CITATION REPORT List of articles citing

DOI: 10.1021/je050186n Journal of Chemical & Samp; Engineering Data, 2006, 51, 785-8

Source: https://exaly.com/paper-pdf/39890399/citation-report.pdf

Version: 2024-04-23

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
557	Simultaneous Analysis of Equilibrium Fluctuations at the Surface and in the Bulk of a Binary Liquid Mixture by Dynamic Light Scattering.		
556	Giant Casimir Nonequilibrium Forces Drive Coil to Globule Transition in Polymers.		
555	Density and Phase Behavior of the CO2 + Methylbenzene System in Wide Ranges of Temperatures and Pressures.		
554	Solubility of Water in Hydrogen at High Pressures: A Molecular Simulation Study.		
553	Speed-of-Sound Measurements in n-Nonane at Temperatures between 293.15 and 393.15 K and at Pressures up to 100 MPa. 2006 , 27, 1083-1094		15
552	Multiparameter equations of state for selected siloxanes. Fluid Phase Equilibria, 2006, 244, 193-211	2.5	98
551	Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters. <i>Journal of Chemical Physics</i> , 2007 , 127, 164720	3.9	21
550	Experimental Investigation of the Solubility of CO2in (Acetone + Water). <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 1003-1009	2.8	30
549	PIIExperimental Measurements and Data Correlation of Pentaerythritol Esters. <i>Journal of Chemical & Data</i> , 2007 , 52, 108-115	2.8	20
548	ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 2. Equations of state on demand and dynamic updates over the web. 2007 , 47, 1713-25		54
547	Automated Densimeter for the Rapid Characterization of Industrial Fluids Industrial & amp; Engineering Chemistry Research, 2007, 46, 8264-8269	3.9	50
546	Solubility of the Single Gases Methane and Xenon in the Ionic Liquid [bmim][CH3SO4]. <i>Journal of Chemical & Ch</i>	2.8	46
545	Solubility of the Single Gases Methane and Xenon in the Ionic Liquid [hmim][Tf2N] Industrial & amp; Engineering Chemistry Research, 2007, 46, 8236-8240	3.9	81
544	Viscosity of Diisodecyl Phthalate by Surface Light Scattering (SLS). <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 1803-1810	2.8	38
543	Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels. 2007 ,		207
542	Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels. 2007,		217
541	Thermodynamic study of the n-octane-1-pentanol-sodium dodecyl sulfate solutions in water. 2007 , 454, 99-108		32

Preliminary assessment of solar organic Rankine cycles for driving a desalination system. 2007, 216, 252-275 540 Boyle temperatures for pure substances. Fluid Phase Equilibria, 2007, 258, 148-154 539 2.5 30 Volume translation in equations of state as a means of accurate property estimation. Fluid Phase 538 18 2.5 Equilibria, 2007, 260, 316-325 Density measurements of methyl fluoride at high pressures and temperatures. Journal of Chemical 2.9 537 Thermodynamics, 2007, 39, 1151-1156 Isochoric Heat-Capacity Measurements for Pure Methanol in the Near-Critical and Supercritical 536 16 Regions. 2007, 28, 163-193 The failure of the LennardDones n,m intermolecular potentials to represent some common gases. 2.5 535 Fluid Phase Equilibria, 2008, 269, 56-58 High-Pressure Densities and Derived Volumetric Properties (Excess, Apparent and Partial Molar 534 45 Volumes) of Binary Mixtures of Methanol + [BMIM][PF6]. 2008, 37, 801-833 Measurement and correlation of the (p, $\square T$) relation of liquid n-heptane, n-nonane, 2,4-dichlorotoluene, and bromobenzene in the temperature range from (233.15 to 473.15) K at 2.9 50 533 pressures up to 30 MPa for use as density reference liquids. Journal of Chemical Thermodynamics, A new method to calculate the thermodynamical properties of liquids from accurate 532 2.9 10 speed-of-sound measurements. Journal of Chemical Thermodynamics, 2008, 40, 1558-1564 Measurements of the isochoric heat capacity, the critical point (TC, 1) and vapor I quid coexistence curve (TS, B) of high-purity toluene near the critical point. Fluid Phase Equilibria, 2008, 531 2.5 27 263, 71-84 Multiparameter equations of state for siloxanes: [(CH3)3-Si-O1/2]2-[O-Si-(CH3)2]i=1,[B, and 530 2.5 60 [O-Si-(CH3)2]6. Fluid Phase Equilibria, 2008, 263, 115-130 Dynamic viscosity estimation of hydrogen sulfide using a predictive scheme based on molecular 529 2.5 14 dynamics. Fluid Phase Equilibria, 2008, 269, 19-24 528 Hydrogen Sulfide Viscosity Modeling. 2008, 22, 3424-3434 20 Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric 260 527 pressure. **2008**, 112, 12420-30 Density of Diethyl Adipate using a New Vibrating Tube Densimeter from (293.15 to 403.15) K and up to 140 MPa. Calibration and Measurements. Journal of Chemical & Data, 2008, 526 2.8 111 53, 986-994 Intermolecular potential energy surface and second virial coefficients for the nonrigid water-CO 525 3.9 dimer. Journal of Chemical Physics, 2009, 131, 154305 The influence of molecular complexity on expanding flows of ideal and dense gases. 2009, 21, 086101 524 32 Thermodynamic analysis and optimization of a novel N2OffO2 cascade system for refrigeration 54 and heating. 2009, 32, 1077-1084

522	Thermodynamic properties of acetone calculated from accurate experimental speed of sound measurements at low temperatures and high pressures. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 506-512	2.9	13
521	Automated densimetric system: Measurements and uncertainties for compressed fluids. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 632-638	2.9	109
520	Nitrous oxide: Saturation properties and the phase diagram. <i>Journal of Chemical Thermodynamics</i> , 2009 , 41, 1394-1399	2.9	4
519	Description of linear siloxanes with PC-SAFT equation. Fluid Phase Equilibria, 2009, 283, 22-30	2.5	22
518	On the computation of the fundamental derivative of gas dynamics using equations of state. <i>Fluid Phase Equilibria</i> , 2009 , 286, 43-54	2.5	22
517	Real-gas equations of state based on the Lennard-Jones potential. 2009 , 1, 677-694		
516	Volumetric Properties of 2-Alkylamines (2-Aminobutane and 2-Aminooctane) at Pressures up to 140 MPa and Temperatures between (293.15 and 403.15) K. <i>Journal of Chemical & Data</i> , 2009 , 54, 1702-1709	2.8	6
515	Viscosity and Density of Five Hydrocarbon Liquids at Pressures up to 200 MPa and Temperatures up to 473 KII <i>Journal of Chemical & Description of Chemical & Description Data</i> , 2009 , 54, 359-366	2.8	108
514	Solubility of the Single Gases Carbon Monoxide and Oxygen in the Ionic Liquid [hmim][Tf2N]. <i>Journal of Chemical & Data</i> , 2009, 54, 966-971	2.8	43
513	Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. <i>Journal of Chemical & Data</i> , 2009, 54, 3141-3180	2.8	228
512	Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide. 2009 , 4, 159-168		1
511	Chemical Looping Combustion Using the Direct Combustion of Liquid Metal in a Gas Turbine Based Cycle. 2010 ,		
510	Properties of saturated fluorocarbons: Experimental data and modeling using perturbed-chain-SAFT. <i>Fluid Phase Equilibria</i> , 2010 , 292, 64-70	2.5	15
509	An analytical perturbed equation of state for hard chain fluids: Application to n-alkanes and n-perfluoroalkanes. <i>Fluid Phase Equilibria</i> , 2010 , 295, 50-59	2.5	2
508	Liquid densities of THF and excess volumes for the mixture with water in a wide temperature and pressure range. <i>Fluid Phase Equilibria</i> , 2010 , 295, 201-207	2.5	8
507	A recursive equation method for the determination of density and heat capacity: Comparison between isentropic and isothermal integration paths. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 462-465	2.9	5
506	Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC). 2010 , 51, 2846-2	856	286
505	Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC). 2010 , 51, 2913-2920		56

504	Density of rocket propellant (RP-1 fuel) at high temperatures and high pressures. 2010, 89, 1731-1735		7
503	Numerical simulation of gas-contaminated refrigerant two-phase flow through adiabatic capillary tubes. 2010 , 53, 5430-5439		7
502	Thermodynamic analyses and optimization of a transcritical N2O refrigeration cycle. 2010 , 33, 33-40		16
501	Vapor pressures of 1,1,1,2,3,3,3-heptafluoropropane, 1,1,1,3,3,3-hexafluoropropane and 1,1,1,3,3-pentafluoropropane. <i>Fluid Phase Equilibria</i> , 2010 , 290, 127-136	2.5	16
500	Erratum to IDn the computation of the fundamental derivative of gas dynamics using equations of state [Fluid Phase Equilibr. 286 (1) (2009) 43 B4]. Fluid Phase Equilibria, 2010, 288, 162-174	2.5	3
499	Computational Study of a High-Expansion Ratio Radial Organic Rankine Cycle Turbine Stator. 2010 , 132,		38
498	Influence of Thermodynamic Models in Two-Dimensional Flow Simulations of Turboexpanders. 2010 , 132,		30
497	Density and surface tension of ionic liquids. 2010 , 114, 17025-36		187
496	Densities and Excess Molar Volumes for Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate with Solvents. <i>Journal of Chemical & Data</i> , 2010 , 55, 4068-4074	2.8	72
495	Engineering Model for Self-Pressurizing Saturated-N2O-Propellant Feed Systems. 2010 , 26, 706-714		22
494	Dissolution potential of SO2 Co-injected with CO2 in geologic sequestration. 2010 , 44, 349-55		52
493	Isobaric Thermal Expansivities of Toluene Measured by Scanning Transitiometry at Temperatures from (243 to 423) K and Pressures up to 200 MPa Journal of Chemical & Engineering Data, 2010, 55, 5489-5496	2.8	23
492	An Empirical Functional Representation, Extrapolation, and Internal Consistency of Second Virial Coefficients <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 4332-4339	2.8	1
491	Supersonic beams at high particle densities: model description beyond the ideal gas approximation. 2010 , 114, 11189-201		14
490	Ab initio intermolecular potential energy surface and thermophysical properties of hydrogen sulfide. 2011 , 13, 13749-58		55
489	(p, □T) Behavior of Two Mixtures of Carbon Monoxide with Nitrogen in the Temperature Range from (250 to 400) K and Pressures up to 20 MPa. <i>Journal of Chemical & Data, Engineering Data, 2011</i> , 56, 3933-3939	2.8	7
488	Reference Viscosities of Gaseous Methane and Hydrogen Sulfide at Low Density in the Temperature Range from (292 to 682) K. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 3265-32	 72 ⁸	25
487	Modeling Gas Solubilities in the Aqueous Solution of Methyldiethanolamine. <i>Industrial & amp;</i> Engineering Chemistry Research, 2011 , 50, 6436-6446	3.9	19

