	2.1	105
2455	Regulation of metabolism by the innate immune system. Nature Reviews Endocrinology, 2016, 12, 15-28.	4.3	502

#	Article	IF	CITATIONS
2456	Carriage of Enterobacteria Producing Extended-Spectrum Î ² -Lactamases and Composition of the Gut Microbiota in an Amerindian Community. Antimicrobial Agents and Chemotherapy, 2016, 60, 507-514.	1.4	37
2457	Regulation of energy balance by a gut–brain axis and involvement of the gut microbiota. Cellular and Molecular Life Sciences, 2016, 73, 737-755.	2.4	156
2458	Duodenojejunal Bypass Leads to Altered Gut Microbiota and Strengthened Epithelial Barriers in Rats. Obesity Surgery, 2016, 26, 1576-1583.	1.1	23
2459	The effect of microbial colonization on the host proteome varies by gastrointestinal location. ISME Journal, 2016, 10, 1170-1181.	4.4	29
2460	The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food and Function, 2016, 7, 1769-1774.	2.1	91
2461	Gut Commensal E.Âcoli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth. Cell Metabolism, 2016, 23, 324-334.	7.2	236
2463	Probiotics and Prebiotics for Promoting Health. , 2016, , 75-85.		8
2464	Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME Journal, 2016, 10, 1002-1014.	4.4	104
2465	Fermentation of bioactive solid lipid nanoparticles by human gut microflora. Food and Function, 2016, 7, 516-529.	2.1	31
2466	Genetics of Human Obesity. , 2016, , 87-106.		0
2467	Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 2016, 14, 20-32.	13.6	1,772
2468	Antibiotic use and childhood body mass index trajectory. International Journal of Obesity, 2016, 40, 615-621.	1.6	71
2469	Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma. Seminars in Oncology, 2016, 43, 86-96.	0.8	37
2470	Effects of Maternal Obesity on Fetal Programming: Molecular Approaches. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026591.	2.9	71
2471	The microbiome and its potential as a cancer preventive intervention. Seminars in Oncology, 2016, 43, 97-106.	0.8	102
2472	The gut microbiota and host health: a new clinical frontier. Gut, 2016, 65, 330-339.	6.1	1,719
2473	Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology, 2016, 63, 217-227.	1.3	247
2474	Intestinal microbes influence the survival, reproduction and protein profile of Trichinella spiralis in vitro. International Journal for Parasitology, 2016, 46, 51-58.	1.3	11

#	Article	IF	CITATIONS
2476	Gut microbiota and obesity. Cellular and Molecular Life Sciences, 2016, 73, 147-162.	2.4	383
2477	Digestibility and prebiotic properties of potato rhamnogalacturonan I polysaccharide and its galactose-rich oligosaccharides/oligomers. Carbohydrate Polymers, 2016, 136, 1074-1084.	5.1	79
2478	Relationship Between Microbiota of the Colonic Mucosa vs Feces and Symptoms, Colonic Transit, and Methane Production in Female Patients With Chronic Constipation. Gastroenterology, 2016, 150, 367-379.e1.	0.6	286
2479	Nutritional modulation of gut microbiota — the impact on metabolic disease pathophysiology. Journal of Nutritional Biochemistry, 2016, 28, 191-200.	1.9	77
2480	A comparison of the nutritional status between adult celiac patients on a long-term, strictly gluten-free diet and healthy subjects. European Journal of Clinical Nutrition, 2016, 70, 23-27.	1.3	76
2481	Composition and temporal stability of the gut microbiota in older persons. ISME Journal, 2016, 10, 170-182.	4.4	305
2482	Metabolic endotoxemia with obesity: Is it real and is it relevant?. Biochimie, 2016, 124, 11-20.	1.3	291
2483	Regulation of body fat mass by the gut microbiota: Possible mediation by the brain. Peptides, 2016, 77, 54-59.	1.2	20
2484	Evidence for the effects of yogurt on gut health and obesity. Critical Reviews in Food Science and Nutrition, 2017, 57, 1569-1583.	5.4	95
2485	A role for whey-derived lactoferrin and immunoglobulins in the attenuation of obesity-related inflammation and disease. Critical Reviews in Food Science and Nutrition, 2017, 57, 1593-1602.	5.4	21
2486	Microbiota-induced obesity requires farnesoid X receptor. Gut, 2017, 66, 429-437.	6.1	355
2487	Microbiota manipulation for weight change. Microbial Pathogenesis, 2017, 106, 146-161.	1.3	63
2488	Metabolic role of lactobacilli in weight modification in humans and animals. Microbial Pathogenesis, 2017, 106, 182-194.	1.3	85
2489	Samples and techniques highlighting the links between obesity and microbiota. Microbial Pathogenesis, 2017, 106, 119-126.	1.3	15
2490	Gut microbiota and malnutrition. Microbial Pathogenesis, 2017, 106, 127-138.	1.3	173
2491	Gut microbiota-bone axis. Critical Reviews in Food Science and Nutrition, 2017, 57, 1664-1672.	5.4	72
2492	Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Molecular Nutrition and Food Research, 2017, 61, 1600186.	1.5	98
2493	Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome. Neuropsychopharmacology, 2017, 42, 178-192.	2.8	174

	CITATION	Report	
#	Article	IF	CITATIONS
2494	Repertoire of human gut microbes. Microbial Pathogenesis, 2017, 106, 103-112.	1.3	70
2495	Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molecular Nutrition and Food Research, 2017, 61, 1500902.	1.5	194
2496	Complex Pharmacology of Free Fatty Acid Receptors. Chemical Reviews, 2017, 117, 67-110.	23.0	209
2497	Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunology, 2017, 10, 104-116.	2.7	310
2498	Cancer metabolism: a therapeutic perspective. Nature Reviews Clinical Oncology, 2017, 14, 11-31.	12.5	1,028
2499	Relative Abundance in Bacterial and Fungal Gut Microbes in Obese Children: A Case Control Study. Childhood Obesity, 2017, 13, 78-84.	0.8	65
2500	Assessing the Colonic Microbiota in Children. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 230-237.	0.9	8
2501	Young microbes for adult obesity. Pediatric Obesity, 2017, 12, e28-e32.	1.4	15
2502	Sample preparation optimization in fecal metabolic profiling. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1047, 115-123.	1.2	62
2503	Maternal exposure to a Westernâ€style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups. Molecular Nutrition and Food Research, 2017, 61, 1600141.	1.5	33
2504	Alternating or continuous exposure to cafeteria diet leads to similar shifts in gut microbiota compared to chow diet. Molecular Nutrition and Food Research, 2017, 61, 1500815.	1.5	21
2505	Increasing dietary nitrate has no effect on cancellous bone loss or fecal microbiome in ovariectomized rats. Molecular Nutrition and Food Research, 2017, 61, 1600372.	1.5	19
2506	Insights into resource consumption, cross-feeding, system collapse, stability and biodiversity from an artificial ecosystem. Journal of the Royal Society Interface, 2017, 14, 20160816.	1.5	7
2507	Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules, 2017, 97, 536-543.	3.6	145
2508	Western diets, gut dysbiosis, and metabolic diseases: Are they linked?. Gut Microbes, 2017, 8, 130-142.	4.3	177
2509	Enteric glial reactivity to systemic LPS administration: Changes in GFAP and S100B protein. Neuroscience Research, 2017, 119, 15-23.	1.0	17
2510	Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food and Function, 2017, 8, 437-443.	2.1	35
2511	Health Benefits of Fiber Fermentation. Journal of the American College of Nutrition, 2017, 36, 127-136.	1.1	39

#	Article	IF	CITATIONS
2512	Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. Journal of Dairy Science, 2017, 100, 2471-2481.	1.4	64
2513	Fermented green tea extract exhibits hypolipidaemic effects through the inhibition of pancreatic lipase and promotion of energy expenditure. British Journal of Nutrition, 2017, 117, 177-186.	1.2	37
2514	Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases. Clinical and Translational Immunology, 2017, 6, e125.	1.7	90
2515	Intestinal Proportion of <i>Blautia</i> sp. is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer. Nutrition and Cancer, 2017, 69, 267-275.	0.9	124
2516	<i>Roseburia</i> spp.: a marker of health?. Future Microbiology, 2017, 12, 157-170.	1.0	483
2517	Characterization of faecal microbial communities of dairy cows fed diets containing ensiled Moringa oleifera fodder. Scientific Reports, 2017, 7, 41403.	1.6	21
2518	Personalized microbiomeâ€based approaches to metabolic syndrome management and prevention. Journal of Diabetes, 2017, 9, 226-236.	0.8	39
2519	Gut Microbiota and Complications of Liver Disease. Gastroenterology Clinics of North America, 2017, 46, 155-169.	1.0	73
2520	Fecal Microbiota Transplantation. Gastroenterology Clinics of North America, 2017, 46, 171-185.	1.0	161
2521	Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Medicine, 2017, 15, 7.	2.3	170
2522	Historical Perspective on the Rise and Fall and Rise of Antibiotics and Human Weight Gain. Annals of Internal Medicine, 2017, 166, 133.	2.0	18
2523	The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes, 2017, 8, 351-358.	4.3	136
2524	Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice. Applied and Environmental Microbiology, 2017, 83, .	1.4	96
2525	Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions. MBio, 2017, 8, .	1.8	122
2526	Optimisation of methods for bacterial skin microbiome investigation: primer selection and comparison of the 454 versus MiSeq platform. BMC Microbiology, 2017, 17, 23.	1.3	133
2527	Target Intestinal Microbiota to Alleviate Disease Progression in Amyotrophic Lateral Sclerosis. Clinical Therapeutics, 2017, 39, 322-336.	1.1	182
2528	Metabolic Phenotyping of Diet and Dietary Intake. Advances in Food and Nutrition Research, 2017, 81, 231-270.	1.5	9
2529	The microbiome and systemic lupus erythematosus. Immunologic Research, 2017, 65, 432-437.	1.3	53

#	Article	IF	CITATIONS
2530	Microbiome and Cardiac Health. , 2017, , 67-97.		0
2531	Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity. Cancer Discovery, 2017, 7, 522-538.	7.7	321
2532	Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Current Diabetes Reports, 2017, 17, 16.	1.7	136
2533	Circulating NOD1 Activators and Hematopoietic NOD1 Contribute to Metabolic Inflammation and Insulin Resistance. Cell Reports, 2017, 18, 2415-2426.	2.9	70
2534	Microbes and Diet-Induced Obesity: Fast, Cheap, and Out of Control. Cell Host and Microbe, 2017, 21, 278-281.	5.1	61
2535	A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats. Journal of Applied Microbiology, 2017, 122, 1627-1638.	1.4	31
2536	Can lentil (Lens culinaris Medikus) reduce the risk of obesity?. Journal of Functional Foods, 2017, 38, 706-715.	1.6	17
2537	Consumption of a diet rich in <i>Brassica </i> vegetables is associated with a reduced abundance of sulphate-reducing bacteria: A randomised crossover study. Molecular Nutrition and Food Research, 2017, 61, 1600992.	1.5	54
2539	Gut-Specific Delivery of T-Helper 17 Cells Reduces Obesity andÂInsulin Resistance in Mice. Gastroenterology, 2017, 152, 1998-2010.	0.6	85
2540	Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: linking gut microbiota and growth performance in chickens. Applied Microbiology and Biotechnology, 2017, 101, 4547-4559.	1.7	85
2541	The bovine colostrum microbiome and its association with clinical mastitis. Journal of Dairy Science, 2017, 100, 3031-3042.	1.4	76
2542	Effects of several in-feed antibiotic combinations on the abundance and diversity of fecal microbes in weaned pigs. Canadian Journal of Microbiology, 2017, 63, 402-410.	0.8	14
2543	Diet affects arctic ground squirrel gut microbial metatranscriptome independent of community structure. Environmental Microbiology, 2017, 19, 1518-1535.	1.8	17
2544	Oneâ€year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents. Environmental Microbiology, 2017, 19, 1536-1551.	1.8	54
2545	ls chronic rhinosinusitis an infectious disease? Insights from a microbiota metaâ€analysis. Environmental Microbiology, 2017, 19, 1359-1362.	1.8	0
2546	Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota. Digestive Diseases, 2017, 35, 169-177.	0.8	84
2547	Functional gene profiling through metaRNAseq approach reveals diet-dependent variation in rumen microbiota of buffalo (Bubalus bubalis). Anaerobe, 2017, 44, 106-116.	1.0	13
2548	The microbiome of the antâ€built home: the microbial communities of a tropical arboreal ant and its nest. Ecosphere, 2017, 8, e01639.	1.0	31

#	Article	IF	CITATIONS
2549	Impact of Bariatric Surgery on Metabolic and Gut Microbiota Profile: a Systematic Review and Meta-analysis. Obesity Surgery, 2017, 27, 1345-1357.	1.1	126
2550	Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: targeted and untargeted community analysis with correlation of biomarkers. Journal of Nutritional Biochemistry, 2017, 44, 35-43.	1.9	128
2551	Role of the microbiome in swine respiratory disease. Veterinary Microbiology, 2017, 209, 97-106.	0.8	87
2552	A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Scientific Reports, 2017, 7, 43522.	1.6	150
2553	Food and Industrial Grade Titanium Dioxide Impacts Gut Microbiota. Environmental Engineering Science, 2017, 34, 537-550.	0.8	41
2554	The obesity paradox: validity and clinical implications. Current Pulmonology Reports, 2017, 6, 58-63.	0.5	1
2555	Diets link metabolic syndrome and colorectal cancer development. Oncology Reports, 2017, 37, 1312-1320.	1.2	20
2556	Elimination diets' efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. European Child and Adolescent Psychiatry, 2017, 26, 1067-1079.	2.8	53
2557	Melatonin prevents obesity through modulation of gut microbiota in mice. Journal of Pineal Research, 2017, 62, e12399.	3.4	219
2558	Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, 15, 73.	1.8	1,714
2559	Safety of <i>Bifidobacterium animalis</i> Subsp. <i>Lactis</i> (<i>B. lactis</i>) Strain BBâ€12â€5upplemented Yogurt in Healthy Children. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 302-309.	0.9	15
2560	High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome, 2017, 5, 43.	4.9	132
2562	Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai-Tibetan Plateau. Systematic and Applied Microbiology, 2017, 40, 227-236.	1.2	61
2563	Consuming fermented distillers' dried grains with solubles (DDCS) feed reveals a shift in the faecal microbiota of growing and fattening pigs using 454 pyrosequencing. Journal of Integrative Agriculture, 2017, 16, 900-910.	1.7	38
2564	Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Scientific Reports, 2017, 7, 826.	1.6	43
2565	Flaxseed- and Buckwheat-Supplemented Diets Altered <i>Enterobacteriaceae</i> Diversity and Prevalence in the Cecum and Feces of Obese Mice. Journal of Dietary Supplements, 2017, 14, 667-678.	1.4	16
2566	The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Review of Endocrinology and Metabolism, 2017, 12, 215-226.	1.2	30
2567	Extracellular Vesicles in Metabolic Syndrome. Circulation Research, 2017, 120, 1674-1686.	2.0	122

#	Article	IF	CITATIONS
2568	Body mass index and physical activity and the risk of diverticular disease: a systematic review and meta-analysis of prospective studies. European Journal of Nutrition, 2017, 56, 2423-2438.	1.8	63
2569	Contribution of anthocyaninâ€rich foods in obesity control through gut microbiota interactions. BioFactors, 2017, 43, 507-516.	2.6	114
2570	Effects of potato dextrin on the composition and metabolism of the gut microbiota in rats fed standard and high-fat diets. Journal of Functional Foods, 2017, 34, 398-407.	1.6	23
2571	Multi-omics approaches to disease. Genome Biology, 2017, 18, 83.	3.8	1,439
2572	Perspective: A Historical and Scientific Perspective of Sugar and Its Relation with Obesity and Diabetes. Advances in Nutrition, 2017, 8, 412-422.	2.9	112
2573	Structural modulation of gut microbiota in Bama minipigs in response to treatment with a "growth-promoting agentâ€; salbutamol. Applied Microbiology and Biotechnology, 2017, 101, 5809-5818.	1.7	7
2574	The role of the microbiome in cancer development and therapy. Ca-A Cancer Journal for Clinicians, 2017, 67, 326-344.	157.7	447
2575	Host Genome Influence on Gut Microbial Composition and Microbial Prediction of Complex Traits in Pigs. Genetics, 2017, 206, 1637-1644.	1.2	129
2576	Some current applications, limitations and future perspectives of lactic acid bacteria as probiotics. Food and Nutrition Research, 2017, 61, 1318034.	1.2	125
2577	The Role of the Skin and Gut Microbiome in Psoriatic Disease. Current Dermatology Reports, 2017, 6, 94-103.	1.1	99
2578	The Shifting Microbiome in Surgical Stress. Current Surgery Reports, 2017, 5, 1.	0.4	4
2579	Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome, 2017, 5, 49.	4.9	228
2580	Review of mechanisms of deoxynivalenolâ€induced anorexia: The role of gut microbiota. Journal of Applied Toxicology, 2017, 37, 1021-1029.	1.4	33
2581	Interaction between the gut microbiome and mucosal immune system. Military Medical Research, 2017, 4, 14.	1.9	399
2582	Gut microbiota — at the intersection of everything?. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 321-322.	8.2	119
2583	Study protocol on the role of intestinal microbiota in colorectal cancer treatment: a pathway to personalized medicine 2.0. International Journal of Colorectal Disease, 2017, 32, 1077-1084.	1.0	30
2584	Polysaccharide and phlorotannin-enriched extracts of the brown seaweed Ecklonia radiata influence human gut microbiota and fermentation in vitro. Journal of Applied Phycology, 2017, 29, 2407-2416.	1.5	45
2585	The prenatal gut microbiome: are we colonized with bacteria <i>in utero</i> ?. Pediatric Obesity, 2017, 12, 3-17.	1.4	211

#	Article	IF	Citations
2586	Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. Journal of	1.7	267
	Molecular Medicine, 2017, 95, 1-8.		
2587	Early-Life Sugar Consumption Affects the Rat Microbiome Independently of Obesity. Journal of Nutrition, 2017, 147, 20-28.	1.3	93
2588	In vitro and in vivo evaluation of the probiotic attributes of Lactobacillus kefiranofaciens XL10 isolated from Tibetan kefir grain. Applied Microbiology and Biotechnology, 2017, 101, 2467-2477.	1.7	31
2589	Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models. Digestive Diseases and Sciences, 2017, 62, 396-406.	1.1	42
2590	Consensus report: faecal microbiota transfer – clinical applications and procedures. Alimentary Pharmacology and Therapeutics, 2017, 45, 222-239.	1.9	95
2591	Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 2017, 26, 110-130.	7.2	572
2592	Immunosuppressive Treatment Alters Secretion of Ileal Antimicrobial Peptides and Gut Microbiota, and Favors Subsequent Colonization by Uropathogenic Escherichia coli. Transplantation, 2017, 101, 74-82.	0.5	85
2593	Yogurt and Diabetes: Overview of Recent Observational Studies. Journal of Nutrition, 2017, 147, 1452S-1461S.	1.3	59
2594	Changes in faecal bacteria during fattening in finishing swine. Anaerobe, 2017, 47, 188-193.	1.0	12
2595	The resilience of the intestinal microbiota influences health and disease. Nature Reviews Microbiology, 2017, 15, 630-638.	13.6	696
2596	Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine, 2017, 23, 859-868.	15.2	1,074
2597	Weightâ€loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obesity Reviews, 2017, 18, 832-851.	3.1	161
2598	Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Applied Microbiology and Biotechnology, 2017, 101, 5903-5911.	1.7	67
2599	Improved detection of gene-microbe interactions in the mouse skin microbiota using high-resolution QTL mapping of 16S rRNA transcripts. Microbiome, 2017, 5, 59.	4.9	30
2600	In vitro modulation of gut microbiota by whey protein to preserve intestinal health. Food and Function, 2017, 8, 3053-3063.	2.1	55
2601	Adaptation of gut microbiome to different dietary nonstarch polysaccharide fractions in a porcine model. Molecular Nutrition and Food Research, 2017, 61, 1700012.	1.5	32
2602	Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women. European Journal of Clinical Nutrition, 2017, 71, 1040-1045.	1.3	103
2603	Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6438-6443.	3.3	125

		CITATION REF	PORT	
#	Article		IF	CITATIONS
2604	The Microbiota-Obesity Connection, Part 2. Holistic Nursing Practice, 2017, 31, 204-209.		0.3	0
2605	Optimizing methods and dodging pitfalls in microbiome research. Microbiome, 2017, 5, 5	52.	4.9	420
2606	An Official American Thoracic Society Workshop Report: Obesity and Metabolism. An Em Frontier in Lung Health and Disease. Annals of the American Thoracic Society, 2017, 14, 2		1.5	45
2607	High-throughput sequencing analyses of oral microbial diversity in healthy people and pa dental caries and periodontal disease. Molecular Medicine Reports, 2017, 16, 127-132.	tients with	1.1	33
2608	Metabolomic studies on the systemic responses of mice with oxidative stress induced by oxidized tyrosine administration. RSC Advances, 2017, 7, 28591-28605.	short-term	1.7	16
2609	The microbiome and hepatobiliary-pancreatic cancers. Cancer Letters, 2017, 402, 9-15.		3.2	105
2610	Faecal microbiota transplantation: Where did it start? What have studies taught us? Whe going?. SAGE Open Medicine, 2017, 5, 205031211770871.	ere is it	0.7	8
2611	Impact of high-fat diet on the intestinal microbiota and small intestinal physiology before the onset of obesity. Biochimie, 2017, 141, 97-106.	and after	1.3	196
2612	Blockade of interleukin-6 receptor in the periphery promotes rapid and sustained antidep actions: a possible role of gut–microbiota–brain axis. Translational Psychiatry, 2017,	ressant 7, e1138-e1138.	2.4	129
2613	Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both a microbiota of healthy, young men. British Journal of Nutrition, 2017, 117, 1312-1322.	ter the gut	1.2	81
2614	The Gut Metagenome Changes in Parallel to Waist Circumference, Brain Iron Deposition, Function. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2962-2973.	and Cognitive	1.8	40
2615	Microbiome and NAFLD: potential influence of aerobic fitness and lifestyle modification. I Genomics, 2017, 49, 385-399.	Physiological	1.0	31
2616	Review of the gut microbiome and esophageal cancer: Pathogenesis and potential clinica Annals of Gastroenterological Surgery, 2017, 1, 99-104.	l implications.	1.2	94
2617	On phagocytes and macular degeneration. Progress in Retinal and Eye Research, 2017, 6	1, 98-128.	7.3	121
2618	Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on the fecal bacter community composition in finishing steers. BMC Microbiology, 2017, 17, 97.	al	1.3	26
2619	Dynamics of Bile Acid Profiles, GLP-1, and FGF19 After Laparoscopic Gastric Banding. Jour Endocrinology and Metabolism, 2017, 102, 2974-2984.	nal of Clinical	1.8	24
2620	Flavanol plasma bioavailability is affected by metabolic syndrome in rats. Food Chemistry 287-294.	, 2017, 231,	4.2	21
2621	Multilevel Research: Exploring Natural Roots of Socio-Economic Organizations. , 2017, , 7	77-109.		0

		CITATION RE	PORT	
# 2622	ARTICLE The Gut Microbiota and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 5	8, 1-15.	IF 1.2	CITATIONS
2623	Cells of the Immune System. Molecular and Integrative Toxicology, 2017, , 95-201.		0.5	1
2624	Evaluation of Potential Probiotics Isolated from Human Milk and Colostrum. Probiotics a Antimicrobial Proteins, 2017, 9, 371-379.	ind	1.9	79
2625	Correlation between early-life regulation of the immune system by microbiota and allerg development. Journal of Allergy and Clinical Immunology, 2017, 139, 1084-1091.	у	1.5	100
2626	Developmental origins of type 2 diabetes: a perspective from China. European Journal of Nutrition, 2017, 71, 870-880.	[:] Clinical	1.3	18
2627	Microbiota Plays a Key Role in Non-Steroidal Anti-Inflammatory Drug-Induced Small Integ Digestion, 2017, 95, 22-28.	stinal Damage.	1.2	79
2628	Pasture flock chicken cecal microbiome responses to prebiotics and plum fiber feed ame Poultry Science, 2017, 96, 1820-1830.	ndments.	1.5	29
2630	Early-Life Antibiotic Exposure, Gut Microbiota Development, and Predisposition to Obesi Nutrition Institute Workshop Series, 2017, 88, 67-80.	ty. Nestle	1.5	32
2631	Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. Journal of Nutrit 727-745.	:ion, 2017, 147,	1.3	280
2632	Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxic	cology, 2017, , .	0.5	1
2633	Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Science 2959-2977.	ces, 2017, 74,	2.4	401
2634	Gastrointestinal Tract: a Promising Target for the Management of Hypertension. Current Hypertension Reports, 2017, 19, 31.		1.5	7
2635	The Human Microbiota in Health and Disease. Engineering, 2017, 3, 71-82.		3.2	583
2636	Gut Microbiota in Cardiovascular Health and Disease. Circulation Research, 2017, 120, 1	.183-1196.	2.0	1,079
2637	The effects of probiotic and synbiotic supplementation on metabolic syndrome indices i of type 2 diabetes: study protocol for a randomized controlled trial. Trials, 2017, 18, 148		0.7	25
2638	Maternal and Perinatal Exposures Are Associated With Risk for Pediatric-Onset Multiple Pediatrics, 2017, 139, e20162838.	Sclerosis.	1.0	40
2639	Gut microbiome diversity and high-fibre intake are related to lower long-term weight gai International Journal of Obesity, 2017, 41, 1099-1105.	n.	1.6	268
2640	Donor Considerations in Fecal Microbiota Transplantation. Current Gastroenterology Re 19, 10.	ports, 2017,	1.1	21

#	Article	IF	Citations
2641	The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Research, 2017, 77, 1783-1812.	0.4	270
2642	The Gut Microbiome, Obesity, and Weight Control in Women's Reproductive Health. Western Journal of Nursing Research, 2017, 39, 1094-1119.	0.6	12
2643	Rice- or pork-based diets with similar calorie and content result in different rat gut microbiota. International Journal of Food Sciences and Nutrition, 2017, 68, 829-839.	1.3	4
2644	High-cholesterol diet does not alter gut microbiota composition in mice. Nutrition and Metabolism, 2017, 14, 15.	1.3	36
2645	A Systematic Review of Obesity Disparities Research. American Journal of Preventive Medicine, 2017, 53, 113-122.	1.6	34
2646	Metabolic phenotyping for discovery of urinary biomarkers of diet, xenobiotics and blood pressure in the INTERMAP Study: an overview. Hypertension Research, 2017, 40, 336-345.	1.5	14
2647	The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Research International, 2017, 92, 9-16.	2.9	117
2648	Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain, Behavior, and Immunity, 2017, 64, 33-49.	2.0	85
2649	Microbiome, growth retardation and metabolism: are they related?. Annals of Human Biology, 2017, 44, 201-207.	0.4	22
2650	Comparative analysis of the gut microbiota of black bears in China using high-throughput sequencing. Molecular Genetics and Genomics, 2017, 292, 407-414.	1.0	95
2651	A case study: Using microbial abundance data to mathematically calculate organic acid production by human faecal microbiota within an in vitro batch fermentation. Bioactive Carbohydrates and Dietary Fibre, 2017, 9, 28-38.	1.5	2
2652	Bacterioplankton community responses to key environmental variables in plateau freshwater lake ecosystems: A structural equation modeling and change point analysis. Science of the Total Environment, 2017, 580, 457-467.	3.9	27
2653	Understanding the Molecular Mechanisms of the Interplay Between Herbal Medicines and Gut Microbiota. Medicinal Research Reviews, 2017, 37, 1140-1185.	5.0	241
2654	Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food and Function, 2017, 8, 680-686.	2.1	50
2655	The subgingival microbiome, systemic inflammation and insulin resistance: The Oral Infections, Glucose Intolerance and Insulin Resistance Study. Journal of Clinical Periodontology, 2017, 44, 255-265.	2.3	84
2656	Enterosalivary nitrate metabolism and the microbiome: Intersection of microbial metabolism, nitric oxide and diet in cardiac and pulmonary vascular health. Free Radical Biology and Medicine, 2017, 105, 48-67.	1.3	123
2657	Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. European Journal of Clinical Nutrition, 2017, 71, 953-958.	1.3	65
2658	<i>Lactobacillus plantarum</i> HNU082-derived improvements in the intestinal microbiome prevent the development of hyperlipidaemia. Food and Function, 2017, 8, 4508-4516.	2.1	51

#	Article	IF	CITATIONS
2659	Lactobacillus fermentum FTDC 8312 combats hypercholesterolemia via alteration of gut microbiota. Journal of Biotechnology, 2017, 262, 75-83.	1.9	52
2660	Human microflora, probiotics and wound healing. Wound Medicine, 2017, 19, 33-38.	2.7	46
2661	Effects of obesity, energy restriction and neutering on the faecal microbiota of cats. British Journal of Nutrition, 2017, 118, 513-524.	1.2	27
2662	Abalone Viscera Protein Hydrolysate Modulation of Gut Microbiota in a Mouse Model of Alcohol induced Injury. Journal of Aquatic Food Product Technology, 2017, 26, 880-889.	0.6	1
2663	Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle. Scientific Reports, 2017, 7, 12257.	1.6	136
2664	Gut microbiota composition strongly correlates to peripheral insulin sensitivity in obese men but not in women. Beneficial Microbes, 2017, 8, 557-562.	1.0	19
2665	Relationship Between Exclusive Breastfeeding and Lower Risk of Childhood Obesity: A Narrative Review of Published Evidence. Clinical Medicine Insights Pediatrics, 2017, 11, 117955651769019.	0.7	54
2666	Selective Targeting of Vibrios by Fluorescent Siderophore-Based Probes. ACS Chemical Biology, 2017, 12, 2720-2724.	1.6	11
2667	Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Beneficial Microbes, 2017, 8, 31-53.	1.0	19
2668	Mulberry leaf alleviates streptozotocin-induced diabetic rats by attenuating NEFA signaling and modulating intestinal microflora. Scientific Reports, 2017, 7, 12041.	1.6	59
2669	Characterization of fecal fat composition and gut derived fecal microbiota in high-fat diet fed rats following intervention with chito-oligosaccharide and resistant starch complexes. Food and Function, 2017, 8, 4374-4383.	2.1	55
2670	Clinical Predictors and Natural History of Disease Extension in Patients with Ulcerative Proctitis. Inflammatory Bowel Diseases, 2017, 23, 2035-2041.	0.9	11
2671	The Brazilian Soil Microbiome. , 2017, , 21-39.		2
2672	Human Microbiome in Brazil. , 2017, , 65-86.		0
2673	Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA Journal, 2017, 8, 357-376.	3.3	67
2674	Short-chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease. Future Microbiology, 2017, 12, 1413-1425.	1.0	48
2675	Probiotic strains and mechanistic insights for the treatment of type 2 diabetes. Endocrine, 2017, 58, 207-227.	1.1	33
2676	Safety assessment of transgenic canola RF3 with bar and barstar gene on Sprague-Dawley (SD) rats by 90-day feeding test. Regulatory Toxicology and Pharmacology, 2017, 91, 226-234.	1.3	5

#	Article	IF	CITATIONS
2677	Using murine colitis models to analyze probiotics–host interactions. FEMS Microbiology Reviews, 2017, 41, S49-S70.	3.9	47
2678	Effects of polysaccharide from <i>Physalis alkekengi</i> var. <i>francheti</i> on liver injury and intestinal microflora in type-2 diabetic mice. Pharmaceutical Biology, 2017, 55, 2020-2025.	1.3	20
2679	Gut health benefits of brown seaweed Ecklonia radiata and its polysaccharides demonstrated in vivo in a rat model. Journal of Functional Foods, 2017, 37, 676-684.	1.6	23
2680	Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Increase Bifidobacterium but Reduce Butyrate Producing Bacteria with Adverse Glycemic Metabolism in healthy young population. Scientific Reports, 2017, 7, 11789.	1.6	181
2681	A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids, 2017, 49, 2083-2090.	1.2	227
2682	Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Scientific Reports, 2017, 7, 11745.	1.6	111
2683	The Intestinal Microbiome and Childhood Obesity. Current Pediatrics Reports, 2017, 5, 150-155.	1.7	2
2684	Low <i>Lactobacilli</i> abundance and polymicrobial diversity in the lower reproductive tract of female rhesus monkeys do not compromise their reproductive success. American Journal of Primatology, 2017, 79, e22691.	0.8	4
2685	Predictive and Comparative Network Analysis of the Gut Microbiota in Type 2 Diabetes. , 2017, , .		2
2686	The effects of the Lactobacillus casei strain on obesity in children: a pilot study. Beneficial Microbes, 2017, 8, 535-543.	1.0	49
2687	Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Scientific Reports, 2017, 7, 11955.	1.6	119
2688	Consumption of Two Healthy Dietary Patterns Restored Microbiota Dysbiosis in Obese Patients with Metabolic Dysfunction. Molecular Nutrition and Food Research, 2017, 61, 1700300.	1.5	107
2690	Opportunities for probiotics and polyunsaturated fatty acids to improve metabolic health of overweight pregnant women. Beneficial Microbes, 2017, 8, 3-15.	1.0	5
2691	Correlations of age and growth rate with microbiota composition in Atlantic cod (Gadus morhua) larvae. Scientific Reports, 2017, 7, 8611.	1.6	10
2692	A novel approach for the prediction of species-specific biotransformation of xenobiotic/drug molecules by the human gut microbiota. Scientific Reports, 2017, 7, 9751.	1.6	54
2693	Gut Protozoa: Friends or Foes of the Human Gut Microbiota?. Trends in Parasitology, 2017, 33, 925-934.	1.5	136
2694	Increased microbiome diversity at the time of infection is associated with improved growth rates of pigs after co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). Veterinary Microbiology, 2017, 208, 203-211.	0.8	35
2695	Soy Improves Cardiometabolic Health and Cecal Microbiota in Female Low-Fit Rats. Scientific Reports, 2017, 7, 9261.	1.6	43

#	Article	IF	CITATIONS
2696	Original behavior of L. rhamnosus GG encapsulated in freeze-dried alginate–silica microparticles revealed under simulated gastrointestinal conditions. Journal of Materials Chemistry B, 2017, 5, 7839-7847.	2.9	14
2697	Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats. Nutrition and Cancer, 2017, 69, 943-951.	0.9	82
2698	Intestinal microbiome in scleroderma: recent progress. Current Opinion in Rheumatology, 2017, 29, 553-560.	2.0	34
2699	Hunger and microbiology: is a low gastric acidâ€induced bacterial overgrowth in the small intestine a contributor to malnutrition in developing countries?. Microbial Biotechnology, 2017, 10, 1025-1030.	2.0	20
2700	Inulinâ€ŧype fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Molecular Nutrition and Food Research, 2017, 61, 1700484.	1.5	91
2701	High-protein diet improves sensitivity to cholecystokinin and shifts the cecal microbiome without altering brain inflammation in diet-induced obesity in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R473-R486.	0.9	17
2702	The effect of aspartate supplementation on the microbial composition and innate immunity on mice. Amino Acids, 2017, 49, 2045-2051.	1.2	32
2703	The effect of fiber and prebiotics on children's gastrointestinal disorders and microbiome. Expert Review of Gastroenterology and Hepatology, 2017, 11, 1031-1045.	1.4	54
2704	Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies. Journal of Agricultural and Food Chemistry, 2017, 65, 6957-6971.	2.4	35
2705	Exercise and gut microbiota: clinical implications for the feasibility of Tai Chi. Journal of Integrative Medicine, 2017, 15, 270-281.	1.4	25
2706	Eco-Aging: stem cells and microbes are controlled by aging antagonist FoxO. Current Opinion in Microbiology, 2017, 38, 181-187.	2.3	26
2707	Dysregulated microbiota-gut-brain axis. Nutrition and Food Science, 2017, 47, 648-658.	0.4	4
2708	The colon revisited or the key to wellness, health and disease. Medical Hypotheses, 2017, 108, 133-143.	0.8	18
2709	Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. Journal of Controlled Release, 2017, 262, 273-283.	4.8	58
2710	Endotoxemia-mediated activation of acetyltransferase P300 impairs insulin signaling in obesity. Nature Communications, 2017, 8, 131.	5.8	59
2712	Probiotics and Probiotic Metabolic Product Improved Intestinal Function and Ameliorated LPS-Induced Injury in Rats. Current Microbiology, 2017, 74, 1306-1315.	1.0	23
2713	Impact of dust exposure on mixed bacterial cultures and during eukaryotic cell co-culture infections. Applied Microbiology and Biotechnology, 2017, 101, 7027-7039.	1.7	7
2714	Reproducibility of assessing fecal microbiota in chronic constipation. Neurogastroenterology and Motility, 2017, 29, 1-10.	1.6	14

#	Article	IF	CITATIONS
2715	Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterology, 2017, 4, e000134.	1.1	77
2716	Molecules, Systems and Signaling in Liver Injury. , 2017, , .		0
2717	Gut microbiome and its role in cardiovascular diseases. Current Opinion in Cardiology, 2017, 32, 761-766.	0.8	139
2718	The Impact of Gut Microbiota on Liver Injury. , 2017, , 251-283.		0
2719	Close association between intestinal microbiota and irritable bowel syndrome. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2303-2317.	1.3	16
2720	Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide - Biology and Chemistry, 2017, 70, 9-24.	1.2	61
2721	Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 2017, 41, S129-S153.	3.9	74
2722	Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific Reports, 2017, 7, 7267.	1.6	9
2723	Human growth and the microbiome. Annals of Human Biology, 2017, 44, 487-488.	0.4	0
2724	Chardonnay grape seed flour supplemented diets alter intestinal microbiota in diet-induced obese mice. Journal of Food Biochemistry, 2017, 41, e12396.	1.2	21
2725	A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microbial Ecology in Health and Disease, 2017, 28, 1353881.	3.8	107
2726	Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	0.7	36
2727	Microbial Insights into Asthmatic Immunopathology. A Forward-Looking Synthesis and Commentary. Annals of the American Thoracic Society, 2017, 14, S316-S325.	1.5	5
2728	Changes in the gut microbiota composition and the plasma ghrelin level in patients with <i>Helicobacter pylori-</i> infected patients with eradication therapy. BMJ Open Gastroenterology, 2017, 4, e000182.	1.1	49
2729	Cecal microbiome divergence of broiler chickens by sex and body weight. Journal of Microbiology, 2017, 55, 939-945.	1.3	69
2731	Role of innate lymphoid cells in obesity and metabolic disease (Review). Molecular Medicine Reports, 2018, 17, 1403-1412.	1.1	16
2732	Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in Humans. Archives of Medical Research, 2017, 48, 766-773.	1.5	37
2733	Evaluating the impact of domestication and captivity on the horse gut microbiome. Scientific Reports, 2017, 7, 15497.	1.6	112

		CITATION REPORT		
#	Article		IF	CITATIONS
2734	Non-alcoholic Fatty Liver Disease in Non-obese Patients. Current Hepatology Reports,	2017, 16, 382-390.	0.4	0
2735	Comparison of (R)-ketamine and lanicemine on depression-like phenotype and abnorm gut microbiota in a social defeat stress model. Scientific Reports, 2017, 7, 15725.	al composition of	1.6	102
2736	Brown rice and retrograded brown rice alleviate inflammatory response in dextran sulf (DSS)-induced colitis mice. Food and Function, 2017, 8, 4630-4643.	ate sodium	2.1	30
2737	Gut microbiota composition may relate to weight loss rate in obese pet dogs. Veterina Science, 2017, 3, 252-262.	ry Medicine and	0.6	56
2738	Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontane model of metabolic syndrome. Scientific Reports, 2017, 7, 15876.	eous mouse	1.6	86
2739	Mitochondrial gene polymorphism is associated with gut microbial communities in mic Reports, 2017, 7, 15293.	e. Scientific	1.6	49
2740	Diet, Gut Microbiota, and Colorectal Cancer Prevention: a Review of Potential Mechan Promising Targets for Future Research. Current Colorectal Cancer Reports, 2017, 13, 4		1.0	32
2741	Probiotics in Gut-Bone Signaling. Advances in Experimental Medicine and Biology, 201	7, 1033, 225-247.	0.8	47
2742	Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucos Mice. Cell Reports, 2017, 21, 1521-1533.	e Tolerance in	2.9	177
2744	compuGUT: An in silico platform for simulating intestinal fermentation. SoftwareX, 20	17, 6, 237-242.	1.2	7
2745	Digestion under saliva, simulated gastric and small intestinal conditions and fermentat vitro of polysaccharides from the flowers of <i>Camellia sinensis</i> induced by hu microbiota. Food and Function, 2017, 8, 4619-4629.		2.1	82
2746	Microbiome measurement: Possibilities and pitfalls. Bailliere's Best Practice and Resear Gastroenterology, 2017, 31, 619-623.	rch in Clinical	1.0	7
2747	Gut Microbiota, Nitric Oxide, and Microglia as Prerequisites for Neurodegenerative Dis Chemical Neuroscience, 2017, 8, 1438-1447.	orders. ACS	1.7	141
2748	Obesity and microbiota: an example of an intricate relationship. Genes and Nutrition, 2	2017, 12, 18.	1.2	86
2749	Changes in the fecal microbiota of beef cattle caused by change in management and t virginiamycin as a growth promoter. Research in Veterinary Science, 2017, 114, 355-3		0.9	8
2750	Variability in gut microbiota response to an inulin-type fructan prebiotic within an in vi three-stage continuous colonic model system. Bioactive Carbohydrates and Dietary Fil 26-37.		1.5	11
2751	Nickel-resistant bacteria isolated in human microbiome. New Microbes and New Infect 67-70.	ions, 2017, 19,	0.8	9
2752	Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Micro Composition in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 6	bbiota 5599-6607.	2.4	66

#	Article	IF	CITATIONS
2753	Innate immunity orchestrates adipose tissue homeostasis. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.3	8
2754	Hypothesis testing and statistical analysis of microbiome. Genes and Diseases, 2017, 4, 138-148.	1.5	142
2755	Fecal microbial characterization of hospitalized patients with suspected infectious diarrhea shows significant dysbiosis. Scientific Reports, 2017, 7, 1088.	1.6	30
2756	Modulation of gut microbiota by berberine and decocted Coptis chinensis Franch. in a high-fat diet-induced metabolic syndrome rat model. Journal of Traditional Chinese Medical Sciences, 2017, 4, 149-157.	0.1	2
2757	Preventing subclinical necrotic enteritis through Lactobacillus johnsonii BS15 by ameliorating lipid metabolism and intestinal microflora in broiler chickens. AMB Express, 2017, 7, 139.	1.4	44
2758	Obesity and fatty liver are prevented by inhibition of the aryl hydrocarbon receptor in both female and male mice. Nutrition Research, 2017, 44, 38-50.	1.3	43
2759	Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Metaâ€Analysis of Prospective Studies. Journal of the American Heart Association, 2017, 6, .	1.6	376
2760	The Microbiome in Visceral Medicine: Inflammatory Bowel Disease, Obesity and Beyond. Visceral Medicine, 2017, 33, 153-162.	0.5	6
2761	Sex-specific modulation of the gut microbiome and behavior in Siberian hamsters. Brain, Behavior, and Immunity, 2017, 60, 51-62.	2.0	59
2762	Constipation and Incident CKD. Journal of the American Society of Nephrology: JASN, 2017, 28, 1248-1258.	3.0	89
2763	Body mass index greater than 35 is associated with severe <i>Clostridium difficile</i> infection. Alimentary Pharmacology and Therapeutics, 2017, 45, 75-81.	1.9	33
2764	Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Medicine, 2017, 43, 59-68.	3.9	183
2765	Childhood body mass is positively associated with cesarean birth in Y ucatec M aya subsistence farmers. American Journal of Human Biology, 2017, 29, e22920.	0.8	12
2766	Immunomodulation by helminths: Similar impact on type 1 and type 2 diabetes?. Parasite Immunology, 2017, 39, e12401.	0.7	19
2767	An introduction to microbiome analysis for human biology applications. American Journal of Human Biology, 2017, 29, e22931.	0.8	22
2768	Evaluation of Buccal Cell Samples for Studies of Oral Microbiota. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 249-253.	1.1	27
2769	Can Peptides and Gut Microbiota Be Involved in the Etiopathology of Obesity?. Obesity Surgery, 2017, 27, 202-204.	1.1	2

#	Article	IF	CITATIONS
2771	The shift work and health research agenda: Considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Medicine Reviews, 2017, 34, 3-9.	3.8	107
2772	Gut microbiota after Rouxâ€enâ€Y gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. Diabetes/Metabolism Research and Reviews, 2017, 33, e2857.	1.7	52
2773	Potential efficacy of Lactobacillus casei IBRC_M10711 on expression and activity of insulin degrading enzyme but not insulin degradation. In Vitro Cellular and Developmental Biology - Animal, 2017, 53, 12-19.	0.7	2
2774	Effects of short-term supplementation with bovine lactoferrin and/or immunoglobulins on body mass and metabolic measures: a randomised controlled trial. International Journal of Food Sciences and Nutrition, 2017, 68, 219-226.	1.3	2
2775	Devil in the detail: a closer look at childhood obesity and the gut microbiota. Environmental Microbiology, 2017, 19, 11-12.	1.8	7
2776	Physiological and molecular responses to bariatric surgery: markers or mechanisms underlying T2DM resolution?. Annals of the New York Academy of Sciences, 2017, 1391, 5-19.	1.8	17
2777	Maternal obesity and childhood wheezing and asthma. Paediatric Respiratory Reviews, 2017, 22, 66-71.	1.2	20
2778	Diet, gut microbiota and cognition. Metabolic Brain Disease, 2017, 32, 1-17.	1.4	126
2779	Bacterial Genomes. , 2017, , 62-67.e1.		0
2780	Gastrointestinal Ecology of Salmonella Enteritidis in Laying Hens and Intervention by Prebiotic and Nondigestible Carbohydrate Dietary Supplementation. , 2017, , 323-345.		2
2781	On the pathogenesis of insulin-dependent diabetes mellitus: the role of microbiota. Immunologic Research, 2017, 65, 242-256.	1.3	23
2782	The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Translational Research, 2017, 179, 60-70.	2.2	109
2783	Potential mediators linking gut bacteria to metabolic health: a critical view. Journal of Physiology, 2017, 595, 477-487.	1.3	60
2784	Duodenal-jejunal bypass changes the composition of the gut microbiota. Surgery Today, 2017, 47, 137-140.	0.7	10
2785	Concise Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty Liver Disease. Stem Cells, 2017, 35, 89-96.	1.4	48
2786	Pterostilbeneâ€induced changes in gut microbiota composition in relation to obesity. Molecular Nutrition and Food Research, 2017, 61, 1500906.	1.5	88
2787	Life history and ecoâ€evolutionary dynamics in light of the gut microbiota. Oikos, 2017, 126, 508-531.	1.2	139
2788	Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice, Journal of Functional Foods, 2017, 28, 138-146	1.6	207

# 2789	ARTICLE Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice. Nature Microbiology, 2017, 2, 16220.	IF 5.9	Citations 47
2790	Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied Microbiology and Biotechnology, 2017, 101, 47-64.	1.7	387
2791	Mucosaâ€associated biohydrogenating microbes protect the simulated colon microbiome from stress associated with high concentrations of polyâ€unsaturated fat. Environmental Microbiology, 2017, 19, 722-739.	1.8	18
2792	Diet-Microbiome Interactions in Health Are Controlled by Intestinal Nitrogen Source Constraints. Cell Metabolism, 2017, 25, 140-151.	7.2	148
2793	Independent evolution of shape and motility allows evolutionary flexibility in Firmicutes bacteria. Nature Ecology and Evolution, 2017, 1, 9.	3.4	14
2794	Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River. Applied Microbiology and Biotechnology, 2017, 101, 2143-2152.	1.7	28
2795	Emerging Concepts Linking Obesity with the Hallmarks of Cancer. Trends in Endocrinology and Metabolism, 2017, 28, 46-62.	3.1	106
2796	Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nature Reviews Endocrinology, 2017, 13, 11-25.	4.3	273
2797	Inhibitory effects of dietary soyasaponin on 2,4â€dinitrofluorobenzeneâ€induced contact hypersensitivity in mice. Experimental Dermatology, 2017, 26, 249-254.	1.4	13
2798	Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon) Tj ETQq1 1 C).784314 ı 1.4	gBT /Overloc 102
2799	Phylogeny-Based Kernels with Application to Microbiome Association Studies. ICSA Book Series in Statistics, 2017, , 217-237.	0.0	3
2800	Immune System in Undernourished Host. , 2017, , 77-86.		1
2801	Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality?. Archives of Medical Research, 2017, 48, 735-753.	1.5	59
2802	Food-grade cationic antimicrobial ε-polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice. Npj Science of Food, 2017, 1, 8.	2.5	31
2803	TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle12. Journal of Animal Science, 2017, 95, 2284-2303.	0.2	24
2804	Does increased serum d-lactate mean subclinical hyperpermeability of intestinal barrier in middle-aged nonobese males with OSA?. Medicine (United States), 2017, 96, e9144.	0.4	18
2805	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	2.6	155
2806	Effects of host traits and land-use changes on the gut microbiota of the Namibian black-backed jackal (Canis mesomelas). FEMS Microbiology Ecology, 2017, 93, .	1.3	40

		CITATION REPO	ORT	
#	Article	I	F	CITATIONS
2807	Bioinformatics in Microbiome Analysis. Methods in Microbiology, 2017, 44, 1-18.	(0.4	4
2808	Duodenal Mucosa of Patients With Type 1 Diabetes Shows Distinctive Inflammatory Pr Microbiota. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1468-1477.	ofile and	L.8	122
2809	The Microbiome in Primary Sclerosing Cholangitis: Current Evidence and Potential Con in Liver Disease, 2017, 37, 314-331.	cepts. Seminars	1.8	52
2810	Analysis of the gut bacterial communities in beef cattle and their association with feed growth, and efficiency1,2,3. Journal of Animal Science, 2017, 95, 3215-3224.	intake, o	0.2	48
2811	Urinary volatile organic compounds in overweight compared to normal-weight children from the Italian I.Family cohort. Scientific Reports, 2017, 7, 15636.	: results 1	1.6	19
2812	Amino acid supplements and metabolic health: a potential interplay between intestinal systems control. Genes and Nutrition, 2017, 12, 27.	microbiota and	1.2	40
2813	Human Gut Microbiota and Obesity During Development. , 0, , .			3
2814	Obesity and gut microbiota - what do we know so far?. Medical Express, 2017, 4, .		0.2	3
2815	18. MicrObesity in pregnancy: the inside story. , 2017, , .			0
2817	5. Endogene Mechanismen. , 2017, , 96-126.			0
2818	HIV-associated changes in the enteric microbial community: potential role in loss of ho development of systemic inflammation. Current Opinion in Infectious Diseases, 2017, 3		1.3	78
2820	Use of Bacillus in Human Intestinal Probiotic Applications. , 2017, , 119-123.			11
2821	Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Frontiers in Pl 8, 1047.	ıysiology, 2017, J	L.3	83
2822	Use of Direct-Fed Microbials in Layer Hen Production—Performance Response and Sa Controlâ^—. , 2017, , 301-322.	Imonella		4
2823	Vegetarian Diets and the Microbiome. , 2017, , 429-461.			3
2824	Polyphenols and Intestinal Health. , 2017, , 191-210.			34
2825	Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Re the Impact of DNA Extraction Is Minor. Journal of Biomolecular Techniques, 2017, 28, 1	gion, Whereas 9-30.	D . 8	130
2826	Identification of the Microbiota in the Aging Process. , 2017, , 37-56.			3

	CITATION	Report	
# 2827	ARTICLE Dietary Fiber, Soluble and Insoluble, Carbohydrates, Fructose, and Lipids. , 2017, , 187-200.	IF	CITATIONS 2
2828	The Gut Microbiota Influence on Human Epigenetics, Health, and Disease. , 2017, , 495-510.		17
2829	Gut microbiome as a biomarker of cardiometabolic disorders. Annals of Agricultural and Environmental Medicine, 2017, 24, 416-422.	0.5	39
2830	Effects of Kluyveromyces marxianus supplementation on immune responses, intestinal structure and microbiota in broiler chickens. PLoS ONE, 2017, 12, e0180884.	1.1	21
2831	Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients, 2017, 9, 1124.	1.7	143
2832	Dietary Composition Independent of Weight Loss in the Management of Non-Alcoholic Fatty Liver Disease. Nutrients, 2017, 9, 800.	1.7	75
2833	The Relationship Between Probiotics and Dietary Fiber Consumption and Cardiovascular Health. , 2017, , 73-90.		4
2834	Pharmabiotics as an Emerging Medication for Metabolic Syndrome and Its Related Diseases. Molecules, 2017, 22, 1795.	1.7	21
2835	Effects of a Diet-Based Weight-Reducing Program with Probiotic Supplementation on Satiety Efficiency, Eating Behaviour Traits, and Psychosocial Behaviours in Obese Individuals. Nutrients, 2017, 9, 284.	1.7	88
2836	The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women. Nutrients, 2017, 9, 792.	1.7	53
2837	Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats. Nutrients, 2017, 9, 1261.	1.7	50
2838	Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients, 2017, 9, 1289.	1.7	28
2839	p-Cresyl Sulfate. Toxins, 2017, 9, 52.	1.5	262
2840	Lactobacillus rhamnosus GG. , 2017, , 79-88.		10
2841	Taxonomic and Metagenomic Alterations of Microbiota in Bariatric Surgery. , 2017, , 259-265.		0
2842	Characterizing and Functionally Defining the Gut Microbiota: Methodology and Implications. , 2017, , 15-25.		3
2843	Dietary Pea Fiber Supplementation Improves Glycemia and Induces Changes in the Composition of Gut Microbiota, Serum Short Chain Fatty Acid Profile and Expression of Mucins in Glucose Intolerant Rats. Nutrients, 2017, 9, 1236.	1.7	53
2844	Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Frontiers in Immunology, 2017, 8, 23.	2.2	95

#	Article	IF	CITATIONS
2845	Yogurt. , 2017, , 3-29.		27
2846	Metaproteomics as a Complementary Approach to Gut Microbiota in Health and Disease. Frontiers in Chemistry, 2017, 5, 4.	1.8	67
2847	Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes, 2017, 8, 250.	1.0	104
2848	Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Frontiers in Cellular and Infection Microbiology, 2017, 7, 396.	1.8	166
2849	Early Microbes Modify Immune System Development and Metabolic Homeostasis—The "Restaurant― Hypothesis Revisited. Frontiers in Endocrinology, 2017, 8, 349.	1.5	86
2850	Perspectives and Challenges in Microbial Communities Metabolic Modeling. Frontiers in Genetics, 2017, 8, 88.	1.1	36
2851	Microbiota, Immune Subversion, and Chronic Inflammation. Frontiers in Immunology, 2017, 8, 255.	2.2	53
2852	The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells: In Search of a Balanced Immune System. Frontiers in Immunology, 2017, 8, 417.	2.2	103
2853	Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses. Frontiers in Immunology, 2017, 8, 1164.	2.2	77
2854	The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs. Frontiers in Immunology, 2017, 8, 1353.	2.2	134
2855	Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation. Frontiers in Immunology, 2017, 8, 1478.	2.2	44
2856	Aging, Obesity, and Inflammatory Age-Related Diseases. Frontiers in Immunology, 2017, 8, 1745.	2.2	246
2857	Gut Microbiota Dysbiosis Drives and Implies Novel Therapeutic Strategies for Diabetes Mellitus and Related Metabolic Diseases. Frontiers in Immunology, 2017, 8, 1882.	2.2	149
2858	Impact of Westernized Diet on Gut Microbiota in Children on Leyte Island. Frontiers in Microbiology, 2017, 8, 197.	1.5	132
2859	Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Frontiers in Microbiology, 2017, 8, 214.	1.5	81
2860	Shaping the Metabolism of Intestinal Bacteroides Population through Diet to Improve Human Health. Frontiers in Microbiology, 2017, 8, 376.	1.5	140
2861	Carbohydrate Staple Food Modulates Gut Microbiota of Mongolians in China. Frontiers in Microbiology, 2017, 8, 484.	1.5	40
2862	Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Frontiers in Microbiology, 2017, 8, 563.	1.5	262

#	Article	IF	CITATIONS
2863	Comparative Analysis of the Gut Microbial Communities in Forest and Alpine Musk Deer Using High-Throughput Sequencing. Frontiers in Microbiology, 2017, 8, 572.	1.5	73
2864	The Hologenome Across Environments and the Implications of a Host-Associated Microbial Repertoire. Frontiers in Microbiology, 2017, 8, 802.	1.5	68
2865	Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet. Frontiers in Microbiology, 2017, 8, 905.	1.5	54
2866	Live Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance and Lowers Fat Deposition by Improving Lipid Metabolism, Intestinal Development, and Gut Microflora in Broilers. Frontiers in Microbiology, 2017, 8, 1073.	1.5	126
2867	Burn Injury Leads to Increase in Relative Abundance of Opportunistic Pathogens in the Rat Gastrointestinal Microbiome. Frontiers in Microbiology, 2017, 8, 1237.	1.5	36
2868	Human Gut Microbiota: Toward an Ecology of Disease. Frontiers in Microbiology, 2017, 8, 1265.	1.5	110
2869	High-Salt Diet Has a Certain Impact on Protein Digestion and Gut Microbiota: A Sequencing and Proteome Combined Study. Frontiers in Microbiology, 2017, 8, 1838.	1.5	84
2870	Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota. Frontiers in Microbiology, 2017, 8, 2146.	1.5	148
2871	The Role of Supplemental Complex Dietary Carbohydrates and Gut Microbiota in Promoting Cardiometabolic and Immunological Health in Obesity: Lessons from Healthy Non-Obese Individuals. Frontiers in Nutrition, 2017, 4, 34.	1.6	31
2872	Microbiome–Gut–Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS—A Novel Hypothesis. Frontiers in Pediatrics, 2016, 4, 136.	0.9	7
2873	Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. BioMed Research International, 2017, 2017, 1-10.	0.9	90
2874	Microbial Ecology along the Gastrointestinal Tract. Microbes and Environments, 2017, 32, 300-313.	0.7	372
2875	High Fat Diet Alters Gut Microbiota and the Expression of Paneth Cell-Antimicrobial Peptides Preceding Changes of Circulating Inflammatory Cytokines. Mediators of Inflammation, 2017, 2017, 1-9.	1.4	116
2876	Effects of <i> Achyrocline satureioides</i> Inflorescence Extracts against Pathogenic Intestinal Bacteria: Chemical Characterization, In Vitro Tests, and In Vivo Evaluation. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	0.5	4
2877	Agaro-Oligosaccharides Regulate Gut Microbiota and Adipose Tissue Accumulation in Mice. Journal of Nutritional Science and Vitaminology, 2017, 63, 269-276.	0.2	23
2878	Intestinal hormones, gut microbiota and non-alcoholic fatty liver disease. Minerva Endocrinology, 2017, 42, 184-194.	0.6	21
2879	Therapeutic Strategies of Plant-derived Compounds for Diabetes Via Regulation of Monocyte Chemoattractant Protein-1. Current Medicinal Chemistry, 2017, 24, 1453-1468.	1.2	16
2880	Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus. Molecules, 2017, 22, 1292.	1.7	30

	CITATION	Report	
#	Article	IF	CITATIONS
2881	Early Life Nutrition and its Effect on the Development of Type-2 Diabetes. , 2017, , 301-331.		0
2882	Obesity and Metabolic Syndrome. , 2017, , 1-26.		2
2883	Trimethylamine N-oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer. Current Pharmaceutical Design, 2017, 23, 3699-3712.	0.9	87
2884	Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS ONE, 2017, 12, e0171521.	1.1	205
2885	Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus) Tj ETQq0 () 0 rgBT /Ove	erlock 10 Tf 5
2886	Association between self-reported vegetarian diet and the irritable bowel syndrome in the French NutriNet cohort. PLoS ONE, 2017, 12, e0183039.	1.1	12
2887	Lactobacillus rhamnosus PB01 (DSM 14870) supplementation affects markers of sperm kinematic parameters in a diet-induced obesity mice model. PLoS ONE, 2017, 12, e0185964.	1.1	58
2888	Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. PLoS ONE, 2017, 12, e0187515.	1.1	71
2889	Dietary protein sources differentially affect microbiota, mTOR activity and transcription of mTOR signaling pathways in the small intestine. PLoS ONE, 2017, 12, e0188282.	1.1	25
2890	Effects of Lactobacillus acidophilus on gut microbiota composition in broilers challenged with Clostridium perfringens. PLoS ONE, 2017, 12, e0188634.	1.1	75
2891	Two dynamic regimes in the human gut microbiome. PLoS Computational Biology, 2017, 13, e1005364.	1.5	101
2892	Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biology, 2017, 15, e2000862.	2.6	251
2893	Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA. PLoS ONE, 2017, 12, e0183564.	1,1	28
0004	Periodontitis is associated with significant hepatic fibrosis in patients with non-alcoholic fatty liver		5.4

2894	Periodontitis is associated with significant hepatic fibrosis in patients with non-alcoholic fatty liver disease. PLoS ONE, 2017, 12, e0185902.	1.1	54
2895	Characterizations of oral microbiota in elderly nursing home residents with diabetes. Journal of Oral Science, 2017, 59, 549-555.	0.7	35
2896	The effect of storage at ambient temperature on the feline fecal microbiota. BMC Veterinary Research, 2017, 13, 256.	0.7	26
2897	The response of canine faecal microbiota to increased dietary protein is influenced by body condition. BMC Veterinary Research, 2017, 13, 374.	0.7	31
2898	Identification of natural antimicrobial peptides from bacteria through metagenomic and metatranscriptomic analysis of high-throughput transcriptome data of Taiwanese oolong teas. BMC Systems Biology, 2017, 11, 131.	3.0	19

#	Article	IF	CITATIONS
2899	Antibiotic exposure and risk of weight gain and obesity: protocol for a systematic review. Systematic Reviews, 2017, 6, 169.	2.5	6
2900	Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017, 5, 71.	4.9	117
2901	Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome, 2017, 5, 87.	4.9	138
2902	Intestinal Immunity and Gut Microbiota in Atherogenesis. Journal of Atherosclerosis and Thrombosis, 2017, 24, 110-119.	0.9	39
2903	Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis?. Journal of Atherosclerosis and Thrombosis, 2017, 24, 660-672.	0.9	366
2904	Gut microbial metabolite short-chain fatty acids and obesity. Bioscience of Microbiota, Food and Health, 2017, 36, 135-140.	0.8	81
2905	«Mikrobiota-Tuning» en vogue: Von der ErnĤrung über Probiotika bis zur fäalen Mikrobiota-Transplantation. Schweizerische Zeitschrift Für GanzheitsMedizin, 2017, 29, 144-148.	0.0	1
2906	The Relationship between Habitual Dietary Intake and Gut Microbiota in Young Japanese Women. Journal of Nutritional Science and Vitaminology, 2017, 63, 396-404.	0.2	23
2907	Impact of Roux-En-Y Gastric Bypass Surgery on Neurohormonal and Gastrointestinal Physiology: Insights for Future Weight Loss Efforts. Journal of Obesity & Weight Loss Therapy, 2017, 07, .	0.1	0
2908	The Omics of Obesity. , 0, , .		1
2909	The Self-reported Use of Probiotics is Associated with Better Glycaemic Control and Lower Odds of Metabolic Syndrome and its Components in Type 1 Diabetes. Journal of Probiotics & Health, 2017, 05, .	0.6	11
2910	The Importance of Being Eubiotic. Journal of Probiotics & Health, 2017, 05, .	0.6	6
2911	Impact of Early Nutrition on Intestinal Microbiome: Effects on Immunity and Long-Term Health. , 2017, , 203-228.		1
2912	Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones, 2017, 16, 223-234.	0.9	47
2913	Gut Microbiome and Obesity. How to Prove Causality?. Annals of the American Thoracic Society, 2017, 14, S354-S356.	1.5	19
2914	Effect on the Host Metabolism. , 2017, , 249-253.		2
2915	Intestinal Microbiota, Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma: The Potential Role of Dysbiosis in the Hepatocarcinogenesis. , 0, , .		0
2916	Overview of Nutritional Epidemiology. , 2017, , 145-165.		4

ARTICLE IF CITATIONS The Influence of Microbiota on Mechanisms of Bariatric Surgery., 2017, , 267-281. 2917 3 Gut Microbial Metabolism in Health and Disease., 2017, , 835-856. 2918 Bile Acids in Nonalcoholic Fatty Liver Disease: New Concepts and Therapeutic Advances. Annals of 2919 0.6 21 Hepatology, 2017, 16, S58-S67. Bile Acids and Cancer: Direct and Environmental-Dependent Effects. Annals of Hepatology, 2017, 16, S87-S105. Gut Microbiome, a Potent Modulator of Epigenetics in Human Diseases. Journal of Bacteriology and 2921 0.0 12 Virology, 2017, 47, 75. Changes in weight and body fat after use of tetracycline and Lactobacillus gasseri in rats. Brazilian Journal of Pharmaceutical Sciences, 2017, 53, . 1.2 Does colorectal cancer significantly influence the assembly of gut microbial communities?. PeerJ, 2923 0.9 6 2017, 5, e3383. FMT in Clostridium difficile and Other Potential Uses., 2017, , 315-326. 2924 The Female Urinary Microbiota/Microbiome: Clinical and Research Implications. Rambam Maimonides 2925 0.4 19 Medical Journal, 2017, 8, e0015. The Roles of the Gut Microbiota and Toll-like Receptors in Obesity and Nonalcoholic Fatty Liver 1.5 Disease. Journal of Obesity and Metabolic Syndrome, 2017, 26, 86-96. Fiber-Rich Dietary Patterns and Colonic Microbiota in Aging and Disease., 2018, , 119-144. 2927 1 Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota. Biochemical and Biophysical Research Communications, 2018, 498, 146-151. 2928 1.0 The Effect of Feeding Cocoa Powder and Lactobacillus rhamnosus on the Composition and Function 2929 0.1 14 of Pig Intestinal Microbiome. Current Developments in Nutrition, 2018, 2, nzy011. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis, 2018, 271, 203-213. 2930 0.4 124 Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female 2931 2.1 87 rats. Food and Function, 2018, 9, 1672-1682. Impact of Oral Fidaxomicin Administration on the Intestinal Microbiota and Susceptibility to Clostridium difficile Colonization in Mice. Antimicrobial Agents and Chemotherapy, 2018, 62, . Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. 2933 1.6 166 Scientific Reports, 2018, 8, 3596. Dietary nutrition and gut microflora: A promising target for treating diseases. Trends in Food Science 2934 and Technology, 2018, 75, 72-80.

#	Article	IF	CITATIONS
2935	Gut microbiota and its implications in small bowel transplantation. Frontiers of Medicine, 2018, 12, 239-248.	1.5	11
2936	Insights into the Mechanisms That May Clarify Obesity as a Risk Factor for Multiple Sclerosis. Current Neurology and Neuroscience Reports, 2018, 18, 18.	2.0	22
2937	Gut microbiomes and their metabolites shape human and animal health. Journal of Microbiology, 2018, 56, 151-153.	1.3	45
2938	Intestinal microbiota and the immune system in metabolic diseases. Journal of Microbiology, 2018, 56, 154-162.	1.3	80
2939	Do we choose control diets wisely?. Trends in Endocrinology and Metabolism, 2018, 29, 447-448.	3.1	6
2940	The gastrointestinal tract microbiota of northern white-cheeked gibbons (Nomascus leucogenys) varies with age and captive condition. Scientific Reports, 2018, 8, 3214.	1.6	12
2941	PCBs–high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice. Environmental Pollution, 2018, 239, 332-341.	3.7	39
2942	A combination of Lactobacillus mali APS1 and dieting improved the efficacy of obesity treatment via manipulating gut microbiome in mice. Scientific Reports, 2018, 8, 6153.	1.6	31
2943	Metabolic Surgery and Diabesity: a Systematic Review. Obesity Surgery, 2018, 28, 2069-2077.	1.1	19
2944	Host-Gut Microbiota Crosstalk in Intestinal Adaptation. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 149-162.	2.3	42
2945	Gut microbiota, metabolism and psychopathology: A critical review and novel perspectives. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 283-293.	2.7	31
2946	The Role of Human Gut Microbiota in Obesity. , 2018, , 71-76.		0
2947	Lifestyle Factors in Late Adolescence Associate With Later Development of Diverticular Disease Requiring Hospitalization. Clinical Gastroenterology and Hepatology, 2018, 16, 1474-1480.e1.	2.4	8
2948	Systems biology in hepatology: approaches and applications. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 365-377.	8.2	117
2949	Vascular Cognitive Impairment and the Gut Microbiota. Journal of Alzheimer's Disease, 2018, 63, 1209-1222.	1.2	27
2950	Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity, 2018, 26, 801-809.	1.5	110
2951	Microbiome-mediated bile acid modification: Role in intestinal drug absorption and metabolism. Pharmacological Research, 2018, 133, 170-186.	3.1	66
2952	Changes in the Rumen Epithelial Microbiota of Cattle and Host Gene Expression in Response to Alterations in Dietary Carbohydrate Composition. Applied and Environmental Microbiology, 2018, 84, .	1.4	22

CITATI	ION	RF	PO	DT.

#	Article	IF	CITATIONS
2953	The development of probiotics therapy to obesity: a therapy that has gained considerable momentum. Hormones, 2018, 17, 141-151.	0.9	23
2954	The use of antimicrobials as adjuvant therapy for the treatment of obesity and insulin resistance: Effects and associated mechanisms. Diabetes/Metabolism Research and Reviews, 2018, 34, e3014.	1.7	4
2955	The Endotoxemia Marker Lipopolysaccharideâ€Binding Protein is Reduced in Overweightâ€Obese Subjects Consuming Pomegranate Extract by Modulating the Gut Microbiota: A Randomized Clinical Trial. Molecular Nutrition and Food Research, 2018, 62, e1800160.	1.5	97
2956	Disruptions in gut microbial-host co-metabolism and the development of metabolic disorders. Clinical Science, 2018, 132, 791-811.	1.8	32
2957	The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 2018, 9, 1-18.	4.3	304
2958	The Microbiome in Neurodegenerative Disease. Current Geriatrics Reports, 2018, 7, 81-91.	1.1	7
2959	Microbiota potential for the treatment of sexual dysfunction. Medical Hypotheses, 2018, 115, 46-49.	0.8	12
2960	Gut microbiota and obesity. Clinical Nutrition Experimental, 2018, 20, 60-64.	2.0	71
2961	Effect of lactulose intervention on gut microbiota and short chain fatty acid composition of C57 <scp>BL</scp> /6J mice. MicrobiologyOpen, 2018, 7, e00612.	1.2	57
2962	Current State of Knowledge on Implications of Gut Microbiome for Surgical Conditions. Journal of Gastrointestinal Surgery, 2018, 22, 1112-1123.	0.9	8
2963	Effect of Saccharomyces boulardii and Bacillus subtilis B10 on gut microbiota modulation in broilers. Animal Nutrition, 2018, 4, 358-366.	2.1	26
2964	Methodological Strategies in Microbiome Research and their Explanatory Implications. Perspectives on Science, 2018, 26, 239-265.	0.3	14
2965	Smoking and the intestinal microbiome. Archives of Microbiology, 2018, 200, 677-684.	1.0	167
2966	Helminth infection in mice improves insulin sensitivity via modulation of gut microbiota and fatty acid metabolism. Pharmacological Research, 2018, 132, 33-46.	3.1	38
2967	Obese Mice Losing Weight Due to trans-10,cis-12 Conjugated Linoleic Acid Supplementation or Food Restriction Harbor Distinct Gut Microbiota. Journal of Nutrition, 2018, 148, 562-572.	1.3	59
2968	Altered fecal microbiota composition in all male aggressorâ€exposed rodent model simulating features of postâ€traumatic stress disorder. Journal of Neuroscience Research, 2018, 96, 1311-1323.	1.3	54
2969	Microbiome and Gut Dysbiosis. Experientia Supplementum (2012), 2018, 109, 459-476.	0.5	121
2970	Bacterial interspecies quorum sensing in the mammalian gut microbiota. Comptes Rendus - Biologies, 2018, 341, 297-299.	0.1	32

#	Article	IF	CITATIONS
2971	A novel polyphenolic prebiotic and probiotic formulation have synergistic effects on the gut microbiota influencing <i>Drosophila melanogaster</i> physiology. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 441-455.	1.9	44
2972	High-intensity-exercise-induced intestinal damage is protected by fermented milk supplemented with whey protein, probiotic and pomegranate (<i>Punica granatum</i> L.). British Journal of Nutrition, 2018, 119, 896-909.	1.2	14
2973	Impact of food additives on the gut-brain axis. Physiology and Behavior, 2018, 192, 173-176.	1.0	22
2974	Advances in Probiotic Regulation of Bone and Mineral Metabolism. Calcified Tissue International, 2018, 102, 480-488.	1.5	61
2975	Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nature Ecology and Evolution, 2018, 2, 659-668.	3.4	124
2976	Gut bacteria interaction with vagal afferents. Brain Research, 2018, 1693, 134-139.	1.1	47
2977	Variations in diet cause alterations in microbiota and metabolites that follow changes in disease severity in a multiple sclerosis model. Beneficial Microbes, 2018, 9, 495-513.	1.0	33
2978	Molecular Paths Linking Metabolic Diseases, Gut Microbiota Dysbiosis and Enterobacteria Infections. Journal of Molecular Biology, 2018, 430, 581-590.	2.0	22
2979	Systems biology of the human microbiome. Current Opinion in Biotechnology, 2018, 51, 146-153.	3.3	28
2980	Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. International Journal of Biological Macromolecules, 2018, 112, 1055-1061.	3.6	94
2981	Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats. Journal of Nutritional Biochemistry, 2018, 56, 55-64.	1.9	64
2982	The effect of arabinoxylooligosaccharides on upper gastroduodenal motility and hunger ratings in humans. Neurogastroenterology and Motility, 2018, 30, e13306.	1.6	2
2983	The microbiome in chronic kidney disease patients undergoing hemodialysis and peritoneal dialysis. Pharmacological Research, 2018, 130, 143-151.	3.1	43
2984	Characterization of the Gut Microbiota in Six Geographical Populations of Chinese Rhesus Macaques (Macaca mulatta), Implying an Adaptation to High-Altitude Environment. Microbial Ecology, 2018, 76, 565-577.	1.4	87
2985	Gut Microbial Diversity in Women With Polycystic Ovary Syndrome Correlates With Hyperandrogenism. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1502-1511.	1.8	224
2986	Antibiotics Disturb the Microbiome and Increase the Incidence of Resistance Genes in the Gut of a Common Soil Collembolan. Environmental Science & amp; Technology, 2018, 52, 3081-3090.	4.6	162
2987	Adaptation of commensal proliferating <i>Escherichia coli</i> to the intestinal tract of young children with cystic fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1605-1610.	3.3	41
2988	Fecal Microbiota Transplants: Current Knowledge and Future Directions. , 2018, , 279-302.		0

#	Article	IF	CITATIONS
2989	Altered Microbiota and Their Metabolism in Host Metabolic Diseases. , 2018, , 129-165.		1
2990	Inflammatory Diseases of the Gut. Journal of Medicinal Food, 2018, 21, 113-126.	0.8	20
2991	Clinical Relevance of Gastrointestinal Microbiota During Pregnancy: A Primer for Nurses. Biological Research for Nursing, 2018, 20, 84-102.	1.0	9
2992	The effects of fermented milk containing <i>Lactococcus lactis</i> subsp. <i>cremoris</i> FC on defaecation in healthy young Japanese women: a double-blind, placebo-controlled study. International Journal of Food Sciences and Nutrition, 2018, 69, 762-769.	1.3	9
2993	Integrative Personal Omics Profiles during Periods of Weight Gain and Loss. Cell Systems, 2018, 6, 157-170.e8.	2.9	183
2994	Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocrine Reviews, 2018, 39, 133-153.	8.9	207
2995	Impact of <i>Trans</i> â€Fats on Heatâ€Shock Protein Expression and the Gut Microbiota Profile of Mice. Journal of Food Science, 2018, 83, 489-498.	1.5	7
2996	Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder. Developmental Neurobiology, 2018, 78, 474-499.	1.5	45
2997	Microbiomeâ€based mechanisms hypothesized to initiate obesityâ€associated rheumatoid arthritis. Obesity Reviews, 2018, 19, 786-797.	3.1	9
2998	Multiâ€omics approach to elucidate the gut microbiota activity: Metaproteomics and metagenomics connection. Electrophoresis, 2018, 39, 1692-1701.	1.3	28
2999	Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria. Kidney International, 2018, 93, 1098-1107.	2.6	38
3000	Investigating Caesarean Section Birth as a Risk Factor for Childhood Overweight. Childhood Obesity, 2018, 14, 131-138.	0.8	15
3001	Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in Highâ€Fat Diet Treated HFA Mice. Journal of Food Science, 2018, 83, 864-873.	1.5	95
3002	Effects of long-term nitrate supplementation on carbohydrate metabolism, lipid profiles, oxidative stress, and inflammation in male obese type 2 diabetic rats. Nitric Oxide - Biology and Chemistry, 2018, 75, 27-41.	1.2	66
3003	Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME Journal, 2018, 12, 1642-1657.	4.4	260
3005	Ecological Stability Properties of Microbial Communities Assessed by Flow Cytometry. MSphere, 2018, 3, .	1.3	46
3006	Effects of weight loss with a moderate-protein, high-fiber diet on body composition, voluntary physical activity, and fecal microbiota of obese cats. American Journal of Veterinary Research, 2018, 79, 181-190.	0.3	25
3007	Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutrition Research Reviews, 2018, 31, 153-163.	2.1	144

#	Article	IF	Citations
3008	Intestinal epithelial Toll-like receptor 4 prevents metabolic syndrome by regulating interactions between microbes and intestinal epithelial cells in mice. Mucosal Immunology, 2018, 11, 727-740.	2.7	34
3009	Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environmental Pollution, 2018, 234, 307-317.	3.7	136
3010	Dietary protein level affects nutrient digestibility and ileal microbiota structure in growing pigs. Animal Science Journal, 2018, 89, 537-546.	0.6	26
3011	Dysbiosis Signatures of Gut Microbiota Along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. Obesity, 2018, 26, 351-361.	1.5	155
3012	Bacterial endotoxin, Staphylococcus aureus nasal carriage and obesity among type two diabetes mellitus patients. Karbala International Journal of Modern Science, 2018, 4, 93-99.	0.5	0
3013	Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. Environmental Research, 2018, 161, 472-478.	3.7	82
3014	Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 99-114.	4.3	284
3015	The gut microbiota as a novel regulator of cardiovascular function and disease. Journal of Nutritional Biochemistry, 2018, 56, 1-15.	1.9	122
3016	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	5.9	717
3017	Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. Journal of Vascular Surgery, 2018, 68, 1552-1562.e7.	0.6	105
3018	A potential impact of Helicobacter pylori -related galectin-3 in neurodegeneration. Neurochemistry International, 2018, 113, 137-151.	1.9	21
3019	Research Strategies for Nutritional and Physical Activity Epidemiology and Cancer Prevention. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 233-244.	1.1	15
3020	Earlyâ€life gut microbiome and egg allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1515-1524.	2.7	151
3021	Impact of dietary induced precocious gut maturation on cecal microbiota and its relation to the bloodâ€brain barrier during the postnatal period in rats. Neurogastroenterology and Motility, 2018, 30, e13285.	1.6	15
3022	Influence of fruit and invertebrate consumption on the gut microbiota of wild whiteâ€faced capuchins (<i>Cebus capucinus</i>). American Journal of Physical Anthropology, 2018, 165, 576-588.	2.1	36
3023	Effect of the consumption of a synbiotic diet mousse containing Lactobacillus acidophilus La-5 by individuals with metabolic syndrome: A randomized controlled trial. Journal of Functional Foods, 2018, 41, 55-61.	1.6	25
3025	Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. FEMS Microbiology Reviews, 2018, 42, 273-292.	3.9	103
3026	Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environmental Pollution, 2018, 235, 322-329.	3.7	529

#	Article	IF	CITATIONS
3027	Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: A systematic review. Microbial Pathogenesis, 2018, 116, 13-21.	1.3	51
3028	Dark matter in host-microbiome metabolomics: Tackling the unknowns–A review. Analytica Chimica Acta, 2018, 1037, 13-27.	2.6	108
3029	Microbiota and metabolic diseases. Endocrine, 2018, 61, 357-371.	1.1	280
3030	Obese Subjects With Specific Gustatory Papillae Microbiota and Salivary Cues Display an Impairment to Sense Lipids. Scientific Reports, 2018, 8, 6742.	1.6	32
3031	Interleukinâ€23 promotes intestinal T helper type17 immunity and ameliorates obesityâ€associated metabolic syndrome in a murine highâ€fat diet model. Immunology, 2018, 154, 624-636.	2.0	22
3032	Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiology, 2018, 18, 28.	1.3	19
3033	Astragalus affects fecal microbial composition of young hens as determined by 16S rRNA sequencing. AMB Express, 2018, 8, 70.	1.4	45
3034	The hologenome concept of evolution after 10Âyears. Microbiome, 2018, 6, 78.	4.9	326
3035	Tributyltin exposure induces gut microbiome dysbiosis with increased body weight gain and dyslipidemia in mice. Environmental Toxicology and Pharmacology, 2018, 60, 202-208.	2.0	29
3036	Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein and Cell, 2018, 9, 397-403.	4.8	176
3037	Marine polysaccharides attenuate metabolic syndrome by fermentation products and altering gut microbiota: An overview. Carbohydrate Polymers, 2018, 195, 601-612.	5.1	94
3038	<i>Lactobacillus gasseri</i> BNR17 Supplementation Reduces the Visceral Fat Accumulation and Waist Circumference in Obese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of Medicinal Food, 2018, 21, 454-461.	0.8	119
3039	Inflammatory bowel disease and immunonutrition: novel therapeutic approaches through modulation of diet and the gut microbiome. Immunology, 2018, 155, 36-52.	2.0	112
3040	Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in <i>db/db</i> Mice. Diabetes, 2018, 67, 1867-1879.	0.3	243
3041	Anti-obesity properties of the strain Bifidobacterium animalis subsp. lactis CECT 8145 in Zücker fatty rats. Beneficial Microbes, 2018, 9, 629-641.	1.0	20
3042	Traditional kefir reduces weight gain and improves plasma and liver lipid profiles more successfully than a commercial equivalent in a mouse model of obesity. Journal of Functional Foods, 2018, 46, 29-37.	1.6	47
3043	The beneficial effects of Gracilaria lemaneiformis polysaccharides on obesity and the gut microbiota in high fat diet-fed mice. Journal of Functional Foods, 2018, 46, 48-56.	1.6	65
3044	Integrative metabolic and microbial profiling on patients with Spleen-yang-deficiency syndrome. Scientific Reports, 2018, 8, 6619.	1.6	73

