CITATION REPORT List of articles citing

The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation

DOI: 10.1086/507120 Astrophysical Journal, 2006, 652, 71-84.

Source: https://exaly.com/paper-pdf/40276766/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
399	Accurate Realizations of the Ionized Gas in Galaxy Clusters: Calibrating Feedback. <i>Astrophysical Journal</i> , 2007 , 663, 139-149	4.7	29
398	The Nonlinear Matter Power Spectrum. Astrophysical Journal, 2007, 665, 887-898	4.7	39
397	What Aspects of Galaxy Environment Matter?. Astrophysical Journal, 2007, 664, 791-803	4.7	140
396	Evolution of Characteristic Quantities for Dark Matter Halo Density Profiles. <i>Astrophysical Journal</i> , 2007 , 657, 56-70	4.7	33
395	MaxBCG: A Red-Sequence Galaxy Cluster Finder. <i>Astrophysical Journal</i> , 2007 , 660, 221-238	4.7	192
394	Environmental Effects of Dark Matter Halos: The Clustering-Substructure Relation of Group-Size Halos. <i>Astrophysical Journal</i> , 2007 , 666, L5-L8	4.7	7
393	The Clustering of Massive Halos. <i>Astrophysical Journal</i> , 2007 , 656, 139-147	4.7	79
392	The Dependence of Dark Halo Clustering on Formation Epoch and Concentration Parameter. <i>Astrophysical Journal</i> , 2007 , 657, 664-668	4.7	133
391	The Dependence of the Mass Assembly History of Cold Dark Matter Halos on Environment. <i>Astrophysical Journal</i> , 2007 , 654, 53-65	4.7	89
390	On the Luminosity Dependence of the Galaxy Pairwise Velocity Dispersion. <i>Astrophysical Journal</i> , 2007 , 659, 877-889	4.7	50
389	The XMM-Newton Wide-Field Survey in the COSMOS Field: Statistical Properties of Clusters of Galaxies. 2007 , 172, 182-195		224
388	Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering. <i>Astrophysical Journal</i> , 2007 , 667, 760-779	4.7	394
387	The Mean and Scatter of the Velocity Dispersion Dptical Richness Relation for maxBCG Galaxy Clusters. <i>Astrophysical Journal</i> , 2007 , 669, 905-928	4.7	100
386	How well can (renormalized) perturbation theory predict dark matter clustering properties?. <i>Physical Review D</i> , 2007 , 75,	4.9	16
385	Photometric redshift requirements for self-calibration of cluster dark energy studies. <i>Physical Review D</i> , 2007 , 76,	4.9	43
384	Environmental dependence of cold dark matter halo formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 375, 633-639	4.3	86
383	The spin and shape of dark matter haloes in the Millennium simulation of a Leold dark matter universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 376, 215-232	4.3	345

(2008-2007)

382	An improved model for the formation times of dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 376, 977-983	4.3	67
381	Why does the clustering of haloes depend on their formation history?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 234-244	4.3	32
380	Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 378, 55-71	4.3	420
379	Strong clustering of underdense regions and the environmental dependence of clustering from Gaussian initial conditions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 378, 641-648	4.3	40
378	The age dependence of galaxy clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 378, 777-784	4.3	21
377	Statistical analysis of galaxy surveys - III. The non-linear clustering of red and blue galaxies in the 2dFGRS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 379, 1562-1570	4.3	23
376	The evolution of dark matter halo properties in clusters, filaments, sheets and voids. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 41-51	4.3	199
375	The statistics of ICDM halo concentrations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 381, 1450-1462	4.3	561
374	Halo assembly bias in the quasi-linear regime. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 382, 1853-1858	4.3	18
373	The detectability of baryonic acoustic oscillations in future galaxy surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 383, 755-776	4.3	145
372	Assembly bias in the clustering of dark matter haloes. 2007 , 377, L5-L9		249
371	The LXM relation of clusters of galaxies. 2008, 387, L28-L32		86
370	Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probeyear 5 cosmology. 2008 , 390, L64-L68		665
369	A non-parametric model for linking galaxy luminosity with halo/subhalo mass: are brightest cluster galaxies special?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 383, 355-368	4.3	30
368	The fossil phase in the life of a galaxy group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 386, 2345-2352	4.3	67
367	The redshift dependence of the structure of massive Eold dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 536-544	4.3	363
366	The assembly bias of dark matter haloes to higher orders. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 921-932	4.3	69
365	Environmental dependence in the ellipsoidal collapse model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 388, 638-658	4.3	75

364	On halo formation times and assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 389, 1419-1426	4.3	111
363	Constraints on the correlation between QSO luminosity and host halo mass from high-redshift quasar clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 390, 1179-1184	4.3	54
362	Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements. <i>Monthly Notices of the Royal Astronomical Society,</i> 2008 , 390, 1157-1169	4.3	40
361	Self-calibration of tomographic weak lensing for the physics of baryons to constrain dark energy. <i>Physical Review D</i> , 2008 , 77,	4.9	69
360	A Cosmological Framework for the Co-evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity. 2008 , 175, 356-389		958
359	Necessity of dark matter in modified Newtonian dynamics within galactic scales. 2008, 100, 031302		30
358	Environmental Effects on Real-Space and Redshift-Space Galaxy Clustering. <i>Astrophysical Journal</i> , 2008 , 686, 41-52	4.7	34
357	Close Pairs as Proxies for Galaxy Cluster Mergers. Astrophysical Journal, 2008, 683, 1-11	4.7	12
356	Void Statistics in Large Galaxy Redshift Surveys: Does Halo Occupation of Field Galaxies Depend on Environment?. <i>Astrophysical Journal</i> , 2008 , 686, 53-71	4.7	82
355	Passive Evolution of Galaxy Clustering. <i>Astrophysical Journal</i> , 2008 , 681, 998-1016	4.7	15
354	Comparison of Cluster Lensing Profiles with ©DM Predictions. <i>Astrophysical Journal</i> , 2008 , 685, L9-L12	4.7	125
353	Combining Lens Distortion and Depletion to Map the Mass Distribution of A1689. <i>Astrophysical Journal</i> , 2008 , 684, 177-203	4.7	118
352	Measuring the Mean and Scatter of the X-Ray Luminosity Optical Richness Relation for maxBCG Galaxy Clusters. <i>Astrophysical Journal</i> , 2008 , 675, 1106-1124	4.7	62
351	On The Halo Occupation of Dark Baryons. Astrophysical Journal, 2008, 679, 1218-1231	4.7	58
350	Modeling the Galaxy Three-Point Correlation Function. Astrophysical Journal, 2008, 672, 849-860	4.7	44
349	Transformation of Morphology and Luminosity Classes of the SDSS Galaxies. <i>Astrophysical Journal</i> , 2008 , 674, 784-796	4.7	60
348	Effects of Baryons and Dissipation on the Matter Power Spectrum. Astrophysical Journal, 2008, 672, 19-	-34 ₇	299
347	The Impact of Halo Properties, Energy Feedback, and Projection Effects on the Mass-SZ Flux Relation. <i>Astrophysical Journal</i> , 2008 , 686, 206-218	4.7	41