486	Simultaneous Adsorption of H2S and CO2 on Triamine-Grafted Pore-Expanded Mesoporous MCM-41 Silica. 2011 , 25, 1310-1315		70
4 ⁸ 5	Efficient Implementation of Short Fundamental Equations of State for the Numerical Simulation of Dense Gas Flows. 2011 ,		1
484	Viscosity and Density Measurements for Sour Gas Fluids at High Temperatures and Pressures. 2011 , 23-3	39	2
483	Molecular Insight into the Adsorption of H2S in the Flexible MIL-53(Cr) and Rigid MIL-47(V) MOFs: Infrared Spectroscopy Combined to Molecular Simulations. 2011 , 115, 2047-2056		132
482	Adsorption equilibria of O2, Ar, Kr and Xe on activated carbon and zeolites: single component and mixture data. 2011 , 17, 371-383		84
481	Thermodynamic analysis and optimization of a novel two-stage transcritical N2O cycle. 2011 , 34, 991-999	9	12
480	Liquid densities of acetone and n-heptane and excess volumes of the binary system in a wide temperature and pressure range. <i>Fluid Phase Equilibria</i> , 2011 , 300, 110-115	2.5	8
479	JouleII homson coefficients and JouleII homson inversion curves for pure compounds and binary systems predicted with the group contribution equation of state VTPR. Fluid Phase Equilibria, 2011, 306, 181-189	2.5	16
478	Compressed liquid densities of 1,1,1,3,3-pentafluoropropane (HFC-245fa) and 1,1,1,3,3,3-hexafluoropropane (HFC-236fa). <i>Fluid Phase Equilibria</i> , 2011 , 307, 1-5	2.5	9
477	Experimental and theoretical study of the adsorption of pure molecules and binary systems containing methane, carbon monoxide, carbon dioxide and nitrogen. Application to the syngas generation. 2011 , 66, 3850-3858		42
476	Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling. <i>Energy</i> , 2011 , 36, 447-458	7.9	115
475	Description of HFO-1234yf with BACKONE equation of state. Fluid Phase Equilibria, 2011 , 305, 204-211	2.5	26
474	Heat capacity of rocket propellant (RP-1 fuel) at high temperatures and high pressures. 2011 , 90, 563-56	7	10
473	Measurement and correlation of the (p,] T) relation of liquid cyclohexane, toluene, and ethanol in the temperature range from 233.15 K to 473.15 K at pressures up to 30 MPa for use as density reference liquids. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 117-132	2.9	32
472	High pressure densities of carbon dioxide+dipentaerythritol hexaheptanoate: New experimental setup and volumetric behavior. 2011 , 58, 189-197		10
471	Scaling of the viscosity of the Lennard-Jones chain fluid model, argon, and some normal alkanes. <i>Journal of Chemical Physics</i> , 2011 , 134, 064505	3.9	76
470	Thermodynamic Analyses of Single Brayton and Combined Brayton R ankine Cycles for Distributed Solar Thermal Power Generation. 2011 ,		1
469	Chemical Looping Combustion Using the Direct Combustion of Liquid Metal in a Gas Turbine Based Cycle. 2011 , 133,		3

468	Catalytic Decomposition of Nitrous Oxide Monopropellant for Hybrid Motor Re-Ignition. 2012,		6
467	Initial Experimental Investigations of Self-Pressurizing Propellant Dynamics. 2012,		5
466	Reference Correlation of the Thermal Conductivity of Toluene from the Triple Point to 1000 K and up to 1000 MPa. 2012 , 41, 023101-023101-12		45
465	Isobaric Heat Capacity Measurements of Liquid Methane, Ethane, and Propane by Differential Scanning Calorimetry at High Pressures and Low Temperatures. <i>Journal of Chemical & Description of Chemical & Description Description</i> 10 (2012), 57, 3573-3580	2.8	16
464	Reference Correlation for the Viscosity Surface of Hydrogen Sulfide. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 3014-3018	2.8	6
463	Thermophysical Properties of Dilute Hydrogen Sulfide Gas. <i>Journal of Chemical & Data</i> , 2012 , 57, 1312-1317	2.8	25
462	A systematic approach for development of an OPLS-like force field and its application to hydrofluorocarbons. 2012 , 116, 14389-97		14
461	Surface tension and 0.1MPa densities of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based tris(pentafluoroethyl)trifluorophosphate ionic liquids. <i>Fluid Phase Equilibria</i> , 2012 , 333, 38-46	2.5	23
460	A fundamental equation of state for trifluoromethyl methyl ether (HFE-143m) and its application to refrigeration cycle analysis. 2012 , 35, 1003-1013		8
459	Thermodynamic and phase behaviour of fluids embedded with nanostructured materials. 2012 , 62, 44	-49	5
459 458	Thermodynamic and phase behaviour of fluids embedded with nanostructured materials. 2012 , 62, 44. Experimental Study of pl Relationship of Compressed Liquid Phase for Octafluoropropane and Two near Azeotropic Ternary HFC/HC Mixtures. <i>Journal of Chemical & Data</i> , 2012 , 57, 1627-1634	-49 2.8	5
	Experimental Study of pl Relationship of Compressed Liquid Phase for Octafluoropropane and Two near Azeotropic Ternary HFC/HC Mixtures. <i>Journal of Chemical & Data</i> , 2012,		
458	Experimental Study of pl Relationship of Compressed Liquid Phase for Octafluoropropane and Two near Azeotropic Ternary HFC/HC Mixtures. <i>Journal of Chemical & Density</i> , Speed of Sound, and Viscosity Measurements of Reference Materials for Biofuels. 2012 ,		4
458 457	Experimental Study of pl Relationship of Compressed Liquid Phase for Octafluoropropane and Two near Azeotropic Ternary HFC/HC Mixtures. <i>Journal of Chemical & Demostry Engineering Data</i> , 2012, 57, 1627-1634 Density, Speed of Sound, and Viscosity Measurements of Reference Materials for Biofuels. 2012, 26, 1844-1861 Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and	2.8	4 34
458 457 456	Experimental Study of pll Relationship of Compressed Liquid Phase for Octafluoropropane and Two near Azeotropic Ternary HFC/HC Mixtures. <i>Journal of Chemical & Density</i> , Engineering Data, 2012, 57, 1627-1634 Density, Speed of Sound, and Viscosity Measurements of Reference Materials for Biofuels. 2012, 26, 1844-1861 Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and Supercritical Regions. <i>Journal of Chemical & Data</i> , 2012, 57, 263-268	2.8	4 34 56
458 457 456 455	Experimental Study of pll Relationship of Compressed Liquid Phase for Octafluoropropane and Two near Azeotropic Ternary HFC/HC Mixtures. <i>Journal of Chemical & Demical & Demica</i>	2.8	4 34 56 46
458 457 456 455 454	Experimental Study of pll Relationship of Compressed Liquid Phase for Octafluoropropane and Two near Azeotropic Ternary HFC/HC Mixtures. <i>Journal of Chemical & Density Engineering Data</i> , 2012, 57, 1627-1634 Density, Speed of Sound, and Viscosity Measurements of Reference Materials for Biofuels. 2012, 26, 1844-1861 Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and Supercritical Regions. <i>Journal of Chemical & Data</i> , 2012, 57, 263-268 Thermodynamic curvature from the critical point to the triple point. 2012, 86, 021130 Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. 2012, 22, 10210 Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative	2.8	4 34 56 46 98