		ATION REPO	IC I	
#	Article	IF	-	CITATIONS
3045	Relationship between diet, the gut microbiota, and brain function. Nutrition Reviews, 2018, 76, 603-61	17. 2	.6	47
3046	Dysbiosis in Functional Bowel Disorders. Annals of Nutrition and Metabolism, 2018, 72, 296-306.	1	.0	46
3047	Is psoriasis a bowel disease? Successful treatment with bile acids and bioflavonoids suggests it is. Clinics in Dermatology, 2018, 36, 376-389.	0	.8	27
3050	Effects of sleeve gastrectomy on the composition and diurnal oscillation of gut microbiota related to the metabolic improvements. Surgery for Obesity and Related Diseases, 2018, 14, 731-739.	1	.0	15
3051	The Human Gut Microbiome in Health and Disease. , 2018, , 197-213.			24
3052	Non-obese type 2 diabetes patients present intestinal B cell dysregulations associated with hyperactive intestinal Tfh cells. Molecular Immunology, 2018, 97, 27-32.	2	.0	14
3053	Parabens and measures of adiposity among adults and children from the U.S. general population: NHANES 2007–2014. International Journal of Hygiene and Environmental Health, 2018, 221, 652-66	50. ²	.1	55
3054	The gut microbiota and its potential role in obesity. Future Microbiology, 2018, 13, 589-603.	1.	.0	32
3055	Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake. FEMS Microbiology Ecology, 2018, 94 .	· , 1.	.3	27
3056	The role of the gut microbiota in the pathology and prevention of liver disease. Journal of Nutritional Biochemistry, 2018, 60, 1-8.	1.	.9	31
3057	Bacterial growth, flow, and mixing shape human gut microbiota density and composition. Gut Microbes, 2018, 9, 1-8.	4	.3	39
3058	Diet, the intestinal microbiota, and immune health in aging. Critical Reviews in Food Science and Nutrition, 2018, 58, 651-661.	5	.4	84
3059	Do the Microbiota Influence Vaccines and Protective Immunity to Pathogens?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028860.	2	.3	27
3060	Dietary pea fibre alters the microbial community and fermentation with increase in fibre degradationâ€associated bacterial groups in the colon of pigs. Journal of Animal Physiology and Anima Nutrition, 2018, 102, e254-e261.	il 1.	.0	30
3061	Amelioration of obesity-related characteristics by a probiotic formulation in a high-fat diet-induced obese rat model. European Journal of Nutrition, 2018, 57, 2081-2090.	1.	.8	36
3062	Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide - Biology and Chemistry, 2018, 73, 81-88.	1.	.2	53
3063	Effect of Sweetened Dried Cranberry Consumption on Urinary Proteome and Fecal Microbiome in Healthy Human Subjects. OMICS A Journal of Integrative Biology, 2018, 22, 145-153.	1.	.0	34
3064	Yogurt consumption, body composition, and metabolic health in the Québec Family Study. European Journal of Nutrition, 2018, 57, 1591-1603.	n 1.	.8	21

#	Article	IF	CITATIONS
3065	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. Microbiology Spectrum, 2017, 5, .	1.2	28
3066	Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. International Journal of Food Sciences and Nutrition, 2018, 69, 125-143.	1.3	171
3067	Maternal Gut Microbiome Biodiversity in Pregnancy. American Journal of Perinatology, 2018, 35, 024-030.	0.6	51
3068	Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species. Microbial Ecology, 2018, 75, 515-527.	1.4	106
3069	Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity?. Irish Journal of Medical Science, 2018, 187, 393-402.	0.8	27
3070	Ophiopogonin D alleviates highâ€fat dietâ€induced metabolic syndrome and changes the structure of gut microbiota in mice. FASEB Journal, 2018, 32, 1139-1153.	0.2	35
3071	Effect of sea buckthorn protein on the intestinal microbial community in streptozotocin-induced diabetic mice. International Journal of Biological Macromolecules, 2018, 107, 1168-1174.	3.6	20
3072	Steroids, stress and the gut microbiomeâ€brain axis. Journal of Neuroendocrinology, 2018, 30, e12548.	1.2	119
3073	Characterization of the Stool Microbiome in Hispanic Preschool Children by Weight Status and Time. Childhood Obesity, 2018, 14, 122-130.	0.8	21
3074	Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutrition Research Reviews, 2018, 31, 35-51.	2.1	212
3075	Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cellular and Molecular Life Sciences, 2018, 75, 103-118.	2.4	129
3077	Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. European Journal of Nutrition, 2018, 57, 861-876.	1.8	102
3078	Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. International Urology and Nephrology, 2018, 50, 289-299.	0.6	39
3079	The Potential of Probiotics as a Therapy for Osteoporosis. Microbiology Spectrum, 2017, 5, .	1.2	112
3080	Key factors involved in obesity development. Eating and Weight Disorders, 2018, 23, 267-274.	1.2	14
3081	Proton pump inhibitors as risk factor for metabolic syndrome and hepatic steatosis in coeliac disease patients on gluten-free diet. Journal of Gastroenterology, 2018, 53, 507-516.	2.3	25
3082	Maternal obesity is associated with gut microbial metabolic potential in offspring during infancy. Journal of Physiology and Biochemistry, 2018, 74, 159-169.	1.3	29
3083	The Gut Microbiota and Pediatric Multiple Sclerosis: Recent Findings. Neurotherapeutics, 2018, 15, 102-108.	2.1	14

#	Article	IF	CITATIONS
3084	Food restriction followed by refeeding with a casein- or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats. Journal of Nutritional Biochemistry, 2018, 51, 27-39.	1.9	13
3085	Microbiota-derived uremic retention solutes: perpetrators of altered nonrenal drug clearance in kidney disease. Expert Review of Clinical Pharmacology, 2018, 11, 71-82.	1.3	29
3086	Microbial diversity and composition in different gut locations of hyperlipidemic mice receiving krill oil. Applied Microbiology and Biotechnology, 2018, 102, 355-366.	1.7	14
3087	Nutrition Therapy for Urolithiasis. , 2018, , .		0
3088	Comparative analysis of gut bacterial communities of green turtles (Chelonia mydas) pre-hospitalization and post-rehabilitation by high-throughput sequencing of bacterial 16S rRNA gene. Microbiological Research, 2018, 207, 91-99.	2.5	45
3089	Digestion and Absorption. , 2018, , 43-57.		0
3090	Reshaped fecal gut microbiota composition by the intake of high molecular weight persimmon tannin in normal and high-cholesterol diet-fed rats. Food and Function, 2018, 9, 541-551.	2.1	31
3091	The Intestinal Microbiome in Nonalcoholic Fatty Liver Disease. Clinics in Liver Disease, 2018, 22, 121-132.	1.0	25
3092	Gut microbiome production of short-chain fatty acids and obesity in children. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 621-625.	1.3	139
3093	The role of gut microbiota in the effects of maternal obesity during pregnancy on offspring metabolism. Bioscience Reports, 2018, 38, .	1.1	78
3094	Lifespan Extension of Caenorhabditis elegans by Butyricicoccus pullicaecorum and Megasphaera elsdenii with Probiotic Potential. Current Microbiology, 2018, 75, 557-564.	1.0	23
3095	The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. European Journal of Immunology, 2018, 48, 564-575.	1.6	114
3096	Gut microbiome: a new player in gastrointestinal disease. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2018, 472, 159-172.	1.4	59
3097	Low glycaemic index foods from wild barley and amylose-only barley lines. Journal of Functional Foods, 2018, 40, 408-416.	1.6	23
3098	Are the decrease in circulating anti-α1,3-Gal IgG and the lower content of galactosyl transferase A1 in the microbiota of patients with multiple sclerosis a novel environmental risk factor for the disease?. Molecular Immunology, 2018, 93, 162-165.	1.0	13
3099	Enteroendocrine and adipokine associations with type 2 diabetes: Phenotypic risk scoring approaches. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 1357-1364.	1.4	4
3100	3D Printing of Living Responsive Materials and Devices. Advanced Materials, 2018, 30, 1704821.	11.1	277
3101	From Epidemiology to Epigenetics: Evidence for the Importance of Nutrition to Optimal Health Development Across the Life Course. , 2018, , 431-462.		4

		15	0
#	ARTICLE	IF	CITATIONS
3102	Composition of gut microbiota in obese and normalâ€weight Mexican schoolâ€age children and its association with metabolic traits. Pediatric Obesity, 2018, 13, 381-388.	1.4	69
3103	Targeted Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially Affects Insulin Sensitivity in Humans. Diabetes Care, 2018, 41, 398-405.	4.3	69
3104	Genomic characterization of the porcine CRTC3 and the effects of a non-synonymous mutation p.V515F on lean meat production and belly fat. Meat Science, 2018, 137, 211-215.	2.7	9
3105	Adverse effect of early-life high-fat/high-carbohydrate ("Westernâ€) diet on bacterial community in the distal bowel of mice. Nutrition Research, 2018, 50, 25-36.	1.3	20
3106	MPA Portable: A Stand-Alone Software Package for Analyzing Metaproteome Samples on the Go. Analytical Chemistry, 2018, 90, 685-689.	3.2	65
3107	Improvement in cardiometabolic risk markers following a multifunctional diet is associated with gut microbial taxa in healthy overweight and obese subjects. European Journal of Nutrition, 2018, 57, 2927-2936.	1.8	33
3108	An integrative study on biologically recovered polyhydroxyalkanoates (PHAs) and simultaneous assessment of gut microbiome in yellow mealworm. Journal of Biotechnology, 2018, 265, 31-39.	1.9	43
3109	Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis. Journal of Nutritional Biochemistry, 2018, 54, 28-34.	1.9	60
3110	How poverty affects diet to shape the microbiota and chronic disease. Nature Reviews Immunology, 2018, 18, 279-287.	10.6	46
3111	Towards an ecoâ€phylogenetic framework for infectious disease ecology. Biological Reviews, 2018, 93, 950-970.	4.7	63
3112	The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour. Archives of Physiology and Biochemistry, 2018, 124, 306-312.	1.0	67
3113	Connection Between Fiber, Colonic Microbiota, and Health Across the Human Life Cycle. , 2018, , 67-93.		1
3114	Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. International Journal of Obesity, 2018, 42, 424-432.	1.6	48
3115	Systemic use of antibiotics and risk of diabetes in adults: <scp>A</scp> nested caseâ€control study of <scp>Alberta's Tomorrow Project</scp> . Diabetes, Obesity and Metabolism, 2018, 20, 849-857.	2.2	8
3116	Application of high-throughput pyrosequencing in the analysis of microbiota of food commodities procured from small and large retail outlets in a U.S. metropolitan area – A pilot study. Food Research International, 2018, 105, 29-40.	2.9	15
3117	Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences, 2018, 75, 149-160.	2.4	380
3118	Gut Microbiota-Dependent Modulation of Energy Metabolism. Journal of Innate Immunity, 2018, 10, 163-171.	1.8	184
3119	Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes, 2018, 9, 143-154.	4.3	38

#	Article	IF	CITATIONS
3120	Heritable components of the human fecal microbiome are associated with visceral fat. Gut Microbes, 2018, 9, 61-67.	4.3	41
3121	Know and Care Life Friends -Microbiota. KYAMC Journal, 2018, 9, 101-103.	0.1	0
3124	Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study. PeerJ, 2018, 6, e4693.	0.9	84
3125	The Gut Microbiota and Ageing. Sub-Cellular Biochemistry, 2018, 90, 351-371.	1.0	79
3126	Butyrate stimulates hepatic gluconeogenesis in mouse primary hepatocytes. Experimental and Therapeutic Medicine, 2018, 17, 1677-1687.	0.8	11
3127	Adipose Organ Development and Remodeling. , 2018, 8, 1357-1431.		127
3128	Intestinal Microbiome and the Liver. , 2018, , 37-65.e6.		0
3129	Military-Related Exposures, Social Determinants of Health, and Dysbiosis: The United States-Veteran Microbiome Project (US-VMP). Frontiers in Cellular and Infection Microbiology, 2018, 8, 400.	1.8	15
3130	Similarities and differences in gut microbiome composition correlate with dietary patterns of Indian and Chinese adults. AMB Express, 2018, 8, 104.	1.4	55
3131	Association between metabolic profile and microbiomic changes in rats with functional dyspepsia. RSC Advances, 2018, 8, 20166-20181.	1.7	28
3132	Protective effects of SKLB023 on a mouse model of unilateral ureteral obstruction by the modulation of gut microbiota. RSC Advances, 2018, 8, 40232-40242.	1.7	0
3133	Hypoglycemic Mechanism of the Berberine Organic Acid Salt under the Synergistic Effect of Intestinal Flora and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-13.	1.9	50
3134	Obesity, salivary glands and oral pathology. Colombia Medica, 2018, 49, 280-287.	0.7	24
3135	Composition of Intestinal Microbiota in Two Lines of Rainbow Trout (Oncorhynchus Mykiss) Divergently Selected for Muscle Fat Content. Open Microbiology Journal, 2018, 12, 308-320.	0.2	15
3138	Correlation-based network analysis for biomarkers in obesity. , 2018, , .		0
3139	Gut microbes as a therapeutic armory. Drug Discovery Today: Disease Models, 2018, 28, 51-59.	1.2	3
3140	Gut-brain Axis: Role of Lipids in the Regulation of Inflammation, Pain and CNS Diseases. Current Medicinal Chemistry, 2018, 25, 3930-3952.	1.2	145
3141	42 Probiotika und PrÃ b iotika. , 2018, , .		0

#	Article	IF	CITATIONS
3142	46 Übergewicht und Adipositas im Erwachsenenalter. , 2018, , .		0
3143	Isolation and Characterization of Potentially Probiotic Bacterial Strains from Mice: Proof of Concept for Personalized Probiotics. Nutrients, 2018, 10, 1684.	1.7	20
3144	Dietary Exposure to the Environmental Chemical, PFOS on the Diversity of Gut Microbiota, Associated With the Development of Metabolic Syndrome. Frontiers in Microbiology, 2018, 9, 2552.	1.5	63
3145	The prebiotic inulin modulates gut microbiota but does not ameliorate atherosclerosis in hypercholesterolemic APOE*3-Leiden.CETP mice. Scientific Reports, 2018, 8, 16515.	1.6	26
3146	Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biology, 2018, 16, e2005396.	2.6	128
3147	Possible Prevention of Diabetes with a Gluten-Free Diet. Nutrients, 2018, 10, 1746.	1.7	32
3148	Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Frontiers in Microbiology, 2018, 9, 2899.	1.5	112
3149	Rutin and Its Combination With Inulin Attenuate Gut Dysbiosis, the Inflammatory Status and Endoplasmic Reticulum Stress in Paneth Cells of Obese Mice Induced by High-Fat Diet. Frontiers in Microbiology, 2018, 9, 2651.	1.5	60
3150	Gut Microbiota and its Role in Human Health. Psihologijske Teme, 2018, 27, 17-32.	0.1	1
3151	Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-human Primate, and Human Feces. Frontiers in Microbiology, 2018, 9, 2897.	1.5	170
3152	New insights on atherosclerosis: A cross-talk between endocannabinoid systems with gut microbiota. Journal of Cardiovascular and Thoracic Research, 2018, 10, 129-137.	0.3	22
3153	A Cross-Scale Neutral Theory Approach to the Influence of Obesity on Community Assembly of Human Gut Microbiome. Frontiers in Microbiology, 2018, 9, 2320.	1.5	7
3154	Impact of a Healthy Dietary Pattern on Gut Microbiota and Systemic Inflammation in Humans. Nutrients, 2018, 10, 1783.	1.7	71
3155	Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. Journal of Biomedical Science, 2018, 25, 79.	2.6	249
3156	The kinetics of gut microbial community composition in patients with irritable bowel syndrome following fecal microbiota transplantation. PLoS ONE, 2018, 13, e0194904.	1.1	59
3157	Targeting the gut microbiome to treat the osteoarthritis of obesity. JCl Insight, 2018, 3, .	2.3	166
3158	Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 2018, 10, 1651.	1.7	181
3159	Lysozyme-rich milk mitigates effects of malnutrition in a pig model of malnutrition and infection. British Journal of Nutrition, 2018, 120, 1131-1148.	1.2	9

#	Article	IF	CITATIONS
3160	Impact of vegan diets on gut microbiota: An update on the clinical implications. Tzu Chi Medical Journal, 2018, 30, 200.	0.4	23
3161	Modeling the Role of the Microbiome in Evolution. Frontiers in Physiology, 2018, 9, 1836.	1.3	39
3162	Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators of Inflammation, 2018, 2018, 1-12.	1.4	199
3163	Modulation of faecal metagenome in Crohn's disease: Role of microRNAs as biomarkers. World Journal of Gastroenterology, 2018, 24, 5223-5233.	1.4	26
3164	Gut microbiome changes in overweight male adults following bowel preparation. BMC Genomics, 2018, 19, 904.	1.2	6
3165	Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Frontiers in Physiology, 2018, 9, 1813.	1.3	68
3166	Gut Microbiota and Endothelial Dysfunction Markers in Obese Mexican Children and Adolescents. Nutrients, 2018, 10, 2009.	1.7	82
3168	l-Fucose ameliorates high-fat diet-induced obesity and hepatic steatosis in mice. Journal of Translational Medicine, 2018, 16, 344.	1.8	16
3169	Mechanisms underlying the effects of nutrition, adiposity and physical activity on colorectal cancer risk. Nutrition Bulletin, 2018, 43, 400-415.	0.8	10
3170	Microbial Intervention as a Novel Target in Treatment of Non-Alcoholic Fatty Liver Disease Progression. Cellular Physiology and Biochemistry, 2018, 51, 2123-2135.	1.1	32
3171	Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Veterinary Research, 2018, 14, 385.	0.7	92
3172	Respiratory Viral Infection-Induced Microbiome Alterations and Secondary Bacterial Pneumonia. Frontiers in Immunology, 2018, 9, 2640.	2.2	343
3173	The Human Gut Virome in Hypertension. Frontiers in Microbiology, 2018, 9, 3150.	1.5	40
3174	Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander?. Nutrients, 2018, 10, 1912.	1.7	26
3175	Rumen microbiome in dairy calves fed copper and grape-pomace dietary supplementations: Composition and predicted functional profile. PLoS ONE, 2018, 13, e0205670.	1.1	46
3176	Lactobacillus reuteri HCM2 protects mice against Enterotoxigenic Escherichia coli through modulation of gut microbiota. Scientific Reports, 2018, 8, 17485.	1.6	38
3177	Metagenomic analysis of captive Amur tiger faecal microbiome. BMC Veterinary Research, 2018, 14, 379.	0.7	24
3178	The Equine Gastrointestinal Microbiome: Impacts of Age and Obesity. Frontiers in Microbiology, 2018, 9, 3017.	1.5	46

#	Article	IF	CITATIONS
3179	Intestinal bacteria detected in cancer and adjacent tissue from patients with colorectal cancer. Oncology Letters, 2018, 17, 1115-1127.	0.8	15
3180	Differences in Anxiety Levels of Various Murine Models in Relation to the Gut Microbiota Composition. Biomedicines, 2018, 6, 113.	1.4	6
3181	A Systematic Overview of Type II and III Toxin-Antitoxin Systems with a Focus on Druggability. Toxins, 2018, 10, 515.	1.5	47
3182	Potential of iturins as functional agents: safe, probiotic, and cytotoxic to cancer cells. Food and Function, 2018, 9, 5580-5587.	2.1	28
3183	Oleoylethanolamide treatment affects gut microbiota composition and the expression of intestinal cytokines in Peyer's patches of mice. Scientific Reports, 2018, 8, 14881.	1.6	39
3184	Impact of Agaricus bisporus Mushroom Consumption on Gut Health Markers in Healthy Adults. Nutrients, 2018, 10, 1402.	1.7	43
3185	Anthocyanins: Nutrition and Health. Reference Series in Phytochemistry, 2018, , 1-37.	0.2	4
3186	Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican Undernourished and Obese Children. Frontiers in Microbiology, 2018, 9, 2494.	1.5	99
3187	Sulfated Polysaccharide from Sea Cucumber and its Depolymerized Derivative Prevent Obesity in Association with Modification of Gut Microbiota in Highâ€Fat Dietâ€Fed Mice. Molecular Nutrition and Food Research, 2018, 62, e1800446.	1.5	128
3188	Regulation, Communication, and Functional Roles of Adipose Tissue-Resident CD4+ T Cells in the Control of Metabolic Homeostasis. Frontiers in Immunology, 2018, 9, 1961.	2.2	34
3189	Intestinal microbiota profiling and predicted metabolic dysregulation in psoriasis patients. Experimental Dermatology, 2018, 27, 1336-1343.	1.4	79
3190	The "Gut Feeling― Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 109-125.	2.1	117
3191	A study of the correlation between obesity and intestinal flora in school-age children. Scientific Reports, 2018, 8, 14511.	1.6	31
3192	Microbiome and Blood Analyte Differences Point to Community and Metabolic Signatures in Lean and Obese Horses. Frontiers in Veterinary Science, 2018, 5, 225.	0.9	55
3193	The gut microbiota: cause and cure of gut diseases. Medical Journal of Australia, 2018, 209, 312-317.	0.8	10
3194	Air Pollution, Early Life Microbiome, and Development. Current Environmental Health Reports, 2018, 5, 512-521.	3.2	59
3195	Obesity alters composition and diversity of the oral microbiota in patients with type 2 diabetes mellitus independently of glycemic control. PLoS ONE, 2018, 13, e0204724.	1.1	69
3196	Caloric restriction promotes functional changes involving short-chain fatty acid biosynthesis in the rat gut microbiota. Scientific Reports, 2018, 8, 14778.	1.6	57

ARTICLE IF CITATIONS Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocrine Reviews, 2018, 3197 8.9 154 39, 629-663. Interactions between Bitter Taste, Diet and Dysbiosis: Consequences for Appetite and Obesity. 1.7 Nutrients, 2018, 10, 1336. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. 3199 4.9 131 Microbiome, 2018, 6, 172. Introductory Overview of Statistical Analysis of Microbiome Data. ICSA Book Series in Statistics, 2018, 0.0 , 43-75. Microcapsule of sweet orange essential oil changes gut microbiota in diet-induced obese rats. 3201 1.0 14 Biochemical and Biophysical Research Communications, 2018, 505, 991-995. Microbiota effects on cancer: from risks to therapies. Oncotarget, 2018, 9, 17915-17927. 0.8 Free Fatty Acids: Circulating Contributors of Metabolic Syndrome. Cardiovascular and Hematological 3203 0.4 24 Agents in Medicinal Chemistry, 2018, 16, 20-34. Compositional Analysis of Microbiome Data. ICSA Book Series in Statistics, 2018, , 331-393. 3204 0.0 10 Influence of the microbiota and probiotics in obesity. ClÃnica E InvestigaciÃ³n En Arteriosclerosis 3205 0.1 15 (English Edition), 2018, 30, 271-279. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. 5.8 Nature Communications, 2018, 9, 4462. Diabetes, Obesity, and Breast Cancer. Endocrinology, 2018, 159, 3801-3812. 3207 1.4 132 Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. 3208 1.8 38 International Journal of Molecular Sciences, 2018, 19, 3331. Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse 3209 1.6 57 model of metabolic syndrome. Scientific Reports, 2018, 8, 16173. Bifidobacterial strains in the intestines of newborns originate from their mothers. Bioscience of 0.8 16 Microbiota, Food and Health, 2018, 37, 79-85. The Microbiotic Highway to Healthâ€"New Perspective on Food Structure, Gut Microbiota, and Host 3211 1.7 45 Inflammation. Nutrients, 2018, 10, 1590. Do Obese Bacteria Make us "Want them� Intestinal Microbiota, Mesocorticolimbic Circuit and Non-Homeostatic Feeding. Current Behavioral Neuroscience Reports, 2018, 5, 211-217. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine 3213 Cholesterol Homeostasis and HDL Function. International Journal of Molecular Sciences, 2018, 19, 1.8 138 3228. Dietary fibers inhibit obesity in mice, but host responses in the cecum and liver appear unrelated to 3214 34 1.6 fiber-specific changes in cecal bacterial taxonomic composition. Scientific Reports, 2018, 8, 15566.

	CHATION RE	PORT	
#	Article	IF	CITATIONS
3215	Effect of Low-Fat Diet in Obese Mice Lacking Toll-like Receptors. Nutrients, 2018, 10, 1464.	1.7	14
3216	Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. Acta Veterinaria Scandinavica, 2018, 60, 61.	0.5	40
3218	Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Frontiers in Microbiology, 2018, 9, 2323.	1.5	145
3219	Impact of age at appendectomy on development of type 2 diabetes: A population-based cohort study. PLoS ONE, 2018, 13, e0205502.	1.1	5
3220	Metabolic Syndrome and Nutritional Interventions. , 2018, , 257-276.		0
3221	The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cellular Microbiology, 2018, 20, e12966.	1.1	287
3222	Efficacy of an Anthocyanin and Prebiotic Blend on Intestinal Environment in Obese Male and Female Subjects. Journal of Nutrition and Metabolism, 2018, 2018, 1-11.	0.7	32
3223	Defining Dysbiosis in Disorders of Movement and Motivation. Journal of Neuroscience, 2018, 38, 9414-9422.	1.7	17
3224	A role for plant science in underpinning the objective of global nutritional security?. Annals of Botany, 2018, 122, 541-553.	1.4	17
3225	Dietary Effects on Microbiota—New Trends with Gluten-Free or Paleo Diet. Medical Sciences (Basel,) Tj ETQq1 1	0,784314 1.3	rgBT /Ove
3226	Divergent impact of gender in advancement of liver injuries diseases and carcinogenesis. Frontiers in Bioscience - Scholar, 2018, 10, 65-100.	0.8	9
3227	Immunological Tolerance and Function: Associations Between Intestinal Bacteria, Probiotics, Prebiotics, and Phages. Frontiers in Immunology, 2018, 9, 2240.	2.2	99
3228	The Role of Gut Microbiota in Atherosclerosis and Hypertension. Frontiers in Pharmacology, 2018, 9, 1082.	1.6	164
3229	Origin and Evolution of Biodiversity. , 2018, , .		10
3230	GePMI: A statistical model for personal intestinal microbiome identification. Npj Biofilms and Microbiomes, 2018, 4, 20.	2.9	7
3231	Genomic and phenotypic description of the newly isolated human species <i>Collinsella bouchesdurhonensis</i> sp. nov MicrobiologyOpen, 2018, 7, e00580.	1.2	2
3232	A fucoidan from sea cucumber <i>Pearsonothuria graeffei</i> with well-repeated structure alleviates gut microbiota dysbiosis and metabolic syndromes in HFD-fed mice. Food and Function, 2018, 9, 5371-5380.	2.1	67
3233	Why is there an emerging need to look for a suitable drug delivery platform in targeting and regulating microbiota?. Panminerva Medica, 2018, 60, 136-137.	0.2	7

#	Article	IF	CITATIONS
3234	Mind the Gap: A Review of <i>The Health Gap: The Challenge of an Unequal World</i> by Sir Michael Marmot. Journal of Economic Literature, 2018, 56, 1080-1101.	4.5	12
3235	Correlations between intestinal innate immune genes and cecal microbiota highlight potential for probiotic development for immune modulation in poultry. Applied Microbiology and Biotechnology, 2018, 102, 9317-9329.	1.7	12
3236	Fecal microbiota transplantation: a promising strategy in preventing the progression of non-alcoholic steatohepatitis and improving the anti-cancer immune response. Expert Opinion on Biological Therapy, 2018, 18, 1061-1071.	1.4	27
3237	Mannose Alters Gut Microbiome, Prevents Diet-Induced Obesity, and Improves Host Metabolism. Cell Reports, 2018, 24, 3087-3098.	2.9	115
3238	Dietary Bile Salt Types Influence the Composition of Biliary Bile Acids and Gut Microbiota in Grass Carp. Frontiers in Microbiology, 2018, 9, 2209.	1.5	31
3239	Association between Cigarette Smoking Status and Composition of Gut Microbiota: Population-Based Cross-Sectional Study. Journal of Clinical Medicine, 2018, 7, 282.	1.0	177
3240	Effect of A Polyphenol-Rich Canarium album Extract on the Composition of the Gut Microbiota of Mice Fed a High-Fat Diet. Molecules, 2018, 23, 2188.	1.7	21
3241	Child Weight Gain Trajectories Linked To Oral Microbiota Composition. Scientific Reports, 2018, 8, 14030.	1.6	39
3242	Microbiota modulation by eating patterns and diet composition: impact on food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R1254-R1260.	0.9	46
3243	The Inhibitory Innate Immune Sensor NLRP12 Maintains a Threshold against Obesity by Regulating Gut Microbiota Homeostasis. Cell Host and Microbe, 2018, 24, 364-378.e6.	5.1	158
3244	Procyanidin attenuates weight gain and modifies the gut microbiota in high fat diet induced obese mice. Journal of Functional Foods, 2018, 49, 362-368.	1.6	52
3245	Pre- and probiotic overview. Current Opinion in Pharmacology, 2018, 43, 87-92.	1.7	97
3246	Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Childhood Obesity, 2018, 14, 501-509.	0.8	271
3247	Inflammation in Systemic Immune Diseases. , 2018, , 223-237.		2
3248	Microbial exposure and human health. Current Opinion in Microbiology, 2018, 44, 79-87.	2.3	32
3249	A Comparative Study on the Faecal Bacterial Community and Potential Zoonotic Bacteria of Muskoxen (Ovibos moschatus) in Northeast Greenland, Northwest Greenland and Norway. Microorganisms, 2018, 6, 76.	1.6	10
3250	Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: a randomized crossover controlled feeding trial. Journal of Nutritional Biochemistry, 2018, 62, 76-86.	1.9	80
3251	The EndoBarrier: Duodenal-Jejunal Bypass Liner for Diabetes and Weight Loss. Gastroenterology Research and Practice, 2018, 2018, 1-9.	0.7	47

#	Article	IF	Citations
3252	Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Frontiers of Medicine, 2018, 12, 645-657.	1.5	28
3253	Consequences of colonialism: A microbial perspective to contemporary Indigenous health. American Journal of Physical Anthropology, 2018, 167, 423-437.	2.1	12
3254	Tracing the Evolutionary Origin of the Gut–Brain Axis. , 2018, , 61-80.		0
3255	The Potential of Probiotics as a Therapy for Osteoporosis. , 0, , 213-233.		6
3256	Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders?. , 2018, , 131-148.		0
3257	Metataxonomic Analysis of Individuals at BMI Extremes and Monozygotic Twins Discordant for BMI. Twin Research and Human Genetics, 2018, 21, 203-213.	0.3	15
3258	The fecal metabolome as a functional readout of the gut microbiome. Nature Genetics, 2018, 50, 790-795.	9.4	482
3259	Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Research and Clinical Practice, 2018, 141, 190-199.	1.1	49
3260	Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 671-682.	8.2	257
3261	Managing antibiotics wisely: a quality improvement programme in a tertiary neonatal unit in the UK. BMJ Open Quality, 2018, 7, e000285.	0.4	25
3262	The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Frontiers in Neuroendocrinology, 2018, 51, 80-101.	2.5	218
3263	Effect of dietary <i>α</i> â€ketoglutarate and allicin supplementation on the composition and diversity of the cecal microbial community in growing pigs. Journal of the Science of Food and Agriculture, 2018, 98, 5816-5821.	1.7	18
3265	Novel human microbe-disease associations inference based on network consistency projection. Scientific Reports, 2018, 8, 8034.	1.6	16
3266	Gut Microbiota and Human Health: Insights From Ecological Restoration. Quarterly Review of Biology, 2018, 93, 73-90.	0.0	10
3267	Prebiotic effects of white button mushroom (Agaricus bisporus) feeding on succinate and intestinal gluconeogenesis in C57BL/6 mice. Journal of Functional Foods, 2018, 45, 223-232.	1.6	28
3268	Effect of bamboo vinegar powder as an antibiotic alternative on the digesta bacteria communities of finishing pigs. Canadian Journal of Microbiology, 2018, 64, 732-743.	0.8	4
3269	The Maternal Effect Gene Wds Controls Wolbachia Titer in Nasonia. Current Biology, 2018, 28, 1692-1702.e6.	1.8	51
3270	Changes in metabolism and microbiota after 24-week risperidone treatment in drug naÃ ⁻ ve, normal weight patients with first episode schizophrenia. Schizophrenia Research, 2018, 201, 299-306.	1.1	112

ARTICLE IF CITATIONS Hematopoiesis and the bacterial microbiome. Blood, 2018, 132, 559-564. 0.6 62 3271 Sulfated polysaccharides from pacific abalone reduce diet-induced obesity by modulating the gut 3272 1.6 microbiota. Journal of Functional Foods, 2018, 47, 211-219. Gut Microbiota Composition in Mid-Pregnancy Is Associated with Gestational Weight Gain but Not 3273 1.5 22 Prepregnancy Body Mass Index. Journal of Women's Health, 2018, 27, 1293-1301. Metagenomics Analysis of Gut Microbiota in a High Fat Diet–Induced Obesity Mouse Model Fed with (â~')â€Epigallocatechin 3â€<i>O</i>â€{3â€<i>O</i>â€Methyl) Gallate (EGCC3″Me). Molecular Nutrition and Foœds 3274 59 Research, 2018, 62, e1800274. Effects of Whole-Grain Rice and Wheat on Composition of Gut Microbiota and Short-Chain Fatty 3275 2.4 65 Acids in Rats. Journal of Agricultural and Food Chemistry, 2018, 66, 6326-6335. Design and rationale of the INSYTE study: A randomised, placebo controlled study to test the efficacy of a synbiotic on liver fat, disease biomarkers and intestinal microbiota in non-alcoholic fatty liver 0.8 disease. Contemporary Clinical Trials, 2018, 71, 113-123. Jaboticaba: Chemistry and Bioactivity. Reference Series in Phytochemistry, 2018, , 1-27. 3277 0.2 0 Cause, consequence or coincidence: The relationship between psychiatric disease and metabolic 3278 0.2 syndrome. Translational Metabolic Syndrome Research, 2018, 1, 23-38. Gut morphology and gene expression in obesity: Short review and perspectives. Clinical Nutrition 3279 2.0 1 Experimental, 2018, 20, 49-54. Mannan-oligosaccharide modulates the obesity and gut microbiota in high-fat diet-fed mice. Food and 2.1 Function, 2018, 9, 3916-3929. Breath methane concentrations and markers of obesity in patients with functional gastrointestinal 3281 14 1.6 disorders. United European Gastroenterology Journal, 2018, 6, 595-603. Fermented Soybean Suppresses Visceral Fat Accumulation in Mice. Molecular Nutrition and Food 1.5 26 Research, 2018, 62, e1701054. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current 3283 1.4 107 Applications and Future Perspectives. Mediators of Inflammation, 2018, 2018, 1-17. <i>Eggerthella timonensis</i> sp. nov, a new species isolated from the stool sample of a pygmy female. 3284 1.2 MicrobiologyOpen, 2018, 7, e00575. 3285 An Overview of the Roles of the Gut Microbiome in Obesity and Diabetes., 2018, , 65-91. 4 Characteristics of fecal microbiota in non-alcoholic fatty liver disease patients. Science China Life 3286 2.3 46 Sciences, 2018, 61, 770-778. Gastrointestinal Microbial Ecology With Perspectives on Health and Disease., 2018, 737-753. 3287 3 3288 Fermented Milk in Protection Against Inflammatory Mechanisms in Obesity., 2018, 389-401.

#	Article	IF	Citations
3289	Beneficial Metabolic Effects of 2?,3?,5?-Triacetyl-N ₆ -(3-hydroxylaniline) adenosine in Multiple Biological Matrices and Intestinal Flora of Hyperlipidemic Hamsters. Journal of Proteome Research, 2018, 17, 2870-2879.	1.8	2
3290	Dietary Polyphenols, Gut Microbiota, and Intestinal Epithelial Health. , 2018, , 295-314.		2
3291	Relationship between fatty acids intake and Clostridium coccoides in obese individuals with metabolic syndrome. Food Research International, 2018, 113, 86-92.	2.9	20
3292	Review – Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes. Journal of Environmental Management, 2018, 223, 586-599.	3.8	58
3293	The controversial role of <i>Enterococcus faecalis</i> in colorectal cancer. Therapeutic Advances in Gastroenterology, 2018, 11, 175628481878360.	1.4	95
3294	Effects of garlic polysaccharide on alcoholic liver fibrosis and intestinal microflora in mice. Pharmaceutical Biology, 2018, 56, 325-332.	1.3	63
3295	The Influence of Gut Microbial Metabolism on the Development and Progression of Non-alcoholic Fatty Liver Disease. Advances in Experimental Medicine and Biology, 2018, 1061, 95-110.	0.8	15
3296	Microbiota, Obesity and NAFLD. Advances in Experimental Medicine and Biology, 2018, 1061, 111-125.	0.8	63
3297	Role of androgens in energy metabolism affecting on body composition, metabolic syndrome, type 2 diabetes, cardiovascular disease, and longevity: lessons from a meta-analysis and rodent studies. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1667-1682.	0.6	24
3298	Altered Gut Microbiota: A Link Between Diet and the Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2018, 16, 321-328.	0.5	41
3299	Obesity, Fatty Liver and Liver Cancer. Advances in Experimental Medicine and Biology, 2018, , .	0.8	17
3300	A taxonomic signature of obesity in a large study of American adults. Scientific Reports, 2018, 8, 9749.	1.6	192
3301	Gene–Environment Interaction in the Pathogenesis of Type 2 Diabetes. , 2018, , 193-205.		0
3302	The Gut Microbiome Profile in Obesity: A Systematic Review. International Journal of Endocrinology, 2018, 2018, 1-9.	0.6	362
3303	The delayed effects of antibiotics in type 2 diabetes, friend or foe?. Journal of Endocrinology, 2018, 238, 137-149.	1.2	15
3304	Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in the Gut of Giant Pandas. Frontiers in Microbiology, 2018, 9, 1717.	1.5	55
3305	Inflammation and Metabolic Complications in HIV. Current HIV/AIDS Reports, 2018, 15, 371-381.	1.1	39
3306	Shifts in intestinal microbiota after duodenal exclusion favor glycemic control and weight loss: a randomized controlled trial. Surgery for Obesity and Related Diseases, 2018, 14, 1748-1754.	1.0	27

	CITATION RE	PORT	
# 3307	ARTICLE Intestinal microbiota in short bowel syndrome. Seminars in Pediatric Surgery, 2018, 27, 223-228.	IF 0.5	Citations
3308	Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veterinary Research, 2018, 49, 76.	1.1	271
3309	Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatric Disease and Treatment, 2018, Volume 14, 647-655.	1.0	193
3310	Cargo transport shapes the spatial organization of a microbial community. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8633-8638.	3.3	43
3311	ILâ€10 suppresses TNFâ€Î±â€induced expression of human aromatase gene in mammary adipose tissue. FASEB Journal, 2018, 32, 3361-3370.	0.2	22
3312	Gut Microbes: The Miniscule Laborers in the Human Body. , 2018, , 1-31.		1
3313	Bacterial communities related to 3-nitro-1-propionic acid degradation in the rumen of grazing ruminants in the Qinghai-Tibetan Plateau. Anaerobe, 2018, 54, 42-54.	1.0	8
3314	Effects of anthocyanins from the fruit of Lycium ruthenicum Murray on intestinal microbiota. Journal of Functional Foods, 2018, 48, 533-541.	1.6	69
3315	Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-Microbiome study protocol. BMC Public Health, 2018, 18, 978.	1.2	32
3316	Novel microencapsulated probiotic blend for use in metabolic syndrome: design and <i>in-vivo</i> analysis. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 116-124.	1.9	18
3317	The association between antibiotic use in infancy and childhood overweight or obesity: a systematic review and metaâ€analysis. Obesity Reviews, 2018, 19, 1463-1475.	3.1	61
3318	Gut microbiota in experimental murine model of Graves' orbitopathy established in different environments may modulate clinical presentation of disease. Microbiome, 2018, 6, 97.	4.9	65
3319	Association between Alzheimer's Disease and Oral and Gut Microbiota: Are Pore Forming Proteins the Missing Link?. Journal of Alzheimer's Disease, 2018, 65, 29-46.	1.2	38
3320	Diarrhea-Associated Intestinal Microbiota in Captive Sichuan Golden Snub-Nosed Monkeys (<i>Rhinopithecus roxellana</i>). Microbes and Environments, 2018, 33, 249-256.	0.7	14
3321	Minor taxa in human skin microbiome contribute to the personal identification. PLoS ONE, 2018, 13, e0199947.	1.1	26
3322	The Human Gut Microbiome – A Potential Controller of Wellness and Disease. Frontiers in Microbiology, 2018, 9, 1835.	1.5	681
3323	The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Frontiers in Physiology, 2018, 9, 900.	1.3	122
3324	Are microbiome studies ready for hypothesis-driven research?. Current Opinion in Microbiology, 2018, 44, 61-69.	2.3	27

#	Article	IF	CITATIONS
3325	Microbiome and Diseases: Metabolic Disorders. , 2018, , 251-277.		3
3326	Gnotobiology. , 2018, , 341-356.		0
3327	Introduction. Fertility and Sterility, 2018, 110, 325-326.	0.5	25
3328	<i>Papio</i> spp. Colon microbiome and its link to obesity in pregnancy. Journal of Medical Primatology, 2018, 47, 393-401.	0.3	3
3329	Mycobiome and Gut Inflammation. , 2018, , 271-280.		4
3330	Alterations and structural resilience of the gut microbiota under dietary fat perturbations. Journal of Nutritional Biochemistry, 2018, 61, 91-100.	1.9	26
3331	Considering gut microbiota disturbance in the management of Helicobacter pylori infection. Expert Review of Gastroenterology and Hepatology, 2018, 12, 899-906.	1.4	12
3332	Moderate Dietary Protein Restriction Optimized Gut Microbiota and Mucosal Barrier in Growing Pig Model. Frontiers in Cellular and Infection Microbiology, 2018, 8, 246.	1.8	70
3333	Dietary Alteration of the Gut Microbiome and Its Impact on Weight and Fat Mass: A Systematic Review and Meta-Analysis. Genes, 2018, 9, 167.	1.0	105
3334	Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metabolism, 2018, 28, 737-749.e4.	7.2	356
3335	Associations Between Nutrition, Gut Microbiome, and Health in A Novel Nonhuman Primate Model. Scientific Reports, 2018, 8, 11159.	1.6	60
3336	Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiological Genomics, 2018, 50, 244-254.	1.0	198
3337	Inflammation management in acute diverticulitis: current perspectives. Journal of Inflammation Research, 2018, Volume 11, 239-246.	1.6	12
3338	Case for a role of the microbiome in gynecologic cancers: Clinician's perspective. Journal of Obstetrics and Gynaecology Research, 2018, 44, 1693-1704.	0.6	24
3339	Polytrauma independent of therapeutic intervention alters the gastrointestinal microbiome. American Journal of Surgery, 2018, 216, 699-705.	0.9	23
3340	Association Between Gut Microbiota and Helicobacter pylori-Related Gastric Lesions in a High-Risk Population of Gastric Cancer. Frontiers in Cellular and Infection Microbiology, 2018, 8, 202.	1.8	106
3341	A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota. Frontiers in Endocrinology, 2018, 9, 233.	1.5	90
3342	Respiratory Disease following Viral Lung Infection Alters the Murine Gut Microbiota. Frontiers in Immunology, 2018, 9, 182.	2.2	178

#	Article	IF	CITATIONS
3343	Consumption of Goats' Milk Protects Mice From Carbon Tetrachloride-Induced Acute Hepatic Injury and Improves the Associated Gut Microbiota Imbalance. Frontiers in Immunology, 2018, 9, 1034.	2.2	21
3344	Effect of Dietary Fiber and Metabolites on Mast Cell Activation and Mast Cell-Associated Diseases. Frontiers in Immunology, 2018, 9, 1067.	2.2	34
3345	Role of Natural Killer T Cells in the Development of Obesity and Insulin Resistance: Insights From Recent Progress. Frontiers in Immunology, 2018, 9, 1314.	2.2	26
3346	A Critical Review of the Bacterial Baptism Hypothesis and the Impact of Cesarean Delivery on the Infant Microbiome. Frontiers in Medicine, 2018, 5, 135.	1.2	112
3347	The Inner Workings of the Outer Surface: Skin and Gill Microbiota as Indicators of Changing Gut Health in Yellowtail Kingfish. Frontiers in Microbiology, 2017, 8, 2664.	1.5	126
3348	Urbanization Reduces Transfer of Diverse Environmental Microbiota Indoors. Frontiers in Microbiology, 2018, 9, 84.	1.5	95
3349	Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study. Frontiers in Microbiology, 2018, 9, 317.	1.5	78
3350	Direct and Indirect Effects of Penguin Feces on Microbiomes in Antarctic Ornithogenic Soils. Frontiers in Microbiology, 2018, 9, 552.	1.5	20
3351	Stem Cell Transcription Factor FoxO Controls Microbiome Resilience in Hydra. Frontiers in Microbiology, 2018, 9, 629.	1.5	24
3352	Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Frontiers in Microbiology, 2018, 9, 890.	1.5	392
3353	Effect of Limit-Fed Diets With Different Forage to Concentrate Ratios on Fecal Bacterial and Archaeal Community Composition in Holstein Heifers. Frontiers in Microbiology, 2018, 9, 976.	1.5	37
3354	The Human Virome Protein Cluster Database (HVPC): A Human Viral Metagenomic Database for Diversity and Function Annotation. Frontiers in Microbiology, 2018, 9, 1110.	1.5	20
3355	Dysbiosis and Ecotypes of the Salivary Microbiome Associated With Inflammatory Bowel Diseases and the Assistance in Diagnosis of Diseases Using Oral Bacterial Profiles. Frontiers in Microbiology, 2018, 9, 1136.	1.5	87
3356	Current Trends and Potential Applications of Microbial Interactions for Human Welfare. Frontiers in Microbiology, 2018, 9, 1156.	1.5	96
3357	Body Mass Index Differences in the Gut Microbiota Are Gender Specific. Frontiers in Microbiology, 2018, 9, 1250.	1.5	145
3358	Urban Diets Linked to Gut Microbiome and Metabolome Alterations in Children: A Comparative Cross-Sectional Study in Thailand. Frontiers in Microbiology, 2018, 9, 1345.	1.5	55
3359	Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Frontiers in Neuroscience, 2018, 12, 155.	1.4	185
3360	Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules, 2018, 23, 367.	1.7	75

		CITATION RE	PORT	
# 3361	ARTICLE Gut Microbiota Alterations in People WithÂObesity and Effect of Probiotics Treatment. ,	2018, , 111-129.	IF	CITATIONS
3362	A Review of Traumatic Brain Injury and the Gut Microbiome: Insights into Novel Mechanis Secondary Brain Injury and Promising Targets for Neuroprotection. Brain Sciences, 2018,	sms of 8, 113.	1.1	77
3363	Microbial Regulation of Glucose Metabolism and Insulin Resistance. Genes, 2018, 9, 10.		1.0	38
3364	Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty disease: which strains act as health players?. Archives of Medical Science, 2018, 1, 81-87	iver	0.4	78
3365	Longâ€Term Genistein Consumption Modifies Gut Microbiota, Improving Glucose Metab Endotoxemia, and Cognitive Function in Mice Fed a Highâ€Fat Diet. Molecular Nutrition Research, 2018, 62, e1800313.		1.5	64
3366	Functional Effects of the Buckwheat Iminosugar <scp>d</scp> â€Fagomine on Rats with Prediabetes. Molecular Nutrition and Food Research, 2018, 62, e1800373.	Dietâ€Induced	1.5	18
3367	Obesity and Kidney Disease. Progress in Cardiovascular Diseases, 2018, 61, 157-167.		1.6	106
3368	The Biased G-Protein-Coupled Receptor Agonism Bridges the Gap between the Insulin Re Metabolic Syndrome. International Journal of Molecular Sciences, 2018, 19, 575.	ceptor and the	1.8	12
3369	Regulation of Ion Transport in the Intestine by Free Fatty Acid Receptor 2 and 3: Possible of the Diffuse Chemosensory System. International Journal of Molecular Sciences, 2018,	Involvement 19, 735.	1.8	9
3370	The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insig Diseases. Medical Sciences (Basel, Switzerland), 2018, 6, 32.	ghts into "Old―	1.3	103
3371	The Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease. Medical Sciences (Ba	asel,) Tj ETQq0 0 0 rgBT	/Oyerlock 1.3	10 Tf 50 342
3372	A Walnut-Enriched Diet Affects Gut Microbiome in Healthy Caucasian Subjects: A Randor Controlled Trial. Nutrients, 2018, 10, 244.	nized,	1.7	82
3373	The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nut 365.	rients, 2018, 10,	1.7	452
3374	Probiotics in the Rescue of Gut Inflammation. , 2018, , 101-116.			5
3375	The contribution of culturomics to the repertoire of isolated human bacterial and archae Microbiome, 2018, 6, 94.	al species.	4.9	139
3376	Inorganic nanoparticles and the microbiome. Nano Research, 2018, 11, 4936-4954.		5.8	46
3377	A selective gut bacterial bile salt hydrolase alters host metabolism. ELife, 2018, 7, .		2.8	177
3378	Is the Impact of Starvation on the Gut Microbiota Specific or Unspecific to Anorexia Nerv Narrative Review Based on a Systematic Literature Search. Current Neuropharmacology, 1131-1149.	osa? A 2018, 16,	1.4	55

#	Article	IF	CITATIONS
3379	Consumption of Black Legumes <i>Glycine soja</i> and <i>Glycine max</i> Lowers Serum Lipids and Alters the Gut Microbiome Profile in Mice Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry, 2018, 66, 7367-7375.	2.4	20
3380	Diet induced maternal obesity affects offspring gut microbiota and persists into young adulthood. Food and Function, 2018, 9, 4317-4327.	2.1	42
3381	Gut microbiota correlates with fiber and apparent nutrients digestion in goose. Poultry Science, 2018, 97, 3899-3909.	1.5	23
3382	Characteristics of gut microbiota and its response to a Chinese Herbal Formula in elder patients with metabolic syndrome. Drug Discoveries and Therapeutics, 2018, 12, 161-169.	0.6	27
3383	The Microbiotaâ€Inflammasome Hypothesis of Major Depression. BioEssays, 2018, 40, e1800027.	1.2	91
3384	Probiotics for the treatment of depressive symptoms: An anti-inflammatory mechanism?. Brain, Behavior, and Immunity, 2018, 73, 115-124.	2.0	90
3385	Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates. Microbiome, 2018, 6, 99.	4.9	42
3386	Duration of Breastfeeding, but Not Timing of Solid Food, Reduces the Risk of Overweight and Obesity in Children Aged 24 to 36 Months: Findings from an Australian Cohort Study. International Journal of Environmental Research and Public Health, 2018, 15, 599.	1.2	50
3387	A polyphenol-rich prebiotic in combination with a novel probiotic formulation alleviates markers of obesity and diabetes in Drosophila. Journal of Functional Foods, 2018, 48, 374-386.	1.6	20
3388	Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome, 2018, 6, 72.	4.9	211
3389	Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids in Health and Disease, 2018, 17, 17.	1.2	57
3390	Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathogens, 2018, 10, 3.	1.6	153
3391	Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth. Microbiome, 2018, 6, 4.	4.9	90
3392	Probiotic Supplementation in Morbid Obese Patients Undergoing One Anastomosis Gastric Bypass-Mini Gastric Bypass (OAGB-MGB) Surgery: a Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Obesity Surgery, 2018, 28, 2874-2885.	1.1	35
3393	Non-Ischemic Heart Failure With Reduced Ejection Fraction Is Associated With Altered Intestinal Microbiota. Circulation Journal, 2018, 82, 1640-1650.	0.7	41
3394	Procyanidin B2 protects against d-galactose-induced mimetic aging in mice: Metabolites and microbiome analysis. Food and Chemical Toxicology, 2018, 119, 141-149.	1.8	35
3395	Effects of <i>Clostridium butyricum</i> on breast muscle lipid metabolism of broilers. Italian Journal of Animal Science, 2018, 17, 1010-1020.	0.8	11
3396	Analysis of changes in intestinal flora and intravascular inflammation and coronary heart disease in obese patients. Experimental and Therapeutic Medicine, 2018, 15, 4538-4542.	0.8	9

CITATION REPORT ARTICLE IF CITATIONS 16S rRNA Sequencing Reveals Relationship Between Potent Cellulolytic Genera and Feed Efficiency in 1.5 42 the Rumen of Bulls. Frontiers in Microbiology, 2018, 9, 1842. Breast Cancer and Its Relationship with the Microbiota. International Journal of Environmental 1.2 Research and Public Health, 2018, 15, 1747. Association analysis of dietary habits with gut microbiota of a native Chinese community. 3399 0.8 19 Experimental and Therapeutic Medicine, 2018, 16, 856-866. Unmet needs in pediatric NAFLD research: what do we need to prioritize for the future?. Expert Review 3400 of Gastroenterology and Hepatology, 2018, 12, 961-967. Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Applied Microbiology and Biotechnology, 2018, 102, 3401 1.7 55 8827-8840. Dietary l-arginine Supplementation Alleviates the Intestinal Injury and Modulates the Gut Microbiota 1.5 64 in Broiler Chickens Challenged by Clostridium perfringens. Frontiers in Microbiology, 2018, 9, 1716. Microbiome and intestinal ischemia/reperfusion injury. Journal of Clinical Biochemistry and 3403 0.6 54 Nutrition, 2018, 63, 26-32. Effects of <i>Bifidobacterium breve</i> B-3 on body fat reductions in pre-obese adults: a randomized, double-blind, placebo-controlled trial. Bioscience of Microbiota, Food and Health, 2018, 3404 0.8 37, 67-75. <i>Lactobacillus plantarum</i> 299v Supplementation Improves Vascular Endothelial Function and 3405 Reduces Inflammatory Biomarkers in Men With Stable Coronary Artery Disease. Circulation Research, 2.0 127 2018, 123, 1091-1102. Lentil (<i>Lens culinaris</i> Medikus) Diet Affects the Gut Microbiome and Obesity Markers in Rat. 3406 2.4 Journal of Agricultural and Food Chemistry, 2018, 66, 8805-8813. Gut microbiota alterations in moderate to severe acne vulgaris patients. Journal of Dermatology, 0.6 59 2018, 45, 1166-1171. The journey of gut microbiome $\hat{a} \in A$ introduction and its influence on metabolic disorders. Frontiers 3408 in Biology, 2018, 1<u>3, 327-341.</u> Gut microbiome: Microflora association with obesity and obesity-related comorbidities. Microbial 3409 1.3 22 Pathogenesis, 2018, 124, 266-271. Metagenomic Approaches for Understanding New Concepts in Microbial Science. International 0.8 100 Journal of Genomics, 2018, 2018, 1-15. A Galacto-Oligosaccharides Preparation Derived From Lactulose Protects Against Colorectal Cancer 1.5 66 Development in an Animal Model. Frontiers in Microbiology, 2018, 9, 2004. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. Journal of Microbiology, 2018, 56, 601-613. Review: Enhancing gastrointestinal health in dairy cows. Animal, 2018, 12, s399-s418. 1.3116

3414	Role of gut microbiota in chronic lowâ€grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obesity Reviews, 2018, 19, 1719-1734.	3.1	169
------	---	-----	-----

3397

3398

3407

3410

3411

3412

#	Article	IF	CITATIONS
3415	Intestinal fluke Metagonimus yokogawai infection increases probiotic Lactobacillus in mouse cecum. Experimental Parasitology, 2018, 193, 45-50.	0.5	13
3416	Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. Journal of Nutritional Biochemistry, 2018, 61, 111-128.	1.9	66
3417	Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Frontiers in Microbiology, 2018, 9, 2013.	1.5	323
3418	The brain-adipocyte-gut network: Linking obesity and depression subtypes. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 1121-1144.	1.0	35
3419	Microbiome Composition in Both Wild-Type and Disease Model Mice Is Heavily Influenced by Mouse Facility. Frontiers in Microbiology, 2018, 9, 1598.	1.5	60
3420	Thanatomicrobiome composition profiling as a tool for forensic investigation. Forensic Sciences Research, 2018, 3, 105-110.	0.9	34
3421	The wild side of plant microbiomes. Microbiome, 2018, 6, 143.	4.9	199
3422	Volatile Oil of <i>Amomum villosum</i> Inhibits Nonalcoholic Fatty Liver Disease via the Gut-Liver Axis. BioMed Research International, 2018, 2018, 1-16.	0.9	27
3423	Relevance of gutmicrobiota in cognition, behaviour and Alzheimer's disease. Pharmacological Research, 2018, 136, 29-34.	3.1	103
3424	Carcinogenesis as a Result of Multiple Inflammatory and Oxidative Hits: a Comprehensive Review from Tumor Microenvironment to Gut Microbiota. Neoplasia, 2018, 20, 721-733.	2.3	65
3425	An improved metagenomic strategy reveals an unprecedentedly high level of intragenomic polymorphism of ribosomal DNA in three species of <i>Camellia</i> . Journal of Systematics and Evolution, 2018, 56, 250-258.	1.6	2
3426	Draft Genome and Description of Eisenbergiella massiliensis Strain AT11T: A New Species Isolated from Human Feces After Bariatric Surgery. Current Microbiology, 2018, 75, 1274-1281.	1.0	4
3427	Metabolic liver inflammation in obesity does not robustly decrease hepatic and circulating CETP. Atherosclerosis, 2018, 275, 149-155.	0.4	5
3428	Water soluble fraction from ethanolic extract of Clausena lansium seeds alleviates obesity and insulin resistance, and changes the composition of gut microbiota in high-fat diet-fed mice. Journal of Functional Foods, 2018, 47, 192-199.	1.6	17
3429	Enterobacter cloacae administration induces hepatic damage and subcutaneous fat accumulation in high-fat diet fed mice. PLoS ONE, 2018, 13, e0198262.	1.1	22
3430	S-Adenosylmethionine Metabolism and Aging. , 2018, , 59-93.		3
3431	Neuron-specific regulation of superoxide dismutase amid pathogen-induced gut dysbiosis. Redox Biology, 2018, 17, 377-385.	3.9	12
3432	Identifying and Overcoming Threats to Reproducibility, Replicability, Robustness, and Generalizability in Microbiome Research. MBio, 2018, 9, .	1.8	164

ARTICLE IF CITATIONS The Microbiome in Psychology and Cognitive Neuroscience. Trends in Cognitive Sciences, 2018, 22, 3433 4.0 148 611-636. The Intestinal Microbiome., 2018, , 1083-1089.e3. 3434 Influencia de la microbiota y de los probiÃ³ticos en la obesidad. ClÃnica E InvestigaciÃ³n En 3435 0.4 31 Arteriosclerosis, 2018, 30, 271-279. Bifidobacteria attenuate the development of metabolic disorders, with inter- and intra-species 3436 differences. Food and Function, 2018, 9, 3509-3522. Gut Microbiota, Early Colonization and Factors in its Development that Influence Health., 2018, , 1-35. 3437 0 Intestinal Dysbiosis in Obesity, Metabolic Syndrome and Related Metabolic Diseases: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics, and Fecal Microbial Transplant (FMT) Therapy. , 2018, , 46<u>3-515</u>. The gut microbiome in obesity. Journal of the Formosan Medical Association, 2019, 118, S3-S9. 3439 0.8 173 Dietary fat and gut microbiota: mechanisms involved in obesity control. Critical Reviews in Food 3440 5.4 59 Science and Nutrition, 2019, 59, 3045-3053. Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese 3441 2.3 190 subjects. Journal of Gastroenterology, 2019, 54, 53-63. Effects of Japanese diet in combination with exercise on visceral fat accumulation. Nutrition, 2019, 57, 3442 1.1 173-182. Zero-inflated generalized Dirichlet multinomial regression model for microbiome compositional data 3443 49 0.9 analysis. Biostatistics, 2019, 20, 698-713. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Diseaseâ€"a 3444 368 Critical Review. Molecular Neurobiology, 2019, 56, 1841-1851. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME 3445 4.4 83 Journal, 2019, 13, 183-196. Conventional culture methods with commercially available media unveil the presence of novel culturable bacteria. Gut Microbes, 2019, 10, 77-91. 3446 4.3 Effect of industrial trans-fatty acids-enriched diet on gut microbiota of C57BL/6 mice. European 3447 39 1.8 Journal of Nutrition, 2019, 58, 2625-2638. Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. 3448 36 Trends in Cardiovascular Medicine, 2019, 29, 141-147. Gut Microbiota Composition Is Related to Cardiorespiratory Fitness in Healthy Young Adults. 3449 1.0 88 International Journal of Sport Nutrition and Exercise Metabolism, 2019, 29, 249-253. Outside the liver box: The gut microbiota as pivotal modulator of liver diseases. Biochimica Et 3450 1.8 Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 912-919.

#	Article	IF	CITATIONS
3451	The Role of Microbiota in Cardiovascular Risk: Focus on Trimethylamine Oxide. Current Problems in Cardiology, 2019, 44, 182-196.	1.1	22
3452	The salivary microbiome of diabetic and nonâ€diabetic adults with periodontal disease. Journal of Periodontology, 2019, 90, 26-34.	1.7	54
3453	MIMOSA: Algorithms for Microbial Profiling. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1-1.	1.9	1
3454	Altered Gut Microbiome in Parkinson's Disease and the Influence of Lipopolysaccharide in a Human α-Synuclein Over-Expressing Mouse Model. Frontiers in Neuroscience, 2019, 13, 839.	1.4	122
3455	Linggui Zhugan Formula Improves Glucose and Lipid Levels and Alters Gut Microbiota in High-Fat Diet-Induced Diabetic Mice. Frontiers in Physiology, 2019, 10, 918.	1.3	38
3456	A pilot study to examine the association between human gut microbiota and the host's central obesity. JGH Open, 2019, 3, 480-487.	0.7	13
3457	Microbiota: Novel Gateway Towards Personalised Medicine. Europeanization and Globalization, 2019, , 107-120.	0.1	0
3458	Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. Journal of Ethnopharmacology, 2019, 244, 112139.	2.0	53
3459	Using poly(β-hydroxybutyrate-β-hydroxyvalerate) as carbon source in biofloc-systems: Nitrogen dynamics and shift of Oreochromis niloticus gut microbiota. Science of the Total Environment, 2019, 694, 133664.	3.9	21
3460	Gut Microbiota Pattern of Centenarians. , 2019, , 149-160.		1
3460 3461	Gut Microbiota Pattern of Centenarians. , 2019, , 149-160. The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995.	1.2	1
	The association between gut microbiota composition and BMI in Chinese male college students, as	1.2	
3461	The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995. A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted		46
3461 3462	The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995. A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted Network. Frontiers in Microbiology, 2019, 10, 676. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Applied	1.5	46 23
3461 3462 3463	The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995. A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted Network. Frontiers in Microbiology, 2019, 10, 676. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Applied Microbiology and Biotechnology, 2019, 103, 8157-8168. Short-term dietary restriction in old mice rejuvenates the aging-induced structural imbalance of gut	1.5 1.7	46 23 47
3461 3462 3463 3464	The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995. A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted Network. Frontiers in Microbiology, 2019, 10, 676. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Applied Microbiology and Biotechnology, 2019, 103, 8157-8168. Short-term dietary restriction in old mice rejuvenates the aging-induced structural imbalance of gut microbiota. Biogerontology, 2019, 20, 837-848. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during	1.5 1.7 2.0	46 23 47 27
3461 3462 3463 3464 3465	The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995. A Novel Human Microbe-Disease Association Prediction Method Based on the Bidirectional Weighted Network. Frontiers in Microbiology, 2019, 10, 676. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Applied Microbiology and Biotechnology, 2019, 103, 8157-8168. Short-term dietary restriction in old mice rejuvenates the aging-induced structural imbalance of gut microbiota. Biogerontology, 2019, 20, 837-848. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome, 2019, 7, 113. Cecal Gut Microbiota and Metabolites Might Contribute to the Severity of Acute Myocardial Ischemia by Impacting the Intestinal Permeability, Oxidative Stress, and Energy Metabolism. Frontiers in	1.5 1.7 2.0 4.9	46 23 47 27 67

#	Article	IF	CITATIONS
3469	Role and effective therapeutic target of gut microbiota in NAFLD/NASH (Review). Experimental and Therapeutic Medicine, 2019, 18, 1935-1944.	0.8	23
3470	The Gut Microbiome Influences Host Endocrine Functions. Endocrine Reviews, 2019, 40, 1271-1284.	8.9	179
3471	The gastrointestinal fate of limonin and its effect on gut microbiota in mice. Food and Function, 2019, 10, 5521-5530.	2.1	12
3472	Fucoxanthin modulates cecal and fecal microbiota differently based on diet. Food and Function, 2019, 10, 5644-5655.	2.1	54
3473	Comparative Analyses of Fecal Microbiota in European Mouflon (Ovis orientalis musimon) and Blue Sheep (Pseudois nayaur) Living at Low or High Altitudes. Frontiers in Microbiology, 2019, 10, 1735.	1.5	27
3474	Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1514-1532.	5.9	123
3475	Dietâ€derived microbial metabolites in health and disease. Nutrition Bulletin, 2019, 44, 216-227.	0.8	36
3476	Interactions of tea catechins with intestinal microbiota and their implication for human health. Food Science and Biotechnology, 2019, 28, 1617-1625.	1.2	45
3477	Role of microbes, metabolites and effector compounds inÂhost–microbiota interaction: a pharmacological outlook. Environmental Chemistry Letters, 2019, 17, 1801-1820.	8.3	14
3478	Correlation between Jejunal Microbial Diversity and Muscle Fatty Acids Deposition in Broilers Reared at Different Ambient Temperatures. Scientific Reports, 2019, 9, 11022.	1.6	15
3479	Connection between gut microbiome and the development of obesity. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1987-1998.	1.3	48
3480	Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell Host and Microbe, 2019, 26, 228-239.e8.	5.1	52
3481	Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME Journal, 2019, 13, 2916-2926.	4.4	33
3483	Gut dysbiosis and its epigenomic impact on disease. , 2019, , 409-422.		1
3484	Gut Microbiota Interventions With Clostridium butyricum and Norfloxacin Modulate Immune Response in Experimental Autoimmune Encephalomyelitis Mice. Frontiers in Immunology, 2019, 10, 1662.	2.2	58
3485	Pomegranate peel extract alters the microbiome in mice and dysbiosis caused by <i>Citrobacter rodentium</i> infection. Food Science and Nutrition, 2019, 7, 2565-2576.	1.5	30
3486	Evaluating different extraction solvents for GC-MS based metabolomic analysis of the fecal metabolome of adult and baby giant pandas. Scientific Reports, 2019, 9, 12017.	1.6	22
3487	Dietary fat intake and age modulate the composition of the gut microbiota and colonic inflammation in C57BL/6J mice. BMC Microbiology, 2019, 19, 193.	1.3	78

#	Article	IF	CITATIONS
3488	The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients, 2019, 11, 1943.	1.7	322
3489	Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota. Food and Function, 2019, 10, 4771-4781.	2.1	55
3490	A Comparative Analysis of Biosynthetic Gene Clusters in Lean and Obese Humans. BioMed Research International, 2019, 2019, 1-7.	0.9	4
3491	Fatty Liver Disease and Gut Microbiota: A Comprehensive Update. Journal of Clinical and Translational Hepatology, 2019, 7, 1-5.	0.7	45
3492	Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. International Journal of Molecular Medicine, 2019, 44, 513-522.	1.8	30
3493	Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host and Microbe, 2019, 26, 265-272.e4.	5.1	194
3494	Storage and handling of human faecal samples affect the gut microbiome composition: A feasibility study. Journal of Microbiological Methods, 2019, 164, 105668.	0.7	14
3495	A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: A pilot study. PLoS ONE, 2019, 14, e0219489.	1.1	82
3496	Melatonin Signaling a Key Regulator of Glucose Homeostasis and Energy Metabolism. Frontiers in Endocrinology, 2019, 10, 488.	1.5	65
3497	Basal Diet Determined Long-Term Composition of the Gut Microbiome and Mouse Phenotype to a Greater Extent than Fecal Microbiome Transfer from Lean or Obese Human Donors. Nutrients, 2019, 11, 1630.	1.7	23
3498	Universal membrane-labeling combined with expression of Katushka far-red fluorescent protein enables non-invasive dynamic and longitudinal quantitative 3D dual-color fluorescent imaging of multiple bacterial strains in mouse intestine. BMC Microbiology, 2019, 19, 167.	1.3	5
3499	Moderate Traumatic Brain Injury Alters the Gastrointestinal Microbiome in a Time-Dependent Manner. Shock, 2019, 52, 240-248.	1.0	99
3500	Role of Bile Acids in Dysbiosis and Treatment of Nonalcoholic Fatty Liver Disease. Mediators of Inflammation, 2019, 2019, 1-13.	1.4	35
3501	Anti-Obesity Effects of Lactobacillus fermentum CQPC05 Isolated from Sichuan Pickle in High-Fat Diet-Induced Obese Mice through PPAR-α Signaling Pathway. Microorganisms, 2019, 7, 194.	1.6	39
3502	Lactobacillus plantarum TW1-1 Alleviates Diethylhexylphthalate-Induced Testicular Damage in Mice by Modulating Gut Microbiota and Decreasing Inflammation. Frontiers in Cellular and Infection Microbiology, 2019, 9, 221.	1.8	68
3503	Comparison of gut microbiota diversity between wild and captive bharals (Pseudois nayaur). BMC Veterinary Research, 2019, 15, 243.	0.7	29
3504	Probiotics Beverages: An Alternative Treatment for Metabolic Syndrome. , 2019, , 459-482.		2
3505	Longitudinal changes of microbiome composition and microbial metabolomics after surgical weight loss in individuals with obesity. Surgery for Obesity and Related Diseases, 2019, 15, 1367-1373.	1.0	64

#	Article	IF	CITATIONS
3506	Comparing the Microbial Community in Four Stomach of Dairy Cattle, Yellow Cattle and Three Yak Herds in Qinghai-Tibetan Plateau. Frontiers in Microbiology, 2019, 10, 1547.	1.5	67
3507	The Role of the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterology Clinics of North America, 2019, 48, 407-431.	1.0	41
3508	Beneficial effects of a chlorophyll-rich spinach extract supplementation on prevention of obesity and modulation of gut microbiota in high-fat diet-fed mice. Journal of Functional Foods, 2019, 60, 103436.	1.6	37
3509	Prevalence, Magnitude, and Genotype Distribution of Urinary Cytomegalovirus (CMV) Shedding Among CMV-Seropositive Children and Adolescents in the United States. Open Forum Infectious Diseases, 2019, 6, ofz272.	0.4	4
3512	Propionate alleviates high-fat diet-induced lipid dysmetabolism by modulating gut microbiota in mice. Journal of Applied Microbiology, 2019, 127, 1546-1555.	1.4	31
3513	Gallocatechin Gallate-Containing Fermented Green Tea Extract Ameliorates Obesity and Hypertriglyceridemia Through the Modulation of Lipid Metabolism in Adipocytes and Myocytes. Journal of Medicinal Food, 2019, 22, 779-788.	0.8	17
3514	Gut Microbiomes and Their Impact on Human Health. , 2019, , 355-385.		0
3515	Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacological Research, 2019, 147, 104367.	3.1	135
3516	Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer's disease. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2144-2152.	0.6	87
3517	Gut Microbiota Composition Is Associated With the Global DNA Methylation Pattern in Obesity. Frontiers in Genetics, 2019, 10, 613.	1.1	38
3518	Chlorophyll Supplementation in Early Life Prevents Dietâ€Induced Obesity and Modulates Gut Microbiota in Mice. Molecular Nutrition and Food Research, 2019, 63, e1801219.	1.5	37
3520	The effects of benzo[a]pyrene on the composition of gut microbiota and the gut health of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish and Shellfish Immunology, 2019, 93, 369-379.	1.6	32
3521	The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends in Food Science and Technology, 2019, 91, 426-435.	7.8	33
3522	Gene–Environment Interactions on Body Fat Distribution. International Journal of Molecular Sciences, 2019, 20, 3690.	1.8	29
3523	Comorbid brain disorders associated with diabetes: therapeutic potentials of prebiotics, probiotics and herbal drugs. Translational Medicine Communications, 2019, 4, .	0.5	12
3524	The gut microbiome in psychiatry: A primer for clinicians. Depression and Anxiety, 2019, 36, 1004-1025.	2.0	27
3525	Mixed Spices at Culinary Doses Have Prebiotic Effects in Healthy Adults: A Pilot Study. Nutrients, 2019, 11, 1425.	1.7	25
3526	Potential mechanisms of sleeve gastrectomy for reducing weight and improving metabolism in patients with obesity. Surgery for Obesity and Related Diseases, 2019, 15, 1861-1871.	1.0	27

ARTICLE IF CITATIONS Changes in Gut Microbiome after Bariatric Surgery Versus Medical Weight Loss in a Pilot Randomized 3527 1.1 46 Trial. Obesity Surgery, 2019, 29, 3239-3245. Fecal Microbiota Transplantation: a Future Therapeutic Option for Obesity/Diabetes?. Current Diabetes 3528 1.7 Reports, 2019, 19, 51. 3529 Dietary Fiber and Nutrition., 2019, , 79-123. 0 Microbiota-Related Changes in Unconjugated Fecal Bile Acids Are Associated With Naturally 3530 0.9 Occurring, Insulin-Dependent Diabetes Mellitus in Dogs. Frontiers in Veterinary Science, 2019, 6, 199. Alteration of the esophageal microbiota in Barrett's esophagus and esophageal adenocarcinoma. 3531 1.4 73 World Journal of Gastroenterology, 2019, 25, 2149-2161. Sodium butyrate recovers high-fat diet-fed female Wistar rats from glucose dysmetabolism and uric acid-associated cardiac tissue damage. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 1.4 1411-1419. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of 3533 1.2 63 healthy adults. British Journal of Nutrition, 2019, 122, 856-862. Persistence of Gut Microbiota Dysbiosis and Chronic Systemic Inflammation After Cerebral Infarction 3534 1.1 58 in Cynomolgus Monkeys. Frontiers in Neurology, 2019, 10, 661. Anti-Obesity Effects of Dietary Calcium: The Evidence and Possible Mechanisms. International Journal 3535 1.8 43 of Molecular Sciences, 2019, 20, 3072. Associations of the Fecal Microbial Proteome Composition and Proneness to Diet-induced Obesity. 2.5 Molecular and Cellular Proteomics, 2019, 18, 1864-1879. Probiotic Ingestion, Obesity, and Metabolic-Related Disorders: Results from NHANES, 1999–2014. 3537 1.7 35 Nutrients, 2019, 11, 1482. Negative Effects of a High-Fat Diet on Intestinal Permeability: A Review. Advances in Nutrition, 2020, 11, 3538 382 77-91. High-Fat Diet Accelerates Carcinogenesis in a Mouse Model of Barrett's Esophagus via Interleukin 8 3539 0.6 100 and Alterations to the Gut Microbiome. Gastroenterology, 2019, 157, 492-506.e2. Multitable Methods for Microbiome Data Integration. Frontiers in Genetics, 2019, 10, 627. 3540 1.1 RWHMDA: Random Walk on Hypergraph for Microbe-Disease Association Prediction. Frontiers in 3541 1.5 21 Microbiology, 2019, 10, 1578. Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells, 2019, 8, 670. 3542 1.8 Mixed organic acids improve nutrients digestibility, volatile fatty acids composition and intestinal 3543 microbiota in growing-finishing pigs fed high-fiber diet. Asian-Australasian Journal of Animal Sciences, 2.4 17 2019, 32, 856-864. Human Milk Oligosaccharide Composition Is Associated With Excessive Weight Gain During Exclusive 3544 Breastfeedingâ€"An Explorative Study. Frontiers in Pediatrics, 2019, 7, 297.

