Prediction of velocity profiles and longitudinal dispersi

Limnology and Oceanography 51, 218-228 DOI: 10.4319/lo.2006.51.1.0218

Citation Report

#	Article	IF	CITATIONS
1	Prediction of near-field shear dispersion in an emergent canopy with heterogeneous morphology. Environmental Fluid Mechanics, 2006, 6, 477-488.	1.6	70
2	Stratified flow interactions with a suspended canopy. Environmental Fluid Mechanics, 2006, 6, 519-539.	1.6	49
3	A DELICATE BALANCE: ECOHYDROLOGICAL FEEDBACKS GOVERNING LANDSCAPE MORPHOLOGY IN A LOTIC PEATLAND. Ecological Monographs, 2007, 77, 591-614.	5.4	109
4	Model and laboratory study of dispersion in flows with submerged vegetation. Water Resources Research, 2007, 43, .	4.2	158
5	Retention time and dispersion associated with submerged aquatic canopies. Water Resources Research, 2007, 43, .	4.2	217
6	Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation. Water Resources Research, 2007, 43, .	4.2	109
7	Mixing in deep zones within constructed treatment wetlands. Ecological Engineering, 2007, 29, 209-220.	3.6	21
8	Interaction between flow, transport and vegetation spatial structure. Environmental Fluid Mechanics, 2008, 8, 423-439.	1.6	208
9	Flow and transport in channels with submerged vegetation. Acta Geophysica, 2008, 56, 753-777.	2.0	257
10	A vortexâ€based model of velocity and shear stress in a partially vegetated shallow channel. Water Resources Research, 2008, 44, .	4.2	160
11	Is the critical Shields stress for incipient sediment motion dependent on channelâ€bed slope?. Journal of Geophysical Research, 2008, 113, .	3.3	364
12	Overland flow velocity and roughness properties in peatlands. Water Resources Research, 2008, 44, .	4.2	90
13	Turbulenceâ€induced forces in a freshwater macrophyte canopy. Water Resources Research, 2008, 44, .	4.2	24
14	Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades. Water Resources Research, 2008, 44, .	4.2	46
15	The Impact of Changes in Water Level and Human Development on Forage Fish Assemblages in Great Lakes Coastal Marshes. Journal of Great Lakes Research, 2008, 34, 615-630.	1.9	7
16	Forecasting effects of sea-level rise and windstorms on coastal and inland ecosystems. Frontiers in Ecology and the Environment, 2008, 6, 255-263.	4.0	65
17	Toward developing a hydrodynamic flow and inundation model of the lower Pearl River. , 2009, , .		7
18	Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecological Applications, 2009, 19, 1758-1773.	3.8	123

#	Article	IF	CITATIONS
19	Flow Structure of Partly Vegetated Open-Channel Flows with Eelgrass. Journal of Hydrodynamics, 2009, 21, 301-307.	3.2	39
20	Modeling the hydraulic effect of transverse deep zones on the performance of short-circuiting constructed treatment wetlands. Ecological Engineering, 2009, 35, 754-768.	3.6	25
21	Predicting bed shear stress and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems. Ecological Engineering, 2009, 35, 1773-1785.	3.6	38
22	The Hydrodynamics of Chemical Cues Among Aquatic Organisms. Annual Review of Fluid Mechanics, 2009, 41, 73-90.	25.0	114
23	Tracer studies of sheet flow in the Florida Everglades. Geophysical Research Letters, 2009, 36, .	4.0	14
24	Hydroecological factors governing surface water flow on a lowâ€gradient floodplain. Water Resources Research, 2009, 45, .	4.2	66
25	Flow and mixing dynamics in a patterned wetland: Kilometerâ€scale tracer releases in the Everglades. Water Resources Research, 2009, 45, .	4.2	21
26	Using multiple scales to estimate the projected frontal surface area of complex three-dimensional shapes such as flexible freshwater macrophytes at different flow conditions. Limnology and Oceanography: Methods, 2010, 8, 474-483.	2.0	5
27	Waterborne Chemical Communication: Stimulus Dispersal Dynamics and Orientation Strategies in Crustaceans. , 2010, , 63-83.		11
28	Two-zone model for stream and river ecosystems. Hydrobiologia, 2010, 638, 85-107.	2.0	7
29	Spatially distributed modeling of surface water flow dynamics in the Everglades ridge and slough landscape. Journal of Hydrology, 2010, 390, 1-12.	5.4	23
30	An ecological risk assessment model for a pulsed contaminant emission into a wetland channel flow. Ecological Modelling, 2010, 221, 2927-2937.	2.5	69
31	Fine sediment retention as affected by annual shoot collapse: <i>Sparganium erectum</i> as an ecosystem engineer in a lowland stream. River Research and Applications, 2010, 26, 1153-1169.	1.7	55
32	How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research, 2010, 115, .	3.3	230
33	Floating particle trapping and diffusion in vegetated open channel flow. Water Resources Research, 2010, 46, .	4.2	34
34	Effects of submerged tropical macrophytes on flow resistance and velocity profiles in open channels. International Journal of River Basin Management, 2011, 9, 195-203.	2.7	4
35	Flow Over and Through Biota. , 2011, , 267-288.		22
36	Spatial distribution of deposition within a patch of vegetation. Water Resources Research, 2011, 47, .	4.2	114

