Cholesterol depletion in Mycobacterium avium-infected in phagosome maturation and leads to the reversible se in phagolysosome-derived autophagic vacuoles

Cellular Microbiology 8, 242-256 DOI: 10.1111/j.1462-5822.2005.00617.x

Citation Report

#	Article	IF	CITATIONS
1	Autophagy as an immune defense mechanism. Current Opinion in Immunology, 2006, 18, 375-382.	2.4	186
2	Autophagy: Eating for Good Health. Journal of Immunology, 2006, 177, 4945-4951.	0.4	58
3	Autophagy in Immune Defense Against Mycobacterium tuberculosis. Autophagy, 2006, 2, 175-178.	4.3	67
4	Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6031-6036.	3.3	305
5	A Mycobacterial Gene Involved in Synthesis of an Outer Cell Envelope Lipid Is a Key Factor in Prevention of Phagosome Maturation. Infection and Immunity, 2007, 75, 581-591.	1.0	28
6	A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1947-1952.	3.3	480
7	Cholesterol oxidase is required for virulence of <i>Mycobacterium tuberculosis</i> . FEMS Microbiology Letters, 2007, 275, 106-112.	0.7	99
8	Cholesteroid nature of free mycolic acids from M. tuberculosis. Chemistry and Physics of Lipids, 2008, 152, 95-103.	1.5	30
9	Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cellular Microbiology, 2008, 10, 1530-1545.	1.1	122
10	Cenome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics, 2008, 9, 291.	1.2	68
11	Autophagosome and Phagosome. Methods in Molecular Biology, 2008, , .	0.4	15
13	Survival and replication of Piscirickettsia salmonis in rainbow trout head kidney macrophages. Fish and Shellfish Immunology, 2008, 25, 477-484.	1.6	94
14	Molecular Pathogenesis of <i>Shigella</i> spp.: Controlling Host Cell Signaling, Invasion, and Death by Type III Secretion. Clinical Microbiology Reviews, 2008, 21, 134-156.	5.7	504
15	The Actinobacterial mce4 Locus Encodes a Steroid Transporter. Journal of Biological Chemistry, 2008, 283, 35368-35374.	1.6	173
16	Mycobacterial persistence requires the utilization of host cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4376-4380.	3.3	900
17	Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence. PLoS Pathogens, 2008, 4, e1000204.	2.1	606
18	Autophagy, an immunologic magic bullet: <i>Mycobacterium tuberculosis</i> phagosome maturation block and how to bypass it. Future Microbiology, 2008, 3, 517-524.	1.0	58
19	Depletion of cellular cholesterol enhances macrophage MAPK activation by chitin microparticles but not by heat-killed <i>Mycobacterium bovis</i> BCG. American Journal of Physiology - Cell Physiology, 2008, 295, C341-C349.	2.1	20

ATION RE

2

#	Article	IF	CITATIONS
20	LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest. Microbiology (United Kingdom), 2008, 154, 2991-3001.	0.7	28
21	Phagocytosis in Macrophages Lacking Cbl Reveals an Unsuspected Role for FcÎ ³ Receptor Signaling and Actin Assembly in Target Binding. Journal of Immunology, 2009, 182, 5654-5662.	0.4	16
22	Phthiocerol Dimycocerosates of M. tuberculosis Participate in Macrophage Invasion by Inducing Changes in the Organization of Plasma Membrane Lipids. PLoS Pathogens, 2009, 5, e1000289.	2.1	200
23	<i>Mycobacterium tuberculosis</i> Is Able To Accumulate and Utilize Cholesterol. Journal of Bacteriology, 2009, 191, 6584-6591.	1.0	145
24	Non-Opsonic Recognition of <i>Mycobacterium tuberculosis</i> by Phagocytes. Journal of Innate Immunity, 2009, 1, 231-243.	1.8	61
25	Decreased outer membrane permeability protects mycobacteria from killing by ubiquitinâ€derived peptides. Molecular Microbiology, 2009, 73, 844-857.	1.2	69
26	Mycobacterium requires an all-around closely apposing phagosome membrane to maintain the maturation block and this apposition is re-established when it rescues itself from phagolysosomes. Cellular Microbiology, 2009, 11, 1190-1207.	1.1	35
27	Characterization of an Aldolaseâ ``Dehydrogenase Complex That Exhibits Substrate Channeling in the Polychlorinated Biphenyls Degradation Pathway. Biochemistry, 2009, 48, 6551-6558.	1.2	38
28	Leading a Sheltered Life: Intracellular Pathogens and Maintenance of Vacuolar Compartments. Cell Host and Microbe, 2009, 5, 593-601.	5.1	153
29	The many niches and strategies used by pathogenic mycobacteria for survival within host macrophages. Immunobiology, 2009, 214, 526-542.	0.8	97
30	Mycobacterial Subversion of Chemotherapeutic Reagents and Host Defense Tactics: Challenges in Tuberculosis Drug Development. Annual Review of Pharmacology and Toxicology, 2009, 49, 427-453.	4.2	63
32	Internalization and cytotoxicity analysis of silicon-based microparticles in macrophages and embryos. Biomedical Microdevices, 2010, 12, 371-379.	1.4	22
33	Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB. Microbes and Infection, 2010, 12, 956-966.	1.0	45
34	Alternative Endogenous Protein Processing via an Autophagy-Dependent Pathway Compensates for <i>Yersinia</i> -Mediated Inhibition of Endosomal Major Histocompatibility Complex Class II Antigen Presentation. Infection and Immunity, 2010, 78, 5138-5150.	1.0	24
35	Lipids in host–pathogen interactions: Pathogens exploit the complexity of the host cell lipidome. Progress in Lipid Research, 2010, 49, 1-26.	5.3	132
36	Mycobacterium avium uses apoptotic macrophages as tools for spreading. Microbial Pathogenesis, 2011, 50, 132-139.	1.3	59
37	Taking Out TB–Lysosomal Trafficking and Mycobactericidal Ubiquitin-Derived Peptides. Frontiers in Microbiology, 2011, 2, 7.	1.5	8
38	Strategies for Intracellular Survival of Burkholderia pseudomallei. Frontiers in Microbiology, 2011, 2, 170.	1.5	106

