CITATION REPORT List of articles citing

Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity

DOI: 10.1016/j.neuro.2006.05.002 NeuroToxicology, 2006, 27, 765-76.

Source: https://exaly.com/paper-pdf/39907119/citation-report.pdf

Version: 2024-04-23

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
150	Normal cellular prion protein protects against manganese-induced oxidative stress and apoptotic cell death. <i>Toxicological Sciences</i> , 2007 , 98, 495-509	4.4	67
149	Manganese-enhanced MRI: an exceptional tool in translational neuroimaging. 2008, 34, 595-604		140
148	Manganese induces oxidative impairment in cultured rat astrocytes. <i>Toxicological Sciences</i> , 2007 , 98, 198-205	4.4	143
147	Manganese: a unique neuroimaging contrast agent. 2007 , 2, 297-305		15
146	Environmental, biochemical and molecular factors regulating manganese-induced neurological injury. 2007 , 3, 110-122		
145	Manganese neurotoxicity: a focus on the neonate. 2007 , 113, 369-77		178
144	Manganese neurotoxicity: A bioinorganic chemist perspective. 2008 , 361, 875-884		36
143	Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. 2008, 1203, 1-11		108
142	Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family. <i>Neurochemistry International</i> , 2008 , 53, 408-15	4.4	51
141	Manganese accumulates primarily in nuclei of cultured brain cells. <i>NeuroToxicology</i> , 2008 , 29, 466-70	4.4	55
140	Involvement of striatal lipid peroxidation and inhibition of calcium influx into brain slices in neurobehavioral alterations in a rat model of short-term oral exposure to manganese. NeuroToxicology, 2008, 29, 1062-8	4.4	20
139	Mitochondrial-mediated apoptosis in neural stem cells exposed to manganese. <i>Toxicological Sciences</i> , 2008 , 101, 310-20	4.4	77
138	Manganese neurotoxicity: lessons learned from longitudinal studies in nonhuman primates. 2009 , 117, 325-32		128
137	Ceruloplasmin alters the tissue disposition and neurotoxicity of manganese, but not its loading onto transferrin. <i>Toxicological Sciences</i> , 2009 , 107, 182-93	4.4	37
136	Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response. <i>Nanotoxicology</i> , 2009 , 3, 307-318	5.3	60
135	Manganese inhibits the ability of astrocytes to promote neuronal differentiation. <i>Toxicology and Applied Pharmacology</i> , 2009 , 240, 226-35	4.6	38
134	Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. <i>Toxicology and Applied Pharmacology</i> , 2009 , 240, 219-25	4.6	179

133	Acquired hepatocerebral degeneration. 2009 , 256, 320-32	74
132	Manganese and its role in Parkinson's disease: from transport to neuropathology. 2009 , 11, 252-66	213
131	Are there common biochemical and molecular mechanisms controlling manganism and parkisonism. 2009 , 11, 281-96	75
130	Manganese flux across the blood-brain barrier. 2009 , 11, 297-310	92
129	Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia. 2009 , 110, 378-89	93
128	Effect of manganese exposure on intracellular Ca2+ homeostasis and expression of NMDA receptor subunits in primary cultured neurons. <i>NeuroToxicology</i> , 2009 , 30, 941-9	40
127	Effects of manganese on juvenile mulloway (Argyrosomus japonicus) cultured in water with varying salinityImplications for inland mariculture. 2009 , 290, 311-316	25
126	Manganese-enhanced magnetic resonance imaging of hypoxic-ischemic brain injury in the neonatal rat. 2009 , 45, 880-90	35
125	Silymarin, a natural antioxidant, protects cerebral cortex against manganese-induced neurotoxicity in adult rats. 2010 , 23, 985-96	52
124	An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. <i>Toxicology and Applied Pharmacology</i> , 2010 , 249, 65-75 ^{4.6}	56
123	Protective effects of MK-801 on manganese-induced glutamate metabolism disorder in rat striatum. 2010 , 62, 381-90	16
122	Rat brain endothelial cells are a target of manganese toxicity. 2010 , 1326, 152-61	25
121	Yeast frataxin mutants display decreased superoxide dismutase activity crucial to promote protein oxidative damage. 2010 , 48, 411-20	34
120	Manganese exposure alters the expression of N-methyl-D-aspartate receptor subunit mRNAs and proteins in rat striatum. 2010 , 24, 1-9	14
119	In vivo monitoring of the transfer kinetics of trace elements in animal brains with hyphenated inductively coupled plasma mass spectrometry techniques. 2010 , 29, 392-424	19
118	Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. 2010 , 107, 15335-9	93
117	Neurotoxicology of Metals*. 2010 , 483-497	2
116	Manganese. 2011 , 439-450	