#	Article	IF	Citations
37	Experimental Analysis of Colloid Capture by a Cylindrical Collector in Laminar Overland Flow. Environmental Science & Technology, 2011, 45, 7777-7784.	10.0	12
38	Depth-Averaged Drag Coefficient for Modeling Flow through Suspended Canopies. Journal of Hydraulic Engineering, 2011, 137, 234-247.	1.5	86
39	Natural Processes in Delta Restoration: Application to the Mississippi Delta. Annual Review of Marine Science, 2011, 3, 67-91.	11.6	246
40	Modeling of hydroecological feedbacks predicts distinct classes of landscape pattern, process, and restoration potential in shallow aquatic ecosystems. Geomorphology, 2011, 126, 279-296.	2.6	75
41	Ecological degradation and hydraulic dispersion of contaminant in wetland. Ecological Modelling, 2011, 222, 293-300.	2.5	75
42	Environmental dispersion in a two-zone wetland. Ecological Modelling, 2011, 222, 456-474.	2.5	53
43	Flow regimes in gaps within stands of flexible vegetation: laboratory flume simulations. Environmental Fluid Mechanics, 2011, 11, 289-306.	1.6	67
44	Environmental dispersion in wetland flow. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 206-215.	3.3	72
45	Environmental dispersivity in free-water-surface-effect dominated wetland: multi-scale analysis. Frontiers of Environmental Science and Engineering in China, 2011, 5, 597-603.	0.8	27
46	Multi-scale analysis for environmental dispersion in wetland flow. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 3168-3178.	3.3	72
47	Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics, 2012, 50, .	23.0	511
48	Transport of Bicomponent Contaminant in Free-Surface Wetland Flow. Journal of Hydrodynamics, 2012, 24, 925-929.	3.2	12
49	Flow and Transport in Regions with Aquatic Vegetation. Annual Review of Fluid Mechanics, 2012, 44, 123-142.	25.0	721
50	Numerical modeling of drag for flow through vegetated domains and porous structures. Advances in Water Resources, 2012, 39, 44-59.	3.8	25
51	Flow distribution and environmental dispersivity in a tidal wetland channel of rectangular cross-section. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 4192-4209.	3.3	28
52	Effects of intertidal seagrass habitat fragmentation on turbulent diffusion and retention time of solutes. Marine Pollution Bulletin, 2012, 64, 2471-2479.	5.0	17
53	Impact of vegetation dieâ€off on spatial flow patterns over a tidal marsh. Geophysical Research Letters, 2012, 39, .	4.0	76
54	Diffusion of floating particles in flow through emergent vegetation: Further experimental investigation. Water Resources Research, 2012, 48, .	4.2	20