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
39	The Burkholderia pseudomallei Type III Secretion System and BopA Are Required for Evasion of LC3-Associated Phagocytosis. PLoS ONE, 2011, 6, e17852.	1.1	140
40	nâ^'3 Fatty acids uniquely affect anti-microbial resistance and immune cell plasma membrane organization. Chemistry and Physics of Lipids, 2011, 164, 626-635.	1.5	27
41	Uptake and Persistence of Mycobacterium avium subsp. paratuberculosis in Human Monocytes. Infection and Immunity, 2012, 80, 3768-3775.	1.0	42
42	Phosphorylation of Mycobacterial PcaA Inhibits Mycolic Acid Cyclopropanation. Journal of Biological Chemistry, 2012, 287, 26187-26199.	1.6	56
43	Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Progress in Lipid Research, 2012, 51, 325-339.	5.3	81
44	The Role of Lipid Raft Aggregation in the Infection of Type II Pneumocytes by Mycobacterium tuberculosis. PLoS ONE, 2012, 7, e45028.	1.1	20
45	<i>Mycobacterium tuberculosis</i> Modulates Macrophage Lipid-Sensing Nuclear Receptors PPARÎ ³ and TR4 for Survival. Journal of Immunology, 2012, 188, 5593-5603.	0.4	162
46	Catabolism and biotechnological applications of cholesterol degrading bacteria. Microbial Biotechnology, 2012, 5, 679-699.	2.0	139
47	Mycobacterium avium-triggered diseases: pathogenomics. Cellular Microbiology, 2012, 14, 808-818.	1.1	28
48	Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence. Scientific Reports, 2013, 3, 1109.	1.6	27
49	ChoD and HsdD can be dispensable for cholesterol degradation in mycobacteria. Journal of Steroid Biochemistry and Molecular Biology, 2013, 134, 1-7.	1.2	27
50	Bioanalysis of Eukaryotic Organelles. Chemical Reviews, 2013, 113, 2733-2811.	23.0	110
51	The Critical Role of Membrane Cholesterol in Salmonella-Induced Autophagy in Intestinal Epithelial Cells. International Journal of Molecular Sciences, 2014, 15, 12558-12572.	1.8	21
52	Role of host- and pathogen-associated lipids in directing the immune response in mycobacterial infections, with emphasis onMycobacterium aviumsubsp.paratuberculosis. Critical Reviews in Microbiology, 2014, 42, 1-13.	2.7	30
53	Reversible Lipid Accumulation and Associated Division Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages May Resemble Key Events during Latency and Reactivation of Tuberculosis. Infection and Immunity, 2014, 82, 476-490.	1.0	109
54	Exploitation of host lipids by bacteria. Current Opinion in Microbiology, 2014, 17, 38-45.	2.3	44
56	Statins Increase Rifampin Mycobactericidal Effect. Antimicrobial Agents and Chemotherapy, 2014, 58, 5766-5774.	1.4	85
57	Expression of genes associated with cholesterol and lipid metabolism identified as a novel pathway in the early pathogenesis of Mycobacterium avium subspecies paratuberculosis-infection in cattle. Veterinary Immunology and Immunopathology, 2014, 160, 147-157.	0.5	24

