The Rate of Intestinal Glucose Absorption Is Correlated Insulinotropic Polypeptide Concentrations in Healthy M

Journal of Nutrition 136, 1511-1516 DOI: 10.1093/jn/136.6.1511

Citation Report

#	Article	IF	CITATIONS
1	Slowly digestible starch – its structure and health implications: a review. Trends in Food Science and Technology, 2007, 18, 346-355.	15.1	559
2	An explorative study of in vivo digestive starch characteristics and postprandial glucose kinetics of wholemeal wheat bread. European Journal of Nutrition, 2008, 47, 417-423.	3.9	29
3	Separate Impact of Obesity and Glucose Tolerance on the Incretin Effect in Normal Subjects and Type 2 Diabetic Patients. Diabetes, 2008, 57, 1340-1348.	0.6	353
4	Using the lymph fistula rat model to study the potentiation of GIP secretion by the ingestion of fat and glucose. American Journal of Physiology - Renal Physiology, 2008, 294, G1130-G1138.	3.4	28
5	Dietary Resistant Starch Reduces Levels of Glucose-Dependent Insulinotropic Polypeptide mRNA along the Jejunum-Ileum in Both Normal and Type 2 Diabetic Rats. Bioscience, Biotechnology and Biochemistry, 2008, 72, 2206-2209.	1.3	17
6	Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. American Journal of Physiology - Renal Physiology, 2009, 296, G735-G739.	3.4	201
7	Chronic Administration of Voglibose, an α-Glucosidase Inhibitor, Increases Active Glucagon-Like Peptide-1 Levels by Increasing Its Secretion and Decreasing Dipeptidyl Peptidase-4 Activity in <i>ob/ob</i> Mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 669-676.	2.5	49
8	Mathematical Modeling of Glucose Homeostasis and Its Relationship With Energy Balance and Body Fat. Obesity, 2009, 17, 632-639.	3.0	17
9	Consumption of the slow-digesting waxy maize starch leads to blunted plasma glucose and insulin response but does not influence energy expenditure or appetite in humans. Nutrition Research, 2009, 29, 383-390.	2.9	47
10	Chapter 15 Glucoseâ€Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP). Vitamins and Hormones, 2009, 80, 409-471.	1.7	144
11	Slowly Digestible Starch: Concept, Mechanism, and Proposed Extended Glycemic Index. Critical Reviews in Food Science and Nutrition, 2009, 49, 852-867.	10.3	341
12	Starch-Entrapped Biopolymer Microspheres as a Novel Approach to Vary Blood Glucose Profiles. Journal of the American College of Nutrition, 2009, 28, 583-590.	1.8	38
13	Glycemic Index and Glucose Utilization of Rice Vermicelli in Healthy Subjects. Biological and Pharmaceutical Bulletin, 2010, 33, 1385-1393.	1.4	8
14	Combination treatment with alogliptin and voglibose increases active GLPâ€1 circulation, prevents the development of diabetes and preserves pancreatic betaâ€cells in prediabetic <i>db/db</i> mice. Diabetes, Obesity and Metabolism, 2010, 12, 224-233.	4.4	51
15	Differential responses of the incretin hormones GIP and GLP-1 to increasing doses of dietary carbohydrate but not dietary protein in lean rats. American Journal of Physiology - Renal Physiology, 2010, 299, G476-G485.	3.4	32
16	Sensing Via Intestinal Sweet Taste Pathways. Frontiers in Neuroscience, 2011, 5, 23.	2.8	56
17	Starches, Sugars and Obesity. Nutrients, 2011, 3, 341-369.	4.1	164
18	Glucoseâ€dependent insulinotropic polypeptide: from pathophysiology to therapeutic opportunities in obesityâ€associated disorders. Obesity Reviews, 2011, 12, 813-828.	6.5	27