#	Article	IF	CITATIONS
55	Velocity distribution for open channel flows with suspended vegetation. Advances in Water Resources, 2012, 49, 56-61.	3.8	62
56	Environmental dispersion in a tidal flow through a depth-dominated wetland. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 5007-5025.	3.3	52
57	Dispersion in Submerged Vegetated Flow with Coherent Vortices. Journal of Hydrologic Engineering - ASCE, 2012, 17, 1-9.	1.9	7
58	Environmental dispersion in a two-layer wetland: Analytical solution by method of concentration moments. International Journal of Engineering Science, 2012, 51, 272-291.	5.0	52
59	Effect of wind on contaminant dispersion in a wetland flow dominated by free-surface effect. Ecological Modelling, 2012, 237-238, 101-108.	2.5	26
60	Assessment of mineral concentration impacts from pumped stormwater on an Everglades Wetland, Florida, USA – Using a spatially-explicit model. Journal of Hydrology, 2012, 452-453, 25-39.	5.4	16
61	BENDING OF SUBMERGED WOODY RIPARIAN VEGETATION AS A FUNCTION OF HYDRAULIC FLOW CONDITIONS. River Research and Applications, 2013, 29, 195-205.	1.7	28
62	Analytical solution for vertical profile of streamwise velocity in open-channel flow with submerged vegetation. Environmental Fluid Mechanics, 2013, 13, 389-402.	1.6	15
63	The direct and indirect measurement of boundary stress and drag on individual and complex arrays of elements. Experiments in Fluids, 2013, 54, 1.	2.4	51
64	From the blade scale to the reach scale: A characterization of aquatic vegetative drag. Advances in Water Resources, 2013, 51, 305-316.	3.8	162
65	12.5 Riparian Vegetation and the Fluvial Environment: A Biogeographic Perspective. , 2013, , 53-74.		29
67	Environmental dispersion in a three-layer wetland flow with free-surface. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 3382-3406.	3.3	49
68	The influence of vegetation on turbulence and bed load transport. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1585-1601.	2.8	139
69	Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: A flume study on three intertidal plant species. Geomorphology, 2013, 180-181, 57-65.	2.6	108
70	Field observations of waveâ€induced streaming through a submerged seagrass (<i>Posidonia) Tj ETQq0 0 0 rgBT</i>	/Qverlock	10 Tf 50 18 48
71	Hydrologic and Vegetative Removal of Cryptosporidium parvum, Ciardia lamblia, and Toxoplasma gondii Surrogate Microspheres in Coastal Wetlands. Applied and Environmental Microbiology, 2013, 79, 1859-1865.	3.1	20
72	Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2585-2599.	2.8	108

	A fluid-mechanics based classification scheme for surface transient storage in riverine environments:		
73	quantitatively separating surface from hyporheic transient storage. Hydrology and Earth System	4.9	39
	Sciences, 2013, 17, 2747-2779.		

#	Article	IF	CITATIONS
74	Analytical Modeling for Environmental Dispersion in Wetland. Developments in Environmental Modelling, 2014, 26, 251-274.	0.3	9
75	Ecogeomorphic feedbacks and flood loss of riparian tree seedlings in meandering channel experiments. Water Resources Research, 2014, 50, 9366-9384.	4.2	50
76	Experimental Investigation of Wave Attenuation through Model and Live Vegetation. Journal of Waterway, Port, Coastal and Ocean Engineering, 2014, 140, .	1.2	87
77	Three-Dimensional Simulation of Tidal Flow in Vegetated Marsh Area. , 2014, , .		1
78	Flow and solute transport through a periodic array of vertical cylinders in shallow water. Journal of Fluid Mechanics, 2014, 756, 903-934.	3.4	9
79	Longitudinal spread of bicomponent contaminant in wetland flow dominated by bank-wall effect. Journal of Hydrology, 2014, 509, 179-187.	5.4	40
80	A contaminant transport model for wetlands accounting for distinct residence time bimodality. Journal of Hydrology, 2014, 515, 237-246.	5.4	25
81	Transport of a volatile contaminant in a free-surface wetland flow. Frontiers of Earth Science, 2014, 8, 115-122.	2.1	2
82	Indicators for environmental dispersion in a three-layer wetland: Extension of Taylor's classical analysis. Ecological Indicators, 2014, 47, 254-269.	6.3	20
83	Relative Significance of Microtopography and Vegetation as Controls on Surface Water Flow on a Low-Gradient Floodplain. Wetlands, 2014, 34, 101-115.	1.5	18
84	Determining drag coefficients and their application in modelling of turbulent flow with submerged vegetation. Advances in Water Resources, 2014, 69, 134-145.	3.8	49
85	Indicators for contaminant transport in wetlands. Ecological Indicators, 2014, 47, 239-253.	6.3	11
86	Flow and scour constraints on uprooting of pioneer woody seedlings. Water Resources Research, 2015, 51, 9190-9206.	4.2	54
87	Flume experiments on wind induced flow in static water bodies in the presence of protruding vegetation. Advances in Water Resources, 2015, 76, 11-28.	3.8	27
88	When do plants modify fluvial processes? Plantâ€hydraulic interactions under variable flow and sediment supply rates. Journal of Geophysical Research F: Earth Surface, 2015, 120, 325-345.	2.8	64
89	Effects of vegetation on flow and sediment transport: comparative analyses and validation of predicting models. Earth Surface Processes and Landforms, 2015, 40, 157-176.	2.5	152
90	Two-scale analysis for environmental dispersion in a two-layer wetland. Physics and Chemistry of the Earth, 2015, 89-90, 91-95.	2.9	2
91	Landscape-scale flow patterns over a vegetated tidal marsh and an unvegetated tidal flat: Implications for the landform properties of the intertidal floodplain. Geomorphology, 2015, 231, 40-52.	2.6	40

