Chewing the fat: Î²-oxidation in signalling and developm

Trends in Plant Science 11, 124-132 DOI: 10.1016/j.tplants.2006.01.005

Citation Report

#	ARTICLE	IF	CITATIONS
1	Compartmentation in plant metabolism. Journal of Experimental Botany, 2006, 58, 35-47.	2.4	193
2	Characterization of SCP-2 from Euphorbia lagascae reveals that a single Leu/Met exchange enhances sterol transfer activity. FEBS Journal, 2006, 273, 5641-5655.	2.2	14
3	The biochemistry of oleate induction: Transcriptional upregulation and peroxisome proliferation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1392-1402.	1.9	89
4	The ins and outs of peroxisomes: Co-ordination of membrane transport and peroxisomal metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1527-1540.	1.9	75
5	Plant peroxisomes as a source of signalling molecules. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1478-1495.	1.9	160
6	Peroxisomal β-oxidation—A metabolic pathway with multiple functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1413-1426.	1.9	432
7	A central role for the peroxisomal membrane in glyoxylate cycle function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 1441-1452.	1.9	195
8	Storage Reserve Mobilisation and Seedling Establishment in Arabidopsis. The Arabidopsis Book, 2006, 4, e0100.	0.5	28
9	Analysis of the role of COMATOSE and peroxisomal beta-oxidation in the determination of germination potential in Arabidopsis. Journal of Experimental Botany, 2006, 57, 2805-2814.	2.4	60
10	SUGAR-DEPENDENT1 Encodes a Patatin Domain Triacylglycerol Lipase That Initiates Storage Oil Breakdown in Germinating Arabidopsis Seeds. Plant Cell, 2006, 18, 665-675.	3.1	401
11	Identification of Genes with Potential Roles in Apple Fruit Development and Biochemistry through Large-Scale Statistical Analysis of Expressed Sequence Tags. Plant Physiology, 2006, 141, 811-824.	2.3	109
12	Identification of a Peroxisomal Acyl-activating Enzyme Involved in the Biosynthesis of Jasmonic Acid in Arabidopsis. Journal of Biological Chemistry, 2006, 281, 33511-33520.	1.6	167
13	Functional Diversification of Acyl-Coenzyme A Oxidases in Jasmonic Acid Biosynthesis and Action. Plant Physiology, 2007, 143, 812-824.	2.3	195
14	MONODEHYROASCORBATE REDUCTASE4 Is Required for Seed Storage Oil Hydrolysis and Postgerminative Growth in Arabidopsis. Plant Cell, 2007, 19, 1376-1387.	3.1	102
15	The COMATOSE ATP-Binding Cassette Transporter Is Required for Full Fertility in Arabidopsis. Plant Physiology, 2007, 144, 1467-1480.	2.3	85
16	The Arabidopsis 3-ketoacyl-CoA thiolase-2 (kat2-1) mutant exhibits increased flowering but reduced reproductive success. Journal of Experimental Botany, 2007, 58, 2959-2968.	2.4	43
17	Mitochondrial Metabolism. , 0, , 212-277.		4
18	Expression of rice acyl-CoA oxidase isoenzymes in response to wounding. Journal of Plant Physiology, 2007, 164, 665-668.	1.6	14

TION RE

#	Article	IF	CITATIONS
19	The peroxisomal protein import machinery. FEBS Letters, 2007, 581, 2811-2819.	1.3	98
20	Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development. Annals of Botany, 2007, 100, 681-697.	1.4	1,638
22	Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal β-oxidation enzymes – Additional proof by properties of pex6 and aim1. Phytochemistry, 2007, 68, 1642-1650.	1.4	81
23	Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnology Journal, 2007, 5, 192-206.	4.1	204
24	Arabidopsis peroxisomal malate dehydrogenase functions in β-oxidation but not in the glyoxylate cycle. Plant Journal, 2007, 50, 381-390.	2.8	125
25	β-Oxidation in fatty acid degradation and beyond. Current Opinion in Plant Biology, 2007, 10, 245-251.	3.5	155
26	Peroxisomal dynamics. Trends in Cell Biology, 2007, 17, 474-484.	3.6	147
27	The Mitochondrion: An Integration Point of Cellular Metabolism and Signalling. Critical Reviews in Plant Sciences, 2007, 26, 17-43.	2.7	102
28	IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response. Plant Molecular Biology, 2007, 64, 59-72.	2.0	102
29	Sugar effects on early seedling development in Arabidopsis. Plant Growth Regulation, 2007, 52, 217-228.	1.8	40
30	Protein degradation and nitrogen remobilization during leaf senescence. Journal of Plant Biology, 2008, 51, 11-19.	0.9	81
31	Seed Storage Oil Mobilization. Annual Review of Plant Biology, 2008, 59, 115-142.	8.6	570
32	Biosynthesis of plantâ€derived flavor compounds. Plant Journal, 2008, 54, 712-732.	2.8	972
33	Peroxisomal Δ ³ ,Δ ² â€enoylâ€fCoA isomerases and evolution of cytosolic paralogues in embryophytes. Plant Journal, 2008, 56, 728-742.	2.8	23
34	Molecular networks regulating Arabidopsis seed maturation, afterâ€ripening, dormancy and germination. New Phytologist, 2008, 179, 33-54.	3.5	794
35	Lipid metabolism in plants. , 2008, , 97-130.		31
36	JAZing up jasmonate signaling. Trends in Plant Science, 2008, 13, 66-71.	4.3	246
37	When is a peroxisome not a peroxisome?. Trends in Plant Science, 2008, 13, 522-525.	4.3	86