346 Structure Formation in the Expanding Universe: Dark and Bright Sides. **2008**, 64-91

345	Full calculation of clumpiness boost factors for antimatter cosmic rays in the light of \${Lambda}\$CDM\(\text{DN}\) N-body simulation results. <i>Astronomy and Astrophysics</i> , 2008 , 479, 427-452	5.1	110
344	Halo Assembly Bias in Hierarchical Structure Formation. <i>Astrophysical Journal</i> , 2008 , 687, 12-21	4.7	179
343	THE ASSEMBLY OF GALAXY CLUSTERS. Astrophysical Journal, 2009, 690, 1292-1302	4.7	111
342	STRUCTURE AND HISTORY OF DARK MATTER HALOS PROBED WITH GRAVITATIONAL LENSING. <i>Astrophysical Journal</i> , 2009 , 695, L125-L129	4.7	20
341	QUASAR CLUSTERING FROM SDSS DR5: DEPENDENCES ON PHYSICAL PROPERTIES. <i>Astrophysical Journal</i> , 2009 , 697, 1656-1673	4.7	171
340	MAPPING THE DARK MATTER FROM UV LIGHT AT HIGH REDSHIFT: AN EMPIRICAL APPROACH TO UNDERSTAND GALAXY STATISTICS. <i>Astrophysical Journal</i> , 2009 , 695, 368-390	4.7	78
339	GAS-RICH MERGERS IN LCDM: DISK SURVIVABILITY AND THE BARYONIC ASSEMBLY OF GALAXIES. Astrophysical Journal, 2009, 702, 307-317	4.7	94
338	GALAXY MERGERS AND DARK MATTER HALO MERGERS IN (IDM: MASS, REDSHIFT, AND MASS-RATIO DEPENDENCE. <i>Astrophysical Journal</i> , 2009 , 702, 1005-1015	4.7	97
337	CONNECTING REIONIZATION TO THE LOCAL UNIVERSE. Astrophysical Journal, 2009 , 703, L167-L171	4.7	52
336	SUPERMASSIVE BLACK HOLES IN THE HIERARCHICAL UNIVERSE: A GENERAL FRAMEWORK AND OBSERVATIONAL TESTS. <i>Astrophysical Journal</i> , 2009 , 704, 89-108	4.7	81
335	CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME. Astrophysical Journal, 2009 , 696, 620-635	4.7	383
334	THE SPIN AND ORIENTATION OF DARK MATTER HALOS WITHIN COSMIC FILAMENTS. <i>Astrophysical Journal</i> , 2009 , 706, 747-761	4.7	124
333	Cosmology: small-scale issues. 2009 , 11, 105029		37
332	Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS. <i>Journal of Cosmology and Astroparticle Physics</i> , 2009 , 2009, 020-020	6.4	216
331	Cosmology: Small Scale Issues. 2009 ,		4
330	Probing Structure and History of Dark Matter Halos with Gravitational Lensing Observations. 2009 , 194, 91-95		
329	A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 392, 1080-1091	4.3	141

328	Reconstructing the cosmic density field with the distribution of dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 398-414	4.3	57
327	The clustering of the first galaxy haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 624-632	4.3	22
326	Environmental dependence of dark matter halo growth - I. Halo merger rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 1825-1840	4.3	89
325	The clustering and host haloes of galaxy mergers at high redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 2182-2190	4.3	23
324	The influence of halo assembly on galaxies and galaxy groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 2229-2237	4.3	22
323	Evidence for merger-driven activity in the clustering of high-redshift quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 1607-1619	4.3	16
322	Halo stochasticity in global clustering analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 1610-1618	4.3	23
321	The distribution of ejected subhaloes and its implication for halo assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 2249-2256	4.3	50
320	Resolving cosmic structure formation with the Millennium-II Simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 1150-1164	4.3	670
319	Tidal effects and the environment dependence of halo assembly. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 1742-1756	4.3	115
318	Breaking halo occupation degeneracies with marked statistics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 2381-2384	4.3	26
317	The demography of supermassive black holes: Growing monsters at the heart of galaxies. 2009 , 53, 57	-77	79
316	DISSIPATION AND EXTRA LIGHT IN GALACTIC NUCLEI. IV. EVOLUTION IN THE SCALING RELATIONS OF SPHEROIDS. <i>Astrophysical Journal</i> , 2009 , 691, 1424-1458	4.7	203
315	THE VOID PHENOMENON EXPLAINED. Astrophysical Journal, 2009, 691, 633-639	4.7	72
314	COLLAPSE BARRIERS AND HALO ABUNDANCE: TESTING THE EXCURSION SET ANSATZ. Astrophysical Journal, 2009 , 696, 636-652	4.7	76
313	DARK MATTER HALO MERGERS: DEPENDENCE ON ENVIRONMENT. <i>Astrophysical Journal</i> , 2010 , 715, 342-354	4.7	9
312	ANNEALING A FOLLOW-UP PROGRAM: IMPROVEMENT OF THE DARK ENERGY FIGURE OF MERIT FOR OPTICAL GALAXY CLUSTER SURVEYS. <i>Astrophysical Journal</i> , 2010 , 713, 1207-1218	4.7	27
311	ASSEMBLY BIAS AND THE DYNAMICAL STRUCTURE OF DARK MATTER HALOS. <i>Astrophysical Journal</i> , 2010 , 708, 469-473	4.7	89

310	INTERPRETING THE CLUSTERING OF DISTANT RED GALAXIES. Astrophysical Journal, 2010, 709, 67-76	4.7	43
309	MERGERS IN LIDM: UNCERTAINTIES IN THEORETICAL PREDICTIONS AND INTERPRETATIONS OF THE MERGER RATE. <i>Astrophysical Journal</i> , 2010 , 724, 915-945	4.7	161
308	THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS. <i>Astrophysical Journal</i> , 2010 , 724, 878-886	4.7	578
307	THE IMPACT OF INHOMOGENEOUS REIONIZATION ON THE SATELLITE GALAXY POPULATION OF THE MILKY WAY. <i>Astrophysical Journal</i> , 2010 , 710, 408-420	4.7	88
306	Application of Weighted Correlation Functions to Semi-analytic Models and SDSS Data. 2010 , 34, 255-2	64	
305	The impact of environment on the dynamical structure of satellite systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 1113-1119	4.3	10
304	Ram pressure stripping in a galaxy formation model - I. A novel numerical approach. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 2008-2021	4.3	57
303	Local and global environmental effects on galaxies and active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 409, 936-952	4.3	22
302	The birth and growth of neutralino haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 1796-1803	4.3	47
301	Dark matter halo growth - II. Diffuse accretion and its environmental dependence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 2245-2256	4.3	76
300	On merger bias and the clustering of quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	7
299	Probing dark energy with future redshift surveys: a comparison of emission line and broad-band selection in the near-infrared. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	21
298	The central dark matter content of early-type galaxies: scaling relations and connections with star formation histories. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	29
297	Spin and structural halo properties at high redshift in a Itold dark matter universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 691-703	4.3	14
296	STELLAR POPULATIONS OF ELLIPTICAL GALAXIES IN THE LOCAL UNIVERSE. <i>Astrophysical Journal</i> , 2010 , 722, 491-519	4.7	46
295	Non-Gaussian halo assembly bias. <i>Journal of Cosmology and Astroparticle Physics</i> , 2010 , 2010, 013-013	6.4	27
294	WHAT SETS THE SIZES OF THE FAINTEST GALAXIES?. Astrophysical Journal, 2011 , 743, 179	4.7	35
293	SMALL-SCALE STRUCTURE IN THE SLOAN DIGITAL SKY SURVEY AND LDM: ISOLATED ~L*GALAXIES WITH BRIGHT SATELLITES. <i>Astrophysical Journal</i> , 2011 , 738, 102	4.7	103