#	Article	IF	CITATIONS
92	Low flow regime measurements with an automatic pulse tracer velocimeter (APTV) in heterogeneous aquatic environments. Flow Measurement and Instrumentation, 2015, 42, 98-112.	2.0	4
93	Three-Dimensional Hydrodynamic Simulation of Tidal Flow through a Vegetated Marsh Area. Journal of Hydraulic Engineering, 2015, 141, .	1.5	6
94	Hydraulic roughness due to submerged, emergent and flexible natural vegetation in a semiarid alluvial channel. Journal of Arid Environments, 2015, 114, 1-7.	2.4	13
95	The importance of accurately representing submerged vegetation morphology in the numerical prediction of complex river flow. Earth Surface Processes and Landforms, 2016, 41, 567-576.	2.5	34
96	Longitudinal dispersion in open channel flow with suspended canopies. Water Science and Technology, 2016, 74, 722-728.	2.5	17
97	Chirality-dependent flutter of Typha blades in wind. Scientific Reports, 2016, 6, 28907.	3.3	10
98	Scour patterns around isolated vegetation elements. Advances in Water Resources, 2016, 97, 251-265.	3.8	45
99	Efficient three-dimensional reconstruction of aquatic vegetation geometry: Estimating morphological parameters influencing hydrodynamic drag. Estuarine, Coastal and Shelf Science, 2016, 178, 77-85.	2.1	19
100	Plant stiffness and biomass as drivers for drag forces under extreme wave loading: A flume study on mimics. Coastal Engineering, 2016, 117, 70-78.	4.0	54
101	Influence of particle size and density, and channel velocity on the deposition patterns around a circular patch of model emergent vegetation. Water Resources Research, 2016, 52, 1044-1055.	4.2	23
103	Windâ€driven water motions in wetlands with emergent vegetation. Water Resources Research, 2016, 52, 2571-2581.	4.2	7
104	Critical Length of Contaminant Cloud in a Three-Layer Wetland: Multi-scale Analysis for Environmental Dispersivity. Wetlands, 2016, 36, 193-203.	1.5	10
105	The impact of plant morphology on flow structure: comparative analysis of two types of submerged flexible macrophyte. Hydrological Sciences Journal, 2016, 61, 2226-2236.	2.6	6
106	Contaminant transport in a three-zone wetland: Dispersion and ecological degradation. Journal of Hydrology, 2016, 534, 341-351.	5.4	24
107	Feasibility of the Porous Zone Approach to Modelling Vegetation in CFD. GeoPlanet: Earth and Planetary Sciences, 2016, , 63-75.	0.2	9
108	Sediment transport under the presence and absence of emergent vegetation in a natural alluvial channel from Brazil. International Journal of Sediment Research, 2016, 31, 360-367.	3.5	9
109	Spatially Distributed Hydrodynamic Modeling of Phosphorus Transport and Transformation in a Cell-Network Treatment Wetland. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	1.9	4
110	Transverse and longitudinal mixing in real emergent vegetation at low velocities. Water Resources Research, 2017, 53, 961-978.	4.2	33