#	Article	IF	CITATIONS
38	Drought stress and reactive oxygen species. Plant Signaling and Behavior, 2008, 3, 156-165.	1.2	1,093
39	Regulation of stress hormones jasmonates and ethylene by MAPK pathways in plants. Molecular BioSystems, 2008, 4, 799.	2.9	26
40	Arabidopsis sterol carrier protein-2 is required for normal development of seeds and seedlings. Journal of Experimental Botany, 2008, 59, 3485-3499.	2.4	16
41	Identification and Characterization of Arabidopsis Indole-3-Butyric Acid Response Mutants Defective in Novel Peroxisomal Enzymes. Genetics, 2008, 180, 237-251.	1.2	143
42	Discovery of oxidative burst in the field of plant immunity. Plant Signaling and Behavior, 2008, 3, 153-155.	1.2	47
43	Proteomic Analysis of Highly Purified Peroxisomes from Etiolated Soybean Cotyledons. Plant and Cell Physiology, 2008, 49, 526-539.	1.5	69
44	Expression of the β-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 2008, 59, 2171-2179.	2.4	63
45	Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. Journal of Experimental Botany, 2008, 59, 403-419.	2.4	99
46	The Role of Acetyl-Coenzyme A Synthetase in Arabidopsis. Plant Physiology, 2008, 147, 1822-1829.	2.3	104
47	Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. Journal of Experimental Botany, 2008, 59, 2479-2497.	2.4	130
48	Formation of fruit flavour. , 2008, , 41-70.		10
49	The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4549-4554.	3.3	172
50	Peroxisomal ATP Import Is Essential for Seedling Development in <i>Arabidopsis thaliana</i> . Plant Cell, 2009, 20, 3241-3257.	3.1	102
51	Proteomic Identification and Characterization of a Novel Peroxisomal Adenine Nucleotide Transporter Supplying ATP for Fatty Acid β-Oxidation in Soybean and <i>Arabidopsis</i> . Plant Cell, 2009, 20, 3227-3240.	3.1	89
52	The ABC Transporter PXA1 and Peroxisomal β-Oxidation Are Vital for Metabolism in Mature Leaves of <i>Arabidopsis</i> during Extended Darkness Â. Plant Cell, 2009, 21, 2733-2749.	3.1	150
53	Peroxisome Biogenesis and Function. The Arabidopsis Book, 2009, 7, e0123.	0.5	95
54	Mutations in the Arabidopsis Peroxisomal ABC Transporter COMATOSE Allow Differentiation between Multiple Functions In Planta: Insights from an Allelic Series. Molecular Biology of the Cell, 2009, 20, 530-543.	0.9	43
55	Turnover of Fatty Acids during Natural Senescence of Arabidopsis, <i>Brachypodium</i> , and Switchgrass and in Arabidopsis <i>β-</i> Oxidation Mutants Â. Plant Physiology, 2009, 150, 1981-1989.	2.3	138