#	Article	IF	CITATIONS
3545	Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms, 2019, 7, 456.	1.6	56
3546	Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies. Nutrients, 2019, 11, 2364.	1.7	44
3547	Chemical Cross-Linking Controls in Vitro Fecal Fermentation Rate of High-Amylose Maize Starches and Regulates Gut Microbiota Composition. Journal of Agricultural and Food Chemistry, 2019, 67, 13728-13736.	2.4	42
3548	Host plants influence the composition of the gut bacteria in Henosepilachna vigintioctopunctata. PLoS ONE, 2019, 14, e0224213.	1.1	26
3549	Milk Polar Lipids in a Highâ€Fat Diet Can Prevent Body Weight Gain: Modulated Abundance of Gut Bacteria in Relation with Fecal Loss of Specific Fatty Acids. Molecular Nutrition and Food Research, 2019, 63, e1801078.	1.5	35
3550	Mannan Oligosaccharide Suppresses Lipid Accumulation and Appetite in Westernâ€Dietâ€Induced Obese Mice Via Reshaping Gut Microbiome and Enhancing Shortâ€Chain Fatty Acids Production. Molecular Nutrition and Food Research, 2019, 63, e1900521.	1.5	48
3551	Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. Journal of Veterinary Medical Science, 2019, 81, 1783-1790.	0.3	12
3552	Traditional Processed Meat Products Re-designed Towards Inulin-rich Functional Foods Reduce Polyps in Two Colorectal Cancer Animal Models. Scientific Reports, 2019, 9, 14783.	1.6	37
3553	Global analysis of protein synthesis in Flavobacterium johnsoniae reveals the use of Kozak-like sequences in diverse bacteria. Nucleic Acids Research, 2019, 47, 10477-10488.	6.5	23
3554	Differential Effects of Typical Korean Versus American-Style Diets on Gut Microbial Composition and Metabolic Profile in Healthy Overweight Koreans: A Randomized Crossover Trial. Nutrients, 2019, 11, 2450.	1.7	33
3555	Carbohydrate active enzymes are affected by diet transition from milk to solid food in infant gut microbiota. FEMS Microbiology Ecology, 2019, 95, .	1.3	10
3556	Blautia genus associated with visceral fat accumulation in adults 20–76 years of age. Npj Biofilms and Microbiomes, 2019, 5, 28.	2.9	244
3557	Incorporating functional trade-offs into studies of the gut microbiota. Current Opinion in Microbiology, 2019, 50, 20-27.	2.3	14
3558	A Fermented Food Product Containing Lactic Acid Bacteria Protects ZDF Rats from the Development of Type 2 Diabetes. Nutrients, 2019, 11, 2530.	1.7	33
3559	The role of the brain–gut–microbiota axis in psychology: The importance of considering gut microbiota in the development, perpetuation, and treatment of psychological disorders. Brain and Behavior, 2019, 9, e01408.	1.0	30
3560	The Gut Microbiome. , 2019, , 61-98.		2
3561	Editorial: obesity and chronic diarrhoea—A Hill of evidence for causation?. Alimentary Pharmacology and Therapeutics, 2019, 50, 1137-1138.	1.9	2
3562	Comparative characterization of bacterial communities in geese consuming of different proportions of ryegrass. PLoS ONE, 2019, 14, e0223445.	1.1	27

#	Article	IF	CITATIONS
3563	A High Level of Circulating Valine Is a Biomarker for Type 2 Diabetes and Associated with the Hypoglycemic Effect of Sitagliptin. Mediators of Inflammation, 2019, 2019, 1-7.	1.4	16
3564	Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension, 2019, 74, 1279-1293.	1.3	54
3565	Anti-aging Effect of Agar Oligosaccharide on Male Drosophila melanogaster and its Preliminary Mechanism. Marine Drugs, 2019, 17, 632.	2.2	22
3566	Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Scientific Reports, 2019, 9, 15582.	1.6	64
3567	Gamma-aminobutyric acid-producing lactobacilli positively affect metabolism and depressive-like behaviour in a mouse model of metabolic syndrome. Scientific Reports, 2019, 9, 16323.	1.6	100
3568	Using compositional principal component analysis to describe children's gut microbiota in relation to diet and body composition. American Journal of Clinical Nutrition, 2020, 111, 70-78.	2.2	20
3569	Japanese Diet Score Is Associated with Gut Microbiota Composition in Young Japanese Adults. Journal of Nutritional Science and Vitaminology, 2019, 65, 414-420.	0.2	10
3570	The Skin and Gut Microbiome and Its Role in Common Dermatologic Conditions. Microorganisms, 2019, 7, 550.	1.6	99
3571	α-Galactosylceramide: a potent immunomodulator produced by gut microbes. Journal of Lipid Research, 2019, 60, 1805-1806.	2.0	2
3572	Cross-Regional View of Functional and Taxonomic Microbiota Composition in Obesity and Post-obesity Treatment Shows Country Specific Microbial Contribution. Frontiers in Microbiology, 2019, 10, 2346.	1.5	17
3573	The Gut Microbiome and Men's Sexual Health. Current Sexual Health Reports, 2019, 11, 348-357.	0.4	4
3574	Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease. Journal of Biological Chemistry, 2019, 294, 18726-18741.	1.6	94
3575	Influence of Gut Microbiota on Progression to Tuberculosis Generated by High Fat Diet-Induced Obesity in C3HeB/FeJ Mice. Frontiers in Immunology, 2019, 10, 2464.	2.2	26
3576	The Role of Probiotics in Nonalcoholic Fatty Liver Disease: A New Insight into Therapeutic Strategies. Nutrients, 2019, 11, 2642.	1.7	81
3577	Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far?. Diseases (Basel, Switzerland), 2019, 7, 58.	1.0	84
3578	Potato-Resistant Starch Supplementation Improves Microbiota Dysbiosis, Inflammation, and Gut–Brain Signaling in High Fat-Fed Rats. Nutrients, 2019, 11, 2710.	1.7	36
3579	Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet. Scientific Reports, 2019, 9, 16628.	1.6	13
3580	Identification of putative adhesins and carbohydrate ligands of Lactobacillus paracasei using a combinatorial in silico and glycomics microarray profiling approach. Integrative Biology (United) Tj ETQq1 1 C	.7843 d.4 rgBT	/@verlock

#	Article	IF	CITATIONS
3581	The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of Bile Acids and the Microbiome. Frontiers in Nutrition, 2019, 6, 171.	1.6	104
3582	Effects of Olive and Pomegranate By-Products on Human Microbiota: A Study Using the SHIME® in Vitro Simulator. Molecules, 2019, 24, 3791.	1.7	22
3583	Microbiota Analysis Using Two-step PCR and Next-generation 16S rRNA Gene Sequencing. Journal of Visualized Experiments, 2019, , .	0.2	24
3584	Heatâ€induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in <i>Porites lutea</i> . MicrobiologyOpen, 2019, 8, e935.	1.2	76
3585	Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy. EBioMedicine, 2019, 48, 648-655.	2.7	72
3586	Retinal artery occlusion is associated with compositional and functional shifts in the gut microbiome and altered trimethylamine-N-oxide levels. Scientific Reports, 2019, 9, 15303.	1.6	19
3587	Reduced Gut Microbiome Diversity and Metabolome Differences in Rhinoceros Species at Risk for Iron Overload Disorder. Frontiers in Microbiology, 2019, 10, 2291.	1.5	26
3588	Effect of Fermented Corn-Soybean Meal on Serum Immunity, the Expression of Genes Related to Gut Immunity, Gut Microbiota, and Bacterial Metabolites in Grower-Finisher Pigs. Frontiers in Microbiology, 2019, 10, 2620.	1.5	36
3589	Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutrition Research, 2019, 71, 72-88.	1.3	17
3590	New Insights on Obesity and Diabetes from Gut Microbiome Alterations in Egyptian Adults. OMICS A Journal of Integrative Biology, 2019, 23, 477-485.	1.0	31
3591	What is Needed for Evidenceâ€Based Dietary Recommendations for Migraine: A Call to Action for Nutrition and Microbiome Research. Headache, 2019, 59, 1566-1581.	1.8	21
3592	City life alters the gut microbiome and stable isotope profiling of the eastern water dragon (<i>Intellagama lesueurii</i>). Molecular Ecology, 2019, 28, 4592-4607.	2.0	27
3593	How Management Practices Within a Poultry House During Successive Flock Rotations Change the Structure of the Soil Microbiome. Frontiers in Microbiology, 2019, 10, 2100.	1.5	13
3594	From the Table to the Tumor: The Role of Mediterranean and Western Dietary Patterns in Shifting Microbial-Mediated Signaling to Impact Breast Cancer Risk. Nutrients, 2019, 11, 2565.	1.7	35
3595	The gut microbiota to the brain axis in the metabolic control. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 427-438.	2.6	33
3596	Effect of the Nursing Mother on the Gut Microbiome of the Offspring During Early Mouse Development. Microbial Ecology, 2019, 78, 517-527.	1.4	17
3597	Effects of ammonia on intestinal microflora and productive performance of laying ducks. Poultry Science, 2019, 98, 1947-1959.	1.5	23
3598	Functional Effects of EPS-Producing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 1809.	1.5	35

#	Article	IF	CITATIONS
3599	Beneficial Effects of Non-Encapsulated or Encapsulated Probiotic Supplementation on Microbiota Composition, Intestinal Barrier Functions, Inflammatory Profiles, and Glucose Tolerance in High Fat Fed Rats. Nutrients, 2019, 11, 1975.	1.7	30
3600	Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 713-732.	8.2	1,399
3602	Community Composition and Diversity of Intestinal Microbiota in Captive and Reintroduced Przewalski's Horse (Equus ferus przewalskii). Frontiers in Microbiology, 2019, 10, 1821.	1.5	24
3603	Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity, 2019, 51, 225-239.	6.6	105
3604	Cardiovascular risk and obesity. Diabetology and Metabolic Syndrome, 2019, 11, 74.	1.2	236
3605	Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomized controlled crossover trial. American Journal of Clinical Nutrition, 2019, 110, 1098-1107.	2.2	119
3606	The Pacific harbor seal gut microbiota in Mexico: Its relationship with diet and functional inferences. PLoS ONE, 2019, 14, e0221770.	1.1	24
3607	Interleukin-36 cytokines alter the intestinal microbiome and can protect against obesity and metabolic dysfunction. Nature Communications, 2019, 10, 4003.	5.8	49
3608	Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nature Communications, 2019, 10, 4007.	5.8	231
3609	Microbial Mechanistic Insights into the Role of Sweet Potato Vine on Improving Health in Chinese Meishan Gilt Model. Animals, 2019, 9, 632.	1.0	6
3610	A Comparative Metagenomics Study on Gastrointestinal Microbiota in Amphibious Mudskippers and Other Vertebrate Animals. Animals, 2019, 9, 660.	1.0	6
3611	Effects of Regular Kefir Consumption on Gut Microbiota in Patients with Metabolic Syndrome: A Parallel-Group, Randomized, Controlled Study. Nutrients, 2019, 11, 2089.	1.7	77
3612	Targeting innate immune mediators in type 1 and type 2 diabetes. Nature Reviews Immunology, 2019, 19, 734-746.	10.6	237
3613	Can intestinal microbiota and circulating microbial products contribute to pulmonary arterial hypertension?. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1093-H1101.	1.5	26
3614	Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Scientific Reports, 2019, 9, 12674.	1.6	56
3615	Probiotic strains improve high-fat diet-induced hypercholesterolemia through modulating gut microbiota in ways different from atorvastatin. Food and Function, 2019, 10, 6098-6109.	2.1	14
3616	Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. American Journal of Physiology - Renal Physiology, 2019, 317, G618-G624.	1.6	87
3617	Rifaximin prevents ethanol-induced liver injury in obese KK-A ^y mice through modulation of small intestinal microbiota signature. American Journal of Physiology - Renal Physiology, 2019, 317, G707-G715.	1.6	21

#	Article	IF	CITATIONS
3618	Taste perception and oral microbiota are associated with obesity in children and adolescents. PLoS ONE, 2019, 14, e0221656.	1.1	46
3619	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	13.6	514
3620	The Gut Microbiome and Pediatric Cancer: Current Research and Gaps in Knowledge. Journal of the National Cancer Institute Monographs, 2019, 2019, 169-173.	0.9	8
3621	Alterations in Gut Microbiota by Statin Therapy and Possible Intermediate Effects on Hyperglycemia and Hyperlipidemia. Frontiers in Microbiology, 2019, 10, 1947.	1.5	111
3622	In the Grand Scheme of Things: Identifying Reproducible Microbial Signatures in Dietary Intervention Studies. Cell Host and Microbe, 2019, 26, 158-159.	5.1	0
3623	Gut Flora: Novel Therapeutic Target of Chinese Medicine for the Treatment of Cardiovascular Diseases. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-7.	0.5	8
3624	Deciphering the microbiome shift during fermentation of medicinal plants. Scientific Reports, 2019, 9, 13461.	1.6	12
3625	Dramatic Remodeling of the Gut Microbiome Around Parturition and Its Relationship With Host Serum Metabolic Changes in Sows. Frontiers in Microbiology, 2019, 10, 2123.	1.5	22
3626	Development of the Caecal Microbiota in Three Broiler Breeds. Frontiers in Veterinary Science, 2019, 6, 201.	0.9	83
3627	Manipulating Gut Microbiota Composition to Enhance the Therapeutic Effect of Cancer Immunotherapy. Integrative Cancer Therapies, 2019, 18, 153473541987635.	0.8	38
3628	Significant decrease in Faecalibacterium among gut microbiota in nonalcoholic fatty liver disease: a large BMI- and sex-matched population study. Hepatology International, 2019, 13, 748-756.	1.9	46
3629	Microbiota, Microbial Metabolites, and Barrier Function in A Patient with Anorexia Nervosa after Fecal Microbiota Transplantation. Microorganisms, 2019, 7, 338.	1.6	56
3630	Deprivation of dietary fiber enhances susceptibility of mice to cryptosporidiosis. PLoS Neglected Tropical Diseases, 2019, 13, e0007411.	1.3	15
3631	Stool sampling and DNA isolation kits affect DNA quality and bacterial composition following 16S rRNA gene sequencing using MiSeq Illumina platform. Scientific Reports, 2019, 9, 13837.	1.6	40
3632	Synthetic ecology of the human gut microbiota. Nature Reviews Microbiology, 2019, 17, 754-763.	13.6	117
3633	Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 690-704.	8.2	686
3634	Beyond the gut: Skin microbiome compositional changes are associated with BMI. Human Microbiome Journal, 2019, 13, 100063.	3.8	38
3635	A mutation in mouse Krüppel-like factor 15 alters the gut microbiome and response to obesogenic diet. PLoS ONE, 2019, 14, e0222536.	1.1	3

#	Article	IF	CITATIONS
3636	Recent Advances in Our Understanding of the Link between the Intestinal Microbiota and Systemic Lupus Erythematosus. International Journal of Molecular Sciences, 2019, 20, 4871.	1.8	71
3637	Effects of dietary Gelsemium elegans alkaloids on intestinal morphology, antioxidant status, immune responses and microbiota of Megalobrama amblycephala. Fish and Shellfish Immunology, 2019, 94, 464-478.	1.6	32
3638	The Gut-Microbiome in Gulf War Veterans: A Preliminary Report. International Journal of Environmental Research and Public Health, 2019, 16, 3751.	1.2	38
3639	Don't Trust Your Gut: When Gut Microbiota Disrupt Fertility. Cell Metabolism, 2019, 30, 616-618.	7.2	11
3640	Role of the Gut Microbiota and Their Metabolites in Modulating the Cholesterol-Lowering Effects of Citrus Pectin Oligosaccharides in C57BL/6 Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 11922-11930.	2.4	46
3641	Naoxintong Capsule Inhibits the Development of Cardiovascular Pathological Changes in Bama Minipig Through Improving Gut Microbiota. Frontiers in Pharmacology, 2019, 10, 1128.	1.6	22
3642	Potential effect of probiotics in the treatment of breast cancer. Oncology Reviews, 2019, 13, 422.	0.8	57
3643	Gypenosides improve the intestinal microbiota of non-alcoholic fatty liver in mice and alleviate its progression. Biomedicine and Pharmacotherapy, 2019, 118, 109258.	2.5	34
3644	Effects of Î ² -mannanase supplementation on the intestinal microbiota composition of broiler chickens challenged with a coccidiosis vaccine. Livestock Science, 2019, 228, 187-194.	0.6	16
3645	Modification of wheat bran particle size and tissue composition affects colonisation and metabolism by human faecal microbiota. Food and Function, 2019, 10, 379-396.	2.1	22
3646	Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 2019, 10, 2.	2.1	320
3647	Disturbance in the homeostasis of intestinal microbiota by a high-fat diet in the rice field eel (albus). Aquaculture, 2019, 502, 347-355.	1.7	41
3648	Gut microbial metabolites in obesity, NAFLD and T2DM. Nature Reviews Endocrinology, 2019, 15, 261-273.	4.3	817
3649	Antibiotic treatment triggers gut dysbiosis and modulates metabolism in a chicken model of gastro-intestinal infection. BMC Veterinary Research, 2019, 15, 37.	0.7	29
3650	Probiotics: How Effective Are They in the Fight against Obesity?. Nutrients, 2019, 11, 258.	1.7	121
3651	Jaboticaba: Chemistry and Bioactivity. Reference Series in Phytochemistry, 2019, , 1225-1251.	0.2	1
3652	Anthocyanins: Nutrition and Health. Reference Series in Phytochemistry, 2019, , 1097-1133.	0.2	4
3653	<i>Escherichia coli</i> Pathobionts Associated with Inflammatory Bowel Disease. Clinical Microbiology Reviews, 2019, 32, .	5.7	194

#	Article	IF	CITATIONS
3654	Probiotic <i>Lactobacillus reuteri</i> Prevents Postantibiotic Bone Loss by Reducing Intestinal Dysbiosis and Preventing Barrier Disruption. Journal of Bone and Mineral Research, 2019, 34, 681-698.	3.1	119
3655	Changes of gut microbiota between different weight reduction programs. Surgery for Obesity and Related Diseases, 2019, 15, 749-758.	1.0	11
3656	Effects of Dietary Supplementation With Enterococcus faecium and Clostridium butyricum, Either Alone or in Combination, on Growth and Fecal Microbiota Composition of Post-weaning Pigs at a Commercial Farm. Frontiers in Veterinary Science, 2019, 6, 26.	0.9	33
3657	The Purple Sea Urchin Strongylocentrotus purpuratus Demonstrates a Compartmentalization of Gut Bacterial Microbiota, Predictive Functional Attributes, and Taxonomic Co-Occurrence. Microorganisms, 2019, 7, 35.	1.6	24
3658	Proteinâ€Bound βâ€glucan from Coriolus Versicolor has Potential for Use Against Obesity. Molecular Nutrition and Food Research, 2019, 63, e1801231.	1.5	18
3659	Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity Plus Metabolic Syndrome. International Journal of Molecular Sciences, 2019, 20, 438.	1.8	129
3660	Administration of N-Acyl-Phosphatidylethanolamine Expressing Bacteria to Low Density Lipoprotein Receptorâ^'/â^' Mice Improves Indices of Cardiometabolic Disease. Scientific Reports, 2019, 9, 420.	1.6	28
3661	The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 2019, 76, 1541-1558.	2.4	333
3662	Bariatric surgery: Is a matter of cutting calories or cutting metabolic regulators?. Current Opinion in Endocrine and Metabolic Research, 2019, 4, 83-88.	0.6	2
3663	Screening and identification of gut anaerobes (Bacteroidetes) from human diabetic stool samples with and without retinopathy in comparison to control subjects. Microbial Pathogenesis, 2019, 129, 88-92.	1.3	23
3664	Exercise influence on the microbiome–gut–brain axis. Gut Microbes, 2019, 10, 555-568.	4.3	92
3665	Chlorogenic acid alleviates obesity and modulates gut microbiota in highâ€fatâ€fed mice. Food Science and Nutrition, 2019, 7, 579-588.	1.5	114
3666	Dietary Exposures to Common Emulsifiers and Their Impact on the Gut Microbiota: Is There a Cause for Concern?. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 31-47.	5.9	23
3667	The association between antibiotics in the first year of life and child growth trajectory. BMC Pediatrics, 2019, 19, 23.	0.7	26
3668	Circulating Gut Microbiota Metabolite Trimethylamine N-Oxide (TMAO) and Changes in Bone Density in Response to Weight Loss Diets: The POUNDS Lost Trial. Diabetes Care, 2019, 42, 1365-1371.	4.3	31
3669	Impact of Endocrine Disorders on Gastrointestinal Diseases. Endocrinology, 2019, , 1-47.	0.1	0
3670	Fermented soybean powder containing Bacillus subtilis SJLH001 protects against obesity in mice by improving transport function and inhibiting angiogenesis. Journal of Functional Foods, 2019, 59, 60-70.	1.6	10
3671	Prebiotic effects of alfalfa (<i>Medicago sativa</i>) fiber on cecal bacterial composition, short-chain fatty acids, and diarrhea incidence in weaning piglets. RSC Advances, 2019, 9, 13586-13599.	1.7	16

		CITATION REPORT		
#	Article		IF	Citations
3672	Can Gut Microbiota Composition Predict Response to Dietary Treatments?. Nutrients, 2	2019, 11, 1134.	1.7	33
3673	Xanthophyllomyces dendrorhous-Derived Astaxanthin Regulates Lipid Metabolism and in Obese Mice Induced by A High-Fat Diet. Marine Drugs, 2019, 17, 337.	Gut Microbiota	2.2	43
3674	Space, time and captivity: quantifying the factors influencing the fecal microbiome of a ungulate. FEMS Microbiology Ecology, 2019, 95, .	n alpine	1.3	41
3675	The modulatory effect and the mechanism of flavonoids on obesity. Journal of Food Bic 2019, 43, e12954.	chemistry,	1.2	45
3676	The Role of the Microbiota in the Diabetic Peripheral Artery Disease. Mediators of Inflar 2019, 1-16.	ımation, 2019,	1.4	15
3677	The effects of antipsychotic medications on microbiome and weight gain in children an BMC Medicine, 2019, 17, 112.	d adolescents.	2.3	58
3678	Exploring the impact of Helicobacter pylori on gut microbiome composition. PLoS ONE e0218274.	, 2019, 14,	1.1	73
3679	High-Fat Diet Alters the Intestinal Microbiota in Streptozotocin-Induced Type 2 Diabeti Microorganisms, 2019, 7, 176.	Mice.	1.6	43
3680	Hyaluronic acid behavior in oral administration and perspectives for nanotechnology-ba formulations: A review. Carbohydrate Polymers, 2019, 222, 115001.	sed	5.1	34
3681	The effects of antibiotics and melatonin on hepato-intestinal inflammation and gut mic dysbiosis induced by a short-term high-fat diet consumption in rats. British Journal of N 122, 841-855.	robial utrition, 2019,	1.2	24
3682	The Influence of Modernization and Disease on the Gastric Microbiome of Orang Asli, N Modern Malaysians. Microorganisms, 2019, 7, 174.	1yanmars and	1.6	8
3683	Diet Control More Intensively Disturbs Gut Microbiota Than Genetic Background in Wil ob/ob Mice. Frontiers in Microbiology, 2019, 10, 1292.	d Type and	1.5	15
3684	The role of sodium in modulating immune cell function. Nature Reviews Nephrology, 20)19, 15, 546-558.	4.1	74
3685	Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila ir microbiota of mice. PLoS ONE, 2019, 14, e0218490.	the gut	1.1	50
3686	Research progress in the relationship between type 2 diabetes mellitus and intestinal fl Biomedicine and Pharmacotherapy, 2019, 117, 109138.	ora.	2.5	205
3687	Effects of yeast culture supplementation and the ratio of nonâ€structural carbohydrate growth performance, carcass traits and the fatty acid profile of the <i>longissimus dors in lambs. Journal of Animal Physiology and Animal Nutrition, 2019, 103, 1274-1282.</i>		1.0	11
3688	Obesity and cancer: A mechanistic overview of metabolic changes in obesity that impa- instability. Molecular Carcinogenesis, 2019, 58, 1531-1550.	t genetic	1.3	41
3689	The influence of lifestyle factors on fecal volatile organic compound composition as me electronic nose. Journal of Breath Research, 2019, 13, 046001.	asured by an	1.5	17

#	Article	IF	CITATIONS
3690	Grape Seed Proanthocyanidin Affects Lipid Metabolism via Changing Gut Microflora and Enhancing Propionate Production in Weaned Pigs. Journal of Nutrition, 2019, 149, 1523-1532.	1.3	75
3691	Gut microbiota mediates the protective effects of dietary βâ€hydroxyâ€Î²â€methylbutyrate (HMB) against obesity induced by highâ€fat diets. FASEB Journal, 2019, 33, 10019-10033.	0.2	55
3692	Impact of Host DNA and Sequencing Depth on the Taxonomic Resolution of Whole Metagenome Sequencing for Microbiome Analysis. Frontiers in Microbiology, 2019, 10, 1277.	1.5	137
3693	Other Precipitating Factors for AECHB. , 2019, , 315-369.		1
3694	Gut microbiota and obesity-associated osteoarthritis. Osteoarthritis and Cartilage, 2019, 27, 1257-1265.	0.6	59
3695	A Meta-proteogenomic Approach to Peptide Identification Incorporating Assembly Uncertainty and Genomic Variation. Molecular and Cellular Proteomics, 2019, 18, S183-S192.	2.5	17
3696	Host genetic determinants of the gut microbiota of wild mice. Molecular Ecology, 2019, 28, 3197-3207.	2.0	76
3697	Dietary multi-enzyme complex improves In Vitro nutrient digestibility and hind gut microbial fermentation of pigs. PLoS ONE, 2019, 14, e0217459.	1.1	16
3698	Evaluation of Methods for the Extraction of Microbial DNA From Vaginal Swabs Used for Microbiome Studies. Frontiers in Cellular and Infection Microbiology, 2019, 9, 197.	1.8	27
3699	Study of arsenic (III) removal by monolayer protected silver nanoadsorbent and its execution on prokaryotic system. Journal of Environmental Management, 2019, 244, 440-452.	3.8	4
3700	Metabolites of stable fly reduce diarrhea in mice by modulating the immune system, antioxidants, and composition of gut microbiota. Microbial Pathogenesis, 2019, 134, 103557.	1.3	18
3701	Metaâ€Omics―and Metabolic Modelingâ€Assisted Deciphering of Human Microbiota Metabolism. Biotechnology Journal, 2019, 14, 1800445.	1.8	7
3702	High Relative Abundance of Lactobacillus reuteri and Fructose Intake are Associated with Adiposity and Cardiometabolic Risk Factors in Children from Mexico City. Nutrients, 2019, 11, 1207.	1.7	7
3703	Protective effects of α-galacto-oligosaccharides against a high-fat/western-style diet-induced metabolic abnormalities in mice. Food and Function, 2019, 10, 3660-3670.	2.1	20
3704	Complex N-glycan breakdown by gut Bacteroides involves an extensive enzymatic apparatus encoded by multiple co-regulated genetic loci. Nature Microbiology, 2019, 4, 1571-1581.	5.9	116
3705	Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Alimentary Pharmacology and Therapeutics, 2019, 50, 144-158.	1.9	50
3706	Targeting Carbohydrates and Polyphenols for a Healthy Microbiome and Healthy Weight. Current Nutrition Reports, 2019, 8, 307-316.	2.1	50
3707	Stages of pregnancy and weaning influence the gut microbiota diversity and function in sows. Journal of Applied Microbiology, 2019, 127, 867-879.	1.4	34

#	Article	IF	CITATIONS
3708	Alzheimer's disease and symbiotic microbiota: an evolutionary medicine perspective. Annals of the New York Academy of Sciences, 2019, 1449, 3-24.	1.8	45
3709	Acupuncture Regulating Gut Microbiota in Abdominal Obese Rats Induced by High-Fat Diet. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-12.	0.5	29
3710	Sex, gut microbiome, and cardiovascular disease risk. Biology of Sex Differences, 2019, 10, 29.	1.8	95
3711	Targeting Islets: Metabolic Surgery Is More than a Bariatric Surgery. Obesity Surgery, 2019, 29, 3001-3009.	1.1	8
3712	Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Current Obesity Reports, 2019, 8, 229-242.	3.5	85
3713	Effects of rumen-protected glucose on ileal microbiota and genes involved in ileal epithelial metabolism and immune homeostasis in transition dairy cows. Animal Feed Science and Technology, 2019, 254, 114199.	1.1	14
3714	Gut microbiota in ALS: possible role in pathogenesis?. Expert Review of Neurotherapeutics, 2019, 19, 785-805.	1.4	30
3715	Paediatricians play a key role in preventing early harmful events that could permanently influence the development of the gut microbiota in childhood. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 1942-1954.	0.7	9
3716	The Bacterial and Fungal Microbiota of Nelore Steers Is Dynamic Across the Gastrointestinal Tract and Its Fecal-Associated Microbiota Is Correlated to Feed Efficiency. Frontiers in Microbiology, 2019, 10, 1263.	1.5	27
3717	Relationship between the microbiome and ocular health. Ocular Surface, 2019, 17, 384-392.	2.2	60
3718	Bovine α-lactalbumin hydrolysates ameliorate obesity-associated endotoxemia and inflammation in high-fat diet-fed mice through modulation of gut microbiota. Food and Function, 2019, 10, 3368-3378.	2.1	34
3719	Ripened Pu-erh Tea Extract Protects Mice from Obesity by Modulating Gut Microbiota Composition. Journal of Agricultural and Food Chemistry, 2019, 67, 6978-6994.	2.4	76
3720	Possible Metabolic Pathway of a Novel Bioactive Polysaccharide Extracted from <i>Dendrobium aphyllum</i> : An <i>In Vivo</i> Study. Journal of Food Science, 2019, 84, 1216-1223.	1.5	5
3721	Vitamin D Deficiency in the Gulf Cooperation Council: Exploring the Triad of Genetic Predisposition, the Gut Microbiome and the Immune System. Frontiers in Immunology, 2019, 10, 1042.	2.2	31
3722	Association of early life factors with weight disorders and abdominal obesity in children and adolescents: The CASPIAN-V study. Mediterranean Journal of Nutrition and Metabolism, 2019, 12, 173-185.	0.2	0
3723	Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients, 2019, 11, 1076.	1.7	35
3724	The Conceptual Ecology of the Human Microbiome. Quarterly Review of Biology, 2019, 94, 149-175.	0.0	23
3725	Gnotobiotics: Past, present and future. Laboratory Animals, 2019, 53, 232-243.	0.5	36

щ			CITATIONS
#	ARTICLE	IF	CITATIONS
3726	Functional adaptations in the cecal and colonic metagenomes associated with the consumption of transglycosylated starch in a pig model. BMC Microbiology, 2019, 19, 87.	1.3	13
3727	Antibiotics-mediated intestinal microbiome perturbation aggravates tacrolimus-induced glucose disorders in mice. Frontiers of Medicine, 2019, 13, 471-481.	1.5	8
3728	Predicting Growth and Carcass Traits in Swine Using Microbiome Data and Machine Learning Algorithms. Scientific Reports, 2019, 9, 6574.	1.6	38
3729	A Natural mtDNA Polymorphism in Complex III Is a Modifier of Healthspan in Mice. International Journal of Molecular Sciences, 2019, 20, 2359.	1.8	12
3730	Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 184-192.	2.3	126
3731	Effects of Weight-Loss Interventions on Short-Chain Fatty Acid Concentrations in Blood and Feces of Adults: A Systematic Review. Advances in Nutrition, 2019, 10, 673-684.	2.9	35
3734	Do your gut microbes affect your brain dopamine?. Psychopharmacology, 2019, 236, 1611-1622.	1.5	91
3735	Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients, 2019, 11, 1073.	1.7	90
3736	Role of Bile Acids in Bariatric Surgery. Frontiers in Physiology, 2019, 10, 374.	1.3	49
3737	Aerobic Exercise Training with Brisk Walking Increases Intestinal Bacteroides in Healthy Elderly Women. Nutrients, 2019, 11, 868.	1.7	103
3738	Antiobesity Effects of <i>Lactobacillus plantarum</i> LMT1-48 Accompanied by Inhibition of <i>Enterobacter cloacae</i> in the Intestine of Diet-Induced Obese Mice. Journal of Medicinal Food, 2019, 22, 560-566.	0.8	27
3739	The Metabolomic Signatures of Weight Change. Metabolites, 2019, 9, 67.	1.3	11
3740	Bacterial community structure and function distinguish gut sites in captive redâ€shanked doucs (Pygathrix nemaeus). American Journal of Primatology, 2019, 81, e22977.	0.8	9
3741	Supplementation with compound polysaccharides contributes to the development and metabolic activity of young rat intestinal microbiota. Food and Function, 2019, 10, 2658-2675.	2.1	28
3742	Effects of synbiotics containing <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> GCL2505 and inulin on intestinal bifidobacteria: A randomized, placeboâ€controlled, crossover study. Food Science and Nutrition, 2019, 7, 1828-1837.	1.5	23
3743	Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice. Journal of Nutrition, 2019, 149, 747-754.	1.3	99
3744	Effects of food additives on gut microbiota: friend or foe?. Nutrition and Food Science, 2019, 49, 955-964.	0.4	9
3745	Does exercise impact gut microbiota composition in men receiving androgen deprivation therapy for prostate cancer? A single-blinded, two-armed, randomised controlled trial. BMJ Open, 2019, 9, e024872.	0.8	8

#	Article	IF	CITATIONS
3746	Berberine Influences Blood Glucose via Modulating the Gut Microbiome in Grass Carp. Frontiers in Microbiology, 2019, 10, 1066.	1.5	49
3747	Aquaporin 4 deficiency alleviates experimental colitis in mice. FASEB Journal, 2019, 33, 8935-8944.	0.2	17
3748	Chemical profile and in vitro gut microbiota modulatory, anti-inflammatory and free radical scavenging properties of chrysanthemum morifolium cv. Fubaiju. Journal of Functional Foods, 2019, 58, 114-122.	1.6	20
3749	Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in mice. Applied Microbiology and Biotechnology, 2019, 103, 5311-5321.	1.7	27
3750	Gut microbiome interventions in human health and diseases. Medicinal Research Reviews, 2019, 39, 2286-2313.	5.0	52
3751	Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food and Function, 2019, 10, 2847-2860.	2.1	101
3752	Ligustrum robustum Intake, Weight Loss, and Gut Microbiota: An Intervention Trial. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	0.5	2
3753	Exposure to a Healthy Gut Microbiome Protects Against Reproductive and Metabolic Dysregulation in a PCOS Mouse Model. Endocrinology, 2019, 160, 1193-1204.	1.4	70
3754	Pathways linking obesity to neuropsychiatric disorders. Nutrition, 2019, 66, 16-21.	1.1	61
3755	From NASH to HCC: current concepts and future challenges. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 411-428.	8.2	872
3756	Association of the oral microbiome with the progression of impaired fasting glucose in a Chinese elderly population. Journal of Oral Microbiology, 2019, 11, 1605789.	1.2	25
3757	Role of Gut Microbiota in the Pharmacological Effects of Natural Products. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-7.	0.5	23
3758	The role of the gut microbiome in sex differences in arterial pressure. Biology of Sex Differences, 2019, 10, 22.	1.8	44
3759	Gender-Specific Associations Between Saliva Microbiota and Body Size. Frontiers in Microbiology, 2019, 10, 767.	1.5	51
3760	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	1.7	220
3761	Obesity and Fat Metabolism in Human Immunodeficiency Virus–Infected Individuals: Immunopathogenic Mechanisms and Clinical Implications. Journal of Infectious Diseases, 2019, 220, 420-431.	1.9	64
3762	Impact of Nutritional Changes on Nonalcoholic Fatty Liver Disease. Nutrients, 2019, 11, 677.	1.7	137
3763	The Microbiota and Ovarian Cancer. Current Cancer Research, 2019, , 205-245.	0.2	Ο

#	Article	IF	Citations
3764	Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MedChemComm, 2019, 10, 505-512.	3.5	27
3765	Gut microbiome meta-analysis reveals dysbiosis is independent of body mass index in predicting risk of obesity-associated CRC. BMJ Open Gastroenterology, 2019, 6, e000247.	1.1	23
3766	Alcohol-induced changes in the gut microbiome and metabolome of rhesus macaques. Psychopharmacology, 2019, 236, 1531-1544.	1.5	16
3767	Our second genome and the impact on metabolic disorders: why gut microbiome is an important player in diabetes and associated abnormalities. Acta Diabetologica, 2019, 56, 491-492.	1.2	4
3768	Letrozole treatment of adult female mice results in a similar reproductive phenotype but distinct changes in metabolism and the gut microbiome compared to pubertal mice. BMC Microbiology, 2019, 19, 57.	1.3	31
3769	Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Reports, 2019, 20, .	2.0	66
3770	Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. Journal of Cellular Physiology, 2019, 234, 17023-17049.	2.0	116
3771	The Gut Microbiome and Ankylosing Spondylitis. , 2019, , 87-95.		1
3772	Distribution, Evolution, Catalytic Mechanism, and Physiological Functions of the Flavin-Based Electron-Bifurcating NADH-Dependent Reduced Ferredoxin: NADP+ Oxidoreductase. Frontiers in Microbiology, 2019, 10, 373.	1.5	24
3773	Hydroxytyrosol Improves Obesity and Insulin Resistance by Modulating Gut Microbiota in High-Fat Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 390.	1.5	60
3774	Evaluation of Prebiotic Potential of Three Marine Algae Oligosaccharides from Enzymatic Hydrolysis. Marine Drugs, 2019, 17, 173.	2.2	65
3775	Characteristics of intestinal microbiota in the Pacific white shrimp Litopenaeus vannamei differing growth performances in the marine cultured environment. Aquaculture, 2019, 505, 450-461.	1.7	85
3776	Developmental features and associated symbiont bacterial diversity in essential life cycle stages of Heterostelium colligatum. European Journal of Protistology, 2019, 68, 99-107.	0.5	3
3777	Probiotics: Reiterating What They Are and What They Are Not. Frontiers in Microbiology, 2019, 10, 424.	1.5	114
3778	Metabolic footprint and intestinal microbial changes in response to dietary proteins in a pig model. Journal of Nutritional Biochemistry, 2019, 67, 149-160.	1.9	4
3779	Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. Advances in Food and Nutrition Research, 2019, 90, 135-181.	1.5	34
3780	From germ theory to germ therapy. Kaohsiung Journal of Medical Sciences, 2019, 35, 73-82.	0.8	6
3781	Emerging trends and research foci in gastrointestinal microbiome. Journal of Translational Medicine, 2019, 17, 67.	1.8	128

#	Article	IF	CITATIONS
3782	A review of 10Âyears of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome, 2019, 7, 31.	4.9	155
3783	Influence of Crohn's disease related polymorphisms in innate immune function on ileal microbiome. PLoS ONE, 2019, 14, e0213108.	1.1	13
3784	Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms, 2019, 7, 68.	1.6	51
3785	Effects of phycocyanin in modulating the intestinal microbiota of mice. MicrobiologyOpen, 2019, 8, e00825.	1.2	30
3786	Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine, 2019, 44, 665-674.	2.7	66
3787	Optimal Dietary Ferulic Acid for Suppressing the Obesity-Related Disorders in Leptin-Deficient Obese C57BL/6J <i>-ob/ob</i> Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 4250-4258.	2.4	38
3788	Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate high-fat diet-induced colitis, endotoxemia, liver steatosis, and obesity in mice. Nutrition Research, 2019, 67, 78-89.	1.3	50
3789	Effects of wild blueberry (Vaccinium angustifolium) pomace feeding on gut microbiota and blood metabolites in free-range pastured broiler chickens. Poultry Science, 2019, 98, 3739-3755.	1.5	29
3790	Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1). Scientific Reports, 2019, 9, 3671.	1.6	28
3791	Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Reviews Immunology, 2019, 19, 305-323.	10.6	211
3792	Health Benefits of Culinary Herbs and Spices. Journal of AOAC INTERNATIONAL, 2019, 102, 395-411.	0.7	147
3793	Anaerotruncus massiliensis sp. nov., a succinate-producing bacterium isolated from human stool from an obese patient after bariatric surgery. New Microbes and New Infections, 2019, 29, 100508.	0.8	18
3794	Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments. Scientific Reports, 2019, 9, 3453.	1.6	59
3795	Gut Microbiota Composition and Structure of the Ob/Ob and Db/Db Mice. International Journal of Endocrinology, 2019, 2019, 1-9.	0.6	15
3796	Profound Changes in Net Energy and Nitrogen Metabolites Fluxes within the Splanchnic Area during Overfeeding of Yucatan Mini Pigs That Remain Euglycemic. Nutrients, 2019, 11, 434.	1.7	5
3797	MNEMONIC: MetageNomic Experiment Mining to create an OTU Network of Inhabitant Correlations. BMC Bioinformatics, 2019, 20, 96.	1.2	1
3798	Fucoidan and galactooligosaccharides ameliorate high-fat diet–induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism. Nutrition, 2019, 65, 50-59.	1.1	105
3799	Solidâ€state fermented Chinese alcoholic beverage (baijiu) and ethanol resulted in distinct metabolic and microbiome responses. FASEB Journal, 2019, 33, 7274-7288.	0.2	20

#	Article	IF	CITATIONS
3800	Characteristics of Intestinal Microecology during Mesenchymal Stem Cell-Based Therapy for Mouse Acute Liver Injury. Stem Cells International, 2019, 2019, 1-14.	1.2	24
3801	Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients, 2019, 11, 644.	1.7	52
3802	Obesity, Motility, Diet, and Intestinal Microbiota—Connecting the Dots. Current Gastroenterology Reports, 2019, 21, 15.	1.1	22
3803	Fecal and blood microbiota profiles and presence of nonalcoholic fatty liver disease in obese versus lean subjects. PLoS ONE, 2019, 14, e0213692.	1.1	70
3804	Current Understanding of the Gut Microflora in Subjects with Nutrition-Associated Metabolic Disorder Such as Obesity and/or Diabetes: Is There Any Relevance with Oral Microflora?. Current Oral Health Reports, 2019, 6, 100-109.	0.5	0
3805	Overfeeding a High-Fat Diet Promotes Sex-Specific Alterations on the Gut Microbiota of the Zebrafish (<i>Danio rerio</i>). Zebrafish, 2019, 16, 268-279.	0.5	32
3806	Utility of waist circumferenceâ€toâ€height ratio as a screening tool for generalized and central obesity among Iranian children and adolescents: The CASPIANâ€V study. Pediatric Diabetes, 2019, 20, 530-537.	1.2	26
3807	Alterations of Gut Microbiota in Patients With Irritable Bowel Syndrome Based on 16S rRNA-Targeted Sequencing: A Systematic Review. Clinical and Translational Gastroenterology, 2019, 10, e00012.	1.3	110
3808	Gut microbiota: a new path to treat obesity. International Journal of Obesity Supplements, 2019, 9, 10-19.	12.5	239
3809	Anatomy and physiology of the nutritional system. Molecular Aspects of Medicine, 2019, 68, 101-107.	2.7	21
3810	Differential influence of molybdenum disulfide at the nanometer and micron scales in the intestinal metabolome and microbiome of mice. Environmental Science: Nano, 2019, 6, 1594-1606.	2.2	21
3811	Compositional mediation analysis for microbiome studies. Annals of Applied Statistics, 2019, 13, .	0.5	53
3812	The Gut-Immune-Brain Axis in Autism Spectrum Disorders; A Focus on Amino Acids. Frontiers in Endocrinology, 2019, 10, 247.	1.5	47
3813	The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Frontiers in Nutrition, 2019, 6, 47.	1.6	389
3814	The chemical composition of a cold-pressed milk thistle seed flour extract, and its potential health beneficial properties. Food and Function, 2019, 10, 2461-2470.	2.1	15
3815	Role of melatonin in sleep deprivationâ€induced intestinal barrier dysfunction in mice. Journal of Pineal Research, 2019, 67, e12574.	3.4	153
3816	Polysaccharide peptides from Ganoderma lucidum ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet-fed rats. Journal of Functional Foods, 2019, 57, 48-58.	1.6	109
3817	Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Research in Microbiology, 2019, 170, 192-201.	1.0	175

#	Article	IF	CITATIONS
3818	Gut microbiota characterization and lipid metabolism disorder found in PCB77-treated female mice. Toxicology, 2019, 420, 11-20.	2.0	16
3820	The Influence of the Gut Microbiome on Host Metabolism Through the Regulation of Gut Hormone Release. Frontiers in Physiology, 2019, 10, 428.	1.3	228
3821	Application of Machine Learning in Microbiology. Frontiers in Microbiology, 2019, 10, 827.	1.5	130
3822	A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Scientific Reports, 2019, 9, 5473.	1.6	96
3823	High-Throughput Sequencing Analysis of Microbial Profiles in the Dry Socket. Journal of Oral and Maxillofacial Surgery, 2019, 77, 1548-1556.	0.5	13
3824	Musa basjoo regulates the gut microbiota in mice by rebalancing the abundance of probiotic and pathogen. Microbial Pathogenesis, 2019, 131, 205-211.	1.3	4
3825	Using Bacterial Transcriptomics to Investigate Targets of Host-Bacterial Interactions in Caenorhabditis elegans. Scientific Reports, 2019, 9, 5545.	1.6	25
3826	Crude fiber modulates the fecal microbiome and steroid hormones in pregnant Meishan sows. General and Comparative Endocrinology, 2019, 277, 141-147.	0.8	33
3827	Decaffeinated Green Tea Extract Does Not Elicit Hepatotoxic Effects and Modulates the Gut Microbiome in Lean B6C3F1 Mice. Nutrients, 2019, 11, 776.	1.7	17
3828	The role of diet and intestinal microbiota in the development of metabolic syndrome. Journal of Nutritional Biochemistry, 2019, 70, 1-27.	1.9	116
3829	Gut microbiome patterns correlate with higher postoperative complication rates after pancreatic surgery. BMC Microbiology, 2019, 19, 42.	1.3	40
3830	Gut microbiome and microbial metabolites: a new system affecting metabolic disorders. Journal of Endocrinological Investigation, 2019, 42, 1011-1018.	1.8	31
3831	The Impact of <i>Lactobacillus plantarum</i> on the Gut Microbiota of Mice with DSS-Induced Colitis. BioMed Research International, 2019, 2019, 1-10.	0.9	56
3832	Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Scientific Reports, 2019, 9, 1177.	1.6	85
3833	Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Frontiers in Genetics, 2019, 10, 98.	1.1	160
3834	Sport nutrition, redox homeostasis and toxicity in sport performance. Current Opinion in Toxicology, 2019, 13, 45-67.	2.6	2
3835	The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Scientific Reports, 2019, 9, 1691.	1.6	83
3836	Saturated Fat Ingestion Promotes Lipopolysaccharide-Mediated Inflammation and Insulin Resistance in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 934-946.	1.8	57

#	Article	IF	CITATIONS
3837	Consumption of drinking water N-Nitrosamines mixture alters gut microbiome and increases the obesity risk in young male rats. Environmental Pollution, 2019, 248, 388-396.	3.7	22
3838	Higher Risk of Stroke Is Correlated With Increased Opportunistic Pathogen Load and Reduced Levels of Butyrate-Producing Bacteria in the Gut. Frontiers in Cellular and Infection Microbiology, 2019, 9, 4.	1.8	134
3839	Functional Characterization of the <i>ycjQRS</i> Gene Cluster from <i>Escherichia coli</i> : A Novel Pathway for the Transformation of <scp>d</scp> -Gulosides to <scp>d</scp> -Glucosides. Biochemistry, 2019, 58, 1388-1399.	1.2	4
3840	Metabolic improvement in obese patients after duodenal–jejunal exclusion is associated with intestinal microbiota composition changes. International Journal of Obesity, 2019, 43, 2509-2517.	1.6	19
3841	Obesogenic diet in aging mice disrupts gut microbe composition and alters neutrophi:lymphocyte ratio, leading to inflamed milieu in acute heart failure. FASEB Journal, 2019, 33, 6456-6469.	0.2	47
3842	The Gut Microbiome After Bariatric Surgery. , 2019, , 235-242.		2
3843	The Microbiome and Metabolome in Nonalcoholic Fatty Liver Disease. , 2019, , 265-269.		0
3844	Precision Medicine. , 2019, , 435-449.		1
3845	Probiotics as a Dietary Intervention for Reducing the Risk of Nonalcoholic Fatty Liver Disease. Environmental Chemistry for A Sustainable World, 2019, , 207-223.	0.3	4
3847	Microbes, Their Metabolites, and Effector Molecules: A Pharmacological Perspective for Host-Microbiota Interaction. Environmental Chemistry for A Sustainable World, 2019, , 155-206.	0.3	4
3848	Paneth cell α-defensins HD-5 and HD-6 display differential degradation into active antimicrobial fragments. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3746-3751.	3.3	70
3849	The Effects of Unfermented and Fermented Cow and Sheep Milk on the Gut Microbiota. Frontiers in Microbiology, 2019, 10, 458.	1.5	15
3850	Clostridium difficile and Laparoscopic Bariatric Surgery: an Analysis of the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program Database. Obesity Surgery, 2019, 29, 1881-1888.	1.1	4
3851	Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. Environmental Pollution, 2019, 248, 989-999.	3.7	160
3852	Loading ceftriaxone, vancomycin, and Bifidobacteria bifidum TMC3115 to neonatal mice could differently and consequently affect intestinal microbiota and immunity in adulthood. Scientific Reports, 2019, 9, 3254.	1.6	27
3853	Paneth cell granule dynamics on secretory responses to bacterial stimuli in enteroids. Scientific Reports, 2019, 9, 2710.	1.6	52
3854	Probiotic <i>Enterococcus faecalis</i> AG5 effectively assimilates cholesterol and produces fatty acids including propionate. FEMS Microbiology Letters, 2019, 366, .	0.7	21
3855	Dynamic Development of Fecal Microbiome During the Progression of Diabetes Mellitus in Zucker Diabetic Fatty Rats. Frontiers in Microbiology, 2019, 10, 232.	1.5	73

#	Article	IF	CITATIONS
3856	Phylofactorization: a graph partitioning algorithm to identify phylogenetic scales of ecological data. Ecological Monographs, 2019, 89, e01353.	2.4	52
3857	Childhood Obesity and Diabetes: Role of Probiotics and Prebiotics. , 2019, , 363-376.		4
3858	Prebiotic Fibers and Their Potential Effects on Knee Osteoarthritis and Related Pain. , 2019, , 223-232.		1
3859	Identification and Analysis of Human Microbe-Disease Associations by Matrix Decomposition and Label Propagation. Frontiers in Microbiology, 2019, 10, 291.	1.5	43
3860	ls it true that gut microbiota is considered as panacea in cancer therapy?. Journal of Cellular Physiology, 2019, 234, 14941-14950.	2.0	27
3861	Using herbal medicine to target the "microbiota-metabolism-immunity―axis as possible therapy for cardiovascular disease. Pharmacological Research, 2019, 142, 205-222.	3.1	27
3862	Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut, 2019, 68, 1417-1429.	6.1	422
3863	A metagenomic analysis of the modulatory effect of <i>Cyclocarya paliurus</i> flavonoids on the intestinal microbiome in a highâ€fat dietâ€induced obesity mouse model. Journal of the Science of Food and Agriculture, 2019, 99, 3967-3975.	1.7	36
3864	Changes in Gut Microbiota and Hormones After Bariatric Surgery: a Bench-to-Bedside Review. Obesity Surgery, 2019, 29, 1663-1674.	1.1	29
3865	Distinctive subpopulations of the intestinal microbiota are present in women with unexplained chronic anovulation. Reproductive BioMedicine Online, 2019, 38, 570-578.	1.1	14
3866	Fecal microbiota transplantation in an elderly patient with mental depression. International Psychogeriatrics, 2019, 31, 1525-1526.	0.6	43
3867	The Frequencies of Immunosuppressive Cells in Adipose Tissue Differ in Human, Non-human Primate, and Mouse Models. Frontiers in Immunology, 2019, 10, 117.	2.2	22
3868	Gut Mucosal Proteins and Bacteriome Are Shaped by the Saturation Index of Dietary Lipids. Nutrients, 2019, 11, 418.	1.7	41
3869	The Battle Within: Interactions of Bacteriophages and Bacteria in the Gastrointestinal Tract. Cell Host and Microbe, 2019, 25, 210-218.	5.1	101
3870	Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nature Reviews Endocrinology, 2019, 15, 226-237.	4.3	350
3871	Dietary Black Raspberries Impact the Colonic Microbiome and Phytochemical Metabolites in Mice. Molecular Nutrition and Food Research, 2019, 63, e1800636.	1.5	56
3872	Dietary LPS traces influences disease expression of the diet-induced obese mouse. Research in Veterinary Science, 2019, 123, 195-203.	0.9	15
3873	Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Beneficial Microbes, 2019, 10, 121-135.	1.0	118

#	ARTICLE Changes in gut microflora due to alcohol and NaCl consumption and diet restriction. Nutrition and	IF	Citations
3874	Food Science, 2019, 50, 801-809.	0.4	1
3875	Corn starch dextrin changes intestinal microbiota and its metabolic activity in rats fed a basal and high-fat diet. British Food Journal, 2019, 121, 2219-2232.	1.6	7
3876	Effect of Alcohol on Gut-Liver Axis and Adipose Tissue. , 0, , .		1
3877	Dysbiosis of the Microbiota in Anorexia Nervosa: Pathophysiological Implications. , 2019, , .		0
3878	The Therapeutic Potential of the $\hat{a} \in \hat{\alpha}$ Yin-Yang $\hat{a} \in \hat{\alpha}$ Garden in Our Gut. , 2019, , .		2
3880	Role of Gut Microbiota in Type 2 Diabetes Mellitus and Its Complications: Novel Insights and Potential Intervention Strategies. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2019, 74, 314.	0.2	40
3881	Rectal Microbiome Composition Correlates with Humoral Immunity to HIV-1 in Vaccinated Rhesus Macaques. MSphere, 2019, 4, .	1.3	18
3882	The Interplay between Immune System and Microbiota in Diabetes. Mediators of Inflammation, 2019, 2019, 1-10.	1.4	29
3883	Plant-Based Diets in the Reduction of Body Fat: Physiological Effects and Biochemical Insights. Nutrients, 2019, 11, 2712.	1.7	59
3884	Low Calorie Sweeteners Differ in Their Physiological Effects in Humans. Nutrients, 2019, 11, 2717.	1.7	48
3885	Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Research Reviews, 2019, 56, 100980.	5.0	107
3886	The Developmental Stage Symbionts of the Pea Aphid-Feeding Chrysoperla sinica (Tjeder). Frontiers in Microbiology, 2019, 10, 2454.	1.5	25
3887	Effects of different probiotics on the gut microbiome and metabolites in the serum and caecum of weaning piglets. South African Journal of Animal Sciences, 2019, 49, 494.	0.2	3
3888	Gender difference in the association of dietary patterns and metabolic parameters with obesity in young and middle-aged adults with dyslipidemia and abnormal fasting plasma glucose in Taiwan. Nutrition Journal, 2019, 18, 75.	1.5	14
3889	Plant-Based Diets for Personal, Population, and Planetary Health. Advances in Nutrition, 2019, 10, S275-S283.	2.9	121
3890	Estradiol and high fat diet associate with changes in gut microbiota in female ob/ob mice. Scientific Reports, 2019, 9, 20192.	1.6	45
3891	Microbiota impacts on chronic inflammation and metabolic syndrome - related cognitive dysfunction. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 473-480.	2.6	45
3892	Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS ONE, 2019, 14, e0226372.	1.1	104

#	Article	IF	CITATIONS
3893	L-Arabinose Elicits Gut-Derived Hydrogen Production and Ameliorates Metabolic Syndrome in C57BL/6J Mice on High-Fat-Diet. Nutrients, 2019, 11, 3054.	1.7	37
3894	Whole barley prevents obesity and dyslipidemia without the involvement of the gut microbiota in germ free C57BL/6J obese mice. Food and Function, 2019, 10, 7498-7508.	2.1	14
3895	Attenuation of metabolic syndrome in the ob/ob mouse model by resistant starch intervention is dose dependent. Food and Function, 2019, 10, 7940-7951.	2.1	19
3896	In Vivo Effects of Salbutamol Residues on Blood Lipid, Lung Structure, Gene Expression, and Gut Microorganism Composition. ACS Omega, 2019, 4, 20644-20653.	1.6	4
3897	Obesity during pregnancy results in maternal intestinal inflammation, placental hypoxia, and alters fetal glucose metabolism at mid-gestation. Scientific Reports, 2019, 9, 17621.	1.6	54
3898	Canmei Formula Reduces Colitis-Associated Colorectal Carcinogenesis in Mice by Modulating the Composition of Gut Microbiota. Frontiers in Oncology, 2019, 9, 1149.	1.3	21
3899	Effects of ginseng dietary supplementation on a high-Fat diet-induced obesity in C57BL/6 Mice. Food Science and Human Wellness, 2019, 8, 344-350.	2.2	6
3900	Iron Transport Tocopheryl Polyethylene Glycol Succinate in Animal Health and Diseases. Molecules, 2019, 24, 4289.	1.7	6
3901	Microbiota, type 2 diabetes and non-alcoholic fatty liver disease: protocol of an observational study. Journal of Translational Medicine, 2019, 17, 408.	1.8	7
3902	The intestinal microbial community dissimilarity in hepatitis B virus-related liver cirrhosis patients with and without at alcohol consumption. Gut Pathogens, 2019, 11, 58.	1.6	24
3903	Mice Microbiota Composition Changes by Inulin Feeding with a Long Fasting Period under a Two-Meals-Per-Day Schedule. Nutrients, 2019, 11, 2802.	1.7	22
3904	How causal are microbiomes? A comparison with the Helicobacter pylori explanation of ulcers. Biology and Philosophy, 2019, 34, 1.	0.7	45
3905	Alcohol shifts gut microbial networks and ameliorates a murine model of neuroinflammation in a sex-specific pattern. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25808-25815.	3.3	36
3906	Temperature as a modulator of the gut microbiome: what are the implications and opportunities for thermal medicine?. International Journal of Hyperthermia, 2019, 36, 83-89.	1.1	31
3907	The Microbiota Promotes Arterial Thrombosis in Low-Density Lipoprotein Receptor-Deficient Mice. MBio, 2019, 10, .	1.8	50
3908	The Role of the Gut Microbiota in Lipid and Lipoprotein Metabolism. Journal of Clinical Medicine, 2019, 8, 2227.	1.0	82
3909	Metabolic Modeling of Clostridium difficile Associated Dysbiosis of the Gut Microbiota. Processes, 2019, 7, 97.	1.3	9
3910	A multi-etiological model of childhood obesity: a new biobehavioral perspective for prevention?. Italian Journal of Pediatrics, 2019, 45, 169.	1.0	4

#	Article	IF	CITATIONS
3911	Colonic bacterial composition is sex-specific in aged CD-1 mice fed diets varying in fat quality. PLoS ONE, 2019, 14, e0226635.	1.1	9
3912	Monitoring type 2 diabetes from volatile faecal metabolome in Cushing's syndrome and single Afmid mouse models via a longitudinal study. Scientific Reports, 2019, 9, 18779.	1.6	15
3913	A correlation-based network for biomarker discovery in obesity with metabolic syndrome. BMC Bioinformatics, 2019, 20, 477.	1.2	14
3914	Effects of compound probiotics on the weight, immunity performance and fecal microbiota of forest musk deer. Scientific Reports, 2019, 9, 19146.	1.6	14
3915	Gut Microbiota and Obesity: Prebiotic and Probiotic Effects. , 2019, , .		1
3916	Association of atopic dermatitis with obesity via a multi-omics approach. Medicine (United States), 2019, 98, e16527.	0.4	8
3917	Gut Microbiota and Cardiometabolic Risk Factors in Hemodialysis Patients. Topics in Clinical Nutrition, 2019, 34, 153-160.	0.2	4
3918	Non-nutritive Sweeteners: Implications for Consumption in Athletic Populations. Strength and Conditioning Journal, 2019, 41, 112-126.	0.7	Ο
3919	The effect of surgical fecal stream diversion of the healthy colon on the colonic microbiota. European Journal of Gastroenterology and Hepatology, 2019, 31, 451-457.	0.8	7
3920	The Mediterranean diet and its association with selected gut bacteria. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 401-406.	1.3	24
3921	Crocin-I ameliorates the disruption of lipid metabolism and dysbiosis of the gut microbiota induced by chronic corticosterone in mice. Food and Function, 2019, 10, 6779-6791.	2.1	28
3922	Investigations of Bacteroides spp. towards next-generation probiotics. Food Research International, 2019, 116, 637-644.	2.9	121
3923	Proteomics and the microbiome: pitfalls and potential. Expert Review of Proteomics, 2019, 16, 501-511.	1.3	24
3924	Comparison of the gut microbiota of captive common bottlenose dolphins <i>Tursiops truncatus</i> in three aquaria. Journal of Applied Microbiology, 2019, 126, 31-39.	1.4	23
3925	Alterations to the microbiota–colon–brain axis in high-fat-diet-induced obese mice compared to diet-resistant mice. Journal of Nutritional Biochemistry, 2019, 65, 54-65.	1.9	51
3926	Effects of glucose oxidase on growth performance, gut function, and cecal microbiota of broiler chickens. Poultry Science, 2019, 98, 828-841.	1.5	50
3927	Obesity Is Associated with Increased Risk of Colectomy in Inflammatory Bowel Disease Patients Hospitalized with Clostridium difficile Infection. Digestive Diseases and Sciences, 2019, 64, 1632-1639.	1.1	4
3928	A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients, 2019, 11, 22.	1.7	76

#	Article	IF	CITATIONS
3929	Abnormality in Maternal Dietary Calcium Intake During Pregnancy and Lactation Promotes Body Weight Gain by Affecting the Gut Microbiota in Mouse Offspring. Molecular Nutrition and Food Research, 2019, 63, e1800399.	1.5	18
3930	Gut microbiota and health: connecting actors across the metabolic system. Proceedings of the Nutrition Society, 2019, 78, 177-188.	0.4	49
3931	Impact of gut microbiota on gutâ€distal autoimmunity: a focus on T cells. Immunology, 2019, 156, 305-318.	2.0	38
3932	Gut microbiome approaches to treat obesity in humans. Applied Microbiology and Biotechnology, 2019, 103, 1081-1094.	1.7	41
3933	In vitro digestion under simulated saliva, gastric and small intestinal conditions and fermentation by human gut microbiota of polysaccharides from the fruits of Lycium barbarum. International Journal of Biological Macromolecules, 2019, 125, 751-760.	3.6	174
3934	Microbiota comparison of Pacific white shrimp intestine and sediment at freshwater and marine cultured environment. Science of the Total Environment, 2019, 657, 1194-1204.	3.9	116
3935	Dietary sugar silences a colonization factor in a mammalian gut symbiont. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 233-238.	3.3	71
3936	The Role of the Gut Microbiota in Sustained Weight Loss Following Roux-en-Y Gastric Bypass Surgery. Obesity Surgery, 2019, 29, 1259-1267.	1.1	36
3937	Microbiological In Vivo Production of CLNA as a Tool in the Regulation of Host Microbiota in Obesity Control. Studies in Natural Products Chemistry, 2019, 61, 369-394.	0.8	3
3938	Constipation and risk of death and cardiovascular events. Atherosclerosis, 2019, 281, 114-120.	0.4	128
3939	Hypocholesterolemic Effect of the Lignin-Rich Insoluble Residue of Brewer's Spent Grain in Mice Fed a High-Fat Diet. Journal of Agricultural and Food Chemistry, 2019, 67, 1104-1114.	2.4	37
3940	Antidiabetic Potential of Green Seaweed <i>Enteromorpha prolifera</i> Flavonoids Regulating Insulin Signaling Pathway and Gut Microbiota in Type 2 Diabetic Mice. Journal of Food Science, 2019, 84, 165-173.	1.5	105
3941	Uddanam Kidney Nephropathy Under the Light of Metagenomics Perspective. SN Comprehensive Clinical Medicine, 2019, 1, 23-25.	0.3	1
3942	Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology, 2019, 16, 137-154.	6.1	449
3943	Importance of gut microbiota in obesity. European Journal of Clinical Nutrition, 2019, 72, 26-37.	1.3	88
3944	Performance and intestinal microbiota of chickens receiving probiotic in the feed and submitted to antibiotic therapy. Journal of Animal Physiology and Animal Nutrition, 2019, 103, 72-86.	1.0	23
3945	Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Frontiers in Immunology, 2018, 9, 2868.	2.2	207
3946	Enzymes in the Design of Functional Foods or Their Constituents. Energy, Environment, and Sustainability, 2019, , 383-412.	0.6	Ο

#	Article	IF	CITATIONS
3947	Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere, 2019, 217, 646-658.	4.2	277
3948	Metabolically healthy versus metabolically unhealthy obesity. Metabolism: Clinical and Experimental, 2019, 92, 51-60.	1.5	251
3949	Composition of gut microbiota and its association with body mass index and lifestyle factors in a cohort of 7–18 years old children from the American Gut Project. Pediatric Obesity, 2019, 14, e12480.	1.4	103
3950	A Paleolithic diet lowers resistant starch intake but does not affect serum trimethylamine- <i>N</i> -oxide concentrations in healthy women. British Journal of Nutrition, 2019, 121, 322-329.	1.2	13
3951	Body Mass Index as a Determinant of Systemic Exposure to Gallotannin Metabolites during 6â€Week Consumption of Mango (<i>Mangifera indica</i> L.) and Modulation of Intestinal Microbiota in Lean and Obese Individuals. Molecular Nutrition and Food Research, 2019, 63, e1800512.	1.5	24
3952	The Role of the Bacterial Microbiota in Alcoholic and Non-alcoholic Fatty Liver Disease. , 2019, , 89-104.		0
3953	Interleukinâ€17/interleukinâ€17 receptor axis elicits intestinal neutrophil migration, restrains gut dysbiosis and lipopolysaccharide translocation in highâ€fat dietâ€induced metabolic syndrome model. Immunology, 2019, 156, 339-355.	2.0	52
3954	The microbiome of Escherichia coli and culture-negative nonsevere clinical mastitis: Characterization and associations with linear score and milk production. Journal of Dairy Science, 2019, 102, 578-594.	1.4	12
3956	Study on the ability of partially hydrolyzed guar gum to modulate the gut microbiota and relieve constipation. Journal of Food Biochemistry, 2019, 43, e12715.	1.2	18
3957	Microbiome 101: Studying, Analyzing, and Interpreting Gut Microbiome Data for Clinicians. Clinical Gastroenterology and Hepatology, 2019, 17, 218-230.	2.4	187
3958	Intestinally derived bacterial products stimulate development of nonalcoholic steatohepatitis. Pharmacological Research, 2019, 141, 418-428.	3.1	14
3959	Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 1029-1043.	2.4	344
3960	Probiotics, prebiotics and amelioration of diseases. Journal of Biomedical Science, 2019, 26, 3.	2.6	242
3961	Host immunoglobulin G selectively identifies pathobionts in pediatric inflammatory bowel diseases. Microbiome, 2019, 7, 1.	4.9	404
3962	The gut microbiome in anorexia nervosa: relevance for nutritional rehabilitation. Psychopharmacology, 2019, 236, 1545-1558.	1.5	56
3963	A mini-review on the microbial continuum: consideration of a link between judicious consumption of a varied diet of macroalgae and human health and nutrition. Journal of Oceanology and Limnology, 2019, 37, 790-805.	0.6	10
3964	Obesity Pathogenesis. Endocrinology, 2019, , 89-108.	0.1	0
3965	Impact of plant sterols enrichment dose on gut microbiota from lean and obese subjects using TIM-2 in vitro fermentation model. Journal of Functional Foods, 2019, 54, 164-174.	1.6	37

#	Article	IF	Citations
3966	The impact of early-life sub-therapeutic antibiotic treatment (STAT) on excessive weight is robust despite transfer of intestinal microbes. ISME Journal, 2019, 13, 1280-1292.	4.4	47
3967	General and abdominal obesity in relation to the prevalence of irritable bowel syndrome. Neurogastroenterology and Motility, 2019, 31, e13549.	1.6	25
3968	Cross-Domain and Viral Interactions in the Microbiome. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	95
3969	Beneficial Effect of Potato Consumption on Gut Microbiota and Intestinal Epithelial Health. American Journal of Potato Research, 2019, 96, 170-176.	0.5	23
3970	<i>Lactobacillus sakei</i> Alleviates Highâ€Fatâ€Dietâ€Induced Obesity and Anxiety in Mice by Inducing AMPK Activation and SIRT1 Expression and Inhibiting Gut Microbiotaâ€Mediated NFâ€PB Activation. Molecular Nutrition and Food Research, 2019, 63, e1800978.	1.5	71
3971	Epigenetics and the Microbiome. , 2019, , 79-103.		0
3972	Gut microbiota in neurodegenerative disorders. Journal of Neuroimmunology, 2019, 328, 98-104.	1.1	220
3973	The pathogenesis of obesity. Metabolism: Clinical and Experimental, 2019, 92, 26-36.	1.5	108
3974	Daily Consumption of Orange Juice from <i>Citrus sinensis</i> L. Osbeck cv. Cara Cara and cv. Bahia Differently Affects Gut Microbiota Profiling as Unveiled by an Integrated Meta-Omics Approach. Journal of Agricultural and Food Chemistry, 2019, 67, 1381-1391.	2.4	39
3975	Mode of delivery and offspring adiposity in late adolescence: The modifying role of maternal pre-pregnancy body size. PLoS ONE, 2019, 14, e0209581.	1.1	7
3976	What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 2019, 7, 14.	1.6	1,796
3977	Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition, 2019, 60, 175-184.	1.1	326
3978	Altitudinal variation of the gut microbiota in wild house mice. Molecular Ecology, 2019, 28, 2378-2390.	2.0	77
3979	Effects of different areca nut chewing habits on the gut microbiota of mice: Highâ€ŧhroughput sequencing analysis. Journal of Food Safety, 2019, 39, e12574.	1.1	2
3980	Gut Microbiota; Its Importance in Obesity. , 2019, , 353-362.		1
3981	Dietary shifts influenced by livestock grazing shape the gut microbiota composition and coâ€occurrence networks in a local rodent species. Journal of Animal Ecology, 2019, 88, 302-314.	1.3	36
3982	Obesity, diabetes, and the gut microbiome: an updated review. Expert Review of Gastroenterology and Hepatology, 2019, 13, 3-15.	1.4	139
3983	Nucleic Acid Sensing Perturbation: How Aberrant Recognition of Self-Nucleic Acids May Contribute to Autoimmune and Autoinflammatory Diseases. International Review of Cell and Molecular Biology, 2019, 344, 117-137.	1.6	6

#	Article	IF	CITATIONS
3984	Neuropeptides in the microbiota-brain axis and feeding behavior in autism spectrum disorder. Nutrition, 2019, 61, 43-48.	1.1	18
3985	Antibiotic and acid-suppression medications during early childhood are associated with obesity. Gut, 2019, 68, 62-69.	6.1	89
3986	Enhanced gastrointestinal passive paracellular permeability contributes to the obesity-associated hyperoxaluria. American Journal of Physiology - Renal Physiology, 2019, 316, G1-G14.	1.6	16
3987	Potential mechanisms linking gut microbiota and portal hypertension. Liver International, 2019, 39, 598-609.	1.9	34
3988	Influence of the Human Gut Microbiome on the Metabolic Phenotype. , 2019, , 535-560.		13
3989	Polysaccharides from Laminaria japonica alleviated metabolic syndrome in BALB/c mice by normalizing the gut microbiota. International Journal of Biological Macromolecules, 2019, 121, 996-1004.	3.6	59
3990	Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes, Obesity and Metabolism, 2019, 21, 479-490.	2.2	101
3991	The role of gut microbiome and its interaction with arsenic exposure in carotid intima-media thickness in a Bangladesh population. Environment International, 2019, 123, 104-113.	4.8	30
3992	Koumiss consumption modulates gut microbiota, increases plasma high density cholesterol, decreases immunoglobulin G and albumin. Journal of Functional Foods, 2019, 52, 469-478.	1.6	38
3993	A randomized, doubleâ€blind, placeboâ€controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma. Cancer, 2019, 125, 1081-1090.	2.0	99
3994	Impact of Resistant Maltodextrins and Resistant Starch on Human Gut Microbiota and Organic Acids Production. Starch/Staerke, 2019, 71, 1800231.	1.1	9
3995	Obesity and mental health improvement following nutritional education focusing on gut microbiota composition in Japanese women: a randomised controlled trial. European Journal of Nutrition, 2019, 58, 3291-3302.	1.8	31
3996	Recent Developments in the Prevention of Obesity by Using Microorganisms. , 2019, , 47-60.		1
3997	Headspace Gas Monitoring of Gut Microbiota Using Targeted and Globally Optimized Targeted Secondary Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 854-863.	3.2	20
3998	Sex, Microbes, and Polycystic Ovary Syndrome. Trends in Endocrinology and Metabolism, 2019, 30, 54-65.	3.1	121
3999	Prophylactic use of probiotic chocolate modulates intestinal physiological functions in constipated rats. Journal of the Science of Food and Agriculture, 2019, 99, 3045-3056.	1.7	13
4000	Effects of the 1975 Japanese diet on the gut microbiota in younger adults. Journal of Nutritional Biochemistry, 2019, 64, 121-127.	1.9	27
4001	Genes controlling the activation of natural killer lymphocytes are epigenetically remodeled in intestinal cells from germâ€free mice. FASEB Journal, 2019, 33, 2719-2731.	0.2	12

#	Article	IF	CITATIONS
4002	Non-alcoholic fatty liver disease and obesity: the role of the gut bacteria. European Journal of Nutrition, 2019, 58, 1771-1784.	1.8	30
4003	Cohort Profile: The Finnish Health in Teens (Fin-HIT) study: a population-based study. International Journal of Epidemiology, 2019, 48, 23-24h.	0.9	31
4004	Using noninvasive metagenomics to characterize viral communities from wildlife. Molecular Ecology Resources, 2019, 19, 128-143.	2.2	53
4005	Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. Journal of Applied Microbiology, 2019, 126, 701-717.	1.4	57
4006	Progress in characterizing the linkage between Fusobacterium nucleatum and gastrointestinal cancer. Journal of Gastroenterology, 2019, 54, 33-41.	2.3	39
4007	Gut Microbiota Imbalance Can Be Associated with Non-malabsorptive Small Bowel Shortening Regardless of Blind Loop. Obesity Surgery, 2019, 29, 369-375.	1.1	5
4008	The microgenderome revealed: sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Seminars in Immunopathology, 2019, 41, 265-275.	2.8	160
4009	Obesity and the microbiome: Big changes on a small scale?. , 2019, , 281-300.		0
4010	You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 35-56.	8.2	980
4011	Highâ€production dairy cattle exhibit different rumen and fecal bacterial community and rumen metabolite profile than lowâ€production cattle. MicrobiologyOpen, 2019, 8, e00673.	1.2	38
4012	Metaproteomics Study of the Gut Microbiome. Methods in Molecular Biology, 2019, 1871, 123-132.	0.4	12
4013	The Role and Future Possibilities of Next-Generation Sequencing in Studying Microbial Diversity. , 2019, , 611-630.		4
4014	Group B <i>streptococcus</i> colonisation and associated risk factors among pregnant women: A hospitalâ€based study and implications for primary care. International Journal of Clinical Practice, 2019, 73, e13276.	0.8	8
4015	Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone, 2019, 118, 20-31.	1.4	69
4016	The gut microbiota: A new target in the management of alcohol dependence?. Alcohol, 2019, 74, 105-111.	0.8	36
4017	Oral Administration of Compound Probiotics Ameliorates HFD-Induced Gut Microbe Dysbiosis and Chronic Metabolic Inflammation via the G Protein-Coupled Receptor 43 in Non-alcoholic Fatty Liver Disease Rats. Probiotics and Antimicrobial Proteins, 2019, 11, 175-185.	1.9	87
4018	The Effect of Leanâ€Seafood and Nonâ€Seafood Diets on Fecal Metabolites and Gut Microbiome: Results from a Randomized Crossover Intervention Study. Molecular Nutrition and Food Research, 2019, 63, e1700976.	1.5	30
4019	Monovalerin and trivalerin increase brain acetic acid, decrease liver succinic acid, and alter gut microbiota in rats fed high-fat diets. European Journal of Nutrition, 2019, 58, 1545-1560.	1.8	18

#	Article	IF	CITATIONS
4020	Obesity, Treatment of. , 2020, , 737-747.		0
4021	The Effect of Synbiotic Supplementation on Growth Parameters in Mild to Moderate FTT Children Aged 2–5ÂYears. Probiotics and Antimicrobial Proteins, 2020, 12, 119-124.	1.9	3
4022	Using Data Science for Medical Decision Making Case: Role of Gut Microbiome in Multiple Sclerosis. IFMBE Proceedings, 2020, , 349-356.	0.2	1
4023	Gut microbiota and obesity: Impact of antibiotics and prebiotics and potential for musculoskeletal health. Journal of Sport and Health Science, 2020, 9, 110-118.	3.3	20
4024	Gut microbiome and its role in obesity and insulin resistance. Annals of the New York Academy of Sciences, 2020, 1461, 37-52.	1.8	186
4025	Microbial insight into dietary protein source affects intestinal function of pigs with intrauterine growth retardation. European Journal of Nutrition, 2020, 59, 327-344.	1.8	28
4026	The combination of wheat peptides and fucoidan protects against chronic superficial gastritis and alters gut microbiota: a double-blinded, placebo-controlled study. European Journal of Nutrition, 2020, 59, 1655-1666.	1.8	27
4027	Leuconostoc mesenteroides subsp. mesenteroides SD23 Prevents Metabolic Dysfunction Associated with High-Fat Diet–Induced Obesity in Male Mice. Probiotics and Antimicrobial Proteins, 2020, 12, 505-516.	1.9	12
4028	The association between gut microbiome and anthropometric measurements in Bangladesh. Gut Microbes, 2020, 11, 63-76.	4.3	31
4029	Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut, 2020, 69, 502-512.	6.1	188
4030	Food processing, gut microbiota and the globesity problem. Critical Reviews in Food Science and Nutrition, 2020, 60, 1769-1782.	5.4	51
4031	Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences. Briefings in Bioinformatics, 2020, 21, 777-790.	3.2	18
4032	Arabinoxylan oligosaccharides and polyunsaturated fatty acid effects on gut microbiota and metabolic markers in overweight individuals with signs of metabolic syndrome: A randomized cross-over trial. Clinical Nutrition, 2020, 39, 67-79.	2.3	68
4033	Anorexia nervosa: Gut microbiota-immune-brain interactions. Clinical Nutrition, 2020, 39, 676-684.	2.3	66
4034	Comparative analysis of the gut microbiota of the blue fox (Alopex lagopus) and raccoon dog (Nyctereutes procyonoides). Archives of Microbiology, 2020, 202, 135-142.	1.0	12
4035	Molecular ecology of the yet uncultured bacterial Ct85-cluster in the mammalian gut. Anaerobe, 2020, 62, 102104.	1.0	1
4036	Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology, 2020, 158, 322-340.	0.6	408
4037	Hydrogen sulfideâ€mediated resistance against water avoidance stressâ€induced gastritis by maintenance of gastric microbial homeostasis. MicrobiologyOpen, 2020, 9, e00951.	1.2	8

#	Article	IF	Citations
4038	Untapped "-omics― the microbial metagenome, estrobolome, and their influence on the development of breast cancer and response to treatment. Breast Cancer Research and Treatment, 2020, 179, 287-300.	1.1	33
4039	Establishment of the early-life microbiome: a DOHaD perspective. Journal of Developmental Origins of Health and Disease, 2020, 11, 201-210.	0.7	46
4040	Changes in Gut Microbiota Composition after Bariatric Surgery: a New Balance to Decode. Journal of Gastrointestinal Surgery, 2020, 24, 1736-1746.	0.9	43
4041	Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study. European Journal of Nutrition, 2020, 59, 2011-2024.	1.8	94
4042	Changes in Cold and Hot Syndrome and Gastrointestinal Bacterial Community Structure in Mice by Intervention with Food of Different Nature. Chinese Journal of Integrative Medicine, 2020, 26, 448-454.	0.7	4
4043	Impact of kestose supplementation on the healthy adult microbiota in inÂvitro fecal batch cultures. Anaerobe, 2020, 61, 102076.	1.0	11
4044	Improvement on metabolic syndrome in high fat diet-induced obese mice through modulation of gut microbiota by sangguayin decoction. Journal of Ethnopharmacology, 2020, 246, 112225.	2.0	38
4045	Problems with the concept of gut microbiota dysbiosis. Microbial Biotechnology, 2020, 13, 423-434.	2.0	132
4046	Diversity profiling of xenic cultures of Dientamoeba fragilis following systematic antibiotic treatment and prospects for genome sequencing. Parasitology, 2020, 147, 29-38.	0.7	0
4047	Effects of Bacillus Subtilis-Zinc on Rats with Congenital Zinc Deficiency. Biological Trace Element Research, 2020, 194, 482-492.	1.9	1
4048	Influence of Helicobacter pylori Infection and Atrophic Gastritis on the Gut Microbiota in a Japanese Population. Digestion, 2020, 101, 422-432.	1.2	26
4049	Association between gut microbiota composition and glycoalbumin level during pregnancy in Japanese women: Pilot study from Chiba Study of Mother and Child Health. Journal of Diabetes Investigation, 2020, 11, 699-706.	1.1	8
4050	Chapter 10: Probiotic Bacteria and Dental Caries. Monographs in Oral Science, 2020, 28, 99-107.	0.9	23
4051	Diet and the Gut Microbiome in Early Life. , 2020, , 51-59.		0
4052	Flaxseed oil alleviates dextran sulphate sodium-induced ulcerative colitis in rats. Journal of Functional Foods, 2020, 64, 103602.	1.6	19
4053	Resveratrol treatment improves the altered metabolism and related dysbiosis of gut programed by prenatal high-fat diet and postnatal high-fat diet exposure. Journal of Nutritional Biochemistry, 2020, 75, 108260.	1.9	25
4054	Fiber enrichment of pasta: metabolic effects and diet adherence in obese subjects. Mediterranean Journal of Nutrition and Metabolism, 2020, 13, 53-62.	0.2	3
4055	Dietary intervention using (1,3)/(1,6)-β-glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model. European Journal of Nutrition, 2020, 59, 2617-2629.	1.8	32

#	Article	IF	CITATIONS
4056	The Role of Ames Dwarfism and Calorie Restriction on Gut Microbiota. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, e1-e8.	1.7	16
4057	Preventive antibiotic treatment of calves: emergence of dysbiosis causing propagation of obese stateâ€associated and mobile multidrug resistanceâ€carrying bacteria. Microbial Biotechnology, 2020, 13, 669-682.	2.0	18
4058	The gut microbiota and diabetic cardiomyopathy in humans. Diabetes and Metabolism, 2020, 46, 197-202.	1.4	22
4059	Preventive consumption of green tea modifies the gut microbiota and provides persistent protection from high-fat diet-induced obesity. Journal of Functional Foods, 2020, 64, 103621.	1.6	23
4060	Effect of different seasons (spring vs summer) on the microbiota diversity in the feces of dairy cows. International Journal of Biometeorology, 2020, 64, 345-354.	1.3	31
4061	Artemisia sphaerocephala Krasch polysaccharide mediates lipid metabolism and metabolic endotoxaemia in associated with the modulation of gut microbiota in diet-induced obese mice. International Journal of Biological Macromolecules, 2020, 147, 1008-1017.	3.6	51
4062	<i>In vitro</i> approach to evaluate the fermentation pattern of inulin-rich food in obese individuals. British Journal of Nutrition, 2020, 123, 472-479.	1.2	3
4063	The Buckwheat Iminosugardâ€Fagomine Attenuates Sucroseâ€Induced Steatosis and Hypertension in Rats. Molecular Nutrition and Food Research, 2020, 64, 1900564.	1.5	6
4064	The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Experimental Neurology, 2020, 323, 113085.	2.0	46
4065	Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism. Journal of Hazardous Materials, 2020, 385, 121534.	6.5	58
4066	Semi-continuous fermentation of solid waste in closed artificial ecosystem: Microbial diversity, function genes evaluation. Life Sciences in Space Research, 2020, 25, 136-142.	1.2	7
4067	Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients, 2020, 12, 130.	1.7	60
4068	Combination of Oligofructose and Metformin Alters the Gut Microbiota and Improves Metabolic Profiles, Contributing to the Potentiated Therapeutic Effects on Diet-Induced Obese Animals. Frontiers in Endocrinology, 2019, 10, 939.	1.5	15
4069	Characterization of the gut microbiome of black-necked cranes (Grus nigricollis) in six wintering areas in China. Archives of Microbiology, 2020, 202, 983-993.	1.0	27
4070	Oligosaccharides from <i>Gracilaria lemaneiformis</i> better attenuated high fat diet-induced metabolic syndrome by promoting the Bacteroidales proliferation. Food and Function, 2020, 11, 1049-1062.	2.1	18
4071	Gut microbiota composition alterations are associated with the onset of diabetes in kidney transplant recipients. PLoS ONE, 2020, 15, e0227373.	1.1	18
4072	Role of Overweight and Obesity in Gastrointestinal Disease. Nutrients, 2020, 12, 111.	1.7	59
4073	Trimethylamine-N-oxide is present in human follicular fluid and is a negative predictor of embryo quality. Human Reproduction, 2020, 35, 81-88.	0.4	14

#	Article	IF	CITATIONS
4074	Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Science Advances, 2020, 6, eaax6208.	4.7	230
4075	Gut microbiota of provisioned and wild rhesus macaques (<i>Macaca mulatta</i>) living in a limestone forest in southwest Guangxi, China. MicrobiologyOpen, 2020, 9, e981.	1.2	18
4076	Effect of mushroom polysaccharides from Pleurotus eryngii on obesity and gut microbiota in mice fed a high-fat diet. European Journal of Nutrition, 2020, 59, 3231-3244.	1.8	57
4077	Mealworm larvae (Tenebrio molitor L.) exuviae as a novel prebiotic material for BALB/c mouse gut microbiota. Food Science and Biotechnology, 2020, 29, 531-537.	1.2	6
4078	Dietary adzuki bean paste dose-dependently reduces visceral fat accumulation in rats fed a normal diet. Food Research International, 2020, 130, 108890.	2.9	17
4079	Ethanol extract of propolis prevents high-fat diet-induced insulin resistance and obesity in association with modulation of gut microbiota in mice. Food Research International, 2020, 130, 108939.	2.9	79
4080	Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. Journal of Nutritional Biochemistry, 2020, 78, 108324.	1.9	82
4081	Bacillus licheniformis–fermented products improve growth performance and the fecal microbiota community in broilers. Poultry Science, 2020, 99, 1432-1443.	1.5	67
4082	The influence of dietary patterns on gut microbiome and its consequences for nonalcoholic fatty liver disease. Trends in Food Science and Technology, 2020, 96, 135-144.	7.8	12
4083	Impact of Steviol Glycosides and Erythritol on the Human and <i>Cebus apella</i> Gut Microbiome. Journal of Agricultural and Food Chemistry, 2020, 68, 13093-13101.	2.4	32
4084	The Timing Effects of Soy Protein Intake on Mice Gut Microbiota. Nutrients, 2020, 12, 87.	1.7	29
4085	Sini decoction ameliorates interrelated lung injury in septic mice by modulating the composition of gut microbiota. Microbial Pathogenesis, 2020, 140, 103956.	1.3	19
4086	A Health-Conscious Food Pattern Is Associated with Prediabetes and Gut Microbiota in the Malmö Offspring Study. Journal of Nutrition, 2020, 150, 861-872.	1.3	21
4087	New insight into the mechanism of POP-induced obesity: Evidence from DDE-altered microbiota. Chemosphere, 2020, 244, 125123.	4.2	29
4088	Chemistry and Enzymology Encoded by the Human Microbiome. , 2020, , 261-286.		0
4089	Effects of yeast cultures with different fermentation times on the growth performance, caecal microbial community and metabolite profile of broilers. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 212-223.	1.0	13
4090	Gut resistomes, microbiota and antibiotic residues in Chinese patients undergoing antibiotic administration and healthy individuals. Science of the Total Environment, 2020, 705, 135674.	3.9	40
4091	The effect of fly maggot in pig feeding diets on growth performance and gut microbial balance in Ningxiang pigs. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 1867-1874.	1.0	3

#	Article	IF	CITATIONS
4092	Gut Microbiota: From the Forgotten Organ to a Potential Key Player in the Pathology of Alzheimer's Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1232-1241.	1.7	61
4093	Sex Differences in Gut Microbiota. World Journal of Men?s Health, 2020, 38, 48.	1.7	340
4094	Cystic and hormonal changes in ovary of rabbit's hyperimmunized with Pseudomonas aeruginosa. Gene Reports, 2020, 18, 100570.	0.4	0
4095	From anaerobes to aerointolerant prokaryotes. Human Microbiome Journal, 2020, 15, 100068.	3.8	9
4096	Prebiotic role of softwood hemicellulose in healthy mice model. Journal of Functional Foods, 2020, 64, 103688.	1.6	20
4097	Nondigestible Oligosaccharides with Anti-Obesity Effects. Journal of Agricultural and Food Chemistry, 2020, 68, 4-16.	2.4	46
4098	Association between breath methane concentration and visceral fat area: a population-based cross-sectional study. Journal of Breath Research, 2020, 14, 026008.	1.5	6
4099	The gut microbiome-joint connection: implications in osteoarthritis. Current Opinion in Rheumatology, 2020, 32, 92-101.	2.0	64
4100	Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 33-47.	2.4	123
4101	Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia. Medicine and Science in Sports and Exercise, 2020, 52, 94-104.	0.2	159
4102	Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. Journal of Functional Foods, 2020, 64, 103687.	1.6	60
4103	Intestinal Dysbiosis and Markers of Systemic Inflammation in Viscerally and Generally Obese Persons Living With HIV. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 83, 81-89.	0.9	9
4104	The Role of Gut Microbiota in Host Lipid Metabolism: An Eye on Causation and Connection. Small Methods, 2020, 4, 1900604.	4.6	3
4105	Absence of a microbiome in the midgut trunk of six representative Crustacea. Journal of Crustacean Biology, 2020, 40, 122-130.	0.3	15
4106	The role of the microbiome in precision medicine. , 2020, , 13-18.		0
4107	Intestinal-level anti-inflammatory bioactivities of catechin-rich green tea: Rationale, design, and methods of a double-blind, randomized, placebo-controlled crossover trial in metabolic syndrome and healthy adults. Contemporary Clinical Trials Communications, 2020, 17, 100495.	0.5	32
4108	Longitudinal studies can identify distinct inflammatory cytokines associated with the inhibition or progression of liver cancer. Liver International, 2020, 40, 468-472.	1.9	13
4109	Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in Apolipoprotein E knockout mice. Environmental Research, 2020, 181, 108913.	3.7	35

#	Article	IF	CITATIONS
4110	The role of gut microbiota in the resistance to obesity in mice fed a high fat diet. International Journal of Food Sciences and Nutrition, 2020, 71, 453-463.	1.3	53
4111	Obesity affects brain structure and function- rescue by bariatric surgery?. Neuroscience and Biobehavioral Reviews, 2020, 108, 646-657.	2.9	58
4112	Serum endotoxin, gut permeability and skeletal muscle metabolic adaptations following a short term high fat diet in humans. Metabolism: Clinical and Experimental, 2020, 103, 154041.	1.5	20
4113	Combined effects of HIV and obesity on the gastrointestinal microbiome of young men who have sex with men. HIV Medicine, 2020, 21, 365-377.	1.0	3
4114	Effect of <i>Helicobacter pylori</i> on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric cancer. Gut, 2020, 69, 1598-1607.	6.1	179
4115	Effects of feeding strategy and duration of the dry period on the rumen microbiota of dairy cows. Canadian Journal of Animal Science, 2020, 100, 346-358.	0.7	0
4116	Hafnia alvei HA4597 Strain Reduces Food Intake and Body Weight Gain and Improves Body Composition, Glucose, and Lipid Metabolism in a Mouse Model of Hyperphagic Obesity. Microorganisms, 2020, 8, 35.	1.6	25
4117	Characterizing the Composition of the Pediatric Gut Microbiome: A Systematic Review. Nutrients, 2020, 12, 16.	1.7	27
4118	Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients, 2020, 12, 17.	1.7	57
4119	Switching to a Healthy Diet Prevents the Detrimental Effects of Western Diet in a Colitis-Associated Colorectal Cancer Model. Nutrients, 2020, 12, 45.	1.7	12
4120	Cell Wall Integrity of Pulse Modulates the in Vitro Fecal Fermentation Rate and Microbiota Composition. Journal of Agricultural and Food Chemistry, 2020, 68, 1091-1100.	2.4	51
4121	B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nature Communications, 2020, 11, 60.	5.8	190
4122	Delivery mode-associated gut microbiota in the first 3 months of life in a country with high obesity rates. Medicine (United States), 2020, 99, e22442.	0.4	8
4123	The Impact of Producing Type and Dietary Crude Protein on Animal Performances and Microbiota Together with Greenhouse Gases Emissions in Growing Pigs. Animals, 2020, 10, 1742.	1.0	3
4124	Nutritional Targeting of the Microbiome as Potential Therapy for Malnutrition and Chronic Inflammation. Nutrients, 2020, 12, 3032.	1.7	10
4125	Gut microbiota composition in obese and non-obese adult relatives from the highlands of Papua New Guinea. FEMS Microbiology Letters, 2020, 367, .	0.7	4
4126	The Role of the Gut Microbiota in Coronary Heart Disease. Current Atherosclerosis Reports, 2020, 22, 77.	2.0	40
4127	The human microbiome in the 21st century. Nature Communications, 2020, 11, 5256.	5.8	48