#	Article	IF	CITATIONS
111	Confirming a plantâ€mediated "Biological Tide―in an aridland constructed treatment wetland. Ecosphere, 2017, 8, e01756.	2.2	9
112	What Controls the Transition from Confined to Unconfined Flow? Analysis of Hydraulics in a Coastal River Delta. Journal of Hydraulic Engineering, 2017, 143, .	1.5	30
113	Numerical modeling of open channel flow with suspended canopy. Advances in Water Resources, 2017, 105, 132-143.	3.8	29
114	A numerical study of the effect of wetland shape and inlet-outlet configuration on wetland performance. Ecological Engineering, 2017, 105, 170-179.	3.6	16
115	The effect of pneumatophore density on turbulence: A field study in a Sonneratia-dominated mangrove forest, Vietnam. Continental Shelf Research, 2017, 147, 114-127.	1.8	69
116	Opposing effects of aquatic vegetation on hydraulic functioning and transport of dissolved and organic particulate matter in a lowland river: A field experiment. Ecological Engineering, 2017, 105, 221-230.	3.6	17
117	Concentration distribution of environmental dispersion in a wetland flow: Extended solution. Journal of Hydrology, 2017, 549, 340-350.	5.4	28
118	How Important Is Connectivity for Surface Water Fluxes? A Generalized Expression for Flow Through Heterogeneous Landscapes. Geophysical Research Letters, 2017, 44, 10,349.	4.0	14
119	Assessing methods for estimating roughness coefficient in a vegetated marsh area using Delft3D. Journal of Hydroinformatics, 2017, 19, 766-783.	2.4	6
120	Interactive Effects of Physical and Biogeochemical Feedback Processes in a Large Submersed Plant Bed. Estuaries and Coasts, 2017, 40, 1626-1641.	2.2	14
121	Vertical mixing in coastal canopies. Limnology and Oceanography, 2017, 62, 26-42.	3.1	18
122	A comparative study of longitudinal dispersion models in rigid vegetated compound meandering channels. Journal of Environmental Management, 2018, 217, 78-89.	7.8	21
123	Channelâ€Island Connectivity Affects Water Exposure Time Distributions in a Coastal River Delta. Water Resources Research, 2018, 54, 2212-2232.	4.2	43
124	Evaluation of a random displacement model for predicting longitudinal dispersion in flow through suspended canopies. Ecological Engineering, 2018, 116, 133-142.	3.6	16
125	A simplified method for estimating the longitudinal dispersion coefficient in ecological channels with vegetation. Ecological Indicators, 2018, 92, 91-98.	6.3	26
126	Vortex Structure and Sediment Deposition in the Wake behind a Finite Patch of Model Submerged Vegetation. Journal of Hydraulic Engineering, 2018, 144, .	1.5	64
127	Inorganic carbon and oxygen dynamics in a marshâ€dominated estuary. Limnology and Oceanography, 2018, 63, 47-71.	3.1	29
128	The importance of riparian plant orientation in river flow: implications for flow structures and drag. Journal of Ecohydraulics, 2018, 3, 108-129.	3.1	1

#	Article	IF	CITATIONS
129	Comparing the Cohesive Effects of Mud and Vegetation on Delta Evolution. Geophysical Research Letters, 2018, 45, 10,437.	4.0	21
130	A Turbulenceâ€Based Bed‣oad Transport Model for Bare and Vegetated Channels. Geophysical Research Letters, 2018, 45, 10,428.	4.0	60
131	Transient dispersion of an initial point pollutant concentration in wetland flows. Environmental Science and Pollution Research, 2018, 25, 34414-34425.	5.3	11
132	Longitudinal Dispersion Subjected to Rigid Vegetation in a Channel. KSCE Journal of Civil Engineering, 2018, 22, 5242-5252.	1.9	4
133	Longitudinal dispersion coefficient in compound open channel with rigid vegetation on flood plain. E3S Web of Conferences, 2018, 40, 02058.	0.5	1
134	The trouble with shear stress. Geomorphology, 2018, 323, 41-50.	2.6	45
135	Modeling the odor-landscape resulting from the pumping behavior of bivalve clams in the presence of predators. Journal of Theoretical Biology, 2018, 453, 40-47.	1.7	2
136	Distribution of gyrotactic micro-organisms inÂcomplex three-dimensional flows. PartÂ1.ÂHorizontal shear flow past a vertical circular cylinder. Journal of Fluid Mechanics, 2018, 852, 358-397.	3.4	27
137	Hydrodynamic behaviour of European black poplar (<i>Populus nigra</i> L.) under coppice management along Mediterranean river ecosystems. River Research and Applications, 2018, 34, 586-594.	1.7	14
138	Environmental transport in wetland channel with rectangular cross-section: Analytical solution by Chatwin's asymptotic expansion. Journal of Hydrology, 2018, 565, 224-236.	5.4	11
139	Modeling of Interactions Between Floating Particles and Emergent Stems in Slow Open Channel Flow. Water Resources Research, 2018, 54, 7061-7075.	4.2	7
140	Delta size and plant patchiness as controls on channel network organization in experimental deltas. Earth Surface Processes and Landforms, 2019, 44, 259-272.	2.5	12
141	Flow and longitudinal dispersion in channel with partly rigid floodplain vegetation. Water Management, 2019, 172, 229-240.	1.2	8
142	The effects of flow rate variation and vegetation ageing on the longitudinal mixing and residence time distribution (RTD) in a full-scale constructed wetland. Ecological Engineering, 2019, 138, 248-263.	3.6	8
143	Canopy-Mediated Hydrodynamics Contributes to Greater Allelic Richness in Seeds Produced Higher in Meadows of the Coastal Eelgrass Zostera marina. Frontiers in Marine Science, 2019, 6, .	2.5	12
144	Impact of Vegetationâ€Generated Turbulence on the Critical, Nearâ€Bed, Waveâ€Velocity for Sediment Resuspension. Water Resources Research, 2019, 55, 5904-5917.	4.2	24
145	Quantification of Vegetation Arrangement and Its Effects on Longitudinal Dispersion in a Channel. Water Resources Research, 2019, 55, 4488-4498.	4.2	16
146	Analytical model for predicting the longitudinal profiles of velocities in a channel with a model vegetation patch. Journal of Hydrology, 2019, 576, 561-574.	5.4	29