292	COSMIC VOIDS: STRUCTURE, DYNAMICS AND GALAXIES. 2011 , 01, 41-66		54
291	A GRAND DESIGN FOR GALAXY CLUSTERS: CONNECTIONS AND PREDICTIONS. <i>Astrophysical Journal</i> , 2011 , 742, 19	4.7	18
290	RADIATIVE TRANSFER MODELING OF LyEMITTERS. II. NEW EFFECTS ON GALAXY CLUSTERING. <i>Astrophysical Journal</i> , 2011 , 726, 38	4.7	59
289	HOW COMMON ARE THE MAGELLANIC CLOUDS?. Astrophysical Journal, 2011, 733, 62	4.7	105
288	COUNTS-IN-CYLINDERS IN THE SLOAN DIGITAL SKY SURVEY WITH COMPARISONS TON-BODY SIMULATIONS. <i>Astrophysical Journal</i> , 2011 , 726, 1	4.7	17
287	THE EFFECTS OF HALO-TO-HALO VARIATION ON SUBSTRUCTURE LENSING. <i>Astrophysical Journal</i> , 2011 , 741, 117	4.7	22
286	The nature of assembly bias - I. Clues from a IDM cosmology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , no-no	4.3	12
285	The Dawn of the Red: star formation histories of group galaxies over the past 5 billion years. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 996-1012	4.3	121
284	The peaks formalism and the formation of cold dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 1961-1972	4.3	57
283	Internal properties and environments of dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 1973-1990	4.3	79
282	Linking haloes to galaxies: how many halo properties are needed?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 1405-1417	4.3	26
281	Properties of dark matter haloes and their correlations: the lesson from principal component analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 2388-2400	4.3	39
280	The correlation structure of dark matter halo properties. 2011 , 415, L69-L73		37
279	Dark Matter Halos: The Dynamical Basis of Effective Empirical Models. 2011 , 2011, 1-8		2
278	Dark Matter Halos from the Inside Out. 2011 , 2011, 1-17		7
277	Dark matter halo occupation: environment and clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 2766-2777	4.3	16
276	THE CORRELATED FORMATION HISTORIES OF MASSIVE GALAXIES AND THEIR DARK MATTER HALOS. <i>Astrophysical Journal Letters</i> , 2012 , 755, L5	7.9	31
275	COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS. <i>Astrophysical Journal</i> , 2012 , 745, 16	4.7	96

(2013-2012)

274	WHAT DO DARK MATTER HALO PROPERTIES TELL US ABOUT THEIR MASS ASSEMBLY HISTORIES?. <i>Astrophysical Journal</i> , 2012 , 757, 102	4.7	24	
273	Close galaxy pairs atz= 3: a challenge to UV luminosity abundance matching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 1647-1662	4.3	7	
272	CLASH: PRECISE NEW CONSTRAINTS ON THE MASS PROFILE OF THE GALAXY CLUSTER A2261. <i>Astrophysical Journal</i> , 2012 , 757, 22	4.7	89	
271	Dark matter and cosmic structure. 2012 , 524, 507-534		233	
270	Disentangling cosmic-ray and dark-matter inducedFrays in galaxy clusters. <i>Astronomy and Astrophysics</i> , 2012 , 547, A16	5.1	7	
269	Triumphs and tribulations of CDM, the double dark theory. 2012 , 524, 535-544		14	
268	Merger-induced scatter and bias in the cluster mass-Sunyaev-Zellovich effect scaling relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 1766-1779	4.3	36	
267	Disentangling galaxy environment and host halo mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 2133-2146	4.3	86	
266	Galaxy formation in semi-analytic models and cosmological hydrodynamic zoom simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 3200-3222	4.3	67	
265	Reconstructing the cosmic velocity and tidal fields with galaxy groups selected from the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 1809-1824	4.3	61	
264	The effects of halo alignment and shape on the clustering of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 2954-2960	4.3	21	
263	Brays from annihilating dark matter in galaxy clusters: stacking versus single source analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 477-489	4.3	24	
262	Galactic Archaeology: The dwarfs that survived and perished. 2013, 57, 100-121		70	
261	Multiplicity functions of dark matter haloes from fractional Brownian motion. 2013 , 343, 755-761		1	
2 60	THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE. <i>Astrophysical Journal</i> , 2013 , 771, 30	4.7	266	
259	Measures of galaxy environment []I. Rank-ordered mark correlations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 458-468	4.3	19	
258	Merging tree algorithm of growing voids in self-similar and CDM models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 3525-3546	4.3	5	
257	Assembly bias of dwarf-sized dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 3592-3599	4.3	10	