#	Article	IF	CITATIONS
56	Dynamics of peroxisome abundance: a tale of division and proliferation. Current Opinion in Plant Biology, 2009, 12, 781-788.	3.5	45
57	Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta, 2009, 230, 779-793.	1.6	38
58	Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins. Plant Molecular Biology, 2009, 69, 503-515.	2.0	45
59	Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regulation, 2009, 58, 47-59.	1.8	172
60	Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics, 2009, 9, 2301-2312.	1.3	87
61	Storage oil hydrolysis during early seedling growth. Plant Physiology and Biochemistry, 2009, 47, 485-490.	2.8	129
62	Glyoxylate Cycle. , 2009, , 159-179.		4
64	Modelling the peroxisomal carbon leak during lipid mobilization in Arabidopsis. Biochemical Society Transactions, 2010, 38, 1230-1233.	1.6	6
65	Increase in catalase-3 activity as a response to use of alternative catabolic substrates during sucrose starvation. Plant Physiology and Biochemistry, 2010, 48, 232-238.	2.8	28
66	Fatty acid beta-oxidation in germinating Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate dehydrogenase is absent. Plant Molecular Biology, 2010, 72, 101-109.	2.0	42
67	A peroxisomal ABC transporter promotes seed germination by inducing pectin degradation under the control of ABI5. Plant Journal, 2010, 62, no-no.	2.8	114
68	Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development. Plant Journal, 2010, 64, 267-279.	2.8	67
69	Salt Stress Causes Peroxisome Proliferation, but Inducing Peroxisome Proliferation Does Not Improve NaCl Tolerance in Arabidopsis thaliana. PLoS ONE, 2010, 5, e9408.	1.1	63
70	Peroxisome biogenesis and positioning. Biochemical Society Transactions, 2010, 38, 807-816.	1.6	10
71	Conserved and Novel Functions for Arabidopsis thaliana MIA40 in Assembly of Proteins in Mitochondria and Peroxisomes. Journal of Biological Chemistry, 2010, 285, 36138-36148.	1.6	108
72	Intracellular Metabolite Transporters in Plants. Molecular Plant, 2010, 3, 21-53.	3.9	153
73	Storage lipids as a source of carbon skeletons for asparagine synthesis in germinating seeds of yellow lupine (Lupinus luteus L.). Journal of Plant Physiology, 2010, 167, 717-724.	1.6	17
74	Acyl-Lipid Metabolism. The Arabidopsis Book, 2010, 8, e0133.	0.5	287

#	Article	IF	CITATIONS
75	Molecular Basis of Peroxisome Division and Proliferation in Plants. International Review of Cell and Molecular Biology, 2010, 279, 79-99.	1.6	17
76	Peroxisomal Transport Systems: Roles in Signaling and Metabolism. Signaling and Communication in Plants, 2011, , 327-351.	0.5	3
77	Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Archives of Biochemistry and Biophysics, 2011, 506, 1-11.	1.4	134
78	AtDSEL, an Arabidopsis cytosolic DAD1-like acylhydrolase, is involved in negative regulation of storage oil mobilization during seedling establishment. Journal of Plant Physiology, 2011, 168, 1705-1709.	1.6	26
79	Cross-Kingdom Actions of Phytohormones: A Functional Scaffold Exploration. Chemical Reviews, 2011, 111, 2734-2760.	23.0	39
80	Supplementation with carnitine for weight loss: a biochemical approach. Colombia Medica, 2011, , 529-535.	0.7	1
81	Defining the Plant Peroxisomal Proteome: From Arabidopsis to Rice. Frontiers in Plant Science, 2011, 2, 103.	1.7	39
82	12-Oxo-Phytodienoic Acid Accumulation during Seed Development Represses Seed Germination in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 583-599.	3.1	207
83	Characteristics of storage reserves of triploid watermelon seeds: association of starch and mean germination time. Seed Science and Technology, 2011, 39, 318-326.	0.6	14
84	Evidence that ACN1 (acetate non-utilizing 1) prevents carbon leakage from peroxisomes during lipid mobilization in <i>Arabidopsis</i> seedlings. Biochemical Journal, 2011, 437, 505-513.	1.7	17
85	Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnology Journal, 2011, 9, 958-969.	4.1	39
86	Reducing <i>PEX13</i> Expression Ameliorates Physiological Defects of Lateâ€Acting Peroxin Mutants. Traffic, 2011, 12, 121-134.	1.3	31
87	Matrix proteins are inefficiently imported into Arabidopsis peroxisomes lacking the receptor-docking peroxin PEX14. Plant Molecular Biology, 2011, 77, 1-15.	2.0	39
88	Comparative study of storage compound breakdown in germinating seeds of three lupine species. Acta Physiologiae Plantarum, 2011, 33, 1953-1968.	1.0	20
89	Seed Storage Oil Mobilization Is Important But Not Essential for Germination or Seedling Establishment in Arabidopsis Â. Plant Physiology, 2011, 157, 866-875.	2.3	152
90	The Arabidopsis Tail-Anchored Protein PEROXISOMAL AND MITOCHONDRIAL DIVISION FACTOR1 Is Involved in the Morphogenesis and Proliferation of Peroxisomes and Mitochondria Â. Plant Cell, 2011, 23, 4446-4461.	3.1	57
91	Integration of peroxisomes into an endomembrane system that governs cellular aging. Frontiers in Physiology, 2012, 3, 283.	1.3	51
92	Conservation of two lineages of peroxisomal (Type I) 3-ketoacyl-CoA thiolases in land plants, specialization of the genes in Brassicaceae, and characterization of their expression in Arabidopsis thaliana, Journal of Experimental Botany, 2012, 63, 6093-6103	2.4	17