#	Article	IF	Citations
19	Nutrient sensing in the gut: interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides. Physiology and Behavior, 2011, 105, 62-70.	2.1	80
20	Acute and second-meal effects of almond form in impaired glucose tolerant adults: a randomized crossover trial. Nutrition and Metabolism, 2011, 8, 6.	3.0	58
21	A Low Glycemic Index Diet Does Not Affect Postprandial Energy Metabolism but Decreases Postprandial Insulinemia and Increases Fullness Ratings in Healthy Women. Journal of Nutrition, 2011, 141, 1679-1684.	2.9	39
22	Starch with High Amylose and Low in Vitro Digestibility Increases Short-Chain Fatty Acid Absorption, Reduces Peak Insulin Secretion, and Modulates Incretin Secretion in Pigs. Journal of Nutrition, 2011, 141, 398-405.	2.9	83
23	Nuclear Magnetic Resonance–Based Metabolomics Enable Detection of the Effects of a Whole Grain Rye and Rye Bran Diet on the Metabolic Profile of Plasma in Prostate Cancer Patients. Journal of Nutrition, 2011, 141, 2126-2132.	2.9	55
24	Intestinal transit of a glucose bolus and incretin kinetics: a mathematical model with application to the oral glucose tolerance test. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E955-E965.	3.5	33
25	Slowly and rapidly digestible starchy foods can elicit a similar glycemic response because of differential tissue glucose uptake in healthy men. American Journal of Clinical Nutrition, 2012, 96, 1017-1024.	4.7	66
26	The Glycemic Response Does Not Reflect the In Vivo Starch Digestibility of Fiber-Rich Wheat Products in Healthy Men4. Journal of Nutrition, 2012, 142, 258-263.	2.9	52
27	Chylomicron Formation and Secretion is Required for Lipidâ€Stimulated Release of Incretins GLPâ€1 and GIP. Lipids, 2012, 47, 571-580.	1.7	38
28	Impact of postprandial glycaemia on health and prevention of disease. Obesity Reviews, 2012, 13, 923-984.	6.5	331
29	Absorption patterns of meals containing complex carbohydrates in type 1 diabetes. Diabetologia, 2013, 56, 1108-1117.	6.3	37
30	Structures of human salivary amylase hydrolysates from starch processed at two water concentrations. Starch/Staerke, 2013, 65, 637-644.	2.1	8
31	Structure of starch hydrolysates following in vitro oral digestion: Effect of botanical source of starch and hydrothermal treatments. Starch/Staerke, 2013, 65, 885-891.	2.1	0
32	Cereal Processing Influences Postprandial Glucose Metabolism as Well as the GI Effect. Journal of the American College of Nutrition, 2013, 32, 79-91.	1.8	39
35	Technological Means to Modulate Food Digestion and Physiological Response. , 2014, , 389-422.		4
36	The postprandial glucose response to some varieties of commercially available gluten-free pasta: a comparison between healthy and celiac subjects. Food and Function, 2014, 5, 3014-3017.	4.6	16
37	Insulin drives glucose-dependent insulinotropic peptide expression via glucose-dependent regulation of FoxO1 and LEF1/β-catenin. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1141-1150.	1.9	9
38	Slow digestion property of microencapsulated normal corn starch. Journal of Cereal Science, 2014, 60, 99-104.	3.7	23