256	Cosmological constraints from a combination of galaxy clustering and lensing II . Theoretical framework. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 725-746	4.3	136
255	The dependence of galaxy properties on the large-scale tidal environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 3432-3444	4.3	25
254	DARK MATTER HALO PROFILES OF MASSIVE CLUSTERS: THEORY VERSUS OBSERVATIONS. Astrophysical Journal, 2013 , 766, 32	4.7	157
253	A FIRST LOOK AT CREATING MOCK CATALOGS WITH MACHINE LEARNING TECHNIQUES. Astrophysical Journal, 2013 , 772, 147	4.7	18
252	RHAPSODY. II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS. <i>Astrophysical Journal</i> , 2013 , 767, 23	4.7	34
251	STELLAR MASS-GAP AS A PROBE OF HALO ASSEMBLY HISTORY AND CONCENTRATION: YOUTH HIDDEN AMONG OLD FOSSILS. <i>Astrophysical Journal</i> , 2013 , 777, 154	4.7	22
250	Modelling colour-dependent galaxy clustering in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 2286-2300	4.3	30
249	Groups of two galaxies in SDSS: implications of colours on star formation quenching time-scales. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 635-649	4.3	10
248	CANDELS OBSERVATIONS OF THE ENVIRONMENTAL DEPENDENCE OF THE COLOR-MASS-MORPHOLOGY RELATION ATz= 1.6. <i>Astrophysical Journal</i> , 2013 , 770, 58	4.7	52
247	The MultiDark Database: Release of the Bolshoi and MultiDark cosmological simulations. 2013 , 334, 69	1-708	121
247246	The MultiDark Database: Release of the Bolshoi and MultiDark cosmological simulations. 2013 , 334, 69 RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS. <i>Astrophysical Journal</i> , 2013 , 763, 70	1-708 4·7	121 41
	RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL		
246	RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS. <i>Astrophysical Journal</i> , 2013 , 763, 70 THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1. <i>Astrophysical Journal</i> , 2014 ,	4.7	41
246 245	RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS. <i>Astrophysical Journal</i> , 2013 , 763, 70 THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 . <i>Astrophysical Journal</i> , 2014 , 792, 103 DARK-MATTER HALO ASSEMBLY BIAS: ENVIRONMENTAL DEPENDENCE IN THE NON-MARKOVIAN	4·7 4·7	41
246 245 244	RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS. <i>Astrophysical Journal</i> , 2013 , 763, 70 THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 . <i>Astrophysical Journal</i> , 2014 , 792, 103 DARK-MATTER HALO ASSEMBLY BIAS: ENVIRONMENTAL DEPENDENCE IN THE NON-MARKOVIAN EXCURSION-SET THEORY. <i>Astrophysical Journal</i> , 2014 , 782, 44 The large-scale distribution of cool gas around luminous red galaxies. <i>Monthly Notices of the Royal</i>	4·7 4·7 4·7	41 22 4
246 245 244 243	RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS. <i>Astrophysical Journal</i> , 2013 , 763, 70 THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1. <i>Astrophysical Journal</i> , 2014 , 792, 103 DARK-MATTER HALO ASSEMBLY BIAS: ENVIRONMENTAL DEPENDENCE IN THE NON-MARKOVIAN EXCURSION-SET THEORY. <i>Astrophysical Journal</i> , 2014 , 782, 44 The large-scale distribution of cool gas around luminous red galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 3139-3155 The impact of baryonic processes on the two-point correlation functions of galaxies, subhaloes and	4·7 4·7 4·3	41 22 4
246 245 244 243	RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS. <i>Astrophysical Journal</i> , 2013 , 763, 70 THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1. <i>Astrophysical Journal</i> , 2014 , 792, 103 DARK-MATTER HALO ASSEMBLY BIAS: ENVIRONMENTAL DEPENDENCE IN THE NON-MARKOVIAN EXCURSION-SET THEORY. <i>Astrophysical Journal</i> , 2014 , 782, 44 The large-scale distribution of cool gas around luminous red galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 3139-3155 The impact of baryonic processes on the two-point correlation functions of galaxies, subhaloes and matter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2997-3010 Galaxy assembly bias: a significant source of systematic error in the galaxyfialo relationship.	4·7 4·7 4·3 4·3	41 22 4 63 68

238	zCOSMOS 20k: satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z ~ 0.7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 717-738	4.3	70
237	Constraining the mass-concentration relation through weak lensing peak function. <i>Journal of Cosmology and Astroparticle Physics</i> , 2014 , 2014, 063-063	6.4	3
236	COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS: MARGINALIZING OVER THE PHYSICS OF GALAXY FORMATION. <i>Astrophysical Journal</i> , 2014 , 783, 118	4.7	23
235	EFFECTS OF LARGE-SCALE ENVIRONMENT ON THE ASSEMBLY HISTORY OF CENTRAL GALAXIES. Astrophysical Journal, 2014 , 794, 74	4.7	23
234	Resolving the problem of galaxy clustering on small scales: any new physics needed?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3385-3395	4.3	9
233	The Local Void: for or against ICDM?. Monthly Notices of the Royal Astronomical Society, 2014, 441, 933-9	3 85	10
232	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling of the luminosity and colour dependence in the Data Release 10. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 2398-2413	4.3	66
231	Are the halo occupation predictions consistent with large-scale galaxy clustering?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 1930-1941	4.3	20
230	Massive black hole seeds born via direct gas collapse in galaxy mergers: their properties, statistics and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 1576-1592	4.3	44
229	The Dwarfs Beyond: Relating Stellar and Halo Mass in Dwarf Galaxies to $z \sim 1$. 2014 , 10, 150-153		
228	THE SPLASHBACK RADIUS AS A PHYSICAL HALO BOUNDARY AND THE GROWTH OF HALO MASS. <i>Astrophysical Journal</i> , 2015 , 810, 36	4.7	169
227	DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS. <i>Astrophysical Journal</i> , 2015 , 812, 104	4.7	17
226	THE DEPENDENCE OF SUBHALO ABUNDANCE ON HALO CONCENTRATION. <i>Astrophysical Journal</i> , 2015 , 810, 21	4.7	70
225	Predicting galaxy star formation rates via the co-evolution of galaxies and haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 651-662	4.3	40
224	Assembly bias & redshift®pace distortions: impact on cluster dynamics tests of general relativity. 2015 , 451, L45-L49		15
223	Beyond halo mass: galactic conformity as a smoking gun of central galaxy assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1958-1969	4.3	76
222	Correlating galaxy colour and halo concentration: a tunable halo model of galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 3030-3048	4.3	49
221	An algorithm to build mock galaxy catalogues using MICE simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 646-670	4.3	84

220	DWARF GALAXY ANNIHILATION AND DECAY EMISSION PROFILES FOR DARK MATTER EXPERIMENTS. <i>Astrophysical Journal</i> , 2015 , 801, 74	4.7	139
219	Giant disc galaxies: where environment trumps mass in galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 1767-1778	4.3	16
218	FLOW PATTERNS AROUND DARK MATTER HALOS: THE LINK BETWEEN HALO DYNAMICAL PROPERTIES AND LARGE-SCALE TIDAL FIELD. <i>Astrophysical Journal</i> , 2015 , 807, 37	4.7	28
217	Inverse Hubble flows in molecular clouds. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 3725-3730	4.3	3
216	Mapping stellar content to dark matter haloes using galaxy clustering and galaxygalaxy lensing in the SDSS DR7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1161-1191	4.3	117
215	The Tully B isher and massBize relations from halo abundance matching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 322-343	4.3	48
214	ALIGNMENTS OF DARK MATTER HALOS WITH LARGE-SCALE TIDAL FIELDS: MASS AND REDSHIFT DEPENDENCE. <i>Astrophysical Journal</i> , 2016 , 825, 49	4.7	9
213	Tidal stripping as a test of satellite quenching in redMaPPer clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 1907-1915	4.3	7
212	Intrinsic alignments in redMaPPer clusters II. Central galaxy alignments and angular segregation of satellites. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 222-244	4.3	26
211	Introducing decorated HODs: modelling assembly bias in the galaxyfialo connection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 2552-2570	4.3	89
210	Modelling galaxy clustering: halo occupation distribution versus subhalo matching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 3040-3058	4.3	61
209	Mapping stellar content to dark matter haloes III. Halo mass is the main driver of galaxy quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 4360-4383	4.3	86
208	Is main-sequence galaxy star formation controlled by halo mass accretion?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2592-2606	4.3	64
207	Halo and subhalo demographics with Planck cosmological parameters: Bolshoi P lanck and MultiDark P lanck simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 893-916	4.3	128
206	Squeezing down the Theory Space for Cosmic Inflation. 2016 , 9,		
205	Separate universe consistency relation and calibration of halo bias. <i>Physical Review D</i> , 2016 , 93,	4.9	36
204	Towards a self-consistent halo model for the nonlinear large-scale structure. <i>Physical Review D</i> , 2016 , 93,	4.9	32
203	Evidence of Halo Assembly Bias in Massive Clusters. 2016 , 116, 041301		84