450	The GERG-2008 Wide-Range Equation of State for Natural Gases and Other Mixtures: An Expansion of GERG-2004. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 3032-3091	2.8	618
449	Achieving elongated lesions employing cardiac cryoablation: a preclinical evaluation study. 2012 , 65, 145-50		4
448	A rigorous approach for predicting the slope and curvature of the temperature#ntropy saturation boundary of pure fluids. <i>Energy</i> , 2012 , 45, 888-899	7.9	24
447	Increased power production through enhancements to the Organic Flash Cycle (OFC). <i>Energy</i> , 2012 , 45, 686-695	7.9	61
446	An On-Line Acoustic Fluorocarbon Coolant Mixture Analyzer for the ATLAS Silicon Tracker. 2012 , 59, 2367-2374		4
445	Vaporliquid Equilibrium Measurements of the Binary Mixtures Nitrogen + Acetone and Oxygen + Acetone. <i>Journal of Chemical & Data</i> , 2012, 57, 1672-1677	2.8	12
444	Comment on "Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide". 2012 , 116, 14731-3		3
443	Sealed Gravitational Capillary Viscometry of Dimethyl Ether and Two Next-Generation Alternative Refrigerants. 2012 , 117, 231-56		31
442	Model of the expansion process for R245fa in an Organic Rankine Cycle (ORC). <i>Applied Thermal Engineering</i> , 2012 , 40, 248-257	5.8	39
441	A one dimensional model for the determination of an ejector entrainment ratio. 2012 , 35, 772-784		41
440	Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy. <i>Energy</i> , 2012 , 42, 213-223	7.9	102
439	A complete procedure for acidic gas separation by adsorption on MIL-53 (Al). 2012 , 154, 93-99		62
438	Sampling from fluid mixtures under high pressure: Review, case study and evaluation. 2012 , 66, 2-15		35
437	Compressed liquid densities for the (n-heptane + n-decane) and (n-octane + n-decane) systems from T = (313 to 363) K. <i>Journal of Chemical Thermodynamics</i> , 2012 , 44, 133-147	2.9	31
436	High pressure volumetric properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-(2-methoxyethyl)-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide. <i>Journal of Chemical Thermodynamics</i> , 2012 , 48, 213-220	2.9	44
435	Thermophysical properties of (diphenyl ether+biphenyl) mixtures for their use as heat transfer fluids. <i>Journal of Chemical Thermodynamics</i> , 2012 , 50, 80-88	2.9	36
434	Experimental measurement of speeds of sound in dense supercritical carbon monoxide and development of a high-pressure, high-temperature equation of state. 2013 , 117, 5675-82		2
433	Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate. <i>Journal of Chemical Thermodynamics</i> , 2013 , 67, 55-62	2.9	96

432	Dynamic Modeling of Organic Rankine Cycle Power Systems. 2013 , 135,		34
431	The Role of Dense Gas Dynamics on Organic Rankine Cycle Turbine Performance. 2013 , 135,		34
430	Viscosity measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). <i>Journal of Chemical Thermodynamics</i> , 2013 , 63, 24-30	2.9	56
429	Bubble-Point Measurements of Eight Binary Mixtures for Organic Rankine Cycle Applications. Journal of Chemical & Data, 2013, 58, 1853-1860	2.8	19
428	Generalized Fundamental Equation of State for the Normal Alkanes ((hbox $\{C\}_{5}_{-}\}$ hbox $\{C\}_{5}$)). 2013 , 34, 1865-1905		7
427	Thermodynamic Analyses of Single Brayton and Combined BraytonRankine Cycles for Distributed Solar Thermal Power Generation. 2013 , 135,		5
426	Bottoming organic Rankine cycle for a small scale gas turbine: A comparison of different solutions. 2013 , 106, 355-364		68
425	A novel application of Recursive Equation Method for determining thermodynamic properties of single phase fluids from density and speed-of-sound measurements. <i>Journal of Chemical Thermodynamics</i> , 2013 , 58, 422-427	2.9	5
424	Communication: Fundamental equation of state correlation with hybrid data sets. <i>Journal of Chemical Physics</i> , 2013 , 139, 041102	3.9	22
423	Computer simulation of cardiac cryoablation: comparison with in vivo data. 2013 , 35, 1754-61		4
423	Computer simulation of cardiac cryoablation: comparison with in vivo data. 2013 , 35, 1754-61 Simulation of the behaviour of a centrifugal chiller during quick start-up. 2013 , 36, 222-236		6
422	Simulation of the behaviour of a centrifugal chiller during quick start-up. 2013 , 36, 222-236 Performance improvement of a radial organic Rankine cycle turbine by means of automated	2.9	6
422	Simulation of the behaviour of a centrifugal chiller during quick start-up. 2013 , 36, 222-236 Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. 2013 , 227, 637-645 Ideal gas contribution to the isobaric heat capacity of refrigerants: Poling et al. applynomial	2.9	6
422 421 420	Simulation of the behaviour of a centrifugal chiller during quick start-up. 2013 , 36, 222-236 Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. 2013 , 227, 637-645 Ideal gas contribution to the isobaric heat capacity of refrigerants: Poling et al. applynomial correlation vs DIPPR data. <i>Journal of Chemical Thermodynamics</i> , 2013 , 61, 90-99 Measurements of the Speed of Sound in Liquid Toluene. <i>Journal of Chemical & Dournal & Dour</i>		6 42 6
422 421 420 419	Simulation of the behaviour of a centrifugal chiller during quick start-up. 2013, 36, 222-236 Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. 2013, 227, 637-645 Ideal gas contribution to the isobaric heat capacity of refrigerants: Poling et al. B polynomial correlation vs DIPPR data. Journal of Chemical Thermodynamics, 2013, 61, 90-99 Measurements of the Speed of Sound in Liquid Toluene. Journal of Chemical & Damp; Engineering Data, 2013, 58, 1398-1406 Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle). Energy,	2.8	6 42 6
422 421 420 419 418	Simulation of the behaviour of a centrifugal chiller during quick start-up. 2013, 36, 222-236 Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. 2013, 227, 637-645 Ideal gas contribution to the isobaric heat capacity of refrigerants: Poling et al. B polynomial correlation vs DIPPR data. Journal of Chemical Thermodynamics, 2013, 61, 90-99 Measurements of the Speed of Sound in Liquid Toluene. Journal of Chemical & Data, 2013, 58, 1398-1406 Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle). Energy, 2013, 58, 107-116 Density measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and	2.8	6 42 6 9

414	Heat capacities and densities of the binary mixtures containing ethanol, cyclohexane or 1-hexene at high pressures. <i>Journal of Chemical Thermodynamics</i> , 2013 , 57, 550-557	2.9	18
413	Advanced calibration, adjustment, and operation of a density and sound speed analyzer. <i>Journal of Chemical Thermodynamics</i> , 2013 , 57, 276-285	2.9	175
412	Determination of the Relative Permittivity, E, and Conductance, G, of Methylbenzene at Temperatures between (303 and 393) K and Pressures below 60 MPa with a Concentric Cylinder Capacitor at a Frequency of 1 kHz. <i>Journal of Chemical & Engineering Data</i> , 2013, 58, 1340-1348	2.8	2
411	A new semi-empirical equation for compressed liquid densities of n-alkanes. 2013 , 8, 425-432		1
410	The Influence of Working Fluid Characteristic Parameters on Turbine Performance for the Small Scale ORC System. 2013 ,		
409	Mass Flow Rate and Isolation Characteristics of Injectors for Use with Self-Pressurizing Oxidizers in Hybrid Rockets. 2013 ,		10
408	Siloxanes as Working Fluids for Mini-ORC Systems Based on High-Speed Turbogenerator Technology. 2013 , 135,		26
407	Design, Simulation, and Construction of a Test Rig for Organic Vapors. 2013 , 135,		27
406	Performance comparison of natural refrigerants based cascade systems for ultra-low-temperature applications. 2013 , 32, 406-420		5
405	A combined ultrasonic flow meter and binary vapour mixture analyzer for the ATLAS silicon tracker. 2013 , 8, P02006-P02006		12
404	Review and Evaluation of Models for Self-Pressurizing Propellant Tank Dynamics. 2013,		7
403	Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine. 2013 , 52, 042016		
402	Evaluation of Liquid and Vapor Penetration of Sprays from a Multi-Hole Gasoline Fuel Injector Operating Under Engine-Like Conditions. 2014 , 7, 1017-1033		40
401	Original pycnometers for volatile liquid density over wide ranges of temperature and pressure: practical example. 2014 , 51, 154-160		8
400	Performance of a 5 kWe Solar-only Organic Rankine Unit Coupled to a Reverse Osmosis Plant. 2014 , 49, 2251-2260		23
399	Fundamentals. 2014 , 6, 13-44		
398	Numerical Study of Multistage Transcritical Organic Rankine Cycle Axial Turbines. 2014 , 136,		9
397	A multiscale thermo-fluid computational model for a two-phase cooling system. 2014 , 282, 239-268		6