#	Article	IF	CITATIONS
4128	Beneficial Effects of Proanthocyanidins on Intestinal Permeability and Its Relationship with Inflammation. , 0, , .		0
4129	Study on the Diversity and Function of Gut Microbiota in Pigs Following Long-Term Antibiotic and Antibiotic-Free Breeding. Current Microbiology, 2020, 77, 4114-4128.	1.0	16
4130	Pathway-Based Integrative Analysis of Metabolome and Microbiome Data from Hepatocellular Carcinoma and Liver Cirrhosis Patients. Cancers, 2020, 12, 2705.	1.7	7
4131	Association between the gut and oral microbiome with obesity. Anaerobe, 2021, 70, 102248.	1.0	56
4132	Berberine alleviates type 2 diabetic symptoms by altering gut microbiota and reducing aromatic amino acids. Biomedicine and Pharmacotherapy, 2020, 131, 110669.	2.5	42
4133	Xyloglucan compounded inulin or arabinoxylan against glycometabolism disorder via different metabolic pathways: Gut microbiota and bile acid receptor effects. Journal of Functional Foods, 2020, 74, 104162.	1.6	8
4134	Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients, 2020, 12, 2936.	1.7	66
4135	Obesity Impairs Short-Term and Working Memory through Gut Microbial Metabolism of Aromatic Amino Acids. Cell Metabolism, 2020, 32, 548-560.e7.	7.2	88
4136	Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Experimental Gerontology, 2020, 141, 111095.	1.2	61
4137	Gut microbiome dysbiosis and endotoxemia - Additional pathophysiological explanation for increased COVID-19 severity in obesity. Obesity Medicine, 2020, 20, 100302.	0.5	39
4138	Magnetic fields modulate metabolism and gut microbiome in correlation with <i>Pgcâ€lα</i> expression: Followâ€up to an in vitro magnetic mitohormetic study. FASEB Journal, 2020, 34, 11143-11167.	0.2	20
4139	Relationship between gut environment, feces-to-food ratio, and androgen deficiency-induced metabolic disorders. Gut Microbes, 2020, 12, 1817719.	4.3	8
4140	Reproducibility of Bioelectrical Impedance Analysis in Pregnancy and the Association of Body Composition with the Risk of Gestational Diabetes: A Substudy of MUMS Cohort. Journal of Obesity, 2020, 2020, 1-12.	1.1	10
4141	Microbiome-based stratification to guide dietary interventions to improve human health. Nutrition Research, 2020, 82, 1-10.	1.3	21
4142	Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases. Frontiers in Genetics, 2020, 11, 590369.	1.1	19
4143	Polyphenol rich extracts of finger millet and kodo millet ameliorate high fat diet-induced metabolic alterations. Food and Function, 2020, 11, 9833-9847.	2.1	36
4144	Regulation of wheat germ polysaccharides in the immune response of mice from newborn to adulthood associated with intestinal microbiota. Food and Function, 2020, 11, 9662-9674.	2.1	9
4145	The Gut Microbiota and Inflammation: An Overview. International Journal of Environmental Research and Public Health, 2020, 17, 7618.	1.2	296

#	Article	IF	CITATIONS
4146	Dietary fibers reduce obesity-related disorders: mechanisms of action. Current Opinion in Clinical Nutrition and Metabolic Care, 2020, 23, 445-450.	1.3	39
4147	Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients, 2020, 12, 3054.	1.7	68
4148	Mushroom Bulgaria inquinans Modulates Host Immunological Response and Gut Microbiota in Mice. Frontiers in Nutrition, 2020, 7, 144.	1.6	17
4149	Effects of starvation on enzyme activities and intestinal microflora composition in loach (Paramisgurnus dabryanus). Aquaculture Reports, 2020, 18, 100467.	0.7	8
4150	Supplementation with a prebiotic (polydextrose) in obese mouse pregnancy improves maternal glucose homeostasis and protects against offspring obesity. International Journal of Obesity, 2020, 44, 2382-2393.	1.6	14
4151	Both Gut Microbiota and Differentially Expressed Proteins Are Relevant to the Development of Obesity. BioMed Research International, 2020, 2020, 1-11.	0.9	5
4152	Using data science for medical decision making case: role of gut microbiome in multiple sclerosis. BMC Medical Informatics and Decision Making, 2020, 20, 262.	1.5	7
4153	The aging mouse microbiome has obesogenic characteristics. Genome Medicine, 2020, 12, 87.	3.6	29
4154	Structural basis of mammalian mucin processing by the human gut O-glycopeptidase OgpA from Akkermansia muciniphila. Nature Communications, 2020, 11, 4844.	5.8	57
4155	Factors affecting weight loss variability in obesity. Metabolism: Clinical and Experimental, 2020, 113, 154388.	1.5	50
4156	Relationship Between the Fatty Acid Profiles and Gut Bacterial Communities of the Chinese Mitten Crab (Eriocheir sinensis) From Ecologically Different Habitats. Frontiers in Microbiology, 2020, 11, 565267.	1.5	13
4158	Effects of Dietary Supplementation with κ-Selenocarrageenan on the Selenium Accumulation and Intestinal Microbiota of the Sea Cucumbers Apostichopus japonicus. Biological Trace Element Research, 2021, 199, 2753-2763.	1.9	2
4159	The gut microbiota confers the lipid-lowering effect of bitter melon (Momordica charantia L.) In high-fat diet (HFD)-Induced hyperlipidemic mice. Biomedicine and Pharmacotherapy, 2020, 131, 110667.	2.5	20
4160	Gut microbiome alterations induced by tributyltin exposure are associated with increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice. Environmental Pollution, 2020, 266, 115276.	3.7	13
4161	Association of class number, cumulative exposure, and earlier initiation of antibiotics during the first two-years of life with subsequent childhood obesity. Metabolism: Clinical and Experimental, 2020, 112, 154348.	1.5	17
4162	Effects of microbiome changes on endocrine ghrelin signaling – A systematic review. Peptides, 2020, 133, 170388.	1.2	23
4163	From obesity through gut microbiota to cardiovascular diseases: a dangerous journey. International Journal of Obesity Supplements, 2020, 10, 35-49.	12.5	40
4164	The microbiome: An emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	0.6	76

#	Article	IF	CITATIONS
4165	Impact of PepT1 deletion on microbiota composition and colitis requires multiple generations. Npj Biofilms and Microbiomes, 2020, 6, 27.	2.9	6
4166	Microbiome response to diet: focus on obesity and related diseases. Reviews in Endocrine and Metabolic Disorders, 2020, 21, 369-380.	2.6	28
4167	Fubrick tea attenuates high-fat diet induced fat deposition and metabolic disorder by regulating gut microbiota and caffeine metabolism. Food and Function, 2020, 11, 6971-6986.	2.1	47
4168	Carnitine metabolism in the human gut: characterization of the two-component carnitine monooxygenase CntAB from Acinetobacter baumannii. Journal of Biological Chemistry, 2020, 295, 13065-13078.	1.6	15
4169	The impact of feed efficiency selection on the ruminal, cecal, and fecal microbiomes of Angus steers from a commercial feedlot. Journal of Animal Science, 2020, 98, .	0.2	23
4170	Anti-Obesity Effect of <i>Lactobacillus plantarum</i> LB818 Is Associated with Regulation of Gut Microbiota in High-Fat Diet-Fed Obese Mice. Journal of Medicinal Food, 2020, 23, 750-759.	0.8	15
4171	Are you what you eat? A highly transient and preyâ€influenced gut microbiome in the grey house spider <i>Badumna longinqua</i> . Molecular Ecology, 2020, 29, 1001-1015.	2.0	39
4172	Opportunistic detection of Fusobacterium nucleatum as a marker for the early gut microbial dysbiosis. BMC Microbiology, 2020, 20, 208.	1.3	35
4173	The Impact of Childhood Growth Stunting and Post-Migration Dysbiosis on the Development of Metabolic Syndrome Among Indigenous Immigrant Mexican Women. Biological Research for Nursing, 2020, 22, 552-560.	1.0	2
4174	The Pulmonary Microbiome in Cystic Fibrosis. , 2020, , .		0
4174 4175		0.4	0
	The Pulmonary Microbiome in Cystic Fibrosis. , 2020, , . Factors Influencing Equine Gut Microbiota: Current Knowledge. Journal of Equine Veterinary Science,	0.4	
4175	The Pulmonary Microbiome in Cystic Fibrosis. , 2020, , . Factors Influencing Equine Gut Microbiota: Current Knowledge. Journal of Equine Veterinary Science, 2020, 88, 102943. Lifestyle related changes with partially hydrolyzed guar gum dietary fiber in healthy athlete individuals – A randomized, double-blind, crossover, placebo-controlled gut microbiome clinical		74
4175 4176	The Pulmonary Microbiome in Cystic Fibrosis. , 2020, , . Factors Influencing Equine Gut Microbiota: Current Knowledge. Journal of Equine Veterinary Science, 2020, 88, 102943. Lifestyle related changes with partially hydrolyzed guar gum dietary fiber in healthy athlete individuals – A randomized, double-blind, crossover, placebo-controlled gut microbiome clinical study. Journal of Functional Foods, 2020, 72, 104067. Exploiting the gut microbiota's fermentation capabilities towards disease prevention. Journal of	1.6	74 14
4175 4176 4177	 The Pulmonary Microbiome in Cystic Fibrosis. , 2020, , . Factors Influencing Equine Gut Microbiota: Current Knowledge. Journal of Equine Veterinary Science, 2020, 88, 102943. Lifestyle related changes with partially hydrolyzed guar gum dietary fiber in healthy athlete individuals – A randomized, double-blind, crossover, placebo-controlled gut microbiome clinical study. Journal of Functional Foods, 2020, 72, 104067. Exploiting the gut microbiota's fermentation capabilities towards disease prevention. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113469. Interactions Between Gut Microbiota, Host, and Herbal Medicines: A Review of New Insights Into the Pathogenesis and Treatment of Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 2020, 	1.6 1.4	74 14 3
4175417641774178	The Pulmonary Microbiome in Cystic Fibrosis. , 2020, , . Factors Influencing Equine Gut Microbiota: Current Knowledge. Journal of Equine Veterinary Science, 2020, 88, 102943. Lifestyle related changes with partially hydrolyzed guar gum dietary fiber in healthy athlete individuals – A randomized, double-blind, crossover, placebo-controlled gut microbiome clinical study. Journal of Functional Foods, 2020, 72, 104067. Exploiting the gut microbiota's fermentation capabilities towards disease prevention. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113469. Interactions Between Gut Microbiota, Host, and Herbal Medicines: A Review of New Insights Into the Pathogenesis and Treatment of Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 360. Evaluation of Changes in Gut Microbiota in Patients with Crohn's Disease after Anti-Tnfl± Treatment: Prospective Multicenter Observational Study. International Journal of Environmental Research and	1.6 1.4 1.8	74 14 3 25
4175 4176 4177 4178 4179	The Pulmonary Microbiome in Cystic Fibrosis. , 2020, , . Factors Influencing Equine Gut Microbiota: Current Knowledge. Journal of Equine Veterinary Science, 2020, 88, 102943. Lifestyle related changes with partially hydrolyzed guar gum dietary fiber in healthy athlete individuals – A randomized, double-blind, crossover, placebo-controlled gut microbiome clinical study. Journal of Functional Foods, 2020, 72, 104067. Exploiting the gut microbiota's fermentation capabilities towards disease prevention. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113469. Interactions Between Gut Microbiota, Host, and Herbal Medicines: A Review of New Insights Into the Pathogenesis and Treatment of Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 2020, 10, 360. Evaluation of Changes in Gut Microbiota in Patients with Crohn's Disease after Anti-Tnfî± Treatment: Prospective Multicenter Observational Study. International Journal of Environmental Research and Public Health, 2020, 17, 5120. A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human	1.6 1.4 1.8 1.2	74 14 3 25 7

#	Article	IF	CITATIONS
4183	Gut microbiome: Current development, challenges, and perspectives. , 2020, , 227-241.		1
4184	Proteome and microbiota analysis highlight Lactobacillus plantarum TWK10 supplementation improves energy metabolism and exercise performance in mice. Food Science and Nutrition, 2020, 8, 3525-3534.	1.5	9
4185	Microbiota Transplant in the Treatment of Obesity and Diabetes: Current and Future Perspectives. Frontiers in Microbiology, 2020, 11, 590370.	1.5	40
4186	Human Gut Microbiome-Based Knowledgebase as a Biomarker Screening Tool to Improve the Predicted Probability for Colorectal Cancer. Frontiers in Microbiology, 2020, 11, 596027.	1.5	17
4187	Tibetan Sheep Adapt to Plant Phenology in Alpine Meadows by Changing Rumen Microbial Community Structure and Function. Frontiers in Microbiology, 2020, 11, 587558.	1.5	21
4188	Molecular Mechanisms of Microbiota-Mediated Pathology in Irritable Bowel Syndrome. International Journal of Molecular Sciences, 2020, 21, 8664.	1.8	44
4189	Duodenal Metatranscriptomics to Define Human and Microbial Functional Alterations Associated with Severe Obesity: A Pilot Study. Microorganisms, 2020, 8, 1811.	1.6	13
4190	The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea. Expert Opinion on Therapeutic Targets, 2020, 24, 1263-1282.	1.5	22
4191	Dietary corn-resistant starch suppresses broiler abdominal fat deposition associated with the reduced cecal Firmicutes. Poultry Science, 2020, 99, 5827-5837.	1.5	23
4192	In vivo Microbiome Profiling of the Luminal and Mucosal Surface of the Duodenum Using a Cannulated Yearling Bovine Model. Frontiers in Veterinary Science, 2020, 7, 601874.	0.9	2
4193	Anti-Adipogenic Effect of Theabrownin Is Mediated by Bile Acid Alternative Synthesis via Gut Microbiota Remodeling. Metabolites, 2020, 10, 475.	1.3	31
4194	Anti-Quorum Sensing Activity of Stevia Extract, Stevioside, Rebaudioside A and Their Aglycon Steviol. Molecules, 2020, 25, 5480.	1.7	10
4195	High Fat-High Fructose Diet-Induced Changes in the Gut Microbiota Associated with Dyslipidemia in Syrian Hamsters. Nutrients, 2020, 12, 3557.	1.7	32
4196	Does geographical variation confound the relationship between host factors and the human gut microbiota: a population-based study in China. BMJ Open, 2020, 10, e038163.	0.8	20
4197	Infant formula with cow's milk fat and prebiotics affects intestinal flora, but not the incidence of infections during infancy in a double-blind randomized controlled trial. Molecular and Cellular Pediatrics, 2020, 7, 6.	1.0	8
4198	Dietary Ginsenoside T19 Supplementation Regulates Glucose and Lipid Metabolism via AMPK and PI3K Pathways and Its Effect on Intestinal Microbiota. Journal of Agricultural and Food Chemistry, 2020, 68, 14452-14462.	2.4	26
4199	Effects of dietary fibre and protein content on intestinal fibre degradation, short-chain fatty acid and microbiota composition in a high-fat fructose-rich diet induced obese GA¶ttingen Minipig model. Food and Function, 2020, 11, 10758-10773.	2.1	11
4200	Interactions Between Rumen Microbes, VFAs, and Host Genes Regulate Nutrient Absorption and Epithelial Barrier Function During Cold Season Nutritional Stress in Tibetan Sheep. Frontiers in Microbiology, 2020, 11, 593062.	1.5	30

#	Article	IF	CITATIONS
4201	Microbiota and Obesity: Where Are We Now?. Biology, 2020, 9, 415.	1.3	45
4202	Integrative and quantitative bioenergetics: Design of a study to assess the impact of the gut microbiome on host energy balance. Contemporary Clinical Trials Communications, 2020, 19, 100646.	0.5	15
4203	Fructose-Induced Intestinal Microbiota Shift Following Two Types of Short-Term High-Fructose Dietary Phases. Nutrients, 2020, 12, 3444.	1.7	36
4204	Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome. Science Translational Medicine, 2020, 12, .	5.8	122
4205	Dynamic Changes in the Gut Microbiome at the Acute Stage of Ischemic Stroke in a Pig Model. Frontiers in Neuroscience, 2020, 14, 587986.	1.4	29
4206	Distinct gut microbiotas between southern elephant seals and Weddell seals of Antarctica. Journal of Microbiology, 2020, 58, 1018-1026.	1.3	10
4207	Probiotics supplementation and insulin resistance: a systematic review. Diabetology and Metabolic Syndrome, 2020, 12, 98.	1.2	35
4208	The role of the gut microbiota and microbial metabolites in neuroinflammation. European Journal of Immunology, 2020, 50, 1863-1870.	1.6	32
4209	<p>Randomized Clinical Trial Examining the Impact of Lactobacillus rhamnosus GG Probiotic Supplementation on Cognitive Functioning in Middle-aged and Older Adults</p> . Neuropsychiatric Disease and Treatment, 2020, Volume 16, 2765-2777.	1.0	33
4210	Kefiran fermentation by human faecal microbiota: Organic acids production and in vitro biological activity. Bioactive Carbohydrates and Dietary Fibre, 2020, 24, 100229.	1.5	7
4211	Modulation of the intestinal microbiota of broilers supplemented with monensin or functional oils in response to challenge by Eimeria spp PLoS ONE, 2020, 15, e0237118.	1.1	16
4212	Microbiota Changes Due to Grape Seed Extract Diet Improved Intestinal Homeostasis and Decreased Fatness in Parental Broiler Hens. Microorganisms, 2020, 8, 1141.	1.6	8
4213	Plasma Metabolites Related to Peripheral and Hepatic Insulin Sensitivity Are Not Directly Linked to Gut Microbiota Composition. Nutrients, 2020, 12, 2308.	1.7	6
4214	Raw milk and fecal microbiota of commercial Alpine dairy cows varies with herd, fat content and diet. PLoS ONE, 2020, 15, e0237262.	1.1	13
4215	Microbiome and pediatric obesity, malnutrition, and nutrition. , 2020, , 157-181.		5
4216	Gut microbiota modulation as a promising therapy with metformin in rats with non-alcoholic steatohepatitis: Role of LPS/TLR4 and autophagy pathways. European Journal of Pharmacology, 2020, 887, 173461.	1.7	23
4217	Ageâ€related differences in gut microbial community composition of captive spotted seals (<scp><i>Phoca largha</i></scp>). Marine Mammal Science, 2020, 36, 1231-1240.	0.9	13
4218	Efficacy of Dietary Supplements to Reduce Liver Fat. Nutrients, 2020, 12, 2302.	1.7	6

#	Article	IF	CITATIONS
4219	The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients, 2020, 12, 2340.	1.7	90
4220	Gut microbiota health closely associates with PCB153-derived risk of host diseases. Ecotoxicology and Environmental Safety, 2020, 203, 111041.	2.9	6
4221	Interplay between engineered nanomaterials and microbiota. Environmental Science: Nano, 2020, 7, 2454-2485.	2.2	21
4222	Enhanced biodiversity of gut flora and feed efficiency in pond cultured tilapia under reduced frequency feeding strategies. PLoS ONE, 2020, 15, e0236100.	1.1	16
4223	Microbial Diversity and Composition Is Associated with Patient-Reported Toxicity during Chemoradiation Therapy for Cervical Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 107, 163-171.	0.4	46
4224	Polycystic Ovary Syndrome (PCOS). , 2020, , 1694-1706.e7.		3
4225	Positive metabolic effects of selected probiotic bacteria on dietâ€induced obesity in mice are associated with improvement of dysbiotic gut microbiota. FASEB Journal, 2020, 34, 12289-12307.	0.2	24
4226	Modulation of the Gut Microbiota by Olive Oil Phenolic Compounds: Implications for Lipid Metabolism, Immune System, and Obesity. Nutrients, 2020, 12, 2200.	1.7	48
4227	Effect of exposure to gaseous hydrogen sulphide on cecal microbial diversity of weaning pigs. Veterinary Medicine and Science, 2021, 7, 424.	0.6	2
4228	Implications of Error-Prone Long-Read Whole-Genome Shotgun Sequencing on Characterizing Reference Microbiomes. IScience, 2020, 23, 101223.	1.9	10
4229	A Distinct Contractile Injection System Gene Cluster Found in a Majority of Healthy Adult Human Microbiomes. MSystems, 2020, 5, .	1.7	8
4230	Advances in the Involvement of Gut Microbiota in Pathophysiology of NAFLD. Frontiers in Medicine, 2020, 7, 361.	1.2	47
4231	The Effects of Urbanization on the Infant Gut Microbiota and Health Outcomes. Frontiers in Pediatrics, 2020, 8, 408.	0.9	10
4232	Long-Term Consumption of 2- <i>O</i> -β- <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -ascorbic Acid from the Fruits of <i>Lycium barbarum</i> Modulates Gut Microbiota in C57BL/6 Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 8863-8874.	2.4	18
4233	FengLiao affects gut microbiota and the expression levels of Na+/H+ exchangers, aquaporins and acute phase proteinsÂin mice with castor oil-induced diarrhea. PLoS ONE, 2020, 15, e0236511.	1.1	5
4234	Usefulness of Machine Learning-Based Gut Microbiome Analysis for Identifying Patients with Irritable Bowels Syndrome. Journal of Clinical Medicine, 2020, 9, 2403.	1.0	34
4235	Bacteriocin PJ4 from probiotic lactobacillus reduced adipokine and inflammasome in high fat diet induced obesity. 3 Biotech, 2020, 10, 355.	1.1	17
4236	The role of gut microbiome in chemical-induced metabolic and toxicological murine disease models. Life Sciences, 2020, 258, 118172.	2.0	21

#	Article	IF	CITATIONS
4237	Modification of fecal microbiota as a mediator of effective weight loss and metabolic benefits following bariatric surgery. Expert Review of Endocrinology and Metabolism, 2020, 15, 363-373.	1.2	19
4238	Neohesperidin attenuates obesity by altering the composition of the gut microbiota in highâ€fat dietâ€fed mice. FASEB Journal, 2020, 34, 12053-12071.	0.2	46
4239	Gut Microbiota during Dietary Restrictions: New Insights in Non-Communicable Diseases. Microorganisms, 2020, 8, 1140.	1.6	35
4240	Modeling host-microbiome interactions for the prediction of meat quality and carcass composition traits in swine. Genetics Selection Evolution, 2020, 52, 41.	1.2	14
4241	<p>Modulation of Chronic Inflammation by Quercetin: The Beneficial Effects on Obesity</p> . Journal of Inflammation Research, 2020, Volume 13, 421-431.	1.6	73
4242	Effects of Maresin 1 (MaR1) on Colonic Inflammation and Gut Dysbiosis in Diet-Induced Obese Mice. Microorganisms, 2020, 8, 1156.	1.6	14
4243	A non-pharmacological therapeutic approach in the gut triggers distal metabolic rewiring capable of ameliorating diet-induced dysfunctions encompassed by metabolic syndrome. Scientific Reports, 2020, 10, 12915.	1.6	7
4244	Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity. Carbohydrate Polymers, 2020, 248, 116780.	5.1	39
4245	Benzo[a]pyrene induces microbiome dysbiosis and inflammation in the intestinal tracts of western mosquitofish (Gambusia affinis) and zebrafish (Danio rerio). Fish and Shellfish Immunology, 2020, 105, 24-34.	1.6	15
4246	Liver disease. , 2020, , 483-502.		1
4247	Can Dietary Fatty Acids Affect the COVID-19 Infection Outcome in Vulnerable Populations?. MBio, 2020, 11, .	1.8	13
4248	Probiotics in Medicine: A Long Debate. Frontiers in Immunology, 2020, 11, 2192.	2.2	137
4249	An ambient temperature collection and stabilization strategy for canine microbiota studies. Scientific Reports, 2020, 10, 13383.	1.6	10
4250	Short-Chain Fatty Acid Production by Gut Microbiota from Children with Obesity Differs According to Prebiotic Choice and Bacterial Community Composition. MBio, 2020, 11, .	1.8	49
4251	Vitamin D Supplementation in Laboratory-Bred Mice: An In Vivo Assay on Gut Microbiome and Body Weight. Microbiology Insights, 2020, 13, 117863612094529.	0.9	2
4252	Evolving Technologies in Gastrointestinal Microbiome Era and Their Potential Clinical Applications. Journal of Clinical Medicine, 2020, 9, 2565.	1.0	7
4253	Targeting gut barrier dysfunction with phytotherapies: Effective strategy against chronic diseases. Pharmacological Research, 2020, 161, 105135.	3.1	43
4254	Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 2020, 11, 571731.	2.2	281

ARTICLE IF CITATIONS The Endogenous Alterations of the Gut Microbiota and Feces Metabolites Alleviate Oxidative Damage 4255 1.5 6 in the Brain of LanCL1 Knockout Mice. Frontiers in Microbiology, 2020, 11, 557342. Differential Responses to Dietary Protein and Carbohydrate Ratio on Gut Microbiome in Obese vs. Lean 4256 1.5 Cats. Frontiers in Microbiology, 2020, 11, 591462. The Influence of Microbial Metabolites in the Gastrointestinal Microenvironment on Anticancer 4257 3 Immunity., 2020,,. Canola meal in nursery pig diets: growth performance and gut health. Journal of Animal Science, 2020, 4258 0.2 98,. Effects of High-Fat Diet at Two Energetic Levels on Fecal Microbiota, Colonic Barrier, and Metabolic 4259 0.9 16 Parameters in Dogs. Frontiers in Veterinary Science, 2020, 7, 566282. RNMFMDA: A Microbe-Disease Association Identification Method Based on Reliable Negative Sample Selection and Logistic Matrix Factorization With Neighborhood Regularization. Frontiers in 1.5 Microbiology, 2020, 11, 592430. Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington's disease. 4261 1.6 59 Scientific Reports, 2020, 10, 18270. A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient 4262 1.7 Difference. Nutrients, 2020, 12, 3197. A systematic review of the effect of dietary pulses on microbial populations inhabiting the human gut. 4263 1.0 17 Beneficial Microbes, 2020, 11, 457-468. <i>Helicobacter pylori</i> infection and eradication: Exploring their impacts on the gastrointestinal 4264 1.6 microbiota. Helicobacter, 2020, 25, e12754. Treadmill exercise has minimal impact on obesogenic diet-related gut microbiome changes but alters 4265 1.3 9 adipose and hypothalamic gene expression in rats. Nutrition and Metabolism, 2020, 17, 71. Genetic and epigenetic perspective of microbiota. Applied Microbiology and Biotechnology, 2020, 104, 8221-8229. Alterations of the Human Gut Microbiome in Chronic Kidney Disease. Advanced Science, 2020, 7, 4267 5.6 82 2001936. Intestinal microbial metabolites in human metabolism and type 2 diabetes. Diabetologia, 2020, 63, 4268 56 2533-2547. Facility-dependent metabolic phenotype and gut bacterial composition in CD-1 mice from a single 4269 1.1 4 vendor: A brief report. PLoS ONE, 2020, 15, e0238893. The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic 4270 1.8 and Therapeutic Significance. International Journal of Molecular Sciences, 2020, 21, 6866. 16S rRNA Sequencing and Metagenomics Study of Gut Microbiota: Implications of BDB on Type 2 4271 2.27 Diabetes Mellitus. Marine Drugs, 2020, 18, 469. Probiotics protect against gut dysbiosis associated decline in learning and memory. Journal of 4272 1.1 Neuroimmunology, 2020, 348, 577390.

#	Article	IF	CITATIONS
4273	Multiple omics analysis reveals that high fiber diets promote gluconeogenesis and inhibit glycolysis in muscle. BMC Genomics, 2020, 21, 660.	1.2	10
4274	Associations of the intestinal microbiome with the complement system in neovascular age-related macular degeneration. Npj Genomic Medicine, 2020, 5, 34.	1.7	44
4275	A Randomized Controlled Trial of Teat-Sealant and Antibiotic Dry-Cow Treatments for Mastitis Prevention Shows Similar Effect on the Healthy Milk Microbiome. Frontiers in Veterinary Science, 2020, 7, 581.	0.9	15
4276	The Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus LA-5 and Bifidobacterium Lactis BB-12 on Selected Anthropometric Parameters in Obese Individuals on an Energy-Restricted Diet: A Randomized, Controlled Trial. Applied Sciences (Switzerland), 2020, 10, 5830.	1.3	10
4277	Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. Journal of Clinical Medicine, 2020, 9, 2648.	1.0	93
4278	Association of the Gut Microbiota with Weight-Loss Response within a Retail Weight-Management Program. Microorganisms, 2020, 8, 1246.	1.6	19
4279	Gut microbiota: a perspective of precision medicine in endocrine disorders. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1827-1834.	0.8	11
4280	Drug Delivery System in the Treatment of Diabetes Mellitus. Frontiers in Bioengineering and Biotechnology, 2020, 8, 880.	2.0	41
4281	Fecal Metabolomics Insights of Agavins Intake in Overweight Mice. , 0, , .		1
4282	Adipose Tissue Inflammation Is Directly Linked to Obesity-Induced Insulin Resistance, while Gut Dysbiosis and Mitochondrial Dysfunction Are Not Required. Function, 2020, 1, zqaa013.	1.1	12
4283	High-throughput sequencing analysis of differences in intestinal microflora between ulcerative colitis patients with different glucocorticoid response types. Genes and Genomics, 2020, 42, 1197-1206.	0.5	5
4284	Association of Body Mass Index with Fecal Microbial Diversity and Metabolites in the Northern Finland Birth Cohort. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2289-2299.	1.1	20
4286	Altered Gut Microbiota and Shift in <i>Bacteroidetes</i> between Young Obese and Normal-Weight Korean Children: A Cross-Sectional Observational Study. BioMed Research International, 2020, 2020, 1-19.	0.9	22
4287	Potential for Novel Biomarkers in Diabetes-Associated Chronic Kidney Disease: Epigenome, Metabolome, and Gut Microbiome. Biomedicines, 2020, 8, 341.	1.4	5
4288	Faecal Microbiota of Dogs Offered a Vegetarian Diet with or without the Supplementation of Feather Meal and either Cornmeal, Rye or Fermented Rye: A Preliminary Study. Microorganisms, 2020, 8, 1363.	1.6	6
4289	The impact of anthelmintic treatment on gut bacterial and fungal communities in diagnosed parasite-free sika deer Cervus nippon. Applied Microbiology and Biotechnology, 2020, 104, 9239-9250.	1.7	11
4290	Influence of a cholesterol-lowering strain <i>Lactobacillus plantarum</i> LP3 isolated from traditional fermented yak milk on gut bacterial microbiota and metabolome of rats fed with a high-fat diet. Food and Function, 2020, 11, 8342-8353.	2.1	18
4291	Perturbations of gut microbiota in gestational diabetes mellitus patients induce hyperglycemia in germ-free mice. Journal of Developmental Origins of Health and Disease, 2020, 11, 580-588.	0.7	19

#	Article	IF	CITATIONS
4292	Bacteria-related changes in host DNA methylation and the risk for CRC. Gut Microbes, 2020, 12, 1800898.	4.3	9
4293	Microbiota-Mitochondria Inter-Talk: A Potential Therapeutic Strategy in Obesity and Type 2 Diabetes. Antioxidants, 2020, 9, 848.	2.2	27
4294	Effects of Smoking and Smoking Cessation on the Intestinal Microbiota. Journal of Clinical Medicine, 2020, 9, 2963.	1.0	25
4295	Metagenomic analysis of the gut microbiome in atherosclerosis patients identify crossâ€cohort microbial signatures and potential therapeutic target. FASEB Journal, 2020, 34, 14166-14181.	0.2	44
4296	The Effects of Metformin on the Gut Microbiota of Patients with Type 2 Diabetes: A Two-Center, Quasi-Experimental Study. Life, 2020, 10, 195.	1.1	20
4297	Therapeutic Targeting of Myeloperoxidase Attenuates NASH in Mice. Hepatology Communications, 2020, 4, 1441-1458.	2.0	23
4298	Delineating effect of corn microRNAs and matrix, ingested as whole food, on gut microbiota in a rodent model. Food Science and Nutrition, 2020, 8, 4066-4077.	1.5	6
4299	Impact of a Gastrointestinal Stable Probiotic Supplement <i>Bacillus coagulans</i> LBSC on Human Gut Microbiome Modulation. Journal of Dietary Supplements, 2021, 18, 577-596.	1.4	22
4300	Gut Microbiota Diversity in Lean Athletes Is Associated with Positive Energy Balance. Annals of Nutrition and Metabolism, 2020, 76, 242-250.	1.0	3
4301	Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Experimental and Molecular Medicine, 2020, 52, 1383-1396.	3.2	87
4302	Arsenic Accumulation of Realgar Altered by Disruption of Gut Microbiota in Mice. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-7.	0.5	3
4303	Obesity Measures and Dietary Parameters as Predictors of Gut Microbiota Phyla in Healthy Individuals. Nutrients, 2020, 12, 2695.	1.7	16
4304	Gut Microbiota between Environment and Genetic Background in Familial Mediterranean Fever (FMF). Genes, 2020, 11, 1041.	1.0	16
4305	Predictive values of colon microbiota in the treatment response to colorectal cancer. Pharmacogenomics, 2020, 21, 1045-1059.	0.6	4
4306	Gut Microbiota: A Key Factor in the Host Health Effects Induced by Pesticide Exposure?. Journal of Agricultural and Food Chemistry, 2020, 68, 10517-10531.	2.4	42
4307	S100A8 and S100A9 Are Important for Postnatal Development of Gut Microbiota and Immune System in Mice and Infants. Gastroenterology, 2020, 159, 2130-2145.e5.	0.6	64
4308	Comparing the Bacterial Community in the Gastrointestinal Tracts Between Growth-Retarded and Normal Yaks on the Qinghai–Tibetan Plateau. Frontiers in Microbiology, 2020, 11, 600516.	1.5	24
4309	Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding. Scientific Reports, 2020, 10, 19476.	1.6	25

#	Article	IF	CITATIONS
4310	Influence of Lab Adapted Natural Diet and Microbiota on Life History and Metabolic Phenotype of Drosophila melanogaster. Microorganisms, 2020, 8, 1972.	1.6	2
4311	Six-Week Exercise Training With Dietary Restriction Improves Central Hemodynamics Associated With Altered Gut Microbiota in Adolescents With Obesity. Frontiers in Endocrinology, 2020, 11, 569085.	1.5	21
4312	Modulation of the Gut Microbiota by Shen-Yan-Fang-Shuai Formula Improves Obesity Induced by High-Fat Diets. Frontiers in Microbiology, 2020, 11, 564376.	1.5	3
4313	Short-Term Lincomycin Exposure Depletion of Murine Microbiota Affects Short-Chain Fatty Acids and Intestinal Morphology and Immunity. Antibiotics, 2020, 9, 907.	1.5	13
4314	Eukaryotic and Prokaryotic Microbiota Interactions. Microorganisms, 2020, 8, 2018.	1.6	11
4315	The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals. Scientific Reports, 2020, 10, 21641.	1.6	100
4316	Bacillus coagulans BC198 and Lactobacillus paracasei S38 in combination reduce body fat accumulation and modulate gut microbiota. CYTA - Journal of Food, 2020, 18, 764-775.	0.9	4
4317	Anti-Obesity Effect of Dictyophora indusiata Mushroom Polysaccharide (DIP) in High Fat Diet-Induced Obesity via Regulating Inflammatory Cascades and Intestinal Microbiome. Frontiers in Endocrinology, 2020, 11, 558874.	1.5	32
4318	Intestinal Population in Host with Metabolic Syndrome during Administration of Chitosan and Its Derivatives. Molecules, 2020, 25, 5857.	1.7	13
4319	Alterations in the Duodenal Fluid Microbiome of Patients With Pancreatic Cancer. Clinical Gastroenterology and Hepatology, 2022, 20, e196-e227.	2.4	41
4320	Metagenomic Systems Biology. , 2020, , .		0
4321	Culture-Independent Omics-Techniques for Microbiome-Based Molecular Therapeutics Against Infectious Diseases. , 2020, , 95-114.		0
4322	E. coli NF73-1 Isolated From NASH Patients Aggravates NAFLD in Mice by Translocating Into the Liver and Stimulating M1 Polarization. Frontiers in Cellular and Infection Microbiology, 2020, 10, 535940.	1.8	16
4323	Role of Herbs and Medicinal Spices as Modulators of Gut Microbiota. , 0, , .		4
4324	Obesity and immune status in children. Current Opinion in Pediatrics, 2020, 32, 805-815.	1.0	33
4325	Black garlic melanoidins prevent obesity, reduce serum LPS levels and modulate the gut microbiota composition in high-fat diet-induced obese C57BL/6J mice. Food and Function, 2020, 11, 9585-9598.	2.1	37
4326	Lactic Acid Bacteria: Food Safety and Human Health Applications. Dairy, 2020, 1, 202-232.	0.7	121
4327	Expression and Localization of Paneth Cells and Their α-Defensins in the Small Intestine of Adult Mouse. Frontiers in Immunology, 2020, 11, 570296.	2.2	19

#	Article	IF	CITATIONS
4328	Chicory root flour – A functional food with potential multiple health benefits evaluated in a mice model. Journal of Functional Foods, 2020, 74, 104174.	1.6	9
4329	Dysbiosis in the Gut Microbiota of Adolescents with Obesity. , 2020, , .		0
4330	The gut microbiota and its metabolites in mice are affected by high heat treatment of Bactrian camel milk. Journal of Dairy Science, 2020, 103, 11178-11189.	1.4	5
4331	Microbial Colonization From the Fetus to Early Childhood—A Comprehensive Review. Frontiers in Cellular and Infection Microbiology, 2020, 10, 573735.	1.8	42
4332	Impact of the Post-Transplant Period and Lifestyle Diseases on Human Gut Microbiota in Kidney Graft Recipients. Microorganisms, 2020, 8, 1724.	1.6	16
4333	The microbiota-gut-brain axis: Focus on the fundamental communication pathways. Progress in Molecular Biology and Translational Science, 2020, 176, 43-110.	0.9	35
4334	Gut microbiota and metabolic health among overweight and obese individuals. Scientific Reports, 2020, 10, 19417.	1.6	75
4335	Brown-Algae Polysaccharides as Active Constituents against Nonalcoholic Fatty Liver Disease. Planta Medica, 2022, 88, 9-19.	0.7	15
4336	Inhibitory Effects of Apigenin on Tumor Carcinogenesis by Altering the Gut Microbiota. Mediators of Inflammation, 2020, 2020, 1-9.	1.4	18
4337	The Microbiota and Gut-Related Disorders: Insights from Animal Models. Cells, 2020, 9, 2401.	1.8	18
4338	Monitoring the Diversity and Metabolic Shift of Gut Microbes during Green Tea Feeding in an In Vitro Human Colonic Model. Molecules, 2020, 25, 5101.	1.7	14
4339	Fish Oil, Cannabidiol and the Gut Microbiota: An Investigation in a Murine Model of Colitis. Frontiers in Pharmacology, 2020, 11, 585096.	1.6	36
4340	Ingestion of Helianthus tuberosus at Breakfast Rather Than at Dinner is More Effective for Suppressing Glucose Levels and Improving the Intestinal Microbiota in Older Adults. Nutrients, 2020, 12, 3035.	1.7	9
4341	Why We Never Eat Alone: The Overlooked Role of Microbes and Partners in Obesity Debates in Bioethics. Journal of Bioethical Inquiry, 2020, 17, 435-448.	0.9	1
4342	Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. FEMS Microbiology Ecology, 2020, 96, .	1.3	22
4343	Thermo-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure of obese mice. Journal of Experimental Biology, 2020, 223, .	0.8	14
4344	Microbial Alterations and Risk Factors of Breast Cancer: Connections and Mechanistic Insights. Cells, 2020, 9, 1091.	1.8	38
4345	Odd-numbered agaro-oligosaccharides alleviate type 2 diabetes mellitus and related colonic microbiota dysbiosis in mice. Carbohydrate Polymers, 2020, 240, 116261.	5.1	41

#	Article	IF	CITATIONS
4346	Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2020, 92, 114-134.	1.5	57
4347	The gut microbiome and frailty. Translational Research, 2020, 221, 23-43.	2.2	22
4348	Absence of neurotensin attenuates intestinal dysbiosis and inflammation by maintaining Mmp7/αâ€defensin axis in dietâ€induced obese mice. FASEB Journal, 2020, 34, 8596-8610.	0.2	10
4349	Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surgery and Nutrition, 2020, 9, 152-169.	0.7	55
4350	Health impact of the Anthropocene: the complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Global Health, Epidemiology and Genomics, 2020, 5, e2.	0.2	17
4351	It's No Has Bean: A Review of the Effects of White Kidney Bean Extract on Body Composition and Metabolic Health. Nutrients, 2020, 12, 1398.	1.7	24
4352	The gut microbiota and Bergmann's rule in wild house mice. Molecular Ecology, 2020, 29, 2300-2311.	2.0	28
4353	Different Sources of High Fat Diet Induces Marked Changes in Gut Microbiota of Nursery Pigs. Frontiers in Microbiology, 2020, 11, 859.	1.5	15
4354	Effect of chitooligosaccharides on human gut microbiota and antiglycation. Carbohydrate Polymers, 2020, 242, 116413.	5.1	49
4355	Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiology, 2020, 20, 120.	1.3	152
4356	Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 2020, 159, 944-955.e8.	0.6	1,072
4357	The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?. Nutrients, 2020, 12, 1474.	1.7	997
4358	Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food and Nutrition Research, 2020, 64, .	1.2	50
4359	Lactobacillus-Derived Bioactive Metabolites for the Regulation of Periodontal Health: Evidences to Clinical Setting. Molecules, 2020, 25, 2088.	1.7	7
4360	Exercise Oncology. , 2020, , .		8
4361	Bacillus coagulans (PROBACI) in treating constipation-dominant functional bowel disorders. Medicine (United States), 2020, 99, e20098.	0.4	4
4362	Biocompatible modified water as a non-pharmaceutical approach to prevent metabolic syndrome features in obesogenic diet-fed mice. Food and Chemical Toxicology, 2020, 141, 111403.	1.8	0
4363	Oral administration of <i>Lactobacillus fermentum</i> CRL1446 improves biomarkers of metabolic syndrome in mice fed a high-fat diet supplemented with wheat bran. Food and Function, 2020, 11, 3879-3894.	2.1	23

#	Article	IF	CITATIONS
4364	The Emerging Role of Gut Dysbiosis in Cardio-metabolic Risk Factors for Heart Failure. Current Hypertension Reports, 2020, 22, 38.	1.5	19
4365	Understanding the interplay between food structure, intestinal bacterial fermentation and appetite control. Proceedings of the Nutrition Society, 2020, 79, 514-530.	0.4	22
4366	Association Between Maternal Obesity and Group B Streptococcus Colonization in a National U.S. Cohort. Journal of Women's Health, 2020, 29, 1507-1512.	1.5	7
4367	The Impact of Environmental Chemicals on the Gut Microbiome. Toxicological Sciences, 2020, 176, 253-284.	1.4	90
4368	Gut microbiota in early pregnancy among women with Hyperglycaemia vs. Normal blood glucose. BMC Pregnancy and Childbirth, 2020, 20, 284.	0.9	19
4369	Multi-proxy analyses of a mid-15th century Middle Iron Age Bantu-speaker palaeo-faecal specimen elucidates the configuration of the â€~ancestral' sub-Saharan African intestinal microbiome. Microbiome, 2020, 8, 62.	4.9	14
4370	Milk fermented with <i>Lactococcus lactis</i> KLDS4.0325 alleviates folate status in deficient mice. Food and Function, 2020, 11, 4571-4581.	2.1	7
4371	Potential Probiotic or Trigger of Gut Inflammation – The Janus-Faced Nature of Cannabidiol-Rich Cannabis Extract. Journal of Dietary Supplements, 2020, 17, 543-560.	1.4	25
4372	Fecal Viral Community Responses to High-Fat Diet in Mice. MSphere, 2020, 5, .	1.3	33
4373	The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 2020, 17, 24.	1.7	157
4374	Long-term oxytetracycline exposure potentially alters brain thyroid hormone and serotonin homeostasis in zebrafish. Journal of Hazardous Materials, 2020, 399, 123061.	6.5	34
4375	The Targeted Impact of Flavones on Obesity-Induced Inflammation and the Potential Synergistic Role in Cancer and the Gut Microbiota. Molecules, 2020, 25, 2477.	1.7	22
4376	<i>Trans</i> -fatty acids alter the gut microbiota in high-fat-diet-induced obese rats. British Journal of Nutrition, 2020, 124, 1251-1263.	1.2	19
4377	A multiomic analysis of in situ coral–turf algal interactions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13588-13595.	3.3	48
4378	Shortâ€ŧerm highâ€intensity interval training exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Experimental Physiology, 2020, 105, 1268-1279.	0.9	30
4379	Unveiling the presence of epigenetic mark by Lactobacillus supplementation in high-fat diet-induced metabolic disorder in Sprague-Dawley rats. Journal of Nutritional Biochemistry, 2020, 84, 108442.	1.9	10
4380	Dissecting genome-wide studies for microbiome-related metabolic diseases. Human Molecular Genetics, 2020, 29, R73-R80.	1.4	1
4381	New Insights into Molecular Links Between Microbiota and Gastrointestinal Cancers: A Literature Review. International Journal of Molecular Sciences, 2020, 21, 3212.	1.8	23

#	Article	IF	CITATIONS
4382	The composition and richness of the gut microbiota differentiate the top Polish endurance athletes from sedentary controls. Gut Microbes, 2020, 11, 1374-1384.	4.3	48
4383	Esophageal microbiome signature in patients with Barrett's esophagus and esophageal adenocarcinoma. PLoS ONE, 2020, 15, e0231789.	1.1	58
4384	Predicting Microbe-Disease Association by Learning Graph Representations and Rule-Based Inference on the Heterogeneous Network. Frontiers in Microbiology, 2020, 11, 579.	1.5	19
4385	Curdlan Prevents the Cognitive Deficits Induced by a High-Fat Diet in Mice via the Gut-Brain Axis. Frontiers in Neuroscience, 2020, 14, 384.	1.4	25
4386	Unique Gut Microbiome Signatures Depict Diet-Versus Genetically Induced Obesity in Mice. International Journal of Molecular Sciences, 2020, 21, 3434.	1.8	16
4387	Long-Term Coffee Consumption is Associated with Fecal Microbial Composition in Humans. Nutrients, 2020, 12, 1287.	1.7	53
4388	Long-term mildronate treatment increased Proteobacteria level in gut microbiome, and caused behavioral deviations and transcriptome change in liver, heart and brain of healthy mice. Toxicology and Applied Pharmacology, 2020, 398, 115031.	1.3	5
4389	Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes, 2020, 11, 1324-1347.	4.3	43
4390	Intake of sucrose affects gut dysbiosis in patients with typeÂ2 diabetes. Journal of Diabetes Investigation, 2020, 11, 1623-1634.	1.1	35
4391	Nanoplastics impair the intestinal health of the juvenile large yellow croaker Larimichthys crocea. Journal of Hazardous Materials, 2020, 397, 122773.	6.5	107
4392	Differences in airway microbiome and metabolome of single lung transplant recipients. Respiratory Research, 2020, 21, 104.	1.4	19
4393	Modulation of the human gut microbiota by phenolics and phenolic fiberâ€rich foods. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1268-1298.	5.9	111
4394	Resistant dextrin improves high-fat-high-fructose diet induced insulin resistance. Nutrition and Metabolism, 2020, 17, 36.	1.3	16
4395	Gut Microbiota Metabolism and Interaction with Food Components. International Journal of Molecular Sciences, 2020, 21, 3688.	1.8	88
4396	An ethical investigation into the microbiome: the intersection of agriculture, genetics, and the obesity epidemic. Gut Microbes, 2020, 12, 1760712.	4.3	6
4397	Variations of Gut Microbiome Profile Under Different Storage Conditions and Preservation Periods: A Multi-Dimensional Evaluation. Frontiers in Microbiology, 2020, 11, 972.	1.5	21
4398	Marsupial Gut Microbiome. Frontiers in Microbiology, 2020, 11, 1058.	1.5	12
4399	Tangshen formula modulates gut Microbiota and reduces gut-derived toxins in diabetic nephropathy rats. Biomedicine and Pharmacotherapy, 2020, 129, 110325.	2.5	34

#	Article	IF	CITATIONS
4400	Tetrahydrocurcumin ameliorates diabetes profiles of db/db mice by altering the composition of gut microbiota and up-regulating the expression of GLP-1 in the pancreas. Fìtoterapìâ, 2020, 146, 104665.	1.1	24
4401	<i>Lactobacillus casei</i> improves depression-like behavior in chronic unpredictable mild stress-induced rats by the BDNF-TrkB signal pathway and the intestinal microbiota. Food and Function, 2020, 11, 6148-6157.	2.1	60
4402	Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nature Biotechnology, 2020, 38, 1288-1297.	9.4	70
4403	The Role of Nutri(epi)genomics in Achieving the Body's Full Potential in Physical Activity. Antioxidants, 2020, 9, 498.	2.2	10
4404	Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. International Journal of Molecular Sciences, 2020, 21, 4093.	1.8	117
4405	Developmental Origins of Health and Disease: Impact of environmental dust exposure in modulating microbiome and its association with non-communicable diseases. Journal of Developmental Origins of Health and Disease, 2020, 11, 545-556.	0.7	7
4406	Health beneficial effects of resistant starch on diabetes and obesity <i>via</i> regulation of gut microbiota: a review. Food and Function, 2020, 11, 5749-5767.	2.1	45
4407	Obesity as a risk factor for COVID-19: an overview. Critical Reviews in Food Science and Nutrition, 2021, 61, 2262-2276.	5.4	102
4408	Gut Microbiota Profiles of Treated Metabolic Syndrome Patients and their Relationship with Metabolic Health. Scientific Reports, 2020, 10, 10085.	1.6	27
4409	Mannose: Good player and assister in pharmacotherapy. Biomedicine and Pharmacotherapy, 2020, 129, 110420.	2.5	35
4410	Abundance of the species Clostridium butyricum in the gut microbiota contributes to differences in obesity phenotype in outbred Sprague-Dawley CD rats. Nutrition, 2020, 78, 110893.	1.1	15
4411	Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Particle and Fibre Toxicology, 2020, 17, 19.	2.8	93
4412	Whole brain radiotherapy induces cognitive dysfunction in mice: key role of gut microbiota. Psychopharmacology, 2020, 237, 2089-2101.	1.5	12
4413	Comparative assessment of faecal microbial composition and metabonome of swine, farmers and human control. Scientific Reports, 2020, 10, 8997.	1.6	14
4414	16S rRNA sequencing analysis of the correlation between the intestinal microbiota and body-mass of grass carp (Ctenopharyngodon idella). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 35, 100699.	0.4	8
4415	Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annual Review of Nutrition, 2020, 40, 25-49.	4.3	31
4416	Identification of key bacterial populations affecting early embryonic development in cattle uterus. Animal Science Journal, 2020, 91, e13374.	0.6	0
4417	The effect of ultra-processed very low-energy diets on gut microbiota and metabolic outcomes in individuals with obesity: A systematic literature review. Obesity Research and Clinical Practice, 2020, 14, 197-204	0.8	26

#	Article	IF	CITATIONS
4418	Revealing links between gut microbiome and its fungal community in Type 2 Diabetes Mellitus among Emirati subjects: A pilot study. Scientific Reports, 2020, 10, 9624.	1.6	31
4419	Depression and Obesity: Analysis of Common Biomarkers. Diseases (Basel, Switzerland), 2020, 8, 23.	1.0	47
4420	An Insight into the Changing Scenario of Gut Microbiome during Type 2 Diabetes. , 0, , .		0
4421	Challenges & opportunities for phage-based in situ microbiome engineering in the gut. Journal of Controlled Release, 2020, 326, 106-119.	4.8	27
4422	Dietary supplementation with polysaccharides from <i>Ziziphus Jujuba cv. Pozao</i> intervenes in immune response <i>via</i> regulating peripheral immunity and intestinal barrier function in cyclophosphamide-induced mice. Food and Function, 2020, 11, 5992-6006.	2.1	38
4423	Cranberry, oxidative stress, inflammatory markers, and insulin sensitivity: a focus on intestinal microbiota. , 2020, , 245-253.		0
4424	Fecal microbiota transplantation from high caloric-fed donors alters glucose metabolism in recipient mice, independently of adiposity or exercise status. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E203-E216.	1.8	24
4425	Evaluation of Microbiota and Weight Alterations After the Administration of Tetracycline and Lactobacillus gasseri in Rats. Current Microbiology, 2020, 77, 2449-2455.	1.0	4
4426	Phenolics and Carbohydrates in Buckwheat Honey Regulate the Human Intestinal Microbiota. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-11.	0.5	26
4427	α-Linolenic Acid-Rich Diet Influences Microbiota Composition and Villus Morphology of the Mouse Small Intestine. Nutrients, 2020, 12, 732.	1.7	21
4428	Colonization and immunoregulation of <i>Lactobacillus plantarum</i> BF_15, a novel probiotic strain from the feces of breast-fed infants. Food and Function, 2020, 11, 3156-3166.	2.1	17
4429	Gut microbiome transfer—Finding the perfect fit. Clinical Endocrinology, 2020, 93, 3-10.	1.2	6
4430	Study on the correlation among dysbacteriosis, imbalance of cytokine and the formation of intrauterine adhesion. Annals of Translational Medicine, 2020, 8, 52-52.	0.7	10
4431	Liraglutide Attenuates Nonalcoholic Fatty Liver Disease by Modulating Gut Microbiota in Rats Administered a High-Fat Diet. BioMed Research International, 2020, 2020, 1-10.	0.9	14
4432	Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Medicine, 2020, 17, e1003051.	3.9	177
4433	Calcium propionate supplementation alters the ruminal bacterial and archaeal communities in pre- and postweaning calves. Journal of Dairy Science, 2020, 103, 3204-3218.	1.4	13
4434	Two Bariatric Surgical Procedures Differentially Alter the Intestinal Microbiota in Obesity Patients. Obesity Surgery, 2020, 30, 2345-2361.	1.1	19
4435	Interactions between resveratrol and gut microbiota affect the development of hepatic steatosis: A fecal microbiota transplantation study in high-fat diet mice. Journal of Functional Foods, 2020, 67, 103883.	1.6	18

#	Article	IF	CITATIONS
4436	Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments of Mongolian horses. MicrobiologyOpen, 2020, 9, 1085-1101.	1.2	23
4437	Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2020, 7, 22.	1.1	614
4438	Effect of glucoraphanin from broccoli seeds on lipid levels and gut microbiota in high-fat diet-fed mice. Journal of Functional Foods, 2020, 68, 103858.	1.6	34
4439	Factors that shape the host microbiome. , 2020, , 55-77.		5
4440	The microbiome and host behaviour. , 2020, , 98-121.		1
4441	Combined signature of rumen microbiome and metabolome in dairy cows with different feed intake levels. Journal of Animal Science, 2020, 98, .	0.2	21
4442	Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 279-297.	8.2	539
4443	Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. American Journal of Clinical Nutrition, 2020, 111, 1127-1136.	2.2	84
4444	Characteristics and Functions of the Rumen Microbial Community of Cattle-Yak at Different Ages. BioMed Research International, 2020, 2020, 1-9.	0.9	24
4445	Isoxanthohumol, a hop-derived flavonoid, alters the metabolomics profile of mouse feces. Bioscience of Microbiota, Food and Health, 2020, 39, 100-108.	0.8	4
4446	The Changes in the Frog Gut Microbiome and Its Putative Oxygen-Related Phenotypes Accompanying the Development of Gastrointestinal Complexity and Dietary Shift. Frontiers in Microbiology, 2020, 11, 162.	1.5	24
4447	Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165767.	1.8	111
4448	The association between microbial community and ileal gene expression on intestinal wall thickness alterations in chickens. Poultry Science, 2020, 99, 1847-1861.	1.5	13
4449	Response of the Bacterial Community and Antibiotic Resistance in Overnight Stagnant Water from a Municipal Pipeline. International Journal of Environmental Research and Public Health, 2020, 17, 1995.	1.2	8
4450	Autoimmune responses and inflammation in type 2 diabetes. Journal of Leukocyte Biology, 2020, 107, 739-748.	1.5	41
4451	Dietary Fiber, Gut Microbiota, and Metabolic Regulation—Current Status in Human Randomized Trials. Nutrients, 2020, 12, 859.	1.7	160
4452	Protein Nutritional Support: The Classical and Potential New Mechanisms in the Prevention and Therapy of Sarcopenia. Journal of Agricultural and Food Chemistry, 2020, 68, 4098-4108.	2.4	23
4453	Housing temperature influences exercise training adaptations in mice. Nature Communications, 2020, 11, 1560.	5.8	52

#	Article	IF	CITATIONS
4454	The Obesity-Related Gut Bacterial and Viral Dysbiosis Can Impact the Risk of Colon Cancer Development. Microorganisms, 2020, 8, 431.	1.6	23
4455	Gut Microbiota Dysbiosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study in Taiwan. Nutrients, 2020, 12, 820.	1.7	62
4456	An in vitro evaluation of the effects of different statins on the structure and function of human gut bacterial community. PLoS ONE, 2020, 15, e0230200.	1.1	14
4457	Profile of the gut microbiota of adults with obesity: a systematic review. European Journal of Clinical Nutrition, 2020, 74, 1251-1262.	1.3	341
4458	Contribution of macronutrients to obesity: implications for precision nutrition. Nature Reviews Endocrinology, 2020, 16, 305-320.	4.3	113
4459	Improvement of Psoriasis by Alteration of the Gut Environment by Oral Administration of Fucoidan from Cladosiphon Okamuranus. Marine Drugs, 2020, 18, 154.	2.2	19
4460	The gut microbiome in Parkinson's disease: A culprit or a bystander?. Progress in Brain Research, 2020, 252, 357-450.	0.9	70
4461	The role of gut microbiota in bone homeostasis. Bone, 2020, 135, 115317.	1.4	78
4462	Time-restricted feeding is associated with changes in human gut microbiota related to nutrient intake. Nutrition, 2020, 78, 110797.	1.1	41
4463	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 2020, 8, 36.	4.9	213
4464	An empirically derived method for measuring human gut microbiome alpha diversity: Demonstrated utility in predicting health-related outcomes among a human clinical sample. PLoS ONE, 2020, 15, e0229204.	1.1	54
4465	Obesity Affects the Microbiota–Gut–Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. International Journal of Molecular Sciences, 2020, 21, 1554.	1.8	60
4466	The equine gastrointestinal microbiome: impacts of weight-loss. BMC Veterinary Research, 2020, 16, 78.	0.7	21
4467	Impact of Exposure to Antibiotics During Pregnancy and Infancy on Childhood Obesity: A Systematic Review and Metaâ€Analysis. Obesity, 2020, 28, 793-802.	1.5	23
4468	Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. Environment International, 2020, 138, 105604.	4.8	97
4469	Role of the Microbiome in Mediating Health Effects of Dietary Components. Journal of Agricultural and Food Chemistry, 2020, 68, 12820-12835.	2.4	18
4470	Ursodeoxycholic acid enriches intestinal bile salt hydrolase-expressing Bacteroidetes in cholestatic pregnancy. Scientific Reports, 2020, 10, 3895.	1.6	27
4471	Cordyceps cicadae polysaccharides ameliorated renal interstitial fibrosis in diabetic nephropathy rats by repressing inflammation and modulating gut microbiota dysbiosis. International Journal of Biological Macromolecules, 2020, 163, 442-456.	3.6	62

~	_
	Report
C11/1	

#	Article	IF	CITATIONS
4472	Rationale and design of "Hearts & Parks― study protocol for a pragmatic randomized clinical trial of an integrated clinic-community intervention to treat pediatric obesity. BMC Pediatrics, 2020, 20, 308.	0.7	6
4473	The circadian disruption of night work alters gut microbiota consistent with elevated risk for future metabolic and gastrointestinal pathology. Chronobiology International, 2020, 37, 1067-1081.	0.9	32
4474	Its2vec: Fungal Species Identification Using Sequence Embedding and Random Forest Classification. BioMed Research International, 2020, 2020, 1-11.	0.9	12
4475	Acacia Polyphenol Ameliorates Atopic Dermatitis in Trimellitic Anhydride-Induced Model Mice via Changes in the Gut Microbiota. Foods, 2020, 9, 773.	1.9	7
4476	Insights into the gut microbiota of Nigerian elderly with type 2 diabetes and non-diabetic elderly persons. Heliyon, 2020, 6, e03971.	1.4	15
4477	Green Tea Encourages Growth of <i>Akkermansia muciniphila</i> . Journal of Medicinal Food, 2020, 23, 841-851.	0.8	16
4478	Dynamic Alterations of Gut Microbiota in Porcine Circovirus Type 3-Infected Piglets. Frontiers in Microbiology, 2020, 11, 1360.	1.5	14
4479	Inclusion of limited amounts of extruded legumes plus cereal mixes in normocaloric or obesogenic diets for rats: effects on intestinal microbiota composition. Journal of the Science of Food and Agriculture, 2020, 100, 5546-5557.	1.7	3
4481	The effect of a diet based on rice straw co-fermented with probiotics and enzymes versus a fresh corn Stover-based diet on the rumen bacterial community and metabolitesÂof beef cattle. Scientific Reports, 2020, 10, 10721.	1.6	16
4482	Distinct differences in gut microbial composition and functional potential from lean to morbidly obese subjects. Journal of Internal Medicine, 2020, 288, 699-710.	2.7	20
4483	Application of a Faecalibacterium 16S rDNA genetic marker for species identification of dog fecal waste. Environmental Science and Pollution Research, 2020, 27, 30615-30624.	2.7	1
4484	Candida gut commensalism and inflammatory disease. Medicine in Microecology, 2020, 3, 100008.	0.7	6
4485	Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers, 2020, 1, 109-133.	3.7	172
4486	Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice. Genes and Nutrition, 2020, 15, 12.	1.2	43
4487	Combinatorial Effects of Soluble, Insoluble, and Organic Extracts from Jerusalem Artichokes on Gut Microbiota in Mice. Microorganisms, 2020, 8, 954.	1.6	8
4488	Association of microbiota in the stomach of Sinanodonta woodiana and its cultured soil. 3 Biotech, 2020, 10, 319.	1.1	1
4489	Progression and survival of patients with motor neuron disease relative to their fecal microbiota. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 549-562.	1.1	27
4490	Association between the body weight of growing pigs and the functional capacity of their gut microbiota. Animal Science Journal, 2020, 91, e13418.	0.6	27

#	Article	IF	CITATIONS
4491	Leptin and Nutrition in Gestational Diabetes. Nutrients, 2020, 12, 1970.	1.7	45
4492	Gut Microbiome: A New Organ System in Body. , 0, , .		10
4493	The colonic mucosa-associated microbiome in SIV infection: shift towards Bacteroidetes coincides with mucosal CD4+ T cell depletion and enterocyte damage. Scientific Reports, 2020, 10, 10887.	1.6	9
4494	Effect of Moxibustion on the Intestinal Flora of Rats with Knee Osteoarthritis Induced by Monosodium Iodoacetate. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-13.	0.5	7
4495	Efficient and Accurate Inference of Mixed Microbial Population Trajectories from Longitudinal Count Data. Cell Systems, 2020, 10, 463-469.e6.	2.9	12
4496	Probiotic low-fat fermented goat milk with passion fruit by-product: In vitro effect on obese individuals' microbiota and on metabolites production. Food Research International, 2020, 136, 109453.	2.9	17
4497	Oral administration of trehangelin-A alleviates metabolic disorders caused by a high-fat diet through improvement of lipid metabolism and restored beneficial microbiota. Obesity Research and Clinical Practice, 2020, 14, 360-367.	0.8	5
4498	Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children. Experimental and Molecular Medicine, 2020, 52, 1048-1061.	3.2	104
4499	Effect of Oral Administration of Weissella confusa on Fecal and Plasma Ethanol Concentrations, Lipids and Glucose Metabolism in Wistar Rats Fed High Fructose and Fat Diet. Hepatic Medicine: Evidence and Research, 2020, Volume 12, 93-106.	0.9	11
4500	Role of gut microbiota in sex- and diet-dependent metabolic disorders that lead to early mortality of androgen receptor-deficient male mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E525-E537.	1.8	9
4501	Metabolically Healthy Obesity—Heterogeneity in Definitions and Unconventional Factors. Metabolites, 2020, 10, 48.	1.3	59
4503	Comparison of five assays for DNA extraction from bacterial cells in human faecal samples. Journal of Applied Microbiology, 2020, 129, 378-388.	1.4	14
4504	Gut Microbiota of Wild and Captive Alpine Musk Deer (Moschus chrysogaster). Frontiers in Microbiology, 2019, 10, 3156.	1.5	42
4505	Metagenomic Characterization of Intestinal Regions in Pigs With Contrasting Feed Efficiency. Frontiers in Microbiology, 2020, 11, 32.	1.5	54
4506	Daily Intake of Paraprobiotic Lactobacillus amylovorus CP1563 Improves Pre-Obese Conditions and Affects the Gut Microbial Community in Healthy Pre-Obese Subjects: A Double-Blind, Randomized, Placebo-Controlled Study. Microorganisms, 2020, 8, 304.	1.6	14
4507	Acute Sleep-Wake Cycle Shift Results in Community Alteration of Human Gut Microbiome. MSphere, 2020, 5, .	1.3	39
4508	Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice. European Journal of Nutrition, 2020, 59, 3617-3634.	1.8	28
4509	Obesity and cardiovascular disease in women. International Journal of Obesity, 2020, 44, 1210-1226.	1.6	62

ARTICLE IF CITATIONS Assessing the Relationship Between Gut Microbiota and Bone Mineral Density. Frontiers in Genetics, 4510 1.1 33 2020, 11, 6. Gut Microbiota, Antibiotic Therapy and Antimicrobial Resistance: A Narrative Review. Microorganisms, 1.6 2020, 8, 269. Overweight and underweight status are linked to specific gut microbiota and intestinal tricarboxylic 4512 2.3 31 acid cycle intermediates. Clinical Nutrition, 2020, 39, 3189-3198. The relationship between metabolic syndrome and the incidence of colorectal cancer. Environmental Health and Preventive Medicine, 2020, 25, 6. Gut microbiota-derived metabolites in obesity: a systematic review. Bioscience of Microbiota, Food and 4514 0.8 43 Health, 2020, 39, 65-76. Aged citrus peel (<i>chenpi</i>) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food and Function, 2020, 11, 2667-2678. 2.1 Food matrix and the microbiome: considerations for preclinical chronic disease studies. Nutrition 4517 1.3 13 Research, 2020, 78, 1-10. Application of nutrient essentiality criteria to dietary carbohydrates. Nutrition Research Reviews, 2.1 2020, 33, 260-270. Cube natural sea salt ameliorates obesity in high fat diet-induced obese mice and 3T3-L1 adipocytes. 4519 1.6 13 Scientific Reports, 2020, 10, 3407. Safety Assessment of Bacteroides Uniformis CECT 7771, a Symbiont of the Gut Microbiota in Infants. 1.7 Nutrients, 2020, 12, 551. When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis. Cell 4521 101 7.2 Metabolism, 2020, 31, 448-471. From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infection, Genetics and 1.0 Evolution, 2020, 81, 104268. Modulation of gut microbiota by spent coffee grounds attenuates dietâ€induced metabolic syndrome in 4523 0.2 24 rats. FASEB Journal, 2020, 34, 4783-4797. Effect of Dose and Timing of Burdock (Arctium lappa) Root Intake on Intestinal Microbiota of Mice. 4524 1.6 Microorganisms, 2020, 8, 220. 4525 Milk and Health. New England Journal of Medicine, 2020, 382, 644-654. 13.9 124 Inhibitory effect of isomaltodextrin on tyrosine metabolite production in rat gut microbiota. Bioscience, Biotechnology and Biochemistry, 2020, 84, 824-831. A Critical Mutualism – Competition Interplay Underlies the Loss of Microbial Diversity in Sedentary 4527 1.539 Lifestyle. Frontiers in Microbiology, 2019, 10, 3142. Diet change affects intestinal microbiota restoration and improves vertical sleeve gastrectomy 4528 1.8 outcome in diet-induced obese rats. European Journal of Nutrition, 2020, 59, 3555-3564.

#	Article	IF	CITATIONS
4529	Allicin Modifies the Composition and Function of the Gut Microbiota in Alcoholic Hepatic Steatosis Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 3088-3098.	2.4	26
4530	Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data. PLoS ONE, 2020, 15, e0228899.	1.1	107
4531	<i>Sarcodon aspratus</i> polysaccharides ameliorated obesity-induced metabolic disorders and modulated gut microbiota dysbiosis in mice fed a high-fat diet. Food and Function, 2020, 11, 2588-2602.	2.1	42
4532	Overweight and Obesity in Children Are Associated with an Abundance of Firmicutes and Reduction of Bifidobacterium in Their Gastrointestinal Microbiota. Childhood Obesity, 2020, 16, 204-210.	0.8	50
4533	Interaction of the microbiota with the human body in health and diseases. Bioscience of Microbiota, Food and Health, 2020, 39, 23-32.	0.8	269
4534	A Renal Clinician's Guide to the Gut Microbiota. , 2020, 30, 384-395.		18
4535	Diet, Gut Microbiota and Non-Alcoholic Fatty Liver Disease: Three Parts of the Same Axis. Cells, 2020, 9, 176.	1.8	63
4536	Diversity, compositional and functional differences between gut microbiota of children and adults. Scientific Reports, 2020, 10, 1040.	1.6	89
4537	Highâ€fat dietâ€induced dysbiosis mediates MCPâ€1/CCR2 axisâ€dependent M2 macrophage polarization and promotes intestinal adenomaâ€adenocarcinoma sequence. Journal of Cellular and Molecular Medicine, 2020, 24, 2648-2662.	1.6	43
4538	The role of the microbiota in sedentary lifestyle disorders and ageing: lessons from the animal kingdom. Journal of Internal Medicine, 2020, 287, 271-282.	2.7	44
4539	Influence of cecotrophy on fat metabolism mediated by caecal microorganisms in New Zealand white rabbits. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 749-757.	1.0	10
4540	Symposium review: Decomposing efficiency of milk production and maximizing profit. Journal of Dairy Science, 2020, 103, 5709-5725.	1.4	38
4541	Cationic conjugated polymers for enhancing beneficial bacteria adhesion and biofilm formation in gut microbiota. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110815.	2.5	11
4542	Environmental and intrinsic factors shaping gut microbiota composition and diversity and its relation to metabolic health in children and early adolescents: A population-based study. Gut Microbes, 2020, 11, 900-917.	4.3	39
4543	The landscape of microbiota research in Iran; a bibliometric and network analysis. Journal of Diabetes and Metabolic Disorders, 2020, 19, 163-177.	0.8	10
4544	Integrative analysis of blood and gut microbiota data suggests a non-alcoholic fatty liver disease (NAFLD)-related disorder in French SLAdd minipigs. Scientific Reports, 2020, 10, 234.	1.6	0
4545	Impact of Nutrition on Pulmonary Arterial Hypertension. Nutrients, 2020, 12, 169.	1.7	28
4546	Whole Food–Based Approaches to Modulating Gut Microbiota and Associated Diseases. Annual Review of Food Science and Technology, 2020, 11, 119-143.	5.1	58

#	Article	IF	CITATIONS
4547	The microbiota and immuneâ€mediated diseases: Opportunities for therapeutic intervention. European Journal of Immunology, 2020, 50, 326-337.	1.6	39
4548	Bifidobacterium pseudolongum reduces triglycerides by modulating gut microbiota in mice fed high-fat food. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105602.	1.2	62
4549	Le transfert de microbiote fécalÂ: quel potentiel thérapeutique dans le traitement des maladies métaboliques�. Nutrition Clinique Et Metabolisme, 2020, 34, 108-115.	0.2	1
4550	The canine gastrointestinal microbiota: early studies and research frontiers. Gut Microbes, 2020, 11, 635-654.	4.3	22
4551	Peritoneal Microbiome in End-Stage Renal Disease Patients and the Impact of Peritoneal Dialysis Therapy. Microorganisms, 2020, 8, 173.	1.6	16
4552	Diet and Gut Microbes Act Coordinately to Enhance Programmed Cell Death and Reduce Colorectal Cancer Risk. Digestive Diseases and Sciences, 2020, 65, 840-851.	1.1	37
4553	Biostimulating Gut Microbiome with Bilberry Anthocyanin Combo to Enhance Anti-PD-L1 Efficiency against Murine Colon Cancer. Microorganisms, 2020, 8, 175.	1.6	37
4554	Consumption patterns of nonnutritive sweeteners among university students at a Caribbean institution. Journal of American College Health, 2021, 69, 719-724.	0.8	1
4555	Obesity: More Than an Inflammatory, an Infectious Disease?. Frontiers in Immunology, 2020, 10, 3092.	2.2	21
4556	Culture-enriched metagenomic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. Nature Microbiology, 2020, 5, 379-390.	5.9	57
4557	Bariatric Surgery in Obesity: Effects on Gut Microbiota and Micronutrient Status. Nutrients, 2020, 12, 235.	1.7	74
4558	Contribution of diet to gut microbiota and related host cardiometabolic health: diet-gut interaction in human health. Gut Microbes, 2020, 11, 603-609.	4.3	18
4559	The emerging PFOS alternative OBS exposure induced gut microbiota dysbiosis and hepatic metabolism disorder in adult zebrafish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 230, 108703.	1.3	24
4560	Native κ-carrageenan induced-colitis is related to host intestinal microecology. International Journal of Biological Macromolecules, 2020, 147, 284-294.	3.6	48
4561	Metagenomic analysis exploring taxonomic diversity of rumen microbial communities in Vechur and crossbred cattle of Kerala state, India. Journal of Applied Genetics, 2020, 61, 287-297.	1.0	6
4562	Remodeling gut microbiota by Clostridium butyricum (C.butyricum) attenuates intestinal injury in burned mice. Burns, 2020, 46, 1373-1380.	1.1	13
4563	Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients, 2020, 12, 381.	1.7	265
4564	Variation in gut bacterial composition is associated with Haemonchus contortus parasite infection of sheep. Animal Microbiome, 2020, 2, 3.	1.5	11

#	Article	IF	Citations
4565	The Epigenetic Connection Between the Gut Microbiome in Obesity and Diabetes. Frontiers in Genetics, 2019, 10, 1329.	1.1	95
4566	The infant gut microbiome as a microbial organ influencing host well-being. Italian Journal of Pediatrics, 2020, 46, 16.	1.0	93
4567	Computational Modeling of the Human Microbiome. Microorganisms, 2020, 8, 197.	1.6	22
4568	Syntrophy via Interspecies H ₂ Transfer between <i>Christensenella</i> and <i>Methanobrevibacter</i> Underlies Their Global Cooccurrence in the Human Gut. MBio, 2020, 11, .	1.8	73
4569	Microbiome and biological blood marker changes in hens at different laying stages in conventional and cage free housings. Poultry Science, 2020, 99, 2362-2374.	1.5	24
4570	Exposure to air pollutants and the gut microbiota: a potential link between exposure, obesity, and type 2 diabetes. Gut Microbes, 2020, 11, 1188-1202.	4.3	66
4571	Intestinal Dysbiosis in Carriers of Carbapenem-Resistant <i>Enterobacteriaceae</i> . MSphere, 2020, 5, .	1.3	25
4572	Shifts in the gut microbiota of mice in response to dexamethasone administration. International Microbiology, 2020, 23, 565-573.	1.1	20
4573	Modulation of gut microbiota in rats fed whole egg diets by processing duck egg to preserved egg. Journal of Bioscience and Bioengineering, 2020, 130, 54-62.	1.1	9
4574	Dietary supplementation with vitamin C ameliorates the adverse effects of Salmonella Enteritidis-challenge in broilers by shaping intestinal microbiota. Poultry Science, 2020, 99, 3663-3674.	1.5	15
4575	Porcine deltacoronavirus infection alters bacterial communities in the colon and feces of neonatal piglets. MicrobiologyOpen, 2020, 9, e1036.	1.2	16
4576	Cottonseed meal fermented by Candida tropical reduces the fat deposition in white-feather broilers through cecum bacteria-host metabolic cross-talk. Applied Microbiology and Biotechnology, 2020, 104, 4345-4357.	1.7	14
4577	Total replacement of fish meal with soybean meal in diets for bullfrog (Lithobates catesbeianus): Effects on growth performance and gut microbial composition. Aquaculture, 2020, 524, 735236.	1.7	37
4578	Gut DYSBIOSIS and altered barrier function precedes the appearance of metabolic syndrome in a rat model of nutrient-induced catch-up growth. Journal of Nutritional Biochemistry, 2020, 81, 108383.	1.9	17
4579	Dietary l-arginine supplementation ameliorates inflammatory response and alters gut microbiota composition in broiler chickens infected with Salmonella enterica serovar Typhimurium. Poultry Science, 2020, 99, 1862-1874.	1.5	40
4580	Intestinal microbiota dysbiosis play a role in pathogenesis of patients with primary immune thrombocytopenia. Thrombosis Research, 2020, 190, 11-19.	0.8	30
4581	Elevated levels of proinflammatory volatile metabolites in feces of high fat diet fed KK-Ay mice. Scientific Reports, 2020, 10, 5681.	1.6	10
4582	Tomato seed oil attenuates hyperlipidemia and modulates gut microbiota in C57BL/6J mice. Food and Function, 2020, 11, 4275-4290.	2.1	43

# 4583	ARTICLE The 1975 type Japanese diet improves the gut microbial flora and inhibits visceral fat accumulation in mice. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1475-1485.	IF 0.6	CITATIONS 2
4584	Profiling of Endogenous and Gut Microbial Metabolites to Indicate Metabotype-Specific Dietary Responses: A Systematic Review. Advances in Nutrition, 2020, 11, 1237-1254.	2.9	10
4585	Phenotyping nonâ€alcoholic fatty liver disease by the gut microbiota: Ready for prime time?. Journal of Gastroenterology and Hepatology (Australia), 2020, 35, 1969-1977.	1.4	27
4586	Consumption of Fermented Foods Is Associated with Systematic Differences in the Gut Microbiome and Metabolome. MSystems, 2020, 5, .	1.7	81
4587	Respiratory Viral Infection Alters the Gut Microbiota by Inducing Inappetence. MBio, 2020, 11, .	1.8	122
4588	Weaning Alters Intestinal Gene Expression Involved in Nutrient Metabolism by Shaping Gut Microbiota in Pigs. Frontiers in Microbiology, 2020, 11, 694.	1.5	38
4589	Traditional Chinese Medicine and Gut Microbiome: Their Respective and Concert Effects on Healthcare. Frontiers in Pharmacology, 2020, 11, 538.	1.6	32
4590	Effects of Alternative Administration Programs of a Synbiotic Supplement on Broiler Performance, Foot Pad Dermatitis, Caecal Microbiota, and Blood Metabolites. Animals, 2020, 10, 522.	1.0	7
4591	Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. International Journal of Molecular Sciences, 2020, 21, 2890.	1.8	133
4592	The Controversial Role of Human Gut Lachnospiraceae. Microorganisms, 2020, 8, 573.	1.6	777
4593	Lactobacillus plantarum NA136 ameliorates nonalcoholic fatty liver disease by modulating gut microbiota, improving intestinal barrier integrity, and attenuating inflammation. Applied Microbiology and Biotechnology, 2020, 104, 5273-5282.	1.7	75
4594	Diet and long-term weight loss: what can we learn from our gut microbes?. American Journal of Clinical Nutrition, 2020, 111, 1121-1123.	2.2	3
4595	Links between the rumen microbiota, methane emissions and feed efficiency of finishing steers offered dietary lipid and nitrate supplementation. PLoS ONE, 2020, 15, e0231759.	1.1	22
4596	Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1474-H1486.	1.5	48
4597	Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutrition Research, 2020, 77, 62-72.	1.3	79
4598	Healthy nutrition in Germany: a survey analysis of social causes, obesity and socioeconomic status. Public Health Nutrition, 2020, 23, 2109-2123.	1.1	8
4599	Gut Microbiota, Blood Metabolites, and Spleen Immunity in Broiler Chickens Fed Berry Pomaces and Phenolic-Enriched Extractives. Frontiers in Veterinary Science, 2020, 7, 150.	0.9	29
4600	Microbiota and cancer: host cellular mechanisms activated by gut microbial metabolites. International Journal of Medical Microbiology, 2020, 310, 151425.	1.5	41

		CITATION REPORT		
#	Article		IF	CITATIONS
4601	Pesticides-induced energy metabolic disorders. Science of the Total Environment, 2020, 729,	139033.	3.9	55
4602	Decoding diversity in a coral reef fish species complex with restricted range using metagenom sequencing of gut contents. Ecology and Evolution, 2020, 10, 3413-3423.	NiC .	0.8	2
4603	Obesogenic Effect of Sulfamethoxazole on <i>Drosophila melanogaster</i> with Simultaneou Disturbances on Eclosion Rhythm, Glucolipid Metabolism, and Microbiota. Environmental Scie & Technology, 2020, 54, 5667-5675.		4.6	32
4604	Bacterial fecal microbiota is only minimally affected by a standardized weight loss plan in obe BMC Veterinary Research, 2020, 16, 112.	se cats.	0.7	11
4605	Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias me Journal of Hazardous Materials, 2020, 397, 122795.		6.5	161
4606	Influences of food ingredients on enterohepatic circulation of bile acids. , 2020, , 93-102.			0
4607	Draft genome and description of Negativicoccus massiliensis strain Marseille-P2082, a new sp isolated from the gut microbiota of an obese patient. Antonie Van Leeuwenhoek, 2020, 113,		0.7	0
4608	Sequence variant analysis reveals poor correlations in microbial taxonomic abundance betwee humans and mice after gnotobiotic transfer. ISME Journal, 2020, 14, 1809-1820.	20	4.4	30
4609	Microbial modulation of host body composition and plasma metabolic profile. Scientific Repo 2020, 10, 6545.	ts,	1.6	14
4610	Polysaccharide extracted from WuGuChong reduces high-fat diet-induced obesity in mice by regulating the composition of intestinal microbiota. Nutrition and Metabolism, 2020, 17, 27.		1.3	11
4611	<p>Converging Relationships of Obesity and Hyperuricemia with Special Reference to M Disorders and Plausible Therapeutic Implications</p> . Diabetes, Metabolic Syndrome and Targets and Therapy, 2020, Volume 13, 943-962.	etabolic d Obesity:	1.1	38
4612	Soybean Oil Modulates the Gut Microbiota Associated with Atherogenic Biomarkers. Microorg 2020, 8, 486.	ganisms,	1.6	5
4613	Germ-Free Swiss Webster Mice on a High-Fat Diet Develop Obesity, Hyperglycemia, and Dysli Microorganisms, 2020, 8, 520.	pidemia.	1.6	17
4614	Chinese Propolis Prevents Obesity and Metabolism Syndromes Induced by a High Fat Diet and Accompanied by an Altered Gut Microbiota Structure in Mice. Nutrients, 2020, 12, 959.		1.7	13
4615	Milk Polar Lipids: Underappreciated Lipids with Emerging Health Benefits. Nutrients, 2020, 12	, 1001.	1.7	60
4616	2′-Fucosyllactose Supplementation Improves Gut-Brain Signaling and Diet-Induced Obese I Changes the Gut Microbiota in High Fat-Fed Mice. Nutrients, 2020, 12, 1003.	Phenotype and	1.7	22
4617	Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat d dihydrotestosterone induction in PCOS rats. Bioprocess and Biosystems Engineering, 2021, 4		1.7	33
4618	Interleukin-6 and the Gut Microbiota Influence Melanoma Progression in Obese Mice. Nutritic Cancer, 2021, 73, 642-651.	n and	0.9	8