115	The extrinsic and intrinsic apoptotic pathways are involved in manganese toxicity in rat astrocytoma C6 cells. <i>Neurochemistry International</i> , 2011 , 59, 297-308	49
114	Manganese neurotoxicity presenting with depression, psychosis and catatonia. 2011 , 52, 74-7	11
113	Manganese inhalation as a Parkinson disease model. 2010 , 2011, 612989	13
112	Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury. <i>Toxicology and Applied Pharmacology</i> , 2011 , 256, 219-26	69
111	The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria?. 2011 , 50, 907-17	72
110	Prolactin is a peripheral marker of manganese neurotoxicity. 2011 , 1382, 282-90	35
109	Electrophysiological and biochemical response in rats on intratracheal instillation of manganese. 2011 , 6, 925-932	
108	Manganese induces oxidative stress, redox state unbalance and disrupts membrane bound ATPases on murine neuroblastoma cells in vitro: protective role of silymarin. 2011 , 36, 1546-57	53
107	Betel quid chewing as a source of manganese exposure: total daily intake of manganese in a Bangladeshi population. 2011 , 11, 85	6
106	□Cell subcellular localization of glucose-stimulated Mn uptake by X-ray fluorescence microscopy: implications for pancreatic MRI. 2011 , 6, 474-81	14
105	Optimisation of whole blood and plasma manganese assay by ICP-MS without use of a collision cell. 2011 , 50, 317-23	15
104	Manganese and Rhenium. 2012 , 607-636	2
103	New method of manganese-enhanced Magnetic Resonance Imaging (MEMRI) for rat brain research. 2012 , 61, 157-64	6
102	High levels of Mn[]+ inhibit secretory pathway Ca[]+/Mn[]+-ATPase (SPCA) activity and cause Golgi fragmentation in neurons and glia. 2012 , 123, 824-36	12
101	Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. 2012 , 97, 816-827	7 200
100	Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. 2012 , 2, 45-54	104
99	Manganese induces p21 expression in PC12 cells at the transcriptional level. 2012 , 215, 184-95	10
98	A nano-structured material for reliable speciation of chromium and manganese in drinking waters, surface waters and industrial wastewater effluents. 2012 , 94, 201-8	53

(2013-2012)

97	Regional cerebral metabolism in mouse under chronic manganese exposure: implications for manganism. <i>Neurochemistry International</i> , 2012 , 60, 177-85	4.4	34
96	The binding and transport of alternative metals by transferrin. 2012 , 1820, 362-78		107
95	Manganese. 2012 , 527-536		
94	Manganese-enhanced MRI optic nerve tracking: effect of intravitreal manganese dose on retinal toxicity. 2012 , 25, 1360-8		12
93	Calpain activation is involved in acute manganese neurotoxicity in the rat striatum in vivo. 2012 , 233, 182-92		12
92	The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. <i>Toxicology</i> , 2012 , 292, 90-8	4.4	84
91	Improvement of cerebellum redox states and cholinergic functions contribute to the beneficial effects of silymarin against manganese-induced neurotoxicity. 2012 , 37, 469-79		48
90	The role of the Golgi-resident SPCA Ca[l+/Mn[l+ pump in ionic homeostasis and neural function. 2012 , 37, 455-68		25
89	Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. <i>Archives of Toxicology</i> , 2013 , 87, 1231-44	5.8	62
88	Manganese inhibits ATP-induced calcium entry through the transient receptor potential channel TRPC3 in astrocytes. <i>NeuroToxicology</i> , 2013 , 34, 160-6	4.4	24
87	Mechanisms of lead and manganese neurotoxicity. 2013 , 2, 99-114		109
86	Effects of oxidative stress on apoptosis in manganese-induced testicular toxicity in cocks. 2013 , 60, 16	8-76	60
85	Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast. 2013 , 19, 933-44		94
84	Effects of manganese-toxicity on immune-related organs of cocks. 2013 , 90, 2085-100		26
83	Manganese homeostasis and transport. <i>Metal lons in Life Sciences</i> , 2013 , 12, 169-201	2.6	39
82	Manganese transport via the transferrin mechanism. <i>NeuroToxicology</i> , 2013 , 34, 118-27	4.4	61
81	Defects in base excision repair sensitize cells to manganese in S. cerevisiae. 2013 , 2013, 295635		2