#	Article	IF	CITATIONS
147	Effect of bed absorption on contaminant transport in wetland channel with rectangular cross-section. Journal of Hydrology, 2019, 578, 124078.	5.4	14
148	Solute dispersion in wetland flows with bed absorption. Journal of Hydrology, 2019, 579, 124149.	5.4	21
149	Investigating the turbulent flow characteristics in an open channel with staggered vegetation patches. River Research and Applications, 2019, 35, 966-978.	1.7	20
150	Bed-load through emergent vegetation. Advances in Water Resources, 2019, 129, 250-259.	3.8	21
151	A stem spacing-based non-dimensional model for predicting longitudinal dispersion in low-density emergent vegetation. Acta Geophysica, 2019, 67, 943-949.	2.0	13
152	Theoretical and numerical analysis of vertical distribution of active particles in a free-surface wetland flow. Journal of Hydrology, 2019, 573, 449-455.	5.4	14
153	A CFDâ€Based Mixing Model for Vegetated Flows. Water Resources Research, 2019, 55, 2322-2347.	4.2	26
154	The Interplay between Flow Field, Suspended Sediment Concentration, and Net Deposition in a Channel with Flexible Bank Vegetation. Water (Switzerland), 2019, 11, 2250.	2.7	14
155	Can environmental flows moderate riparian invasions? The influence of seedling morphology and density on scour losses in experimental floods. Freshwater Biology, 2019, 64, 474-484.	2.4	7
156	Indicators for contaminant transport in a periodical wind-driven wetland flow. Ecological Indicators, 2019, 105, 544-552.	6.3	4
157	Simplification bias: lessons from laboratory and field experiments on flow through aquatic vegetation. Earth Surface Processes and Landforms, 2020, 45, 121-143.	2.5	47
158	Contaminant transport in wetland flows: Different fate between the upper and bottom layers. Journal of Cleaner Production, 2020, 246, 119040.	9.3	9
159	Influence of Floods, Tides, and Vegetation on Sediment Retention in Wax Lake Delta, Louisiana, USA. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005316.	2.8	33
160	Velocity distribution and turbulence structure of open channel flow with floating-leaved vegetation. Journal of Hydrology, 2020, 590, 125298.	5.4	8
161	Measured and Predicted Turbulent Kinetic Energy in Flow Through Emergent Vegetation With Real Plant Morphology. Water Resources Research, 2020, 56, e2020WR027892.	4.2	29
162	Longitudinal dispersal properties of floating seeds within open-channel flows covered by emergent vegetation. Advances in Water Resources, 2020, 144, 103705.	3.8	5
163	Modeling the longitudinal profiles of streamwise velocity in an open channel with a model patch of vegetation. Environmental Fluid Mechanics, 2020, 20, 1441-1462.	1.6	16
164	Near-Wake Flow Structure of a Suspended Cylindrical Canopy Patch. Water (Switzerland), 2020, 12, 84.	2.7	2