#	Article	IF	CITATIONS
4619	Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Seminars in Cancer Biology, 2021, 70, 24-36.	4.3	46
4620	Lipopeptide(s) associated with human microbiome as potent cancer drug. Seminars in Cancer Biology, 2021, 70, 128-133.	4.3	12
4621	Diet drives convergent evolution of gut microbiomes in bamboo-eating species. Science China Life Sciences, 2021, 64, 88-95.	2.3	43
4622	A systems biology approach to understand gut microbiota and host metabolism in morbid obesity: design of the BARIA Longitudinal Cohort Study. Journal of Internal Medicine, 2021, 289, 340-354.	2.7	28
4624	Polystyrene microplastics alter the intestinal microbiota function and the hepatic metabolism status in marine medaka (Oryzias melastigma). Science of the Total Environment, 2021, 759, 143558.	3.9	65
4625	Avocado Consumption Alters Gastrointestinal Bacteria Abundance and Microbial Metabolite Concentrations among Adults with Overweight or Obesity: A Randomized Controlled Trial. Journal of Nutrition, 2021, 151, 753-762.	1.3	28
4626	Gut microbiome and human health under the space environment. Journal of Applied Microbiology, 2021, 130, 14-24.	1.4	49
4627	Relationships between gut microbiota, plasma glucose and gestational diabetes mellitus. Journal of Diabetes Investigation, 2021, 12, 641-650.	1.1	29
4628	Comparative analysis of the gut microbiota composition in the Cln1R151X and Cln2R207X mouse models of Batten disease and in three wild-type mouse strains. Archives of Microbiology, 2021, 203, 85-96.	1.0	6
4629	A new Illumina MiSeq highâ€ŧhroughput sequencingâ€based method for evaluating the composition of the Bacteroides community in the intestine using the rpsD gene sequence. Microbial Biotechnology, 2021, 14, 577-586.	2.0	9
4630	Oral Probiotic Bifidobacterium Longum Supplementation Improves Metabolic Parameters and Alters the Expression of the Renin-Angiotensin System in Obese Mice Liver. Biological Research for Nursing, 2021, 23, 100-108.	1.0	23
4631	Effects of different concentrations of coated nano zinc oxide material on fecal bacterial composition and intestinal barrier in weaned piglets. Journal of the Science of Food and Agriculture, 2021, 101, 735-745.	1.7	15
4632	Significance of human microbiome in breast cancer: Tale of an invisible and an invincible. Seminars in Cancer Biology, 2021, 70, 112-127.	4.3	35
4633	The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: a systematic review. British Journal of Nutrition, 2021, 125, 508-520.	1.2	36
4634	Microbiome dysbiosis in cancer: Exploring therapeutic strategies to counter the disease. Seminars in Cancer Biology, 2021, 70, 61-70.	4.3	25
4635	Microbial Metabolites, Postbiotics, and Intestinal EpithelialÂFunction. Molecular Nutrition and Food Research, 2021, 65, e2000188.	1.5	52
4636	Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice. European Journal of Nutrition, 2021, 60, 2029-2045.	1.8	17
4637	The obesity treatment dilemma: Why dieting is both the answer and the problem? A mechanistic overview. Diabetes and Metabolism, 2021, 47, 101192.	1.4	26

	Сітаті	on Report	
#	Article	IF	CITATIONS
4638	Long-term exposure to phenanthrene at environmental-level induces intestinal dysbiosis and disrupted hepatic lipid metabolism in mice. Environmental Pollution, 2021, 268, 115738.	3.7	8
4639	Long-term wet precipitation of PM2.5 disturbed the gut microbiome and inhibited the growth of marine medaka Oryzias melastigma. Science of the Total Environment, 2021, 755, 142512.	3.9	8
4640	Casein glycomacropeptide is well tolerated in healthy adults and changes neither high-sensitive C-reactive protein, gut microbiota nor faecal butyrate: a restricted randomised trial. British Journal of Nutrition, 2021, 125, 1374-1385.	1.2	14
4641	Effects of yeast and yeast extract on growth performance, antioxidant ability and intestinal microbiota of juvenile Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 2021, 530, 735941.	1.7	31
4642	Trichinella spiralis infection ameliorated diet-induced obesity model in mice. International Journal for Parasitology, 2021, 51, 63-71.	1.3	16
4643	Profiling the differences of gut microbial structure between schizophrenia patients with and without violent behaviors based on 16S rRNA gene sequencing. International Journal of Legal Medicine, 2021, 135, 131-141.	1.2	18
4644	Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers. Drug Metabolism and Pharmacokinetics, 2021, 36, 100361.	1.1	18
4645	Association of gut microbiome with fasting triglycerides, fasting insulin and obesity status in Mexican children. Pediatric Obesity, 2021, 16, e12748.	1.4	37
4646	Bidirectional and dynamic interaction between the microbiota and therapeutic resistance in pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188484.	3.3	11
4647	Gut microbiota, immunity and pain. Immunology Letters, 2021, 229, 44-47.	1.1	20
4648	Toxicological effects of microplastics and phenanthrene to zebrafish (Danio rerio). Science of the Total Environment, 2021, 757, 143730.	3.9	99
4649	Advances in Probiotics for Sustainable Food and Medicine. Microorganisms for Sustainability, 2021, , .	0.4	3
4650	Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 2021, 70, 1174-1182.	6.1	519
4651	Enteropeptidase inhibition improves obesity by modulating gut microbiota composition and enterobacterial metabolites in diet-induced obese mice. Pharmacological Research, 2021, 163, 105337.	3.1	16
4652	Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 2021, 140, 109858.	2.9	169
4653	Citrus flavonoids and the intestinal barrier: Interactions and effects. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 225-251.	5.9	36
4654	The influence of the prebiotic gum acacia on the intestinal microbiome composition in rats with experimental chronic kidney disease. Biomedicine and Pharmacotherapy, 2021, 133, 110992.	2.5	26
4655	Behaviour of citrus pectin and modified citrus pectin in an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal carcinogenesis model. International Journal of Biological Macromolecules, 2021, 167, 1349-1360.	3.6	12

# 4656	ARTICLE Variations in fecal microbial profiles of acute exacerbations and stable chronic obstructive	IF 2.0	CITATIONS
4657	pulmonary disease. Life Sciences, 2021, 265, 118738. Safe patient handling and mobility (SPHM) for increasingly bariatric patient populations: Factors related to caregivers' self-reported pain and injury. Applied Ergonomics, 2021, 91, 103300.	1.7	6
4658	Glycation of gut proteins initiates microbial dysbiosis and can promote establishment of diabetes in experimental animals. Microbial Pathogenesis, 2021, 152, 104589.	1.3	7
4659	Dysbiosis, malnutrition and enhanced gut-lung axis contribute to age-related respiratory diseases. Ageing Research Reviews, 2021, 66, 101235.	5.0	58
4660	Potential type 2 diabetes mellitus drug HMPA promotes shortâ€chain fatty acid production by improving carbon catabolite repression effect of gut microbiota. British Journal of Pharmacology, 2021, 178, 946-963.	2.7	7
4661	Microbiability of meat quality and carcass composition traits in swine. Journal of Animal Breeding and Genetics, 2021, 138, 223-236.	0.8	24
4662	Metabolicâ€associated fatty liver disease (MAFLD) in coeliac disease. Liver International, 2021, 41, 788-798.	1.9	15
4663	A systematic review on the role of microbiota in the pathogenesis and treatment of eating disorders. European Psychiatry, 2021, 64, e2.	0.1	39
4664	Alterations in Gut Microbiota Do Not Play a Causal Role in Diet-independent Weight Gain Caused by Ovariectomy. Journal of the Endocrine Society, 2021, 5, bvaa173.	0.1	6
4665	Physiological parameters and gut microbiome associated with different dietary lipid levels in hybrid yellow catfish (Tachysurus fulvidraco♀× Pseudobagrus vachelliiâ™,). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2021, 37, 100777.	0.4	10
4666	Bifidobacterium longum counters the effects of obesity: Partial successful translation from rodent to human. EBioMedicine, 2021, 63, 103176.	2.7	64
4667	Modulating the Gut Microbiota of Humans by Dietary Intervention with Plant Glycans. Applied and Environmental Microbiology, 2021, 87, .	1.4	13
4668	Differential analysis of gut microbiota and the effect of dietary Enterococcus faecium supplementation in broiler breeders with high or low laying performance. Poultry Science, 2021, 100, 1109-1119.	1.5	26
4669	Gut microbiota and metabolic marker alteration following dietary isoflavoneâ€photoperiod interaction. Endocrinology, Diabetes and Metabolism, 2021, 4, e00190.	1.0	8
4670	Effects of sorghum rice and black rice on genes associated with cholesterol metabolism in hypercholesterolemic mice liver and intestine. Food Science and Nutrition, 2021, 9, 217-229.	1.5	16
4671	Sleep and circadian disruption and the gut microbiome-possible links to dysregulated metabolism. Current Opinion in Endocrine and Metabolic Research, 2021, 17, 26-37.	0.6	16
4672	Comparative evaluation of microbial profiles of oral samples obtained at different collection time points and using different methods. Clinical Oral Investigations, 2021, 25, 2779-2789.	1.4	9
4673	Sleep and the Gut Microbiome in Psoriasis: Clinical Implications for Disease Progression and the Development of Cardiometabolic Comorbidities. Journal of Psoriasis and Psoriatic Arthritis, 2021, 6, 27-37.	0.3	4

#	Article	IF	CITATIONS
4674	Intestinal permeability and small intestine bacterial overgrowth in excess weight adolescents. Pediatric Obesity, 2021, 16, e12741.	1.4	6
4675	Intrauterine Growth Restriction Is Associated with Unique Features of the Reproductive Microbiome. Reproductive Sciences, 2021, 28, 828-837.	1.1	16
4676	Ruminal Degradation of Rumen-Protected Glucose Influences the Ruminal Microbiota and Metabolites in Early-Lactation Dairy Cows. Applied and Environmental Microbiology, 2021, 87, .	1.4	15
4677	Effect of gaseous hydrogen sulphide on growth performance and cecal microbial diversity of weaning pigs. Veterinary Medicine and Science, 2021, 7, 424-431.	0.6	4
4678	A Systematic Review of the Potential Effects of Thylakoids in the Management of Obesity and Its Related Issues. Food Reviews International, 2021, 37, 469-490.	4.3	5
4679	Gut Microbiota in Obesity and Bariatric Surgery: Where Do We Stand?. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 183-227.	0.2	0
4680	Microbiota and Neurodegenerative Diseases. , 2022, , 175-180.		0
4682	Gut Microbiome. , 2021, , 3586-3590.		0
4683	Link between gut microbiome and cardiometabolic diseases. , 2021, , 185-205.		1
4684	Characteristics of Gut Microbiota in Cerulein-Induced Chronic Pancreatitis. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 285-294.	1.1	10
4685	High vs. low-fat dairy and milk differently affects the risk of all-cause, CVD, and cancer death: A systematic review and dose-response meta-analysis of prospective cohort studies. Critical Reviews in Food Science and Nutrition, 2022, 62, 3598-3612.	5.4	20
4686	Nuciferine administration in C57BL/6J mice with gestational diabetes mellitus induced by a high-fat diet: the improvement of glycolipid disorders and intestinal dysbacteriosis. Food and Function, 2021, 12, 11174-11189.	2.1	14
4687	Wheat cell walls and constituent polysaccharides induce similar microbiota profiles upon <i>in vitro</i> fermentation despite different short chain fatty acid end-product levels. Food and Function, 2021, 12, 1135-1146.	2.1	10
4688	Diabetes diminishes a typical metabolite of litchi pericarp oligomeric procyanidins (LPOPC) in urine mediated by imbalanced gut microbiota. Food and Function, 2021, 12, 5375-5386.	2.1	5
4689	Probiotics, Diet, and Gut Microbiome Modulation in Metabolic Syndromes Prevention. , 2021, , 217-231.		0
4690	Gut Microbial Changes and their Contribution to Post-Burn Pathology. Shock, 2021, 56, 329-344.	1.0	13
4691	Physiological Responses of Post-Dietary Effects: Lessons from Pre-Clinical and Clinical Studies. Metabolites, 2021, 11, 62.	1.3	1
4692	Standardized hot water extract from the leaves of <i>Hydrangea serrata</i> (Thunb.) Ser. alleviates obesity <i>via</i> the AMPK pathway and modulation of the gut microbiota composition in high fat diet-induced obese mice. Food and Function, 2021, 12, 2672-2685.	2.1	12

	CITATION RE	PORT	
# 4693	ARTICLE Probiotics Stimulate Bone Formation in Obese Mice via Histone Methylations. Theranostics, 2021, 11, 8605-8623.	IF 4.6	CITATIONS
4694	ls Gut Dysbiosis an Epicenter of Parkinson's Disease?. Neurochemical Research, 2021, 46, 425-438.	1.6	11
4695	Microbial Diversity and Classification. , 2021, , .		0
4696	Bipolar disorders, obesity, and metabolic disturbances: Mechanisms and implications. , 2021, , 257-274.		0
4697	Management of Diverticulosis. Current Treatment Options in Gastroenterology, 2021, 19, 14-29.	0.3	0
4698	Novel risk factors and outcomes in inflammatory bowel disease patients with <i>Clostridioides difficile</i> infection. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482199779.	1.4	6
4699	Transmission of Hologenomes Between Generations: Mothers Matter Most. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 161-194.	0.2	1
4700	Disease Implications of the Circadian Clocks and Microbiota Interface. , 2021, , 329-349.		1
4701	The protective mechanism of a debranched corn starch/konjac glucomannan composite against dyslipidemia and gut microbiota in high-fat-diet induced type 2 diabetes. Food and Function, 2021, 12, 9273-9285.	2.1	12
4702	Early life gut microbiota is associated with rapid infant growth in Hispanics from Southern California. Gut Microbes, 2021, 13, 1961203.	4.3	32
4703	Immunological design of commensal communities to treat intestinal infection and inflammation. PLoS Pathogens, 2021, 17, e1009191.	2.1	24
4704	Probiotics ameliorate chronic low-grade inflammation and fat accumulation with gut microbiota composition change in diet-induced obese mice models. Applied Microbiology and Biotechnology, 2021, 105, 1203-1213.	1.7	17
4705	Modulation of the gut microbiota by probiotics and symbiotics is associated with changes in serum metabolite profile related to a decrease in inflammation and overall benefits to metabolic health: a double-blind randomized controlled clinical trial in women with obesity. Food and Function, 2021, 12, 2161-2170.	2.1	20
4706	Polychlorinated biphenyls altered gut microbiome in CAR and PXR knockout mice exhibiting toxicant-associated steatohepatitis. Toxicology Reports, 2021, 8, 536-547.	1.6	20
4707	The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes, 2021, 13, 1-24.	4.3	259
4708	Microbiota, a New Playground for the Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Diseases. Marine Drugs, 2021, 19, 54.	2.2	12
4709	<scp>Glucagonâ€like</scp> peptideâ€l receptor agonists in the era of <scp>COVID</scp> â€l9: Friend or foe?. Clinical Obesity, 2021, 11, e12439.	1.1	21
4710	Punicic acid ameliorates obesity and liver steatosis by regulating gut microbiota composition in mice. Food and Function, 2021, 12, 7897-7908.	2.1	41

#	Article	IF	CITATIONS
4711	Behavior of Nonâ€Digestible Polysaccharides in Gastrointestinal Tract: A Mechanistic Review of its Antiâ€Obesity Effect. EFood, 2021, 2, 59-72.	1.7	35
4712	Implications of microbiota in the pathogenesis of diabetes mellitus and cardiovascular disease. , 2021, , 159-184.		0
4713	A High Amylose Wheat Diet Improves Gastrointestinal Health Parameters and Gut Microbiota in Male and Female Mice. Foods, 2021, 10, 220.	1.9	7
4714	Understanding Obesity: The Role of Adipose Tissue Microenvironment and the Gut Microbiome. Saudi Journal of Medicine and Medical Sciences, 2021, 9, 10.	0.3	5
4715	Characterisation of gut microbiota of obesity and type 2 diabetes in a rodent model. Bioscience of Microbiota, Food and Health, 2021, 40, 65-74.	0.8	12
4716	Comparative Analysis of the Microbiota Between Rumen and Duodenum of Twin Lambs Based on Diets of Ceratoides or Alfalfa. Polish Journal of Microbiology, 2021, 70, 175-187.	0.6	2
4717	RATIO OF MAIN PHYLOTYPES OF GUT MICROBIOTA IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE DEPENDING ON THE BODY MASS INDEX. Wiadomości Lekarskie, 2021, 74, 523-528.	0.1	2
4718	Laparoscopic OAGB/MGB: Mechanism of Action. , 2021, , 1-8.		0
4719	Exploring the impact of intestinal ion transport on the gut microbiota. Computational and Structural Biotechnology Journal, 2021, 19, 134-144.	1.9	19
4720	Reanalysis of the Mars500 experiment reveals common gut microbiome alterations in astronauts induced by long-duration confinement. Computational and Structural Biotechnology Journal, 2021, 19, 2223-2235.	1.9	12
4721	Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. International Journal of Biological Sciences, 2021, 17, 2666-2682.	2.6	10
4722	Gastrointestinal Manifestations of COVID-19. , 2021, , 2299-2312.		0
4723	The ApoA-I mimetic peptide 4F attenuates in vitro replication of SARS-CoV-2, associated apoptosis, oxidative stress and inflammation in epithelial cells. Virulence, 2021, 12, 2214-2227.	1.8	9
4724	Gut–kidney axis in oxalate homeostasis. Current Opinion in Nephrology and Hypertension, 2021, 30, 264-274.	1.0	5
4725	Potential prebiotic properties of exopolysaccharides produced by a novel <i>Lactobacillus</i> strain, <i>Lactobacillus pentosus</i> YY-112. Food and Function, 2021, 12, 9456-9465.	2.1	12
4726	A flavonoid-rich <i>Smilax china</i> L. extract prevents obesity by upregulating the adiponectin-receptor/AMPK signalling pathway and modulating the gut microbiota in mice. Food and Function, 2021, 12, 5862-5875.	2.1	21
4727	Role of the Microbiome in Interstitial Lung Diseases. Frontiers in Medicine, 2021, 8, 595522.	1.2	29
4728	Sex differences in stroke outcome correspond to rapid and severe changes in gut permeability in adult Sprague-Dawley rats. Biology of Sex Differences, 2021, 12, 14.	1.8	31

ARTICLE IF CITATIONS Microbiome changes in aging., 2021, , 367-389. 1 4729 Bacteriophage as an Alternative to Antibiotics Promotes Growth Performance by Regulating Intestinal Inflammation, Intestinal Barrier Function and Gut Microbiota in Weaned Piglets. Frontiers in 4730 Veterinary Science, 2021, 8, 623899. 4731 Polysaccharides on the gut microbiome and epigenome., 2021, , 129-137. 1 Engineered probiotics modulate the endocannabinoid system. Biotechnology Notes, 2021, 2, 33-38. Resveratrol as Anti-Obesity and Anticancer Agent., 2021, , 185-208. 4733 2 Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice <i>via</i>regulation of the gut microbiota. Food and Function, 2021, 12, 7923-7937. 4734 2.1 Enabling rational gut microbiome manipulations by understanding gut ecology through 4735 4.3 2 experimentally-evidenced in silico models. Gut Microbes, 2021, 13, 1965698. Pharmacological activities and mechanisms of action of Pogostemon cablin Benth: a review. Chinese 4736 1.6 Medicine, 2021, 16, 5. Exploring the allochthonous pollution influence on bacterial community and co-occurrence 4737 dynamics of River Ganga water through 16S rRNA-tagged amplicon metagenome. Environmental Science 2.7 8 and Pollution Research, 2021, 28, 26990-27005. Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut 4.3 microbiome and affect human health. Gut Microbes, 2021, 13, 1-18. Lifestyle modifications result in alterations in the gut microbiota in obese children. BMC 4739 1.3 28 Microbiology, 2021, 21, 10. Effects of Banana Resistant Starch on the Biochemical Indexes and Intestinal Flora of Obese Rats Induced by a High-Fat Diet and Their Correlation Analysis. Frontiers in Bioengineering and 4740 2.0 Biotechnology, 2021, 9, 575724. 4741 Microbiota in utero? When and Where Microbial Establishment Starts?., 2021, 13-13. 0 Gut microbiota and their effects on atherosclerosis, platelet function, and hypertension., 2021, , 4742 295-309. Gut Microbiota Profile and Changes in Body Weight in Elderly Subjects with Overweight/Obesity and 4743 1.6 14 Metabolic Syndrome. Microorganisms, 2021, 9, 346. Age-specific microbiota in altering host inflammatory and metabolic signaling as well as metabolome 4744 based on the sex. Hepatobiliary Surgery and Nutrition, 2021, 10, 31-48. Visualization of endogenous gut bacteria in Drosophila melanogaster using fluorescence in situ 4745 1.1 0 hybridization. PLoS ONE, 2021, 16, e0247376. A Static Magnetic Field Improves Iron Metabolism and Prevents High-Fat-Diet/Streptozocin-Induced 4746 5.2 Diabetes. Innovation(China), 2021, 2, 100077.

#	Article	IF	CITATIONS
4747	Exposure to high fructose corn syrup during adolescence in the mouse alters hepatic metabolism and the microbiome in a sexâ€specific manner. Journal of Physiology, 2021, 599, 1487-1511.	1.3	19
4748	A Review on the Health Effects of Pesticides Based on Host Gut Microbiome and Metabolomics. Frontiers in Molecular Biosciences, 2021, 8, 632955.	1.6	20
4749	Can we modulate the breastfed infant gut microbiota through maternal diet?. FEMS Microbiology Reviews, 2021, 45, .	3.9	18
4750	Exploring the impact of gut microbiota and diet on breast cancer risk and progression. International Journal of Cancer, 2021, 149, 494-504.	2.3	22
4751	Inflammatory Mechanisms Underlying Nonalcoholic Steatohepatitis and the Transition to Hepatocellular Carcinoma. Cancers, 2021, 13, 730.	1.7	35
4752	Aggregating Knockoffs for False Discovery Rate Control with an Application to Gut Microbiome Data. Entropy, 2021, 23, 230.	1.1	1
4753	Understanding connections and roles of gut microbiome in cardiovascular diseases. Canadian Journal of Microbiology, 2021, 67, 101-111.	0.8	14
4754	Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Frontiers in Neuroscience, 2021, 15, 613120.	1.4	32
4755	Association of Gut Hormones and Microbiota with Vascular Dysfunction in Obesity. Nutrients, 2021, 13, 613.	1.7	16
4756	The Gastrointestinal Microbiota of the Common Marmoset (<i>Callithrix jacchus</i>). ILAR Journal, 2020, 61, 188-198.	1.8	7
4757	Is Probiotic Supplementation Useful for the Management of Body Weight and Other Anthropometric Measures in Adults Affected by Overweight and Obesity with Metabolic Related Diseases? A Systematic Review and Meta-Analysis. Nutrients, 2021, 13, 666.	1.7	28
4758	Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress. Translational Psychiatry, 2021, 11, 131.	2.4	73
4759	No impact of a short-term climatic "El Niño―fluctuation on gut microbial diversity in populations of the Galápagos marine iguana (Amblyrhynchus cristatus). Die Naturwissenschaften, 2021, 108, 7.	0.6	4
4760	A Review on the Role of Food-Derived Bioactive Molecules and the Microbiota–Gut–Brain Axis in Satiety Regulation. Nutrients, 2021, 13, 632.	1.7	23
4761	Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. International Journal of Molecular Sciences, 2021, 22, 2121.	1.8	16
4762	A Newly Developed Synbiotic Yogurt Prevents Diabetes by Improving the Microbiome–Intestine–Pancreas Axis. International Journal of Molecular Sciences, 2021, 22, 1647.	1.8	15
4763	An overview of obesity mechanisms in humans: Endocrine regulation of food intake, eating behaviour and common determinants of body weight. Diabetes, Obesity and Metabolism, 2021, 23, 17-35.	2.2	27
4764	Gut Microbiota at the Intersection of Alcohol, Brain, and the Liver. Journal of Clinical Medicine, 2021, 10, 541.	1.0	18

#	Article	IF	CITATIONS
" 4765	Innate Immune Cells and Hypertension: Neutrophils and Neutrophil Extracellular Traps (NETs). , 2021, 11, 1575-1589.		23
4766	Smilax china L. polyphenols alleviates obesity and inflammation by modulating gut microbiota in high fat/high sucrose diet-fed C57BL/6J mice. Journal of Functional Foods, 2021, 77, 104332.	1.6	31
4767	Navy Bean Supplementation in Established High-Fat Diet-Induced Obesity Attenuates the Severity of the Obese Inflammatory Phenotype. Nutrients, 2021, 13, 757.	1.7	10
4768	Obesity, Early Life Gut Microbiota, and Antibiotics. Microorganisms, 2021, 9, 413.	1.6	30
4769	Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut, 2021, 70, 1486-1494.	6.1	129
4770	Association between Gut Microbial Diversity and Carotid Intima-Media Thickness. Medicina (Lithuania), 2021, 57, 195.	0.8	16
4771	Mitigation of Obesity-Related Systemic Low-Grade Inflammation and Gut Microbial Dysbiosis in Mice with Nanosilver Supplement. ACS Applied Bio Materials, 2021, 4, 2570-2582.	2.3	6
4772	Three Novel Dietary Phenolic Compounds from Pickled <i>Raphanus Sativus L</i> . Inhibit Lipid Accumulation in Obese Mice by Modulating the Gut Microbiota Composition. Molecular Nutrition and Food Research, 2021, 65, e2000780.	1.5	23
4773	Potato extract inhibits lipase activity and ameliorates gut microbiome dysbiosis and weight gain in mice fed a high-fat diet. Applied Biological Chemistry, 2021, 64, .	0.7	5
4774	Association between the Frequency of Daily Toothbrushing and Development of Nonalcoholic Fatty Liver Disease. Digestive Diseases, 2021, 39, 646-652.	0.8	3
4775	Healthy Gut, Healthy Bones: Targeting the Gut Microbiome to Promote Bone Health. Frontiers in Endocrinology, 2020, 11, 620466.	1.5	25
4776	Antiobesity Effect of Novel Probiotic Strains in a Mouse Model of High-Fat Diet–Induced Obesity. Probiotics and Antimicrobial Proteins, 2021, 13, 1054-1067.	1.9	14
4777	Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging, 2021, 13, 6330-6345.	1.4	35
4778	Fat, Sugar or Gut Microbiota in Reducing Cardiometabolic Risk: Does Diet Type Really Matter?. Nutrients, 2021, 13, 639.	1.7	4
4779	<i>Enterococcus faecium</i> R0026 Combined with <i>Bacillus subtilis</i> R0179 Prevent Obesity-Associated Hyperlipidemia and Modulate Gut Microbiota in C57BL/6 Mice. Journal of Microbiology and Biotechnology, 2021, 31, 181-188.	0.9	15
4780	Early-life effects of juvenile Western diet and exercise on adult gut microbiome composition in mice. Journal of Experimental Biology, 2021, 224, .	0.8	33
4781	Regulation of Intestinal Inflammation by Dietary Fats. Frontiers in Immunology, 2020, 11, 604989.	2.2	36
4782	Study of Probiotic Effects of Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus plantarum 299v Strains on Biochemical and Morphometric Parameters of Rabbits after Obesity Induction. Biology, 2021, 10, 131.	1.3	4

#	Article	IF	CITATIONS
4783	Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants, 2021, 10, 270.	2.2	104
4784	Out of our skull, in our skin: the Microbiota-Gut-Brain axis and the Extended Cognition Thesis. Biology and Philosophy, 2021, 36, 1.	0.7	13
4785	The intestinal microbiota as a predictor for antidepressant treatment outcome in geriatric depression: a prospective pilot study. International Psychogeriatrics, 2022, 34, 33-45.	0.6	15
4786	Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets. BMC Microbiology, 2021, 21, 85.	1.3	34
4787	Effects of domestication on the gut microbiota parallel those of human industrialization. ELife, 2021, 10, .	2.8	42
4788	Dietary Influences on the Microbiota–Gut–Brain Axis. International Journal of Molecular Sciences, 2021, 22, 3502.	1.8	37
4789	Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Advanced Drug Delivery Reviews, 2021, 170, 44-70.	6.6	10
4790	PUL-Mediated Plant Cell Wall Polysaccharide Utilization in the Gut Bacteroidetes. International Journal of Molecular Sciences, 2021, 22, 3077.	1.8	14
4791	Angiotensin (1–7) Expressing Probiotic as a Potential Treatment for Dementia. Frontiers in Aging, 2021, 2, .	1.2	2
4792	Vitamin E delta-tocotrienol and metabolite 13'-carboxychromanol inhibit colitis-associated colon tumorigenesis and modulate gut microbiota in mice. Journal of Nutritional Biochemistry, 2021, 89, 108567.	1.9	32
4793	Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. Advanced Science, 2021, 8, 2003542.	5.6	26
4794	Effects of culture methods on the nutrient levels, physiological characteristics and intestinal microbiota of the innkeeper worm <i>Urechis unicinctus</i> . Aquaculture Research, 2021, 52, 3843-3853.	0.9	2
4795	Nutrition-based interventions for mood disorders. Expert Review of Neurotherapeutics, 2021, 21, 303-315.	1.4	25
4796	Specific Microbial Taxa and Functional Capacity Contribute to Chicken Abdominal Fat Deposition. Frontiers in Microbiology, 2021, 12, 643025.	1.5	28
4797	Comparative Analysis of Gut Microbiota in Captive and Wild Oriental White Storks: Implications for Conservation Biology. Frontiers in Microbiology, 2021, 12, 649466.	1.5	17
4798	Lantibiotics Produced by Oral Inhabitants as a Trigger for Dysbiosis of Human Intestinal Microbiota. International Journal of Molecular Sciences, 2021, 22, 3343.	1.8	5
4799	Characteristics of the gut microbiome profile in obese patients with colorectal cancer. JGH Open, 2021, 5, 498-507.	0.7	8
4800	A murine model of tuberculosis/type 2 diabetes comorbidity for investigating the microbiome, metabolome and associated immune parameters. Animal Models and Experimental Medicine, 2021, 4, 181-188.	1.3	6

#	Article	IF	CITATIONS
4801	Supplementary feeding of cattle-yak in the cold season alters rumen microbes, volatile fatty acids, and expression of <i>SGLT1</i> in the rumen epithelium. PeerJ, 2021, 9, e11048.	0.9	7
4802	Lactulose significantly increased the relative abundance of <i>Bifidobacterium</i> and <i>Blautia</i> in mice feces as revealed by 16S rRNA amplicon sequencing. Journal of the Science of Food and Agriculture, 2021, 101, 5721-5729.	1.7	6
4803	Faecalibacterium prausnitzii: A Next-Generation Probiotic in Gut Disease Improvement. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021, 2021, 1-10.	0.7	37
4804	Calorie restriction prevents age-related changes in the intestinal microbiota. Aging, 2021, 13, 6298-6329.	1.4	11
4805	Strength Exercise Confers Protection in Central Nervous System Autoimmunity by Altering the Gut Microbiota. Frontiers in Immunology, 2021, 12, 628629.	2.2	19
4806	Intestine-on-a-chip: Next level inÂvitro research model of the human intestine. Current Opinion in Toxicology, 2021, 25, 6-14.	2.6	22
4807	A diet-specific microbiota drives Salmonella Typhimurium to adapt its in vivo response to plant-derived substrates. Animal Microbiome, 2021, 3, 24.	1.5	7
4809	Modeling Longitudinal Microbiome Compositional Data: A Two-Part Linear Mixed Model with Shared Random Effects. Statistics in Biosciences, 2021, 13, 243-266.	0.6	2
4810	Gut microbiota-mediated improvement of metabolic disorders by Qingzhuan tea in high fat diet-fed mice. Journal of Functional Foods, 2021, 78, 104366.	1.6	25
4811	The Role of the Gut Microbiota in the Gut–Brain Axis in Obesity: Mechanisms and Future Implications. International Journal of Molecular Sciences, 2021, 22, 2993.	1.8	26
4812	Fecal Microbiota Transplantation beyond Clostridioides Difficile Infection. Clinical Endoscopy, 2021, 54, 149-151.	0.6	0
4813	Dietary supplemental xylooligosaccharide modulates nutrient digestibility, intestinal morphology, and gut microbiota in laying hens. Animal Nutrition, 2021, 7, 152-162.	2.1	37
4814	Dysbiosis of the shrimp (<i>Penaeus monodon</i>) gut microbiome with AHPND outbreaks revealed by 16S rRNA metagenomics analysis. Aquaculture Research, 2021, 52, 3336-3349.	0.9	19
4815	Postoperative Complications Are Associated with Long-Term Changes in the Gut Microbiota Following Colorectal Cancer Surgery. Life, 2021, 11, 246.	1.1	8
4816	Changes in the gut microbiome community of nonhuman primates following radiation injury. BMC Microbiology, 2021, 21, 93.	1.3	35
4817	Mulberry leaf phenolics and fiber exert antiâ€obesity through the gut microbiotaâ€host metabolism pathway. Journal of Food Science, 2021, 86, 1432-1447.	1.5	22
4819	Gut microbiota from mice with cerebral ischemia-reperfusion injury affects the brain in healthy mice. Aging, 2021, 13, 10058-10074.	1.4	12
4820	Gut microbiome associations with outcome following co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) in pigs immunized with a PRRS modified live virus vaccine. Veterinary Microbiology, 2021, 254, 109018.	0.8	5

#	Article	IF	CITATIONS
4821	Gut microbiota composition associated with hepatic fibrosis in nonâ€obese patients with nonâ€alcoholic fatty liver disease. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 2275-2284.	1.4	26
4823	Taxonomic composition and variation in the gut microbiota of laboratory mice. Mammalian Genome, 2021, 32, 297-310.	1.0	9
4825	Characteristics of the intestinal microbiome in ankylosing spondylitis. Experimental and Therapeutic Medicine, 2021, 22, 676.	0.8	21
4826	Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 632335.	1.5	63
4827	Association between aging-dependent gut microbiome dysbiosis and dry eye severity in C57BL/6 male mouse model: a pilot study. BMC Microbiology, 2021, 21, 106.	1.3	20
4828	Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacological Research, 2021, 166, 105517.	3.1	16
4829	Obesity Drives an Oral Microbiota Signature of Female Patients with Periodontitis: A Pilot Study. Diagnostics, 2021, 11, 745.	1.3	7
4830	The gut–brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Molecular Metabolism, 2021, 46, 101175.	3.0	29
4831	Connecting the dots: Targeting the microbiome in drug toxicity. Medicinal Research Reviews, 2022, 42, 83-111.	5.0	8
4832	Gut microbiota in nonalcoholic fatty liver diseases with and without type-2 diabetes mellitus. European Journal of Gastroenterology and Hepatology, 2021, 33, e548-e554.	0.8	12
4833	Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. International Journal of Molecular Sciences, 2021, 22, 3715.	1.8	71
4834	Nutritional Programming with Dietary Soybean Meal and Its Effect on Gut Microbiota in Zebrafish (<i>Danio rerio</i>). Zebrafish, 2021, 18, 125-138.	0.5	13
4835	Coleus forskohlii and Garcinia indica extracts attenuated lipid accumulation by regulating energy metabolism and modulating gut microbiota in obese mice. Food Research International, 2021, 142, 110143.	2.9	9
4836	A cross-sectional study on gut microbiota in prostate cancer patients with prostatectomy or androgen deprivation therapy. Prostate Cancer and Prostatic Diseases, 2021, 24, 1063-1072.	2.0	13
4837	Isolated Pea Resistant Starch Substrates with Different Structural Features Modulate the Production of Short-Chain Fatty Acids and Metabolism of Microbiota in Anaerobic Fermentation In Vitro. Journal of Agricultural and Food Chemistry, 2021, 69, 5392-5404.	2.4	31
4838	Non-Alcoholic Fatty Liver Disease in Obese Youth With Insulin Resistance and Type 2 Diabetes. Frontiers in Endocrinology, 2021, 12, 639548.	1.5	35
4839	Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2882-2913.	5.9	36
4840	Chronic oral exposure to pesticides and their consequences on metabolic regulation: role of the microbiota. European Journal of Nutrition, 2021, 60, 4131-4149.	1.8	15

#	Article	IF	CITATIONS
4841	Fecal Microbiota Perspective for Evaluation of Prebiotic Potential of Bamboo Hemicellulose Hydrolysate in Mice: A Preliminary Study. Microorganisms, 2021, 9, 888.	1.6	3
4842	Cesarean delivery and metabolic health and inflammation biomarkers during mid-childhood and early adolescence. Pediatric Research, 2022, 91, 672-680.	1.1	4
4843	Consumers' Preferences and Willingness to Pay for Personalised Nutrition. Applied Health Economics and Health Policy, 2021, 19, 757-767.	1.0	6
4844	DisBalance: a platform to automatically build balance-based disease prediction models and discover microbial biomarkers from microbiome data. Briefings in Bioinformatics, 2021, 22, .	3.2	10
4845	The Effects of Non-Nutritive Sweetener Consumption in the Pediatric Populations: What We Know, What We Don't, and What We Need to Learn. Frontiers in Endocrinology, 2021, 12, 625415.	1.5	15
4847	Bovine Milk Oligosaccharides and Human Milk Oligosaccharides Modulate the Gut Microbiota Composition and Volatile Fatty Acid Concentrations in a Preclinical Neonatal Model. Microorganisms, 2021, 9, 884.	1.6	13
4849	NAFLD-Associated HCC: Progress and Opportunities. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 223-239.	1.8	33
4850	Coronavirus disease–2019 and the intestinal tract: An overview. World Journal of Gastroenterology, 2021, 27, 1255-1266.	1.4	20
4851	Nutritional Effects of the Enteral Nutritional Formula on Regulation of Gut Microbiota and Metabolic Level in Type 2 Diabetes Mellitus Mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 1855-1869.	1.1	5
4852	Current Aspects of the Role of Autoantibodies Directed Against Appetite-Regulating Hormones and the Gut Microbiome in Eating Disorders. Frontiers in Endocrinology, 2021, 12, 613983.	1.5	18
4853	Effects of High-Fat Diet on Carcinogen-Induced Pancreatic Cancer and Intestinal Microbiota in C57BL/6 Wild-Type Mice. Pancreas, 2021, 50, 564-570.	0.5	2
4854	Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients, 2021, 13, 1389.	1.7	46
4855	Comparison of Argentinean microbiota with other geographical populations reveals different taxonomic and functional signatures associated with obesity. Scientific Reports, 2021, 11, 7762.	1.6	8
4856	Environmental Influences on the Human Microbiome and Implications for Noncommunicable Disease. Annual Review of Public Health, 2021, 42, 277-292.	7.6	54
4857	Antibiotic Followed by a Potential Probiotic Increases Brown Adipose Tissue, Reduces Biometric Measurements, and Changes Intestinal Microbiota Phyla in Obesity. Probiotics and Antimicrobial Proteins, 2021, 13, 1621-1631.	1.9	1
4858	Genetically determined SCFA concentration modifies the association of dietary fiber intake with changes in bone mineral density during weight loss: The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. American Journal of Clinical Nutrition, 2021, 114, 42-48.	2.2	6
4859	A Moderate Reduction of Dietary Crude Protein Provide Comparable Growth Performance and Improve Metabolism via Changing Intestinal Microbiota in Sushan Nursery Pigs. Animals, 2021, 11, 1166.	1.0	4
4860	Deep Transcranial Magnetic Stimulation Affects Gut Microbiota Composition in Obesity: Results of Randomized Clinical Trial. International Journal of Molecular Sciences, 2021, 22, 4692.	1.8	14

#	Article	IF	CITATIONS
4861	The Potential Impact of Selected Bacterial Strains on the Stress Response. Healthcare (Switzerland), 2021, 9, 494.	1.0	6
4862	Cichorium pumilum Jacq Extract Inhibits LPS-Induced Inflammation via MAPK Signaling Pathway and Protects Rats From Hepatic Fibrosis Caused by Abnormalities in the Gut-Liver Axis. Frontiers in Pharmacology, 2021, 12, 683613.	1.6	11
4863	Anna Karenina and the subgingival microbiome associated with periodontitis. Microbiome, 2021, 9, 97.	4.9	17
4864	Fecal Bacterial Microbiota of Healthy Free-Ranging, Healthy Corralled, and Chronic Diarrheic Corralled Rhesus Macaques (<i>Macaca mulatta</i>). Comparative Medicine, 2021, 71, 152-165.	0.4	3
4865	Glycoursodeoxycholic Acid Ameliorates Atherosclerosis and Alters Gut Microbiota in Apolipoprotein E–Deficient Mice. Journal of the American Heart Association, 2021, 10, e019820.	1.6	18
4866	Role of Gut Microbiota in Human Health and Diseases. Current Nutrition and Food Science, 2021, 17, 374-383.	0.3	3
4867	Using high-abundance proteins as guides for fast and effective peptide/protein identification from human gut metaproteomic data. Microbiome, 2021, 9, 80.	4.9	14
4868	Obesity and Liver Cancer in Japan: A Comprehensive Review. Anticancer Research, 2021, 41, 2227-2237.	0.5	5
4869	The Neuroimmune Role of Intestinal Microbiota in the Pathogenesis of Cardiovascular Disease. Journal of Clinical Medicine, 2021, 10, 1995.	1.0	5
4870	LPS-enriched small extracellular vesicles from metabolic syndrome patients trigger endothelial dysfunction by activation of TLR4. Metabolism: Clinical and Experimental, 2021, 118, 154727.	1.5	12
4871	The Potential Roles of Very Low Calorie, Very Low Calorie Ketogenic Diets and Very Low Carbohydrate Diets on the Gut Microbiota Composition. Frontiers in Endocrinology, 2021, 12, 662591.	1.5	28
4872	A Review of Inflammatory Bowel Disease: A Model of Microbial, Immune and Neuropsychological Integration. Public Health Reviews, 2021, 42, 1603990.	1.3	43
4873	Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101504.	2.2	16
4874	Chain lengthâ€dependent inulin alleviates dietâ€induced obesity and metabolic disorders in mice. Food Science and Nutrition, 2021, 9, 3470-3482.	1.5	9
4875	Oral administration of camellia oil ameliorates obesity and modifies the gut microbiota composition in mice fed a high-fat diet. FEMS Microbiology Letters, 2021, 368, .	0.7	23
4876	Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. Journal of Nutrition, 2021, 151, 1703-1716.	1.3	7
4877	The Influence of Red Cabbage Extract Nanoencapsulated with Brassica Plasma Membrane Vesicles on the Gut Microbiome of Obese Volunteers. Foods, 2021, 10, 1038.	1.9	14
4878	Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms, 2021, 9, 1017.	1.6	16

#	Article	IF	CITATIONS
4879	Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655.	1.7	225
4880	Nutraceuticals & microbiota: review. Minerva Gastroenterology, 2021, , .	0.3	1
4881	Selection and Characterization of Probiotic Bacteria Exhibiting Antiadipogenic Potential in 3T3-L1 Preadipocytes. Probiotics and Antimicrobial Proteins, 2022, 14, 72-86.	1.9	8
4882	The lignan-rich fraction from Sambucus Williamsii Hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats. Biomedicine and Pharmacotherapy, 2021, 137, 111372.	2.5	11
4883	Diet, habitat environment and lifestyle conversion affect the gut microbiomes of giant pandas. Science of the Total Environment, 2021, 770, 145316.	3.9	27
4884	Different Associations between Tonsil Microbiome, Chronic Tonsillitis, and Intermittent Hypoxemia among Obstructive Sleep Apnea Children of Different Weight Status: A Pilot Case-Control Study. Journal of Personalized Medicine, 2021, 11, 486.	1.1	8
4885	Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet. Cell Metabolism, 2021, 33, 873-887.	7.2	53
4886	Intestinal microbiota and diabetic kidney diseases: the Role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101484.	2.2	42
4887	Host-microbial interactions in the metabolism of different dietary fats. Cell Metabolism, 2021, 33, 857-872.	7.2	29
4888	Gut Dysbiosis Associated with Antibiotics and Disease Severity and Its Relation to Mortality in Critically III Patients. Digestive Diseases and Sciences, 2022, 67, 2420-2432.	1.1	19
4889	Comparative Population Genetics in the Human Gut Microbiome. Genome Biology and Evolution, 2022, 14, .	1.1	15
4890	Gut Microbiome and Metabolites in Patients with NAFLD and after Bariatric Surgery: A Comprehensive Review. Metabolites, 2021, 11, 353.	1.3	19
4891	Taxonomic classification of metagenomic sequences from Relative Abundance Index profiles using deep learning. Biomedical Signal Processing and Control, 2021, 67, 102539.	3.5	12
4892	Gut Microbiota Changes in Patients With Major Depressive Disorder Treated With Vortioxetine. Frontiers in Psychiatry, 2021, 12, 641491.	1.3	28
4893	Intestinal microbial diversity is higher in Pacific abalone (Haliotis discus hannai) with slower growth rates. Aquaculture, 2021, 537, 736500.	1.7	19
4894	Effects of Polyphenols in Tea (Camellia sinensis sp.) on the Modulation of Gut Microbiota in Human Trials and Animal Studies. Gastroenterology Insights, 2021, 12, 202-216.	0.7	11
4895	Shiftwork, functional bowel symptoms, and the microbiome. PeerJ, 2021, 9, e11406.	0.9	5
4896	Porphyranâ€derived oligosaccharides alleviate NAFLD and related cecal microbiota dysbiosis in mice. FASEB Journal, 2021, 35, e21458.	0.2	12

#	Article	IF	CITATIONS
4897	Recent advances and health implications of dietary fasting regimens on the gut microbiome. American Journal of Physiology - Renal Physiology, 2021, 320, G847-G863.	1.6	16
4898	Gut Microbiota Aberration in Patients of Systemic Sclerosis and Bleomycin-Induced Mice Model. Frontiers in Cellular and Infection Microbiology, 2021, 11, 647201.	1.8	5
4899	The Influence of Gut Microbiota on the Cardiovascular System Under Conditions of Obesity and Chronic Stress. Current Hypertension Reports, 2021, 23, 31.	1.5	11
4900	Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. Microbiome, 2021, 9, 100.	4.9	56
4901	Gastrokine-1, an anti-amyloidogenic protein secreted by the stomach, regulates diet-induced obesity. Scientific Reports, 2021, 11, 9477.	1.6	5
4902	Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods, 2021, 10, 1197.	1.9	14
4903	Cigarette smoking status alters dysbiotic gut microbes in hypertensive patients. Journal of Clinical Hypertension, 2021, 23, 1431-1446.	1.0	12
4904	The Influence of Diet and Sex on the Gut Microbiota of Lean and Obese JCR:LA-cp Rats. Microorganisms, 2021, 9, 1037.	1.6	6
4905	The interaction between the gut microbiota and dietary carbohydrates in nonalcoholic fatty liver disease. Experimental and Molecular Medicine, 2021, 53, 809-822.	3.2	12
4906	The emerging role of gut microbiota in cardiovascular diseases. Indian Heart Journal, 2021, 73, 264-272.	0.2	18
4907	The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients, 2021, 13, 1654.	1.7	74
4908	The Gut Microbiome and Gastrointestinal Toxicities in Pelvic Radiation Therapy: A Clinical Review. Cancers, 2021, 13, 2353.	1.7	15
4909	Comparison of the Gut Microbiota of Jeju and Thoroughbred Horses in Korea. Veterinary Sciences, 2021, 8, 81.	0.6	4
4910	Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sciences, 2021, 273, 119311.	2.0	73
4911	A Systematic Review of Dietary Influences on Fecal Microbiota Composition and Function among Healthy Humans 1–20 Years of Age. Advances in Nutrition, 2021, 12, 1734-1750.	2.9	10
4912	Different Non-Structural Carbohydrates/Crude Proteins (NCS/CP) Ratios in Diet Shape the Gastrointestinal Microbiota of Water Buffalo. Veterinary Sciences, 2021, 8, 96.	0.6	2
4913	Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Critical Reviews in Food Science and Nutrition, 2022, 62, 7929-7959.	5.4	41
4914	The Beneficial Effects of Edible Kynurenic Acid from Marine Horseshoe Crab (Tachypleus tridentatus) on Obesity, Hyperlipidemia, and Gut Microbiota in High-Fat Diet-Fed Mice. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	10

#	Article	IF	CITATIONS
4915	Effect of Vitamin A Supplementation on Growth Performance, Serum Biochemical Parameters, Intestinal Immunity Response and Gut Microbiota in American Mink (Neovison vison). Animals, 2021, 11, 1577.	1.0	11
4916	Potential biomarkers of infertility associated with microbiome imbalances. American Journal of Reproductive Immunology, 2021, 86, e13438.	1.2	13
4917	Understanding Oral Diseases: Exploring Opportunities from Filipino Oral Microbiome Research. , 0, , .		1
4918	Effects of Dietary Inclusion of Dry Hydrastis canadensis on Laying Performance, Egg Quality, Serum Biochemical Parameters and Cecal Microbiota in Laying Hens. Animals, 2021, 11, 1381.	1.0	2
4919	Gut microbiota changes after metabolic surgery in adult diabetic patients with mild obesity: a randomised controlled trial. Diabetology and Metabolic Syndrome, 2021, 13, 56.	1.2	14
4920	Cellular mechanisms linking cancers to obesity. Cell Stress, 2021, 5, 55-72.	1.4	18
4921	Soil exposure accelerates recovery of the gut microbiota in antibioticâ€treated mice. Environmental Microbiology Reports, 2021, 13, 616-625.	1.0	7
4922	Characterization and description of Faecalibacterium butyricigenerans sp. nov. and F. longum sp. nov., isolated from human faeces. Scientific Reports, 2021, 11, 11340.	1.6	42
4923	Determining Gut Microbial Dysbiosis: a Review of Applied Indexes for Assessment of Intestinal Microbiota Imbalances. Applied and Environmental Microbiology, 2021, 87, .	1.4	51
4924	Intestinal Permeability Is a Mechanical Rheostat in the Pathogenesis of Liver Cirrhosis. International Journal of Molecular Sciences, 2021, 22, 6921.	1.8	16
4925	Selective estrogen receptor modulator lasofoxifene suppresses spondyloarthritis manifestation and affects characteristics of gut microbiota in zymosan-induced SKG mice. Scientific Reports, 2021, 11, 11923.	1.6	6
4926	Effect of sodium butyrate on slaughter performance, serum indexes and intestinal barrier of rabbits. Journal of Animal Physiology and Animal Nutrition, 2021, , .	1.0	4
4927	Nonalcoholic Fatty Liver Disease (NAFLD) as Model of Gut–Liver Axis Interaction: From Pathophysiology to Potential Target of Treatment for Personalized Therapy. International Journal of Molecular Sciences, 2021, 22, 6485.	1.8	40
4928	In Vitro Fecal Fermentation Patterns of Arabinoxylan from Rice Bran on Fecal Microbiota from Normal-Weight and Overweight/Obese Subjects. Nutrients, 2021, 13, 2052.	1.7	10
4929	Correlations Between Intestinal Microbial Community and Hematological Profile in Native Tibetans and Han Immigrants. Frontiers in Microbiology, 2021, 12, 615416.	1.5	8
4930	Gut Microbiota and Host Metabolism: From Proof of Concept to Therapeutic Intervention. Microorganisms, 2021, 9, 1302.	1.6	46
4931	Identification of the molecular mechanisms underlying brisket disease in Holstein heifers via microbiota and metabolome analyses. AMB Express, 2021, 11, 86.	1.4	2
4932	Impact of dietary supplementation with resistant dextrin (NUTRIOSE®) on satiety, glycaemia, and related endpoints, in healthy adults. European Journal of Nutrition, 2021, 60, 4635-4643.	1.8	11

			-
#	Article	IF	CITATIONS
4933	Size-dependent adverse effects of microplastics on intestinal microbiota and metabolic homeostasis in the marine medaka (Oryzias melastigma). Environment International, 2021, 151, 106452.	4.8	116
4934	Adequacy of calcium and vitamin D reduces inflammation, β-catenin signaling, and dysbiotic Parasutterela bacteria in the colon of C57BL/6 mice fed a western-style diet. Journal of Nutritional Biochemistry, 2021, 92, 108613.	1.9	6
4935	Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. EPMA Journal, 2021, 12, 177-197.	3.3	15
4936	â€~GutFeel': an <i>in silico</i> method for predicting gut health status based on the metabolic functional capabilities of the resident microbiome. FEBS Letters, 2021, 595, 1825-1843.	1.3	2
4937	Metabolic and Epigenetics Action Mechanisms of Antiobesity Medicinal Plants and Phytochemicals. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-19.	0.5	22
4938	Shared and distinctive features of the gut microbiome of C57BL/6 mice from different vendors and production sites, and in response to a new vivarium. Lab Animal, 2021, 50, 185-195.	0.2	17
4939	In Vitro Effects of Stachyose on the Human Gut Microbiota. Starch/Staerke, 2021, 73, 2100029.	1.1	10
4940	The alteration of gut microbiota by bioactive peptides: a review. Systems Microbiology and Biomanufacturing, 2021, 1, 363-377.	1.5	9
4941	Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity. Nutrients, 2021, 13, 2028.	1.7	119
4942	Cajanolactone A, a stilbenoid from Cajanus cajan, inhibits energy intake and lipid synthesis/storage, and promotes energy expenditure in ovariectomized mice. Biomedicine and Pharmacotherapy, 2021, 138, 111491.	2.5	1
4943	Fecal g. Streptococcus and g. Eubacterium_coprostanoligenes_group combined with sphingosine to modulate the serum dyslipidemia in high-fat diet mice. Clinical Nutrition, 2021, 40, 4234-4245.	2.3	60
4944	Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients, 2021, 13, 2229.	1.7	11
4945	Carbohydrates deteriorate fatty liver by activating the inflammatory response. Nutrition Research Reviews, 2022, 35, 252-267.	2.1	7
4946	Decreased Abundance of <i>Akkermansia muciniphila</i> Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes. Advanced Science, 2021, 8, e2100536.	5.6	68
4947	Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism. Beneficial Microbes, 2021, 12, 267-281.	1.0	12
4948	Effect of Fecal Microbiota Transplantation Combined With Mediterranean Diet on Insulin Sensitivity in Subjects With Metabolic Syndrome. Frontiers in Microbiology, 2021, 12, 662159.	1.5	22
4949	<i>Holdemanella biformis</i> improves glucose tolerance and regulates GLPâ€1 signaling in obese mice. FASEB Journal, 2021, 35, e21734.	0.2	18
4950	Adipose Tissue Immunomodulation and Treg/Th17 Imbalance in the Impaired Glucose Metabolism of Children with Obesity. Children, 2021, 8, 554.	0.6	9

#	Article	IF	CITATIONS
4951	Protective effects of different Bacteroides vulgatus strains against lipopolysaccharide-induced acute intestinal injury, and their underlying functional genes. Journal of Advanced Research, 2022, 36, 27-37.	4.4	53
4952	Lower human defensin 5 in elderly people compared to middle-aged is associated with differences in the intestinal microbiota composition: the DOSANCO Health Study. GeroScience, 2022, 44, 997-1009.	2.1	13
4953	Profiling of Intestinal Microbiota in Patients Infected with Respiratory Influenza A and B Viruses. Pathogens, 2021, 10, 761.	1.2	13
4954	The gut microbiota as a therapeutic target for obesity: a scoping review. Nutrition Research Reviews, 2022, 35, 207-220.	2.1	14
4955	Green banana flour supplementation improves obesity-associated systemic inflammation and regulates gut microbiota profile in mice fed high-fat diets. Applied Physiology, Nutrition and Metabolism, 2021, 46, 1469-1475.	0.9	11
4956	Influence of Lactobacillus paracasei HIIO1 Supplementation on Glycemia and Inflammatory Biomarkers in Type 2 Diabetes: A Randomized Clinical Trial. Foods, 2021, 10, 1455.	1.9	32
4957	Direct supplementation with Urolithin A overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. European Journal of Clinical Nutrition, 2022, 76, 297-308.	1.3	38
4958	Study of Fermented Mealworm (<i>Tenebrio molitor</i> L.) as a Novel Prebiotic for Intestinal Microbiota. Journal of the Korean Society of Food Science and Nutrition, 2021, 50, 543-550.	0.2	1
4959	Interleukin-17 in Liver Disease Pathogenesis. Seminars in Liver Disease, 2021, 41, 507-515.	1.8	27
4960	Preventing Colorectal Cancer through Prebiotics. Microorganisms, 2021, 9, 1325.	1.6	24
4961	The Effect of High Fat Diet on Cerebrovascular Health and Pathology: A Species Comparative Review. Molecules, 2021, 26, 3406.	1.7	18
4962	The promising biological role of postbiotics derived from probiotic <i>Lactobacillus</i> species in reproductive health. Critical Reviews in Food Science and Nutrition, 2022, 62, 8829-8841.	5.4	17
4963	Nutritional Intake by Meal Time Zone in Geriatric Patients Is Related to Nutritional Assessment Index. Journal of Clinical Medicine Research, 2021, 13, 334-342.	0.6	1
4964	Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders?. Frontiers in Endocrinology, 2021, 12, 639856.	1.5	29
4965	Dietary anthocyanin-rich extract of açai protects from diet-induced obesity, liver steatosis, and insulin resistance with modulation of gut microbiota in mice. Nutrition, 2021, 86, 111176.	1.1	37
4966	Obesity-related gut hormones and cancer: novel insight into the pathophysiology. International Journal of Obesity, 2021, 45, 1886-1898.	1.6	8
4967	The role of the intestinal microbiota in eating disorders – bulimia nervosa and binge eating disorder. Psychiatry Research, 2021, 300, 113923.	1.7	9
4968	Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health: A special reference to zebrafish. Environmental Pollution, 2021, 279, 116925.	3.7	26

#	Article	IF	CITATIONS
4969	Effect of a Nutritionally Balanced Diet Comprising Whole Grains and Vegetables Alone or in Combination with Probiotic Supplementation on the Gut Microbiota. Preventive Nutrition and Food Science, 2021, 26, 121-131.	0.7	3
4970	Modulatory Effect of Probiotic Lactobacillus rhamnosus PB01 on Mechanical Sensitivity in a Female Diet-Induced Obesity Model. Pain Research and Management, 2021, 2021, 1-8.	0.7	5
4971	Characterization of the gut microbiota in Chinese children with overweight and obesity using 16S rRNA gene sequencing. PeerJ, 2021, 9, e11439.	0.9	16
4972	Unhealthy Lifestyle and Gut Dysbiosis: A Better Understanding of the Effects of Poor Diet and Nicotine on the Intestinal Microbiome. Frontiers in Endocrinology, 2021, 12, 667066.	1.5	82
4973	Potential of an Enzyme Mixture of Glucose Oxidase, Glucosyl Transferase, and Fructosyl Transferase as an Antidiabetic Medicine. Biomedicines, 2021, 9, 745.	1.4	0
4974	Maternal gut microbiota displays minor changes in overweight and obese women with GDM. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 2131-2139.	1.1	8
4975	Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends in Food Science and Technology, 2021, 112, 764-779.	7.8	8
4976	High-Fat Diet Induced Gut Microbiota Alterations Associating With Ghrelin/Jak2/Stat3 Up-Regulation to Promote Benign Prostatic Hyperplasia Development. Frontiers in Cell and Developmental Biology, 2021, 9, 615928.	1.8	14
4977	A Multiomic Approach to Investigate the Effects of a Weight Loss Program on the Intestinal Health of Overweight Horses. Frontiers in Veterinary Science, 2021, 8, 668120.	0.9	7
4978	Lower impact of vonoprazan–amoxicillin dual therapy on gut microbiota for <i>Helicobacter pylori</i> eradication. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 3314-3321.	1.4	21
4979	Changes in soil and rat gut microbial diversity after long-term exposure to the chiral fungicide epoxiconazole. Chemosphere, 2021, 272, 129618.	4.2	10
4980	Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends in Food Science and Technology, 2021, 112, 362-381.	7.8	34
4981	Sphingolipids in metabolic disease: The good, the bad, and the unknown. Cell Metabolism, 2021, 33, 1293-1306.	7.2	109
4982	Probiotics as a biological detoxification tool of food chemical contamination: A review. Food and Chemical Toxicology, 2021, 153, 112306.	1.8	48
4983	Assessing the relationship between the rumen microbiota and feed efficiency in Nellore steers. Journal of Animal Science and Biotechnology, 2021, 12, 79.	2.1	37
4984	The Immune System through the Lens of Alcohol Intake and Gut Microbiota. International Journal of Molecular Sciences, 2021, 22, 7485.	1.8	15
4985	The Associations between Diet and Socioeconomic Disparities and the Intestinal Microbiome in Preadolescence. Nutrients, 2021, 13, 2645.	1.7	11
4986	Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants, 2021, 10, 1229.	2.2	41

# 4987	ARTICLE A comprehensive approach for microbiota and health monitoring in mouse colonies using	IF 1.5	Citations 8
4988	metagenomic shotgun sequencing. Animal Microbiome, 2021, 3, 53. Effects of rearing system (floor vs. cage) and sex on performance, meat quality and enteric microorganism of yellow feather broilers. Journal of Integrative Agriculture, 2021, 20, 1907-1920.	1.7	16
4989	Dysbiosis of gut microbiota after cholecystectomy is associated with nonâ€alcoholic fatty liver disease in mice. FEBS Open Bio, 2021, 11, 2329-2339.	1.0	4
4990	Manipulation of Gut Microbiota Using Acacia Gum Polysaccharide. ACS Omega, 2021, 6, 17782-17797.	1.6	24
4991	Multi-Pharmacology of Berberine in Atherosclerosis and Metabolic Diseases: Potential Contribution of Gut Microbiota. Frontiers in Pharmacology, 2021, 12, 709629.	1.6	15
4992	Dysbiosis of intestinal microbiota in early life aggravates high-fat diet induced dysmetabolism in adult mice. BMC Microbiology, 2021, 21, 209.	1.3	8
4993	Review: Effect of Gut Microbiota and Its Metabolite SCFAs on Radiation-Induced Intestinal Injury. Frontiers in Cellular and Infection Microbiology, 2021, 11, 577236.	1.8	38
4994	Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism. Microbial Biotechnology, 2022, 15, 844-861.	2.0	23
4995	Effect of a TSPO ligand on retinal pigment epithelial cholesterol homeostasis in high-fat fed mice, implication for age-related macular degeneration. Experimental Eye Research, 2021, 208, 108625.	1.2	12
4996	Constipation induced gut microbiota dysbiosis exacerbates experimental autoimmune encephalomyelitis in C57BL/6 mice. Journal of Translational Medicine, 2021, 19, 317.	1.8	26
4997	Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomedicine and Pharmacotherapy, 2021, 139, 111661.	2.5	106
4998	The clinical impact of maternal weight on offspring health: lights and shadows in breast milk metabolome. Expert Review of Proteomics, 2021, 18, 571-606.	1.3	1
4999	Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. Npj Biofilms and Microbiomes, 2021, 7, 60.	2.9	23
5000	Probiotics and Prebiotics as a Strategy for Non-Alcoholic Fatty Liver Disease, a Narrative Review. Foods, 2021, 10, 1719.	1.9	14
5001	Synbiotic Supplementation Improves Obesity Index and Metabolic Biomarkers in Thai Obese Adults: A Randomized Clinical Trial. Foods, 2021, 10, 1580.	1.9	19
5002	Dietary Supplementation of Shredded, Steam-Exploded Pine Particles Decreases Pathogenic Microbes in the Cecum of Acute Heat-Stressed Broilers. Animals, 2021, 11, 2252.	1.0	12
5003	Exploring the Gut Microbiota and Cardiovascular Disease. Metabolites, 2021, 11, 493.	1.3	22
5004	Comparative Analysis of the Fecal Bacterial Microbiota of Wintering Whooper Swans (Cygnus) Tj ETQq1 1 0.784	314 rgBT	/Oyerlock 10

#	Article	IF	CITATIONS
5005	Obesity-Induced Dysbiosis Exacerbates IFN-Î ³ Production and Pulmonary Inflammation in the Mycobacterium tuberculosis Infection. Cells, 2021, 10, 1732.	1.8	6
5006	Cooked Black Turtle Beans Ameliorate Insulin Resistance and Restore Gut Microbiota in C57BL/6J Mice on High-Fat Diets. Foods, 2021, 10, 1691.	1.9	10
5007	<i>Helicobacter pylori</i> infection-induced changes in the intestinal microbiota of 14-year-old or 15-year-old Japanese adolescents: a cross-sectional study. BMJ Open, 2021, 11, e047941.	0.8	3
5008	Metabolic and enzymatic elucidation of cooperative degradation of red seaweed agarose by two human gut bacteria. Scientific Reports, 2021, 11, 13955.	1.6	8
5009	Gut Microbiome and Metabolome Profiles Associated with High-Fat Diet in Mice. Metabolites, 2021, 11, 482.	1.3	50
5010	Oral Microbiota: A Major Player in the Diagnosis of Systemic Diseases. Diagnostics, 2021, 11, 1376.	1.3	32
5012	Effects of the Cistanche tubulosa Aqueous Extract on the Gut Microbiota of Mice with Intestinal Disorders. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	0.5	6
5013	Effect of Artificial Sweetener Aspartame on Gut Microbiota - A Narrative Review. International Journal for Research in Applied Science and Engineering Technology, 2021, 9, 3238-3241.	0.1	0
5014	Effects of varying dietary black garlic supplementation on the growth, immune response, digestive and antioxidant activities, intestinal microbiota of <i>Litopenaeus vannamei</i> and its resistance to <i>Vibrio parahaemolyticus</i> infection. Aquaculture Nutrition, 2021, 27, 1699-1720.	1.1	3
5015	Walnut green husk polysaccharides prevent obesity, chronic inflammatory responses, nonalcoholic fatty liver disease and colonic tissue damage in high-fat diet fed rats. International Journal of Biological Macromolecules, 2021, 182, 879-898.	3.6	36
5016	Effect of gut microbiome on minor complications after a colonoscopy. Intestinal Research, 2021, 19, 341-348.	1.0	5
5017	Recent advancements in the exploitation of the gut microbiome in the diagnosis and treatment of colorectal cancer. Bioscience Reports, 2021, 41, .	1.1	5
5018	Effects of Dietary Supplementation with Protected Sodium Butyrate on Gut Microbiota in Growing-Finishing Pigs. Animals, 2021, 11, 2137.	1.0	15
5019	A homogeneous polysaccharide from Lycium barbarum: Structural characterizations, anti-obesity effects and impacts on gut microbiota. International Journal of Biological Macromolecules, 2021, 183, 2074-2087.	3.6	71
5020	Effects of probiotics fermented milk products on obesity measure among adults: A systematic review and meta-analysis of clinical trials. Journal of Functional Foods, 2021, 82, 104494.	1.6	12
5021	Influences of food contaminants and additives on gut microbiota as well as protective effects of dietary bioactive compounds. Trends in Food Science and Technology, 2021, 113, 180-192.	7.8	15
5022	16S rRNA gene amplicon sequencing of gut microbiota in gestational diabetes mellitus and their correlation with disease risk factors. Journal of Endocrinological Investigation, 2022, 45, 279-289.	1.8	17
5023	High sucrose diet-induced dysbiosis of gut microbiota promotes fatty liver and hyperlipidemia in rats. Journal of Nutritional Biochemistry, 2021, 93, 108621.	1.9	33

ARTICLE IF CITATIONS Diet-induced dysbiosis of the maternal gut microbiome in early life programming of 5024 1.0 15 neurodevelopmental disorders. Neuroscience Research, 2021, 168, 3-19. Gut Microbiota and Pathophysiology of Depressive Disorder. Annals of Nutrition and Metabolism, 1.0 2021, 77, 11-20. The Effect of Probiotics on Various Diseases and their Therapeutic Role: An Update Review. Journal of 5026 0.3 5 Pure and Applied Microbiology, 2021, 15, 1042-1058. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel 5027 1.8 Diseases. International Journal of Molecular Sciences, 2021, 22, 9139. Maternal Obesity Increases Oxidative Stress in Placenta and It Is Associated With Intestinal 5028 1.8 15 Microbiota. Frontiers in Cellular and Infection Microbiology, 2021, 11, 671347. The Novel Interplay between Commensal Gut Bacteria and Metabolites in Diet-Induced Hyperlipidemic Rats Treated with Simvastatin. Journal of Proteome Research, 2021, , . 5029 1.8 Gut microbiome in acute pancreatitis: A review based on current literature. World Journal of 5030 1.4 20 Gastroenterology, 2021, 27, 5019-5036. Obese rats intervened with Rhizoma coptidis revealed differential gene expression and microbiota by 1.2 serum metabolomics. BMC Complementary Medicine and Therapies, 2021, 21, 208. Bifidobacterium reduction is associated with high blood pressure in children with type 1 diabetes 5032 2.5 15 mellitus. Biomedicine and Pharmacotherapy, 2021, 140, 111736. Obesity as the 21st Century's major disease: The role of probiotics and prebiotics in prevention and treatment. Food Bioscience, 2021, 42, 101115. Effects of Herring Milt Hydrolysates and Fractions in a Diet-Induced Obesity Model. Foods, 2021, 10, 5034 3 1.9 2046. Microbial composition differs between production systems and is associated with growth 1.5 performance and carcass quality in pigs. Animal Microbiome, 2021, 3, 57. Prevotella copri increases fat accumulation in pigs fed with formula diets. Microbiome, 2021, 9, 175. 5036 4.9 100 Effects of Condensed Tannins Supplementation on Animal Performance, Phylogenetic Microbial 1.0 Changes, and In Vitro Methane Emissions in Steers Grazing Winter Wheat. Animals, 2021, 11, 2391. Grazing and Supplementation of Dietary Yeast Probiotics Shape the Gut Microbiota and Improve the 5038 9 1.5 Immunity of Black Fattening Goats (Capra hircus). Frontiers in Microbiology, 2021, 12, 666837. A randomized double-blind placebo controlled pilot study of probiotics in adolescents with severe 5039 obesity. Journal of Diabetes and Metabolic Disorders, 2021, 20, 1289-1300. 5040 Autoimmunity and COVID-19 â€" The microbiotal connection. Autoimmunity Reviews, 2021, 20, 102865. 2.525 Effect of Dietary Protein Levels on Dynamic Changes and Interactions of Ruminal Microbiota and 5041 1.5 Metabolites in Yaks on the Qinghai-Tibetan Plateau. Frontiers in Microbiology, 2021, 12, 684340.

#	Article	IF	CITATIONS
5042	Nanoplastics Induce More Serious Microbiota Dysbiosis and Inflammation in the Gut of Adult Zebrafish than Microplastics. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 640-650.	1.3	53
5043	Characteristics of gut microbiota in people with obesity. PLoS ONE, 2021, 16, e0255446.	1.1	95
5044	Owning a Pet Is Associated with Changes in the Composition of Gut Microbiota and Could Influence the Risk of Metabolic Disorders in Humans. Animals, 2021, 11, 2347.	1.0	3
5045	Ultra-high Pressure Treatment Controls <i>In Vitro</i> Fecal Fermentation Rate of Insoluble Dietary Fiber from <i>Rosa Roxburghii</i> Tratt Pomace and Induces Butyrogenic Shifts in Microbiota Composition. Journal of Agricultural and Food Chemistry, 2021, 69, 10638-10647.	2.4	10
5046	Quercetin Ameliorates Insulin Resistance and Restores Gut Microbiome in Mice on High-Fat Diets. Antioxidants, 2021, 10, 1251.	2.2	36
5047	Microbiome analysis, the immune response and transplantation in the era of next generation sequencing. Human Immunology, 2021, 82, 883-901.	1.2	7
5048	Circadian Rhythm Modulation of Microbes During Health and Infection. Frontiers in Microbiology, 2021, 12, 721004.	1.5	10
5049	Seasonal Dietary Shifts Alter the Gut Microbiota of Avivorous Bats: Implication for Adaptation to Energy Harvest and Nutritional Utilization. MSphere, 2021, 6, e0046721.	1.3	16
5050	Influence of gut microbiome on the human physiology. Systems Microbiology and Biomanufacturing, 2022, 2, 217-231.	1.5	4
5051	Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients, 2021, 13, 2795.	1.7	183
5052	Effects of Short-Term Dietary Fiber Intervention on Gut Microbiota in Young Healthy People. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 3507-3516.	1.1	17
5053	Gut-flora metabolites is not associated with synchronous carotid artery plaque and non-alcoholic fatty liver disease in asymptomatic adults. Medicine (United States), 2021, 100, e27048.	0.4	3
5054	Gut microbiota as a target for prevention and treatment of type 2 diabetes: Mechanisms and dietary natural products. World Journal of Diabetes, 2021, 12, 1146-1163.	1.3	23
5055	Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients, 2021, 13, 3067.	1.7	11
5056	Ganoderma amboinense polysaccharide prevents obesity by regulating gut microbiota in high-fat-diet mice. Food Bioscience, 2021, 42, 101107.	2.0	14
5057	Pilot Trial of Vitamin D3 and Calcifediol in Healthy Vitamin D Deficient Adults: Does It Change the Fecal Microbiome?. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3464-3476.	1.8	2
5058	Oral angiotensin-(1–7) peptide modulates intestinal microbiota improving metabolic profile in obese mice. Protein and Peptide Letters, 2021, 28, .	0.4	3
5059	Microbiome in human cancers. Access Microbiology, 2021, 3, 000247.	0.2	2

#	Article	IF	CITATIONS
5060	Gut Microbiota: Novel Therapeutic Target of Ginsenosides for the Treatment of Obesity and Its Complications. Frontiers in Pharmacology, 2021, 12, 731288.	1.6	11
5061	Metabolomic Predictors of Non-alcoholic Steatohepatitis and Advanced Fibrosis in Children. Frontiers in Microbiology, 2021, 12, 713234.	1.5	14
5062	Role of Epigenetics in Type 2 Diabetes and Obesity. Biomedicines, 2021, 9, 977.	1.4	5
5063	The Role of Gut Microbiota and Its Produced Metabolites in Obesity, Dyslipidemia, Adipocyte Dysfunction, and Its Interventions. Metabolites, 2021, 11, 531.	1.3	25
5064	The Gut-Microbiota-Brain Axis in Autism Spectrum Disorder. , 0, , 95-114.		5
5065	Clostridium butyricum MIYAIRI 588 Modifies Bacterial Composition under Antibiotic-Induced Dysbiosis for the Activation of Interactions via Lipid Metabolism between the Gut Microbiome and the Host. Biomedicines, 2021, 9, 1065.	1.4	18
5066	Multispecies probiotics promote perceived human health and wellbeing: insights into the value of retrospective studies on user experiences. Beneficial Microbes, 2021, 12, 413-430.	1.0	4
5067	Matrix Effects on the Delivery Efficacy of Bifidobacterium animalis subsp. <i>lactis</i> BB-12 on Fecal Microbiota, Gut Transit Time, and Short-Chain Fatty Acids in Healthy Young Adults. MSphere, 2021, 6, e0008421.	1.3	11
5068	Hepatic microbiome in healthy lean and obese humans. JHEP Reports, 2021, 3, 100299.	2.6	15
5070	Koumiss promotes <i>Mycobacterium</i> bovis infection by disturbing intestinal flora and inhibiting endoplasmic reticulum stress. FASEB Journal, 2021, 35, e21777.	0.2	4
5071	Dietary and Pharmacologic Manipulations of Host Lipids and Their Interaction With the Gut Microbiome in Non-human Primates. Frontiers in Medicine, 2021, 8, 646710.	1.2	6
5072	Unsaturated alginate oligosaccharides (UAOS) protects against dextran sulfate sodium-induced colitis associated with regulation of gut microbiota. Journal of Functional Foods, 2021, 83, 104536.	1.6	20
5073	Microbe defines the efficacy of chemotherapeutic drug: a complete paradigm. FEMS Microbiology Letters, 2021, 368, .	0.7	2
5074	Gut microbiota: a target for intervention in obesity. Expert Review of Gastroenterology and Hepatology, 2021, 15, 1169-1179.	1.4	11
5075	Exploring Changes in the Host Gut Microbiota During a Controlled Human Infection Model for Campylobacter jejuni. Frontiers in Cellular and Infection Microbiology, 2021, 11, 702047.	1.8	6
5076	Intake of Koji Amazake Improves Defecation Frequency in Healthy Adults. Journal of Fungi (Basel,) Tj ETQq1 1 0.7	784314 rgl	BT ₅ Overloc
5077	Antibiotic-Induced Gut Microbiota Dysbiosis Damages the Intestinal Barrier, Increasing Food Allergy in Adult Mice. Nutrients, 2021, 13, 3315.	1.7	43
5078	Towards Engineering an Ecosystem: A Review of Computational Approaches to Explore and Exploit the Human Microbiome for Healthcare. , 0, , 1.		0

#	Article	IF	Citations
5079	Lactic Acid Bacteria Strains Differently Modulate Gut Microbiota and Metabolic and Immunological Parameters in High-Fat Diet-Fed Mice. Frontiers in Nutrition, 2021, 8, 718564.	1.6	14
5080	Persistent Purine Metabolic Abnormality Induces the Aggravation of Visceral Inflammation and Intestinal Microbiota Dysbiosis in Magang Goose. Frontiers in Veterinary Science, 2021, 8, 737160.	0.9	6
5081	Colonic Fermentation and Acetate Production in Youth with and without Obesity. Journal of Nutrition, 2021, 151, 3292-3298.	1.3	4
5082	Seasonal Changes in the Distinct Taxonomy and Function of the Gut Microbiota in the Wild Ground Squirrel (Spermophilus dauricus). Animals, 2021, 11, 2685.	1.0	8
5083	Fermented rice bran supplementation attenuates chronic colitis-associated extraintestinal manifestations in female C57BL/6N mice. Journal of Nutritional Biochemistry, 2022, 99, 108855.	1.9	10
5084	Characteristics of faecal bacterial flora and volatile fatty acids in Min pig, Landrace pig, and Yorkshire pig. Electronic Journal of Biotechnology, 2021, 53, 33-43.	1.2	6
5087	Discovery of novel glycoside hydrolases from C-glycoside-degrading bacteria using sequence similarity network analysis. Journal of Microbiology, 2021, 59, 931-940.	1.3	1
5088	Effect of Huanglian Decoction on the Intestinal Microbiome in Stress Ulcer (SU) Mice. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	0.5	1
5089	Comparative analysis of fecal microbiota composition diversity in Tibetan piglets suffering from diarrheagenic Escherichia coli (DEC). Microbial Pathogenesis, 2021, 158, 105106.	1.3	18
5090	Lactobacillus reuteri FYNLJ109L1 Attenuating Metabolic Syndrome in Mice via Gut Microbiota Modulation and Alleviating Inflammation. Foods, 2021, 10, 2081.	1.9	17
5091	High-Fat-Diet–Induced Oxidative Stress Linked to the Increased Colonization of Lactobacillus sakei in an Obese Population. Microbiology Spectrum, 2021, 9, e0007421.	1.2	7
5092	Plant Extracts in Obesity: A Role of Gut Microbiota. Frontiers in Nutrition, 2021, 8, 727951.	1.6	12
5093	Recent progress in research on the gut microbiota and highland adaptation on the Qinghaiâ€īibet Plateau. Journal of Evolutionary Biology, 2021, 34, 1514-1530.	0.8	20
5094	Mannose Treatment: A Promising Novel Strategy to Suppress Inflammation. Frontiers in Immunology, 2021, 12, 756920.	2.2	10
5095	The effect of benzo[a]pyrene on the gut microbiota of Nile tilapia (Oreochromis niloticus). Applied Microbiology and Biotechnology, 2021, 105, 7935-7947.	1.7	5
5096	Microbiota-Immune Interactions Regulate Metabolic Disease. Journal of Immunology, 2021, 207, 1719-1724.	0.4	9
5097	Conceptual Relationship Between Traditional Persian Medicine and Modern Nutrition in Obesity in Middle Age. Jundishapur Journal of Natural Pharmaceutical Products, 2021, In Press, .	0.3	0
5098	Structural changes in the gut microbiota community of the black-necked crane (Grus nigricollis) in the wintering period. Archives of Microbiology, 2021, 203, 6203-6214.	1.0	7

#	Article	IF	CITATIONS
5099	Qing-Re-Xiao-Zheng Formula Modulates Gut Microbiota and Inhibits Inflammation in Mice With Diabetic Kidney Disease. Frontiers in Medicine, 2021, 8, 719950.	1.2	15
5100	The Firmicutes/Bacteroidetes ratio of the human gut microbiota is associated with prostate enlargement. Prostate, 2021, 81, 1287-1293.	1.2	33
5103	Differential responses of weaned piglets to supplemental porcine or chicken plasma in diets without inclusion of antibiotics and zinc oxide. Animal Nutrition, 2021, 7, 1173-1181.	2.1	8
5104	Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neuroscience and Biobehavioral Reviews, 2021, 128, 233-243.	2.9	25
5105	Epigallocatechin Gallate (EGCG) Promotes the Immune Function of Ileum in High Fat Diet Fed Mice by Regulating Gut Microbiome Profiling and Immunoglobulin Production. Frontiers in Nutrition, 2021, 8, 720439.	1.6	17
5106	Obesity: Epidemiology, Pathophysiology, and Therapeutics. Frontiers in Endocrinology, 2021, 12, 706978.	1.5	339
5108	High-intensity interval training with probiotic supplementation decreases gene expression of NF-κβ and CXCL2 in small intestine of rats with steatosis. Sport Sciences for Health, 2022, 18, 491-497.	0.4	1
5110	The Mediterranean Diets' effect on Gut Microbial Composition in comparison with the Western Diet: A literature review. Current Nutrition and Food Science, 2021, 17, .	0.3	0
5111	Gut Microbiota-Modulated Metabolomic Profiling Shapes the Etiology and Pathogenesis of Autoimmune Diseases. Microorganisms, 2021, 9, 1930.	1.6	9
5112	Mixed organic acids as an alternative to antibiotics improve serum biochemical parameters and intestinal health of weaned piglets. Animal Nutrition, 2021, 7, 737-749.	2.1	20
5113	Milk replacer supplementation in early life optimizes the development of intestinal microbes in Yimeng black goats. Microbial Pathogenesis, 2021, 161, 105210.	1.3	2
5114	Gut microbiota as a driver of the interindividual variability of cardiometabolic effects from tea polyphenols. Critical Reviews in Food Science and Nutrition, 2023, 63, 1500-1526.	5.4	13
5116	The Effect of Oxidative Stress on the Chicken Ovary: Involvement of Microbiota and Melatonin Interventions. Antioxidants, 2021, 10, 1422.	2.2	28
5117	Impaired Bile Acid Metabolism and Gut Dysbiosis in Mice Lacking Lysosomal Acid Lipase. Cells, 2021, 10, 2619.	1.8	8
5118	Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. Biomedicine and Pharmacotherapy, 2021, 142, 112094.	2.5	17
5119	Coccidia-Microbiota Interactions and Their Effects on the Host. Frontiers in Cellular and Infection Microbiology, 2021, 11, 751481.	1.8	22
5120	New insights in obesity development and possible value of microbiota transplantation. European Journal of Internal Medicine, 2021, 92, 1-2.	1.0	0
5121	Neurobiological approaches of high-fat diet intake in early development and their impact on mood disorders in adulthood: A systematic review. Neuroscience and Biobehavioral Reviews, 2021, 129, 218-230.	2.9	7

Т

#	Article	IF	CITATIONS
5122	Sodium butyrate alleviates cholesterol gallstones by regulating bile acid metabolism. European Journal of Pharmacology, 2021, 908, 174341.	1.7	17
5123	Exogenous Fecal Microbial Transplantation Alters Fearfulness, Intestinal Morphology, and Gut Microbiota in Broilers. Frontiers in Veterinary Science, 2021, 8, 706987.	0.9	14
5124	Polycystic ovary syndrome and cardiovascular risk. Could trimethylamine N-oxide (TMAO) be a major player? A potential upgrade forward in the DOGMA theory. Biomedicine and Pharmacotherapy, 2021, 143, 112171.	2.5	3
5125	The impact of the gut microbiome on toxigenic bacteria. Microbial Pathogenesis, 2021, 160, 105188.	1.3	1
5126	Histology and multi-omic profiling reveal the mixture toxicity of tebuconazole and difenoconazole in adult zebrafish. Science of the Total Environment, 2021, 795, 148777.	3.9	23
5127	Isoquinoline alkaloids induce partial protection of laying hens from the impact of Campylobacter hepaticus (spotty liver disease) challenge. Poultry Science, 2021, 100, 101423.	1.5	11
5128	Dietary four different woody forages differentially affect the growth, feed utilization, apparent digestibility, intestinal morphology and microbiota composition in Nile tilapia (Oreochromis) Tj ETQq0 0 0 rgBT /	Ov ert ock 1	0 3f 50 497
5129	The exposome in practice: an exploratory panel study of biomarkers of air pollutant exposure in Chinese people aged 60–69 years (China BAPE Study). Environment International, 2021, 157, 106866.	4.8	21
5130	Impacts of benzo(a)pyrene exposure on scallop (Chlamys farreri) gut health and gut microbiota composition. Science of the Total Environment, 2021, 799, 149471.	3.9	15
5131	Propamocarb exposure has the potential to accelerate the formation of atherosclerosis in both WT and ApoEâ^'/â^' mice accompanied by gut microbiota dysbiosis. Science of the Total Environment, 2021, 800, 149602.	3.9	7
5132	Gut Microbiota: A New Marker of Cardiovascular Disease. , 2022, , .		0
5133	Beneficial effects of a combination of Clostridium cochlearium and Lactobacillus acidophilus on body weight gain, insulin sensitivity, and gut microbiota in high-fat diet–induced obese mice. Nutrition, 2022, 93, 111439.	1.1	11
5134	Effects of secondary polyethylene microplastic exposure on crucian (Carassius carassius) growth, liver damage, and gut microbiome composition. Science of the Total Environment, 2022, 802, 149736.	3.9	29
5135	Microplastics as an aquatic pollutant affect gut microbiota within aquatic animals. Journal of Hazardous Materials, 2022, 423, 127094.	6.5	46
5136	Long-term chronic exposure to di-(2-ethylhexyl)-phthalate induces obesity via disruption of host lipid metabolism and gut microbiota in mice. Chemosphere, 2022, 287, 132414.	4.2	24
5137	Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. Journal of Nutritional Biochemistry, 2022, 99, 108840.	1.9	80
5138	Fermented soy whey induced changes on intestinal microbiota and metabolic inï¬,uence in mice. Food Science and Human Wellness, 2022, 11, 41-48.	2.2	3
5139	Effects of soy hull polysaccharide on dyslipidemia and pathoglycemia in rats induced by a high-fat-high-sucrose diet. Food Science and Human Wellness, 2022, 11, 49-57.	2.2	16