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
39	A Physiology-Based Model Describing Heterogeneity in Glucose Metabolism. Journal of Diabetes Science and Technology, 2015, 9, 282-292.	2.2	15
40	Comparison of appetite responses to high– and low–glycemic index postexercise meals under matched insulinemia and fiber in type 1 diabetes. American Journal of Clinical Nutrition, 2015, 101, 478-486.	4.7	13
41	A pilot longitudinal study of the use of waxy maize heat modified starch in the treatment of adults with glycogen storage disease type I: a randomized double-blind cross-over study. Orphanet Journal of Rare Diseases, 2015, 10, 18.	2.7	19
42	Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: effect of starch digestibility. European Journal of Clinical Nutrition, 2015, 69, 740-745.	2.9	33
43	The structure of wheat bread influences the postprandial metabolic response in healthy men. Food and Function, 2015, 6, 3236-3248.	4.6	30
44	Multifaceted interplay among mediators and regulators of intestinal glucose absorption: potential impacts on diabetes research and treatment. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E887-E899.	3.5	12
45	Manipulation of starch bioaccessibility in wheat endosperm to regulate starch digestion, postprandial glycemia, insulinemia, and gut hormone responses: a randomized controlled trial in healthy ileostomy participants. American Journal of Clinical Nutrition, 2015, 102, 791-800.	4.7	134
46	Effects of added water and retrogradation on starch digestibility of cooked rice flours with different amylose content. Journal of Cereal Science, 2015, 61, 1-7.	3.7	37
47	Slowly Digestible Starch—A Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 1642-1657.	10.3	205
48	Weight loss and weight maintenance obtained with or without GLP-1 analogue treatment decrease branched chain amino acid levels. Metabolomics, 2016, 12, 1.	3.0	0
49	Slow-release carbohydrates: growing evidence on metabolic responses and public health interest. Summary of the symposium held at the 12th European Nutrition Conference (FENS 2015). Food and Nutrition Research, 2016, 60, 31662.	2.6	25
50	The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values. Critical Reviews in Food Science and Nutrition, 2016, 56, 215-236.	10.3	132
51	Digestibility and structural changes of waxy rice starch during the fermentation process for waxy rice vinasse. Food Hydrocolloids, 2016, 57, 38-45.	10.7	61
52	The nutritional property of endosperm starch and its contribution to the health benefits of whole grain foods. Critical Reviews in Food Science and Nutrition, 2017, 57, 3807-3817.	10.3	23
53	Difference in postprandial GLP-1 response despite similar glucose kinetics after consumption of wheat breads with different particle size in healthy men. European Journal of Nutrition, 2017, 56, 1063-1076.	3.9	25
54	Modelling the effect of insulin on the disposal of meal-attributable glucose in type 1 diabetes. Medical and Biological Engineering and Computing, 2017, 55, 271-282.	2.8	6
55	Efficacy of fibre additions to flatbread flour mixes for reducing post-meal glucose and insulin responses in healthy Indian subjects. British Journal of Nutrition, 2017, 117, 386-394.	2.3	22
56	Effect of fibre additions to flatbread flour mixes on glucose kinetics: a randomised controlled trial. British Journal of Nutrition, 2017, 118, 777-787.	2.3	16

	CITATION	Report	
#	Article	IF	CITATIONS
57	The Effect of a Breakfast Rich in Slowly Digestible Starch on Glucose Metabolism: A Statistical Meta-Analysis of Randomized Controlled Trials. Nutrients, 2017, 9, 318.	4.1	24
58	Exenatide effects on gastric emptying rate and the glucose rate of appearance in plasma: <scp>A</scp> quantitative assessment using an integrative systems pharmacology model. Diabetes, Obesity and Metabolism, 2018, 20, 2034-2038.	4.4	4
59	Starch Digestion and Applications of Slowly Available Starch. , 2018, , 805-826.		3
60	Slowly Digestible―and Nonâ€Digestible αâ€Glucans: An Enzymatic Approach to Starch Modification and Nutritional Effects. Starch/Staerke, 2018, 70, 1700145.	2.1	13
61	Dietary Slowly Digestible Starch Triggers the Gut–Brain Axis in Obese Rats with Accompanied Reduced Food Intake. Molecular Nutrition and Food Research, 2018, 62, 1700117.	3.3	37
62	Effectiveness of carbohydrates as a functional ingredient in glycemic control. Food Science and Technology, 2018, 38, 561-576.	1.7	11
63	Slowly Digestible Starch. , 2018, , 27-61.		2
64	A double-blind, randomized, placebo-controlled, three-way crossover clinical investigation to evaluate the effect of IQP-VV-102 on postprandial blood glucose reduction. PharmaNutrition, 2018, 6, 113-118.	1.7	0
65	Starch and \hat{l}^2 -glucan in a whole-grain-like structural form improve hepatic insulin sensitivity in diet-induced obese mice. Food and Function, 2019, 10, 5091-5101.	4.6	12
66	The Rate of Glucose Appearance Is Related to Postprandial Glucose and Insulin Responses in Adults: A Systematic Review and Meta-analysis of Stable Isotope Studies. Journal of Nutrition, 2019, 149, 1896-1903.	2.9	10
67	The impact of Tartary buckwheat extract on the nutritional property of starch in a whole grain context. Journal of Cereal Science, 2019, 89, 102798.	3.7	17
68	The Impact of a Large Bolus Dose of l-leucine and l-isoleucine on Enteroendocrine and Pancreatic Hormones, and Glycemia in Healthy, Inactive Adults. Nutrients, 2019, 11, 2650.	4.1	4
69	Glucose Appearance Rate Rather than the Blood Glucose Concentrations Explains Differences in Postprandial Insulin Responses between Wholemeal Rye and Refined Wheat Breads—Results from A Crossâ€Over Meal Study. Molecular Nutrition and Food Research, 2019, 63, e1800959.	3.3	8
70	Design and Validation of a Diet Rich in Slowly Digestible Starch for Type 2 Diabetic Patients for Significant Improvement in Clycemic Profile. Nutrients, 2020, 12, 2404.	4.1	5
71	Assessing the effect of starch digestion characteristics on ileal brake activation in broiler chickens. PLoS ONE, 2020, 15, e0228647.	2.5	8
72	Effect of corn processing on growth performance, carcass characteristics, and plasma glucose-dependent insulinotropic polypeptide and metabolite concentrations in feedlot cattle1. Translational Animal Science, 2020, 4, 822-830.	1.1	6
73	Starch digestibility modulation significantly improves glycemic variability in type 2 diabetic subjects: A pilot study. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 237-246.	2.6	9
74	Mulberry leaf extract improves glycaemic response and insulaemic response to sucrose in healthy subjects: results of a randomized, double blind, placebo-controlled study. Nutrition and Metabolism, 2021, 18, 41.	3.0	10