#	Article	IF	CITATIONS
165	On the genesis of different regimes in canopy flows: a numerical investigation. Journal of Fluid Mechanics, 2020, 891, .	3.4	19
166	A novel approach for longitudinal dispersion coefficient estimation via tri-variate archimedean copulas. Journal of Hydrology, 2020, 584, 124662.	5.4	8
167	Flow Resistance and Energy Dissipation in Supercritical Airâ€Water Flows Down Vegetated Chutes. Water Resources Research, 2020, 56, e2019WR026686.	4.2	15
168	Analyzing solute transport in modeled wetland flows under surface wind and bed absorption conditions. International Journal of Heat and Mass Transfer, 2020, 150, 119319.	4.8	15
169	The influence of aquatic vegetation on flow structure and sediment deposition: A field study in Dongting Lake, China. Journal of Hydrology, 2020, 584, 124644.	5.4	26
170	An open channel with an emergent vegetation patch: Predicting the longitudinal profiles of velocities based on exponential decay. Journal of Hydrology, 2020, 582, 124429.	5.4	34
171	Mean flow and turbulence structure of open channel flow with suspended vegetation. Journal of Hydrodynamics, 2020, 32, 314-325.	3.2	5
172	Turbulence and Bed Load Transport in Channels With Randomly Distributed Emergent Patches of Model Vegetation. Geophysical Research Letters, 2020, 47, e2020GL087055.	4.0	34
173	Transport model of active particles in a tidal wetland flow. Journal of Hydrology, 2021, 593, 125812.	5.4	11
174	Impact of Stem Size on Turbulence and Sediment Resuspension Under Unidirectional Flow. Water Resources Research, 2021, 57, e2020WR028620.	4.2	28
175	Field study on flow structures within aquatic vegetation under combined currents and smallâ€scale waves. Hydrological Processes, 2021, 35, e14121.	2.6	6
176	Understanding Marsh Dynamics. , 2021, , 300-334.		0
177	The role of increasing riverbank vegetation density on flow dynamics across an asymmetrical channel. Environmental Fluid Mechanics, 2021, 21, 643-666.	1.6	16
178	Salt Marsh Ecogeomorphic Processes and Dynamics. , 2021, , 178-224.		1
180	Feedback between vegetation, flow, and deposition: A study of artificial vegetation patch development. Journal of Hydrology, 2021, 598, 126232.	5.4	16
181	Influence of Invasive Submerged Aquatic Vegetation (<i>E. densa</i>) on Currents and Sediment Transport in a Freshwater Tidal System. Water Resources Research, 2021, 57, e2020WR028789.	4.2	4
182	Suspended Sediment Concentration Profile in a <i>Typha Latifolia</i> Canopy. Water Resources Research, 2021, 57, e2021WR029902.	4.2	11
183	Ecohydraulics of Surrogate Salt Marshes for Coastal Protection: Wave–Vegetation Interaction and Related Hydrodynamics on Vegetated Foreshores at Sea Dikes. Journal of Waterway, Port, Coastal and Ocean Engineering, 2021, 147, .	1.2	9

#	Article	IF	Citations
184	Effects of Vegetation Density and Wetland Aspect Ratio Variation on Hydraulic Efficiency of Wetlands. GeoPlanet: Earth and Planetary Sciences, 2016, , 101-113.	0.2	4
185	Longitudinal dispersion coefficient for mixing in open channel flows with submerged vegetation. Ecological Engineering, 2020, 145, 105721.	3.6	5
186	Evaluation of a Simple Hydraulic Resistance Model Using Flow Measurements Collected in Vegetated Waterways. Open Journal of Modern Hydrology, 2013, 03, 28-37.	1.0	4
188	Wave damping by flexible marsh plants influenced by current. Physical Review Fluids, 2021, 6, .	2.5	13
189	Assessment of the nutrient removal effectiveness of free water surface wetlands with different configurations. , 2016, , .		0
190	Numerical Study of Sedimentation in Uniformly Vegetated Wetlands. GeoPlanet: Earth and Planetary Sciences, 2018, , 167-179.	0.2	0
191	Biotic and abiotic factors control the geomorphic characteristics of channel networks in salt marshes. Limnology and Oceanography, 0, , .	3.1	2
192	Analysis of environmental dispersion in wetland flows with floating vegetation islands. Journal of Hydrology, 2022, 606, 127359.	5.4	6
193	Flow characteristics in partially vegetated channel with homogeneous and heterogeneous layouts. Environmental Science and Pollution Research, 2022, 29, 38186-38197.	5.3	9
194	How Much Marsh Restoration Is Enough to Deliver Wave Attenuation Coastal Protection Benefits?. Frontiers in Marine Science, 2022, 8, .	2.5	2
195	The Impact of Cylinder Diameter Distribution on Longitudinal and Transverse Dispersion Within Random Cylinder Arrays. Water Resources Research, 2022, 58, .	4.2	3
196	Riparian Vegetation and the Fluvial Environment: A Biogeographic Perspective. , 2013, , 298-319.		1
197	Longitudinal dispersion affected by willow patches of low areal coverage. Hydrological Processes, 2022, 36, .	2.6	2
198	Experimental Study of Wave Attenuation Across an Artificial Salt Marsh. Frontiers in Built Environment, 0, 8, .	2.3	1
199	Hydrodynamic Limitations to Mangrove Seedling Retention in Subtropical Estuaries. Sustainability, 2022, 14, 8605.	3.2	3
200	Analytical model for predicting the lateral profiles of velocities through a partially vegetated channel. Journal of Hydrology, 2022, 612, 128137.	5.4	7
201	Analysis of contaminant dispersion in open channel with two streambank-absorption boundaries. Environmental Science and Pollution Research, 2023, 30, 654-665.	5.3	1
202	Velocity, Turbulence, and Sediment Deposition in a Channel Partially Filled With a <i>Phragmites australis</i> Canopy. Water Resources Research, 2022, 58, .	4.2	14

