Molecular motors hijacking by intracellular pathogens

Cellular Microbiology 8, 23-32 DOI: 10.1111/j.1462-5822.2005.00649.x

Citation Report

#	Article	IF	CITATIONS
1	Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cellular Microbiology, 2006, 8, 728-737.	1.1	130
2	Functional Dissection of SseF, a Type III Effector Protein Involved in Positioning the Salmonella-Containing Vacuole. Traffic, 2006, 7, 950-965.	1.3	90
3	On regulation of phagosome maturation and antigen presentation. Nature Immunology, 2006, 7, 1029-1035.	7.0	269
4	Mechanisms of pathogen entry through the endosomal compartments. Nature Reviews Molecular Cell Biology, 2006, 7, 495-504.	16.1	324
5	The Salmonella effector protein PipB2 is a linker for kinesin-1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13497-13502.	3.3	153
6	A Cellular Basis for Wolbachia Recruitment to the Host Germline. PLoS Pathogens, 2007, 3, e190.	2.1	124
7	Protein Linear Molecular Motor-Powered Nanodevices. Australian Journal of Chemistry, 2007, 60, 314.	0.5	62
8	Membrane dynamics and spatial distribution of Salmonella-containing vacuoles. Trends in Microbiology, 2007, 15, 516-524.	3.5	68
9	Infection in a dish: high-throughput analyses of bacterial pathogenesis. Current Opinion in Microbiology, 2007, 10, 10-16.	2.3	60
10	Microtubule Stability Studied by Three-Dimensional Molecular Theory of Solvation. Biophysical Journal, 2007, 92, 394-403.	0.2	57
11	Biological systems of the host cell involved in Agrobacterium infection. Cellular Microbiology, 2007, 9, 9-20.	1.1	140
12	Cellular interactions of Plasmodium liver stage with its host mammalian cell. International Journal for Parasitology, 2007, 37, 1329-1341.	1.3	115
13	Dynamic Remodeling of the Endosomal System During Formation of <i>Salmonella</i> â€Induced Filaments by Intracellular <i>Salmonella enterica</i> . Traffic, 2008, 9, 2100-2116.	1.3	87
14	Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nature Nanotechnology, 2008, 3, 465-475.	15.6	216
15	Maintenance of the Salmonella-containing vacuole in the juxtanuclear area: A role for intermediate filaments. Microbial Pathogenesis, 2008, 45, 415-422.	1.3	19
16	Cytoskeleton and motor proteins are required for the transcytosis of Neisseria gonorrhoeae through polarized epithelial cells. International Journal of Medical Microbiology, 2008, 298, 209-221.	1.5	31
17	Campylobacter jejuni Survives within Epithelial Cells by Avoiding Delivery to Lysosomes. PLoS Pathogens, 2008, 4, e14.	2.1	143
18	Two-dimensional Blue Native/SDS-PAGE Analysis Reveals Heat Shock Protein Chaperone Machinery Involved in Hepatitis B Virus Production in HepG2.2.15 Cells. Molecular and Cellular Proteomics, 2009, 8, 495-505	2.5	38

ARTICLE IF CITATIONS # Turnip Mosaic Virus RNA Replication Complex Vesicles Are Mobile, Align with Microfilaments, and Are 19 1.5 176 Each Derived from a Single Viral Genome. Journal of Virology, 2009, 83, 10460-10471. <i>Salmonella</i> -Containing Vacuoles Display Centrifugal Movement Associated with Cell-to-Cell 1.0 39 Transfer in Epithelial Cells. Infection and Immunity, 2009, 77, 996-1007. Nonâ€cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. 23 2.8 53 Immunological Reviews, 2010, 235, 128-146. <i>Salmonella enterica</i>Serovar Typhimurium Invades Fibroblasts by Multiple Routes Differing from 24 the Entry into Epithelial Cells. Infection and Immunity, 2010, 78, 2700-2713. Systematic Analysis of the SsrAB Virulon of <i>Salmonella enterica</i>. Infection and Immunity, 2010, 25 1.0 64 78, 49-58. Identification of Host Factors Involved in Borna Disease Virus Cell Entry through a Small Interfering RNA Functional Genetic Screen. Journal of Virology, 2010, 84, 3562-3575. 1.5 Screening and identification of differentially expressed genes from chickens infected with Newcastle 27 0.8 11 disease virus by suppression subtractive hybridization. Avian Pathology, 2010, 39, 151-159. Cellular Remodeling During Plant Virus Infection. Annual Review of Phytopathology, 2010, 48, 69-91. 3.5 28 240 Mechanism of membrane nanotube formation by molecular motors. Biochimica Et Biophysica Acta -29 1.4 51 Biomembranes, 2010, 1798, 1418-1426. Salmonella-induced tubular networks. Trends in Microbiology, 2011, 19, 268-277. 3.5 The Professional Phagocyte Dictyostelium discoideum as a Model Host for Bacterial Pathogens. 31 1.0 115 Current Drug Targets, 2011, 12, 942-954. The association of viral proteins with host cell dynein components during virus infection. FEBS 2.2 Journal, 2011, 278, 299 7-3011. A multidisciplinary study on the effects of phloem-limited viruses on the agronomical performance 33 1.2 30 and berry quality of Vitis vinifera cv. Nebbiolo. Journal of Proteomics, 2011, 75, 306-315. Dynamic modification of microtubule-dependent transport by effector proteins of intracellular Salmonella enterica. European Journal of Cell Biology, 2011, 90, 897-902. 1.6 Toward in vivo nanoscale communication networks: utilizing an active network architecture. 35 0.6 5 Frontiers of Computer Science, 2011, 5, 316-326. Cell deathâ€independent functions of granzymes: hit viruses where it hurts. Reviews in Medical 28 Virology, 2011, 21, 301-314. Impact of <i>Salmonella enterica </i>Type III Secretion System Effectors on the Eukaryotic Host Cell., 37 70 2012, 2012, 1-36. Role of Dynein in Viral Pathogenesis., 2012, , 560-583.