79	Golgi phosphoprotein 4 (GPP130) is a sensitive and selective cellular target of manganese exposure. 2013 , 67, 205-15		15
78	Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. <i>PLoS ONE</i> , 2014 , 9, e91848	3.7	53
77	Activation of MAPK and FoxO by manganese (Mn) in rat neonatal primary astrocyte cultures. <i>PLoS ONE</i> , 2014 , 9, e94753	3.7	33
76	Biomarkers of oxidative/nitrosative stress and neurotoxicity. 2014, 863-881		
75	Chapter 7:Effect of Manganese on Signaling Pathways. 2014 , 182-198		
74	Chapter 6:Are There Distinguishable Roles for the Different Oxidation States of Manganese in Manganese Toxicity?. 2014 , 158-181		
73	Nicotinamide adenine dinucleotide prevents neuroaxonal degeneration induced by manganese in cochlear organotypic cultures. <i>NeuroToxicology</i> , 2014 , 40, 65-74	4.4	21
72	Seleno- and telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway. 2014 , 64, 192-9		24
71	Protective role of silymarin against manganese-induced nephrotoxicity and oxidative stress in rat. 2014 , 29, 1147-54		24
70	Anthocyanin-rich all (Euterpe oleracea Mart.) extract attenuates manganese-induced oxidative stress in rat primary astrocyte cultures. 2014 , 77, 390-404		46
69	Enhanced analgesic effects of tramadol and common trace element coadministration in mice. 2015 , 93, 1534-41		12
68	Mechanisms of Heavy Metal Neurotoxicity: Lead and Manganese. 2015 , 06,		11
67	A current review for biological monitoring of manganese with exposure, susceptibility, and response biomarkers. 2015 , 33, 229-54		12
66	The Role of Oxidative Stress in Gastrointestinal Tract Tissues Induced by Arsenic Toxicity in Cocks. 2015 , 168, 490-9		17
65	Manganese Is Essential for Neuronal Health. 2015 , 35, 71-108		219
64	N-acetylcysteineamide protects against manganese-induced toxicity in SHSY5Y cell line. 2015 , 1608, 157-66		25
63	Melatonin antagonizes Mn-induced oxidative injury through the activation of keap1-Nrf2-ARE signaling pathway in the striatum of mice. 2015 , 27, 156-71		42
62	. 2016,		6

61	Potential Role of Epigenetic Mechanism in Manganese Induced Neurotoxicity. 2016, 2016, 2548792		29
60	PINK1/Parkin-mediated mitophagy play a protective role in manganese induced apoptosis in SH-SY5Y cells. 2016 , 34, 212-219		46
59	The Influence of Manganese and Glutamine Intake on Antioxidants and Neurotransmitter Amino Acids Levels in Rats' Brain. 2016 , 41, 2129-39		17
58	Manganese neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. 2016 , 136, 677-691		72
57	"Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies". 2016 , 17, 57		174
56	Biomedical and Pharmaceutical Applications. 2016 , 359-462		5
55	Manganese and aging. NeuroToxicology, 2016 , 56, 262-268	4.4	28
54	Speciation analysis and fractionation of manganese: A review. 2016 , 80, 112-124		37
53	Brain biometals and Alzheimer's disease - boon or bane?. 2017 , 127, 99-108		37
52	Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington's disease mouse model. 2017 , 1863, 1596-1604		25
51	Redox dynamics of manganese as a mitochondrial life-death switch. 2017, 482, 388-398		75
50	Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. <i>Toxicology and Applied Pharmacology</i> , 2017 , 331, 142-153	4.6	34
49	Interplay between lysosomal, mitochondrial and death receptor pathways during manganese-induced apoptosis in glial cells. <i>Archives of Toxicology</i> , 2017 , 91, 3065-3078	5.8	14
48	Inhibition of Calpains Protects Mn-Induced Neurotransmitter release disorders in Synaptosomes from Mice: Involvement of SNARE Complex and Synaptic Vesicle Fusion. <i>Scientific Reports</i> , 2017 , 7, 3701	4.9	12
47	Biometal Dyshomeostasis and Toxic Metal Accumulations in the Development of Alzheimer's Disease. <i>Frontiers in Molecular Neuroscience</i> , 2017 , 10, 339	6.1	63
46	Manganese. 2017 , 567-581		7
45	Nutritional, Genetic, and Molecular Aspects of Manganese Intoxication. 2017, 367-376		5
44	Manganese and Mitochondrial Function. 2017 , 389-396		4