396	Impact of CO2 impurity on CO2 compression, liquefaction and transportation. 2014 , 63, 2764-2778		37
395	Effects of Injector Design on Combustion Stability in Hybrid Rockets Using Self-Pressurizing Oxidizers. 2014 ,		5
394	Physical apparatus parameters and model for vibrating tube densimeters at pressures to 140 MPa and temperatures to 473 K. 2014 , 85, 095111		36
393	Crossover Equation of State for Selected Hydrocarbons (C4tt7). 2014 , 22, 1291-1297		8
392	Experimental vapor pressures and thermodynamic models of perfluorocarbons PP80 and PP90. <i>Fluid Phase Equilibria</i> , 2014 , 370, 50-57	2.5	1
391	A thermodynamic analysis of waste heat recovery from reciprocating engine power plants by means of Organic Rankine Cycles. <i>Applied Thermal Engineering</i> , 2014 , 70, 33-41	5.8	37
390	Techno-economic feasibility assessment of a biomass cogeneration plant based on an Organic Rankine Cycle. 2014 , 66, 707-713		59
389	Experimental solubility of hydrogen sulfide and carbon dioxide in dimethylformamide and dimethylsulfoxide. <i>Fluid Phase Equilibria</i> , 2014 , 367, 29-37	2.5	37
388	(Solid + liquid) phase equilibria and heat capacity of (diphenyl ether + biphenyl) mixtures used as thermal energy storage materials. <i>Journal of Chemical Thermodynamics</i> , 2014 , 74, 43-50	2.9	28
387	On estimating self-diffusivities by the extended corresponding states principle. 2014 , 108, 134-153		1
386	Helmholtz energy and extended corresponding states model for the prediction of thermodynamic properties of refrigerants. <i>Fluid Phase Equilibria</i> , 2014 , 369, 13-32	2.5	2
385	Determination of absolute gas adsorption isotherms: simple method based on the potential theory for buoyancy effect correction of pure gas and gas mixtures adsorption. 2014 , 20, 397-408		11
384	Fluid Phase Behavior of Nitrogen + Acetone and Oxygen + Acetone by Molecular Simulation, Experiment and the Peng R obinson Equation of State. <i>Journal of Chemical & Data</i> , 2014, 59, 28-38	2.8	21
383	Universal thermodynamics at the liquid-vapor critical point. 2014 , 118, 13704-10		5
382	References. 2014 , 707-714		
381	Adiabatic Processes in the Liquid Papor Two-Phase Region. 1. Pure Fluids. <i>Industrial & amp;</i> Engineering Chemistry Research, 2014 , 53, 13529-13542	3.9	13
380	A New Functional Form for Equations of State for Some Weakly Associating Fluids. 2014 , 35, 783-811		11
379	Reversible CO binding enables tunable CO/Htand CO/Ntseparations in metal-organic frameworks with exposed divalent metal cations. 2014 , 136, 10752-61		160

378 The complex, non-monotonic thermal response of the volumetric space of simple liquids. **2014**, 16, 19900-8

377	References. 2014 , 985-990	
376	Performance of a 5kWe Organic Rankine Cycle at part-load operation. 2014 , 120, 147-158	58
375	Experimental research on the flammability characteristics of several binary blends consisting of 1-Chloro-1,1-difluoroethane and extinguishing agents. 2014 , 92, 680-686	3
374	Influential factors for liquid acquisition device screen selection for tryogenic propulsion systems. Applied Thermal Engineering, 2014, 66, 548-562 5.8	32
373	Advances and challenges in ORC systems modeling for low grade thermal energy recovery. 2014 , 121, 79-95	147
372	A fundamental equation of state for cis-1,3,3,3-tetrafluoropropene (R-1234ze(Z)). 2014 , 44, 168-176	43
371	Thermal diffusivity of di-isopropyl ether (DIPE) in the temperature range 298\(\text{B} 30 K \) and pressure up to 10 MPa from dynamic light scattering (DLS). Fluid Phase Equilibria, 2014 , 376, 202-209	12
370	Equilibrium, interfacial and transport properties of n-alkanes: Towards the simplest coarse grained molecular model. 2014 , 92, 3031-3037	16
369	Reference Correlation of the Viscosity of Toluene from the Triple Point to 675 K and up to 500 MPa. 2015 , 44, 033101	29
368	Reference Correlations of the Thermal Conductivity of Cyclopentane, iso-Pentane, and n-Pentane. 2015 , 44, 033102	15
367	Isothermal pumping analysis for high-altitude tethered balloons. 2015 , 2, 140468	1
366	Energy, exergy analysis and working fluid selection of a Rankine cycle for subsea power system. 2015 , 101, 216-228	10
365	Krytox GPL102 Oil as Reference Fluid for High Viscosities: High Pressure Volumetric Properties, Heat Capacities, and Thermal Conductivities. <i>Journal of Chemical & Data</i> , 2015, 60, 3660 ²³ 669	, 8
364	Densities of the Binary Systems n-Hexane + n-Decane and n-Hexane + n-Hexadecane Up to 60 MPa and 463 K. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 3631-3645	24
363	Thermodynamic Properties of R-227ea, R-365mfc, R-115, and R-13I1. <i>Journal of Chemical & amp;</i> Engineering Data, 2015 , 60, 3745-3758	32
362	An experimental study on the organic Rankine cycle to determine as to how efficiently utilize fluctuating thermal energy. 2015 , 80, 73-79	14
361	Integration of biogas in the natural gas grid: Thermodynamic characterization of a biogas-like mixture. <i>Journal of Chemical Thermodynamics</i> , 2015 , 84, 60-66	13

(2015-2015)

360	Solubility of Hydrogen Sulfide in N-Methylacetamide and N,N-Dimethylacetamide: Experimental Measurement and Modeling. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 499-508	2.8	24
359	Evaluation of the non-linearities of a potential axially symmetric model for computing the entrainment ratio of supersonic ejectors. <i>Applied Thermal Engineering</i> , 2015 , 90, 798-808	5.8	
358	Design and experimental investigation of a 1kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam. 2015 , 103, 1089-1100		103
357	Isobaric Thermal Expansion of Compressed 1,4-Dichlorobutane and 1-Bromo-4-chlorobutane: Transitiometric Results and a Novel Application of the General Density Scaling-Based Equation of State. <i>Industrial & Density Engineering Chemistry Research</i> , 2015 , 54, 6400-6407	3.9	20
356	Numerical optimization of combined heat and power Organic Rankine Cycles Part B: Simultaneous design & part-load optimization. <i>Energy</i> , 2015 , 90, 329-343	7.9	43
355	Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery. 2015 , 8, 2714-2741		46
354	Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures. 2015 , 8, 2097-2124		70
353	A generalized Kiselev crossover approach applied to Soave R edlich R wong equation of state. <i>Fluid Phase Equilibria</i> , 2015 , 401, 16-26	2.5	15
352	Thermophysical and absorption properties of brominated vegetable oil. 2015 , 211, 647-655		6
351	Numerical optimization of Combined Heat and Power Organic Rankine Cycles Part A: Design optimization. <i>Energy</i> , 2015 , 90, 310-328	7.9	33
350	A Fundamental Equation of State for 1,1,1,3,3-Pentafluoropropane (R-245fa). 2015, 44, 013104		26
349	Fluid phase interface properties of acetone, oxygen, nitrogen and their binary mixtures by molecular simulation. 2015 , 17, 27195-203		20
348	Viscosities of Liquid Cyclohexane and Decane at Temperatures between (303 and 598) K and Pressures up to 4 MPa Measured in a Dual-Capillary Viscometer. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 2363-2370	2.8	12
347	Thermodynamic and Phase Behavior of Nanofluids. 2015 , 317-333		1
346	Isobaric heat capacities of R245fa and R236fa in liquid phase at temperatures from (315 to 365)K and pressures up to 5.5MPa. <i>Journal of Chemical Thermodynamics</i> , 2015 , 90, 46-50	2.9	5
345	Isobaric Heat Capacity of Liquid 1,1,1,3,3-Pentafluoropropane (R245fa) by Flow Calorimeter from 278 K to 343 K. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 3594-3599	2.8	
344	Density, Surface Tension, and Kinematic Viscosity of Hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 3759-3765	2.8	80
343	Efficient evaluation of vapourliquid equilibria from multi-parameter thermodynamic models using differential algebra. 2015 , 273, 404-413		1

342	Accurate calculation of second virial coefficient of the Exp-6 potential and its application. 2015 , 420, 246-257		8
341	An improved kinetic theory approach for calculating the thermal conductivity of polyatomic gases. 2015 , 113, 176-183		26
340	Density and isothermal compressibility for two trialkylimidazolium-based ionic liquids at temperatures from (278 to 398) K and up to 120 MPa. <i>Journal of Chemical Thermodynamics</i> , 2015 , 81, 124-130	2.9	18
339	Comparative study of the Grāeisen parameter for 28 pure fluids. <i>Journal of Chemical Physics</i> , 2016 , 144, 244505	3.9	25
338	High-pressure speed of sound in pure CO 2 and in CO 2 with SO 2 as an impurity using methanol as a doping agent. 2016 , 54, 737-751		9
337	Unsteady Operation of a Highly Supersonic Organic Rankine Cycle Turbine. 2016, 138,		17
336	A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines. 2016 , 138,		23
335	Combined effects of fluid selection and flow condensation on ejector operation in an ejector-based chiller. 2016 , 69, 1-16		8
334	Use of a turboexpander in steam power units for heat energy recovery in heat supply systems. 2016 , 63, 360-366		3
333	Assessment of thermodynamic models for the design, analysis and optimisation of gas liquefaction systems. 2016 , 183, 43-60		10
332	Density and phase equilibrium of the binary system methane + n-decane under high temperatures and pressures. <i>Fluid Phase Equilibria</i> , 2016 , 428, 48-61	2.5	20
331	Algebraic Geometric Method for Calculating Phase Equilibria from Fundamental Equations of State. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 11363-11370	3.9	
330	Model for gas hydrates applied to CCS systems part I. Parameter study of the van der Waals and Platteeuw model. <i>Fluid Phase Equilibria</i> , 2016 , 427, 268-281	2.5	15
329	Interfacial and bulk properties of vapor-liquid equilibria in the system toluene + hydrogen chloride + carbon dioxide by molecular simulation and density gradient theory + PC-SAFT. <i>Fluid Phase Equilibria</i> , 2016 , 427, 219-230	2.5	28
328	Cross second virial coefficients and dilute gas transport properties of the (CH 4 + CO 2), (CH 4 + H 2 S), and (H 2 S + CO 2) systems from accurate intermolecular potential energy surfaces. <i>Journal of Chemical Thermodynamics</i> , 2016 , 102, 429-441	2.9	28
327	Model for gas hydrates applied to CCS systems part III. Results and implementation in TREND 2.0. <i>Fluid Phase Equilibria</i> , 2016 , 429, 55-66	2.5	16
326	The Riedel vapor pressure correlation and multi-property optimization. <i>Fluid Phase Equilibria</i> , 2016 , 429, 149-165	2.5	4
325	Simulation and measurements of volumetric and phase behavior of carbon dioxide + higher alkanes at high pressure: CO2 + n-decane at temperatures (313월10) K and pressures up to 76 MPa. 2016 , 53, 198-206		15