202	RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE. <i>Astrophysical Journal</i> , 2016 , 832, 7	4.7	51	
201	THE CONNECTION BETWEEN THE HOST HALO AND THE SATELLITE GALAXIES OF THE MILKY WAY. <i>Astrophysical Journal</i> , 2016 , 830, 59	4.7	18	
200	Constraining the massEichness relationship of redMaPPer clusters with angular clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 205-221	4.3	25	
199	On the physical origin of galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2135-2145	4.3	41	
198	Weak lensing by galaxy troughs in DES Science Verification data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 3367-3380	4.3	56	
197	Subhalo abundance matching and assembly bias in the EAGLE simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3100-3118	4.3	93	
196	Accurate and efficient halo-based galaxy clustering modelling with simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 4015-4024	4.3	36	
195	Disentangling redshift-space distortions and non-linear bias using the 2D power spectrum. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 1076-1088	4.3	13	
194	Connecting massive galaxies to dark matter haloes in BOSS II. Is galaxy colour a stochastic process in high-mass haloes?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 1457-1475	4.3	56	
193	The scale-dependence of halo assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 1510-1516	4.3	40	
192	STATISTICAL DECOUPLING OF A LAGRANGIAN FLUID PARCEL IN NEWTONIAN COSMOLOGY. Astrophysical Journal, 2016 , 820, 30	4.7	2	
191	Modelling galactic conformity with the colourfialo age relation in the Illustris simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 185-198	4.3	31	
190	Environmental dependence of the H i mass function in the ALFALFA 70% catalogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 4393-4405	4.3	25	
189	The formation of massive, quiescent galaxies at cosmic noon. 2016 , 458, L14-L18		61	
188	Precision measurement of the local bias of dark matter halos. <i>Journal of Cosmology and Astroparticle Physics</i> , 2016 , 2016, 018-018	6.4	99	
187	ON DETECTING HALO ASSEMBLY BIAS WITH GALAXY POPULATIONS. <i>Astrophysical Journal</i> , 2016 , 819, 119	4.7	78	
186	Log-normal Star Formation Histories in Simulated and Observed Galaxies. <i>Astrophysical Journal</i> , 2017 , 839, 26	4.7	39	
185	Lensing is low: cosmology, galaxy formation or new physics?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 3024-3047	4.3	101	

184	Halo assembly bias from Separate Universe simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 2984-2999	4.3	18
183	Using galaxy pairs to investigate the three-point correlation function in the squeezed limit. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 577-590	4.3	9
182	THE CONCENTRATION DEPENDENCE OF THE GALAXYHALO CONNECTION: MODELING ASSEMBLY BIAS WITH ABUNDANCE MATCHING. <i>Astrophysical Journal</i> , 2017 , 834, 37	4.7	75
181	Cross-correlation of galaxies and galaxy clusters in the Sloan Digital Sky Survey and the importance of non-Poissonian shot noise. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 2566-2577	4.3	16
180	Weak lensing measurement of the massfichness relation of SDSS redMaPPer clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 3103-3118	4.3	100
179	Analytical halo model of galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1298-1313	4.3	11
178	Assembly bias and splashback in galaxy clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 4767-4781	4.3	58
177	Testing galaxy quenching theories with scatter in the stellar-to-halo mass relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 3533-3541	4.3	12
176	Constraining the H i⊞alo Mass Relation from Galaxy Clustering. <i>Astrophysical Journal</i> , 2017 , 846, 61	4.7	35
175	The Hydrangea simulations: galaxy formation in and around massive clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 4186-4208	4.3	114
174	Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias. <i>Astrophysical Journal</i> , 2017 , 836, 54	4.7	4
173	Halo histories versus Galaxy properties at $z \not\models 0 \ I$. The quenching of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2504-2516	4.3	26
172	The immitigable nature of assembly bias: the impact of halo definition on assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 1088-1105	4.3	30
171	Statistics of dark matter substructure III. Halo-to-halo variance. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 657-674	4.3	37
170	Galaxy and Mass Assembly (GAMA): halo formation times and halo assembly bias on the cosmic web. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 3720-3741	4.3	32
169	Properties of dark matter haloes as a function of local environment density. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 3834-3858	4.3	34
168	ZOMG []. How the cosmic web inhibits halo growth and generates assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 594-611	4.3	52
167	The Overdense Environments of WISE-Selected, Ultra-Luminous, High-Redshift AGN in the Submillimeter. 2017 , 4,		