ARTICLE IF CITATIONS # Transport Proteins Regulate the Flux of Metabolites and Cofactors Across the Membrane of Plant 93 1.7 37 Peroxisomes. Frontiers in Plant Science, 2012, 3, 3. Plant catalases: Peroxisomal redox guardians. Archives of Biochemistry and Biophysics, 2012, 525, 94 1.4 181-194. Differential Roles of <i>Arabidopsis</i> Dynaminâ€Related Proteins DRP3A, DRP3B, and DRP5B in 95 4.1 31 Organelle Division^F. Journal of Integrative Plant Biology, 2012, 54, 921-931. The Genetic Dissection of a Short-Term Response to Low CO2 Supports the Possibility for Peroxide-Mediated Decarboxylation of Photorespiratory Intermediates in the Peroxisome. Molecular 3.9 Plant, 2012, 5, 1413-1416. Plant Peroxisomes: Biogenesis and Function. Plant Cell, 2012, 24, 2279-2303. 97 3.1 406 The peroxisome: an update on mysteries. Histochemistry and Cell Biology, 2012, 137, 547-574. 0.8 188 Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and 99 2.8 267 heterotrophic plant tissues. Plant, Cell and Environment, 2012, 35, 1-21. ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell and Environment, 100 2.8 1,339 2012, 35, 259-270. Postharvest temperature influences volatile lactone production via regulation of acylâ€CoA oxidases 101 2.8 58 in peach fruit. Plant, Cell and Environment, 2012, 35, 534-545. Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and 2.8 exchange of amino acids between compartments. Plant, Cell and Environment, 2012, 35, 1232-1244. Diverse regulation by sucrose of enzymes involved in storage lipid breakdown in germinating lupin 103 1.0 10 seeds. Acta Physiologiae Plantarum, 2013, 35, 2147-2156. Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Sub-Cellular Biochemistry, 2013, 104 1.0 105 SALICYLIC ACID., 2013,,. 25 Fruits and Vegetables., 2013, , 49-126. 14 Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant 107 2.8 263 Cell Reports, 2013, 32, 1085-1098. Role of Peroxisomes as a Source of Reactive Oxygen Species (ROS) Signaling Molecules. Sub-Cellular 129 Biochemistry, 2013, 69, 231-255. Targeting a heterologous protein to multiple plant organelles via rationally designed 5â€² mRNA tags. 109 2.0 5 Journal of Biological Engineering, 2013, 7, 20. Advances in Fruit Aroma Volatile Research. Molecules, 2013, 18, 8200-8229. 509

	CITATION	REPORT	
#	Article	IF	CITATIONS
111	Hypothesis: Nitro-fatty acids play a role in plant metabolism. Plant Science, 2013, 199-200, 1-6.	1.7	37
112	Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L Journal of Proteomics, 2013, 78, 123-133.	1.2	46
113	The exportomer: the peroxisomal receptor export machinery. Cellular and Molecular Life Sciences, 2013, 70, 1393-1411.	2.4	53
114	<i>Arabidopsis</i> RING Peroxins are E3 Ubiquitin Ligases that Interact with Two Homologous Ubiquitin Receptor Proteins ^F . Journal of Integrative Plant Biology, 2013, 55, 108-120.	4.1	56
115	Signaling Role of Salicylic Acid in Abiotic Stress Responses in Plants. , 2013, , 249-275.		5
116	Crosstalk between intracellular and extracellular salicylic acid signaling events leading to long-distance spread of signals. Plant Cell Reports, 2013, 32, 1125-1138.	2.8	29
117	An inhibitor of oil body mobilization in Arabidopsis. New Phytologist, 2013, 200, 641-649.	3.5	25
118	Suppression of mRNAs for lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC) and 12-oxo-phytodienoic acid reductase (OPR) in pea reduces sensitivity to the phytotoxin coronatine and disease development by MycosphaerellaÂpinodes. Journal of General Plant Pathology, 2013, 79, 321-334.	0.6	14
119	Acyl-Lipid Metabolism. The Arabidopsis Book, 2013, 11, e0161.	0.5	974
120	Arabidopsis peroxisome proteomics. Frontiers in Plant Science, 2013, 4, 101.	1.7	30
121	Functional analysis of PEX13 mutation in a Zellweger syndrome spectrum patient reveals novel homooligomerization of PEX13 and its role in human peroxisome biogenesis. Human Molecular Genetics, 2013, 22, 3844-3857.	1.4	26
122	Computer–Based Procedures for Nuclear Power Plant Field Workers. Proceedings of the Human Factors and Ergonomics Society, 2013, 57, 1722-1726.	0.2	0
123	A Peroxisomal Long-Chain Acyl-CoA Synthetase from Glycine max Involved in Lipid Degradation. PLoS ONE, 2014, 9, e100144.	1.1	15
124	Barley Grain: Development and Structure. , 2014, , 11-53.		1
125	From dusk till dawn: the Arabidopsis thaliana sugar starving responsive network. Frontiers in Plant Science, 2014, 5, 482.	1.7	10
126	High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core Ă¢â,¬Å"DSBĂ¢â,¬Â•response specific to clastogenic treatments. Frontiers in Plant Science, 2014, 5, 364.	1.7	19
127	Knockout of the two evolutionarily conserved peroxisomal 3-ketoacyl-CoA thiolases in Arabidopsis recapitulates the abnormal inflorescence meristem 1 phenotype. Journal of Experimental Botany, 2014, 65, 6723-6733.	2.4	22
128	GPT2: a glucose 6-phosphate/phosphate translocator with a novel role in the regulation of sugar signalling during seedling development. Annals of Botany, 2014, 113, 643-652.	1.4	30