CITATION REPORT

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
39	Serogroup-Specific Interaction of Neisseria meningitidis Capsular Polysaccharide with Host Cell Microtubules and Effects on Tubulin Polymerization. Infection and Immunity, 2014, 82, 265-274.	1.0	8
40	Dormant Intracellular Salmonella enterica Serovar Typhimurium Discriminates among Salmonella Pathogenicity Island 2 Effectors To Persist inside Fibroblasts. Infection and Immunity, 2014, 82, 221-232.	1.0	27
41	Cell Biology of Human Host Cell Entry by Campylobacter jejuni. , 2014, , 297-313.		10
42	Take the tube: remodelling of the endosomal system by intracellular <i>Salmonella enterica</i> . Cellular Microbiology, 2015, 17, 639-647.	1.1	55
43	<i>Salmonella</i> Effectors SseF and SseG Interact with Mammalian Protein ACBD3 (GCP60) To Anchor <i>Salmonella</i> -Containing Vacuoles at the Golgi Network. MBio, 2016, 7, .	1.8	50
44	Host Stress Drives Salmonella Recrudescence. Scientific Reports, 2016, 6, 20849.	1.6	21
45	Lipid - Motor Interactions: Soap Opera or Symphony?. Current Opinion in Cell Biology, 2017, 44, 79-85.	2.6	18
46	Genome-wide signals of positive selection in strongylocentrotid sea urchins. BMC Genomics, 2017, 18, 555.	1.2	11
47	Identification of novel targets for host-directed therapeutics against intracellular Staphylococcus aureus. Scientific Reports, 2019, 9, 15435.	1.6	9
48	The role of microtubules and the dynein/dynactin motor complex of host cells in the biogenesis of the Coxiella burnetii-containing vacuole. PLoS ONE, 2019, 14, e0209820.	1.1	3
49	When Viruses Play Team Sports: Mixed Infections in Plants. Phytopathology, 2020, 110, 29-48.	1.1	123
50	Multiple Salmonella-pathogenicity island 2 effectors are required to facilitate bacterial establishment of its intracellular niche and virulence. PLoS ONE, 2020, 15, e0235020.	1.1	17
52	Making It to the Synapse: Measles Virus Spread in and Among Neurons. Current Topics in Microbiology and Immunology, 2009, 330, 3-30.	0.7	46
53	Functional Dissection of SseF, a Membrane-Integral Effector Protein of Intracellular Salmonella enterica. PLoS ONE, 2012, 7, e35004.	1.1	21
54	Bidirectional Lipid Droplet Velocities Are Controlled by Differential Binding Strengths of HCV Core DII Protein. PLoS ONE, 2013, 8, e78065.	1.1	19
55	The Interplay of Host Lysosomes and Intracellular Pathogens. Frontiers in Cellular and Infection Microbiology, 2020, 10, 595502.	1.8	31
56	Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins. ELife, 2014, 3, e03680.	2.8	100
58	Basics of the Cytoskeleton: Myosins. , 2012, , 73-100.		Ο

#	Article	IF	CITATIONS
60	Understanding the key functions of Myosins in viral infection. Biochemical Society Transactions, 2022, 50, 597-607.	1.6	0
61	Quantitative proteomic screen identifies annexin A2 as a host target for Salmonella pathogenicity island-2 effectors SopD2 and PipB2. Scientific Reports, 2021, 11, 23630.	1.6	6