166	A KiDS weak lensing analysis of assembly bias in GAMA galaxy groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 3251-3265	4.3	31
165	PRIMUS: ONE- AND TWO-HALO GALACTIC CONFORMITY AT 0.2 . <i>Astrophysical Journal</i> , 2017 , 834, 87	4.7	25
164	Large-scale assembly bias of dark matter halos. <i>Journal of Cosmology and Astroparticle Physics</i> , 2017 , 2017, 059-059	6.4	32
163	ZOMG II. Does the halo assembly history influence central galaxies and gas accretion?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 1809-1823	4.3	18
162	On the level of cluster assembly bias in SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 551-560	4.3	65
161	The frequency of very young galaxies in the local Universe: I. A test for galaxy formation and cosmological models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1427-1450	4.3	12
160	Spatial clustering of dark matter haloes: secondary bias, neighbour bias, and the influence of massive neighbours on halo properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4411-4423	4.3	43
159	First results from the IllustrisTNG simulations: matter and galaxy clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 676-698	4.3	545
158	Must Star-forming Galaxies Rapidly Get Denser before They Quench?. <i>Astrophysical Journal</i> , 2018 , 858, 40	4.7	11
			_
157	Large-scale galaxy bias. 2018 , 733, 1-193		300
157 156	Large-scale galaxy bias. 2018, 733, 1-193 ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias. Astrophysical Journal, 2018, 852, 31	4.7	300
	ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias.	4.7	
156	ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias. Astrophysical Journal, 2018, 852, 31 Exploring the squeezed three-point galaxy correlation function with generalized halo occupation		37
156 155	ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias. <i>Astrophysical Journal</i> , 2018 , 852, 31 Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 2019-2033 Halo occupation distribution (HOD) modelling of high redshift galaxies using the BlueTides	4.3	37
156 155 154	ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias. <i>Astrophysical Journal</i> , 2018 , 852, 31 Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 2019-2033 Halo occupation distribution (HOD) modelling of high redshift galaxies using the BlueTides simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 3177-3192 Halo histories versus galaxy properties at z\(\Pm\D\) II: large-scale galactic conformity. <i>Monthly Notices of</i>	4.3	37 26 9
156 155 154 153	ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias. Astrophysical Journal, 2018, 852, 31 Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2019-2033 Halo occupation distribution (HOD) modelling of high redshift galaxies using the BlueTides simulation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3177-3192 Halo histories versus galaxy properties at zulo II: large-scale galactic conformity. Monthly Notices of the Royal Astronomical Society, 2018, 477, 935-945 The impact of assembly bias on the halo occupation in hydrodynamical simulations. Monthly Notices	4·3 4·3	37 26 9 28
156 155 154 153	ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias. Astrophysical Journal, 2018, 852, 31 Exploring the squeezed three-point galaxy correlation function with generalized halo occupation distribution models. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2019-2033 Halo occupation distribution (HOD) modelling of high redshift galaxies using the BlueTides simulation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3177-3192 Halo histories versus galaxy properties at zl\[Distriction II: large-scale galactic conformity. Monthly Notices of the Royal Astronomical Society, 2018, 477, 935-945 The impact of assembly bias on the halo occupation in hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3978-3992 Weak-lensing peaks in simulated light cones: investigating the coupling between dark matter and	4·3 4·3 4·3	37 26 9 28 46

148	Small- and large-scale galactic conformity in SDSS DR7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 2031-2045	4.3	15
147	How does the cosmic web impact assembly bias?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 4877-4906	4.3	44
146	Group quenching and galactic conformity at low redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 2684-2704	4.3	12
145	Some assembly required: assembly bias in massive dark matter halos. <i>Journal of Cosmology and Astroparticle Physics</i> , 2018 , 2018, 012-012	6.4	14
144	The effects of assembly bias on the inference of matter clustering from galaxygalaxy lensing and galaxy clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 4348-4361	4.3	18
143	Ingredients for 21 cm Intensity Mapping. Astrophysical Journal, 2018, 866, 135	4.7	88
142	The conditional colourthagnitude distribution II. A comprehensive model of the colourthagnitude II along the Royal Astronomical Society, 2018 , 481, 5470-5500	4.3	16
141	Halo histories versus galaxy properties at $z=0$ [III. The properties of star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2018 , 478, 4487-4499	4.3	7
140	Dependence on the environment of the abundance function of light-cone simulation dark matter haloes. <i>Astronomy and Astrophysics</i> , 2018 , 616, A137	5.1	3
139	The dependence of galaxy clustering on tidal environment in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 5442-5452	4.3	21
138	Halo assembly bias and the tidal anisotropy of the local halo environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 3631-3647	4.3	49
137	Galaxy@alaxy Weak-lensing Measurements from SDSS. II. Host Halo Properties of Galaxy Groups. <i>Astrophysical Journal</i> , 2018 , 862, 4	4.7	15
136	Probing galaxy assembly bias with LRG weak lensing observations. 2018 , 477, L1-L5		15
135	Beyond assembly bias: exploring secondary halo biases for cluster-size haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 5143-5157	4.3	62
134	The impact of galaxy formation on satellite kinematics and redshift-space distortions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 2530-2544	4.3	17
133	COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 5437-5458	4.3	68
132	Galactic conformity measured in semi-analytic models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 1177-1189	4.3	12
131	Does the galaxyfialo connection vary with environment?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 741-758	4.3	17

130	The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos. <i>Astrophysical Journal</i> , 2018 , 853, 84	4.7	64
129	The Connection Between Galaxies and Their Dark Matter Halos. 2018 , 56, 435-487		289
128	Gravitational lensing detection of an extremely dense environment around a galaxy cluster. 2018 , 2, 744-750		10
127	Cosmic web type dependence of halo clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 3941-3948	4.3	3
126	Mapping stellar content to dark matter haloes IIII. Environmental dependence and conformity of galaxy colours. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 1637-1653	4.3	24
125	Interpreting the cosmic far-infrared background anisotropies using a gas regulator model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 3974-3995	4.3	3
124	Probing Galaxy assembly bias in BOSS galaxies using void probabilities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 470-479	4.3	20
123	Global analysis of luminosity- and colour-dependent galaxy clustering in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 1220-1234	4.3	3
122	New perspectives on the BOSS small-scale lensing discrepancy for the Planck IDM cosmology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 5771-5787	4.3	20
121	Revealing the galaxyfialo connection in IllustrisTNG. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5693-5711	4.3	27
12 0	Cosmological Evidence Modelling: a new simulation-based approach to constrain cosmology on non-linear scales. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 1870-1878	4.3	12
119	On the measurements of assembly bias and splashback radius using optically selected galaxy clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 4945-4955	4.3	18
118	The Fundamental Relation between Halo Mass and Galaxy Group Properties. <i>Astrophysical Journal</i> , 2019 , 881, 74	4.7	8
117	Clustering constraints on the relative sizes of central and satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 1805-1819	4.3	7
116	On the Assembly Bias of Cool Core Clusters Traced by HENebulae. <i>Astrophysical Journal</i> , 2019 , 882, 166	4.7	O
115	The Pseudo-evolution of Galaxy-cluster Masses and Its Connection to Mass Density Profile. <i>Astrophysical Journal</i> , 2019 , 883, 36	4.7	
114	Extensions to the halo occupation distribution model for more accurate clustering predictions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3532-3544	4.3	13
113	Basilisk: Bayesian hierarchical inference of the galaxyfialo connection using satellite kinematics []. Method and validation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 4984-5013	4.3	4

112	How to optimally constrain galaxy assembly bias: supplement projected correlation functions with count-in-cells statistics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 3541-3567	4.3	15
111	Cosmic web anisotropy is the primary indicator of halo assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 2977-2996	4.3	34
110	The distribution of dark matter in galaxies. 2019 , 27, 1		68
109	The effect of assembly bias on redshift-space distortions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 582-595	4.3	12
108	Lighting Up Dark Matter Haloes. 2019 , 7, 56		2
107	Updated results on the galaxyfialo connection from satellite kinematics in SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3112-3129	4.3	22
106	The dependence of halo bias on age, concentration, and spin. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 1570-1579	4.3	17
105	The Aemulus Project. III. Emulation of the Galaxy Correlation Function. <i>Astrophysical Journal</i> , 2019 , 874, 95	4.7	48
104	The secondary spin bias of dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1156-1166	4.3	20
103	The Next Generation Virgo Cluster Survey. XXIII. Fundamentals of Nuclear Star Clusters over Seven Decades in Galaxy Mass. <i>Astrophysical Journal</i> , 2019 , 878, 18	4.7	50
102	SDSS-IV MaNGA: signatures of halo assembly in kinematically misaligned galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 172-188	4.3	8
101	How Are Galaxies Assigned to Halos? Searching for Assembly Bias in the SDSS Galaxy Clustering. <i>Astrophysical Journal</i> , 2019 , 872, 115	4.7	19
100	The Aemulus Project. I. Numerical Simulations for Precision Cosmology. <i>Astrophysical Journal</i> , 2019 , 875, 69	4.7	52
99	The Galaxy⊞alo Connection in Low-mass Halos. <i>Astrophysical Journal Letters</i> , 2019 , 871, L21	7.9	9
98	The multidimensional dependence of halo bias in the eye of a machine: a tale of halo structure, assembly, and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 1900-1919	4.3	26
97	Constraints on assembly bias from galaxy clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 1196-1209	4.3	37
96	Sensitivity of dark matter haloes to their accretion histories. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 1906-1915	4.3	11
95	The evolution of assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 1133-114	8 4.3	32