#	Article	IF	CITATIONS
129	Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation. Journal of Experimental Botany, 2014, 65, 4833-4847.	2.4	26
130	Catalase Inhibition Affects Glyoxylate Cycle Enzyme Expression and Cellular Redox Control during the Functional Transition of Sunflower and Safflower Seedlings. Journal of Plant Growth Regulation, 2014, 33, 272-284.	2.8	3
131	The peroxisomal receptor dislocation pathway: To the exportomer and beyond. Biochimie, 2014, 98, 16-28.	1.3	66
133	Metabolic Control of Redox and Redox Control of Metabolism in Plants. Antioxidants and Redox Signaling, 2014, 21, 1389-1421.	2.5	143
134	Isotope labelling – paired homologous double neutral loss scan-mass spectrometry for profiling of metabolites with a carboxyl group. Analyst, The, 2014, 139, 3446-3454.	1.7	42
136	Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. , 2014, , .		2
137	Mitochondrial biogenesis in plants during seed germination. Mitochondrion, 2014, 19, 214-221.	1.6	53
138	Lipid Trafficking in Plant Cells. Traffic, 2014, 15, 915-932.	1.3	119
139	Plastidial NAD-Dependent Malate Dehydrogenase Is Critical for Embryo Development and Heterotrophic Metabolism in Arabidopsis. Plant Physiology, 2014, 164, 1175-1190.	2.3	78
140	Glyoxylate Cycleâ^†. , 2015, , .		6
141	Biogenesis of aroma compounds. , 2015, , 127-149.		10
142	Hormonal requirements for effective induction of microspore embryogenesis in triticale (×) Tj ETQq1 1 0.78	4314_rg8T	/Overlock 10 Ti
143	Redox Strategies for Crop Improvement. Antioxidants and Redox Signaling, 2015, 23, 1186-1205.	2.5	22
144	Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. Journal of Plant Physiology, 2015, 180, 27-34.	1.6	28
145	Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment. Nature Communications, 2015, 6, 6659.	5.8	95
146	On the role of a Lipid-Transfer Protein. Arabidopsis <i>ltp3</i> mutant is compromised in germination and seedling growth Plant Signaling and Behavior, 2015, 10, e1105417.	1.2	16
147	The evolution of eukaryotic cells from the perspective of peroxisomes. BioEssays, 2015, 37, 195-203.	1.2	47
148	Biochemistry of apple aroma: A review. Food Technology and Biotechnology, 2016, 54, 375-397.	0.9	116