324	Speed of Sound Data in Pure Refrigerants R-116 and R-218 and Their Mixtures: Experiment and Modeling. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 4046-4056	2.8	1
323	Measurements of the Thermal Conductivity of 1,1,1,3,3-Pentafluoropropane (R245fa) and Correlations for the Viscosity and Thermal Conductivity Surfaces. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 3286-3294	2.8	18
322	Novel measurement of isobaric specific heat capacity for kerosene RP-3 at high temperature and high pressure. 2016 , 638, 113-119		5
321	High Pressure Speed of Sound and Related Thermodynamic Properties of 1-Alkyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imides (from 1-Propyl- to 1-Hexyl-). <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 3794-3805	2.8	15
320	NMR Studies of the Effect of CO2 on Oilfield Emulsion Stability. 2016 , 30, 5555-5562		14
319	Performance analyses of transcritical organic Rankine cycles with large variations of the thermophysical properties in the pseudocritical region. <i>Applied Thermal Engineering</i> , 2016 , 101, 183-190	5.8	23
318	PII and saturation properties of isopentane at $T = (280 440)$ K and up to 200 MPa. <i>Journal of Chemical Thermodynamics</i> , 2016 , 101, 150-156	2.9	2
317	EOSIG: A Helmholtz energy mixture model for humid gases and CCS mixtures. <i>Journal of Chemical Thermodynamics</i> , 2016 , 93, 274-293	2.9	120
316	Scaling of Gas Turbine From Air to Refrigerants for Organic Rankine Cycle Using Similarity Concept. 2016 , 138,		7
315	Measurement of the Speed of Sound in Hexane and Heptane at Temperatures from (303.15 to 536.15) K and Pressures from (1.0 to 8.5) MPa. <i>Journal of Chemical & Data, Engineering Data, 2016</i> , 61, 701-711	2.8	10
314	Measurements of Vapor Pressure and Saturated Liquid Density for HFOI1234ze(E) and HFOI1234ze(Z). <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 1645-1648	2.8	22
313	The Volumetric Properties of Carbonyl Sulfide and Carbon Dioxide Mixtures from T = 322 to 393 K and p = 2.5 to 35 MPa: Application to COS Hydrolysis in Subsurface Injectate Streams. <i>Journal of Chemical & Data</i> , 2016 , 61, 1341-1347	2.8	10
312	Improving thermodynamic consistency among vapor pressure, heat of vaporization, and liquid and ideal gas isobaric heat capacities through multi-property optimization. <i>Fluid Phase Equilibria</i> , 2016 , 418, 37-43	2.5	4
311	Thermodynamic description of H2SH2ONaCl solutions at temperatures to 573 K and pressures to 40 MPa. 2016 , 424, 1-11		5
310	Speed of sound measurement in ethyl tert-butyl ether and tert-amyl methyl ether by Brillouin light scattering. <i>Fluid Phase Equilibria</i> , 2016 , 418, 108-118	2.5	9
309	Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. 2016 , 30, 583-591		47
308	Thermodynamic performance of new thermofluidic feed pumps for Organic Rankine Cycle applications. 2016 , 161, 75-84		17
307	Fundamental equation of state correlation for hexamethyldisiloxane based on experimental and molecular simulation data. <i>Fluid Phase Equilibria</i> , 2016 , 418, 133-151	2.5	28

306	Volumetric behaviour of six ionic liquids from T = (278 to 398) K and up to 120 MPa. <i>Journal of Chemical Thermodynamics</i> , 2016 , 93, 24-33	2.9	21	
305	Generalized equation of state for the cyclic hydrocarbons over a temperature range from the triple point to 700 K with pressures up to 100 MPa. <i>Fluid Phase Equilibria</i> , 2016 , 418, 15-36	2.5	9	
304	One-dimensional refraction properties of compression shocks in non-ideal gases. 2017 , 814, 185-221		16	
303	Speed of Sound and Ultrasound Absorption in Ionic Liquids. 2017 , 117, 3883-3929		49	
302	All-dimensional H-CO potential: Validation with fully quantum second virial coefficients. <i>Journal of Chemical Physics</i> , 2017 , 146, 054304	3.9	11	
301	Numerical investigation of an Organic Rankine cycle radial inflow two-stage turbine. 2017 , 31, 1721-173	28	5	
300	Structural characterization of framework-gas interactions in the metal-organic framework Co(dobdc) by single-crystal X-ray diffraction. 2017 , 8, 4387-4398		65	
299	Enhancement of the revised Klosek and McKinley method for density calculations of liquefied natural gas (LNG) over the temperature range from (100 to 135) K at pressures up to 10 MPa. 2017 , 165, 19-26		6	
298	Group contribution methods in thermodynamic cycles: Physical properties estimation of pure working fluids. 2017 , 79, 984-1001		17	
297	Phase Behavior and Reaction Thermodynamics Involving Dense-Phase CO2 Impurities. 2017 , 55-62		1	
296	Measurement of heat transfer coefficient in two phase flows of radiation-resistant zeotropic C2F6/C3F8 blends. 2017 , 113, 246-256		2	
295	Heat capacity and Joule-Thomson coefficient of selected n-alkanes at 0.1 and 10 MPa in broad temperature ranges. <i>Journal of Chemical Thermodynamics</i> , 2017 , 111, 250-264	2.9	14	
294	The Widom line for supercritical fluids. 2017 , 238, 122-128		16	
293	Compressed Liquid Viscosity of 2-Methylpentane, 3-Methylpentane, and 2,3-Dimethylbutane at Temperatures from (273 to 343) K and Pressures up to 40 MPa. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 1146-1152	2.8	2	
292	Molecular simulation study of the CO2-N2O analogy. Fluid Phase Equilibria, 2017, 442, 44-52	2.5	4	
291	New text comparison between CO2 and other supercritical working fluids (ethane, Xe, CH4 and N2) in line-focusing solar power plants coupled to supercritical Brayton power cycles. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 17611-17631	6.7	31	
290	New knowledge on the temperature-entropy saturation boundary slope of working fluids. <i>Energy</i> , 2017 , 119, 211-217	7.9	12	
289	Molecular simulation of the surface tension of 33 multi-site models for real fluids. 2017 , 235, 126-134		10	

288	Fundamental multiparameter and association equation of state for ethanol. <i>Fluid Phase Equilibria</i> , 2017 , 452, 74-93	2.5	3
287	Volumetric Behavior of Some Motor and Gear-Boxes Oils at High Pressure: Compressibility Estimation at EHL Conditions. <i>Industrial & Estimation at EHL Conditions</i> . <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 10877-10885	3.9	3
286	Surrogates for Single-Phase Conjugate Heat Transfer Validation Experiments at Light Water Reactor Prototypical Conditions. 2017 , 199, 151-173		О
285	Speed of Sound Measurements and Fundamental Equations of State for Octamethyltrisiloxane and Decamethyltetrasiloxane. <i>Journal of Chemical & Decamethyltetrasiloxane</i> .	2.8	19
284	Small-scale dynamics of dense gas compressible homogeneous isotropic turbulence. 2017 , 825, 515-549		20
283	COMPARISON of SUBCRITICAL INTERFACE APPROXIMATIONS at HIGH TEMPERATURE and PRESSURE CONDITIONS. 2017 ,		
282	Determination of density and excess molar volume of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride mixtures at high pressure. 2017 , 130, 76-83		3
281	Correlations for the Dielectric Constants of HS, SO, and SF. 2017 , 38, 1		4
280	Equation of state for 1,2-dichloroethane based on a hybrid data set. 2017 , 115, 1166-1185		11
279	Supersonic turbine stator design using dense gas with numerical method. 2017 , 31, 4297-4303		3
278	How to predict the vapor slope of temperature-entropy saturation boundary of working fluids from molecular groups?. <i>Energy</i> , 2017 , 135, 14-22	7.9	6
277	High pressure phase equilibrium of ternary and multicomponent alkane mixtures in the temperature range from (283 to 473) K. <i>Fluid Phase Equilibria</i> , 2017 , 449, 186-196	2.5	5
276	High-temperature, high-pressure viscosities and densities of toluene. <i>Journal of Chemical Thermodynamics</i> , 2017 , 115, 34-46	2.9	7
275	Thermodynamic analysis of ethanol reforming for hydrogen production. 2017 , 187-216		
274	Solid-like features in dense vapors near the fluid critical point. <i>Journal of Chemical Physics</i> , 2017 , 146, 224501	3.9	19
273	Calculation of critical points from Helmholtz-energy-explicit mixture models. <i>Fluid Phase Equilibria</i> , 2017 , 433, 159-173	2.5	17
272	How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases?. 2017 , 115, 1104-1121		36
271	Review of the BACKONE equation of state and its applications** Dedicated to Professor Johann Fischer on the occasion of his 75th birthdayView all notes. 2017 , 115, 1041-1050		6