#	Article	IF	CITATIONS
5140	Epigenetics of Hostâ \in "Human Gut Microbiome Interactions. , 2022, , .		0
5141	Impact of ocean acidification on the intestinal microflora of the Pacific oyster Crassostrea gigas. Aquaculture, 2022, 546, 737365.	1.7	18
5142	Parental exposure to sulfamethazine and nanoplastics alters the gut microbial communities in the offspring of marine madaka (Oryzias melastigma). Journal of Hazardous Materials, 2022, 423, 127003.	6.5	17
5143	Docosahexaenoic acid-rich fish oil prevented insulin resistance by modulating gut microbiome and promoting colonic peptide YY expression in diet-induced obesity mice. Food Science and Human Wellness, 2022, 11, 177-188.	2.2	4
5144	Microbiome and microbiota. Ege Tıp Dergisi, 0, , 88-93.	0.1	3
5145	The early microbiome and subsequent obesity. , 2021, , 137-143.		1
5146	Systematic Review of Nutrition Supplements in Chronic Kidney Diseases: A GRADE Approach. Nutrients, 2021, 13, 469.	1.7	7
5147	Mikrobiom und Gehirn. Der Merkurstab, 2021, 74, 130-148.	0.0	3
5148	Effects of long-term antibiotic treatment on mice urinary aromatic amino acid profiles. Bioscience Reports, 2021, 41, .	1.1	5
5149	Gut microbiota and the immune system and inflammation. , 2021, , 311-333.		0
5150	Gut Microbiota Interactions With Dietary Terpenoids and Nitrogen-Containing Phytochemicals. , 2021, , 124-124.		1
5151	Nobiletin activates thermogenesis of brown and white adipose tissue in highâ€fat dietâ€fed C57BL/6 mice by shaping the gut microbiota. FASEB Journal, 2021, 35, e21267.	0.2	19
5152	From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Frontiers in Cellular Neuroscience, 2020, 14, 612705.	1.8	47
5153	NON-ALCOHOLIC FATTY LIVER DISEASE IN THE CONTEXT OF ALTERED GUT MICROBIOTA. Wiadomości Lekarskie, 2021, 74, 1007-1010.	0.1	1
5154	The Microbiome as an Endocrine Organ. , 2021, , .		0
5155	Exploring the Association of Autism Spectrum Disorders and Constipation through Analysis of the Gut Microbiome. International Journal of Environmental Research and Public Health, 2021, 18, 667.	1.2	17
5156	Inflammatory Bowel Disease: New Insights into the Interplay between Environmental Factors and PPARÎ ³ . International Journal of Molecular Sciences, 2021, 22, 985.	1.8	25
5157	Organic Acids as Alternatives for Antibiotic Growth Promoters Alter the Intestinal Structure and Microbiota and Improve the Growth Performance in Broilers. Frontiers in Microbiology, 2020, 11, 618144.	1.5	41

#	Article	IF	CITATIONS
5158	Correlation of gut Firmicutes/Bacteroidetes ratio with fibrosis and steatosis stratified by body mass index in patients with non-alcoholic fatty liver disease. Bioscience of Microbiota, Food and Health, 2021, 40, 50-58.	0.8	46
5159	Pre-existing Nutritional Deficiencies Associated with Obesity. , 2021, , 27-40.		0
5160	<i>Aurka</i> deficiency in the intestinal epithelium promotes age-induced obesity via propionate-mediated AKT activation. International Journal of Biological Sciences, 2021, 17, 1302-1314.	2.6	6
5161	Increased expression of acyl-CoA oxidase 2 in the kidney with plasma phytanic acid and altered gut microbiota in spontaneously hypertensive rats. Hypertension Research, 2021, 44, 651-661.	1.5	6
5162	Effect of probiotic <i>Lactobacillus plantarum</i> Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World Journal of Gastroenterology, 2021, 27, 107-128.	1.4	47
5164	Nutraceuticals in gastrointestinal disorders. , 2021, , 141-155.		2
5165	Variance Analysis of Intestinal Microbial Diversity of the Noble Scallop (Chlamys nobilis) under Enrofloxacin Exposure. Pakistan Journal of Zoology, 2021, 53, .	0.1	0
5166	Impact of N-Acetylcysteine on the Gut Microbiota in the Piglets Infected With Porcine Epidemic Diarrhea Virus. Frontiers in Veterinary Science, 2020, 7, 582338.	0.9	9
5167	Obesity and Gut Microbiota. , 2021, 04, .		0
5168	<i>Lactobacillus rhamnosus</i> FJSYC4-1 and <i>Lactobacillus reuteri</i> FGSZY33L6 alleviate metabolic syndrome <i>via</i> gut microbiota regulation. Food and Function, 2021, 12, 3919-3930.	2.1	28
5169	Effects of Transanal Irrigation on Gut Microbiota in Pediatric Patients with Spina Bifida. Journal of Clinical Medicine, 2021, 10, 224.	1.0	11
5170	<i>Lactobacillus</i> attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis. Clinical and Molecular Hepatology, 2021, 27, 110-124.	4.5	63
5172	<i>Limosilactobacillus fermentum</i> JL-3 isolated from "Jiangshui―ameliorates hyperuricemia by degrading uric acid. Gut Microbes, 2021, 13, 1-18.	4.3	68
5173	Involvement of Body Temperature Increase and Sympathetic Nerve Activation in Exercise-Induced Microbiota Changes in Mice. SSRN Electronic Journal, 0, , .	0.4	0
5174	The roles of different <i>Bacteroides fragilis</i> strains in protecting against DSS-induced ulcerative colitis and related functional genes. Food and Function, 2021, 12, 8300-8313.	2.1	21
5175	Farm Animals and Pets—Impact on Gut Microbiota. , 2021, , 125-125.		0
5176	Gut Microbiota-Derived Metabolites in the Development of Diseases. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021, 2021, 1-7.	0.7	29
5177	Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection. Biology, 2021, 10, 55.	1.3	16

	CHAHON		
#	ARTICLE Nonsparse Learning with Latent Variables. Operations Research, 2021, 69, 346-359.	IF 1.2	Citations 9
5180	Molecular Tools for Investigating the Gut Microbiota. , 2009, , 33-78.	1,2	1
5181	Fructan Prebiotics Derived from Inulin. , 2009, , 163-205.		18
5182	Metagenomics of the Human Body. , 2011, , .		18
5183	MetaHIT: The European Union Project on Metagenomics of the Human Intestinal Tract. , 2011, , 307-316.		65
5184	Host Genotype and the Effect on Microbial Communities. , 2011, , 15-41.		11
5185	Intestinal Microbiology and Ecology in Inflammatory Bowel Disease. , 2012, , 85-95.		1
5186	Direct-Fed Microbials and Prebiotics for Animals. , 2012, , .		3
5187	Current Status of Practical Applications: Probiotics in Dairy Cattle. , 2012, , 121-135.		2
5188	Obesity, Insulin Resistance Pathway Factors, and Colon Cancer. , 2012, , 111-129.		1
5189	Anti-inflammatory Effects of Probiotics and Their Metabolites: Possible Role for Epigenetic Effects. , 2014, , 127-150.		1
5190	Gut Microbiome and Obesity. , 2014, , 73-82.		2
5191	Gut Microbiome and Obesity. , 2014, , 73-82.		3
5192	Probiotics 101. , 2009, , 41-52.		2
5193	Dynamic Interplay Between Metabolic Syndrome and Immunity. Advances in Experimental Medicine and Biology, 2014, 824, 171-190.	0.8	31
5194	Fecal Microbial Transplant: For Whom, How, and When. , 2016, , 405-413.		1
5195	Bacterial Infections and Cancer Development. , 2015, , 49-74.		1
5196	Efficacy of Probiotics in Prevention of Influenza. Microbiology Monographs, 2015, , 131-147.	0.3	2

		CITATION RE	PORT	
#	Article		IF	CITATIONS
5197	Epigenetics and the Microbiome. , 2017, , 1-25.			1
5198	Disruption of the Microbiota-Gut-Brain (MGB) Axis and Mental Health of Astronauts During Space Travel. , 2019, , 1-22.	Long-Term		1
5199	The Family Lachnospiraceae. , 2014, , 197-201.			30
5200	Lactobacillus: Host–Microbe Relationships. Current Topics in Microbiology and Immunolo 119-154.	gy, 2011, ,	0.7	1
5201	Role of Gut Microbiota in Combating Oxidative Stress. , 2019, , 43-82.			19
5202	Comparison Between the Gut Microbiota in Different Gastrointestinal Segments of Large-Ta and Small-Tailed Han Sheep Breeds with High-Throughput Sequencing. Indian Journal of Mic 2020, 60, 436-450.		1.5	4
5203	Long-Term Metabolic Consequences of Intrauterine Growth Restriction. Current Pediatrics F 2020, 8, 45-55.	leports,	1.7	9
5204	Pathogenesis of Nonalcoholic Fatty Liver Disease. , 2018, , 369-390.e14.			2
5205	Anaerobic Infections. , 2010, , 3083-3089.			1
5207	Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. Ir Journal of Biological Macromolecules, 2020, 159, 725-738.	ternational	3.6	57
5208	Gut microbiome and multiple sclerosis: New insights and perspective. International Immunopharmacology, 2020, 88, 107024.		1.7	30
5209	Effects of Bariatric Surgery on Energy Homeostasis. Canadian Journal of Diabetes, 2017, 41	, 426-431.	0.4	11
5210	Consumption of avenanthramides extracted from oats reduces weight gain, oxidative stress inflammation and regulates intestinal microflora in high fat diet-induced mice. Journal of Fu Foods, 2020, 65, 103774.		1.6	20
5211	A review: Roles of carbohydrates in human diseases through regulation of imbalanced intest microbiota. Journal of Functional Foods, 2020, 74, 104197.	tinal	1.6	18
5212	The effects of 6 mo of supplementation with probiotics and synbiotics on gut microbiota in with prediabetes: A double blind randomized clinical trial. Nutrition, 2020, 79-80, 110854.	the adults	1.1	27
5213	Lait et produits laitiers dans la prévention et le traitement des maladies de pléthore. Bu L'Academie Nationale De Medecine, 2008, 192, 749-758.	lletin De	0.0	8
5214	UPLC-Q-TOF/MS-based Metabolic Profiles of Bioactive Components in Rehmannia glutinosa officinalis Herb Pair by Rat Intestinal Bacteria. Chinese Herbal Medicines, 2017, 9, 147-152.	and Cornus	1.2	8
5215	Disturbances in Microbial and Metabolic Communication across the Gut–Liver Axis Induce Dioxin-like Pollutant: An Integrated Metagenomics and Metabolomics Analysis. Environmen & Technology, 2021, 55, 529-537.		4.6	40

#	Article	IF	CITATIONS
5216	Fat people harbour 'fat' microbes. Nature, 0, , .	13.7	3
5217	Gut microbiota plasticity is correlated with sustained weight loss on a low-carb or low-fat dietary intervention. Scientific Reports, 2020, 10, 1405.	1.6	22
5218	Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis. Clinical Science, 2020, 134, 1521-1535.	1.8	52
5219	A Review of the Role of Gut microbiome in Obesity. E3S Web of Conferences, 2020, 218, 03010.	0.2	1
5220	Childhood infection, antibiotic exposure and subsequent metabolic risk in adolescent and young adult Aboriginal Australians: practical implications. Australian Journal of Primary Health, 2019, 25, 555.	0.4	4
5221	Microbiomes in ruminant protein production and food security CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-11.	0.6	6
5222	The interaction between microbiome and host central nervous system: the gut-brain axis as a potential new therapeutic target in the treatment of obesity and cardiometabolic disease. Expert Opinion on Therapeutic Targets, 2020, 24, 639-653.	1.5	16
5223	Probiotics, with special emphasis on their role in the management of irritable bowel syndrome. South African Journal of Clinical Nutrition, 2011, 24, 63-71.	0.3	2
5224	Method Validation for Extraction of DNA from Human Stool Samples for Downstream Microbiome Analysis. Biopreservation and Biobanking, 2020, 18, 102-116.	0.5	17
5225	Polylactose Exhibits Prebiotic Activity and Reduces Adiposity and Nonalcoholic Fatty Liver Disease in Rats Fed a High-Fat Diet. Journal of Nutrition, 2021, 151, 352-360.	1.3	6
5226	Gut Microbiota and Cardiovascular Diseases. Cardiology in Review, 2021, 29, 195-204.	0.6	22
5227	Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family 'Prevotellaceae' isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1895-1900.	0.8	119
5228	Ruthenibacterium lactatiformans gen. nov., sp. nov., an anaerobic, lactate-producing member of the family Ruminococcaceae isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3041-3049.	0.8	36
5229	Catenibacillus scindens gen. nov., sp. nov., a C-deglycosylating human intestinal representative of the Lachnospiraceae. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3356-3361.	0.8	12
5230	Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella. Journal of Medical Microbiology, 2016, 65, 443-455.	0.7	23
5231	Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology (United) Tj ETQq1 1 0.7	′84 81 4 rg	BT40verlock
5232	Metabolic networks of the human gut microbiota. Microbiology (United Kingdom), 2020, 166, 96-119.	0.7	22
5259	It is about time physicians and clinical microbiologists in infectious diseases investigated the aetiology of obesity. Clinical Microbiology and Infection, 2013, 19, 303-304.	2.8	4

			PORT	
# 5260	ARTICLE Gut fungal dysbiosis and altered bacterialâ€fungal interaction in patients with diarrheaâ€predom irritable bowel syndrome: An explorative study. Neurogastroenterology and Motility, 2020, 32, e		IF 1.6	Citations 22
5261	Prebiotics and Lipid Metabolism. , 0, , 183-192.	13071.		7
5262	The Gut Microbiome: Current Understanding and Future Perspectives. , 0, , 19-40.			2
5263	The Human Intestinal Microbiota and Its Impact on Health. , 0, , 11-32.			1
5264	Optimizing Mixed-Culture Bioprocessing To Convert Wastes into Bioenergy. , 0, , 179-194.			23
5268	Microbial Genomics and Pathogen Discovery. , 0, , 238-251.			1
5269	<i>Bacteroides</i> , <i>Porphyromonas</i> , <i>Prevotella</i> , <i>Fusobacterium</i> , and Other Anaerobic Gram-Negative Rods. , 0, , 967-993.			8
5270	NIH Builds Substantial Human Microbiome Project. Microbe Magazine, 2009, 4, 451-456.		0.4	6
5271	The human ecosystem. BMJ, The, 0, , 0812450.		3.0	1
5272	Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring. JCI I 2018, 3, .	nsight,	2.3	34
5273	Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. Journal of Clinical Investigation, 2015, 125, 1752-1762.		3.9	272
5274	Interactions between gut microbiota and skeletal muscle. Nutrition and Metabolic Insights, 2020 117863882098049.	D, 13,	0.8	23
5277	A report of 10 unrecorded bacterial species of Korea, belonging to the phylum Firmicutes. Journa Species Research, 2016, 5, 235-240.	al of	0.1	1
5278	The Human Microbiota: Composition, Functions, and Therapeutic Potential. Medical Science Rev 2, 92-103.	iew, 0,	0.0	23
5279	Soil is a key factor influencing gut microbiota and its effect is comparable to that exerted by die mice. F1000Research, 0, 7, 1588.	t for	0.8	20
5280	Improving causality in microbiome research: can human genetic epidemiology help?. Wellcome (Research, 2019, 4, 199.	Dpen	0.9	21
5281	Improving causality in microbiome research: can human genetic epidemiology help?. Wellcome (Research, 2019, 4, 199.)pen	0.9	28
5282	Effect of the Synbiotic (<i>B. animalis </i> spp. <i>lactis </i> Bb12 + Oligofru in Obese Subjects. A Randomized, Double-Blind, Controlled Clinical Trial. Journal of Food and Nutrition Research (Newark, Del), 2014, 2, 491-498.	ictose)	0.1	11

#	Article	IF	CITATIONS
5283	Intestinal Microbiome, Small Intestinal Bacterial Overgrowth and Inflammatory Bowel Diseases - What are the Connections?. Current Health Sciences Journal, 2015, 41, 197-203.	0.2	1
5284	The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Bioscience of Microbiota, Food and Health, 2019, 38, 3-9.	0.8	67
5285	Assessment of the effect and safety of salacinol in horses. Journal of Equine Science, 2019, 30, 105-111.	0.2	2
5286	A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics. PLoS Computational Biology, 2016, 12, e1005224.	1.5	36
5287	A joint modeling approach for longitudinal microbiome data improves ability to detect microbiome associations with disease. PLoS Computational Biology, 2020, 16, e1008473.	1.5	7
5288	Phylotyping and Functional Analysis of Two Ancient Human Microbiomes. PLoS ONE, 2008, 3, e3703.	1.1	87
5289	Regulation of Serum Amyloid A3 (SAA3) in Mouse Colonic Epithelium and Adipose Tissue by the Intestinal Microbiota. PLoS ONE, 2009, 4, e5842.	1.1	117
5290	Comparative Analysis of Pyrosequencing and a Phylogenetic Microarray for Exploring Microbial Community Structures in the Human Distal Intestine. PLoS ONE, 2009, 4, e6669.	1.1	719
5291	Lactobacillus casei Abundance Is Associated with Profound Shifts in the Infant Gut Microbiome. PLoS ONE, 2010, 5, e8745.	1.1	107
5292	Vancomycin Treatment of Infective Endocarditis Is Linked with Recently Acquired Obesity. PLoS ONE, 2010, 5, e9074.	1.1	124
5293	Airway Microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis Patients. PLoS ONE, 2010, 5, e11044.	1.1	395
5294	Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine. PLoS ONE, 2011, 6, e20113.	1.1	223
5295	Intestinal Activation of Notch Signaling Induces Rapid Onset Hepatic Steatosis and Insulin Resistance. PLoS ONE, 2011, 6, e20767.	1.1	11
5296	The Gut as Reservoir of Antibiotic Resistance: Microbial Diversity of Tetracycline Resistance in Mother and Infant. PLoS ONE, 2011, 6, e21644.	1.1	111
5297	The Active Human Gut Microbiota Differs from the Total Microbiota. PLoS ONE, 2011, 6, e22448.	1.1	90
5298	Pyrosequencing-Based Analysis of the Mucosal Microbiota in Healthy Individuals Reveals Ubiquitous Bacterial Groups and Micro-Heterogeneity. PLoS ONE, 2011, 6, e25042.	1.1	91
5299	Associations among Organochlorine Pesticides, Methanobacteriales, and Obesity in Korean Women. PLoS ONE, 2011, 6, e27773.	1.1	37
5300	Microbial Biogeography of Public Restroom Surfaces. PLoS ONE, 2011, 6, e28132.	1.1	222

		CITATION REPORT		
#	Article		IF	CITATIONS
5301	Host Plant Induced Variation in Gut Bacteria of Helicoverpa armigera. PLoS ONE, 2012,	7, e30768.	1.1	173
5302	Gut Bacterial Communities in the Giant Land Snail Achatina fulica and Their Modification Sugarcane-Based Diet. PLoS ONE, 2012, 7, e33440.	on by	1.1	53
5303	High Nutrient Transport and Cycling Potential Revealed in the Microbial Metagenome of Sea Lion (Neophoca cinerea) Faeces. PLoS ONE, 2012, 7, e36478.	of Australian	1.1	41
5304	Differential Effects of Two Fermentable Carbohydrates on Central Appetite Regulation Composition. PLoS ONE, 2012, 7, e43263.	and Body	1.1	66
5305	Microbial Regulation of Glucose Metabolism and Cell-Cycle Progression in Mammalian PLoS ONE, 2012, 7, e46589.	Colonocytes.	1.1	119
5306	The Effect of Selected Synbiotics on Microbial Composition and Short-Chain Fatty Acid a Model System of the Human Colon. PLoS ONE, 2012, 7, e47212.	Production in	1.1	90
5307	PhoB Regulates the Survival of Bacteroides fragilis in Peritoneal Abscesses. PLoS ONE,	2013, 8, e53829.	1.1	12
5308	Characterisation of Gut Microbiota in Ossabaw and Göttingen Minipigs as Models of Metabolic Syndrome. PLoS ONE, 2013, 8, e56612.	Obesity and	1.1	107
5309	Edge Principal Components and Squash Clustering: Using the Special Structure of Phyl Placement Data for Sample Comparison. PLoS ONE, 2013, 8, e56859.	ogenetic	1.1	79
5310	Dietary Fat Content and Fiber Type Modulate Hind Gut Microbial Community and Meta the Pig. PLoS ONE, 2013, 8, e59581.	bolic Markers in	1.1	94
5311	The Human Gut Chip "HuGChipâ€; an Explorative Phylogenetic Microarray for Dete Microbiome Diversity at Family Level. PLoS ONE, 2013, 8, e62544.	rmining Gut	1.1	46
5312	Birth by Caesarean Section and Prevalence of Risk Factors for Non-Communicable Dise Adults: A Birth Cohort Study. PLoS ONE, 2013, 8, e74301.	ases in Young	1.1	38
5313	Bacterial Community Mapping of the Mouse Gastrointestinal Tract. PLoS ONE, 2013, 8	i, e74957.	1.1	363
5314	In Vitro Fermentation of NUTRIOSE® FB06, a Wheat Dextrin Soluble Fibre, in a Contir Human Colonic Model System. PLoS ONE, 2013, 8, e77128.	uous Culture	1.1	37
5315	Lactobacillus rhamnosus GG Protects against Non-Alcoholic Fatty Liver Disease in Mice 2014, 9, e80169.	. PLoS ONE,	1.1	228
5316	Development and Validation of a Microarray for the Investigation of the CAZymes Enco Human Gut Microbiome. PLoS ONE, 2013, 8, e84033.	oded by the	1.1	36
5317	A Taxonomic Signature of Obesity in the Microbiome? Getting to the Guts of the Matte 2014, 9, e84689.	er. PLoS ONE,	1.1	277
5318	Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 a rhamnosus CNCM I-4036 on Hepatic Steatosis in Zucker Rats. PLoS ONE, 2014, 9, e98		1.1	58

		CITATION REPORT		
#	Article		IF	CITATIONS
5319	Influence of Fasting during Moult on the Faecal Microbiota of Penguins. PLoS ONE, 201	4, 9, e99996.	1.1	41
5320	Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome 9, e100916.	. PLoS ONE, 2014,	1.1	40
5321	Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metaboli in the Diet-Induced Obese Rat. PLoS ONE, 2014, 9, e109841.	c Interactions	1.1	240
5322	Stool Phospholipid Signature is Altered by Diet and Tumors. PLoS ONE, 2014, 9, e1143	52.	1.1	14
5323	Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity. P 9, e114799.	LoS ONE, 2014,	1.1	31
5324	Tumor Grafting Induces Changes of Gut Microbiota in Athymic Nude Mice in the Preser of Medicinal Gynostemma Saponins. PLoS ONE, 2015, 10, e0126807.	ce and Absence	1.1	24
5325	The Gut Microbiota of Wild Mice. PLoS ONE, 2015, 10, e0134643.		1.1	103
5326	Cloacal Microbiome Structure in a Long-Distance Migratory Bird Assessed Using Deep 2 Pyrosequencing. PLoS ONE, 2015, 10, e0137401.	l6sRNA	1.1	70
5327	High-Throughput Sequencing—The Key to Rapid Biodiversity Assessment of Marine M 2015, 10, e0140342.	etazoa?. PLoS ONE,	1.1	45
5328	Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose of in Mice. PLoS ONE, 2016, 11, e0146177.	or High Fat Diet	1.1	25
5329	Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations. PLoS e0148386.	ONE, 2016, 11,	1.1	41
5330	The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PL 11, e0150502.	.oS ONE, 2016,	1.1	196
5331	Intestinal Microbiota Is Influenced by Gender and Body Mass Index. PLoS ONE, 2016, 1	1, e0154090.	1.1	511
5332	Effects of Genetically Modified Milk Containing Human Beta-Defensin-3 on Gastrointes Mice. PLoS ONE, 2016, 11, e0159700.	tinal Health of	1.1	6
5333	Impact of Helminth Infections and Nutritional Constraints on the Small Intestine Microl ONE, 2016, 11, e0159770.	piota. PLoS	1.1	60
5334	Impact of Environmental Microbes on the Composition of the Gut Microbiota of Adult I PLoS ONE, 2016, 11, e0160568.	BALB/c Mice.	1.1	6
5335	Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS ONE, 202	l6, 11, e0161174.	1.1	294
5336	Neuropeptide Y Overexpressing Female and Male Mice Show Divergent Metabolic but N Responses to Prenatal Metformin Exposure. PLoS ONE, 2016, 11, e0163805.	Not Gut Microbial	1.1	35

#	Article	IF	CITATIONS
5337	Daesiho-Tang Is an Effective Herbal Formulation in Attenuation of Obesity in Mice through Alteration of Gene Expression and Modulation of Intestinal Microbiota. PLoS ONE, 2016, 11, e0165483.	1.1	56
5338	The rhizospheric microbial community structure and diversity of deciduous and evergreen forests in Taihu Lake area, China. PLoS ONE, 2017, 12, e0174411.	1.1	49
5339	Increased anxiety-like behavior is associated with the metabolic syndrome in non-stressed rats. PLoS ONE, 2017, 12, e0176554.	1.1	53
5340	Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach. PLoS ONE, 2017, 12, e0177189.	1.1	20
5341	Assessment of gut microbiota populations in lean and obese Zucker rats. PLoS ONE, 2017, 12, e0181451.	1.1	29
5342	Effects of oral florfenicol and azithromycin on gut microbiota and adipogenesis in mice. PLoS ONE, 2017, 12, e0181690.	1.1	47
5343	Comparison of antibiotic supplementation versus a yeast-based prebiotic on the cecal microbiome of commercial broilers. PLoS ONE, 2017, 12, e0182805.	1.1	20
5344	Microbiota of little penguins and short-tailed shearwaters during development. PLoS ONE, 2017, 12, e0183117.	1.1	23
5345	Quercetin metabolism by fecal microbiota from healthy elderly human subjects. PLoS ONE, 2017, 12, e0188271.	1.1	40
5346	Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome. PLoS ONE, 2018, 13, e0190368.	1.1	63
5347	Efecto de los probióticos en el control de la obesidad en humanos: hipótesis no demostradas. Revista Espanola De Nutricion Humana Y Dietetica, 2014, 16, 100.	0.1	2
5348	Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones, 2017, 13, 223-234.	0.9	27
5349	The changes of gut microbiota associated with age and lifestyle. Obesity and Metabolism, 2015, 12, 3-9.	0.4	2
5350	An RNA-centric view on gut Bacteroidetes. Biological Chemistry, 2020, 402, 55-72.	1.2	11
5351	Edible Lily Bulb Modulates Colonic Barrier Functions, Microflora and Fermentation in Rats Fed a High-Fat Diet. Journal of Nutritional Health & Food Science, 2014, 2, .	0.3	5
5352	Gut Microbiome-Brain Communications Regulate Host Physiology and Behavior. Journal of Nutritional Health & Food Science, 2015, 3, .	0.3	3
5353	Diet, Gut Microbiota and Obesity. Journal of Nutritional Health & Food Science, 2015, 3, 01-06.	0.3	4
5354	Food Additive P-80 Impacts Mouse Gut Microbiota Promoting Intestinal Inflammation, Obesity and Liver Dysfunction. SOJ Microbiology & Infectious Diseases, 2016, 4, 01-10.	0.7	60

#	Article	IF	CITATIONS
5355	Imaging of brain glucose uptake by PET in obesity and cognitive dysfunction: life-course perspective. Endocrine Connections, 2019, 8, R169-R183.	0.8	17
5356	MANAGEMENT OF ENDOCRINE DISEASE: Non-alcoholic fatty liver disease: a multidisciplinary approach towards a cardiometabolic liver disease. European Journal of Endocrinology, 2020, 183, R57-R73.	1.9	24
5357	Metabolism of Microbiota in Critical Illness (Review and Postulates). Obshchaya Reanimatologiya, 2019, 15, 62-79.	0.2	10
5358	Small Intestinal Bacterial Overgrowth Is Associated with Non- Alcoholic Fatty Liver Disease. Journal of Gastrointestinal and Liver Diseases, 2020, 25, 159-165.	0.5	60
5359	Diet, the Gut Microbiome and Heart Failure. Cardiac Failure Review, 2019, 5, 119-122.	1.2	17
5360	Effect of alcohol tincture of Aralia elata on the organism of rats and their gut microbiota against the background of excessive fat diet. Regulatory Mechanisms in Biosystems, 2020, 10, 497-506.	0.5	14
5361	Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption. Regulatory Mechanisms in Biosystems, 2020, 11, 153-161.	0.5	13
5362	One cell, one love: a journal for microbial research. Microbial Cell, 2014, 1, 1-5.	1.4	4
5363	[RETRACTION]Translational research into gut microbiota: new horizons in obesity treatment. Arquivos Brasileiros De Endocrinologia E Metabologia, 2009, 53, 139-144.	1.3	32
5364	The potential role of the intestinal gut microbiota in obesity and the metabolic syndrome. Food Science and Technology Bulletin, 2009, 5, 71-92.	0.5	3
5366	An altered fecal microbiota profile in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity. Revista Espanola De Enfermedades Digestivas, 2019, 111, 275-282.	0.1	41
5367	Interplay between gonadal hormones and postnatal overfeeding in defining sex-dependent differences in gut microbiota architecture. Aging, 2020, 12, 19979-20000.	1.4	14
5368	Alpha-ketoglutarate (AKG) lowers body weight and affects intestinal innate immunity through influencing intestinal microbiota. Oncotarget, 2017, 8, 38184-38192.	0.8	25
5369	Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget, 2017, 8, 95176-95191.	0.8	160
5370	Protection from chemotherapy- and antibiotic-mediated dysbiosis of the gut microbiota by a probiotic with digestive enzymes supplement. Oncotarget, 2018, 9, 30919-30935.	0.8	33
5371	Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration. Oncotarget, 2016, 7, 1096-1106.	0.8	39
5372	Emerging risk factors for nonalcoholic fatty liver disease associated hepatocellular carcinoma. Hepatoma Research, 2020, 2020, .	0.6	11
5373	Correlation between Body Mass Index and Gut Microbiota in Adults. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 778-787.	0.0	3

#	Article	IF	CITATIONS
5374	High relative abundance of firmicutes and increased TNF-α levels correlate with obesity in children. Salud Publica De Mexico, 2017, 60, 5.	0.1	29
5375	The gut microbiota in neuropsychiatric disorders. Acta Neurobiologiae Experimentalis, 2018, 78, 69-81.	0.4	55
5376	Bacterial Microbiota and Fatty Acids in the Faeces of Overweight and Obese Children. Polish Journal of Microbiology, 2018, 67, 339-345.	0.6	41
5377	Diet Induces Reproducible Alterations in the Mouse and Human Gut Microbiome. SSRN Electronic Journal, 0, , .	0.4	2
5378	Intestinal microbiota as a key factor in the formation of immunity and tolerance. Probiotics capabilities. Meditsinskiy Sovet, 2020, , 92-100.	0.1	5
5379	The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Current Medicinal Chemistry, 2019, 26, 3567-3583.	1.2	74
5380	Gut-liver Axis and Microbiota in NAFLD: Insight Pathophysiology for Novel Therapeutic Target. Current Pharmaceutical Design, 2013, 19, 5314-5324.	0.9	98
5381	Gut Microbiota, Obesity and Bariatric Surgery: Current Knowledge and Future Perspectives. Current Pharmaceutical Design, 2019, 25, 2038-2050.	0.9	19
5382	Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Current Pharmaceutical Design, 2020, 26, 2630-2641.	0.9	11
5383	Role of the Phytochemical Compounds like Modulators in Gut Microbiota and Oxidative Stress. Current Pharmaceutical Design, 2020, 26, 2642-2656.	0.9	9
5384	Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition. Current Protein and Peptide Science, 2020, 21, 785-798.	0.7	26
5385	Amino Acids Regulate Glycolipid Metabolism and Alter Intestinal Microbial Composition. Current Protein and Peptide Science, 2020, 21, 761-765.	0.7	10
5386	IL-17 Axis Driven Inflammation in Non-Alcoholic Fatty Liver Disease Progression. Current Drug Targets, 2015, 16, 1315-1323.	1.0	71
5387	Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar?. Current Drug Targets, 2015, 16, 1332-1346.	1.0	14
5388	Drug Development Strategy for Type 2 Diabetes: Targeting Positive Energy Balances. Current Drug Targets, 2019, 20, 879-890.	1.0	3
5389	Impact of Dietary Fats on Brain Functions. Current Neuropharmacology, 2018, 16, 1059-1085.	1.4	95
5390	Bilateral Interrelationship of Diabetes and Periodontium. Current Diabetes Reviews, 2019, 15, 357-362.	0.6	16
5391	Prevention of Gestational Diabetes Mellitus (GDM) and Probiotics: Mechanism of Action: A Review. Current Diabetes Reviews, 2020, 16, 538-545.	0.6	31

#	Article	IF	CITATIONS
5392	Role of Gut Microbiota in Obesity, Type 2 Diabetes and Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2014, 13, 305-311.	0.8	94
5393	A Possible Link of Gut Microbiota Alteration in Type 2 Diabetes and Alzheimer's Disease Pathogenicity: An Update. CNS and Neurological Disorders - Drug Targets, 2014, 13, 383-390.	0.8	41
5394	Reciprocity in Microbiome and Immune System Interactions and its Implications in Disease and Health. Inflammation and Allergy: Drug Targets, 2014, 13, 94-104.	1.8	25
5395	The Potential Use of Grape Phytochemicals for Preventing the Development of Intestine-Related and Subsequent Inflammatory Diseases. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2019, 19, 794-802.	0.6	9
5396	Diet-Induced Alteration of Microbiota and Development of Obesity, Nonalcoholic Fatty Liver Disease, and Diabetes: Study Protocol of a Prospective Study. JMIR Research Protocols, 2019, 8, e11553.	0.5	6
5397	Predictors Linking Obesity and the Gut Microbiome (the PROMISE Study): Protocol and Recruitment Strategy for a Cross-Sectional Study on Pathways That Affect the Gut Microbiome and Its Impact on Obesity. JMIR Research Protocols, 2019, 8, e14529.	0.5	9
5398	Significant Differences in the Bacterial Microbiome of the Pharynx and Skin in Patients with Psoriasis Compared with Healthy Controls. Acta Dermato-Venereologica, 2020, 100, adv00273.	0.6	12
5399	Interaction between gut microbiota and host immune cells. Inflammation and Regeneration, 2015, 35, 140-147.	1.5	1
5400	Obesity, salivary glands and oral pathology. Colombia Medica, 2018, 49, 280-287.	0.7	9
5402	Commentary: Target Intestinal Microbiota to Alleviate Disease Progression in Amyotrophic Lateral Sclerosis. Journal of Neurology and Neuromedicine, 2017, 2, 13-15.	0.9	6
5403	GUT MICROBIOTA ALTERATIONS BY NUTRITIONAL SUPPLEMENT IMUREGEN. Military Medical Science Letters (Vojenske Zdravotnicke Listy), 2020, 89, 114-125.	0.2	2
5404	The mind-body-microbial continuum. Dialogues in Clinical Neuroscience, 2011, 13, 55-62.	1.8	109
5405	Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. Dialogues in Clinical Neuroscience, 2018, 20, 63-73.	1.8	288
5406	Metagenomic Analysis of the Dynamic Changes in the Gut Microbiome of the Participants of the MARS-500 Experiment, Simulating Long Term Space Flight. Acta Naturae, 2013, 5, 116-125.	1.7	38
5407	Gut microbiota and the development of obesity. Nutricion Hospitalaria, 2012, 27, 1408-14.	0.2	32
5409	Intestinal microbiota; relevance to obesity and modulation by prebiotics and probiotics. Nutricion Hospitalaria, 2013, 28, 1039-48.	0.2	47
5411	Intestinal microbiota, obesity and prebiotics. Polish Journal of Microbiology, 2015, 64, 93-100.	0.6	35
5412	Gut microbiota variations in a rescued spotted seal Phoca largha pup. Aquatic Biology, 2020, 29, 105-109.	0.5	5

#	Article	IF	CITATIONS
5413	Developmental Changes in Gut Microbiota and Enzyme Activity Predict Obesity Risk in Rats Arising From Reduced Nests. Physiological Research, 2011, 60, 337-346.	0.4	24
5414	Efficacy and safety of autoprobiotic therapy in patients with type 2 diabetes mellitus. Medical Alphabet, 2020, 1, 48-53.	0.0	4
5416	Differences in Gut Microbial and Serum Biochemical Indices Between Sows With Different Productive Capacities During Perinatal Period. Frontiers in Microbiology, 2019, 10, 3047.	1.5	22
5417	Skin and Gut Microbiome in Psoriasis: Gaining Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Frontiers in Microbiology, 2020, 11, 589726.	1.5	81
5418	Gut Microbiome Composition Remains Stable in Individuals with Diabetes-Related Early to Late Stage Chronic Kidney Disease. Biomedicines, 2021, 9, 19.	1.4	11
5419	Gallstone Disease, Obesity and the Firmicutes/Bacteroidetes Ratio as a Possible Biomarker of Gut Dysbiosis. Journal of Personalized Medicine, 2021, 11, 13.	1.1	121
5420	Dandelion (Taraxacum mongolicum HandMazz.) Supplementation-Enhanced Rumen Fermentation through the Interaction between Ruminal Microbiome and Metabolome. Microorganisms, 2021, 9, 83.	1.6	22
5421	Gut Microbiota Profile of Obese Diabetic Women Submitted to Roux-en-Y Gastric Bypass and Its Association with Food Intake and Postoperative Diabetes Remission. Nutrients, 2020, 12, 278.	1.7	47
5422	Combined Soluble Fiber-Mediated Intestinal Microbiota Improve Insulin Sensitivity of Obese Mice. Nutrients, 2020, 12, 351.	1.7	28
5423	Aging, Gut Microbiota and Metabolic Diseases: Management through Physical Exercise and Nutritional Interventions. Nutrients, 2021, 13, 16.	1.7	24
5424	Plasma and Dietary Antioxidant Status as Cardiovascular Disease Risk Factors: A Review of Human Studies. Nutrients, 2013, 5, 2969-3004.	1.7	150
5425	Are nanomaterials potential new generation antimicrobial feed additives in livestock?. Indian Journal of Animal Health, 2019, 58, 105.	0.2	12
5426	Changes of Mouse Gut Microbiota Diversity and Composition by Modulating Dietary Protein and Carbohydrate Contents: A Pilot Study. Preventive Nutrition and Food Science, 2016, 21, 57-61.	0.7	39
5427	Diarrhoea-predominant irritable bowel syndromedistinguishable by 16S rRNA gene phylotype quantifcation. World Journal of Gastroenterology, 2009, 15, 5936.	1.4	157
5428	Effects of four <i>Bifidobacteria</i> on obesity in high-fat diet induced rats. World Journal of Gastroenterology, 2010, 16, 3394.	1.4	207
5429	Gut bacteria alteration in obese people and its relationship with gene polymorphism. World Journal of Gastroenterology, 2011, 17, 1076.	1.4	75
5430	Impairment of gastrointestinal quality of life in severely obese patients. World Journal of Gastroenterology, 2014, 20, 7027.	1.4	12
5431	Breath volatile organic compounds for the gut-fatty liver axis: promise, peril, and path forward. World Journal of Gastroenterology, 2014, 20, 9017-25.	1.4	7

#	Article	IF	CITATIONS
5432	Endocrine causes of nonalcoholic fatty liver disease. World Journal of Gastroenterology, 2015, 21, 11053.	1.4	69
5433	Effects ofLigustrum robustumon gut microbes and obesity in rats. World Journal of Gastroenterology, 2015, 21, 13042.	1.4	22
5434	Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective. World Journal of Gastroenterology, 2016, 22, 7463.	1.4	65
5435	Characteristics of fecal microbial communities in patients with non-anastomotic biliary strictures after liver transplantation. World Journal of Gastroenterology, 2017, 23, 8217-8226.	1.4	6
5436	Natural products that target macrophages in treating non-alcoholic steatohepatitis. World Journal of Gastroenterology, 2020, 26, 2155-2165.	1.4	6
5437	Effect of Lactobacillus sakei, a Probiotic Derived from Kimchi, on Body Fat in Koreans with Obesity: A Randomized Controlled Study. Endocrinology and Metabolism, 2020, 35, 425-434.	1.3	35
5438	The potential role of phenolic compounds on modulating gut microbiota in obesity. Journal of Food and Drug Analysis, 2020, 28, 195-205.	0.9	10
5439	Comparison of Fecal Microbial Communities between White and Black Pigs. Journal of Applied Biological Chemistry, 2015, 58, 369-375.	0.2	8
5440	Association between Helicobacter pylori infection and overweight or obesity in a Chinese population. Journal of Infection in Developing Countries, 2015, 9, 945-953.	0.5	32
5441	Cultivable intestinal microbiota of yellowtail juveniles (Seriola lalandi) in an aquaculture system. Latin American Journal of Aquatic Research, 2017, 41, 395-403.	0.2	21
5442	Changes in intestinal flora in patients with type 2 diabetes on a low‑fat diet during 6 months of follow‑up. Experimental and Therapeutic Medicine, 2020, 20, 1-1.	0.8	8
5443	Lactobacillus salivarius BP121 prevents cisplatin‑induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p‑cresol sulfate via alleviating dysbiosis. International Journal of Molecular Medicine, 2020, 45, 1130-1140.	1.8	45
5445	ls it who you are or what you do that is important in the human gut?. Beneficial Microbes, 2013, 4, 219-222.	1.0	10
5446	Impact of probiotics and their metabolites in enhancement the functional properties of whey-based beverages. AIMS Agriculture and Food, 2020, 5, 521-542.	0.8	6
5447	IL-10 Expression-Inducing Gut Bacteria Alleviate High-Fat Diet-Induced Obesity and Hyperlipidemia in Mice. Journal of Microbiology and Biotechnology, 2020, 30, 599-603.	0.9	9
5448	Combination of Probiotics and <i>Salvia miltiorrhiza</i> Polysaccharide Alleviates Hepatic Steatosis via Gut Microbiota Modulation and Insulin Resistance Improvement in High Fat-Induced NAFLD Mice. Diabetes and Metabolism Journal, 2020, 44, 336.	1.8	64
5449	Effects of Microbiota on the Treatment of Obesity with the Natural Product Celastrol in Rats. Diabetes and Metabolism Journal, 2020, 44, 747-763.	1.8	18
5450	Revisiting the Bacterial Phylum Composition in Metabolic Diseases Focused on Host Energy Metabolism. Diabetes and Metabolism Journal, 2020, 44, 658-667.	1.8	19

#	Article	IF	CITATIONS
5451	Bariatric surgery and diabetes remission: Who would have thought it?. Indian Journal of Endocrinology and Metabolism, 2015, 19, 563.	0.2	35
5452	Amelioration of intestinal barrier dysfunction by berberine in the treatment of nonalcoholic fatty liver disease in rats. Pharmacognosy Magazine, 2017, 13, 677.	0.3	29

Evaluation of fecal microbiomes associated with obesity in captive cynomolgus monkeys (Macaca) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50.5

5454	A Review on Underlying Differences in the Prevalence of Metabolic Syndrome in the Middle East, Europe and North America. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 02, .	0.1	7
5455	Ferulic Acid Produced by Lactobacillus fermentum NCIMB 5221 Reduces Symptoms of Metabolic Syndrome in Drosophila melanogaster. Journal of Microbial & Biochemical Technology, 2016, 8, .	0.2	3
5456	Probiotics Mediated Modulation of Gut-Flora Might Be a Biotherapeutical Approach for Obesity and Type 2 Diabetes. Metabolomics: Open Access, 2011, 01, .	0.1	6
5457	Abundance and Diversity of Microbiota in Type 2 Diabetes and Obesity. Journal of Diabetes & Metabolism, 2013, 04, .	0.2	17
5458	Analysis of Microbial Populations and Metabolism of Anthocyanins by Mice Gut Microflora Fed with Blackberry Powder. Journal of Nutrition & Food Sciences, 2013, 03, .	1.0	5
5459	Changes in Korean Adult Females' Intestinal Microbiota Resulting from Kimchi Intake. Journal of Nutrition & Food Sciences, 2016, 06, .	1.0	6
5460	Comparison of the Microbiota of Snails (Helix aspersa) of Different Weights and Its Evolution over Time. Journal of Veterinary Science & Technology, 2014, 06, .	0.3	1
5461	The Holy Grail of Designer Probiotics; Designer Probiotics: The Probiotics with Multiple Health Benefits. , 2016, 06, .		2
5462	Bacteria and Obesity: The Proportion Makes the Difference. Surgery Current Research, 2013, 03, .	0.1	4
5463	Bacterial Fecal Microbiota in Healthy Subjects and Inpatients with <i>Clostridium difficile</i> Infection. Advances in Microbiology, 2017, 07, 10-21.	0.3	3
5464	Gut Microbiota Dysbiosis in Cafeteria Diet Fed Sprague Dawley Rats. Advances in Microbiology, 2018, 08, 975-993.	0.3	4
5465	Increased fecal viral content associated with obesity in mice. World Journal of Diabetes, 2016, 7, 316.	1.3	17
5466	Assessing the evidence for weight loss strategies in people with and without type 2 diabetes. World Journal of Diabetes, 2017, 8, 440-454.	1.3	10
5467	Management of non-alcoholic fatty liver disease in 2015. World Journal of Hepatology, 2015, 7, 2962.	0.8	33
5468	The Human Microbiome in the Fight Against Tuberculosis. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1274-1284.	0.6	35

#	Article	IF	CITATIONS
5469	Human microbiome: From the bathroom to the bedside. World Journal of Gastrointestinal Pathophysiology, 2015, 6, 79.	0.5	8
5470	Starring role of toll-like receptor-4 activation in the gut-liver axis. World Journal of Gastrointestinal Pathophysiology, 2015, 6, 99.	0.5	42
5471	Inflammatory bowel disease: Traditional knowledge holds the seeds for the future. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2015, 6, 10.	0.6	7
5472	Impact of Long-Term Proton Pump Inhibitor Therapy on Gut Microbiota in F344 Rats: Pilot Study. Gut and Liver, 2016, 10, 896-901.	1.4	14
5473	Does Long-Term Proton Pump Inhibitor Therapy Affect the Health of Gut Microbiota?. Gut and Liver, 2016, 10, 865-866.	1.4	4
5474	The Hologenome Concept of Evolution: Medical Implications. Rambam Maimonides Medical Journal, 2019, 10, e0005.	0.4	16
5475	Gastrointestinal tract microbiota modifications in systemic sclerosis. European Journal of Rheumatology, 2020, 7, 228-236.	1.3	14
5476	Difference of gut microbiota composition based on the body condition scores in dogs. Journal of Animal Science and Technology, 2020, 62, 239-246.	0.8	25
5477	Shrub coverage alters the rumen bacterial community of yaks (Bos grunniens) grazing in alpine meadows. Journal of Animal Science and Technology, 2020, 62, 504-520.	0.8	25
5478	Is stool frequency associated with the richness and community composition of gut microbiota?. Intestinal Research, 2019, 17, 419-426.	1.0	26
5479	5-Aminosalicylic acid intolerance is associated with a risk of adverse clinical outcomes and dysbiosis in patients with ulcerative colitis. Intestinal Research, 2020, 18, 69-78.	1.0	19
5481	Basil Essential Oil and Its Nanoemulsion Mitigate Non Alcoholic Steatohepatitis in Rat Model with Special Reference to Gut Microbiota. Journal of Oleo Science, 2020, 69, 913-927.	0.6	5
5482	Microbial composition in different gut locations of weaning piglets receiving antibiotics. Asian-Australasian Journal of Animal Sciences, 2017, 30, 78-84.	2.4	38
5483	Correlation of Gut Microbiota Profile with Body Mass Index Among School Age Children. Iranian Red Crescent Medical Journal, 2018, 20, .	0.5	4
5484	The Role of Meat Protein in Generation of Oxidative Stress and Pathophysiology of Metabolic Syndromes. Food Science of Animal Resources, 2020, 40, 1-10.	1.7	12
5485	Next-generation sequencing reveals sterile crustose lichen phylogeny. Mycosphere, 2013, 4, 1028-1039.	1.9	18
5486	Linking gut microbiota with human diseases. Bioinformation, 2020, 16, 196-208.	0.2	21
5487	Type 2 diabetes mellitus-related environmental factors and the gut microbiota: emerging evidence and challenges. Clinics, 2020, 75, e1277.	0.6	25

#	Article	IF	CITATIONS
5489	Influência da microbiota intestinal na sÃndrome metabólica. , 0, , 113-138.		1
5490	The genetic architecture of NAFLD among inbred strains of mice. ELife, 2015, 4, e05607.	2.8	96
5491	Bidirectional interactions between indomethacin and the murine intestinal microbiota. ELife, 2015, 4, e08973.	2.8	80
5492	Consistent and correctable bias in metagenomic sequencing experiments. ELife, 2019, 8, .	2.8	263
5493	Effect of Diet Change on Gut Microbiota: Observational Pilot Study of Four Urban Couples. Journal of Obesity and Metabolic Syndrome, 2017, 26, 257-265.	1.5	3
5494	Obesity and Dysbiosis. The Korean Journal of Obesity, 2015, 24, 121-125.	0.2	2
5495	Partial restoration of normal intestinal microbiota in morbidly obese women six months after bariatric surgery. PeerJ, 2020, 8, e10442.	0.9	4
5496	Impact of demographics on human gut microbial diversity in a US Midwest population. PeerJ, 2016, 4, e1514.	0.9	61
5497	Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ, 2016, 4, e1854.	0.9	89
5498	Impact of birth weight and postnatal diet on the gut microbiota of young adult guinea pigs. PeerJ, 2017, 5, e2840.	0.9	11
5499	Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ, 2017, 5, e3443.	0.9	85
5500	Inulin-type fructan improves diabetic phenotype and gut microbiota profiles inÂrats. PeerJ, 2018, 6, e4446.	0.9	127
5501	Characterization of the salivary microbiome in people with obesity. PeerJ, 2018, 6, e4458.	0.9	75
5502	Bibliometric analysis of research on the role of intestinal microbiota in obesity. PeerJ, 2018, 6, e5091.	0.9	40
5503	Captivity causes taxonomic and functional convergence of gut microbial communities in bats. PeerJ, 2019, 7, e6844.	0.9	21
5504	Yak rumen microbial diversity at different forage growth stages of an alpine meadow on the Qinghai-Tibet Plateau. PeerJ, 2019, 7, e7645.	0.9	37
5505	Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. PeerJ, 2020, 8, e8317.	0.9	74
5506	Early-life intestinal microbiome in <i>Trachemys scripta elegans</i> analyzed using 16S rRNA sequencing. PeerJ, 2020, 8, e8501.	0.9	15

ARTICLE IF CITATIONS # Comparative study of gut microbiota in Tibetan wild asses (<i>Equus kiang</i>) and domestic donkeys 5507 0.9 20 (<i>Équus asinus (/i>) on the Qinghai-Tibet plateau. Peerl, 2020, 8, e9032. Uncovering the microbiome of invasive sympatric European brown hares and European rabbits in 5508 Australia. PeerJ, 2020, 8, e9564. Fecal microbiota in client-owned obese dogs changes after weight loss with a high-fiber-high-protein 5509 0.9 19 diet. Peerl, 2020, 8, e9706. Breast Cancer: Lifestyle, the Human Gut Microbiota/Microbiome, and Survivorship., 2020, 24, . 5510 29 Differences in swine gut microbiota in southern region of Republic of Korea. Korean Journal of 5511 0.2 2 Microbiology, 2015, 51, 81-85. Modulation of Systemic Immune Responses Through Genital, Skin, and oral Microbiota: Unveiling the Fundamentals of Human Microbiomes. , 2021, , 13-34. MUFA in metabolic syndrome and associated risk factors: is MUFA the opposite side of the PUFA coin?. 5514 2.1 12 Food and Function, 2021, 12, 12221-12234. Analysis of biomarkers with tunable infrared gas sensors. Journal of Sensor Science and Technology, 0.1 2021, 30, 314-319. 5516 Gut Microbiome and Alzheimer's Disease. Journal of Dairy Science and Biotechnology, 2021, 39, 94-103. 0.5 0 The East Asian gut microbiome is distinct from colocalized White subjects and connected to 2.8 metabolic health. ELife, 2021, 10, . The importance of age in compositional and functional profiling of the human intestinal microbiome. 5518 1.1 10 PLoS ONE, 2021, 16, e0258505. The relationship between dairy products intake and breast cancer incidence: a meta-analysis of 1.1 observational studies. BMC Cáncer, 2021, 21, 1109. Effect of blending encapsulated essential oils and organic acids as an antibiotic growth promoter 5520 alternative on growth performance and intestinal health in broilers with necrotic enteritis. Poultry 1.5 37 Science, 2022, 101, 101563. Functional Diversity within Gut Microbiomes: Implications for Conserving Biodiversity. Conservation, 0.8 2021, 1, 311-326. Paternal periconception metabolic health and offspring programming. Proceedings of the Nutrition 5522 0.4 0 Society, 2022, 81, 119-125. Bacterial metabolites and cardiovascular risk in children with chronic kidney disease. Molecular and 1.0 Cellular Pediatrics, 2021, 8, 17. Role of Maternal Microbiota and Nutrition in Early-Life Neurodevelopmental Disorders. Nutrients, 5524 1.7 9 2021, 13, 3533. Multidirectional facets of obesity management in the metabolic syndrome population after liver 1.3 transplantation. Immunity, Inflammation and Disease, 2021, , .

		CITATION F	Report	
#	Article		IF	CITATIONS
5526	Modulation of Adipocyte Metabolism by Microbial Short-Chain Fatty Acids. Nutrients, 2021	, 13, 3666.	1.7	23
5527	Dietary mediumâ€chain 1â€monoglycerides modulates the community and function of ceca broilers. Journal of the Science of Food and Agriculture, 2022, 102, 2242-2252.	al microbiota of	1.7	6
5528	Dietary Energy Level Impacts the Performance of Donkeys by Manipulating the Gut Microbio Metabolome. Frontiers in Veterinary Science, 2021, 8, 694357.	ome and	0.9	7
5529	Dietary grape pomace $\hat{a} \in \hat{e}$ effects on growth performance, intestinal health, blood parameter breast muscle myopathies of broiler chickens. Poultry Science, 2022, 101, 101519.	ers, and	1.5	22
5530	Obesity Modulates the Gut Microbiome in Triple-Negative Breast Cancer. Nutrients, 2021, 1	.3, 3656.	1.7	15
5531	Association of Cesarean Delivery and Formula Supplementation with the Stool Metabolome 6-Week-Old Infants. Metabolites, 2021, 11, 702.	of	1.3	5
5532	Tuber flours improve intestinal health and modulate gut microbiota composition. Food Cher 2021, 12, 100145.	mistry: X,	1.8	1
5533	Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Reviews in Food Science and Nutrition, 2023, 63, 3236-3253.	. Critical	5.4	18
5534	Clinical and Epidemiological Changes in French Soldiers After Deployment: Impact of Doxyc Malaria Prophylaxis on Body Weight. Military Medicine, 2023, 188, e1084-e1093.	ycline	0.4	0
5535	RNA-Seq unveiled section-specific host response to lack of gut microbiota in mouse intestin Toxicology and Applied Pharmacology, 2021, 433, 115775.	ie.	1.3	3
5536	Broad-Spectrum and Gram-Negative-Targeting Antibiotics Differentially Regulate Antibody Is Responses to Injected Vaccines. Vaccines, 2021, 9, 1240.	sotype	2.1	3
5537	Gut Microbiota for Esophageal Cancer: Role in Carcinogenesis and Clinical Implications. Fro Oncology, 2021, 11, 717242.	ntiers in	1.3	14
5538	Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gen Endocrine Reviews, 2022, 43, 507-557.	e Therapy.	8.9	39
5539	Mixture of Five Fermented Herbs (Zhihuasi Tk) Alters the Intestinal Microbiota and Promote Growth Performance in Piglets. Frontiers in Microbiology, 2021, 12, 725196.	s the	1.5	10
5540	Incompatible effects of Panax ginseng and Veratrum nigrum on estrogen decline in rats usir metabolomics and gut microbiota. Journal of Pharmaceutical and Biomedical Analysis, 2022 114442.	ng 208,	1.4	3
5541	Influence of Human Age on the Prebiotic Effect of Pectin-Derived Oligosaccharides Obtained Apple Pomace. Fermentation, 2021, 7, 224.	d from	1.4	6
5542	Dietary fat quality impacts metabolic impairments of type 2 diabetes risk differently in male CD-1 ^{A®} mice. British Journal of Nutrition, 2022, 128, 1013-1028.	and female	1.2	2
5543	Intestinal microbiota has important effect on severity of hand foot and mouth disease in ch BMC Infectious Diseases, 2021, 21, 1062.	ildren.	1.3	8

#	Article	IF	CITATIONS
5544	Compositional variation of the human fecal microbiome in relation to azo-reducing activity: a pilot study. Gut Pathogens, 2021, 13, 58.	1.6	4
5545	16S rRNA of Mucosal Colon Microbiome and CCL2 Circulating Levels Are Potential Biomarkers in Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 10747.	1.8	16
5546	Coix seed polysaccharides alleviate type 2 diabetes mellitus via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/AKT signaling. Food Research International, 2021, 150, 110717.	2.9	54
5547	Inï¬,ammatory bowel disease. , 2006, , 593-610.		21
5548	Why are we all so fatâ \in and does it really matter?. , 2007, , 141-153.		0
5550	Post-Genomics Approaches towards Monitoring Changes within the Microbial Ecology of the Gut. , 2009, , 79-110.		Ο
5551	Influence of the Gut Microbiota with Ageing. , 2009, , 153-173.		1
5553	Probiotics and Inflammatory Immune Responses. , 2010, , 591-610.		Ο
5554	Gutmicrobiota as a factor in obesitydevelopment. Acta Agriculturae Slovenica, 2010, 96, .	0.2	0
5555	Obesity, Bacteria and Fat. , 2010, , 3141-3146.		Ο
5556	Obesity and Colorectal Cancer Risk: Impact of the Gut Microbiota and Weight-Loss Diets. The Open Obesity Journal, 2010, 2, 50-62.	0.1	3
5558	Genetic Epidemiology of Obesity and Cancer. , 2010, , 87-127.		Ο
5559	A high fat diet attenuates fermentation effects of resistant starches and fructans. FASEB Journal, 2010, 24, 102.6.	0.2	2
5561	Living Medication: Overview and Classification into Pharmaceutical Law. , 2011, , 349-367.		Ο
5563	Metagenomic Applications and the Potential for Understanding Chronic Liver Disease. , 2011, , 277-295.		0
5565	Promoting Gut Health with Probiotic Metabolomics. , 2011, , 169-185.		0
5566	ãf—ãfãfã,₿,ªãf†ã,£ã,⁻ã,¹ã•QOL. JuntendoÌ,, Igaku, 2011, 57, 115-124.	0.1	0
5568	Acidaminococcus. , 2011, , 367-376.		0

ARTICLE IF CITATIONS Host Genetics and Gut Microbiota., 2012, , 281-295. 1 5569 Nitrosative Stress in Diverse Multisystem Diseases., 2012, , 71-215. 5570 Bacterial Strategies for Plant Cell Degradation and Their Genomic Information., 2011,,. 5571 1 Future Challenges of Administration of Direct-Fed Microbial Supplementation to Swine., 2012, 153-162. Gut Microbiota, Obesity and Metabolic Dysfunction. Indonesian Biomedical Journal, 2011, 3, 150. 5573 0.2 0 5574 Gut bacteria and skin health. Human Health Handbooks, 2012, , 26-43. 0.1 Sensing Fat in the Diet: Implications for Obesity Outcomes. Journal of Nutrition & Food Sciences, 2012, 5575 1.0 0 02,. Obesity, Intestinal Inflammation, and Antioxidant Bioavailability. Journal of Nutrition & Food Sciences, 5576 1.0 2012, 02, . The Effect of Diet on Gut Microbiota in Humans Living in Different Environments: A Metagenomic 5577 0.1 0 Approach. Advances in Microbial Ecology, 2012, , 279-294. 5579 Gut Microbiota in Disease Diagnostics., 0,,. Intestinal microbiocenosis in the obese patients with osteoarthritis. Problemy Endokrinologii, 2012, 5580 0.2 0 58, 12-15. Intestinal Methanobrevibacter smithii but Not Total Bacteria Is Related to Diet-Induced Weight Gain in 1.5 Rats. Obesity, 0, , . 5582 Self-organizing Approach for the Human Gut Meta-genome. Open Bioinformatics Journal, 2012, 6, 28-36. 1.0 0 Comparison of broiler performance, carcass yields and intestinal microflora when fed diets containing transgenic (Mon-40-3-2) and conventional soybean meal. African Journal of Biotechnology, 0.3 2012, 11, . 5584 Use of Cellulose and Recent Research into Butyrate. Journal of Life Science, 2012, 22, 1571-1586. 0.2 7 Would-be-worlds of adipobiology in the exposome of globesity. Adipobiology, 2014, 4, 107. 0.1 Pharmacogenomics and Gut Microbiota Biomarkers in Obesity., 2013, 575-601. 5586 0 Development of Micro-ecological System in Small and Large Intestine of Piglets., 2013, , 75-87.

#	ARTICLE Insights into the Roles of Prebiotics and Probiotics in the Large Intestine. Journal of Life Science, 2013,	IF	CITATIONS
5589 5591	23, 1295-1303. Probiotics and Prebiotics in Obesity and Energy Metabolism. , 2013, , 232-257.	0.2	2
5592	The Future of Prebiotics and Probiotics. , 2013, , 464-493.		0
5593	Probiotics and Prebiotics and the Gut Microbiota. , 2013, , 258-268.		2
5594	Molecular Microecological Techniques. Advanced Topics in Science and Technology in China, 2014, , 153-188.	0.0	1
5595	Modulation of the Gut Ecosystem in Irritable Bowel Syndrome. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 55-73.	0.2	0
5596	The Role of Microbes in Obesity. , 2014, , 59-73.		0
5597	Role of Enterobacteria-mediated Bile Acid Signaling in Lipid Homeostasis. Oleoscience, 2014, 14, 381-385.	0.0	0
5598	Human Microbiota and Its Function. Advanced Topics in Science and Technology in China, 2014, , 23-31.	0.0	0
5599	MetaRank: Ranking Microbial Taxonomic Units or Functional Groups for Comparative Analysis of Metagenomes. , 2014, , 1-7.		0
5602	Probiotics in Human Medicine: Overview. , 0, , 223-229.		2
5603	Metamicrobiology: Analyzing Microbial Behavior at the Community Level. , 0, , 417-424.		0
5604	Review of Nutritional Gastrointestinal Physiology Imposed by Bariatric Surgical Procedures. , 2014, , 1-22.		0
5605	Mechanisms of Action of the Bariatric Procedures. , 2015, , 61-72.		2
5606	Liver Cirrhosis and Intestinal Bacterial Translocation. Infection International, 2014, 3, 133-138.	0.1	0
5607	Introduction to Metabonomics in Systems Biology Research. Molecular and Integrative Toxicology, 2015, , 1-24.	0.5	0
5608	Commensal Bugs from the Gut-Shaping Human Health and Disease. Journal of Investigative Genomics, 2014, 1, .	0.2	0
5609	Comparison Analysis of Swine Gut Microbiota between Landrace and Yorkshire at Various Growth Stages. Korean Journal of Microbiology, 2014, 50, 308-312.	0.2	0

		TATION RE	PORI	
#	Article		IF	CITATIONS
5610	Recent Update in Fecal Microbiota Transplantation. Korean Journal of Microbiology, 2014, 50, 265-27	'4.	0.2	1
5611	Gut Flora in the Development and Progression of Nonalcoholic Fatty Liver Disease. Journal of Liver: Disease & Transplantation, 2015, 04, .		0.0	0
5612	Inflammation and Colorectal Cancer. , 2015, , 211-256.			0
5613	Feeding Soy with Probiotic Attenuates Obesity-Related Metabolic Syndrome Traits in Obese Zucker Rats. Food and Nutrition Sciences (Print), 2015, 06, 780-789.		0.2	1
5614	Inulin and Health Benefits. , 2015, , 675-715.			3
5615	The Role of Diet in Inflammation and Metabolic Syndrome. , 2015, , 3-22.			0
5616	Modern concepts of the microbiocenosis of the skin and intestine in patients with eczema and metabolic syndrome. Klinicheskaya Dermatologiya I Venerologiya, 2015, 14, 11.		0.0	2
5617	Contribution of the gut microbiota to the pathogenesis of insulin resistance (literature review). Profilakticheskaya Meditsina, 2015, 18, 54.		0.2	6
5618	Gut Microbiome, Obesity and Metabolic Syndrome. , 2015, , 1-14.			2
5619	Targeting Body Weight Regulation with Probiotics: A Review of Randomized Trials in Obese and Overweight People Free of Comorbidities. Journal of Nutrition & Food Sciences, 2015, 05, .		1.0	1
5620	The Human Microbiome. , 0, , 226-237.			1
5621	The Pivotal Role of Microbiota in Obesity. Journal of Obesity and Weight-loss Medication, 2015, 1, .		0.1	0
5622	Diversity of Cultured and Uncultured Bacteria in the Gut of Olive Flounder Paralichthys olivaceus. Han'guk Susan Hakhoe Chi = Bulletin of the Korean Fisheries Society, 2015, 48, 447-453.		0.1	0
5623	Report on 24 unrecorded bacterial species of Korea belonging to the phylum Firmicutes. Journal of Species Research, 2015, 4, 127-136.		0.1	0
5625	Koda's Fasting Therapy: Energy Balance and Intestinal Bacterial Flora. Advanced in Food Technolo and Nutritional Sciences - Open Journal, 2015, 1, 112-123.	gy	0.9	4
5626	Modulation of Gut Microbiota: Potential Mechanism of Diabetes Remission after Bariatric/Metabolic Surgery. Journal of Metabolic and Bariatric Surgery, 2015, 4, 29-34.		0.1	0
5627	Obesitas bij volwassenen. , 2016, , 65-95.			0
5628	Effects of Resistant Starch Intake in Humans. Food and Nutrition Report, 2016, 1, 19-26.		0.1	0

#	Article	IF	CITATIONS
5629	Cellular Senescence as a Novel Mechanism of Chronic Inflammation and Cancer Progression. , 2016, , 187-200.		0
5630	Obesity, Cardiometabolic Risk, and Chronic Kidney Disease. , 2016, , 181-198.		1
5631	The Human Microbiome and Clinical Immunology. , 0, , 19-25.		0
5632	Effect of a Natural Inulin-Containing Product, "Kikuimo Extract―on Intestinal Microbes and Gene Expression in the Liver and Adipose Tissue of Menopausal Monkeys. Food and Nutrition Sciences (Print), 2016, 07, 752-762.	0.2	Ο
5633	Non-alcoholic Fatty Liver Disease in Obesity. , 2016, , 159-179.		0
5635	Early Microbe Contact in Defining Child Metabolic Health and Obesity Risk. , 2016, , 369-389.		1
5636	Involment of gut microboita in the development of obesity and insulin resistance. Clinical Endocrinology and Endocrine Surgery, 2016, .	0.1	1
5637	Effect of Virgin Coconut Oil Supplementation on Obese Rats' Anthropometrical Parameters and Gut Bacteroidetes and Firmicutes Change Ratio. Cord, 2020, 32, 14.	0.1	0
5638	Desarrollo de la Microbiota Gastrointestinal en Lactantes y Su Rol en Salud y Enfermedad. Ars Medica, 2016, 41, .	0.1	0
5639	Modification of intestinal microbiota and faecal transplantation as a perspective method of treatment of obesity, insulin resistance and diabetes mellitus type 2. Clinical Endocrinology and Endocrine Surgery, 2016, .	0.1	2
5640	Chronic kidney disease: pathophysiological role of dysbiosis of intestine and renoprotective effectiveness of interventions concerning its modulation. Rossiiskii Meditsinskii Zhurnal: Organ Ministerstva Zdravookhraneniia RSFSR, 2016, 22, 157-162.	0.1	1
5641	Gene-Targeted Metagenomics for the Study of Biogeochemical Cycling from Coastal-Saline Ecosystems. , 2016, , 197-217.		0
5643	The role of gut microbiota in metabolic regulation. Diabetes Mellitus, 2016, 19, 280-285.	0.5	5
5644	Potential Role of the Microbiome in the Development of Childhood Obesity. , 2016, , 235-241.		Ο
5645	Implications for Farnesoid X Receptor Signaling on Bile Acid Metabolism as a Potential Therapeutic Strategy for Nonalcoholic Fatty Liver Disease. The Korean Journal of Obesity, 2016, 25, 167-175.	0.2	0
5647	Microbiota: A Key for Healthy Aging. Annals of Geriatric Medicine and Research, 2016, 20, 168-176.	0.7	6
5648	Digestive Health. , 2016, , 129-142.		0
5649	NF- $\hat{I}^{0}B$ and Its Implication in Liver Health and Cancer Development. , 2017, , 87-114.		0

#	Article	IF	Citations
5650	The Intestinal Microbiome, the Immune System and Spondyloarthropathy. , 2017, , 145-165.		0
5652	Screening of Some Commonly Used Plant Extracts for their Effects on Some Gut Pathogens and Probiotics. Journal of Pure and Applied Microbiology, 2017, 11, 163-171.	0.3	Ο
5653	Exercise and Dietary Factors Affecting the Microbiota: Current Knowledge and Future Perspectives. Journal of Nutritional Health & Food Engineering, 2017, 6, .	0.5	0
5654	Intestinal microbiota: its role in pathogenesis of arterial hypertension. Klinicheskaia Meditsina, 2017, 95, 123-126.	0.2	2
5657	Dynamism and diversity of human gut microbial community . Japanese Journal of Lactic Acid Bacteria, 2017, 28, 74-83.	0.1	0
5658	Chapter 15 Methodologies for microbiota assessment in infancy and childhood. , 2017, , 283-295.		1
5659	13 Obesity. , 2017, , 299-320.		0
5660	è,å†ç″èŒå¢ã®æ©Ÿèƒ¼çç†è§£ã«å⁴ã⁴ã┥. Kagaku To Seibutsu, 2017, 55, 637-643.	0.0	0
5665	Gut Microbiome and Its Potential Role in Obesity. Journal of Restorative Medicine, 2017, 6, 46-52.	0.7	0
5666	Intestinal Microbiota, Obesity and Insulin Resistance—What Are the Relationships?. Health, 2018, 10, 365-373.	0.1	0
5667	Multi-Omic Predictors of Steatohepatitis and Advanced Fibrosis in Children. SSRN Electronic Journal, 0, , .	0.4	0
5668	Mannose Alters Gut Microbiome, Prevents Diet-Induced Obesity and Improves Host Metabolism. SSRN Electronic Journal, 0, , .	0.4	0
5669	Emerging Role of Gut Microbiota beyond Infection. Journal of Gastrointestinal Infections, 2018, 8, 1-2.	0.1	0
5671	<i>Bifidobacterium animalis</i> subsp. <i>lactis</i> GCL2505 ameliorates metabolic disorders through proliferation in the gut Japanese Journal of Lactic Acid Bacteria, 2018, 29, 26-32.	0.1	0
5674	COLONIC MICROBIOTA AND CHRONIC KIDNEY DISEASE. MESSAGE ONE. Nephrology (Saint-Petersburg), 2018, 22, 57-73.	0.1	8
5677	"LICONINE [®] â€; an Extract of Glycyrrhiza Uralensis, Normalizes the Fecal Microbiota Disturbance in Diet-induced Obese Mice. Journal of Food and Nutrition Research (Newark, Del), 2018, 6, 509-512.	0.1	0
5679	Microbiote et fibromyalgie. Phytotherapie, 2018, 16, 342-346.	0.1	0
5681	Effekte der Adipositaschirurgie auf Hunger und Sätigung. , 2019, , 137-149.		Ο

#	Article	IF	CITATIONS
5684	Composition of Pulses. Akademik Gıda, 2018, 16, 483-496.	0.5	5
5685	Fatty Acid Metabolism and Gut Microbiota in Host Homeostasis. Oleoscience, 2019, 19, 139-144.	0.0	0
5686	Variable Selection for High Dimensional Metagenomic Data. ICSA Book Series in Statistics, 2019, , 19-32.	0.0	0
5687	Microbiome and morbid obesity increase pathogenic stimulus diversity. 40pen, 2019, 2, 10.	0.1	5
5688	Microbiome and Microbiota in Rheumatic Disease. , 2019, , 11-19.		0
5689	Gastrointestinal Microbiology in the Normal Host. , 2019, , 362-362.		0
5690	Dysbiose intestinale et maladies métaboliques. , 2019, , 353-359.		0
5691	An Overview of the Therapeutic Aspect of Living Drugs Probiotics. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2019, , 1-34.	0.1	0
5692	Egg Consumption for Appetite Control and Body Weight Regulation. Food Chemistry, Function and Analysis, 2019, , 40-59.	0.1	1
5693	Gut microbiota: One of the new frontiers for elucidating fundamentals of Vipaka in Ayurveda. AYU: an International Quarterly Journal of Research in Ayurveda, 2019, 40, 75.	0.3	15
5694	ROLE OF MICROBIOTA IN MAINTAINING THE HOMEOSTASIS IN THE HUMAN BODY. Postepy Mikrobiologii, 2019, 57, 5-11.	0.1	3
5695	Human Microbiome and Malignancy: Principles, Mechanisms, and Challenges. , 2019, , 317-335.		0
5696	Novel Methods to Overcome Acquired Resistance to Immunotherapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 97-129.	0.1	0
5697	Modifiable prenatal environmental factors for the prevention of childhood asthma. Allergy Asthma & Respiratory Disease, 2019, 7, 179.	0.3	0
5698	"We Are What We Eat― How Diet Impacts the Gut Microbiota in Adulthood. , 2019, , 259-283.		1
5699	Microbiome in Liver Cirrhosis. , 2019, , 79-91.		0
5700	Changes in gut microbiota and blood lipid profile in patients with irritable bowel syndrome in association with obesity. Bukovinian Medical Herald, 2019, 23, 32-38.	0.1	3
5703	FEATURES OF THE INTESTINAL MICROBIOTA IN CHILDREN WITH ALLERGIC DISEASES AND VARIOUS BODY WEIGHT. Russian Pediatric Journal, 2019, 20, 202-206.	0.0	0

#	Article	IF	CITATIONS
5705	Obesity: Ethnic and Regional Differences in the Diet and Gut Microbiota (Review). Acta Biomedica Scientifica, 2019, 4, 19-25.	0.1	4
5707	Immune and Inflammatory Pathways in Non-Alcoholic Steatohepatitis (NASH). An update. Journal of Mind and Medical Sciences, 0, , 52-57.	0.1	0
5711	INTESTINAL MICROBIOTA AND OXIDATIVE STRESS IN PATIENTS WITH METABOLIC SYNDROME. Ekologiya Cheloveka (Human Ecology), 2019, 26, 23-29.	0.2	2
5712	Oral and Human Microbiome Research. Journal of Dental Hygiene Science, 2019, 19, 77-85.	0.1	0
5714	Gut microbiota in obese patients and after bariatric surgery. Endocrine Surgery, 2019, 13, 5-16.	0.0	2
5717	Physiological Mechanisms of Bariatric Procedures. , 2020, , 61-76.		0
5718	The Role of the Gut Microbiota in Obesity. Korean Journal of Medicine, 2019, 94, 410-413.	0.1	1
5719	Gut Microbiome. , 2020, , 1-6.		0
5720	Comprehensive studies on the interactions between bile acid and lactic acid bacteria/bifidobactria/gut microbes. Japanese Journal of Lactic Acid Bacteria, 2019, 30, 143-152.	0.1	0
5725	Characterization of lactobacilli strains isolated from baby's feces for their potential immunobiotic application. Iranian Journal of Microbiology, 0, , .	0.8	3
5726	Comparison of mice gut microbiota before and after fasting for a day. Journal of Applied Biological Chemistry, 2019, 62, 333-337.	0.2	0
5728	CAESAREAN SECTION AS RISK-FACTOR OF SOMATIC PATHOLOGY DEVELOPMENT IN CHILDREN. Neonatology Surgery and Perinatal Medicine, 2019, 4, 117-123.	0.0	0
5729	Intestinal microbiome and 2 type diabetes mellitus. Ukrainian Therapeutical Journal, 2019, .	0.0	0
5730	Metabolic Syndrome Update. , 2020, , 305-320.		1
5732	Human Organism as Anthropoecosystem and the Symbiocenosis Factors in the Formation of Health. Ukraìnsʹkij žurnal Medicini Bìologìì Ta Sportu, 2020, 5, 32-39.	0.0	0
5734	Selected Indonesian Medicinal Plants for the Management of Metabolic Syndrome: Molecular Basis and Recent Studies. Frontiers in Cardiovascular Medicine, 2020, 7, 82.	1.1	12
5735	Bacterial diversity in the intestinal mucosa of mice fed with Asparagus extract under high-fat diet condition. 3 Biotech, 2020, 10, 228.	1.1	10
5736	Vaccine therapy for dysbiosis-related diseases. World Journal of Gastroenterology, 2020, 26, 2758-2767.	1.4	4

#	Article	IF	CITATIONS
5737	Current Progress in Adipose Tissue Biology: Implications in Obesity and Its Comorbidities. Indonesian Biomedical Journal, 2020, 12, 85-101.	0.2	0
5741	Effect of probiotics (Vitacogen) supplementation on the performance, apparent digestibility and microbiota in the gastrointestinal tract in pigs. Nihon Chikusan Gakkaiho, 2020, 91, 217-225.	0.0	0
5743	Sezaryen ile Doğmuş Genç Erişkinlerin Kardiyovasküler Sistem ×zellikleri. Namık Kemal Tıp Dergisi, 0,	, р. 0	0
5744	Microbiomes of an oyster are shaped by metabolism and environment. Scientific Reports, 2021, 11, 21112.	1.6	11
5745	Gut Microbiome in Chronic Coronary Syndrome Patients. Journal of Clinical Medicine, 2021, 10, 5074.	1.0	13
5746	Digestionâ€Promoting Effects and Mechanisms of Dashanzha Pill Based on Raw and Charred <i>Crataegi Fructus</i> . Chemistry and Biodiversity, 2021, 18, e2100705.	1.0	6
5747	The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obesity Reviews, 2022, 23, e13349.	3.1	90
5749	A White Paper on Collagen Hydrolyzates and Ultrahydrolyzates: Potential Supplements to Support Joint Health in Osteoarthritis?. Current Rheumatology Reports, 2021, 23, 78.	2.1	19
5750	Review: Uremic Toxins and Gut Microbiome. , 2020, , 17-39.		0
5751	Energetics. , 2020, , 303-320.		0
5752	Philotypes of intestinal microbiotes in patients with arterial hypertension and abdominal obesity. PatologÃa, 2020, .	0.1	1
5753	Associations between physical activity and trimethylamine <i>N</i> -oxide in those at risk of type 2 diabetes. BMJ Open Diabetes Research and Care, 2020, 8, e001359.	1.2	11
5754	MANTA, an integrative database and analysis platform that relates microbiome and phenotypic data. PLoS ONE, 2020, 15, e0243609.	1.1	6
5755	The gut microbiota in the common kestrel (<i>Falco tinnunculus</i>): a report from the Beijing Raptor Rescue Center. PeerJ, 2020, 8, e9970.	0.9	9
5757	The gut microbiome and the kidney. , 2022, , 147-161.		1
5758	Impact of Gut Microbiota on Host byÂExploring Proteomics. , 2020, , 229-250.		1
5760	From Adipogenic Viruses to Antidiabetic Drug: A Translational Journey. , 2020, , 97-106.		0
5761	THE ROLE OF INTESTINAL MICROBIOTA IN THE PATHOGENESIS OF SEPSIS PROGRESSION. Hepatology and Gastroenterology, 2020, 4, 155-159.	0.1	0

#	Article	IF	CITATIONS
5762	Arterial hypertension: The role of gut microbiota. Arterial Hypertension (Russian Federation), 2020, 25, 460-466.	0.1	2
5763	Do My Microbes Make Me Fat? Potential for the Gut Microbiota to Influence Energy Balance, Obesity and Metabolic Health in Humans. Fascinating Life Sciences, 2020, , 97-108.	0.5	0
5764	Gastric Bypass: Mechanisms of Functioning. , 2020, , 7-21.		1
5765	Immune System Under Fire: The Rise of Food Immune Reaction and Autoimmunity. , 2020, , 843-862.		0
5766	Gut Microbiome in Inflammation and Chronic Enteric Infections. , 2020, , 133-152.		1
5767	Gut Microbiota as Signatures in Non-communicable Diseases and Mucosal Immunity. Diagnostics and Therapeutic Advances in GI Malignancies, 2020, , 167-208.	0.2	0
5768	Comparison of the Gut Microbiota in the Tibetan Wild Ass (Equus kiang) Collected from High and Low Altitude. Pakistan Journal of Zoology, 2020, 52, .	0.1	1
5769	Metabolic Pathways Underlying Neuropsychiatric Disorders and Obesity. , 2020, , 415-426.		0
5770	Shifts in the Intestinal Microbiota After Gastric Bypass. , 2020, , 395-402.		0
5771	Maternal obesity and developmental priming of risk of later disease. , 2020, , 149-163.		1
5772	Efficient and Accurate Inference ofÂMicrobial Trajectories fromÂLongitudinal Count Data. Lecture Notes in Computer Science, 2020, , 255-256.	1.0	0
5773	Environmental Pollutants That Can Be Metabolized by the Host (Gut Microbiota). , 2020, , 145-168.		1
5774	An analysis of gut dysbiosis in obesity, diabetes, and chronic gut conditions. Ibnosina Journal of Medicine and Biomedical Sciences, 2020, 12, 264-271.	0.2	0
5775	Hydrogeniiclostidium mannosilyticum gen. nov., sp. nov. isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 1210-1216.	0.8	14
5776	Effect of Periodontopathic Bacteria <i>Fusobacterium Nucleatum</i> on Intestinal Im mune Cells. International Journal of Oral-Medical Sciences, 2020, 18, 303-309.	0.2	1
5777	Specific Anti-Obese Synbiotics to Suit Genetically Different Obese Persons. Interventions in Obesity & Diabetes, 2020, 3, .	0.0	0
5778	Roseburia Abundance Associates With Severity, Evolution and Outcome of Acute Ischemic Stroke. Frontiers in Cellular and Infection Microbiology, 2021, 11, 669322.	1.8	12
5779	Pivotal Dominant Bacteria Ratio and Metabolites Related to Healthy Body Index Revealed by Intestinal Microbiome and Metabolomics. Indian Journal of Microbiology, 2022, 62, 130-141.	1.5	0