#	Article	IF	CITATIONS
149	Pronounced Phenotypic Changes in Transgenic Tobacco Plants Overexpressing Sucrose Synthase May Reveal a Novel Sugar Signaling Pathway. Frontiers in Plant Science, 2015, 6, 1216.	1.7	29
150	Overexpression of human peroxisomal enoyl-CoA delta isomerase2 HsPECI2, an ortholog of bamboo expressed during gregarious flowering alters salinity stress responses and polar lipid content in tobacco. Functional Plant Biology, 2016, 43, 232.	1.1	2
151	Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation. Bioresource Technology, 2016, 211, 783-786.	4.8	18
152	How to move an amphipathic molecule across a lipid bilayer: different mechanisms for different ABC transporters?. Biochemical Society Transactions, 2016, 44, 774-782.	1.6	16
153	The malfunction of peroxisome has an impact on the oxidative stress sensitivity in Candida albicans. Fungal Genetics and Biology, 2016, 95, 1-12.	0.9	4
154	Histidine Regulates Seed Oil Deposition through Abscisic Acid Biosynthesis and β-oxidation. Plant Physiology, 2016, 172, pp.00950.2016.	2.3	13
155	The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening. Current Biology, 2016, 26, 707-712.	1.8	111
156	Deciphering the roles of acyl-CoA-binding proteins in plant cells. Protoplasma, 2016, 253, 1177-1195.	1.0	37
157	Regulation of peroxisomal matrix protein import by ubiquitination. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 838-849.	1.9	46
158	Acyl-CoA oxidase 1 is involved in γ-decalactone release from peach (Prunus persica) fruit. Plant Cell Reports, 2017, 36, 829-842.	2.8	27
159	ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice. Plant Cell, 2017, 29, 560-574.	3.1	112
160	A putative 12-oxophytodienoate reductase gene CsOPR3 from Camellia sinensis , is involved in wound and herbivore infestation responses. Gene, 2017, 615, 18-24.	1.0	31
161	Plant peroxisomes: A nitro-oxidative cocktail. Redox Biology, 2017, 11, 535-542.	3.9	150
162	<scp><i>CATALASE2</i></scp> functions for seedling postgerminative growth by scavenging <scp>H₂O₂</scp> and stimulating <scp>ACX2/3</scp> activity in <scp><i>Arabidopsis</i></scp> . Plant, Cell and Environment, 2017, 40, 2720-2728.	2.8	19
163	Transcriptome Analysis of the Effects of Shell Removal and Exogenous Gibberellin on Germination of Zanthoxylum Seeds. Scientific Reports, 2017, 7, 8521.	1.6	8
164	Allylâ€Palladiumâ€Catalyzed α,βâ€Dehydrogenation of Carboxylic Acids via Enediolates. Angewandte Chemie, 2017, 129, 13302-13305.	1.6	45
165	Peroxisomal plant metabolism – an update on nitric oxide, Ca2+ and the NADPH recycling network. Journal of Cell Science, 2018, 131, .	1.2	41
166	Allylâ€Palladium atalyzed α,βâ€Dehydrogenation of Carboxylic Acids via Enediolates. Angewandte Chemie - International Edition, 2017, 56, 13122-13125.	7.2	50

#	Article	IF	CITATIONS
167	Identification of candidate genes involved in fatty acids degradation at the late maturity stage in Brassica napus based on transcriptomic analysis. Plant Growth Regulation, 2017, 83, 385-396.	1.8	8
168	Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. Environment International, 2017, 99, 43-54.	4.8	168
169	Whole-Genome Identification and Expression Pattern of the Vicinal Oxygen Chelate Family in Rapeseed (Brassica napus L.). Frontiers in Plant Science, 2017, 8, 745.	1.7	16
170	Sucrose supplementation suppressed the growth inhibition in polyhydroxyalkanoate-producing plants. Plant Biotechnology, 2017, 34, 39-43.	0.5	2
171	Metabolomic "Dark Matter―Dependent on Peroxisomal β-Oxidation in <i>Caenorhabditis elegans</i> . Journal of the American Chemical Society, 2018, 140, 2841-2852.	6.6	52
172	An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nature Chemical Biology, 2018, 14, 171-178.	3.9	183
173	Metabolism of the plant hormone jasmonate: a sentinel for tissue damage and master regulator of stress response. Phytochemistry Reviews, 2018, 17, 51-80.	3.1	86
175	The Proteome of Fruit Peroxisomes: Sweet Pepper (Capsicum annuum L.) as a Model. Sub-Cellular Biochemistry, 2018, 89, 323-341.	1.0	23
176	Identification of Wheat Inflorescence Development-Related Genes Using a Comparative Transcriptomics Approach. International Journal of Genomics, 2018, 2018, 1-13.	0.8	8
177	CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh Biotechnology for Biofuels, 2018, 11, 124.	6.2	13
178	Lipid-Derived Flavours and Off-Flavours in Food. , 2019, , 182-192.		11
179	Mutagenesis separates ATPase and thioesterase activities of the peroxisomal ABC transporter, Comatose. Scientific Reports, 2019, 9, 10502.	1.6	14
180	Wound- and pathogen-activated de novo JA synthesis using different ACX isozymes in tea plant (Camellia sinensis). Journal of Plant Physiology, 2019, 243, 153047.	1.6	5
181	Soybean (Glycine max L.) triacylglycerol lipase GmSDP1 regulates the quality and quantity of seed oil. Scientific Reports, 2019, 9, 8924.	1.6	52
182	A Genome-Scale Metabolic Model of Soybean (<i>Glycine max</i>) Highlights Metabolic Fluxes in Seedlings. Plant Physiology, 2019, 180, 1912-1929.	2.3	43
183	Involvement of OpsLTP1 from Opuntia streptacantha in abiotic stress adaptation and lipid metabolism. Functional Plant Biology, 2019, 46, 816.	1.1	5
184	Peroxisomes in higher plants: an example of metabolic adaptability. Botany Letters, 2019, 166, 298-308.	0.7	4
185	Protein S-acyl transferase 15 is involved in seed triacylglycerol catabolism during early seedling growth in Arabidopsis. Journal of Experimental Botany, 2019, 70, 5205-5216.	2.4	9