#	Article	IF	CITATIONS
203	An exponential-based model for predicting velocity fields in partially vegetated channels. Journal of Hydraulic Research/De Recherches Hydrauliques, 2022, 60, 864-879.	1.7	6
204	An investigation into remote sensing techniques and field observations to model hydraulic roughness from riparian vegetation. River Research and Applications, 2022, 38, 1730-1745.	1.7	4
205	Multiâ€scale analysis for environmental dispersion in wetland flow under the effect of wind. Ecohydrology, 0, , .	2.4	0
206	Investigation of the flow structures through heterogeneous vegetation of varying patch configurations in an open channel. Environmental Fluid Mechanics, 2022, 22, 1333-1354.	1.6	5
207	Fluid–structure interaction in a flexible vegetation canopy in an open channel. Journal of Fluid Mechanics, 2022, 951, .	3.4	7
208	Field Measurement and Prediction of Drag in a Planted <i>Rhizophora</i> Mangrove Forest. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	4
209	Evaluation of a random displacement model for scalar mixing in ecological channels partially covered with vegetation. Environmental Science and Pollution Research, 2023, 30, 31281-31293.	5.3	1
210	Biomechanical traits of salt marsh vegetation are insensitive to future climate scenarios. Scientific Reports, 2022, 12, .	3.3	5
211	浮葉ãŠã, îã³æŠ½æ°´æ ড় "ŸãŒæµå‹•ãïæº¶å~é…,ç´æ;f度ã«ä,Žãîã,‹å½±éŸ; ~ãfã,¹ç¾84⁄2ã,'例ã«. Japanese	Joounnal of	Limnology, 2
212	Conditional statistics of Reynolds stress in open channel flows with modeled canopies of homogeneous and heterogeneous density. Physics of Fluids, 2023, 35, .	4.0	5
213	Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions. Hydrology and Earth System Sciences, 2023, 27, 953-968.	4.9	2
214	Experimental study on the combined effects of patch density and elongation on wake structure behind a rectangular porous patch. Journal of Fluid Mechanics, 2023, 959, .	3.4	2
215	Modeling Microplastic and Solute Transport in Vegetated Flows. Water Resources Research, 2023, 59, .	4.2	9

216	Flow over and Through Biota. , 2024, , 410-433.		0
217	Longitudinal dispersive coefficient in channels with aquatic vegetation: A review. Journal of Hydrodynamics, 2023, 35, 379-395.	3.2	6
218	Effects of submerged flexible vegetation on scalar transport in an openâ€channel flow. Water Resources Research, 0, , .	4.2	0
219	Predicting velocity and turbulent kinetic energy inside an emergent Phragmites australis canopy with real morphology. Environmental Fluid Mechanics, 2023, 23, 943-963.	1.6	7
220	Bed morphology adjustment under the impact of a near-bank emergent model vegetation patch. Journal of Hydraulic Research/De Recherches Hydrauliques, 2023, 61, 735-753.	1.7	0

#	Article	IF	CITATIONS
221	A momentum-based prediction model of backwater rise within and downstream of an emergent canopy in nonuniform flow. Journal of Hydrology, 2023, 625, 130140.	5.4	0
222	Impact of sediment size, channel velocity and plant density on sediment deposition inside Phragmites australis canopies. Journal of Hydrology, 2023, 626, 130151.	5.4	0
223	Reynolds stress anisotropy with higher-order turbulence in flow through rigid emergent vegetation: An experimental study. Journal of Hydro-Environment Research, 2023, 51, 32-47.	2.2	0
224	Flow Structures in Open Channels with Emergent Rigid Vegetation: A Review. Water (Switzerland), 2023, 15, 4121.	2.7	0
225	A well-balanced and positivity-preserving numerical model for overland flow under vegetation effects. Mathematics and Computers in Simulation, 2024, 217, 273-293.	4.4	0
226	Diffusion properties of buoyant particle cluster in open channel flow with emergent rigid vegetation. Ecohydrology, 2024, 17, .	2.4	0
227	A holistic model for microplastic dispersion in a free-surface wetland flow. Journal of Cleaner Production, 2024, 449, 141806.	9.3	0