43	Intake of arsenic and selenium in a Bangladeshi population investigated using inductively coupled plasma mass spectrometry. <i>Biomedical Spectroscopy and Imaging</i> , 2017 , 5, 373-391	1.3	6
42	Protective effect of vinpocetine against neurotoxicity of manganese in adult male rats. <i>Naunyn-Schmiedebergts Archives of Pharmacology</i> , 2018 , 391, 729-742	3.4	19
41	Subchronic Manganese Exposure Impairs Neurogenesis in the Adult Rat Hippocampus. <i>Toxicological Sciences</i> , 2018 , 163, 592-608	4.4	9
40	Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 15378-15389	5.1	20
39	Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. <i>NeuroToxicology</i> , 2018 , 64, 204-218	4.4	70
38	Potential for stem cell treatment in manganism. <i>Neurochemistry International</i> , 2018 , 112, 134-145	4.4	3
37	Neurotoxicology of Metals. 2018 , 476-488		
36	Heme Oxygenase-1 protects astroglia against manganese-induced oxidative injury by regulating mitochondrial quality control. <i>Toxicology Letters</i> , 2018 , 295, 357-368	4.4	16
35	Manganese. 2018 , 445-454		1
34	The effect of manganese nanoparticles on apoptosis and on redox and immune status in the tissues of young turkeys. <i>PLoS ONE</i> , 2018 , 13, e0201487	3.7	13
33	Mechanism and Health Effects of Heavy Metal Toxicity in Humans. 2019,		109
32	Role for calcium signaling in manganese neurotoxicity. <i>Journal of Trace Elements in Medicine and Biology</i> , 2019 , 56, 146-155	4.1	24
31	The role of manganese in neuroinflammation. Advances in Neurotoxicology, 2019, 3, 121-131	1.6	3
30	Differential DNA methylation in newborns with maternal exposure to heavy metals from an e-waste recycling area. <i>Environmental Research</i> , 2019 , 171, 536-545	7.9	30
29	Environmental Toxicants and Male Reproductive Toxicity: Oxidation-Reduction Potential as a New Marker of Oxidative Stress in Infertile Men. <i>Environmental Science and Engineering</i> , 2019 , 99-115	0.2	3
28	Manganese-enhanced magnetic resonance imaging in the whole visual pathway: chemical identification and neurotoxic changes. <i>Acta Radiologica</i> , 2019 , 60, 1653-1662	2	1
27	Biomarkers of Oxidative/Nitrosative Stress and Neurotoxicity. 2019 , 1013-1031		
26	The effect of the source and dose of manganese on the performance, digestibility and distribution of selected minerals, redox, and immune status of turkeys. <i>Poultry Science</i> , 2019 , 98, 1379-1389	3.9	11

(2022-2020)