#	Article	IF	CITATIONS
186	Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. Frontiers in Plant Science, 2019, 10, 176.	1.7	52
187	Reâ€evaluation of physical interaction between plant peroxisomes and other organelles using liveâ€eell imaging techniques. Journal of Integrative Plant Biology, 2019, 61, 836-852.	4.1	30
188	The involvement of a herbivore-induced acyl-CoA oxidase gene, CsACX1, in the synthesis of jasmonic acid and its expression in flower opening in tea plant (Camellia sinensis). Plant Physiology and Biochemistry, 2019, 135, 132-140.	2.8	22
189	A <i>Prunus persica</i> genomeâ€wide RNAâ€seq approach uncovers major differences in the transcriptome among chilling injury sensitive and nonâ€sensitive varieties. Physiologia Plantarum, 2019, 166, 772-793.	2.6	28
190	Genome-Wide Analysis of OPR Family Genes in Cotton Identified a Role for GhOPR9 in Verticillium dahliae Resistance. Genes, 2020, 11, 1134.	1.0	18
191	Molecular Evolution of Maize Ascorbate Peroxidase Genes and Their Functional Divergence. Genes, 2020, 11, 1204.	1.0	5
192	Phytohormonal metabolic engineering for abiotic stress in plants: New avenues and future prospects. , 2020, , 543-576.		2
193	Mitochondrial fatty acid βâ€oxidation is required for storageâ€lipid catabolism in a marine diatom. New Phytologist, 2020, 228, 946-958.	3.5	25
194	Seed Germination in Oil Palm (Elaeis guineensis Jacq.): A Review of Metabolic Pathways and Control Mechanisms. International Journal of Molecular Sciences, 2020, 21, 4227.	1.8	9
195	Plant Peroxisomes: A Factory of Reactive Species. Frontiers in Plant Science, 2020, 11, 853.	1.7	73
196	Isolation and comparative proteomic analysis of mitochondria from the pulp of ripening citrus fruit. Horticulture Research, 2021, 8, 31.	2.9	12
197	Molecular Control of Oil Metabolism in the Endosperm of Seeds. International Journal of Molecular Sciences, 2021, 22, 1621.	1.8	24
198	A meta-analysis of transcriptomic profiles reveals molecular pathways response to cadmium stress of Gramineae. Ecotoxicology and Environmental Safety, 2021, 209, 111816.	2.9	15
199	Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. International Journal of Molecular Sciences, 2021, 22, 2914.	1.8	52
200	Reactive oxygen species and organellar signaling. Journal of Experimental Botany, 2021, 72, 5807-5824.	2.4	53
201	An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon. PLoS Genetics, 2021, 17, e1009674.	1.5	29
202	RNA-Seq Reveals the Effect of Ethylene on the Volatile Organic Components (VOCs) of Cavendish Banana at Different Post-harvesting Stages. Journal of Plant Growth Regulation, 0, , 1.	2.8	1
203	Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus. BMC Plant Biology, 2021, 21, 6.	1.6	11