270	Developing a performance evaluation model of Organic Rankine Cycle for working fluids based on the group contribution method. 2017 , 132, 307-315		30
269	High-pressure sour gas adsorption on zeolite 4A. 2017 , 23, 149-162		19
268	The effect of dense gas dynamics on loss in ORC transonic turbines. 2017 , 821, 012021		3
267	Improving the efficiency of heat supply systems on the basis of plants operating on organic Rankine cycle. 2017 , 891, 012155		1
266	Similarity Theory Based Radial Turbine Performance and Loss Mechanism Comparison between R245fa and Air for Heavy-Duty Diesel Engine Organic Rankine Cycles. 2017 , 19, 25		5
265	Gravity effects in microgap flow boiling. 2017,		5
264	A modified Kardos equation for the thermal conductivity of refrigerants. 2018 , 17, 1850012		2
263	Candidates to Replace R-12 as a Radiator Gas in Cherenkov Detectors. 2018 , 425, 38-42		3
262	Modeling Vapor Solubility in Semicrystalline Polyethylene. 2018 , 12, 1700072		13
261	Viscosity Measurements of n-Dodecane at Temperatures between 303 K and 693 K and Pressures up to 10 MPa. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 671-678	2.8	3
260	Determination of Density and Viscosity of Binary Mixtures of Water and Dimethyl Sulfoxide with 1-Ethyl-3-methylimidazolium Diethylphosphate [EtMeIm]+[Et2PO4][at Atmospheric Pressure. <i>Journal of Chemical & Diamp; Engineering Data</i> , 2018, 63, 1053-1064	2.8	10
259	Application of multiparameter fundamental equations of state to predict the thermodynamic properties and phase equilibria of technological oil fractions. 2018 , 215, 80-89		2
258	Phase Behavior of Liquids Embedded with Graphene Genealogic Tree Nanoparticles. 2018, 39-47		
257	A numerical comparison between ideal and dense gas flow structures in the supersonic regime for a cascade of wedge-shaped straight plates. <i>Applied Thermal Engineering</i> , 2018 , 137, 774-783	5.8	2
256	Computation of Liquid Isothermal Compressibility from Density Measurements: An Application to Toluene. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 2162-2178	2.8	18
255	Accurate High-Pressure Measurements of Carbon Monoxide's Electrical Properties. 2018 , 19, 784-792		4
254	Thermodynamic evaluation on the effect of working fluid type and fluids critical properties on design and performance of Organic Rankine Cycles. 2018 , 188, 253-263		43
253	The Antoine equation of state: Rediscovering the potential of an almost forgotten expression for calculating volumetric properties of pure compounds. 2018 , 177, 89-109		9

252	Effect of water and solid activities at high pressure on supercritical CO2 sequestration in saline aquifers. 2018 , 476, 11-23		2
251	Experimental Analysis of 3D Printed Microfluidic Device for Detection of Adulteration in Fluids. 2018 , 39-46		
250	A corresponding state equation for the prediction of isobaric heat capacity of liquid HFC and HFO refrigerants. <i>Fluid Phase Equilibria</i> , 2018 , 456, 1-6	2.5	12
249	High pressure densities of two nanostructured liquids based on the bis(trifluoromethylsulfonyl)imide anion from (278 to 398) K and up to 120 MPa. <i>Journal of Chemical Thermodynamics</i> , 2018 , 118, 67-76	2.9	6
248	A new approach to model mixed hydrates. Fluid Phase Equilibria, 2018, 459, 170-185	2.5	8
247	Chemical potentials of water, methanol, carbon dioxide and hydrogen sulphide at low temperatures using continuous fractional component Gibbs ensemble Monte Carlo. 2018 , 44, 405-414		13
246	A new variant of a scaling hypothesis and a fundamental equation of state based on it. 2018 , 946, 0121	18	7
245	The simple fundamental equation of state for liquid, gas, and fluid of xenon. 2018 , 25, 565-574		2
244	Models for viscosity, thermal conductivity, and surface tension of selected pure fluids as implemented in REFPROP v10.0. 2018 ,		28
243	Thermophysikalische Stoffwerte sonstiger reiner Fluide bei S E tigung. 2018 , 1-64		
243	Thermophysikalische Stoffwerte sonstiger reiner Fluide bei Stigung. 2018, 1-64 Uncertainty quantification confirms unreliable extrapolation toward high pressures for united-atom Mie -6 force field. <i>Journal of Chemical Physics</i> , 2018, 149, 114109	3.9	7
	Uncertainty quantification confirms unreliable extrapolation toward high pressures for	3.9	7
242	Uncertainty quantification confirms unreliable extrapolation toward high pressures for united-atom Mie -6 force field. <i>Journal of Chemical Physics</i> , 2018 , 149, 114109 Investigation on self-pressurization and ignition performance of nitrous oxide fuel blend ethylene	3.9	7
242	Uncertainty quantification confirms unreliable extrapolation toward high pressures for united-atom Mie -6 force field. <i>Journal of Chemical Physics</i> , 2018 , 149, 114109 Investigation on self-pressurization and ignition performance of nitrous oxide fuel blend ethylene thruster. 2018 , 82-83, 161-171 Energy of the quasi-free electron in CO and HD: Probing intermolecular potentials within the local		7 7 6
242 241 240	Uncertainty quantification confirms unreliable extrapolation toward high pressures for united-atom Mie -6 force field. <i>Journal of Chemical Physics</i> , 2018 , 149, 114109 Investigation on self-pressurization and ignition performance of nitrous oxide fuel blend ethylene thruster. 2018 , 82-83, 161-171 Energy of the quasi-free electron in CO and HD: Probing intermolecular potentials within the local Wigner-Seitz model. <i>Journal of Chemical Physics</i> , 2018 , 149, 064307 Hydrogen Sulfide Hydrate Dissociation in the Presence of Liquid Water. <i>Industrial & Empty</i>	3.9	7
242241240239	Uncertainty quantification confirms unreliable extrapolation toward high pressures for united-atom Mie -6 force field. <i>Journal of Chemical Physics</i> , 2018 , 149, 114109 Investigation on self-pressurization and ignition performance of nitrous oxide fuel blend ethylene thruster. 2018 , 82-83, 161-171 Energy of the quasi-free electron in CO and HD: Probing intermolecular potentials within the local Wigner-Seitz model. <i>Journal of Chemical Physics</i> , 2018 , 149, 064307 Hydrogen Sulfide Hydrate Dissociation in the Presence of Liquid Water. <i>Industrial & Engineering Chemistry Research</i> , 2018 , High-Pressure Sour Gas and Water Adsorption on Zeolite 13X. <i>Industrial & Engineering</i>	3.9	7
242241240239238	Uncertainty quantification confirms unreliable extrapolation toward high pressures for united-atom Mie -6 force field. <i>Journal of Chemical Physics</i> , 2018 , 149, 114109 Investigation on self-pressurization and ignition performance of nitrous oxide fuel blend ethylene thruster. 2018 , 82-83, 161-171 Energy of the quasi-free electron in CO and HD: Probing intermolecular potentials within the local Wigner-Seitz model. <i>Journal of Chemical Physics</i> , 2018 , 149, 064307 Hydrogen Sulfide Hydrate Dissociation in the Presence of Liquid Water. <i>Industrial & Engineering Chemistry Research</i> , 2018 , High-Pressure Sour Gas and Water Adsorption on Zeolite 13X. <i>Industrial & Engineering Chemistry Research</i> , 2018 , Volumetric properties and phase behavior of sulfur dioxide, carbon disulfide and oxygen in	3.9 3.9 3.9	7

234	Density, sound speed and derived thermophysical properties of n-nonane at temperatures between (283.15 and 473.15) K and at pressures up to 390 MPa. <i>Journal of Chemical Thermodynamics</i> , 2018 , 124, 107-122	2.9	13
233	Exceptionally reliable density-solving algorithms for multiparameter mixture models from Chebyshev expansion rootfinding. <i>Fluid Phase Equilibria</i> , 2018 , 476, 89-102	2.5	8
232	Non-ideal oblique shock waves. 2018 , 847, 266-285		10
231	Measurement and modelling of the vaporliquid equilibrium of (CO2 + CO) at temperatures between (218.15 and 302.93) K at pressures up to 15 MPa. <i>Journal of Chemical Thermodynamics</i> , 2018 , 126, 63-73	2.9	10
230	Preliminary Design Method for Dense-Gas Supersonic Axial Turbine Stages. 2018, 140,		7
229	Excess volume, isothermal compressibility, isentropic compressibility and speed of sound of carbon dioxide + n-heptane binary mixture under pressure up to 70 MPa. I Experimental Measurements. 2018 , 140, 218-232		11
228	Determination of density, viscosity and vapor pressures of mixtures of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride at atmospheric pressure. <i>Journal of Chemical Thermodynamics</i> , 2018 , 123, 185-194	2.9	9
227	Vapor-liquid equilibrium data for the carbon dioxide and carbon monoxide (CO2⊞CO) system at the temperatures 253, 273, 283 and 298 K and pressures up to 13 MPa. Fluid Phase Equilibria, 2018 , 473, 37-49	2.5	6
226	Experimental results of a small-scale organic Rankine cycle: Steady state identification and application to off-design model validation. 2018 , 226, 82-106		20
225	Viscosity and Surface Tension of Branched Alkanes 2-Methylnonane and 4-Methylnonane. <i>Journal of Chemical & Ch</i>	2.8	13
224	Thermophysical Properties of Gaseous H2SN2 Mixtures from First-Principles Calculations. 2019 , 233, 473-491		6
223	An adaptive ALE scheme for non-ideal compressible fluid dynamics over dynamic unstructured meshes. 2019 , 29, 73-99		4
222	Coefficients for High-Precision Equations of State. 2019 , 663-668		
221	Mixture densities and viscosities of toluene with ethylene or propylene at temperatures to 530 K and pressures to 70 MPa. <i>Fluid Phase Equilibria</i> , 2019 , 498, 122-131	2.5	1
220	Predictions of Entropy and Gibbs Energy for Carbonyl Sulfide. 2019 , 4, 20000-20004		19
219	Solubility of Water in Hydrogen at High Pressures: A Molecular Simulation Study. <i>Journal of Chemical & Chemic</i>	2.8	16
218	Liquid Viscosity and Surface Tension of -Hexane, -Octane, -Decane, and -Hexadecane up to 573 K by Surface Light Scattering (SLS). <i>Journal of Chemical & Engineering Data</i> , 2020 , 64,	2.8	32
217	The cubic-plus-association equation of state for hydrofluorocarbons, hydrofluoroolefins, and their binary mixtures. 2019 , 209, 115182		14