25	Immunosuppression of aquatic organisms exposed to elevated levels of manganese: From global to molecular perspective. <i>Developmental and Comparative Immunology</i> , 2020 , 104, 103536	3.2	4
24	Heavy Metals Exposure and Alzheimer's Disease and Related Dementias. <i>Journal of Alzheimerts Disease</i> , 2020 , 76, 1215-1242	4.3	42
23	The aging brain: impact of heavy metal neurotoxicity. Critical Reviews in Toxicology, 2020, 50, 801-814	5.7	9
22	Evaluation of Mn exposure in the male reproductive system and its relationship with reproductive dysfunction in mice. <i>Toxicology</i> , 2020 , 441, 152504	4.4	2
21	Influence of Dietary Zinc, Copper, and Manganese on the Intestinal Health of Broilers Under Challenge. <i>Frontiers in Veterinary Science</i> , 2020 , 7, 13	3.1	9
20	Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer's Disease. <i>Molecular Neurobiology</i> , 2021 , 58, 1-20	6.2	32
19	Electron paramagnetic spectrum of dimanganic human serum transferrin. <i>Polyhedron</i> , 2021 , 203, 11522	24 .7	1
18	Spatially resolved imaging methods to probe metals in the brain: from subcellular to organ level. 2012 , 211-222		1
17	Manganese in health and disease. Metal Ions in Life Sciences, 2013, 13, 199-227	2.6	117
16	Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response. <i>Nanotoxicology</i> , 2009 , 3, 307-318	5.3	16
16 15		5.3	16
	Nanotoxicology, 2009 , 3, 307-318	5.3	
15	Nanotoxicology, 2009, 3, 307-318 Transport and Biological Impact of Manganese. 2010, 127-141 Effect of manganese exposure on the reproductive organs in immature female rats. Development &	0.2	1
15 14	Nanotoxicology, 2009, 3, 307-318 Transport and Biological Impact of Manganese. 2010, 127-141 Effect of manganese exposure on the reproductive organs in immature female rats. Development & Reproduction, 2012, 16, 295-300 Ameliorative Effects of <i>Syzygium aromaticum</i> Essential Oil on Fertility in Male		1 8
15 14 13	Transport and Biological Impact of Manganese. 2010, 127-141 Effect of manganese exposure on the reproductive organs in immature female rats. Development & Reproduction, 2012, 16, 295-300 Ameliorative Effects of <i>Syzygium aromaticum</i> Essential Oil on Fertility in Male Rats Exposed to Manganese. Advances in Sexual Medicine, 2013, 03, 85-91 Do Manganese and Iron in Association Cause Biochemical and Genotoxic Changes in Oreochromis	0.2	1 8
15 14 13	Transport and Biological Impact of Manganese. 2010, 127-141 Effect of manganese exposure on the reproductive organs in immature female rats. Development & Reproduction, 2012, 16, 295-300 Ameliorative Effects of <i>Syzygium aromaticum</i> Essential Oil on Fertility in Male Rats Exposed to Manganese. Advances in Sexual Medicine, 2013, 03, 85-91 Do Manganese and Iron in Association Cause Biochemical and Genotoxic Changes in Oreochromis Niloticus (Teleostei: Cichlidae)?. Bulletin of Environmental Contamination and Toxicology, 2021, 1	0.2	1 8
15 14 13 12	Transport and Biological Impact of Manganese. 2010, 127-141 Effect of manganese exposure on the reproductive organs in immature female rats. Development & Reproduction, 2012, 16, 295-300 Ameliorative Effects of <i>Syzygium aromaticum</i> Essential Oil on Fertility in Male Rats Exposed to Manganese. Advances in Sexual Medicine, 2013, 03, 85-91 Do Manganese and Iron in Association Cause Biochemical and Genotoxic Changes in Oreochromis Niloticus (Teleostei: Cichlidae)?. Bulletin of Environmental Contamination and Toxicology, 2021, 1 Heavy Metals and White Matter Injury. 2014, 555-570 Changes in secretory pathway Ca(2+)-ATPase 2 following focal cerebral ischemia/reperfusion injury.	0.2	1 8 2

7 Manganese. **2022**, 587-602

6	A Novel Selenium Polysaccharide Alleviates the Manganese (Mn)-Induced Toxicity in Hep G2 Cells and <i>International Journal of Molecular Sciences</i> , 2022 , 23,	6.3	O
5	Mineral paragenesis in Paleozoic manganese ore deposits: Depositional versus post-depositional formation processes. <i>Geochimica Et Cosmochimica Acta</i> , 2022 , 325, 65-86	5.5	О
4	The cGAS-STING-mediated NLRP3 inflammasome is involved in the neurotoxicity induced by manganese exposure. 2022 , 154, 113680		О
3	Essential metals in health and disease. 2022 , 367, 110173		9
2	Exposure of metal toxicity in Alzheimer disease: An extensive review. 13,		1
1	Behavioral and Cytological Differences between Two Parkinson Disease Experimental Models.		0