#	Article	IF	CITATIONS
204	Peroxisome. , 0, , 377-389.		1
205	Plastidic ABC Proteins. Signaling and Communication in Plants, 2014, , 103-136.	0.5	1
206	Function of Peroxisomes as a Cellular Source of Nitric Oxide and Other Reactive Nitrogen Species. , 2014, , 33-55.		5
207	Salicylic Acid-Induced Local and Long-Distance Signaling Models in Plants. Signaling and Communication in Plants, 2013, , 23-52.	0.5	5
208	Role of Plant Peroxisomes in the Production of Jasmonic Acid-Based Signals. Sub-Cellular Biochemistry, 2013, 69, 299-313.	1.0	26
209	Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis. PLoS ONE, 2008, 3, e2300.	1.1	169
210	The Early-Acting Peroxin PEX19 Is Redundantly Encoded, Farnesylated, and Essential for Viability in Arabidopsis thaliana. PLoS ONE, 2016, 11, e0148335.	1.1	15
211	Enhancement of Secondary Metabolites in Cultured Plant Cells Through Stress Stimulus. American Journal of Plant Physiology, 2011, 6, 50-71.	0.2	37
212	A stress-responsive multifunctional protein involved in .BETAoxidation in tobacco plants. Plant Biotechnology, 2008, 25, 503-508.	0.5	6
213	The Peroxisomal Exportomer. , 2014, , 347-370.		1
213 214	The Peroxisomal Exportomer. , 2014, , 347-370. The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. Plant Cell, 2022, 34, 616-632.	3.1	1 42
	The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis	3.1 1.6	
214	The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. Plant Cell, 2022, 34, 616-632. Transcriptome and Metabolome Analyses Provide Insights Into the Composition and Biosynthesis of		42
214 215	The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. Plant Cell, 2022, 34, 616-632. Transcriptome and Metabolome Analyses Provide Insights Into the Composition and Biosynthesis of Grassy Aroma Volatiles in White-Fleshed Pitaya. ACS Omega, 2022, 7, 6518-6530. Physiological and Biochemical Responses, and Comparative Transcriptome Profiling of Two Angelica	1.6	42 8
214 215 216	The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. Plant Cell, 2022, 34, 616-632. Transcriptome and Metabolome Analyses Provide Insights Into the Composition and Biosynthesis of Crassy Aroma Volatiles in White-Fleshed Pitaya. ACS Omega, 2022, 7, 6518-6530. Physiological and Biochemical Responses, and Comparative Transcriptome Profiling of Two Angelica sinensis Cultivars Under Enhanced Ultraviolet-B Radiation. Frontiers in Plant Science, 2021, 12, 805407. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS Applied	1.6 1.7	42 8 7
214 215 216 217	 The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. Plant Cell, 2022, 34, 616-632. Transcriptome and Metabolome Analyses Provide Insights Into the Composition and Biosynthesis of Grassy Aroma Volatiles in White-Fleshed Pitaya. ACS Omega, 2022, 7, 6518-6530. Physiological and Biochemical Responses, and Comparative Transcriptome Profiling of Two Angelica sinensis Cultivars Under Enhanced Ultraviolet-B Radiation. Frontiers in Plant Science, 2021, 12, 805407. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS Applied Materials & Amp; Interfaces, 2022, 14, 23002-23021. Peroxisomal Proteome Mining of Sweet Pepper (Capsicum annuum L.) Fruit Ripening Through Whole 	1.6 1.7 4.0	42 8 7 63
214 215 216 217 221	 The evolutionarily conserved kinase SnRK1 orchestrates resource mobilization during Arabidopsis seedling establishment. Plant Cell, 2022, 34, 616-632. Transcriptome and Metabolome Analyses Provide Insights Into the Composition and Biosynthesis of Grassy Aroma Volatiles in White-Fleshed Pitaya. ACS Omega, 2022, 7, 6518-6530. Physiological and Biochemical Responses, and Comparative Transcriptome Profiling of Two Angelica sinensis Cultivars Under Enhanced Ultraviolet-B Radiation. Frontiers in Plant Science, 2021, 12, 805407. ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS Applied Materials & Amp; Interfaces, 2022, 14, 23002-23021. Peroxisomal Proteome Mining of Sweet Pepper (Capsicum annuum L.) Fruit Ripening Through Whole Isobaric Tags for Relative and Absolute Quantitation Analysis. Frontiers in Plant Science, 2022, 13, . 	1.6 1.7 4.0 1.7	42 8 7 63 5

#	Article	IF	CITATIONS
226	Hydrogen peroxide in plants. Advances in Botanical Research, 2022, , .	0.5	1
227	PDC1 is activated by ABF4 and inhibits seed germination by promoting ROS accumulation in Arabidopsis. Environmental and Experimental Botany, 2023, 206, 105188.	2.0	1
228	Jasmonate-regulated seed germination and crosstalk with other phytohormones. Journal of Experimental Botany, 2023, 74, 1162-1175.	2.4	9
229	Constitutive and Inducible Expression of Genes Related to Salicylic Acid and Ethylene Pathways in a Moderately Resistant Tomato Cultivar Leads to Delayed Development of Meloidogyne javanica. Agriculture (Switzerland), 2022, 12, 2122.	1.4	1
230	Zinc- and nickel-induced changes in fatty acid profiles in the zinc hyperaccumulator Arabidopsis halleri and non-accumulator Arabidopsis lyrata. Plant Physiology and Biochemistry, 2023, 197, 107640.	2.8	3
231	Overexpression of Bacterial Beta-Ketothiolase Improves Flax (Linum usitatissimum L.) Retting and Changes the Fibre Properties. Metabolites, 2023, 13, 437.	1.3	Ο
232	Assay of Reactive Oxygen/Nitrogen Species (ROS/RNS) in Arabidopsis Peroxisomes Through Fluorescent Protein Containing a Type 1 Peroxisomal Targeting Signal (PTS1). Methods in Molecular Biology, 2023, , 149-160.	0.4	0
236	Reactive oxygen and nitrogen species (RONS) signalling in seed dormancy release, perception of environmental cues, and heat stress response. Plant Growth Regulation, 0, , .	1.8	0