#	Article	IF	CITATIONS
5780	Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Molecular Pharmacology, 2022, 102, 60-79.	1.0	2
5781	Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition. Animals, 2021, 11, 3174.	1.0	4
5782	Multi-omics reveals the regulatory mechanisms of zinc exposure on the intestine-liver axis of golden pompano Trachinotus ovatus. Science of the Total Environment, 2022, 816, 151497.	3.9	6
5783	Vitamin B12 and gut-brain homeostasis in the pathophysiology of ischemic stroke. EBioMedicine, 2021, 73, 103676.	2.7	27
5784	Characterization and comparison of the microbiomes and resistomes of colostrum from selectively treated dry cows. Journal of Dairy Science, 2022, 105, 637-653.	1.4	5
5785	Neuro-consequences of the spaceflight environment. Neuroscience and Biobehavioral Reviews, 2022, 132, 908-935.	2.9	28
5786	Impact of Gut Microbiota on the Risk of Cardiometabolic Diseases Development. Rational Pharmacotherapy in Cardiology, 2021, 17, 743-751.	0.3	2
5787	Malnutrition in Obesity: Is It Possible?. Obesity Facts, 2022, 15, 19-25.	1.6	42
5788	The Impact of a Mediterranean Diet on the Gut Microbiome in Healthy Human Subjects: A Pilot Study. Digestion, 2022, 103, 133-140.	1.2	17
5789	Biomarkers of Gut Microbiota in Chronic Spontaneous Urticaria and Symptomatic Dermographism. Frontiers in Cellular and Infection Microbiology, 2021, 11, 703126.	1.8	13
5790	New perspective on fecal microbiota transplantation in liver diseases. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 24-33.	1.4	14
5791	Dietary supplementation of gingerols- and shogaols-enriched ginger root extract attenuate pain-associated behaviors while modulating gut microbiota and metabolites in rats with spinal nerve ligation. Journal of Nutritional Biochemistry, 2022, 100, 108904.	1.9	29
5792	Assessment of public knowledge and perception about the use of probiotics. European Journal of Integrative Medicine, 2021, 48, 101404.	0.8	3
5793	Effect of mulberry galacto-oligosaccharide isolated from mulberry on glucose metabolism and gut microbiota in a type 2 diabetic mice. Journal of Functional Foods, 2021, 87, 104836.	1.6	8
5795	The intestinal microbiota in psoriasis. Postepy Higieny I Medycyny Doswiadczalnej, 2020, 74, 236-246.	0.1	3
5796	Ecology and Physiology of the Intestinal Tract. Current Topics in Microbiology and Immunology, 2011, , 247-272.	0.7	0
5797	Gut Microbiome and Gastrointestinal Diseases. Korean Journal of Clinical Laboratory Science, 2018, 50, 11-19.	0.1	2
5800	Chrono-nutrition. Japanese Journal of Physical Fitness and Sports Medicine, 2020, 69, 401-411.	0.0	0

C		REPOR	т
	IIAI	KLFOK	

#	Article	IF	CITATIONS
5801	Contributions of Lactobacillus plantarum PC170 administration on the recovery of gut microbiota after short-term ceftriaxone exposure in mice. Beneficial Microbes, 2020, 11, 489-509.	1.0	7
5806	Impact of Endocrine Disorders on Gastrointestinal Diseases. Endocrinology, 2021, , 179-225.	0.1	1
5807	Geriatric Physiology for Surgical Intensivists: Part I. Journal of Acute Care Surgery, 2020, 10, 73-82.	0.1	0
5808	Gut microbiota and metabolic syndrome. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2020, 183, 11-19.	0.1	4
5809	Influence of Probiotics Over AMPK-Dependent Health Activity: A Look into Its Molecular Mechanisms. Microorganisms for Sustainability, 2021, , 213-223.	0.4	0
5810	Characterization of Gut Microbiome in Liver Transplant Recipients With Nonalcoholic Steatohepatitis. Transplantation Direct, 2020, 6, e625.	0.8	12
5811	The Biochemical Linkage between Gut Microbiota and Obesity: a Mini Review. Human Physiology, 2020, 46, 703-708.	0.1	0
5814	Effects of gut microbiota on the brain: implications for psychiatry. Journal of Psychiatry and Neuroscience, 2009, 34, 230-1.	1.4	40
5815	The effect of neurohormonal factors, epigenetic factors, and gut microbiota on risk of obesity. Preventing Chronic Disease, 2009, 6, A96.	1.7	11
5816	Gastrointestinal issues in the assessment and management of the obese patient. Gastroenterology and Hepatology, 2007, 3, 559-69.	0.2	4
5817	Embryo protection in contemporary immunology: Why bacteria matter. Communicative and Integrative Biology, 2011, 4, 369-72.	0.6	7
5818	Antibiotics for the treatment of irritable bowel syndrome. Gastroenterology and Hepatology, 2011, 7, 455-93.	0.2	23
5819	Intestinal methane production in obese individuals is associated with a higher body mass index. Gastroenterology and Hepatology, 2012, 8, 22-8.	0.2	33
5820	Metagenomic Analysis of the Dynamic Changes in the Gut Microbiome of the Participants of the MARS-500 Experiment, Simulating Long Term Space Flight. Acta Naturae, 2013, 5, 116-25.	1.7	22
5821	The microbiome in non-alcoholic fatty liver disease: associations and implications. Annals of Gastroenterology, 2014, 27, 181-183.	0.4	4
5822	Gut bacteria in health and disease. Gastroenterology and Hepatology, 2013, 9, 560-9.	0.2	120
5823	Traditional food & modern lifestyle: impact of probiotics. Indian Journal of Medical Research, 2014, 140, 333-5.	0.4	7
5824	Obesity and irritable bowel syndrome: a comprehensive review. Gastroenterology and Hepatology, 2014, 10, 411-6.	0.2	25

		CITATION RE	PORT	
#	Article		IF	Citations
5825	What is Obesity Doing to Your Gut?. The Malaysian Journal of Medical Sciences, 2015,	22, 1-3.	0.3	2
5826	The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Micr 37, 223-36.	robiota. , 2015,		130
5829	Treating Obesity and Metabolic Syndrome with Fecal Microbiota Transplantation. Yale Biology and Medicine, 2016, 89, 383-388.	Journal of	0.2	82
5830	Effect of Antibiotic Administration during Infancy on Growth Curves through Young Ac Rhesus Macaques (). Comparative Medicine, 2017, 67, 270-276.	lulthood in	0.4	2
5832	Organ transplantation and gut microbiota: current reviews and future challenges. Ame of Translational Research (discontinued), 2018, 10, 3330-3344.	rican Journal	0.0	12
5833	The effect of saturated and unsaturated fatty acids on the production of outer membro from and. Gastroenterology and Hepatology From Bed To Bench, 2019, 12, 155-162.	ane vesicles	0.6	8
5835	Herbal Formula-3 ameliorates OVA-induced food allergy in mice may via modulating the microbiota. American Journal of Translational Research (discontinued), 2019, 11, 5812	e gut !-5823.	0.0	4
5836	The impact of perinatal history in the occurrence of childhood obesity: a litera-ture revi Hippokratia, 2018, 22, 155-161.	ew.	0.3	2
5837	Characterization of lactobacilli strains isolated from baby's feces for their potential immapplication. Iranian Journal of Microbiology, 2019, 11, 379-388.	nunobiotic	0.8	1
5838	The microbiome: an emerging key player in aging and longevity. Translational Medicine 4, 103-116.	e of Aging, 2020,	0.6	23
5839	Nutrition, the digestive system and immunity in COVID-19 infection. Gastroenterology From Bed To Bench, 2020, 13, 331-340.	and Hepatology	0.6	6
5840	Intermittent Fasting Improves Lipid Metabolism Through Changes in Gut Microbiota in Obese Mice. Medical Science Monitor, 2020, 26, e926789.	Diet-Induced	0.5	4
5841	An integrated workflow for enhanced taxonomic and functional coverage of the mouse metaproteome. Gut Microbes, 2021, 13, 1994836.	e fecal	4.3	6
5842	Will intestinal flora therapy become a new target in type-2 diabetes mellitus? A review clinical trials. Nutricion Hospitalaria, 2021, , .	based on 13	0.2	3
5843	Nutrigenetics and nutrigenomics—A personalized approach to nutrition. Advances in 108, 277-340.	Genetics, 2021,	0.8	5
5844	Next-generation microbial drugs developed from microbiome's natural products. Advar Genetics, 2021, 108, 341-382.	nces in	0.8	2
5845	Fermented rice bran supplementation ameliorates obesity via gut microbiota and meta modification in female mice. Journal of Clinical Biochemistry and Nutrition, 2022, 70, 1		0.6	8
5846	Role of probiotics in the prevention and management of diabetes and obesity. , 2022,	, 321-336.		2

#	Article	IF	CITATIONS
5847	Body weight regulation of a low molecular weight xanthan gum on normal mice via gut microbiota. Journal of Functional Foods, 2022, 88, 104874.	1.6	3
5848	Anti-obesity natural products and gut microbiota. Food Research International, 2022, 151, 110819.	2.9	23
5849	Neoagarooligosaccharides modulate gut microbiota and alleviate body weight gain and metabolic syndrome in high-fat diet-induced obese rats. Journal of Functional Foods, 2022, 88, 104869.	1.6	16
5850	Dysfunction of resolution receptor triggers cardiomyopathy of obesity and signs of non-resolving inflammation in heart failure. Molecular and Cellular Endocrinology, 2022, 542, 111521.	1.6	0
5851	Ethnobotanical survey: A comprehensive review of medicinal plants used in treatment of gastro intestinal diseases in Kano state, Nigeria Phytomedicine Plus, 2022, 2, 100180.	0.9	6
5852	Dietary lipid levels affected antioxidative status, inflammation response, apoptosis and microbial community in the intestine of juvenile turbot (Scophthalmus maximus L.). Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2022, 264, 111118.	0.8	15
5853	The global scientific publications on gut microbiota in type 2 diabetes; a bibliometric, Scientometric, and descriptive analysis. Journal of Diabetes and Metabolic Disorders, 2022, 21, 13-32.	0.8	8
5854	Nutraceuticals and Herbal Food Supplements for Weight Loss: Is There a Prebiotic Role in the Mechanism of Action?. Microorganisms, 2021, 9, 2427.	1.6	6
5855	Pyruvate Might Bridge Gut Microbiota and Muscle Health in Aging Mice After Chronic High Dose of Leucine Supplementation. Frontiers in Medicine, 2021, 8, 755803.	1.2	3
5856	Effect of Olive Cake and Cactus Cladodes Incorporation in Goat Kids' Diet on the Rumen Microbial Community Profile and Meat Fatty Acid Composition. Biology, 2021, 10, 1237.	1.3	5
5857	Does Folic Acid Protect Patients with Inflammatory Bowel Disease from Complications?. Nutrients, 2021, 13, 4036.	1.7	22
5858	The gut microbiota of wild wintering great bustard (Otis tarda dybowskii): survey data from two consecutive years. PeerJ, 2021, 9, e12562.	0.9	2
5859	Microbiota links to neural dynamics supporting threat processing. Human Brain Mapping, 2022, 43, 733-749.	1.9	12
5860	Air pollution and endocrine disruptors induce human microbiome imbalances: A systematic review of recent evidence and possible biological mechanisms. Science of the Total Environment, 2022, 816, 151654.	3.9	27
5861	Dietary Patterns and Associated Microbiome Changes that Promote Oncogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 725821.	1.8	8
5862	Structural and Functional Alterations of Gut Microbiota in Males With Hyperuricemia and High Levels of Liver Enzymes. Frontiers in Medicine, 2021, 8, 779994.	1.2	13
5863	Gut microbiota and vitamin status in persons with obesity: A key interplay. Obesity Reviews, 2022, 23, e13377.	3.1	15
5864	Modulation of Gilthead Sea Bream Gut Microbiota by a Bioactive Egg White Hydrolysate: Interactions Between Bacteria and Host Lipid Metabolism. Frontiers in Marine Science, 2021, 8, .	1.2	9

#	Article	IF	CITATIONS
5865	Fortified Fermented Rice-Acid Can Regulate the Gut Microbiota in Mice and Improve the Antioxidant Capacity. Nutrients, 2021, 13, 4219.	1.7	2
5867	Impacts of essential amino acids on energy balance. Molecular Metabolism, 2022, 57, 101393.	3.0	35
5868	Insights into Health-Promoting Effects of Plant MicroRNAs: A Review. Journal of Agricultural and Food Chemistry, 2021, 69, 14372-14386.	2.4	17
5869	High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells, 2021, 10, 3164.	1.8	199
5870	Effect of chronic restraint stress and westernâ€diet feeding on colonic regulatory gene expression in mice. Neurogastroenterology and Motility, 2021, , e14300.	1.6	2
5871	Safety assessment of crude saponins from Chenopodium quinoa willd. husks: 90-day oral toxicity and gut microbiota & metabonomics study in rats. Food Chemistry, 2022, 375, 131655.	4.2	14
5872	Gut Microbiota Parameters Potentially Useful in Clinical Perspective. Microorganisms, 2021, 9, 2402.	1.6	25
5873	Possible role of the gut microbiota in the pathogenesis of anorexia nervosa. BioPsychoSocial Medicine, 2021, 15, 25.	0.9	6
5874	Synthetic Microbiomes on the Rise—Application in Deciphering the Role of Microbes in Host Health and Disease. Nutrients, 2021, 13, 4173.	1.7	10
5875	Gut microbiota and age-related macular degeneration: A growing partnership. Survey of Ophthalmology, 2022, 67, 883-891.	1.7	13
5877	Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data. BMC Bioinformatics, 2021, 22, 564.	1.2	2
5878	Gut microbiota-based vaccination engages innate immunity to improve blood glucose control in obese mice. Molecular Metabolism, 2022, 55, 101404.	3.0	4
5879	Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas Selective Amplicon Sequencing (CCSAS). Microbiome, 2021, 9, 230.	4.9	6
5880	The Differential Expression of the Inflammasomes in Adipose Tissue and Colon Influences the Development of Colon Cancer in a Context of Obesity by Regulating Intestinal Inflammation. Journal of Inflammation Research, 2021, Volume 14, 6431-6446.	1.6	9
5881	Polydextrose with and without Bifidobacterium animalis ssp. lactis 420 drives the prevalence of Akkermansia and improves liver health in a multi-compartmental obesogenic mice study. PLoS ONE, 2021, 16, e0260765.	1.1	7
5882	A nonhuman primate model of vertical sleeve gastrectomy facilitates mechanistic and translational research in human obesity. IScience, 2021, 24, 103421.	1.9	2
5883	<i>Lactobacillus rhamnosus</i> Strain LRH05 Intervention Ameliorated Body Weight Gain and Adipose Inflammation via Modulating the Gut Microbiota in Highâ€Fat Dietâ€Induced Obese Mice. Molecular Nutrition and Food Research, 2022, 66, e2100348.	1.5	18
5884	Disruption of the Microbiota-Gut-Brain (MGB) Axis and Mental Health of Astronauts During Long-Term Space Travel. , 2022, , 1415-1436.		0

#	Article	IF	CITATIONS
5885	Impacts of early-life paraquat exposure on gut microbiota and body weight in adult mice. Chemosphere, 2022, 291, 133135.	4.2	12
5886	Hypotensive effect of captopril on deoxycorticosterone acetate-salt-induced hypertensive rat is associated with gut microbiota alteration. Hypertension Research, 2022, 45, 270-282.	1.5	14
5887	Differences in Fecal Microbiome and Antimicrobial Resistance between Captive and Free-Range Sika Deer under the Same Exposure of Antibiotic Anthelmintics. Microbiology Spectrum, 2021, 9, e0191821.	1.2	10
5888	Effect of Geography and Captivity on Scat Bacterial Communities in the Imperiled Channel Island Fox. Frontiers in Microbiology, 2021, 12, 748323.	1.5	3
5889	Diet-driven mercury contamination is associated with polar bear gut microbiota. Scientific Reports, 2021, 11, 23372.	1.6	4
5890	Low serum pancreatic amylase levels as a novel latent risk factor for colorectal adenoma in nonalcohol drinkers. Journal of Gastroenterology and Hepatology (Australia), 2021, , .	1.4	3
5891	Administration Time Significantly Affects Plasma Bioavailability of Grape Seed Proanthocyanidins Extract in Healthy and Obese Fischer 344 Rats. Molecular Nutrition and Food Research, 2022, 66, e2100552.	1.5	10
5892	INTESTINAL MICROFLORA ON THE BACKGROUND OF BACTERIAL VAGINOSIS ON VULVOVAGINAL CANDIDIASIS IN OVERWEIGHT AND OBESE WOMEN. Wiadomości Lekarskie, 2021, 74, 2482-2488.	0.1	0
5894	Screening Dietary Herbs for Health Intervention on Mass Cadmium Poisoning. SSRN Electronic Journal, 0, , .	0.4	0
5895	Akkermansia muciniphila – obiecujący kandydat na probiotyk nowej generacji. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 724-748.	0.1	0
5896	Type 3 resistant starch from <i>Canna edulis</i> modulates obesity and obesity-related low-grade systemic inflammation in mice by regulating gut microbiota composition and metabolism. Food and Function, 2021, 12, 12098-12114.	2.1	10
5898	Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacological Research, 2022, 175, 106020.	3.1	72
5899	Changes in the gut microbiota of morbidly obese patients after laparoscopic sleeve gastrectomy. Future Microbiology, 2022, 17, 5-15.	1.0	3
5900	The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annual Review of Food Science and Technology, 2022, 13, 489-512.	5.1	11
5901	A comprehensive study on the relieving effect of <i>Lilium brownii</i> on the intestinal flora and metabolic disorder in <i>p</i> -chlorphenylalanine induced insomnia rats. Pharmaceutical Biology, 2022, 60, 131-143.	1.3	12
5902	Reduced calorie diet combined with NNMT inhibition establishes a distinct microbiome in DIO mice. Scientific Reports, 2022, 12, 484.	1.6	0
5903	Tangeretin prevents obesity by modulating systemic inflammation, fat browning, and gut microbiota in high-fat diet-induced obese C57BL/6 mice. Journal of Nutritional Biochemistry, 2022, 101, 108943.	1.9	12
5904	Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring. Brain, Behavior, and Immunity, 2022, 100, 311-320.	2.0	32

#	Article	IF	CITATIONS
5905	Synergistic effect of ZnO NPs and imidacloprid on liver injury in male ICR mice: Increase the bioavailability of IMI by targeting the gut microbiota. Environmental Pollution, 2022, 294, 118676.	3.7	10
5906	A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice. International Journal of Biological Macromolecules, 2022, 197, 23-38.	3.6	28
5907	Muscle aging amelioration by yeast protein supplementation was associated with gut microbiota. Journal of Functional Foods, 2022, 89, 104948.	1.6	9
5908	lleal FXR-FGF15/19 signaling activation improves skeletal muscle loss in aged mice. Mechanisms of Ageing and Development, 2022, 202, 111630.	2.2	8
5909	Clinical Status and Lipid Metabolism Disorder and Antioxidant Protection in Patients with Coronary Heart Disease Depending on the State of Intestinal Biocenosis. Family Medicine, 2016, , 71-74.	0.1	0
5910	THE ROLE OF GUT MICROBIOTA IN THE DEVELOPMENT OF OBESITY. Juvenis Scientia, 2019, , 4-10.	0.1	1
5911	Intermittent Fasting Improves Lipid Metabolism Through Changes in Gut Microbiota in Diet-Induced Obese Mice. Medical Science Monitor, 2020, 26, e926789.	0.5	23
5913	Formononetin reshapes the gut microbiota, prevents progression of obesity and improves host metabolism. Food and Function, 2021, 12, 12303-12324.	2.1	18
5915	Biomedical data, computational methods and tools for evaluating disease–disease associations. Briefings in Bioinformatics, 2022, 23, .	3.2	12
5916	Advances in personalized food and nutrition. , 2022, , 31-60.		2
5917	Adaptive and powerful microbiome multivariate association analysis via feature selection. NAR Genomics and Bioinformatics, 2022, 4, lqab120.	1.5	3
5918	Trait Energy and Fatigue May Be Connected to Gut Bacteria among Young Physically Active Adults: An Exploratory Study. Nutrients, 2022, 14, 466.	1.7	9
5919	Gut microbiota modulates osteoclast glutathione synthesis and mitochondrial biogenesis in mice subjected to ovariectomy. Cell Proliferation, 2022, 55, e13194.	2.4	27
5920	Oligosaccharide and Flavanoid Mediated Prebiotic Interventions to Treat Gut Dysbiosis Associated Cognitive Decline. Journal of NeuroImmune Pharmacology, 2022, 17, 94-110.	2.1	5
5921	The intestine and the microbiota in maternal glucose homeostasis during pregnancy. Journal of Endocrinology, 2022, 253, R1-R19.	1.2	11
5922	Comparative metagenomics analysis reveals how the diet shapes the gut microbiota in several small mammals. Ecology and Evolution, 2022, 12, e8470.	0.8	8
5923	Age, alcohol, sex, and metabolic factors as risk factors for colonic diverticulosis. World Journal of Clinical Cases, 2022, 10, 136-142.	0.3	4
5924	The impact of a competitive event and the efficacy of a lactic acid bacteria-fermented soymilk extract on the gut microbiota and urinary metabolites of endurance athletes: An open-label pilot study. PLoS ONE, 2022, 17, e0262906.	1.1	3

#	Article	IF	CITATIONS
5925	Moderate Treadmill Exercise Modulates Gut Microbiota and Improves Intestinal Barrier in High-Fat-Diet-Induced Obese Mice via the AMPK/CDX2 Signaling Pathway. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 209-223.	1.1	6
5926	Gut Microbiome Alterations in Patients With Visceral Obesity Based on Quantitative Computed Tomography. Frontiers in Cellular and Infection Microbiology, 2021, 11, 823262.	1.8	39
5927	Dietary supplementation of Lactobacillus zeae regulated the gut microbiome in piglets infected with enterotoxigenic Escherichia coli. Czech Journal of Animal Science, 2022, 67, 27-38.	0.5	2
5928	Phylogenetic relationship and habitat both impact the gut microbiome in two microendemic gastropods. Journal of Molluscan Studies, 2022, 88, .	0.4	4
5929	The crucial role of oxidative stress in non-alcoholic fatty liver disease-induced male reproductive toxicity: the ameliorative effects of Iranian indigenous probiotics. Naunyn-Schmiedeberg's Archives of Pharmacology, 2022, 395, 247-265.	1.4	23
5930	Chewing the Fat with Microbes: Lipid Crosstalk in the Gut. Nutrients, 2022, 14, 573.	1.7	4
5931	The Association between Gut Microbiota and Osteoarthritis: Does the Disease Begin in the Gut?. International Journal of Molecular Sciences, 2022, 23, 1494.	1.8	16
5932	The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients, 2022, 14, 624.	1.7	19
5933	Food-gut microbiota interactions. , 2022, , 233-256.		0
5934	Cinnamomum verum-derived bioactives-functionalized gold nanoparticles for prevention of obesity through gut microbiota reshaping. Materials Today Bio, 2022, 13, 100204.	2.6	7
5935	Alterations of the Gut Microbiota in Response to Total Sleep Deprivation and Recovery Sleep in Rats. Nature and Science of Sleep, 2022, Volume 14, 121-133.	1.4	18
5937	Downregulation of the farnesoid X receptor promotes colorectal tumorigenesis by facilitating enterotoxigenic Bacteroides fragilis colonization. Pharmacological Research, 2022, 177, 106101.	3.1	10
5938	Weight-loss in obese dogs promotes important shifts in fecal microbiota profile to the extent of resembling microbiota of lean dogs. Animal Microbiome, 2022, 4, 6.	1.5	7
5940	Proanthocyanidins from Chinese bayberry leaves reduce obesity and associated metabolic disorders in high-fat diet-induced obese mice through a combination of AMPK activation and an alteration in gut microbiota. Food and Function, 2022, 13, 2295-2305.	2.1	14
5941	Why Do These Microbes Like Me and How Could There Be a Link with Cardiovascular Risk Factors?. Journal of Clinical Medicine, 2022, 11, 599.	1.0	0
5942	A Combined Supplement of Probiotic Strains AP-32, bv-77, and CP-9 Increased Akkermansia mucinphila and Reduced Non-Esterified Fatty Acids and Energy Metabolism in HFD-Induced Obese Rats. Nutrients, 2022, 14, 527.	1.7	12
5943	Effect of a freeze-dried coffee solution in a high-fat diet-induced obesity model in rats: Impact on inflammatory response, lipid profile, and gut microbiota. PLoS ONE, 2022, 17, e0262270.	1.1	7
5944	Effects of Bacillus subtilis BS-Z15 on Intestinal Microbiota Structure and Body Weight Gain in Mice. Probiotics and Antimicrobial Proteins, 2023, 15, 706-715.	1.9	7

#	Article	IF	CITATIONS
5945	Secoisolariciresinol diglucoside ameliorates high fat diet-induced colon inflammation and regulates gut microbiota in mice. Food and Function, 2022, 13, 3009-3022.	2.1	4
5946	Effect of Lacticaseibacillus casei Zhang on iron status, immunity, and gut microbiota of mice fed with low-iron diet. Journal of Functional Foods, 2022, 88, 104906.	1.6	2
5947	Modulatory role of the endocannabinoidome in the pathophysiology of the gastrointestinal tract. Pharmacological Research, 2022, 175, 106025.	3.1	19
5949	Nutrition, obesity, and dental development in young adolescents in Chicago. American Journal of Human Biology, 2022, 34, e23721.	0.8	1
5950	Berberine Relieves Metabolic Syndrome in Mice by Inhibiting Liver Inflammation Caused by a High-Fat Diet and Potential Association With Gut Microbiota. Frontiers in Microbiology, 2021, 12, 752512.	1.5	16
5951	Theabrownin isolated from <scp>Puâ€erh</scp> tea regulates <scp><i>Bacteroidetes</i></scp> to improve metabolic syndrome of rats induced by <scp>highâ€fat, highâ€sugar and highâ€salt diet</scp> . Journal of the Science of Food and Agriculture, 2022, 102, 4250-4265.	1.7	12
5952	Effects of Herbal Tea Residue on Growth Performance, Meat Quality, Muscle Metabolome, and Rumen Microbiota Characteristics in Finishing Steers. Frontiers in Microbiology, 2021, 12, 821293.	1.5	10
5953	Rifaximin Modulates the Gut Microbiota to Prevent Hepatic Encephalopathy in Liver Cirrhosis Without Impacting the Resistome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 761192.	1.8	19
5954	The Role of the Microbiota in Regeneration-Associated Processes. Frontiers in Cell and Developmental Biology, 2021, 9, 768783.	1.8	3
5955	Alterations of the Gut Microbiome Associated to Methane Metabolism in Mexican Children with Obesity. Children, 2022, 9, 148.	0.6	7
5956	Differences in gut microbiome by insulin sensitivity status in Black and White women of the National Growth and Health Study (NGHS): A pilot study. PLoS ONE, 2022, 17, e0259889.	1.1	5
5957	Intestinal morphology and microflora to Vibrio alginolyticus in pacific white shrimp (Litopenaeus) Tj ETQq1 1 0.7	84314 rgB ⁻ 1.6	Г /Overlock
5958	Oxidative Stress in Non-Alcoholic Fatty Liver Disease. Livers, 2022, 2, 30-76.	0.8	21
5959	Obesity influences the microbiotic biotransformation of chlorogenic acid. Journal of Pharmaceutical and Biomedical Analysis, 2022, 211, 114550.	1.4	1
5960	Nostoc flagelliforme capsular polysaccharides from different culture conditions improve hyperlipidemia and regulate intestinal flora in C57BL/6J mice to varying degrees. International Journal of Biological Macromolecules, 2022, 202, 224-233.	3.6	9
5961	Impact of drinking water supplemented 2-hydroxy-4-methylthiobutyric acid in combination with acidifier on performance, intestinal development, and microflora in broilers. Poultry Science, 2022, 101, 101661.	1.5	10
5962	Integrative analysis of fecal metabolome and gut microbiota in high-fat diet-induced hyperlipidemic rats treated with Rosa Roxburghii Tratt juice. Journal of Functional Foods, 2022, 90, 104978.	1.6	13
5963	Jianpi Huayu Decoction enhances the effect of sorafenib and alleviates adverse events in hepatocellular carcinoma by remodeling the gut microbiota. Pharmacological Research Modern Chinese Medicine, 2022, 2, 100057.	0.5	0

#	Article	IF	CITATIONS
5964	Impact of intestinal disorders on central and peripheral nervous system diseases. Neurobiology of Disease, 2022, 165, 105627.	2.1	17
5965	Evaluating supervised and unsupervised background noise correction in human gut microbiome data. PLoS Computational Biology, 2022, 18, e1009838.	1.5	6
5966	Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomizedÂdietary intervention pilot trial. BMC Medicine, 2022, 20, 56.	2.3	44
5967	Diplocloster agilis gen. nov., sp. nov. and Diplocloster modestus sp. nov., two novel anaerobic fermentative members of Lachnospiraceae isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	10
5968	Dynamics of the Gut Bacteria and Fungi Accompanying Low-Carbohydrate Diet-Induced Weight Loss in Overweight and Obese Adults. Frontiers in Nutrition, 2022, 9, 846378.	1.6	9
5969	The model of litter size reduction induces longâ€ŧerm disruption of the gutâ€brain axis: An explanation for the hyperphagia of Wistar rats of both sexes. Physiological Reports, 2022, 10, e15191.	0.7	5
5970	Human Stool Preservation Impacts Taxonomic Profiles in 16S Metagenomics Studies. Frontiers in Cellular and Infection Microbiology, 2022, 12, 722886.	1.8	5
5971	Habitats Show More Impacts Than Host Species in Shaping Gut Microbiota of Sympatric Rodent Species in a Fragmented Forest. Frontiers in Microbiology, 2022, 13, 811990.	1.5	4
5972	The microbiome of the buffalo digestive tract. Nature Communications, 2022, 13, 823.	5.8	30
5973	Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut, 2022, 71, 1214-1226.	6.1	50
5975	Relationship between obstetric mode of delivery and risk of overweight/obesity from 1 to 4 years children. Obesity Facts, 2022, , .	1.6	3
5976	Pine (Pinus massoniana Lamb.) Needle Extract Supplementation Improves Performance, Egg Quality, Serum Parameters, and the Gut Microbiome in Laying Hens. Frontiers in Nutrition, 2022, 9, 810462.	1.6	7
5977	<i>Morus alba</i> L. water extract changes gut microbiota and fecal metabolome in mice induced by highâ€fat and highâ€sucrose diet plus lowâ€dose streptozotocin. Phytotherapy Research, 2022, 36, 1241-1257.	2.8	21
5978	Profiling of the Bacterial Microbiota along the Murine Alimentary Tract. International Journal of Molecular Sciences, 2022, 23, 1783.	1.8	6
5979	The Functional Interplay between Gut Microbiota, Protein Hydrolysates/Bioactive Peptides, and Obesity: A Critical Review on the Study Advances. Antioxidants, 2022, 11, 333.	2.2	12
5980	An acidic polysaccharide from Patinopecten yessoensis skirt prevents obesity and improves gut microbiota and metabolism of mice induced by high-fat diet. Food Research International, 2022, 154, 110980.	2.9	30
5981	Microbiota and body weight control: Weight watchers within?. Molecular Metabolism, 2022, 57, 101427.	3.0	25
5982	The links between gut microbiota and obesity and obesity related diseases. Biomedicine and Pharmacotherapy, 2022, 147, 112678.	2.5	86

#	Article	IF	CITATIONS
5983	Protein O-mannosylation across kingdoms and related diseases: From glycobiology to glycopathology. Biomedicine and Pharmacotherapy, 2022, 148, 112685.	2.5	4
5984	Microbiome: A forgotten target of environmental micro(nano)plastics?. Science of the Total Environment, 2022, 822, 153628.	3.9	23
5985	Alterations in Intestinal Microbiota Composition in Mice Treated With Vitamin D3 or Cathelicidin. Frontiers in Oncology, 2021, 11, 700038.	1.3	3
5986	The impact of Scn1a deficiency and ketogenic diet on the intestinal microbiome: A study in a genetic Dravet mouse model. Epilepsy Research, 2021, 178, 106826.	0.8	12
5987	Antibacterial efficacy of non-thermal atmospheric plasma against Streptococcus mutans biofilm grown on the surfaces of restorative resin composites. Scientific Reports, 2021, 11, 23800.	1.6	6
5988	Ketone bodies: from enemy to friend and guardian angel. BMC Medicine, 2021, 19, 313.	2.3	109
5990	Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 2022, 10, 83.	1.4	71
5991	Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms, 2022, 10, 70.	1.6	17
5993	The Gut Microbiome. , 2022, , .		0
5994	Recent advances in understanding depressive disorder: Possible relevance to brain stimulation therapies. Progress in Brain Research, 2022, 270, 123-147.	0.9	1
5995	The Gut Microbiota and Host Metabolism. , 2022, , 141-175.		2
5996	Resonance-Based Design of Wireless Magnetic Capsule for Effective Sampling of Microbiome in Gastrointestinal Tract. SSRN Electronic Journal, 0, , .	0.4	0
5997	Beneficial effects of eugenol supplementation on gut microbiota and hepatic steatosis in high-fat-fed mice. Food and Function, 2022, 13, 3381-3390.	2.1	6
5998	A nonautonomous chemostat model for the growth of gut microbiome with varying nutrient. Discrete and Continuous Dynamical Systems - Series S, 2022, 15, 2889.	0.6	2
6000	Astilbin from <i>Smilax glabra</i> Roxb. alleviates high-fat diet-induced metabolic dysfunction. Food and Function, 2022, 13, 5023-5036.	2.1	15
6001	Protective role of bayberry extract: associations with gut microbiota modulation and key metabolites. Food and Function, 2022, 13, 5547-5558.	2.1	6
6002	Multi-omics reveals host metabolism associated with the gut microbiota composition in mice with dietary ε-polylysine. Food and Function, 2022, 13, 4069-4085.	2.1	3
6003	Metabolomics as a tool for precision medicine. , 2022, , 605-624.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
6004	The Gut Microbial Signature of Gestational Diabetes Mellitus and the Association With Intervention. Frontiers in Cellular and Infection Microbiology, 2021, 11, 800865.	Diet	1.8	15
6005	Oryzanol alleviates high fat and cholesterol diet-induced hypercholesterolemia associat modulation of the gut microbiota in hamsters. Food and Function, 2022, 13, 4486-450	ted with the)1.	2.1	21
6006	Characterization and Comparison of the Rumen Luminal and Epithelial Microbiome Pro Metagenomic Sequencing Technique. Frontiers in Veterinary Science, 2022, 9, 799063		0.9	7
6007	Gut microbiota in pregnant Malaysian women: a comparison between trimesters, body gestational diabetes status. BMC Pregnancy and Childbirth, 2022, 22, 152.	mass index and	0.9	17
6008	Microbiome in Chronic Kidney Disease (CKD): An Omics Perspective. Toxins, 2022, 14,	176.	1.5	22
6009	Effects of Whole Brown Bean and Its Isolated Fiber Fraction on Plasma Lipid Profile, Ath Gut Microbiota, and Microbiota-Dependent Metabolites in Apoeâ^'/â^' Mice. Nutrients,		1.7	8
6010	Microbiome-metabolomics insights into the feces of high-fat diet mice to reveal the an effects of yak (Bos grunniens) bone collagen hydrolysates. Food Research Internationa 111024.	ti-obesity l, 2022, 156,	2.9	11
6011	Two Blautia Species Associated with Visceral Fat Accumulation: A One-Year Longitudin Biology, 2022, 11, 318.	al Study.	1.3	16
6012	<i>Portulaca oleracea</i> L. Extract Alleviated Type 2 Diabetes Via Modulating the Gut Serum Branchedâ€Chain Amino Acid Metabolism. Molecular Nutrition and Food Resear e2101030.	Microbiota and rch, 2022, 66,	1.5	18
6013	Obesity Reshapes the Microbial Population Structure along the Gut-Liver-Lung Axis in N Biomedicines, 2022, 10, 494.	Лісе.	1.4	3
6014	Alleviation of Hepatic Steatosis: Dithizone-Related Gut Microbiome Restoration During Dysfunction. Frontiers in Microbiology, 2022, 13, 813783.	Paneth Cell	1.5	6
6015	Differences in the composition and predicted functions of the intestinal microbiome of normal weight adult dogs. PeerJ, 2022, 10, e12695.	obese and	0.9	6
6016	The etiology of preeclampsia. American Journal of Obstetrics and Gynecology, 2022, 22	26, S844-S866.	0.7	140
6017	Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, ar fatty acid producers. Scientific Reports, 2022, 12, 3140.	nd short-chain	1.6	65
6018	Heat Stress Affects Faecal Microbial and Metabolic Alterations of Rabbits. Frontiers in N 2021, 12, 817615.	Иicrobiology,	1.5	6
6019	Changes in the Composition of Oral and Intestinal Microbiota After Sleeve Gastrectom Gastric Bypass and Their Impact on Outcomes of Bariatric Surgery. Obesity Surgery, 20		1.1	10
6020	The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health a Performance. Nutrients, 2022, 14, 924.	nd Sports	1.7	9
6021	16S rRNA gene sequencing analysis of gut microbiome in a miniâ€pig diabetes model. Experimental Medicine, 2022, 5, 81-88.	Animal Models and	1.3	7

#	Article	IF	CITATIONS
6022	Dietary Boswellia serrata Acid Alters the Gut Microbiome and Blood Metabolites in Experimental Models. Nutrients, 2022, 14, 814.	1.7	2
6023	Molecular Mechanism Underlying the Regulatory Effect of Vine Tea on Metabolic Syndrome by Targeting Redox Balance and Gut Microbiota. Frontiers in Nutrition, 2022, 9, 802015.	1.6	5
6024	Gut-Microbiome Implications in Opioid Use Disorder and Related Behaviors. Advances in Drug and Alcohol Research, 0, 2, .	2.5	4
6025	Alterations in the Gut Microbiome of Individuals With Tuberculosis of Different Disease States. Frontiers in Cellular and Infection Microbiology, 2022, 12, 836987.	1.8	7
6026	Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review. Food Reviews International, 2023, 39, 4909-4940.	4.3	8
6027	Dietary Supplementation With Fine-Grinding Wheat Bran Improves Lipid Metabolism and Inflammatory Response via Modulating the Gut Microbiota Structure in Pregnant Sow. Frontiers in Microbiology, 2022, 13, 835950.	1.5	5
6028	Microbial and molecular differences according to the location of head and neck cancers. Cancer Cell International, 2022, 22, 135.	1.8	13
6029	Oral and Gut Microbial Dysbiosis and Non-alcoholic Fatty Liver Disease: The Central Role of Porphyromonas gingivalis. Frontiers in Medicine, 2022, 9, 822190.	1.2	18
6030	Gut Microbiome Alterations and Hepatic Metabolic Flexibility in the Gansu Zokor, Eospalax cansus: Adaptation to Hypoxic Niches. Frontiers in Cardiovascular Medicine, 2022, 9, 814076.	1.1	1
6031	Obesity is associated with a distinct brain-gut microbiome signature that connects Prevotella and Bacteroides to the brain's reward center. Gut Microbes, 2022, 14, 2051999.	4.3	28
6032	Lipopolysaccharide and the gut microbiota: considering structural variation. FEBS Letters, 2022, 596, 849-875.	1.3	38
6033	Gut Microbiome-Derived Clycine Lipids Are Diet-Dependent Modulators of Hepatic Injury and Atherosclerosis. Journal of Lipid Research, 2022, , 100192.	2.0	7
6034	Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. IScience, 2022, 25, 104158.	1.9	41
6035	Gender Differences in Gut Microbiome Composition Between Schizophrenia Patients With Normal Body Weight and Central Obesity. Frontiers in Psychiatry, 2022, 13, 836896.	1.3	1
6036	Analysis of the Ability of Capsaicin to Modulate the Human Gut Microbiota In Vitro. Nutrients, 2022, 14, 1283.	1.7	11
6037	Liver and White/Brown Fat Dystrophy Associates with Gut Microbiota and Metabolomic Alterations in 3xTg Alzheimer's Disease Mouse Model. Metabolites, 2022, 12, 278.	1.3	0
6039	Variation in diet composition and its relation to gut microbiota in a passerine bird. Scientific Reports, 2022, 12, 3787.	1.6	8
6040	Ketogenic Effects of Multiple Doses of a Medium Chain Triglycerides Enriched Ketogenic Formula in Healthy Men under the Ketogenic Diet: A Randomized, Double-Blinded, Placebo-Controlled Study. Nutrients, 2022, 14, 1199.	1.7	6

#	Article	IF	Citations
6041	Fruit pomaces—their nutrient and bioactive components, effects on growth and health of poultry species, and possible optimization techniques. Animal Nutrition, 2022, 9, 357-377.	2.1	23
6042	The interplay between anticancer challenges and the microbial communities from the gut. European Journal of Clinical Microbiology and Infectious Diseases, 2022, 41, 691-711.	1.3	1
6043	Diagnostic, Prognostic, and Therapeutic Roles of Gut Microbiota in COVID-19: A Comprehensive Systematic Review. Frontiers in Cellular and Infection Microbiology, 2022, 12, 804644.	1.8	40
6044	The Yin-Yang Concept of Pediatric Obesity and Gut Microbiota. Biomedicines, 2022, 10, 645.	1.4	4
6045	Salivary bacterial community profile in normalâ€weight and obese adolescent patients prior to orthodontic treatment with fixed appliances. Orthodontics and Craniofacial Research, 2022, , .	1.2	3
6046	Comparative Proteomic Analysis of Fucosylated Glycoproteins Produced by Bacteroides thetaiotaomicron Under Different Polysaccharide Nutrition Conditions. Frontiers in Microbiology, 2022, 13, 826942.	1.5	1
6047	The Epidemiology and Mechanisms of Lifetime Cardiopulmonary Morbidities Associated With Pre-Pregnancy Obesity and Excessive Gestational Weight Gain. Frontiers in Cardiovascular Medicine, 2022, 9, 844905.	1.1	3
6048	Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Briefings in Bioinformatics, 2022, 23, .	3.2	11
6049	Captivity and Animal Microbiomes: Potential Roles of Microbiota for Influencing Animal Conservation. Microbial Ecology, 2023, 85, 820-838.	1.4	36
6050	Role of Oral Microbiota in Carcinogenesis: A Short Review. Journal of Cancer Prevention, 2022, 27, 16-21.	0.8	3
6051	Analysis of the gut microbiota composition of myostatin mutant cattle prepared using CRISPR/Cas9. PLoS ONE, 2022, 17, e0264849.	1.1	6
6052	Comparison of Cecal Microbiota and Performance Indices Between Lean-Type and Fatty-Type Pekin Ducks. Frontiers in Microbiology, 2022, 13, 820569.	1.5	6
6053	The Role of the Gut Microbiota in the Development of Ischemic Stroke. Frontiers in Immunology, 2022, 13, 845243.	2.2	14
6054	Gut microbiome modifications over time when removing in-feed antibiotics from the prophylaxis of post-weaning diarrhea in piglets. PLoS ONE, 2022, 17, e0262199.	1.1	13
6055	Anorexia nervosa and gut microbiome: implications for weight change and novel treatments. Expert Review of Gastroenterology and Hepatology, 2022, , .	1.4	5
6056	Effects of Konjaku Flour on the Gut Microbiota of Obese Patients. Frontiers in Cellular and Infection Microbiology, 2022, 12, 771748.	1.8	12
6057	Composition and short-term stability of gut microbiota in lean and spontaneously overweight healthy Labrador retriever dogs. Acta Veterinaria Scandinavica, 2022, 64, 8.	0.5	7
6058	Therapeutic Potential of Natural Plants Against Non-Alcoholic Fatty Liver Disease: Targeting the Interplay Between Gut Microbiota and Bile Acids. Frontiers in Cellular and Infection Microbiology, 2022, 12, 854879.	1.8	7

#	Article	IF	CITATIONS
6059	Interplay between diet, the gut microbiome, and atherosclerosis: Role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism. Journal of Nutritional Biochemistry, 2022, 105, 108991.	1.9	36
6060	Short-Term Metformin Treatment Enriches Bacteroides dorei in an Obese Liver Steatosis Zucker Rat Model. Frontiers in Microbiology, 2022, 13, 834776.	1.5	2
6062	Targeting Gut Microbiota and Host Metabolism with <i>Dendrobium officinale</i> Dietary Fiber to Prevent Obesity and Improve Glucose Homeostasis in Dietâ€Induced Obese Mice. Molecular Nutrition and Food Research, 2022, 66, e2100772.	1.5	18
6063	Assessment of Bacterial Communities Within the Biofilm of Bladder Calculi in the Neurogenic Bladder Rat Model Following Spinal Cord Injury. International Neurourology Journal, 2022, 26, 26-30.	0.5	0
6064	Putative Mechanisms Underlying the Beneficial Effects of Polyphenols in Murine Models of Metabolic Disorders in Relation to Gut Microbiota. Current Issues in Molecular Biology, 2022, 44, 1353-1375.	1.0	6
6065	Effects of Ramadan and Non-ramadan Intermittent Fasting on Gut Microbiome. Frontiers in Nutrition, 2022, 9, 860575.	1.6	7
6066	Oral Administration of <i>Weissella confusa</i> WIKIM51 Reduces Body Fat Mass by Modulating Lipid Biosynthesis and Energy Expenditure in Diet-Induced Obese Mice. Microbiology and Biotechnology Letters, 2022, 50, 135-146.	0.2	0
6067	Hind-limb unloading in rodents: Current evidence and perspectives. Acta Astronautica, 2022, 195, 574-582.	1.7	7
6068	Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. Metabolites, 2022, 12, 313.	1.3	13
6069	Assessment of the Effects of the Synbiotic Combination of Bifidobacterium longum subsp. infantis CECT 7210 and Oligofructose-Enriched Inulin Against Digestive Bacterial Infections in a Piglet Model. Frontiers in Microbiology, 2022, 13, 831737.	1.5	4
6070	lsoliquiritigenin Attenuates Adipose Tissue Inflammation and Metabolic Syndrome by Modifying Gut Bacteria Composition in Mice. Molecular Nutrition and Food Research, 2022, 66, e2101119.	1.5	13
6071	Evaluation of fecal microbiota and its correlation with inflammatory, hormonal, and nutritional profiles in women. Brazilian Journal of Microbiology, 2022, 53, 1001-1009.	0.8	4
6072	Intestinal microecological mechanism for Baohe Pill to treat food-stagnation-type gastrointestinal diarrhea. World Chinese Journal of Digestology, 2022, 30, 217-222.	0.0	0
6073	Dietary licorice enhances in vivo cadmium detoxification and modulates gut microbial metabolism in mice. , 2022, 1, .		8
6074	Ifnar gene variants influence gut microbial production of palmitoleic acid and host immune responses to tuberculosis. Nature Metabolism, 2022, 4, 359-373.	5.1	11
6075	Comparison between Egg Intake versus Choline Supplementation on Gut Microbiota and Plasma Carotenoids in Subjects with Metabolic Syndrome. Nutrients, 2022, 14, 1179.	1.7	13
6076	Bone health in women with polycystic ovary syndrome: A narrative review. Journal of Clinical Densitometry, 2022, , .	0.5	3
6077	Correlation Analysis of Gut Microbiota and Serum Metabolome With Porphyromonas gingivalis-Induced Metabolic Disorders. Frontiers in Cellular and Infection Microbiology, 2022, 12, 858902.	1.8	16

#	Article	IF	CITATIONS
6078	Grape Phytochemicals and Vitamin D in the Alleviation of Lung Disorders. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 1276-1292.	0.6	6
6079	The gut bacterial microbiome of Nile tilapia (Oreochromis niloticus) from lakes across an altitudinal gradient. BMC Microbiology, 2022, 22, 87.	1.3	16
6080	Obesity I: Overview and molecular and biochemical mechanisms. Biochemical Pharmacology, 2022, 199, 115012.	2.0	60
6081	Intestinal bacteria flora changes in patients with Mycoplasma pneumoniae pneumonia with or without wheezing. Scientific Reports, 2022, 12, 5683.	1.6	5
6082	Comparative Analysis of the Fecal Microbiota of Relict Gull (Larus relictus) in Mu Us Desert (Hao) Tj ETQq0 0 0 rg 860540.	BT /Overlo 0.9	ck 10 Tf 50 5 3
6083	The impact of the interplay of the intestinal microbiome and diet on the metabolomic and health outcomes of bariatric surgery. Obesity Reviews, 2022, 23, e13455.	3.1	8
6084	Increase Dietary Fiber Intake Ameliorates Cecal Morphology and Drives Cecal Species-Specific of Short-Chain Fatty Acids in White Pekin Ducks. Frontiers in Microbiology, 2022, 13, 853797.	1.5	11
6085	The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke. Cells, 2022, 11, 1239.	1.8	55
6086	Effects of caloric restriction on the gut microbiome are linked with immune senescence. Microbiome, 2022, 10, 57.	4.9	38
6087	The Compositional Structure of the Small Intestinal Microbial Community via Balloon-Assisted Enteroscopy. Digestion, 2022, 103, 308-318.	1.2	5
6088	Maternal stress and the maternal microbiome have sex-specific effects on offspring development and aggressive behavior in Siberian hamsters (Phodopus sungorus). Hormones and Behavior, 2022, 141, 105146.	1.0	9
6089	Dioxin-like polychlorinated biphenyl 126 (PCB126) disrupts gut microbiota-host metabolic dysfunction in mice via aryl hydrocarbon receptor activation. Ecotoxicology and Environmental Safety, 2022, 236, 113448.	2.9	6
6090	Effect of daily co-exposure to inulin and chlorpyrifos on selected microbiota endpoints in the SHIME® model. Environmental Pollution, 2022, 302, 118961.	3.7	2
6091	Characteristics of intestinal microbiota in male morphotypes of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 2022, 555, 738200.	1.7	7
6092	PM2.5 induced weight loss of mice through altering the intestinal microenvironment: Mucus barrier, gut microbiota, and metabolic profiling. Journal of Hazardous Materials, 2022, 431, 128653.	6.5	20
6093	Probiotic kefir consumption improves serum apolipoprotein A1 levels in metabolic syndrome patients: a randomized controlled clinical trial. Nutrition Research, 2022, 102, 59-70.	1.3	9
6094	Does seasonality of the microbiota contribute to the seasonality of acute gout flare?. Clinical and Experimental Rheumatology, 2022, , .	0.4	1
6095	Differential microbial responses to antibiotic treatments by insecticide-resistant and susceptible cockroach strains (Blattella germanica L.). Scientific Reports, 2021, 11, 24196.	1.6	7

#	Article	IF	CITATIONS
6096	The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism. Journal of Microbiology, 2022, 60, 118-127.	1.3	13
6097	Comparative Analysis of Fecal Bacterial Microbiota of Six Bird Species. Frontiers in Veterinary Science, 2021, 8, 791287.	0.9	13
6098	Extracellular vesicles and pasteurized cells derived from Akkermansia muciniphila protect against high-fat induced obesity in mice. Microbial Cell Factories, 2021, 20, 219.	1.9	41
6099	Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes. Animal Nutrition, 2022, 9, 84-99.	2.1	14
6100	Metabolic Associated Fatty Liver Disease in Children—From Atomistic to Holistic. Biomedicines, 2021, 9, 1866.	1.4	3
6101	Role of Microbiota-Derived Metabolites in Alcoholic and Non-Alcoholic Fatty Liver Diseases. International Journal of Molecular Sciences, 2022, 23, 426.	1.8	37
6102	Gut Microbiota Composition and Predicted Microbial Metabolic Pathways of Obesity Prone and Obesity Resistant Outbred Sprague-Dawley CD Rats May Account for Differences in Their Phenotype. Frontiers in Nutrition, 2021, 8, 746515.	1.6	14
6103	Top 100 Most Cited Studies in Obesity Research: A Bibliometric Analysis. , 0, , .		1
6104	Dysbiosis of the duodenal microbiota as a diagnostic marker for pancreaticobiliary cancer. World Journal of Gastrointestinal Oncology, 2021, 13, 2088-2100.	0.8	3
6105	Fecal microbiota relationships with childhood obesity: A scoping comprehensive review. Obesity Reviews, 2022, 23, e13394.	3.1	16
6106	Impact of intensive lifestyle intervention on gut microbiota composition in type 2 diabetes: a <i>post-hoc</i> analysis of a randomized clinical trial. Gut Microbes, 2022, 14, 2005407.	4.3	10
6107	Fecal Microbial Enterotypes Differentially Respond to a High-fat Diet Based on Sex in Fischer-344 Rats. Journal of Cancer Prevention, 2021, 26, 277-288.	0.8	1
6108	TrpNet: Understanding Tryptophan Metabolism across Gut Microbiome. Metabolites, 2022, 12, 10.	1.3	11
6109	The Association Between Breast Density and Gut Microbiota Composition at 2 Years Post-Menarche: A Cross-Sectional Study of Adolescents in Santiago, Chile. Frontiers in Cellular and Infection Microbiology, 2021, 11, 794610.	1.8	3
6110	Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients, 2022, 14, 12.	1.7	121
6111	Potential Associations Between Microbiome and COVID-19. Frontiers in Medicine, 2021, 8, 785496.	1.2	23
6112	The Link between Gut Dysbiosis Caused by a High-Fat Diet and Hearing Loss. International Journal of Molecular Sciences, 2021, 22, 13177.	1.8	16
6113	A High-Fat Western Diet Attenuates Intestinal Changes in Mice with DSS-Induced Low-Grade Inflammation. Journal of Nutrition, 2022, 152, 758-769.	1.3	5

#	Article	IF	CITATIONS
6114	Hawk tea prevents high-fat diet-induced obesity in mice by activating the AMPK/ACC/SREBP1c signaling pathways and regulating the gut microbiota. Food and Function, 2022, 13, 6056-6071.	2.1	12
6115	Nutrition and Microbiome. Handbook of Experimental Pharmacology, 2022, , 57-73.	0.9	4
6116	(-)-Epigallocatechin-3-Gallate (EGCG) Modulates the Composition of the Gut Microbiota to Protect Against Radiation-Induced Intestinal Injury in Mice. Frontiers in Oncology, 2022, 12, 848107.	1.3	9
6117	Obesity and gut–microbiota–brain axis: A narrative review. Journal of Clinical Laboratory Analysis, 2022, 36, e24420.	0.9	51
6118	The relationship between the gut microbiota, benign prostatic hyperplasia, and erectile dysfunction. International Journal of Impotence Research, 2023, 35, 350-355.	1.0	9
6119	Disharmony in Gut Microbiota – Should This Be a Priority for Public Health Nutrition?. Kompass Nutrition & Dietetics, 0, , 1-3.	1.0	0
6120	Protective effect and possible mechanism of arctiin on broilers challenged by <i>Salmonella</i> pullorum. Journal of Animal Science, 2022, 100, .	0.2	5
6121	Effect of RG (Coptis root and ginseng) formula in patients with type 2 diabetes mellitus: a study protocol for a randomized controlled and double-blinding trial. Trials, 2022, 23, 305.	0.7	1
6122	Acidâ€ŧreated highâ€amylose corn starch suppresses highâ€fat dietâ€induced steatosis. Journal of Food Science, 2022, , .	1.5	1
6123	Metagenomic and Transcriptomic Analyses Reveal the Differences and Associations Between the Gut Microbiome and Muscular Genes in Angus and Chinese Simmental Cattle. Frontiers in Microbiology, 2022, 13, 815915.	1.5	7
6124	In vitro cell cultures of Brunner's glands from male mouse to study GLP-1 receptor function. American Journal of Physiology - Cell Physiology, 2022, 322, C1260-C1269.	2.1	0
6125	The Neuro-Endo-Microbio-Ome Study: A Pilot Study of Neurobiological Alterations Pre- Versus Post-Bariatric Surgery. Biological Research for Nursing, 2022, 24, 362-378.	1.0	9
6126	Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. Journal of Medicinal Food, 2022, 25, 341-354.	0.8	3
6439	Polyethylene microplastic exposure and concurrent effect with Aeromonas hydrophila infection on zebrafish. Environmental Science and Pollution Research, 2022, 29, 63964-63972.	2.7	8
6440	Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 2022, 7, 135.	7.1	494
6441	Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Critical Reviews in Food Science and Nutrition, 2023, 63, 8752-8767.	5.4	43
6442	The hepatoprotective effects of plant-based foods based on the "gut–liver axis― a prospective review. Critical Reviews in Food Science and Nutrition, 2023, 63, 9136-9162.	5.4	5
6443	Whole-Genome Shotgun Metagenomic Sequencing Reveals Distinct Gut Microbiome Signatures of Obese Cats. Microbiology Spectrum, 2022, 10, e0083722.	1.2	15

#	Article	IF	Citations
6445	FEATURES OF INTESTINAL MICROBIOTA IN PATIENTS WITH NONALCOHOLIC FATTY LIVER DISEASE: EFFECTS ON MARKERS OF INFLAMMATION AND HEPATIC STEATOSIS. WiadomoÅvci Lekarskie, 2022, 75, 611-618.	0.1	3
6446	The role of diet and physical activity in influencing the microbiota/microbiome. , 2022, , 693-745.		0
6447	<i>Eucommiae cortex</i> polysaccharides mitigate obesogenic diet-induced cognitive and social dysfunction via modulation of gut microbiota and tryptophan metabolism. Theranostics, 2022, 12, 3637-3655.	4.6	25
6449	Intestinal Barrier Permeability in Allergic Diseases. Nutrients, 2022, 14, 1893.	1.7	31
6450	Communication between the gut microbiota and peripheral nervous system in health and chronic disease. Gut Microbes, 2022, 14, 2068365.	4.3	17
6451	Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 2022, 23, 4768.	1.8	22
6452	Characteristics of Bacterial Microbiota in Different Intestinal Segments of Aohan Fine-Wool Sheep. Frontiers in Microbiology, 2022, 13, 874536.	1.5	16
6453	Exploring the Effects of Six Weeks of Resistance Training on the Fecal Microbiome of Older Adult Males: Secondary Analysis of a Peanut Protein Supplemented Randomized Controlled Trial. Sports, 2022, 10, 65.	0.7	10
6454	Association of Cesarean Delivery with Trajectories of Growth and Body Composition in Preschool Children. Nutrients, 2022, 14, 1806.	1.7	1
6455	Use of a Liquid Supplement Containing 2 Human Milk Oligosaccharides: The First Double-Blind, Randomized, Controlled Trial in Pre-term Infants. Frontiers in Pediatrics, 2022, 10, .	0.9	6
6456	Liver Steatosis: A Marker of Metabolic Risk in Children. International Journal of Molecular Sciences, 2022, 23, 4822.	1.8	6
6457	The Gut Microbiota in Liver Transplantation Recipients During the Perioperative Period. Frontiers in Physiology, 2022, 13, 854017.	1.3	8
6458	Gut Microbiota and Serum Metabolite Potential Interactions in Growing Layer Hens Exposed to High-Ambient Temperature. Frontiers in Nutrition, 2022, 9, 877975.	1.6	4
6459	Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms, 2022, 10, 949.	1.6	7
6460	The effects ofÂbariatric surgery procedures onÂtheÂgut microbiota, features ofÂgenetically mediated predisposition to obesity, forecasting algorithms forĂsurgical treatment outcomes. Literature review. , 2022, , 71-79.		0
6461	Microbiome of Penaeus vannamei Larvae and Potential Biomarkers Associated With High and Low Survival in Shrimp Hatchery Tanks Affected by Acute Hepatopancreatic Necrosis Disease. Frontiers in Microbiology, 2022, 13, .	1.5	8
6462	Effects of yeast culture supplementation from late gestation to weaning on performance of lactating sows and growth of nursing piglets. Animal, 2022, 16, 100526.	1.3	12
6463	The Genus Parabacteroides Is a Potential Contributor to the Beneficial Effects of Truncal Vagotomy–Related Bariatric Surgery. Obesity Surgery, 2022, , 1.	1.1	2

#	Article	IF	CITATIONS
6464	Metabolites of Gut Microbiota and Possible Implication in Development of Diabetes Mellitus. Journal of Agricultural and Food Chemistry, 2022, 70, 5945-5960.	2.4	19
6465	Impact of Food-Based Weight Loss Interventions on Gut Microbiome in Individuals with Obesity: A Systematic Review. Nutrients, 2022, 14, 1953.	1.7	9
6466	Role of Gut Microbiota in Pulmonary Arterial Hypertension. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	7
6467	2-Hydroxy-4-(Methylthio) Butanoic Acid Isopropyl Ester Supplementation Altered Ruminal and Cecal Bacterial Composition and Improved Growth Performance of Finishing Beef Cattle. Frontiers in Nutrition, 2022, 9, .	1.6	6
6468	Circulating Microbiota in Cardiometabolic Disease. Frontiers in Cellular and Infection Microbiology, 2022, 12, 892232.	1.8	12
6469	Host—microbial interactions in metabolic diseases: from diet to immunity. Journal of Microbiology, 2022, , 1.	1.3	3
6470	The effects of probiotics plus dietary fiber on antipsychotic-induced weight gain: a randomized clinical trial. Translational Psychiatry, 2022, 12, 185.	2.4	11
6471	Mechanisms of Kwashiorkor-Associated Immune Suppression: Insights From Human, Mouse, and Pig Studies. Frontiers in Immunology, 2022, 13, 826268.	2.2	12
6472	Changes in the Diversity and Composition of Gut Microbiota of Red-Crowned Cranes (Grus japonensis) after Avian Influenza Vaccine and Anthelmintic Treatment. Animals, 2022, 12, 1183.	1.0	4
6473	From Form to In-formation: A Spinozan Link between Deleuzian and Simondonian Ontologies. Deleuze and Guattari Studies, 2022, 16, 233-261.	0.1	1
6474	Polysaccharides and flavonoids from cyclocarya paliurus modulate gut microbiota and attenuate hepatic steatosis, hyperglycemia, and hyperlipidemia in nonalcoholic fatty liver disease rats with type 2 diabetes mellitus. International Journal of Diabetes in Developing Countries, 2023, 43, 317-327.	0.3	1
6475	Monkfish Peptides Mitigate High Fat Diet-Induced Hepatic Steatosis in Mice. Marine Drugs, 2022, 20, 312.	2.2	12
6476	Effect of different fixatives on yield of DNA from human fecal samples. IOP SciNotes, 0, , .	0.4	0
6477	Brussels Chicory Stabilizes Unstable Atherosclerotic Plaques and Reshapes the Gut Microbiota in Apoeâ''/â'' Mice. Journal of Nutrition, 2022, 152, 2209-2217.	1.3	10
6478	The effects of bamboo leaf flavonoids on growth performance, immunity, antioxidant status, and intestinal microflora of Chinese mitten crabs (Eriocheir sinensis). Animal Feed Science and Technology, 2022, 288, 115297.	1.1	12
6479	Phage Cocktail Targeting STEC O157:H7 Has Comparable Efficacy and Superior Recovery Compared with Enrofloxacin in an Enteric Murine Model. Microbiology Spectrum, 2022, 10, e0023222.	1.2	9
6480	Lessons to Learn from the Gut Microbiota: A Focus on Amyotrophic Lateral Sclerosis. Genes, 2022, 13, 865.	1.0	4
6481	Ambient NO2 exposure induced cardiotoxicity associated with gut microbiome dysregulation and glycerophospholipid metabolism disruption. Ecotoxicology and Environmental Safety, 2022, 238, 113583.	2.9	5

ARTICLE

6482	食ä⁰‹ç"±æ¥ãfãfªãf•ã,§ã	fŽãf¼ãf«ã®æ©Ÿèf½æ€§	ç"ç©¶ã®å±•望ã¤ç ¤ 4会å	実è£åŒ–. Kagaku To Se	ibuts
------	-----------------------	---------------------	-----------------------------	----------------------	---------------

6483	Microbiota Composition and Diversity in Weight Loss Population After the Intake of IQP-AE-103 in a Double-Blind, Randomized, Placebo-Controlled Study. Frontiers in Nutrition, 2022, 9, 790045.	1.6	0
6484	Increased Relative Abundance of Ruminoccocus Is Associated With Reduced Cardiovascular Risk in an Obese Population. Frontiers in Nutrition, 2022, 9, 849005.	1.6	13
6485	[Review] Development of A Novel Soluble Dietary Fiber, Isomaltodextrin (Fibryxa TM). Bulletin of Applied Glycoscience, 2019, 9, 35-42.	0.0	0
6486	Flavonoid–amyloid fibril hybrid hydrogels for obesity control <i>via</i> the construction of gut microbiota. Biomaterials Science, 2022, 10, 3597-3611.	2.6	8
6487	Crosstalk of Immuno-Oncology and Metabolism: Influence of Akkermansia muciniphila and Personalized Therapy Approach. , 2022, , 91-115.		1
6488	Relationship between probiotics and obesity: a review of recent research. Food Science and Technology, 0, 42, .	0.8	3
6489	The gut microbiome, health and personalised nutrition. Trends in Urology & Men's Health, 2022, 13, 22-25.	0.2	2
6490	Association between gut MIcrobiota, GROWth and Diet in peripubertal children from the TARGet Kids! cohort (The MiGrowD) study: protocol for studying gut microbiota at a community-based primary healthcare setting. BMJ Open, 2022, 12, e057989.	0.8	0
6492	IgM-associated gut bacteria in obesity and type 2 diabetes in C57BL/6 mice and humans. Diabetologia, 2022, 65, 1398-1411.	2.9	4
6493	Oryzanol Attenuates High Fat and Cholesterol Diet-Induced Hyperlipidemia by Regulating the Gut Microbiome and Amino Acid Metabolism. Journal of Agricultural and Food Chemistry, 2022, 70, 6429-6443.	2.4	15
6494	Evaluation of Novel Quorum Sensing Inhibitors Targeting Auto-Inducer 2 (AI-2) for the Control of Avian Pathogenic Escherichia coli Infections in Chickens. Microbiology Spectrum, 2022, 10, e0028622.	1.2	11
6495	Large Comparative Analyses of Primate Body Site Microbiomes Indicate that the Oral Microbiome Is Unique among All Body Sites and Conserved among Nonhuman Primates. Microbiology Spectrum, 2022, 10, e0164321.	1.2	5
6496	Annexin-A1 deficiency attenuates stress-induced tumor growth <i>via</i> fatty acid metabolism in mice: an Integrated multiple omics analysis on the stress- microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Theranostics, 2022, 12, 3794-3817.	4.6	8
6497	Diet and intestinal bacterial overgrowth: Is there evidence?. World Journal of Clinical Cases, 2022, 10, 4713-4716.	0.3	3
6499	Involvement of Gut Microbial Metabolites Derived from Diet on Host Energy Homeostasis. International Journal of Molecular Sciences, 2022, 23, 5562.	1.8	4
6501	Identification of Lifestyle Risk Factors in Adolescence Influencing Cardiovascular Health in Young Adults: The BELINDA Study. Nutrients, 2022, 14, 2089.	1.7	2
6502	Disordered Gut Microbiota in Colorectal Tumor-Bearing Mice Altered Serum Metabolome Related to Fufangchangtai. Frontiers in Pharmacology, 2022, 13, .	1.6	2

#	Article	IF	CITATIONS
6503	Hypoglycaemic and anti-ageing activities of green alga Ulva lactuca polysaccharide via gut microbiota in ageing-associated diabetic mice. International Journal of Biological Macromolecules, 2022, 212, 97-110.	3.6	19
6504	Impacts of Polystyrene Nanoplastics on the Oxidative Stress, Immune Responses, and Gut Microbiota to Grass Carp (Ctenopharyngodon Idella). SSRN Electronic Journal, 0, , .	0.4	1
6505	Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. International Journal of Molecular Sciences, 2022, 23, 6097.	1.8	29
6506	The Antioxidant Activity of Thymus serpyllum Extract Protects against the Inflammatory State and Modulates Gut Dysbiosis in Diet-Induced Obesity in Mice. Antioxidants, 2022, 11, 1073.	2.2	8
6507	Effect of Probiotics Therapy on Nonalcoholic Fatty Liver Disease. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-15.	0.7	10
6508	Kitchen Diet vs. Industrial Diets—Impact on Intestinal Barrier Parameters among Stroke Patients. International Journal of Environmental Research and Public Health, 2022, 19, 6168.	1.2	1
6509	Characteristics of the gut microbiota in women with premenstrual symptoms: A cross-sectional study. PLoS ONE, 2022, 17, e0268466.	1.1	5
6510	Microbiota Composition of Mucosa and Interactions between the Microbes of the Different Gut Segments Could Be a Factor to Modulate the Growth Rate of Broiler Chickens. Animals, 2022, 12, 1296.	1.0	12
6511	Alteration of gut microbiota in highâ€fat dietâ€induced obese mice using carnosic acid from rosemary. Food Science and Nutrition, 2022, 10, 2325-2332.	1.5	7
6512	Clinical Characteristics and Management Strategies for Adult Obese Asthma Patients. Journal of Asthma and Allergy, 0, Volume 15, 673-689.	1.5	10
6513	Comparative Analysis of Original and Replaced Gut Microbiomes within Same Individuals Identified the Intestinal Microbes Associated with Weight Gaining. Microorganisms, 2022, 10, 1062.	1.6	4
6514	The gut microbiome and the immune system. Exploration of Medicine, 0, , 219-233.	1.5	3
6515	Resonance-based design of wireless magnetic capsule for effective sampling of microbiome in gastrointestinal tract. Sensors and Actuators A: Physical, 2022, 342, 113654.	2.0	9
6516	Singleâ€Cell Transcriptomic Analysis Demonstrates the Regulation of Peach Polysaccharides on Circadian Rhythm Disturbance. Molecular Nutrition and Food Research, 2022, 66, .	1.5	4
6517	Revisiting the role of <i>Akkermansia muciniphila</i> as a therapeutic bacterium. Gut Microbes, 2022, 14, .	4.3	30
6518	Circulating extracellular vesicles carrying Firmicutes reflective of the local immune status may predict clinical response to pembrolizumab in urothelial carcinoma patients. Cancer Immunology, Immunotherapy, 2022, 71, 2999-3011.	2.0	4
6519	The Immune Response in Adipocytes and Their Susceptibility to Infection: A Possible Relationship with Infectobesity. International Journal of Molecular Sciences, 2022, 23, 6154.	1.8	9
6520	A Microbiota-Dependent Response to Anticancer Treatment in an In Vitro Human Microbiota Model: A Pilot Study With Hydroxycarbamide and Daunorubicin. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	0

#	Article	IF	CITATIONS
6521	Analysis of Gut Microbiota Signature and Microbe-Disease Progression Associations in Locally Advanced Non-Small Cell Lung Cancer Patients Treated With Concurrent Chemoradiotherapy. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	5
6522	Effects of sweet potato vine silage supplementation on growth performance, nutrient digestibility, and intestinal health in finishing pigs. Czech Journal of Animal Science, 2022, 67, 218-227.	0.5	0
6523	Alterations of Gut Microbiome and Metabolite Profiles Associated With Anabatic Lipid Dysmetabolism in Thyroid Cancer. Frontiers in Endocrinology, 2022, 13, .	1.5	15
6524	Aqueous Extract of Guava (Psidium guajava L.) Leaf Ameliorates Hyperglycemia by Promoting Hepatic Glycogen Synthesis and Modulating Gut Microbiota. Frontiers in Pharmacology, 0, 13, .	1.6	6
6525	Intestinal Flora Mediates Antiobesity Effect of Rutin in Highâ€Fatâ€Diet Mice. Molecular Nutrition and Food Research, 2022, 66, .	1.5	14
6526	Characterization of intestinal microbiota in normal weight and overweight Border Collie and Labrador Retriever dogs. Scientific Reports, 2022, 12, .	1.6	4
6527	Digestion characteristics of polysaccharides from Gracilaria lemaneiformis and its interaction with the human gut microbiota. International Journal of Biological Macromolecules, 2022, 213, 305-316.	3.6	7
6528	Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. Food Science and Human Wellness, 2022, 11, 1101-1110.	2.2	57
6529	Microalgae to Contrast the Climate Change: A Novel Food and Feed Ingredient With Technological Applications. , 2023, , 146-163.		2
6532	Sex-dependent obesogenic effect of tetracycline on Drosophila melanogaster deteriorated by dysrhythmia. Journal of Environmental Sciences, 2023, 124, 472-480.	3.2	5
6533	Intestinal microbiota, gastroenterological complaints and quality of life in overweight, obese and type 2 diabetes patients. Profilakticheskaya Meditsina, 2022, 25, 80.	0.2	0
6535	Comparison of Gut Microbiota Diversity Between Captive and Wild Tokay Gecko (Gekko gecko). Frontiers in Microbiology, 0, 13, .	1.5	4
6536	Targeting microbiota in dietary obesity management: a systematic review on randomized control trials in adults. Critical Reviews in Food Science and Nutrition, 2023, 63, 11449-11481.	5.4	14
6537	Microbiome as an immune regulator in health, disease, and therapeutics. Advanced Drug Delivery Reviews, 2022, 188, 114400.	6.6	11
6538	Early Weaning and Milk Substitutes Affect the Gut Microbiome, Metabolomics, and Antibody Profile in Goat Kids Suffering From Diarrhea. Frontiers in Microbiology, 0, 13, .	1.5	4
6539	Evaluation of a human gut-associated phage and gut dominant microbial phyla in the metabolic syndrome. Clinical Nutrition ESPEN, 2022, 50, 133-137.	0.5	6
6540	Multi-strain Probiotic Formulation Reverses Maternal Separation and Chronic Unpredictable Mild Stress-Generated Anxiety- and Depression-like Phenotypes by Modulating Gut Microbiome–Brain Activity in Rats. ACS Chemical Neuroscience, 2022, 13, 1948-1965.	1.7	31
6541	Clinical-social and psychological-pedagogical approaches in the prevention and treatment of obesity and metabolic syndrome in children. Kazan Medical Journal, 2022, 103, 492-503.	0.1	1

#	Article	IF	CITATIONS
6543	Time $\hat{a} {\in} {f l}$ imited diets and the gut microbiota in cardiometabolic disease. Journal of Diabetes, 0, , .	0.8	12
6544	Dietary Influences on Gut Microbiota with a Focus on Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2022, 20, 429-439.	0.5	16
6545	Microbiological Investigation of the Effects of Olanzapine with Timokinon on the Intestine. Adıyaman University Journal of Science, 0, , .	0.0	0
6546	Mogroside-Rich Extract From Siraitia grosvenorii Fruits Ameliorates High-Fat Diet-Induced Obesity Associated With the Modulation of Gut Microbiota in Mice. Frontiers in Nutrition, 0, 9, .	1.6	6
6547	High-fat-diet-induced gut microbiome changes in mice. Stress and Brain, 2022, 2, 17-30.	0.3	7
6548	Cooked Adzuki Bean Reduces High-Fat Diet-Induced Body Weight Gain, Ameliorates Inflammation, and Modulates Intestinal Homeostasis in Mice. Frontiers in Nutrition, 0, 9, .	1.6	12
6549	Gut microbiota in obesity and related comorbidities in children and adolescents: the role of biotics in treatment. Minerva Pediatrics, 0, , .	0.2	3
6550	Antidiabetogenic mechanisms of probiotic action in food matrices: A review. PharmaNutrition, 2022, , 100302.	0.8	0
6551	Personalized Strategy of Obesity Prevention and Management Based on the Analysis of Pathogenetic, Genetic, and Microbiotic Factors. , 0, , .		2
6552	Evaluation of nonalcoholic fatty liver disease (NAFLD) in severe obesity using noninvasive tests and imaging techniques. Obesity Reviews, 2022, 23, .	3.1	7
6553	Rising Rates of Severe Obesity in Adults Younger Than 50 Correspond to Rise in Hospitalizations for Non-malignant Gastrointestinal Disease. Digestive Diseases and Sciences, 0, , .	1.1	1
6554	Effect of Artificial Sweeteners on Gut Microbiota in Mice and Rats: A Systematic Review of Randomized Controlled Studies. Arsiv Kaynak Tarama Dergisi, 2022, 31, 99-110.	0.1	0
6555	Alteration of Gut Microbiota in Alzheimer's Disease and Their Relation to the Cognitive Impairment. Journal of Alzheimer's Disease, 2022, 88, 1103-1114.	1.2	18
6556	NAD+ and its possible role in gut microbiota: Insights on the mechanisms by which gut microbes influence host metabolism. Animal Nutrition, 2022, 10, 360-371.	2.1	10
6557	Targeting the gut to prevent and counteract metabolic disorders and pathologies during aging. Critical Reviews in Food Science and Nutrition, 2023, 63, 11185-11210.	5.4	2
6558	Addition of Soluble Fiber in Low-Fat Purified Diets Maintains Cecal and Colonic Morphology, Modulates Bacterial Populations and Predicted Functions, and Improves Glucose Tolerance Compared with Traditional AIN Diets in Male Mice. Current Developments in Nutrition, 2022, 6, nzac105.	0.1	2
6559	Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. Microbiome, 2022, 10, .	4.9	32
6560	How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients, 2022, 14, 2456.	1.7	40

#	Article	IF	CITATIONS
6561	The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	65
6562	Effects of Diets With Different Protein Levels on Lipid Metabolism and Gut Microbes in the Host of Different Genders. Frontiers in Nutrition, 0, 9, .	1.6	8
6563	Experiencing social exclusion changes gut microbiota composition. Translational Psychiatry, 2022, 12, .	2.4	8
6564	Estrogen receptor \hat{I}_{\pm} activation modulates the gut microbiome and type 2 diabetes risk factors. Physiological Reports, 2022, 10, .	0.7	1
6565	Kimchi intake alleviates obesity-induced neuroinflammation by modulating the gut-brain axis. Food Research International, 2022, 158, 111533.	2.9	11
6566	Effects of Different Roughage Diets on Fattening Performance, Meat Quality, Fatty Acid Composition, and Rumen Microbe in Steers. Frontiers in Nutrition, 0, 9, .	1.6	10
6567	Discovery of Drug Candidates for Specific Human Disease Based on Natural Products of Gut Microbes. Frontiers in Microbiology, 0, 13, .	1.5	0
6568	Adjustable Intragastric Balloon Leads to Significant Improvement in Obesity-Related Lipidome and Fecal Microbiome Profiles: A Proof-of-Concept Study. Clinical and Translational Gastroenterology, 2022, 13, e00508.	1.3	1
6569	Obesity and lifestyle-related disorders beyond the stethoscope: Role of botanicals. , 2022, , 423-430.		0
6570	Utility andÂPrivacy Assessment ofÂSynthetic Microbiome Data. Lecture Notes in Computer Science, 2022, , 15-27.	1.0	4
6572	Gut Microbiota Potential in Type 2 Diabetes. , 0, , .		0
6573	Moderate-Intensity Exercise Improves Endothelial Function by Altering Gut Microbiome Composition in Rats Fed a High-Fat Diet. Journal of Nippon Medical School, 2022, 89, 316-327.	0.3	1
6574	Association between the Blautia/Bacteroides Ratio and Altered Body Mass Index after Bariatric Surgery. Endocrinology and Metabolism, 2022, 37, 475-486.	1.3	7
6575	Postbiotic heat-killed lactobacilli modulates on body weight associated with gut microbiota in a pig model. AMB Express, 2022, 12, .	1.4	8
6576	Obesity and Gut Microbiota. , 0, , .		1
6577	Potential Role of Gastrointestinal Microbiota in Growth Regulation of Yellowtail Kingfish Seriola lalandi in Different Stocking Densities. Fishes, 2022, 7, 154.	0.7	3
6578	Risk assessment with gut microbiome and metabolite markers in NAFLD development. Science Translational Medicine, 2022, 14, .	5.8	50
6579	EGCC and catechin relative to green tea extract differentially modulate the gut microbial metabolome and liver metabolome to prevent obesity in mice fed a high-fat diet. Journal of Nutritional Biochemistry, 2022, 109, 109094.	1.9	13

		CITATION REPORT		
#	Article		IF	CITATIONS
6580	Influence of the Gut Microbiome on Feed Intake of Farm Animals. Microorganisms, 202	2, 10, 1305.	1.6	3
6583	The comparison of changes in fecal and mucosal microbiome in metabolic endotoxemi high-fat diet. Anaerobe, 2022, 77, 102615.	a induced by a	1.0	1
6584	Cross-Talk Between Gut Microbiota and Adipose Tissues in Obesity and Related Metab Frontiers in Endocrinology, 0, 13, .	olic Diseases.	1.5	20
6585	Integrated Plasma Metabolomics and Gut Microbiota Analysis: The Intervention Effect Xiaoyao San on Liver Depression and Spleen Deficiency Liver Cancer Rats. Frontiers in I 13, .		1.6	9
6586	The Gut Microbiome and Ferroptosis in MAFLD. Journal of Clinical and Translational He 000, 000-000.	patology, 2022,	0.7	5
6587	Longâ€Term Dietary Effects on Human Gut Microbiota Composition Employing Shotgu Data Analysis. Molecular Nutrition and Food Research, 2023, 67, .	In Metagenomics	1.5	4
6588	Orlistat, a competitive lipase inhibitor used as an antiobesity remedy, enhances inflamme reactions in the intestine. Applied Biological Chemistry, 2022, 65, .	natory	0.7	2
6589	Lytic Bacteriophage PZL-Ah152 as Biocontrol Measures Against Lethal Aeromonas hyd Distorting Gut Microbiota. Frontiers in Microbiology, 0, 13, .	rophila Without	1.5	9
6590	Physical activity induced alterations of gut microbiota in humans: a systematic review. Science, Medicine and Rehabilitation, 2022, 14, .	BMC Sports	0.7	37
6591	Benzoic Acid Metabolism and Lipopolysaccharide Synthesis of Intestinal Microbiome A Health of Ruminants under Free-Range and Captive Mode. Life, 2022, 12, 1071.	ffects the	1.1	2
6592	Effect of Ejiao (Asini Corii Colla) and Turtle Carapace Glue on Gut Microbiota in Nude N Uterine Fibroids Based on High-Throughput Sequencing of 16SrRNA Gene. Evidence-ba Complementary and Alternative Medicine, 2022, 2022, 1-9.		0.5	3
6593	High Levels of <i>Akkermansia muciniphilia</i> Growth Associated With Spring Water Prevents Obesity and Hyperglycemia in a High-fat Diet-Induced Mouse Model. Natural I Communications, 2022, 17, 1934578X2211110.	Ingestion Product	0.2	0
6594	Changes in Gut Microbiome upon Orchiectomy and Testosterone Administration in AC Colon Cancer Mouse Model. Cancer Research and Treatment, 2023, 55, 196-218.	M/DSS-Induced	1.3	3
6595	Prebiotic effects of plant-derived (poly)phenols on host metabolism: Is there a role for fatty acids?. Critical Reviews in Food Science and Nutrition, 2023, 63, 12285-12293.	short-chain	5.4	2
6596	Probiotic Fermented Feed Alleviates Liver Fat Deposition in Shaoxing Ducks via Modula Microbiota. Frontiers in Microbiology, 0, 13, .	iting Gut	1.5	5
6597	Shared Species Analysis, Augmented by Stochasticity Analysis, Is More Effective Than I in Detecting Variations in the Gut Microbiomes. Frontiers in Microbiology, 0, 13, .	Diversity Analysis	1.5	0
6598	MiniBioReactor Array (MBRA) <i>in vitro</i> gut model: a reliable system to study microbiota-dependent response to antibiotic treatment. JAC-Antimicrobial Resistance,	2022, 4, .	0.9	1
6599	Changes in the Mucosa-Associated Microbiome and Transcriptome across Gut Segmer with Obesity in a Metabolic Syndrome Porcine Model. Microbiology Spectrum, 2022, 1	ts Are Associated 0, .	1.2	11