#	Article	IF	CITATIONS
58	Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography. PLoS ONE, 2015, 10, e0134644.	1.1	20
59	The Epigenetic Modifications of Genes Associated with Tuberculosis Susceptibility and Implications for Epi-Drugs. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 349-362.	0.4	5
60	Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. Journal of Controlled Release, 2015, 211, 94-104.	4.8	50
61	Targeting of the Hydrophobic Metabolome by Pathogens. Traffic, 2015, 16, 439-460.	1.3	12
62	The Making and Taking of Lipids. Advances in Microbial Physiology, 2016, 69, 51-155.	1.0	32
63	High-Density Lipoprotein Binds to <i>Mycobacterium avium</i> and Affects the Infection of THP-1 Macrophages. Journal of Lipids, 2016, 2016, 1-8.	1.9	3
64	Lipids in infectious diseases – The case of AIDS and tuberculosis. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1636-1647.	1.4	29
65	Dietary Intake of Antioxidant Vitamins and Carotenoids and Risk of Developing Active Tuberculosis in a Prospective Population-Based Cohort Study. American Journal of Epidemiology, 2017, 186, 491-500.	1.6	24
66	Survival of Mycobacterium tuberculosis and Mycobacterium bovis BCG in lysosomes inÂvivo. Microbes and Infection, 2017, 19, 515-526.	1.0	32
67	Potential effect of ezetimibe against <i>Mycobacterium tuberculosis</i> infection in type II diabetes. Respirology, 2017, 22, 559-566.	1.3	10
68	Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. Journal of Molecular Medicine, 2017, 95, 13-20.	1.7	143
69	Statin Decreases Helicobacter pylori Burden in Macrophages by Promoting Autophagy. Frontiers in Cellular and Infection Microbiology, 2016, 6, 203.	1.8	43
72	Increased survival and proliferation of the epidemic strain Mycobacterium abscessus subsp. massiliense CRM0019 in alveolar epithelial cells. BMC Microbiology, 2017, 17, 195.	1.3	4
73	Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Current Molecular Pharmacology, 2017, 10, 27-45.	0.7	10
74	THE AUTHORS REPLY. American Journal of Epidemiology, 2018, 187, 1572-1573.	1.6	0
75	Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiology, 2018, 13, 1301-1328.	1.0	35
76	Sheep and cattle exposed to Mycobacterium avium subspecies paratuberculosis exhibit altered total serum cholesterol profiles during the early stages of infection. Veterinary Immunology and Immunopathology, 2018, 202, 164-171.	0.5	4
77	Association between Lipoprotein Levels and Humoral Reactivity to Mycobacterium avium subsp. paratuberculosis in Multiple Sclerosis, Type 1 Diabetes Mellitus and Rheumatoid Arthritis. Microorganisms, 2019, 7, 423.	1.6	12

CITATION REPORT

#	Article	IF	CITATIONS
78	>Bacteria Exploit Autophagy For Their Own Benefit. Infection and Drug Resistance, 2019, Volume 12, 3205-3215.	1.1	10
79	Several Routes to the Same Destination: Inhibition of Phagosome-Lysosome Fusion by Mycobacterium tuberculosis. American Journal of the Medical Sciences, 2019, 357, 184-194.	0.4	32
80	Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLoS Pathogens, 2019, 15, e1007724.	2.1	32
81	Mycobacterium avium subspecies paratuberculosis is able to manipulate host lipid metabolism and accumulate cholesterol within macrophages. Microbial Pathogenesis, 2019, 130, 44-53.	1.3	39
82	Comprehensive Comparative Analysis of Cholesterol Catabolic Genes/Proteins in Mycobacterial Species. International Journal of Molecular Sciences, 2019, 20, 1032.	1.8	11
83	Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cellular Microbiology, 2019, 21, e12996.	1.1	27
84	Macrophage Signaling Pathways in Pulmonary Nontuberculous Mycobacteria Infections. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 144-151.	1.4	11
86	Hostâ€directed therapy to combat mycobacterial infections*. Immunological Reviews, 2021, 301, 62-83.	2.8	71
87	Integrated Analysis of IncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle. Frontiers in Genetics, 2021, 12, 668448.	1.1	6
88	EM Analysis of Phagosomes. Methods in Molecular Biology, 2008, 445, 261-285.	0.4	7
89	Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. Journal of Clinical Investigation, 2009, 119, 1626-1637.	3.9	138
90	Targeting the Human Macrophage with Combinations of Drugs and Inhibitors of Ca2+ and K+ Transport to Enhance the Killing of Intracellular Multi-Drug Resistant Mycobacterium tuberculosis (MDR-TB) - a Novel, Patentable Approach to Limit the Emergence of XDR-TB. Recent Patents on Anti-infective Drug Discovery, 2011, 6, 110-117.	0.5	13
92	Global Phylogeny of Mycobacterium avium and Identification of Mutation Hotspots During Niche Adaptation. Frontiers in Microbiology, 2022, 13, .	1.5	8
93	The effect of chemically synthetic mycobacterial mycolates on phospholipidome immunomodulation of murine macrophages. , 2022, , 185-205.		0
94	Mycobacterium avium subsp. paratuberculosis exploits miRNA expression to modulate lipid metabolism and macrophage polarisation pathways during infection. Scientific Reports, 2022, 12, .	1.6	2
95	Bovine Immunity and Vitamin D3: An Emerging Association in Johne's Disease. Microorganisms, 2022, 10, 1865.	1.6	0
96	Atorvastatin Potentially Reduces Mycobacterial Severity through Its Action on Lipoarabinomannan and Drug Permeability in Granulomas. Microbiology Spectrum, 2023, 11, .	1.2	4