216	Development and Test Flight of The Atlantis I Nitrous Oxide/Paraffin-based Hybrid Rocket. 2019,		4
215	Removal of Sulfur Compounds from Industrial Emission Using Activated Carbon Derived from Petroleum Coke. <i>Industrial & Empire Engineering Chemistry Research</i> , 2019 , 58, 18896-18900	3.9	6
214	Development of a rolling ball viscometer for simultaneous measurement of viscosity, density, bubble-point pressure of CO2-expanded liquids. <i>Fluid Phase Equilibria</i> , 2019 , 487, 71-75	2.5	5
213	Failures of Meso-Phase Hypothesis Near Vapor Liquid Critical Point. 2019, 40, 1		1
212	Sour Gas and Water Adsorption on Common High-Pressure Desiccant Materials: Zeolite 3A, Zeolite 4A, and Silica Gel. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 3156-3163	2.8	10
211	Experimental density and an improved Helmholtz-energy-explicit mixture model for (CO2 + CO). 2019 , 251, 113398		6
210	First-principles calculation of ideal-gas thermodynamic properties of long-chain molecules by R1SM approach-Application to n-alkanes. <i>Journal of Chemical Physics</i> , 2019 , 150, 224101	3.9	16
209	Absorption refrigeration processes with organic working fluid mixtures- a review. 2019 , 109, 239-270		22
208	Histogram-Free Reweighting with Grand Canonical Monte Carlo: Post-simulation Optimization of Non-bonded Potentials for Phase Equilibria. <i>Journal of Chemical & Data</i> , 2019, 64, 3701-	3 817	3
207	Measured relationship between thermodynamic pressure and refractivity for six candidate gases in laser barometry. 2019 , 37, 031603		17
206	Viscosity Measurements of Krypton at Temperatures from (253.15 to 473.15) K with Pressures up to 2 MPa. <i>Industrial & Description of the Measure of the Meas</i>	3.9	3
205	Dynamic test and verification of model-guided ORC system. 2019 , 186, 349-367		13
204	Cohesive Energy Densities Versus Internal Pressures of Near and Supercritical Fluids. 2019 , 24,		3
203	Speed of sound and derived thermodynamic properties of para-xylene at temperatures between (306 and 448) K and at pressures up to 66 MPa. <i>Journal of Chemical Thermodynamics</i> , 2019 , 135, 369-381	2.9	6
202	Uncertainty Quantification in high-density fluid radial-inflow turbines for renewable low-grade temperature cycles. 2019 , 241, 313-330		4
201	Computational investigation of the flow inside a Tesla turbine rotor. <i>Energy</i> , 2019 , 173, 207-217	7.9	13
200	A simple generalized equation for compressed liquid isochoric heat capacity of pure and mixture refrigerants. <i>Fluid Phase Equilibria</i> , 2019 , 490, 33-38	2.5	13
199	Accurate Measurements of the Gross Calorific Value of Methane by the Renewed GERG Calorimeter. 2019 , 48, 043103		3

198	Method for constructing fundamental equation of state that satisfies the scaling theory and applicable for substances insufficiently explored in the critical point vicinity. 2019 , 1385, 012014		2
197	Supercritical Xe as Propellant in Satellite Electric Propulsion System: Experimental Study on Thermal Physical Properties. 2019 , 562, 012086		
196	Experimental Study of the Phase Behavior of Hydrocarbon Fluids in Porous Media at Atmospheric and Elevated Pressures. 2019 ,		2
195	Eighth-order virial equation of state and speed-of-sound measurements for krypton. <i>Journal of Chemical Physics</i> , 2019 , 151, 154303	3.9	4
194	Celebrating JCEDE High Impact Authors. <i>Journal of Chemical & Data</i> , 2019, 64, 4607-46	1.0 8	2
193	Effect of truncating electrostatic interactions on predicting thermodynamic properties of water than ol systems. 2019 , 45, 336-350		10
192	Phase equilibria of (Methylbenzene + Carbon dioxide + Methane) at elevated pressure: Experiment and modelling. 2019 , 145, 1-9		14
191	Modeling vapor-liquid phase equilibria of hydrogen sulfide and water system using a cubic EOS-GEX model. <i>Fluid Phase Equilibria</i> , 2019 , 484, 60-73	2.5	1
190	Robust prediction of dense gas flows under uncertain thermodynamic models. 2019 , 183, 400-421		4
189	Measuring and modelling the absorption and volumetric properties of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate. <i>Journal of Chemical Thermodynamics</i> , 2019 , 131, 544-556	2.9	21
188	Improvements and limitations of Mie Eb potential for prediction of saturated and compressed liquid viscosity. <i>Fluid Phase Equilibria</i> , 2019 , 483, 101-115	2.5	15
187	Densities and dielectric permittivities for (carbon monoxide + carbon dioxide) mixtures determined with a microwave re-entrant cavity resonator. <i>Journal of Chemical Thermodynamics</i> , 2019 , 129, 114-120	2.9	5
186	Cross Second Virial Coefficients and Dilute Gas Transport Properties of the Systems (CO2 + C2H6) and (H2S + C2H6) from Accurate Intermolecular Potential Energy Surfaces. <i>Journal of Chemical & Comp.; Engineering Data</i> , 2020 , 65, 968-979	2.8	3
185	Carrier-Fluid Screening for a Three-Phase Sublimation Refrigeration Cycle with CO2 Using Reference Equations of State and COSMO-SAC. <i>Journal of Chemical & Data, 2020, 124-1134</i>	2.8	2
184	Thermodynamic speed of sound of xenon. Journal of Chemical Thermodynamics, 2020, 141, 105933	2.9	4
183	Henry Law Constant of Noble Gases in Water, Methanol, Ethanol, and Isopropanol by Experiment and Molecular Simulation. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 1180-1188	2.8	3
182	The classical and quantum second virial coefficient of low-density 132Xe vapor in the temperature-range 0.1 mKB0 000 K. 2020 , 95, 015401		1
181	Speed-of-Sound Measurements in Liquid n-Pentane and Isopentane. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 1243-1263	2.8	2

(2020-2020)

180	Zero-Density Limit of the Residual Entropy Scaling of Transport Properties. <i>Journal of Chemical & Chemical States amp; Engineering Data</i> , 2020 , 65, 1038-1050	2.8	9
179	Flow boiling instability characteristics in microchannels with porous-wall. 2020, 146, 118863		18
178	High-temperature and high-pressure thermophysical property measurements and thermodynamic modelling of an international oil standard: RAVENOL diesel rail injector calibration fluid. 2020 , 199, 1062	20	7
177	Vapor-liquid equilibria and mixture densities for 2,2,4,4,6,8,8-heptamethylnonane № N2 and n-hexadecane № N2 binary mixtures up to 535 K and 135 MPa. <i>Fluid Phase Equilibria</i> , 2020 , 506, 112378	2.5	3
176	Potential of Organic Rankine Cycles for Unmanned Underwater Vehicles. <i>Energy</i> , 2020 , 192, 116559	7.9	9
175	Advanced thermodynamic cycles for finite heat sources: Proposals for closed and open heat sources applications. <i>Applied Thermal Engineering</i> , 2020 , 167, 114805	5.8	4
174	Densities, speed of sound, and derived thermodynamic properties of toluene, tetradecane, and 1-chlorohexane in the compressed liquid region. <i>Fluid Phase Equilibria</i> , 2020 , 507, 112427	2.5	6
173	The use of ethanol to determine the volume of a pycnometer used to measure the density of liquids at different temperatures and pressures. 2020 , 42, 1		2
172	Geometry definition and performance assessment of Tesla turbines for ORC. Energy, 2020 , 211, 118570	7.9	3
171	Entropy Scaling of Viscosity - II: Predictive Scheme for Normal Alkanes. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65,	2.8	16
170	Geothermal energy for wastewater and sludge treatment: An exergoeconomic analysis. 2020 , 224, 1131	80	10
169	Exergetic, Economic and Exergo-Environmental Analysis of Bottoming Power Cycles Operating with CO2-Based Binary Mixture. 2020 , 13, 5080		4
168	Thermophysical properties of diphenylmethane and dicyclohexylmethane as a reference liquid organic hydrogen carrier system from experiments and molecular simulations. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 28903-28919	6.7	15
167	Dipole moment and heat capacity in the ideal gas state derived from relative permittivity and speed of sound measurements for HFO-1123 and HCFO-1224yd(Z). 2020 , 118, 354-364		7
166	Accurate and Model-Free Control Function for a Single Stage Transcritical Refrigerator Cycle. 2020 , 5, 19217-19226		О
165	Predictions of thermodynamic properties for hydrogen sulfide. 2020 , 315, 113751		20
164	Modeling heat capacity of saturated hydrocarbon in liquid phase over a wide range of temperature and pressure. 2020 , 319, 114068		8
163	Experimental High-Pressure Hydrogen Sulfide Partial Oxidation and Equilibrium Calculation by Gibbs Energy Minimization. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 19890-19896	3.9	1