#	Article	IF	CITATIONS
6600	N-3 Polyunsaturated Fatty Acids and Gut Microbiota. Combinatorial Chemistry and High Throughput Screening, 2023, 26, 892-905.	0.6	4
6601	Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients, 2022, 14, 2923.	1.7	15
6602	Impacts of light on gut microbiota in Chinese mitten crab (<i>Eriocheir sinensis</i>). Biological Rhythm Research, 0, , 1-12.	0.4	0
6603	Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites. Frontiers in Endocrinology, 0, 13, .	1.5	9
6604	Akkermansia muciniphila Enhances Egg Quality and the Lipid Profile of Egg Yolk by Improving Lipid Metabolism. Frontiers in Microbiology, 0, 13, .	1.5	8
6605	Litchi-Derived Polyphenol Alleviates Liver Steatosis and Gut Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Double-Blinded, Placebo-Controlled Study. Nutrients, 2022, 14, 2921.	1.7	10
6606	Nutraceutical Properties of Unripe Banana Flour Resistant Starch: A Review. Starch/Staerke, 2023, 75, .	1.1	6
6607	Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacological Research, 2022, 182, 106355.	3.1	27
6608	Clostridium species diversity in gut microbiota of patients with renal failure. Microbial Pathogenesis, 2022, 169, 105667.	1.3	7
6609	Targeting gut microbiota to alleviate neuroinflammation in Alzheimer's disease. Advanced Drug Delivery Reviews, 2022, 188, 114418.	6.6	16
6610	Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio). Science of the Total Environment, 2022, 843, 156917.	3.9	23
6611	Effect of Xuanwei Ham Proteins with Different Ripening Periods on Lipid Metabolism, Oxidative Stress, and Gut Microbiota in Mice. Molecular Nutrition and Food Research, 2022, 66, .	1.5	3
6612	The role of gut microflora dysbiosis in clinical manifestation of patients with non-alcoholic fatty liver disease and non-alcoholic steatohepatitis International Journal of Scientific Research and Management, 2022, 10, 658-667.	0.0	0
6613	Relationship between Fasting and Postprandial Glucose Levels and the Gut Microbiota. Metabolites, 2022, 12, 669.	1.3	3
6614	High Exogenous Antioxidant, Restorative Treatment (Heart) for Prevention of the Six Stages of Heart Failure: The Heart Diet. Antioxidants, 2022, 11, 1464.	2.2	9
6616	Key features of the genetic architecture and evolution of host-microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice. ELife, 0, 11, .	2.8	9
6617	Intestinal FFA3 Mediates Obesogenic Effects in Mice on a Western Diet. American Journal of Physiology - Endocrinology and Metabolism, 0, , .	1.8	0
6618	Current trends in Passiflora genus research: Obesity and fermented foods systematic review. Trends in Food Science and Technology, 2022, 127, 143-155.	7.8	3

#	Article	IF	CITATIONS
6620	Gut Microbiota—A Future Therapeutic Target for People with Non-Alcoholic Fatty Liver Disease: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 8307.	1.8	9
6624	Effects of contaminants (heavy metals) on the microbiota status in humans. , 2022, , 303-311.		0
6625	The microbiome, immunity, anaerobism, and inflammatory conditions: a multifaceted systems biology intervention. , 2022, , 205-216.		0
6626	The metabolic nature of inflammatory bowel diseases. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 753-767.	8.2	76
6627	The dynamic effects of maternal high-calorie diet on glycolipid metabolism and gut microbiota from weaning to adulthood in offspring mice. Frontiers in Nutrition, 0, 9, .	1.6	7
6628	Quercetin improves highâ€fat dietâ€induced obesity by modulating gut microbiota and metabolites in C57BL/6J mice. Phytotherapy Research, 2022, 36, 4558-4572.	2.8	15
6629	The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs. Communications Biology, 2022, 5, .	2.0	12
6630	Gestational weight gain and visceral adiposity in adult offspring: Is there a link with the fecal abundance of Acidaminococcus genus?. European Journal of Clinical Nutrition, 2022, 76, 1705-1712.	1.3	4
6631	Metagenomic analysis reveals associations between salivary microbiota and body composition in early childhood. Scientific Reports, 2022, 12, .	1.6	7
6632	Gut microbiome is associated with metabolic syndrome accompanied by elevated gamma-glutamyl transpeptidase in men. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	18
6633	Temporal Dynamics of the Intestinal Microbiome Following Short-Term Dietary Restriction. Nutrients, 2022, 14, 2785.	1.7	5
6634	MOCHI: a comprehensive cross-platform tool for amplicon-based microbiota analysis. Bioinformatics, 2022, 38, 4286-4292.	1.8	2
6635	Therapeutic effect of fecal microbiota transplantation on chronic unpredictable mild stress-induced depression. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	13
6636	Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. Journal of Clinical Medicine, 2022, 11, 4464.	1.0	13
6637	Gastrointestinal Biogeography of Luminal Microbiota and Short-Chain Fatty Acids in Sika Deer (Cervus) Tj ETQq0	0 0 rgBT /0	Dyerlock 10
6638	Dynamic Changes in the Gut Microbial Community and Function during Broiler Growth. Microbiology Spectrum, 2022, 10, .	1.2	8
6639	Microbial Diversity and Community Composition of Duodenum Microbiota of High and Low Egg-Yielding Taihang Chickens Identified Using 16S rRNA Amplicon Sequencing. Life, 2022, 12, 1262.	1.1	1

6640	Differential Effects of Dietary White Meat and Red Meat on NAFLD Progression by Modulating Gut Microbiota and Metabolites in Rats. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-19.	1.9	2	
------	--	-----	---	--

#	Article	IF	CITATIONS
6641	Repetitive transcranial direct current stimulation modulates theÂbrain–gut–microbiome axis in obese rodents. Pharmacological Reports, 2022, 74, 871-889.	1.5	6
6642	Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	24
6643	The Effects of Physical Activity on the Gut Microbiota and the Gut–Brain Axis in Preclinical and Human Models: A Narrative Review. Nutrients, 2022, 14, 3293.	1.7	12
6644	Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life, 2022, 12, 1187.	1.1	5
6645	Gut microbiota and host genetics modulate the effect of diverse diet patterns on metabolic health. Frontiers in Nutrition, 0, 9, .	1.6	15
6646	Dietary omega-6/omega-3 ratio is not associated with gut microbiota composition and disease severity in patients with nonalcoholic fatty liver disease. Nutrition Research, 2022, 107, 12-25.	1.3	2
6647	Finasteride Alleviates High Fat Associated Protein-Overload Nephropathy by Inhibiting Trimethylamine N-Oxide Synthesis and Regulating Gut Microbiota. Frontiers in Physiology, 0, 13, .	1.3	2
6648	Big data analytics frameworks for the influence of gut microbiota on the development of tic disorder. Frontiers in Computational Neuroscience, 0, 16, .	1.2	1
6649	Using the canine microbiome to bridge translation of cancer immunotherapy from pre-clinical murine models to human clinical trials. Frontiers in Immunology, 0, 13, .	2.2	3
6651	Pea-Resistant Starch with Different Multi-scale Structural Features Attenuates the Obesity-Related Physiological Changes in High-Fat Diet Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 11377-11390.	2.4	9
6652	Elucidation of Anti-Hypertensive Mechanism by a Novel Lactobacillus rhamnosus AC1 Fermented Soymilk in the Deoxycorticosterone Acetate-Salt Hypertensive Rats. Nutrients, 2022, 14, 3174.	1.7	5
6653	Effects of soil ingestion on nutrient digestibility and rumen bacterial diversity of Tibetan sheep. Chemosphere, 2022, 308, 136000.	4.2	3
6654	Influence of Lonicera japonica and Radix Puerariae Crude Extracts on the Fecal Microbiome and Nutrient Apparent Digestibility of Finishing Pigs. Animals, 2022, 12, 2109.	1.0	1
6655	Effect of processing on the anti-inflammatory efficacy of cocoa in a high fat diet-induced mouse model of obesity. Journal of Nutritional Biochemistry, 2022, 109, 109117.	1.9	3
6656	Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Animal Nutrition, 2022, 11, 201-214.	2.1	16
6657	The intestinal microbiome associated with lipid metabolism and obesity in humans and animals. Journal of Applied Microbiology, 2022, 133, 2915-2930.	1.4	4
6658	Gut microbiota and derived metabolomic profiling in glaucoma with progressive neurodegeneration. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	10
6659	Intermittent fasting positively modulates human gut microbial diversity and ameliorates blood lipid profile. Frontiers in Microbiology, 0, 13, .	1.5	10

#	Article	IF	CITATIONS
6660	Eugenol, A Major Component of Clove Oil, Attenuates Adiposity, and Modulates Gut Microbiota in Highâ€Fat Dietâ€Fed Mice. Molecular Nutrition and Food Research, 2022, 66, .	1.5	15
6661	An Energy-Restricted Diet Including Yogurt, Fruit, and Vegetables Alleviates High-Fat Diet–Induced Metabolic Syndrome in Mice by Modulating the Gut Microbiota. Journal of Nutrition, 2022, 152, 2429-2440.	1.3	6
6662	Ultra-processed foods and human health: from epidemiological evidence to mechanistic insights. The Lancet Gastroenterology and Hepatology, 2022, 7, 1128-1140.	3.7	93
6663	Multi-omic analyses identify mucosa bacteria and fecal metabolites associated with weight loss after fecal microbiota transplantation. Innovation(China), 2022, 3, 100304.	5.2	2
6664	Gut microbiota: A new target for T2DM prevention and treatment. Frontiers in Endocrinology, 0, 13, .	1.5	29
6665	Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nature Communications, 2022, 13, .	5.8	84
6666	Electroacupuncture ameliorates peptic ulcer disease in association with gastroduodenal microbiota modulation in mice. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	8
6667	Gut Microbiota and Coronary Plaque Characteristics. Journal of the American Heart Association, 2022, 11, .	1.6	16
6668	Gonadal bacterial community composition is associated with sex-specific differences in swamp eels (Monopterus albus). Frontiers in Immunology, 0, 13, .	2.2	2
6669	Bile acids, gut microbiota and metabolic surgery. Frontiers in Endocrinology, 0, 13, .	1.5	11
6670	The Relationship Between the Blood-Brain-Barrier and the Central Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter-2 Inhibitors. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 2583-2597.	1.1	13
6671	Microbioma intestinal humano e as influências do modo de vida. , 0, , 7-32.		0
6672	A comparison between yaks and Qaidam cattle in in vitro rumen fermentation, methane emission, and bacterial community composition with poor quality substrate. Animal Feed Science and Technology, 2022, 291, 115395.	1.1	9
6673	The diversity and abundance of gut microbiota are associated with the pain sensation threshold in the Japanese population. Neurobiology of Disease, 2022, 173, 105839.	2.1	2
6674	The effect of fermented wheat protein hydrolysate on the exercise performance in mice. Journal of Functional Foods, 2022, 97, 105217.	1.6	2
6675	Egg Protein Transferrin-Derived Peptides Irw (Lle-Arg-Trp) and Iqw (Lle-Gln-Trp) Prevent Obesity Mouse Model Induced by a High-Fat Diet via Reducing Lipid Deposition and Reprogramming Gut Microbiota. International Journal of Molecular Sciences, 2022, 23, 11227.	1.8	4
6676	Mechanisms of Zhenwu decoction for the treatment of renal fibrosis at various stages: What is the role of Corynebacterium?. Frontiers in Microbiology, 0, 13, .	1.5	1
6677	The Effect of Anaerobically Cultivated Human Intestinal Microbiota Compared to Fecal Microbiota Transplantation on Gut Microbiota Profile and Symptoms of Irritable Bowel Syndrome, a Double-Blind Placebo-Controlled Study. Microorganisms, 2022, 10, 1819.	1.6	2

	CITATION R	EPORT	
#	Article	IF	Citations
6678	Modulatory role of gut microbiota in cholesterol and glucose metabolism: Potential implications for atherosclerotic cardiovascular disease. Atherosclerosis, 2022, 359, 1-12.	0.4	8
6679	Processing technology, principle, and nutritional characteristics of preserved eggs: A review. Trends in Food Science and Technology, 2022, 128, 265-277.	7.8	8
6680	The pathophysiology of major depressive disorder through the lens of systems biology: Network analysis of the psycho-immune-neuroendocrine physiome. Journal of Neuroimmunology, 2022, 372, 577959.	1.1	5
6681	Autophagy in adipogenesis: Molecular mechanisms and regulation by bioactive compounds. Biomedicine and Pharmacotherapy, 2022, 155, 113715.	2.5	8
6682	Toxic effects of polystyrene microplastics on the intestine of Amphioctopus fangsiao (Mollusca:) Tj ETQq0 0 0 rg 2022, 308, 136362.	gBT /Overlo 4.2	ock 10 Tf 50 5 13
6683	Gut Microbiome Influence on Human Epigenetics, Health, and Disease. , 2023, , 669-686.		1
6684	Impacts of polystyrene nanoplastics at the environmentally relevant and sub-lethal concentrations on the oxidative stress, immune responses, and gut microbiota to grass carp (Ctenopharyngodon) Tj ETQq0 0 0	rg₿бТа́Ove	rlo ck 10 Tf 50
6685	Comparative analysis of gut microbiota and immune genes linked with the immune system of wild and captive Spodoptera frugiperda (Lepidoptera: Noctuidae). Developmental and Comparative Immunology, 2023, 138, 104530.	1.0	9
6686	Characterization and in vitro digestion of rice starch/konjac glucomannan complex prepared by screw extrusion and its impact on gut microbiota. Food Hydrocolloids, 2023, 135, 108156.	5.6	12
6687	Prospective role of prebiotics and probiotics in gut immunity. , 2022, , 387-404.		1
6688	Mikrobiom und Inflammation bei Adipositas. , 2022, , 473-479.		0
6689	Algal polysaccharides and derivatives as potential therapeutics for obesity and related metabolic diseases. Food and Function, 2022, 13, 11387-11409.	2.1	7
6690	Naringenin activates beige adipocyte browning in high fat diet-fed C57BL/6 mice by shaping the gut microbiota. Food and Function, 2022, 13, 9918-9930.	2.1	6
6691	Dysbiosis of human microbiome and infectious diseases. Progress in Molecular Biology and Translational Science, 2022, , 33-51.	0.9	8
6692	Gut microbiota in gastrointestinal diseases. Progress in Molecular Biology and Translational Science, 2022, , 141-151.	0.9	2
6693	Pathophysiologie: Mikrobiom. , 2022, , 93-106.		0
6694	Research Progress of Probiotics in the Treatment of Nonalcoholic Fatty Liver Disease. Advances in Clinical Medicine, 2022, 12, 7249-7255.	0.0	1
6695	Recent insights into the role of microbiome in the pathogenesis of obesity. Therapeutic Advances in Gastroenterology, 2022, 15, 175628482211153.	1.4	6

#	Article	IF	CITATIONS
6696	Effekte der Adipositaschirurgie auf Hunger und Sätigung. , 2022, , 139-151.		0
6697	Role of the microbiome in the function and diseases of the digestive system. , 2022, , 93-105.		Ο
6698	Naked Mole-Rat Hyaluronan Synthase 2 Promotes Longevity and Enhances Healthspan in Mice. SSRN Electronic Journal, 0, , .	0.4	0
6699	Arctigenin-containing burdock sprout extract prevents obesity in association with modulation of the gut microbiota in mice. Bioscience of Microbiota, Food and Health, 2022, , .	0.8	0
6700	Early life nutrition and its effect on the development of obesity and type-2 diabetes. , 2022, , 281-307.		0
6701	Impact of early nutrition on gut microbiota: Effects on immunity and long-term health. , 2022, , 229-256.		0
6702	The gut microbiome in chronic kidney disease. , 2022, , 233-263.		1
6703	Camellia oil (<i>Camellia oleifera</i> Abel.) treatment improves high-fat diet-induced atherosclerosis in apolipoprotein E (ApoE) ^{â^'/â^'} mice. Bioscience of Microbiota, Food and Health, 2023, 42, 56-64.	0.8	5
6704	EnsDeepDP: An Ensemble Deep Learning Approach for Disease Prediction Through Metagenomics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 986-998.	1.9	7
6705	Study on the Relationship between Intestinal Flora and Coronary Heart Disease. Advances in Clinical Medicine, 2022, 12, 8823-8830.	0.0	0
6706	New and future prospects of obesity and cancer. , 2023, , 263-278.		0
6707	Interface of â€~meta-omics' in gut biome remediation to unravel the complications of environmental pollutants. , 2023, , 183-206.		0
6708	Ketogenic Diet for Preoperative Weight Reduction in Bariatric Surgery: A Narrative Review. Nutrients, 2022, 14, 3610.	1.7	6
6709	Evidence-Based Interventions for Reducing Breast Cancer Disparities: What Works and Where the Gaps Are?. Cancers, 2022, 14, 4122.	1.7	1
6710	Silymarin Modulates Microbiota in the Gut to Improve the Health of Sow from Late Gestation to Lactation. Animals, 2022, 12, 2202.	1.0	8
6711	Akkermansia muciniphila Reduces Peritonitis and Improves Intestinal Tissue Wound Healing after a Colonic Transmural Defect by a MyD88-Dependent Mechanism. Cells, 2022, 11, 2666.	1.8	9
6712	Probiotics ameliorate IgA nephropathy by improving gut dysbiosis and blunting NLRP3 signaling. Journal of Translational Medicine, 2022, 20, .	1.8	11
6713	Maternal vitamin D deficiency aggravates the dysbiosis of gut microbiota by affecting intestinal barrier function and inflammation in obese male offspring mice. Nutrition, 2023, 105, 111837.	1.1	7

	Article	IF	CITATIONS
6714	Plant-Derived (Poly)phenols and Their Metabolic Outcomes: The Pursuit of a Role for the Gut Microbiota. Nutrients, 2022, 14, 3510.	1.7	8
6715	Microbiome-Based Metabolic Therapeutic Approaches in Alcoholic Liver Disease. International Journal of Molecular Sciences, 2022, 23, 8749.	1.8	13
6716	The interactions between traditional Chinese medicine and gut microbiota: Global research status and trends. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	11
6717	Beneficial effects of fermented barley extracts on inflammatory status and gut microbiota in high-fat diet-induced obese rats. Journal of Applied Microbiology, 2022, 133, 3708-3718.	1.4	2
6718	Sheep fecal transplantation affects growth performance in mouse models by altering gut microbiota. Journal of Animal Science, 2022, 100, .	0.2	1
6719	Beneficial Effects of Anti-Inflammatory Diet in Modulating Gut Microbiota and Controlling Obesity. Nutrients, 2022, 14, 3985.	1.7	17
6720	Potential associations between alterations in gut microbiome and obesityâ€related traits after the bariatric surgery. Journal of Human Nutrition and Dietetics, 2023, 36, 981-996.	1.3	1
6721	Octenyl Succinic Anhydride-Modified Starch Attenuates Body Weight Gain and Changes Intestinal Environment of High-Fat Diet-Fed Mice. Foods, 2022, 11, 2980.	1.9	2
6722	Smoking-induced microbial dysbiosis in health and disease. Clinical Science, 2022, 136, 1371-1387.	1.8	11
6723	Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell, 2022, 185, 3501-3519.e20.	13.5	102
6724	Current in Vitro and Animal Models for Understanding Foods: Human Gut–Microbiota Interactions. Journal of Agricultural and Food Chemistry, 2022, 70, 12733-12745.	2.4	5
6724 6725	Current in Vitro and Animal Models for Understanding Foods: Human Gut–Microbiota Interactions. Journal of Agricultural and Food Chemistry, 2022, 70, 12733-12745. Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins, 2022, 14, 648.	2.4 1.5	5 15
	Journal of Agricultural and Food Chemistry, 2022, 70, 12733-12745.		
6725	Journal of Agricultural and Food Chemistry, 2022, 70, 12733-12745. Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins, 2022, 14, 648. Effect of Probiotic E. coli Nissle 1917 Supplementation on the Growth Performance, Immune Responses, Intestinal Morphology, and Gut Microbes of Campylobacter jejuni Infected Chickens. Infection and	1.5	15
6725 6727	Journal of Agricultural and Food Chemistry, 2022, 70, 12733-12745. Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins, 2022, 14, 648. Effect of Probiotic E. coli Nissle 1917 Supplementation on the Growth Performance, Immune Responses, Intestinal Morphology, and Gut Microbes of Campylobacter jejuni Infected Chickens. Infection and Immunity, 2022, 90, . Morchella esculenta polysaccharide attenuate obesity, inflammation and modulate gut microbiota.	1.5 1.0	15 13
6725 6727 6728	Journal of Agricultural and Food Chemistry, 2022, 70, 12733-12745. Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins, 2022, 14, 648. Effect of Probiotic E. coli Nissle 1917 Supplementation on the Growth Performance, Immune Responses, Intestinal Morphology, and Gut Microbes of Campylobacter jejuni Infected Chickens. Infection and Immunity, 2022, 90, . Morchella esculenta polysaccharide attenuate obesity, inflammation and modulate gut microbiota. AMB Express, 2022, 12, . Influence of the Gut Microbiota on the Development of Neurodegenerative Diseases. Mediators of	1.5 1.0 1.4	15 13 9
6725 6727 6728 6729	Journal of Agricultural and Food Chemistry, 2022, 70, 12733-12745. Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins, 2022, 14, 648. Effect of Probiotic E. coli Nissle 1917 Supplementation on the Growth Performance, Immune Responses, Intestinal Morphology, and Gut Microbes of Campylobacter jejuni Infected Chickens. Infection and Immunity, 2022, 90, . Morchella esculenta polysaccharide attenuate obesity, inflammation and modulate gut microbiota. AMB Express, 2022, 12, . Influence of the Gut Microbiota on the Development of Neurodegenerative Diseases. Mediators of Inflammation, 2022, 2022, 1-12. Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nature Reviews Urology,	1.5 1.0 1.4 1.4	15 13 9 3

#	Article	IF	CITATIONS
6733	Therapies for non-alcoholic fatty liver disease: A 2022 update. World Journal of Hepatology, 0, 14, 1718-1729.	0.8	4
6734	The Microbiota–Gut–Brain Axis in Psychiatric Disorders. International Journal of Molecular Sciences, 2022, 23, 11245.	1.8	44
6735	Exploring a Possible Link between the Fecal Microbiota and the Production Performance of Pigs. Veterinary Sciences, 2022, 9, 527.	0.6	1
6736	Neonatal Morphine Results in Long-Lasting Alterations to the Gut Microbiome in Adolescence and Adulthood in a Murine Model. Pharmaceutics, 2022, 14, 1879.	2.0	5
6737	Stochastic variation in gut bacterial community affects reproductive rates in the water flea <i>Daphnia magna</i> . FEMS Microbiology Ecology, 2022, 98, .	1.3	3
6738	Western diet-induced shifts in the maternal microbiome are associated with altered microRNA expression in baboon placenta and fetal liver. Frontiers in Clinical Diabetes and Healthcare, 0, 3, .	0.3	3
6739	Poor body condition is associated with lower hippocampal plasticity and higher gut methanogen abundance in adult laying hens from two housing systems. Scientific Reports, 2022, 12, .	1.6	3
6740	Uygur type 2 diabetes patient fecal microbiota transplantation disrupts blood glucose and bile acid levels by changing the ability of the intestinal flora to metabolize bile acids in C57BL/6 mice. BMC Endocrine Disorders, 2022, 22, .	0.9	5
6741	Sleep Duration and Visceral Adipose Tissue: Linear and Nonlinear Mendelian Randomization Analyses. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2992-2999.	1.8	5
6742	Probiotic Limosilactobacillus fermentum GR-3 ameliorates human hyperuricemia via degrading and promoting excretion of uric acid. IScience, 2022, 25, 105198.	1.9	8
6743	Comparative study of the function and structure of the gut microbiota in Siberian musk deer and Forest musk deer. Applied Microbiology and Biotechnology, 2022, 106, 6799-6817.	1.7	3
6744	Roles of gut microbiota and metabolites in overweight and obesity of children. Frontiers in Endocrinology, 0, 13, .	1.5	9
6745	Enteric Methane Emission, Rumen Fermentation and Microbial Profiles of Meat-Master Lambs Supplemented with Barley Fodder Sprouts. Fermentation, 2022, 8, 434.	1.4	6
6746	Effects of Two Kinds of Extracts of Cistanche deserticola on Intestinal Microbiota and Its Metabolism. Foods, 2022, 11, 2897.	1.9	2
6747	Long term weight cycling affects fecal microbiota of mice. Molecular Nutrition and Food Research, 0, , 2200439.	1.5	1
6748	Reduced gut microbiota diversity in patients with congenital generalized lipodystrophy. Diabetology and Metabolic Syndrome, 2022, 14, .	1.2	2
6749	Effect of the ratio of dietary metabolizable energy to nitrogen content on production performance, serum metabolites, rumen fermentation parameters, and bacterial diversity in yaks. Frontiers in Microbiology, 0, 13, .	1.5	1
6750	Modulation of Intestinal Flora by Dietary Polysaccharides: A Novel Approach for the Treatment and Prevention of Metabolic Disorders. Foods, 2022, 11, 2961.	1.9	6

#	Article	IF	CITATIONS
6751	The composition of the gut microbiota is altered in biliary atresia with cholangitis. Frontiers in Surgery, 0, 9, .	0.6	1
6752	Gut Microbiota Interventions for the Management of Obesity: A Literature Review. Cureus, 2022, , .	0.2	2
6753	Two-component carnitine monooxygenase from <i>Escherichia coli</i> : functional characterization, inhibition and mutagenesis of the molecular interface. Bioscience Reports, 2022, 42, .	1.1	2
6754	The Influence of Probiotics Consumption on Management of Prediabetic State: A Systematic Review of Clinical Trials. International Journal of Clinical Practice, 2022, 2022, 1-14.	0.8	5
6755	Metabolome, microbiome, and gene expression alterations in the colon of newborn piglets with intrauterine growth restriction. Frontiers in Microbiology, 0, 13, .	1.5	4
6756	Dietary supplementation with fermented plant product modulates production performance, egg quality, intestinal mucosal barrier, and cecal microbiota in laying hens. Frontiers in Microbiology, 0, 13, .	1.5	6
6757	Anti-cancer activity of human gastrointestinal bacteria. , 2022, 39, .		2
6758	The Impact of Obesity on the Fibrostenosis Progression of Eosinophilic Esophagitis in a U.S. Veterans Cohort. Dysphagia, 2023, 38, 866-873.	1.0	2
6759	Lactic acid bacteria-derived γ-linolenic acid metabolites are PPARδ ligands that reduce lipid accumulation in human intestinal organoids Journal of Biological Chemistry, 2022, , 102534.	1.6	4
6760	Association of eating habits and Firmicutes/Bacteroidetes ratio among Japanese female university students: A cross-sectional study. Nutrition and Health, 0, , 026010602211297.	0.6	1
6761	Exercise Interventions Improved Sleep Quality through Regulating Intestinal Microbiota Composition. International Journal of Environmental Research and Public Health, 2022, 19, 12385.	1.2	6
6762	Gut microbiota is associated with differential metabolic characteristics: A study on a defined cohort of Africans and Chinese. Frontiers in Endocrinology, 0, 13, .	1.5	2
6763	Inulin accelerates weight loss in obese mice by regulating gut microbiota and serum metabolites. Frontiers in Nutrition, 0, 9, .	1.6	6
6764	Sex hormones, intestinal inflammation, and the gut microbiome: Major influencers of the sexual dimorphisms in obesity. Frontiers in Immunology, 0, 13, .	2.2	16
6765	Dietary supplementation with Cyberlindnera jadinii improved growth performance, serum biochemical Indices, antioxidant status, and intestinal health in growing raccoon dogs (Nyctereutes) Tj ETQq0 0 0 rgBT /Over	lo ck 510 Tf	504177 Td (j
6767	Correlation between fat accumulation and fecal microbiota in crossbred pigs. Journal of Microbiology, 2022, 60, 1077-1085.	1.3	2
6768	The effects of Clostridium butyricum on Ira rabbit growth performance, cecal microbiota and plasma metabolome. Frontiers in Microbiology, 0, 13, .	1.5	0
6769	Multi-omic phenotyping reveals host-microbe responses to bariatric surgery, glycaemic control and obesity. Communications Medicine, 2022, 2, .	1.9	2

#	Article	IF	Citations
6770	The effects of fermented vegetable consumption on the composition of the intestinal microbiota and levels of inflammatory markers in women: A pilot and feasibility study. PLoS ONE, 2022, 17, e0275275.	1.1	8
6771	Dysbiotic microbiota contributes to the extent of acute myocardial infarction in rats. Scientific Reports, 2022, 12, .	1.6	3
6772	Western diet–induced mouse model of non-alcoholic fatty liver disease associated with metabolic outcomes: Features of gut microbiome-liver-adipose tissue axis. Nutrition, 2022, 103-104, 111836.	1.1	10
6773	Body fatness associations with cancer: evidence from recent epidemiological studies and future directions. Metabolism: Clinical and Experimental, 2022, 137, 155326.	1.5	24
6774	Microbiome and metabolism: Advancements in microbiome engineering. Current Opinion in Endocrine and Metabolic Research, 2022, 27, 100404.	0.6	0
6775	The Human Gut Microbiome in Health, Disease, and Therapeutics. , 2022, , 249-260.		0
6776	Fat Fighting Microbes. , 2022, , 293-308.		0
6777	Microbiome Derived Metabolites in CKD and ESRD. , 2022, , 45-60.		0
6778	Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus. Journal of Animal Science and Technology, 2022, 64, 937-949.	0.8	6
6779	Gut Microbiota in Nutrition and Health with a Special Focus on Specific Bacterial Clusters. Cells, 2022, 11, 3091.	1.8	9
6780	Helicobacter Pylori Infection Induces Intestinal Dysbiosis That Could Be Related to the Onset of Atherosclerosis. BioMed Research International, 2022, 2022, 1-16.	0.9	5
6781	Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice. Frontiers in Pharmacology, 0, 13, .	1.6	2
6782	The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level. PLoS Biology, 2022, 20, e3001837.	2.6	11
6783	Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nature Reviews Microbiology, 2023, 21, 236-247.	13.6	136
6784	Microbiome-Metabolome Analysis of the Immune Microenvironment of the Cecal Contents, Soft Feces, and Hard Feces of Hyplus Rabbits. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	4
6785	Acute cytomegalovirus infection modulates the intestinal microbiota and targets intestinal epithelial cells. European Journal of Immunology, 2023, 53, .	1.6	2
6787	Antibacterial and Antiviral Properties of Tetrahydrocurcumin-Based Formulations: An Overview of Their Metabolism in Different Microbiotic Compartments. Life, 2022, 12, 1708.	1.1	3
6788	Salidroside Improves Antibiotic-Induced Gut Microbiota Disturbance and Low Levels of Short-Chain Fatty Acids in Mice. Foods, 2022, 11, 3073.	1.9	3

IF

ARTICLE

6789 11. Food microbiology. , 2022, , 215-245.

0

CITATIONS

6790	The role of the gut microbiota in health and cardiovascular diseases. Molecular Biomedicine, 2022, 3, .	1.7	22
6791	Healthy Diet, Grape Phytochemicals, and Vitamin D: Preventing Chronic Inflammation and Keeping Good Microbiota. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2023, 23, 777-800.	0.6	2
6792	The Rehabilitation of Individuals With Gastrointestinal Issues Beyond Pelvic Floor Muscle Function: Considering a Larger Picture for Best Practice. Journal of Women's Health Physical Therapy, 2022, 46, 167-174.	0.5	1
6793	Precise strategies for selecting probiotic bacteria in treatment of intestinal bacterial dysfunctional diseases. Frontiers in Immunology, 0, 13, .	2.2	4
6794	Amoxicillin modulates gut microbiota to improve short-term high-fat diet induced pathophysiology in mice. Gut Pathogens, 2022, 14, .	1.6	2
6795	Cecum microbiome and metabolism characteristics of Silky Fowl and White Leghorn chicken in late laying stages. Frontiers in Microbiology, 0, 13, .	1.5	0
6796	The critical role of gut microbiota in obesity. Frontiers in Endocrinology, 0, 13, .	1.5	38
6797	Gut microbes in cerebrovascular diseases: Gut flora imbalance, potential impact mechanisms and promising treatment strategies. Frontiers in Immunology, 0, 13, .	2.2	16
6798	Effect of 30 days of ketogenic Mediterranean diet with phytoextracts on athletes' gut microbiome composition. Frontiers in Nutrition, 0, 9, .	1.6	1
6799	Expression Analysis and the Roles of the Sec1 Gene in Regulating the Composition of Mouse Gut Microbiota. Genes, 2022, 13, 1858.	1.0	3
6800	Research Progress of Duodenal-Jejunal Bypass Liner in the Treatment of Obesity and Type 2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 3319-3327.	1.1	1
6801	Personalized nutrition, microbiota, and metabolism: A triad for eudaimonia. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0
6802	Gut Microbiota, Metabolic Disorders and Breast Cancer: Could Berberine Turn Out to Be a Transversal Nutraceutical Tool? A Narrative Analysis. International Journal of Molecular Sciences, 2022, 23, 12538.	1.8	7
6803	Toll-like receptors and metabolic (dysfunction)-associated fatty liver disease. Pharmacological Research, 2022, 185, 106507.	3.1	25
6804	A Comprehensive Review of Thyroid Hormone Metabolism in the Gut and Its Clinical Implications. Thyroid, 2023, 33, 32-44.	2.4	15
6805	Cordyceps guangdongensis lipid-lowering formula alleviates fat and lipid accumulation by modulating gut microbiota and short-chain fatty acids in high-fat diet mice. Frontiers in Nutrition, 0, 9, .	1.6	6
6806	Is intestinal permeability increased in obesity? A review including the effects of dietary, pharmacological and surgical interventions on permeability and the microbiome. Diabetes, Obesity and Metabolism, 2023, 25, 325-330.	2.2	1

#	Article	IF	CITATIONS
6807	The effects of probiotic administration on patients with prediabetes: a meta-analysis and systematic review. Journal of Translational Medicine, 2022, 20, .	1.8	8
6808	Deficiency of exchange protein directly activated by cAMP (EPAC)-1 in mice augments glucose intolerance, inflammation, and gut dysbiosis associated with Western diet. Microbiome, 2022, 10, .	4.9	1
6809	Effects of essential oil extracted from Artemisia argyi leaf on lipid metabolism and gut microbiota in high-fat diet-fed mice. Frontiers in Nutrition, 0, 9, .	1.6	9
6810	Multi-omics provide mechanistic insight into the Pb-induced changes in tadpole fitness-related traits and environmental water quality. Ecotoxicology and Environmental Safety, 2022, 247, 114207.	2.9	10
6811	Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. Chemico-Biological Interactions, 2022, 368, 110223.	1.7	1
6812	Gut microbiota impairment following graphene oxide exposure is associated to physiological alterations in Xenopus laevis tadpoles. Science of the Total Environment, 2023, 857, 159515.	3.9	5
6813	Revelation of the sciences of traditional foods. Food Control, 2023, 145, 109392.	2.8	2
6817	Precision Nutrition from the View of the Gut Microbiome. , 2022, , 67-96.		1
6818	Precise Nutrition and Metabolic Syndrome, Remodeling the Microbiome with Polyphenols, Probiotics, and Postbiotics. , 2022, , 145-178.		0
6819	Amoxicillin impact on pathophysiology induced by short term high salt diet in mice. Scientific Reports, 2022, 12, .	1.6	4
6820	Intestinal microbiota and melatonin in the treatment of secondary injury and complications after spinal cord injury. Frontiers in Neuroscience, 0, 16, .	1.4	5
6821	Gut microbial response to host metabolic phenotypes. Frontiers in Nutrition, 0, 9, .	1.6	3
6822	Multiomics Analyses Reveal That Long-Term Intake of Hesperetin-7- <i>O</i> -glucoside Modulates the Gut Microbiota and Bile Acid Metabolism in Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 14831-14840.	2.4	2
6823	Antibacterial Mechanism of Chitosan–Gentamicin and Its Effect on the Intestinal Flora of Litopenaeus vannamei Infected with Vibrio parahaemolyticus. Marine Drugs, 2022, 20, 702.	2.2	2
6824	Fecal Microbiota and Hair Glucocorticoid Concentration Show Associations with Growth during Early Life in a Pig Model. Nutrients, 2022, 14, 4639.	1.7	0
6825	Reprogrammed fecal and mucosa-associated intestinal microbiota and weakened mucus layer in intestinal goblet cell- specific Piezo1-deficient mice. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
6827	Bifidobacterial carbohydrate/nucleoside metabolism enhances oxidative phosphorylation in white adipose tissue to protect against diet-induced obesity. Microbiome, 2022, 10, .	4.9	8
6828	Antimicrobial and cytotoxic extractives from <i>Ficus sycomorus</i> L. (Moraceae). , 2022, 3, 176-188.		0

#	Article	IF	CITATIONS
6829	Potential mechanism of pyrotinib-induced diarrhea was explored by gut microbiome and ileum metabolomics. Anti-Cancer Drugs, 2023, 34, 747-762.	0.7	1
6830	Inactivation of the MSTN gene expression changes the composition and function of the gut microbiome in sheep. BMC Microbiology, 2022, 22, .	1.3	4
6832	Effects of Enzamin, a Microbial Product, on Alterations of Intestinal Microbiota Induced by a High-Fat Diet. Nutrients, 2022, 14, 4743.	1.7	0
6833	Dietary organic acids ameliorate high stocking density stress-induced intestinal inflammation through the restoration of intestinal microbiota in broilers. Journal of Animal Science and Biotechnology, 2022, 13, .	2.1	6
6835	Diarrhea in suckling lambs is associated with changes in gut microbiota, serum immunological and biochemical parameters in an intensive production system. Frontiers in Microbiology, 0, 13, .	1.5	4
6836	Editorial: The mechanism of plant-derived polysaccharides regulating the obesity and metabolic diseases in humans. Frontiers in Nutrition, 0, 9, .	1.6	0
6837	Effect of Microgravity on the Gut Microbiota Bacterial Composition in a Hindlimb Unloading Model. Life, 2022, 12, 1865.	1.1	5
6838	Sleep apnea is associated with the increase of certain genera of Ruminococcaceae and Lachnospiraceae in the gut microbiome of hypertensive patients. Expert Review of Respiratory Medicine, 2022, 16, 1247-1256.	1.0	14
6839	Association of gut microbiota with obesity in children and adolescents. Clinical and Experimental Pediatrics, 2023, 66, 148-154.	0.9	5
6840	Effect of Intermittent Fasting, Probiotic-Fermented Camel Milk, and Probiotic-Fermented Camel Milk Incorporating Sukkari Date on Diet-Induced Obesity in Rats. Fermentation, 2022, 8, 619.	1.4	5
6841	Short-Term Tomato Consumption Alters the Pig Gut Microbiome toward a More Favorable Profile. Microbiology Spectrum, 2022, 10, .	1.2	1
6842	A Comprehensive Review of the Cardioprotective Effect of Marine Algae Polysaccharide on the Gut Microbiota. Foods, 2022, 11, 3550.	1.9	50
6843	Effect of Ecklonia cava polyphenol on adiposity reduction is associated with gut microbiota composition in subjects with abdominal obesity: A secondary analysis. Journal of Functional Foods, 2022, 99, 105333.	1.6	0
6844	Genetically determined gut microbial abundance and 2-year changes in central adiposity and body composition: The POUNDS lost trial. Clinical Nutrition, 2022, 41, 2817-2824.	2.3	1
6845	The role and therapeutic potential of gut microbiome in severe burn. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	1
6846	GSAMDA: a computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder. BMC Bioinformatics, 2022, 23, .	1.2	7
6847	Multi-target regulation of intestinal microbiota by berberine to improve type 2 diabetes mellitus. Frontiers in Endocrinology, 0, 13, .	1.5	5
6848	Automatic, fast, hierarchical, and non-overlapping gating of flow cytometric data with flowEMMiÂv2. Computational and Structural Biotechnology Journal, 2022, 20, 6473-6489.	1.9	2

CITATI	on I	Report
CHANNE		

#	Article	IF	CITATIONS
6849	The PPARα Regulation of the Gut Physiology in Regard to Interaction with Microbiota, Intestinal Immunity, Metabolism, and Permeability. International Journal of Molecular Sciences, 2022, 23, 14156.	1.8	3
6850	Dietary metabolizable energy and crude protein levels affect pectoral muscle composition and gut microbiota in native growing chickens. Poultry Science, 2023, 102, 102353.	1.5	3
6851	Gut microbiome modulation: Ancillary effects of inorganic nanoparticles on gut microflora. Biocell, 2023, 47, 245-260.	0.4	1
6857	Inulin reduces liver triacylglycerol by increasing lipid droplet lipolysis in fat-loaded mice. Food Research International, 2023, 163, 112226.	2.9	3
6858	Effect of substituting steam-flaked corn for course ground corn on in vitro digestibility, average daily gain, serum metabolites and ruminal volatile fatty acids, and bacteria diversity in growing yaks. Animal Feed Science and Technology, 2023, 296, 115553.	1.1	2
6859	Bayesian Balance Mediation Analysis in Microbiome Studies. Springer Handbooks of Computational Statistics, 2022, , 237-254.	0.2	0
6861	Gut microbiota in alopecia areata. Postepy Dermatologii I Alergologii, 2022, 39, 1162-1170.	0.4	5
6862	Dietary Fat and Cholesterol Interactively Alter Serum Lipids and Gut Microbiota in Wistar Rats. The Indian Journal of Nutrition and Dietetics, 0, , 387-407.	0.1	0
6863	Caffeine-Induced Sleep Restriction Alters the Gut Microbiome and Fecal Metabolic Profiles in Mice. International Journal of Molecular Sciences, 2022, 23, 14837.	1.8	5
6864	Microbiota in a long survival discourse with the human host. Archives of Microbiology, 2023, 205, .	1.0	4
6865	Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State. Life, 2022, 12, 1986.	1.1	8
6866	Scrophulariae Radix-Atractylodes sinensis pair and metformin inhibit inflammation by modulating gut microbiota of high-fat diet/streptozotocin-induced diabetes in rats. Frontiers in Microbiology, 0, 13, .	1.5	3
6867	Chrononutrition—When We Eat Is of the Essence in Tackling Obesity. Nutrients, 2022, 14, 5080.	1.7	6
6869	Lactiplantibacillus plantarum ST-III-fermented milk improves autistic-like behaviors in valproic acid-induced autism spectrum disorder mice by altering gut microbiota. Frontiers in Nutrition, 0, 9, .	1.6	4
6870	Characterization of microbial communities from gut microbiota of hypercholesterolemic and control subjects. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
6871	Analysis of the gut microbiome in obese native Tibetan children living at different altitudes: A case–control study. Frontiers in Public Health, 0, 10, .	1.3	4
6872	Dietary Capsaicin: A Spicy Way to Improve Cardio-Metabolic Health?. Biomolecules, 2022, 12, 1783.	1.8	3
6873	Chrono-exercise: Time-of-day-dependent physiological responses to exercise. Sports Medicine and Health Science, 2023, 5, 50-58.	0.7	5

		CITATION REPORT		
#	Article		IF	CITATIONS
6874	Machine learning for data integration in human gut microbiome. Microbial Cell Factorie	es, 2022, 21, .	1.9	15
6875	Milk Fermented with Pediococcus acidilactici Strain BE Improves High Blood Glucose Le Pancreatic Beta-Cell Function in Diabetic Rats. Food Science of Animal Resources, 2023	vels and 3, 43, 170-183.	1.7	2
6876	Effects of Dietary Quinoa Seeds on Cecal Microorganisms and Muscle Fatty Acids of Fe Chickens. Animals, 2022, 12, 3334.	male Luhua	1.0	1
6878	Role of bile acids in overweight and obese children and adolescents. Frontiers in Endocr	rinology, 0, 13,	1.5	4
6879	"Liver–gut―axis: A target of traditional Chinese medicine for the treatment of no liver disease. Frontiers in Endocrinology, 0, 13, .	on-alcoholic fatty	1.5	4
6880	Effects of Dietary Oregano Essential Oil on Cecal Microorganisms and Muscle Fatty Aci Chickens. Animals, 2022, 12, 3215.	ds of Luhua	1.0	4
6882	Intermittent Fasting Alleviates Risk Markers in a Murine Model of Ulcerative Colitis by N Gut Microbiome and Metabolome. Nutrients, 2022, 14, 5311.	Nodulating the	1.7	5
6883	Catechin Bioavailability Following Consumption of a Green Tea Extract Confection Is Re Obese Persons without Affecting Gut Microbial-Derived Valerolactones. Antioxidants, 2		2.2	4
6884	Underdevelopment of gut microbiota in failure to thrive infants of up to 12 months of a in Cellular and Infection Microbiology, 0, 12, .	age. Frontiers	1.8	1
6885	Spinal Cord–Gut–Immune Axis and Its Implications Regarding Therapeutic Develop Injury. Journal of Neurotrauma, 2023, 40, 793-806.	ment for Spinal Cord	1.7	2
6886	Ruminococcaceae_UCC-013 Promotes Obesity Resistance in Mice. Biomedicines, 2022	2, 10, 3272.	1.4	9
6887	Dependence of Intestinal Microbiota Composition on Distribution and Activity of Adipo Nonalcoholic Fatty Liver Disease. MikrobiolohichnyÄ-Zhurnal, 2022, 84, 51-59.	se Tissue in	0.2	0
6888	Gestation and lactation triphenyl phosphate exposure disturbs offspring gut microbiota sex-dependent pathway. Food and Chemical Toxicology, 2022, , 113579.	a in a	1.8	2
6889	SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiat and Cells, 2022, 45, 963-975.	tion. Molecules	1.0	4
6890	Gut-microbiome-based predictive model for ST-elevation myocardial infarction in young Frontiers in Microbiology, 0, 13, .	; male patients.	1.5	2
6891	The interaction between obesity and visceral hypersensitivity. Journal of Gastroenterolc Hepatology (Australia), 2023, 38, 370-377.	ogy and	1.4	3
6892	Effects of polystyrene nanoplastics on oxidative stress, histopathology and intestinal m largemouth bass (Micropterus salmoides). Aquaculture Reports, 2022, 27, 101423.	iicrobiota in	0.7	4
6893	Mechanistic Understanding of the Effects of Pectin on In Vivo Starch Digestion: A Revie 2022, 14, 5107.	ew. Nutrients,	1.7	10

#	Article	IF	CITATIONS
6894	Western diets, gut dysbiosis, and obesity: are they linked?. , 2022, , .		0
6895	Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Current Gastroenterology Reports, 2023, 25, 31-44.	1.1	13
6896	Impact of Fecal Microbiota Transplantation on Gut Bacterial Bile Acid Metabolism in Humans. Nutrients, 2022, 14, 5200.	1.7	9
6897	<i>Porphyra haitanensis</i> Polysaccharides Attenuates Blood Lipid via Gutâ€Liver Axis in Dietâ€Induced Highâ€Fat <i>Mesocricetus auratus</i> through Multiple Integrated Omics. Molecular Nutrition and Food Research, 2023, 67, .	1.5	1
6898	Microbiota and environmental health monitoring of mouse colonies by metagenomic shotgun sequencing. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	1
6899	Oral and gut microbiome alterations in heart failure: Epidemiology, pathogenesis and response to advanced heart failure therapies. Journal of Heart and Lung Transplantation, 2023, 42, 291-300.	0.3	2
6900	The gut microbiome: a core regulator of metabolism. Journal of Endocrinology, 2023, 256, .	1.2	18
6901	Epigenetics in depression and gut-brain axis: A molecular crosstalk. Frontiers in Aging Neuroscience, 0, 14, .	1.7	20
6902	Integrated multi-omics analyses reveal effects of empagliflozin on intestinal homeostasis in high-fat-diet mice. IScience, 2023, 26, 105816.	1.9	1
6903	Gut microbiota analyses of Saudi populations for type 2 diabetes-related phenotypes reveals significant association. BMC Microbiology, 2022, 22, .	1.3	5
6904	Can probiotic, prebiotic, and synbiotic supplementation modulate the gut-liver axis in type 2 diabetes? A narrative and systematic review of clinical trials. Frontiers in Nutrition, 0, 9, .	1.6	2
6905	Metabolic Fate of Orally Ingested Proanthocyanidins through the Digestive Tract. Antioxidants, 2023, 12, 17.	2.2	10
6906	Parasite infections, neuroinflammation, and potential contributions of gut microbiota. Frontiers in Immunology, 0, 13, .	2.2	4
6907	Body Fat Reduction Effect of Bifidobacterium breve B-3: A Randomized, Double-Blind, Placebo Comparative Clinical Trial. Nutrients, 2023, 15, 28.	1.7	5
6908	Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms, 2022, 10, 2405.	1.6	11
6909	Specific alterations of gut microbiota in diabetic microvascular complications: A systematic review and meta-analysis. Frontiers in Endocrinology, 0, 13, .	1.5	5
6911	Intake of Soymilk-Okara Powder for 12ÂWeeks Decreases Body Fat and Increases Body Muscle in Japanese Adults: a Single-Arm Intervention Study. Plant Foods for Human Nutrition, 0, , .	1.4	1
6912	Obesity among those newly diagnosed with Crohn's disease and ulcerative colitis compared with the general population. Frontline Gastroenterology, 2023, 14, 319-325.	0.9	0

#	Article	IF	CITATIONS
6913	Diverse effects of obesity on antitumor immunity and immunotherapy. Trends in Molecular Medicine, 2022, , .	3.5	2
6914	Evaluating a potential model to analyze the function of the gut microbiota of the giant panda. Frontiers in Microbiology, 0, 13, .	1.5	1
6915	Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization. Soil Ecology Letters, 2023, 5, .	2.4	7
6916	Association of Stool Frequency and Consistency with the Risk of All-Cause and Cause-Specific Mortality among U.S. Adults: Results from NHANES 2005–2010. Healthcare (Switzerland), 2023, 11, 29.	1.0	0
6917	Bile acids and microbes in metabolic disease. World Journal of Gastroenterology, 0, 28, 6846-6866.	1.4	3
6918	Nutraceuticals in Brown Adipose Tissue Activation. Cells, 2022, 11, 3996.	1.8	6
6919	Gut microbiota is associated with response to 1311 therapy in patients with papillary thyroid carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50, 1453-1465.	3.3	5
6921	Gut Microbiome and Virome: Anti-Aging Interventions. Healthy Ageing and Longevity, 2023, , 65-82.	0.2	0
6922	Probiotic induced synthesis of microbiota polyamine as a nutraceutical for metabolic syndrome and obesity-related type 2 diabetes. Frontiers in Endocrinology, 0, 13, .	1.5	1
6923	Gut Microbiome Composition in Patients with Chronic Urticaria: A Review of Current Evidence and Data. Life, 2023, 13, 152.	1.1	4
6924	Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Frontiers in Medicine, 0, 9, .	1.2	6
6925	Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. International Journal of Molecular Sciences, 2023, 24, 1166.	1.8	9
6926	The effect of gut microbiota dysbiosis on patients with preeclampsia. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
6927	Effects of probiotic fermented milk on management of obesity studied in high-fat-diet induced obese rat model. Food Production Processing and Nutrition, 2023, 5, .	1.1	5
6928	New insights into the mechanisms of highâ€fat diet mediated gut microbiota in chronic diseases. , 2023, 2, .		16
6929	A Reciprocal Link between Oral, Gut Microbiota during Periodontitis: The Potential Role of Probiotics in Reducing Dysbiosis-Induced Inflammation. International Journal of Molecular Sciences, 2023, 24, 1084.	1.8	9
6930	Risk Factors of Severe COVID-19: A Review of Host, Viral and Environmental Factors. Viruses, 2023, 15, 175.	1.5	33
6932	Western diet contributes to the pathogenesis of non-alcoholic steatohepatitis in male mice via remodeling gut microbiota and increasing production of 2-oleoylglycerol. Nature Communications, 2023, 14, .	5.8	22

#	Article	IF	CITATIONS
6933	Obese dogs exhibit different fecal microbiome and specific microbial networks compared with normal weight dogs. Scientific Reports, 2023, 13, .	1.6	1
6934	Integrated Network Pharmacology and Gut Microbiota Analysis to Explore the Mechanism of Sijunzi Decoction Involved in Alleviating Airway Inflammation in a Mouse Model of Asthma. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-21.	0.5	2
6935	Effects of Two Different Straw Pellets on Yak Growth Performance and Ruminal Microbiota during Cold Season. Animals, 2023, 13, 335.	1.0	4
6936	Vitamin D, Gut Microbiota, and Cardiometabolic Diseases—A Possible Three-Way Axis. International Journal of Molecular Sciences, 2023, 24, 940.	1.8	10
6937	Lorcaserin and phentermine exert anti-obesity effects with modulation of the gut microbiota. Frontiers in Microbiology, 0, 13, .	1.5	2
6938	Microbiota intestinal e sÃndrome metabólica: utilização terapêutica de probióticos. Revista Da Associação Brasileira De Nutrição, 2023, 13, 1-24.	0.1	0
6939	Gut Microbial-Derived Short Chain Fatty Acids: Impact on Adipose Tissue Physiology. Nutrients, 2023, 15, 272.	1.7	9
6940	Partially hydrolyzed guar gum is associated with improvement in gut health, sleep, and motivation among healthy subjects. Journal of Clinical Biochemistry and Nutrition, 2023, 72, 189-197.	0.6	2
6941	Gut Microbiota and Eating Disorders on the Extremes of Aging. Healthy Ageing and Longevity, 2023, , 99-127.	0.2	0
6942	A Review of the Relationship between Gut Microbiome and Obesity. Applied Sciences (Switzerland), 2023, 13, 610.	1.3	14
6943	Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Frontiers in Microbiology, 0, 13, .	1.5	2
6945	The gut microbiota in obesity and weight management: microbes as friends or foe?. Nature Reviews Endocrinology, 2023, 19, 258-271.	4.3	38
6946	Modulation of gut microbiota and lipid metabolism in rats fed high-fat diets by Ganoderma lucidum triterpenoids. Current Research in Food Science, 2023, 6, 100427.	2.7	7
6947	RGI-Type Pectic Polysaccharides Modulate Gut Microbiota in a Molecular Weight-Dependent Manner In Vitro. Journal of Agricultural and Food Chemistry, 2023, 71, 2160-2172.	2.4	4
6948	Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The INTESTINE Study. Nutrients, 2023, 15, 248.	1.7	4
6949	Variation in the Early Life and Adult Intestinal Microbiome of Intra-Uterine Growth Restricted Rat Offspring Exposed to a High Fat and Fructose Diet. Nutrients, 2023, 15, 217.	1.7	1
6950	Role of microbiome and its metabolite, short chain fatty acid in prostate cancer. Investigative and Clinical Urology, 2023, 64, 3.	1.0	5
6951	Bariatric Surgery as Treatment Strategy of Obesity in Saudi People: Effects of Gut Microbiota. Nutrients, 2023, 15, 361.	1.7	2

#	Article	IF	CITATIONS
6952	Design and Volatile Compound Profiling of Starter Cultures for Yogurt Preparation. Foods, 2023, 12, 379.	1.9	3
6953	Dynamic changes in intestinal microbiota and metabolite composition of pre-weaned beef calves. Microbial Pathogenesis, 2023, 175, 105991.	1.3	2
6954	Noni (Morinda citrifolia L.) fruit polysaccharide ameliorated high-fat diet-induced obesity by modulating gut microbiota and improving bile acid metabolism. Journal of Functional Foods, 2023, 101, 105408.	1.6	5
6955	Integrated analysis of the digestive tract bacterial community on individual growth in sibling generation of Swamp Eels (Monopterus albus). Aquaculture, 2023, 566, 739228.	1.7	0
6956	Microbiota: ¿Sabemos de qué estamos hablando?. Archivos De ColoproctologÃa, 2021, 4, .	0.0	0
6957	Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease. Nutrients, 2023, 15, 151.	1.7	19
6958	Modern approaches to the essence and assessment of gut dysbiosis. Review. Modern Gastroenterology, 2022, , 58-64.	0.1	0
6959	How is gut microbiome of patients with familial adenomatous polyposis different from healthy people?. Medicine (United States), 2022, 101, e32194.	0.4	2
6960	Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants, 2023, 12, 48.	2.2	21
6961	Comparative Analysis of Rumen Bacterial Profiles and Functions during Adaption to Different Phenology (Regreen vs. Grassy) in Alpine Merino Sheep with Two Growing Stages on an Alpine Meadow. Fermentation, 2023, 9, 16.	1.4	0
6962	Intestinal dysbiosis, obesity and metabolic syndrome: how to quit this tricky triangle?. Modern Gastroenterology, 2019, , 45-56.	0.1	0
6963	Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness—A Practical Preventing Recommendation and Therapies. Nutrients, 2023, 15, 563.	1.7	5
6964	Birth weight, childhood body mass index, and risk of diverticular disease in adulthood. International Journal of Obesity, 0, , .	1.6	0
6965	Controlled light exposure and intermittent fasting as treatment strategies for metabolic syndrome and gut microbiome dysregulation in night shift workers. Physiology and Behavior, 2023, 263, 114103.	1.0	3
6966	Gut microbiota disturbances and protein-energy wasting in chronic kidney disease: a narrative review. Journal of Nephrology, 2023, 36, 873-883.	0.9	6
6967	Breast Cancer Survivors and Healthy Women: Could Gut Microbiota Make a Difference?—"BiotaCancerSurvivors†A Case-Control Study. Cancers, 2023, 15, 594.	1.7	3
6968	Gut-brain axis. , 2023, , 445-495.		0
6969	Polymeric immunoglobulin receptor deficiency exacerbates autoimmune hepatitis by inducing intestinal dysbiosis and barrier dysfunction. Cell Death and Disease, 2023, 14, .	2.7	7

#	Article	IF	CITATIONS
6970	The Nutritional Intervention Improves the Metabolic Profile of Overweight and Obese PCOS Along with the Differences in Gut Microbiota. Reproductive Sciences, 0, , .	1.1	0
6971	Three Innovations of Next-Generation Antibiotics: Evolvability, Specificity, and Non-Immunogenicity. Antibiotics, 2023, 12, 204.	1.5	10
6972	Prevention of Metabolic Syndrome by Phytochemicals and Vitamin D. International Journal of Molecular Sciences, 2023, 24, 2627.	1.8	10
6973	Fecal Microbiota Was Reshaped in UCP1 Knock-In Pigs via the Adipose-Liver-Gut Axis and Contributed to Less Fat Deposition. Microbiology Spectrum, 2023, 11, .	1.2	2
6974	Effect of anthocyanins on gut health markers, Firmicutes-Bacteroidetes ratio and short-chain fatty acids: a systematic review via meta-analysis. Scientific Reports, 2023, 13, .	1.6	8
6975	Understanding the Connection between Gut Homeostasis and Psychological Stress. Journal of Nutrition, 2023, 153, 924-939.	1.3	7
6976	Laparoscopic Roux-en-Y Gastric Bypass: Mechanism of Action. , 2023, , 291-307.		0
6978	Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. Children, 2023, 10, 241.	0.6	7
6979	Evaluation of the impact of unhealthy nutrition on the intestinal microbiota, mitochondrial function and the formation of multiple organ metabolic syndrome, ways of correction. Obesity and Metabolism, 2023, 19, 280-291.	0.4	0
6980	Beer and Microbiota: Pathways for a Positive and Healthy Interaction. Nutrients, 2023, 15, 844.	1.7	4
6981	Polysaccharides from Artocarpus heterophyllus Lam. (jackfruit) pulp alleviate obesity by modulating gut microbiota in high fat diet-induced rats. Food Hydrocolloids, 2023, 139, 108521.	5.6	4
6982	In Vitro Probiotic Evaluation and Anti-Adipogenic Effect of Lactic Acid Bacteria Isolated from Kimchi. Current Topic in Lactic Acid Bacteria and Probiotics, 2022, 8, 59-65.	0.8	0
6983	Natural products in conditions associated with inflammatory bowel diseases: Colorectal cancer, diversion colitis, and obesity. , 2023, , 415-442.		0
6984	Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: pathophysiology and implications for cardiovascular disease. , 2023, , 137-173.		0
6985	Impacts of microgravity on amino acid metabolism during spaceflight. Experimental Biology and Medicine, 2023, 248, 380-393.	1.1	1
6986	The investigation of the association of pregnancy weight gain on maternal and neonatal gut microbiota composition and abundance using 16sRNA sequencing. BMC Pregnancy and Childbirth, 2023, 23, .	0.9	1
6987	Bacteroidetes to Firmicutes: captivity changes the gut microbiota composition and diversity in a social subterranean rodent. Animal Microbiome, 2023, 5, .	1.5	8
6988	Omega-3-Supplemented Fat Diet Drives Immune Metabolic Response in Visceral Adipose Tissue by Modulating Gut Microbiota in a Mouse Model of Obesity. Nutrients, 2023, 15, 1404.	1.7	7

		CITATION R	EPORT	
#	Article		IF	Citations
6989	Gut microbiota: a non-target victim of pesticide-induced toxicity. Gut Microbes, 2023,	15,.	4.3	8
6990	Characterization of gut microbial and metabolite alterations in faeces of Goto Kakizaki metagenomic and untargeted metabolomic approach. World Journal of Diabetes, 0, 14		1.3	1
6991	Oral Exposure to Epoxiconazole Disturbed the Gut Micro-Environment and Metabolic F Male Mice. Metabolites, 2023, 13, 522.	Profiling in	1.3	3
6992	The Implication of the Gut Microbiome in Heart Failure. Cells, 2023, 12, 1158.		1.8	19
6993	Can the Gut Microbiota Serve as a Guide to the Diagnosis and Treatment of Childhood Pediatric Neurology, 2023, 145, 11-21.	Epilepsy?.	1.0	2
6994	Gut microbiota disorders in obesity and colorectal cancer. Journal of Education, Health 2023, 20, 35-44.	and Sport,	0.0	0
6995	Combined effects of cadmium and nanoplastics on oxidative stress, histopathology, ar microbiota in largemouth bass (Micropterus salmoides). Aquaculture, 2023, 569, 7393		1.7	8
6996	Role of microbial dysbiosis in the pathogenesis of Alzheimer's disease. Neuropharmacc 109478.	ology, 2023, 229,	2.0	10
6997	Ultrasonic assisted extraction, characterization and gut microbiota-dependent anti-obe polysaccharide from Pericarpium Citri Reticulatae 'Chachiensis'. Ultrasonics Sonochem 106383.	esity effect of iistry, 2023, 95,	3.8	4
6998	The digestive fate of beef versus plant-based burgers from bolus to stool. Food Researd International, 2023, 167, 112688.	ch	2.9	3
6999	Chlorothalonil induces obesity in mice by regulating host gut microbiota and bile acids via FXR pathways. Journal of Hazardous Materials, 2023, 452, 131310.	metabolism	6.5	3
7000	A glance at the gut microbiota and the functional roles of the microbes based on marn samples. Frontiers in Microbiology, 0, 14, .	not fecal	1.5	2
7001	Interactive effects of polystyrene nanoplastics and 6:2 chlorinated polyfluorinated ethe on the histomorphology, oxidative stress and gut microbiota in Hainan Medaka (Oryzia Science of the Total Environment, 2023, 880, 163307.	er sulfonates as curvinotus).	3.9	6
7007	食ãïè,å†ç∽èŒ. Kagaku To Seibutsu, 2022, 60, 15-21.		0.0	0
7008	Remodeling of the Gut Microbiota in Colorectal Cancer and its Association with Obesit Pharmaceutical Design, 2023, 29, 256-271.	ty. Current	0.9	4
7009	Microbiota: A potential orchestrator of antidiabetic therapy. Frontiers in Endocrinology	/, 0, 14, .	1.5	3
7010	Effect of tea catechins on gut microbiota in high fat <scp>dietâ€induced</scp> obese the Science of Food and Agriculture, 2023, 103, 2436-2445.	mice. Journal of	1.7	1
7011	Multi-omics approaches for precision obesity management. Wiener Klinische Wochens	schrift, 0, , .	1.0	1

#	Article	IF	CITATIONS
7012	HIV and comorbidities – the importance of gut inflammation and the kynurenine pathway. Current Opinion in HIV and AIDS, 2023, 18, 102-110.	1.5	5
7013	Effect of High Efficiency Digestion and Utilization of Organic Iron Made by Saccharomyces cerevisiae on Antioxidation and Caecum Microflora in Weaned Piglets. Animals, 2023, 13, 498.	1.0	3
7014	Laparoscopic OAGB/MGB: Mechanism of Action. , 2023, , 551-558.		0
7015	The gut microbiome in Alzheimer's disease: what we know and what remains to be explored. Molecular Neurodegeneration, 2023, 18, .	4.4	48
7016	Modulation of allergic contact dermatitis via gut microbiota modified by diet, vitamins, probiotics, prebiotics, and antibiotics. Pharmacological Reports, 2023, 75, 236-248.	1.5	3
7017	Gut microbiota of Parkinson's disease in an appendectomy cohort: a preliminary study. Scientific Reports, 2023, 13, .	1.6	2
7018	Low particle concentrations of nanoplastics impair the gut health of medaka. Aquatic Toxicology, 2023, 256, 106422.	1.9	8
7019	What Is the Microbiome? A Description of a Social Network. Clinics in Colon and Rectal Surgery, 2023, 36, 091-097.	0.5	2
7020	Pectin mediates the mechanism of host blood glucose regulation through intestinal flora. Critical Reviews in Food Science and Nutrition, 0, , 1-23.	5.4	2
7021	Taiwanese green propolis ameliorates metabolic syndrome via remodeling of white adipose tissue and modulation of gut microbiota in diet-induced obese mice. Biomedicine and Pharmacotherapy, 2023, 160, 114386.	2.5	5
7022	Adiposity is associated with expansion of the genus Dialister in rheumatoid arthritis patients. Biomedicine and Pharmacotherapy, 2023, 160, 114388.	2.5	4
7023	Genetic mapping of microbial and host traits reveals production of immunomodulatory lipids by Akkermansia muciniphila in the murine gut. Nature Microbiology, 2023, 8, 424-440.	5.9	12
7024	Does diet or macronutrients intake drive the structure and function of gut microbiota?. Frontiers in Microbiology, 0, 14, .	1.5	5
7025	Alcohol, Inflammation, and Microbiota in Alcoholic Liver Disease. International Journal of Molecular Sciences, 2023, 24, 3735.	1.8	16
7026	Tebuconazole mediates cognitive impairment via the microbe-gut-brain axis (MGBA) in mice. Environment International, 2023, 173, 107821.	4.8	5
7027	The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy. International Journal of Molecular Sciences, 2023, 24, 3897.	1.8	2
7029	Inulin: properties and health benefits. Food and Function, 2023, 14, 2948-2968.	2.1	21
7030	The fecal microbiotas of women of Pacific and New Zealand European ethnicities are characterized by distinctive enterotypes that reflect dietary intakes and fecal water content. Gut Microbes, 2023, 15, .	4.3	1

ARTICLE IF CITATIONS Fecal microbiota transplantation attenuates Escherichia coli infected outgrowth by modulating the 7031 1.9 4 intestinal microbiome. Microbial Cell Factories, 2023, 22, . Seasonal variations in the gut microbiota of white-headed black langur (Trachypithecus) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5 1.1 Evolution, 0, 11, . Astragalus polysaccharides alleviate type 1 diabetes via modulating gut microbiota in mice. 7033 5 3.6 International Journal of Biological Macromolecules, 2023, 234, 123767. MAIT cells and the microbiome. Frontiers in Immunology, 0, 14, . 2.2 Orally administered Lactiplantibacillus plantarum OLL2712 decreased intestinal permeability, especially in the ileum: Ingested lactic acid bacteria alleviated obesity-induced inflammation by collaborating 7036 2.2 5 with gut microbiota. Frontiers in Immunology, 0, 14, . Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nature Biotechnology, 2023, 41, 1633-1644. 7037 9.4 The Associations between Multiple Essential Metal(loid)s and Gut Microbiota in Chinese 7038 1.7 1 Community-Dwelling Older Adults. Nutrients, 2023, 15, 1137. Mechanisms linking bariatric surgery to adipose tissue, glucose metabolism, fatty liver disease and gut 7039 0.8 microbiota. Langenbeck's Archives of Surgery, 2023, 408, . Gut microbiota composition alteration analysis and functional categorization in children with 7040 0.9 1 growth hormone deficiency. Frontiers in Pediatrics, 0, 11, . Seminars in immunology special issue: Nutrition, microbiota and immunity The unexplored microbes in 7041 2.7 health and disease. Seminars in Immunology, 2023, 66, 101735. The Trichinella spiralis-derived antigens alleviate HFD-induced obesity and inflammation in mice. 7042 3 1.7 International Immunopharmacology, 2023, 117, 109924. Cytidine Alleviates Dyslipidemia and Modulates the Gut Microbiota Composition in ob/ob Mice. 7043 1.7 Nutrients, 2023, 15, 1147. Emerging Relationship between the Gut Microbiome and Prostate Cancer. World Journal of Men?s 7044 1.7 7 Health, 2023, 41, 759. The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating 7045 1.9 Short-Chain Fatty Acids. Foods, 2023, 12, 1023. Hypoglycemic Effect of Trichosanthes Pericarpium to Type 2 Model Diabetic Mice via Intestinal Bacteria 7046 0.9 0 Transplantation. Current Pharmaceutical Biotechnology, 2023, 24, . Responses of the gastrointestinal microbiota to the protein metabolism of pond-cultured Japanese 7047 1.2 flounder (Paralichthys olivaceus). Frontiers in Marine Science, 0, 10, . Will ocean acidification affect the digestive physiology and gut microbiota of whelk Brunneifusus 7048 0.00 ternatanus?. Israeli Journal of Aquaculture - Bamidgeh, 2023, 75, . Complex regulatoryÂeffects of gut microbial short-chain fatty acids on immune tolerance and 7049 autoimmunity., 2023, 20, 341-350.

CITATION REPORT

#	Article	IF	CITATIONS
7050	Agave fructans enhance the effects of fermented milk products on obesity biomarkers: a randomised trial. Beneficial Microbes, 2023, 14, 153-164.	1.0	0
7052	Microbiome analysis and fecal microbiota transfer in pediatric gastroenterology—Âa structured online survey in German-speaking countries. International Journal of Colorectal Disease, 2023, 38, .	1.0	0
7053	Discovering the Potential Mechanisms of Medicinal Mushrooms Antidepressant Activity: A Review. Antioxidants, 2023, 12, 623.	2.2	3
7054	Characteristics of fecal microbiota in different constipation subtypes and association with colon physiology, lifestyle factors, and psychological status. Therapeutic Advances in Gastroenterology, 2023, 16, 175628482311541.	1.4	3
7055	Involvement of Periodontal Disease in the Pathogenesis and Exacerbation of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis: A Review. Nutrients, 2023, 15, 1269.	1.7	2
7056	Alterations in Fecal Microbiota Linked to Environment and Sex in Red Deer (Cervus elaphus). Animals, 2023, 13, 929.	1.0	3
7057	Lactobacillus gasseri LG-G12 Restores Gut Microbiota and Intestinal Health in Obesity Mice on Ceftriaxone Therapy. Foods, 2023, 12, 1092.	1.9	3
7058	Gut Microbial Genes and Metabolism for Methionine and Branched-Chain Amino Acids in Diabetic Nephropathy. Microbiology Spectrum, 2023, 11, .	1.2	2
7059	Effects of Diet with High Polyphenol and Protein Content and Diet with High Boron Content on Microbiota in Obesity. Current Nutrition and Food Science, 2023, 19, .	0.3	0
7060	Defecation status, intestinal microbiota, and habitual diet are associated with the fecal bile acid composition: a cross-sectional study in community-dwelling young participants. European Journal of Nutrition, 2023, 62, 2015-2026.	1.8	4
7061	Association of intestinal microbiota and its metabolite markers with excess weight in Chinese children and adolescents. Pediatric Obesity, 0, , .	1.4	1
7062	Decreased Paneth cell α-defensins promote fibrosis in a choline-deficient L-amino acid-defined high-fat diet-induced mouse model of nonalcoholic steatohepatitis via disrupting intestinal microbiota. Scientific Reports, 2023, 13, .	1.6	1
7063	Dietary supplementation of coated sodium butyrate improves growth performance of laying ducks by regulating intestinal health and immunological performance. Frontiers in Immunology, 0, 14, .	2.2	1
7064	Unveiling the Human Gastrointestinal Tract Microbiome: The Past, Present, and Future of Metagenomics. Biomedicines, 2023, 11, 827.	1.4	6
7065	Microbial and metabolic features in renal transplant recipients with postâ€ŧransplantation diabetes mellitus. International Journal of Urology, 2023, 30, 504-513.	0.5	1
7066	Impact of high altitude on composition and functional profiling of oral microbiome in Indian male population. Scientific Reports, 2023, 13, .	1.6	1
7067	Gut microbiota and stroke: New avenues to improve prevention and outcome. European Journal of Neurology, 2023, 30, 3595-3604.	1.7	3
7068	Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. International Journal of Molecular Sciences, 2023, 24, 5420.	1.8	10

#	Article	IF	CITATIONS
7069	Probiotics Mediate Intestinal Microbiome and Microbiota-Derived Metabolites Regulating the Growth and Immunity of Rainbow Trout (Oncorhynchus mykiss). Microbiology Spectrum, 2023, 11, .	1.2	8
7070	Special Issue "Gut Microbioma Structure and Functions in Human Health and Disease 2.0†Editorial. Microorganisms, 2023, 11, 740.	1.6	0
7072	Maternal vaginal fluids play a major role in the colonization of the neonatal intestinal microbiota. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	2
7073	A comprehensive assessment of the antimicrobial and immunomodulatory effects of frequently consumed fermented foods: insights in the management of COVID-19. Journal of Applied Microbiology, 2023, 134, .	1.4	1
7074	Human microbiome research: Growing pains and future promises. PLoS Biology, 2023, 21, e3002053.	2.6	7
7075	Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. Nature Medicine, 2023, 29, 551-561.	15.2	17
7076	Gut Microbiome-Host Metabolome Homeostasis upon Exposure to PFOS and GenX in Male Mice. Toxics, 2023, 11, 281.	1.6	6
7077	The Microbiota–Gut–Brain Axis: Psychoneuroimmunological Insights. Nutrients, 2023, 15, 1496.	1.7	8
7079	Implication of Obesity and Gut Microbiome Dysbiosis in the Etiology of Colorectal Cancer. Cancers, 2023, 15, 1913.	1.7	9
7080	Unmasking the tissue-resident eukaryotic DNA virome in humans. Nucleic Acids Research, 2023, 51, 3223-3239.	6.5	4
7082	Alterations of gut microbes and their correlation with clinical features in middle and end-stages chronic kidney disease. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	1
7083	Gut Microbiota is Associated with Agingâ€Related Processes of a Small Mammal Species under Highâ€Density Crowding Stress. Advanced Science, 2023, 10, .	5.6	2
7084	Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Applied Biochemistry and Biotechnology, 2023, 195, 6809-6823.	1.4	1
7085	Defatted hempseed meal altered the metabolic profile of fermented yogurt and enhanced the ability to alleviate constipation in rats. Journal of the Science of Food and Agriculture, 2023, 103, 4778-4791.	1.7	2
7086	Will ocean acidification affect the digestive physiology and gut microbiota of whelk <i>Brunneifusus ternatanus</i> ?. Israeli Journal of Aquaculture - Bamidgeh, 0, , .	0.0	0
7088	Gram-negative bacteria and lipopolysaccharides as risk factors for the occurrence of diabetic foot. Journal of Clinical Endocrinology and Metabolism, 0, , .	1.8	0
7089	Trends and Disparities in Colonic Diverticular Disease Hospitalizations in Patients With Morbid Obesity: A Decade-Long Joinpoint Analysis. Cureus, 2023, , .	0.2	2
7090	Effect of Limosilactobacillus reuteri ZJF036 on Growth Performance and Gut Microbiota in Juvenile Beagle Dogs. Current Microbiology, 2023, 80, .	1.0	1

#	Article	IF	CITATIONS
7091	Microbial diversity and community composition of fecal microbiota in dual-purpose and egg type ducks. Frontiers in Microbiology, 0, 14, .	1.5	1
7092	SYNBIO® Probiotic and Antioxidant Dietary Supplementation: Clinical Trial Evaluation of Potential Effects on Airline Flight Crew Members' Well-Being. Microorganisms, 2023, 11, 924.	1.6	0
7093	Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Internal and Emergency Medicine, 2023, 18, 1287-1302.	1.0	4
7094	Schizophrenia and obesity: May the gut microbiota serve as a link for the pathogenesis?. , 2023, 2, .		2
7096	BCAA dysmetabolism in the host and gut microbiome, a key player in the development of obesity and T2DM. Medicine in Microecology, 2023, 16, 100078.	0.7	3
7097	Gut microbiota in Chinese and Japanese patients with cardiovascular diseases: a systematic review and meta-analysis. Annals of Saudi Medicine, 2023, 43, 105-114.	0.5	0
7098	Protective Effects of Graptopetalum paraguayense E. Walther against Methylglyoxal-Induced Liver Damage and Microflora Imbalances Caused by High-Fructose Induction. Fermentation, 2023, 9, 366.	1.4	1
7099	Multi-omics reveals Dengzhan Shengmai formulation ameliorates cognitive impairments in D-galactose-induced aging mouse model by regulating CXCL12/CXCR4 and gut microbiota. Frontiers in Pharmacology, 0, 14, .	1.6	2
7100	Brazilian guide to nutrition in bariatric and metabolic surgery. Langenbeck's Archives of Surgery, 2023, 408, .	0.8	5
7102	Fermented Bamboo Fiber Improves Productive Performance by Regulating Gut Microbiota and Inhibiting Chronic Inflammation of Sows and Piglets during Late Gestation and Lactation. Microbiology Spectrum, 2023, 11, .	1.2	9
7104	HIFâ€1α targeted deletion in myeloid cells decreases MDSC accumulation and alters microbiome in neonatal mice. European Journal of Immunology, 2023, 53, .	1.6	1
7106	The Effects of Cardioprotective Antidiabetic Therapy on Microbiota in Patients with Type 2 Diabetes Mellitus—A Systematic Review. International Journal of Molecular Sciences, 2023, 24, 7184.	1.8	4
7107	16S rRNA Gene Amplicon Sequencing of Gut Microbiota Affected by Four Probiotic Strains in Mice. Veterinary Sciences, 2023, 10, 288.	0.6	0
7108	Combination of Lactobacillus plantarum HAC03 and Garcinia cambogia Has a Significant Anti-Obesity Effect in Diet-Induced Obesity Mice. Nutrients, 2023, 15, 1859.	1.7	0
7110	Health benefits of anthocyanin-containing foods, beverages, and supplements have unpredictable relation to gastrointestinal microbiota: A systematic review and meta-analysis of random clinical trials. Nutrition Research, 2023, 116, 48-59.	1.3	3
7111	Microbial phenolic metabolites 3-(3',4'-dihydroxyphenyl)propanoic acid and 3',4'-dihydroxyphenyla acid prevent obesity in mice fed high-fat diet. , 2024, 13, 327-338.	acetic	1
7112	<i>Lactobacillus plantarum</i> AR495 improves stress-induced irritable bowel syndrome in rats by targeting gut microbiota and Mast cell-PAR2-TRPV1 signaling pathway. , 2023, , 1-18.		0
7113	Polylactic acid (PLA), polyethylene terephthalate (PET), and polystyrene (PS) microplastics differently affect the gut microbiota of marine medaka (Oryzias melastigma) after individual and combined exposure with sulfamethazine. Aquatic Toxicology, 2023, 259, 106522.	1.9	7

ARTICLE

IF CITATIONS

Dietary and Sexual Correlates of Gut Microbiota in the Japanese Gecko, Gekko japonicus (Schlegel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

7115	Advances in the Utilization of Zebrafish for Assessing and Understanding the Mechanisms of Nano-/Microparticles Toxicity in Water. Toxics, 2023, 11, 380.	1.6	6
7116	Growing old together: What we know about the influence of diet and exercise on the aging host's gut microbiome. Frontiers in Sports and Active Living, 0, 5, .	0.9	6
7117	Specific host metabolite and gut microbiome alterations are associated with bone loss during spaceflight. Cell Reports, 2023, 42, 112299.	2.9	4
7118	Crosstalk Between the Nervous System and Systemic Organs in Acute Brain Injury. Neurocritical Care, 2024, 40, 337-348.	1.2	3
7119	An Evaluation Method of Human Gut Microbial Homeostasis by Testing Specific Fecal Microbiota. Engineering, 2023, 29, 110-119.	3.2	0
7120	Effects of Mixed Nut Consumption on Blood Glucose, Insulin, Satiety, and the Microbiome in a Healthy Population: A Pilot Study. Journal of Medicinal Food, 2023, 26, 342-351.	0.8	1
7121	Nutritional and Lifestyle Therapy for NAFLD in People with HIV. Nutrients, 2023, 15, 1990.	1.7	1
7122	The Prebiotic Effects of an Extract with Antioxidant Properties from Morus alba L. Contribute to Ameliorate High-Fat Diet-Induced Obesity in Mice. Antioxidants, 2023, 12, 978.	2.2	1
7123	The dietary source of trimethylamine N-oxide and clinical outcomes: an unexpected liaison. CKJ: Clinical Kidney Journal, 2023, 16, 1804-1812.	1.4	1
7129	Maliibacterium massiliense gen. nov. sp. nov., Isolated from Human Feces and Proposal of Maliibacteriaceae fam. nov Current Microbiology, 2023, 80, .	1.0	0
7177	Green Tea Catechins and Nonalcoholic Fatty Liver Disease. , 2023, , 80-105.		0
7194	From symbiosis to dysbiosis in gut-consequence includes metabolic syndrome. , 2023, , 61-83.		0
7195	The tremendous clinical potential of the microbiota in the treatment of breast cancer: the next frontier. Journal of Cancer Research and Clinical Oncology, 0, , .	1.2	0
7206	Nutrition and the Gut Microbiome: Insights into New Dietary Strategies for Health. , 2023, , 307-322.		0
7210	Gut Microbiota and Host Immune System in Cancer. , 2023, , 1-40.		0
7263	Gut Microbiota and Obesity. Endocrinology, 2023, , 1-29.	0.1	0
7273	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2023, , 1-12.		0

# 7275	ARTICLE Gut microbiome as therapeutic target for diabesity management: opportunity for nanonutraceuticals and associated challenges. Drug Delivery and Translational Research, 0, , .	IF 3.0	CITATIONS
7277	k-Anonymity on Metagenomic Features in Microbiome Databases. , 2023, , .		0
7279	Crosstalk between Helicobacter pylori and gastrointestinal microbiota in various gastroduodenal diseases—A systematic review. 3 Biotech, 2023, 13, .	1.1	1
7367	Environmental and Lifestyle Factors Influencing Inflammation and Type 2 Diabetes. Contemporary Endocrinology, 2023, , 165-183.	0.3	0
7382	Patchouli. , 2023, , 249-279.		0
7383	Assessment of Microbes and Microbial Products for Future Industrialization. , 2023, , 17-22.		0
7384	Direct-Fed Microbial Supplementation and the Swine Gastrointestinal Tract Microbial Population: Current Challenges and Future Prospects. , 2023, , 229-247.		0
7442	From Leaky Gut to Tissue Microbiota in Metabolic Diseases. Endocrinology, 2023, , 1-17.	0.1	0
7449	Vpliv Ä r evesne mikrobiote na razvoj debelosti. , 2023, , .		0
7462	Precision Nutrition and Obesity. , 2024, , 317-332.		0
7468	Role of Microbiomes in Defining the Metabolic and Regulatory Networks that Distinguishes Between Good Health and a Continuum of Disease States. , 2023, , 219-240.		0
7474	Microbial Diversity and Their Role in Human Health and Diseases. , 2023, , 1-33.		0
7475	Influence of the Gut Microbiome on Cardiovascular Health and Hypertension. , 2023, , 335-359.		0
7485	Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity. International Journal of Obesity, 0, , .	1.6	0
7502	Me, Myself and My Microbiota. , 2024, , 9-27.		0
7518	Gut Microbiota and Metabolism. , 2024, , 145-159.		0
7521	Gut microbiota and metabolic syndrome: What's new?. , 2024, , 527-541.		0
7522	The Microbiome Is Redefining What It Means to be Human. , 2024, , 157-169.		0

			CITATION REP	ORT	
#	Article			IF	Citations
7523	Correlating the Gut Microbiome to Health and Disease. , 2024, , 1-36.				0
7528	Herbs and Herbal Formulations for the Management and Prevention of Gastrointestina Reference Series in Phytochemistry, 2023, , 1-35.	al Diseases.		0.2	0
7531	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2023, , 373-384.				0
7532	From Leaky Gut to Tissue Microbiota in Metabolic Diseases. Endocrinology, 2024, , 11	1-127.		0.1	0
7535	Gut Microbiota and Obesity. Endocrinology, 2024, , 129-156.			0.1	0
7550	Gut microbiota in insulin resistance: a bibliometric analysis. Journal of Diabetes and Me Disorders, 0, , .	etabolic		0.8	0
7553	Changes in the Gut Microbiome as Seen in Diabetes and Obesity. , 2023, , 61-81.				0
7560	Host-pathogen interactions with special reference to microbiota analysis and integrati biology approaches. , 2024, , 191-211.	ion of system	S		Ο