(2020-2019)

94	How Do Galaxies Trace a Large-scale Structure? A Case Study around a Massive Protocluster at Z = 3.13. <i>Astrophysical Journal</i> , 2019 , 879, 9	4.7	16
93	Screened fifth forces in parity-breaking correlation functions. <i>Physical Review D</i> , 2019 , 100,	4.9	3
92	Emulating galaxy clustering and galaxygalaxy lensing into the deeply non-linear regime: methodology, information, and forecasts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 989-1006	4.3	29
91	The manifestation of secondary bias on the galaxy population from IllustrisTNG300. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 1182-1196	4.3	15
90	Voronoi volume function: a new probe of cosmology and galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 3233-3251	4.3	14
89	Validating a minimal galaxy bias method for cosmological parameter inference using HSC-SDSS mock catalogs. <i>Physical Review D</i> , 2020 , 102,	4.9	8
88	Cosmological information content in redshift-space power spectrum of SDSS-like galaxies in the quasinonlinear regime up to k=0.3 h MpcI. <i>Physical Review D</i> , 2020 , 101,	4.9	12
87	Can assembly bias explain the lensing amplitude of the BOSS CMASS sample in a Planck cosmology?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5551-5564	4.3	10
86	Illuminating dark matter halo density profiles without subhaloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 2426-2444	4.3	4
85	Limitations to the B asic[HOD model and beyond. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5506-5519	4.3	32
84	The Tessellation-Level-Tree: characterizing the nested hierarchy of density peaks and their spatial distribution in cosmological N-body simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5693-5712	4.3	3
83	The GOGREEN survey: the environmental dependence of the star-forming galaxy main sequence at 1.0 < z < 1.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5987-6000	4.3	28
82	Concentrations of dark haloes emerge from their merger histories. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 4450-4464	4.3	16
81	The three causes of low-mass assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 4763-4782	4.3	23
80	Direct Measurement of the H i-halo Mass Relation through Stacking. <i>Astrophysical Journal</i> , 2020 , 894, 92	4.7	13
79	The impact of projection effects on cluster observables: stacked lensing and projected clustering. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4468-4487	4.3	17
78	LARgE Survey [II. The dark matter haloes and the progenitors and descendants of ultramassive passive galaxies at cosmic noon. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 804-818	4.3	3
77	Cosmology with stacked cluster weak lensing and cluster galaxy cross-correlations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 3061-3081	4.3	17

76	corrfunc 🗈 suite of blazing fast correlation functions on the CPU. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 3022-3041	4.3	43
75	Testing the accuracy of halo occupation distribution modelling using hydrodynamic simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5771-5788	4.3	16
74	Clustering with JWST: Constraining galaxy host halo masses, satellite quenching efficiencies, and merger rates at z 1=1410. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 1178-1196	4.3	9
73	Evidence for galaxy assembly bias in BOSS CMASS redshift-space galaxy correlation function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 3582-3598	4.3	16
72	Dissecting and modelling galaxy assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 3242-3263	4.3	19
71	Mock halo catalogues: assigning unresolved halo properties using correlations with local halo environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 2053-2064	4.3	5
70	How to empirically model star formation in dark matter haloes []. Inferences about central galaxies from numerical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 4865-4884	4.3	3
69	On the kinetic SunyaevZeldovich effect as an observational probe for halo spin bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 4568-4582	4.3	3
68	Accelerated Galaxy Growth and Environmental Quenching in a Protocluster at $z=3.24$. Astrophysical Journal, 2021 , 911, 46	4.7	3
67	Constraining M I with the bispectrum. Part II. The information content of the galaxy bispectrum monopole. <i>Journal of Cosmology and Astroparticle Physics</i> , 2021 , 2021, 029	6.4	18
66	A flexible modelling of galaxy assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 5205-5220	4.3	10
65	Responses of Halo Occupation Distributions: a new ingredient in the halo model & the impact on galaxy bias. <i>Journal of Cosmology and Astroparticle Physics</i> , 2021 , 2021, 069	6.4	7
64	The morphology of star-forming gas and its alignment with galaxies and dark matter haloes in the EAGLE simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 65-87	4.3	2
63	The galaxy sizefialo mass scaling relations and clustering properties of central and satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 3192-3205	4.3	4
62	The cosmology dependence of galaxy clustering and lensing from a hybrid N-bodyperturbation theory model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 1422-1440	4.3	21
61	Rosella: a mock catalogue from the P-Millennium simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 325-338	4.3	3
60	Linear bias and halo occupation distribution of emission-line galaxies from Nancy Grace Roman Space Telescope. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 2784-2800	4.3	1
59	Probing the galaxyfialo connection with total satellite luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 5370-5388	4.3	5

(2007-2021)