#	Article	IF	CITATIONS
75	Effects of Aleurone Supplementation on Glucose-Insulin Metabolism and Gut Microbiome in Untrained Healthy Horses. Frontiers in Veterinary Science, 2021, 8, 642809.	2.2	4
78	Slow digestionâ€oriented dietary strategy to sustain the secretion of GLPâ€1 for improved glucose homeostasis. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5173-5196.	11.7	14
79	Dietary starch is weight reducing when distally digested in the small intestine. Carbohydrate Polymers, 2021, 273, 118599.	10.2	6
80	Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase. Food Chemistry, 2022, 370, 130981.	8.2	32
81	Co-ingestion of NUTRALYS® pea protein and a high-carbohydrate beverage influences the glycaemic, insulinaemic, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) responses: preliminary results of a randomised controlled trial. European Journal of Nutrition, 2021, 60, 3085-3093.	3.9	5
82	Gastrointestinal and metabolic effects of noodles-based konjac glucomannan in rats. Food and Nutrition Research, 2019, 63, .	2.6	6
83	Insulin Sensitivity and Plasma Glucose Appearance Profile by Oral Minimal Model in Normotensive and Normoglycemic Humans. Lecture Notes in Computer Science, 2006, , 128-136.	1.3	1
84	A Review of the Design and Architecture of Starch-Based Dietary Foods. Engineering, 2021, 7, 663-673.	6.7	7
85	Mathematical modelling of root causes of hyperglycemia and hypoglycemia in a diabetes mellitus patient. Scientific African, 2021, 14, e01042.	1.5	1
86	Clinical Demonstrations of Controlled-Release Tablets Constructed by the Combined Usage of Shellac and Hydroxypropyl Methylcellulose. Future Pharmacology, 2021, 1, 48-59.	1.8	2
87	Impact of food processing on postprandial glycaemic and appetite responses in healthy adults: a randomized, controlled trial. Food and Function, 2022, 13, 1280-1290.	4.6	4
89	Uncooked cornstarch for the prevention of hypoglycemic events. Critical Reviews in Food Science and Nutrition, 2022, 62, 3250-3263.	10.3	7
90	Association of Slowly Digestible Starch Intake with Reduction of Postprandial Glycemic Response: An Update Meta-Analysis. Foods, 2023, 12, 89.	4.3	2
91	Modeling of postprandial glycemic response by consecutive reaction kinetics model for precise glycemic control. International Journal of Diabetes in Developing Countries, 0, , .	0.8	0