58	The Last Journey. II. SMACCBubhalo Mass-loss Analysis Using Core Catalogs. <i>Astrophysical Journal</i> , 2021 , 913, 109	4.7	1
57	HInet: Generating Neutral Hydrogen from Dark Matter with Neural Networks. <i>Astrophysical Journal</i> , 2021 , 916, 42	4.7	3
56	The assembly bias of emission-line galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 3155-3168	4.3	1
55	Evaluating the origins of the secondary bias based on the correlation of halo properties with the linear density field. <i>Astronomy and Astrophysics</i> ,	5.1	О
54	The cosmological dependence of halo and galaxy assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 3412-3422	4.3	2
53	On the influence of halo mass accretion history on galaxy properties and assembly bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 940-949	4.3	7
52	Cluster assembly times as a cosmological test. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 100-117	4.3	
51	Mass accretion rates and multiscale halo environment in cold and warm dark matter cosmologies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 852-867	4.3	1
50	Detecting Neutrino Mass by Combining Matter Clustering, Halos, and Voids. <i>Astrophysical Journal</i> , 2021 , 919, 24	4.7	8
49	Fundamental Properties of the Dark and the Luminous Matter from the Low Surface Brightness Discs. <i>Universe</i> , 2021 , 7, 344	2.5	O
48	Hefty enhancement of cosmological constraints from the DES Y1 data using a hybrid effective field theory approach to galaxy bias. <i>Journal of Cosmology and Astroparticle Physics</i> , 2021 , 2021, 020	6.4	8
47	Predicting halo occupation and galaxy assembly bias with machine learning. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 4879-4899	4.3	3
46	Connections between galaxy properties and halo formation time in the cosmic web. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 5320-5330	4.3	3
45	Void Galaxies Follow a Distinct Evolutionary Path in the Environmental COntext Catalog. <i>Astrophysical Journal</i> , 2021 , 906, 97	4.7	2
44	Building merger trees from cosmologicalN-body simulations. <i>Astronomy and Astrophysics</i> , 2009 , 506, 647-660	5.1	156
43	Gamma rays from annihilations at the galactic center in a physical dark matter distribution. <i>Astronomy and Astrophysics</i> , 2010 , 510, A90	5.1	2
42	The Co-Formation of Spheroids and Quasars Traced in their Clustering. <i>Astrophysical Journal</i> , 2007 , 662, 110-130	4.7	85
41	Isolating Triggered Star Formation. Astrophysical Journal, 2007 , 671, 1538-1549	4.7	70

40	Merger Histories of Galaxy Halos and Implications for Disk Survival. <i>Astrophysical Journal</i> , 2008 , 683, 597-610	4.7	187
39	The Clustering of SDSS Galaxy Groups: Mass and Color Dependence. <i>Astrophysical Journal</i> , 2008 , 687, 919-935	4.7	55
38	The Effects of Halo Assembly Bias on Self-Calibration in Galaxy Cluster Surveys. <i>Astrophysical Journal</i> , 2008 , 688, 729-741	4.7	27
37	Detection of anisotropic galaxy assembly bias in BOSS DR12. <i>Journal of Cosmology and Astroparticle Physics</i> , 2020 , 2020, 058-058	6.4	19
36	Separate Universe calibration of the dependence of halo bias on cosmic web anisotropy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 4418-4431	4.3	7
35	The physical origins of low-mass spin bias. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 2777-2785	4.3	7
34	DETECTION OF THE SPLASHBACK RADIUS AND HALO ASSEMBLY BIAS OF MASSIVE GALAXY CLUSTERS. <i>Astrophysical Journal</i> , 2016 , 825, 39	4.7	103
33	Main-sequence Scatter is Real: The Joint Dependence of Galaxy Clustering on Star Formation and Stellar Mass. <i>Astronomical Journal</i> , 2021 , 161, 49	4.9	5
32	PRIMUS: Clustering of Star-forming and Quiescent Central Galaxies at 0.2 Astrophysical Journal, 2019 , 884, 76	4.7	4
31	On the Prospect of Using the Maximum Circular Velocity of Halos to Encapsulate Assembly Bias in the GalaxyHalo Connection. <i>Astrophysical Journal</i> , 2019 , 887, 17	4.7	13
30	A Hybrid Deep Learning Approach to Cosmological Constraints from Galaxy Redshift Surveys. <i>Astrophysical Journal</i> , 2020 , 889, 151	4.7	14
29	Relating the Structure of Dark Matter Halos to Their Assembly and Environment. <i>Astrophysical Journal</i> , 2020 , 899, 81	4.7	11
28	The BinaryHost Connection: Astrophysics of Gravitational-Wave Binaries from Host Galaxy Properties. <i>Astrophysical Journal</i> , 2020 , 905, 21	4.7	7
27	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	3
26	Assembly bias in quadratic bias parameters of dark matter halos from forward modeling. <i>Journal of Cosmology and Astroparticle Physics</i> , 2021 , 2021, 063	6.4	3
25	Observational measures of halo properties beyond mass. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
24	Towards a universal model for the density profiles of dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	О
23	Spatial and Kinematic Clustering of Stars in the Galactic Disk. <i>Astrophysical Journal</i> , 2021 , 922, 49	4.7	1

(2023-2022)

22	Exploiting non-linear scales in galaxygalaxy lensing and galaxy clustering: A forecast for the dark energy survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 5376-5391	4.3	1
21	Toward Accurate Modeling of Galaxy Clustering on Small Scales: Constraining the Galaxy-halo Connection with Optimal Statistics. <i>Astrophysical Journal</i> , 2022 , 926, 15	4.7	1
20	On the origin of red spirals: does assembly bias play a role?. <i>Journal of Cosmology and Astroparticle Physics</i> , 2022 , 2022, 024	6.4	O
19	Beyond mass: Detecting secondary halo properties with galaxy-galaxy lensing. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
18	Full-shape cosmology analysis of the SDSS-III BOSS galaxy power spectrum using an emulator-based halo model: A 5% determination of B . <i>Physical Review D</i> , 2022 , 105,	4.9	2
17	Priors on red galaxy stochasticity from hybrid effective field theory. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	2
16	SDSS-IV MaNGA: How the Stellar Populations of Passive Central Galaxies Depend on Stellar and Halo Mass. <i>Astrophysical Journal</i> , 2022 , 933, 88	4.7	О
15	The halo model with beyond-linear halo bias: unbiasing cosmological constraints from galaxygalaxy lensing and clustering. 2022 , 515, 2612-2623		1
14	The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the growth rate of structure from the small-scale clustering of the luminous red galaxy sample.		2
13	A pair of early- and late-forming galaxy cluster samples: A novel way of studying halo assembly bias assisted by a constrained simulation.		Ο
12	Evidence of galaxy assembly bias in SDSS DR7 galaxy samples from count statistics. 2022 , 516, 4003-40)24	O
11	The phenomenology of the external field effect in cold dark matter models. 2022 , 517, 130-139		O
10	Elucidating galaxy assembly bias in SDSS. 2022 , 65,		O
9	Properties beyond mass for unresolved haloes across redshift and cosmology using correlations with local halo environment. 2022 , 516, 5849-5862		Ο
8	Cosmological inference from an emulator based halo model. I. Validation tests with HSC and SDSS mock catalogs. 2022 , 106,		1
7	Consistent lensing and clustering in a low-S8 Universe with BOSS, DES Year 3, HSC Year 1 and KiDS-1000.		2
6	Modeling Redshift-space Clustering with Abundance Matching. 2022 , 940, 13		О
5	Assembly bias in the local PNG halo bias and its implication for f NL constraints. 2023, 2023, 023		Ο

4	Astraeus VII: the environmental-dependent assembly of galaxies in the Epoch of Reionization. 2023 , 519, 4564-4580	O
3	The quasi-adiabatic relaxation of haloes in the IllustrisTNG and EAGLE cosmological simulations.	О
2	Constraints on S8 from a full-scale and full-shape analysis of redshift-space clustering and galaxygalaxy lensing in BOSS. 2023 , 520, 5373-5393	О
1	SimBIG: mock challenge for a forward modeling approach to galaxy clustering. 2023 , 2023, 010	O