162	Diffusion Coefficients of Methane in Methylbenzene and Heptane at Temperatures between 323 K and 398 K at Pressures up to 65 MPa. 2020 , 41, 1		4
161	Raman spectroscopic measurements of H2S solubility in pure water over a wide range of pressure and temperature and a refined thermodynamic model. 2020 , 555, 119816		6
160	High-Pressure Volumetric Properties of Carbon Disulfide, Carbonyl Sulfide, and Hydrogen Sulfide in Propane. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 4621-4631	2.8	O
159	Unphysical Critical Curves of Binary Mixtures Predicted with GERG Models. 2016 , 41, 1		4
158	Cross Second Virial Coefficients and Dilute Gas Transport Properties of the Systems (N2 + C3H8), (C2H6 + C3H8), and (H2S + C3H8) from Ab Initio-Based Intermolecular Potentials. <i>Journal of Chemical & Data</i> , 2020 , 65, 4712-4724	2.8	3
157	Some universality in subcritical behavior of real substances and model fluids. 2020 , 102, 042130		1
156	Method of calculation and selection of design parameters and operational characteristics of the spiral expander. 2020 , 945, 012064		
155	Thermophysical Properties of 1,1,1,3,3,3-hexafluoro-2-methoxypropane (HFE-356mmz) in the Vapor Phase Measured by Using an Acoustic-Microwave Resonance Technique. 2020 , 13, 5525		2
154	Vapour-liquid equilibrium data for the carbon dioxide (CO2) + carbon monoxide (CO) system. Journal of Chemical Thermodynamics, 2020 , 150, 106180	2.9	2
153	Temperature data during steam pressure filtration in combination with a water insoluble pore liquid. 2020 , 31, 105812		1
152	Vapor pressures and activity coefficients of 2,2,2-trifluoroethanol in binary mixtures with 1,3-dimethyl-2-imidazolidinone and 2-pyrrolidone. 2020 , 305, 112828		1
151	Construction of subcritical isotherms for model and real gases on the basis of Mayer's cluster expansion. 2020 , 101, 062128		3
150	Bulk viscosity of liquid noble gases. <i>Journal of Chemical Physics</i> , 2020 , 152, 094503	3.9	6
149	Steam pressure filtration in combination with a water insoluble pore liquid. 2020 , 225, 115782		2
148	Isothermal Vapor Liquid Equilibrium of the Binary Mixture Difluoromethane (R32) + Octafluoropropane (R218) at Temperatures from 253.150 to 283.150 K. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 1730-1735	2.8	1
147	Density and Phase Behavior of the CO2 + Methylbenzene System in Wide Ranges of Temperatures and Pressures. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 7224-7237	3.9	4
146	Measurements of the Thermal Conductivity of n-Pentane, Isopentane, 1-Pentene, and 1-Pentanol in the Temperature Range from 253 to 373 K at Pressures up to 30 MPa. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 1993-2001	2.8	3
145	The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders. 2020 , 13, 573		16

(2021-2020)

144	Experimental and modeling investigations of the phase behavior and densities of diesell. Initrogen mixtures. 2020 , 265, 117027		2	
143	Fundamental Thermodynamic Models for Mixtures Containing Ammonia. Fluid Phase Equilibria, 2020 , 511, 112496	2.5	3	
142	Exergetic performance and comparative assessment of bottoming power cycles operating with carbon dioxideBased binary mixture as working fluid. 2020 , 44, 7957-7973		4	
141	A comprehensive study of the second virial coefficient of low-density 84krypton vapor in the temperature range 0.01🛮 00 K. 2020 , 135, 1		1	
140	Hydrogen sulfide solubility in 50 wt% and 70 wt% aqueous methyldiethanolamine at temperatures from 283 to 393 K and total pressures from 500 to 10000 kPa. <i>Fluid Phase Equilibria</i> , 2020 , 511, 112498	2.5	4	
139	Experimental investigation of a cascaded organic Rankine cycle plant for the utilization of waste heat at high and low temperature levels. 2020 , 205, 112381		9	
138	Speed of Sound of Gaseous Xenon in the Temperature Range from 308 to 370 K Measured with a Cylindrical Resonator. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 737-745	2.8	3	
137	Phase equilibrium studies of high-pressure natural gas mixtures with toluene for LNG applications. <i>Fluid Phase Equilibria</i> , 2020 , 518, 112620	2.5	3	
136	Solubility of CO2 in three cellulose-dissolving ionic liquids. 2020 , 66, e16228		1	
135	Residual entropy model for predicting the viscosities of dense fluid mixtures. <i>Journal of Chemical Physics</i> , 2020 , 152, 164104	3.9	12	
134	Measurement of the speed of sound in n-decane at temperatures from (298.32 to 653.95) K and pressures up to 10.0 MPa. <i>Journal of Chemical Thermodynamics</i> , 2020 , 148, 106127	2.9	1	
133	Measurements of density and viscosity of 1-hexadecanol in the temperature range from (328.15 to 623.15) K at pressures up to 10[MPa. <i>Journal of Chemical Thermodynamics</i> , 2021 , 152, 106263	2.9	3	
132	Three-dimensional unsteady stator-rotor interactions in high-expansion organic Rankine cycle turbines. <i>Energy</i> , 2021 , 217, 119339	7.9	1	
131	Vapor-liquid equilibrium, liquid density and excess enthalpy of the carbon dioxide+acetone mixture: Experimental measurements and correlations. <i>Fluid Phase Equilibria</i> , 2021 , 532, 112915	2.5	1	
130				
	Avoiding costly LNG plant freeze-out-induced shutdowns: Measurement and modelling for neopentane solubility at LNG conditions. <i>Energy</i> , 2021 , 217, 119331	7.9	4	
129		7.9	18	
129	neopentane solubility at LNG conditions. <i>Energy</i> , 2021 , 217, 119331	7.9		
	neopentane solubility at LNG conditions. <i>Energy</i> , 2021 , 217, 119331 Prediction of the ideal-gas thermodynamic properties for water. 2021 , 321, 114912 A corresponding state equation for compressed liquid isochoric heat capacity of pure and mixture		18	

126	Energy and Exergy Analysis of a Subcritical Cascade Refrigeration System With Internal Heat Exchangers Using Environmentally Friendly Refrigerants. 2021 , 143,		2
125	Jumping transition in the liquid's heat capacity revealed by the scanning transitiometry. 2021, 67, e171	72	O
124	空期间 2021 , 56, 114-121		
123	Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa. 2021 , 42, 1		2
122	Density of n-Heptane + n-Dodecane and Carbon Dioxide + n-Heptane + n-Dodecane Mixtures up to 70 MPa from (293.15 to 363.15) K. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 1305-1318	2.8	1
121	Generalized equation of state for fluids: From molecular liquids to colloidal dispersions. <i>Journal of Chemical Physics</i> , 2021 , 154, 084902	3.9	1
120	Entropy Scaling of ViscosityIII: Application to Refrigerants and Their Mixtures. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 1385-1398	2.8	15
119	Reference Correlation for the Viscosity of Xenon from the Triple Point to 750 K and up to 86 MPa. 2021 , 42, 1		2
118	New Equations of State for Binary Hydrogen Mixtures Containing Methane, Nitrogen, Carbon Monoxide, and Carbon Dioxide. 2021 , 50, 013102		5
117	Effect of Water Content on Thermodynamic Properties of Compressed Hydrogen. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 2071-2087	2.8	4
116	Experimental investigation of an organic Rankine cycle with liquid-flooded expansion and R1233zd(E) as working fluid. 2021 , 234, 113894		6
115	Thermodynamic curvature and the thermal expansion isolines. 2021 , 335, 115994		2
114	Density of water - 2-pyrrolidone mixture a new vibrating tube densimeter from (278.15B23.15) K and up to 70IMPa. 2021 , 335, 116113		2
113	Entropy Scaling of Thermal Conductivity: Application to Refrigerants and Their Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 13052-13070	3.9	3
112	Dynamic Viscosity of Binary Fluid Mixtures: A Review Focusing on Asymmetric Mixtures. 2021 , 42, 1		3
111	Design of a supersonic turbine for the organic Rankine cycle system. 2021 , 35, 4179-4192		
110	High-Pressure Densities and Excess Molar Volumes for the Binary Mixture of Carbon Dioxide and Hydrogen Sulfide at T = 343B97 K. <i>Journal of Chemical & Data</i> ,	2.8	1
109	High-pressure phase equilibrium and volumetric properties of pseudo-binary mixtures of stock tank oil + methane up to 463K. <i>Fluid Phase Equilibria</i> , 2021 , 541, 113054	2.5	

108	Measurements of density at elevated pressure [A vibrating-tube densimeter calibration, uncertainty assessment, and validation of the results. 2021 , 336, 116196	O
107	Simultaneous measurement of the density and viscosity for n-Decane + CO2 binary mixtures at temperature between (303.15 to 373.15) K and pressures up to 80 MPa. 2021 , 338, 116646	1
106	Evaluation of the simultaneous presence of SO2 and CO as impurities in the carbon capture and storage technology. CO2/SO2/CO cocapture. 2021 , 153, 452-463	0
105	Equations of State for the Thermodynamic Properties of Three Hexane Isomers: 3-Methylpentane, 2,2-Dimethylbutane, and 2,3-Dimethylbutane. 2021 , 50, 033103	1
104	Thermophysical Properties of the Binary Mixtures of Iso-octane with Methyl Hexanoate, n-Decane with Methyl Decanoate and Methyl Octanoate: Experimental Investigation and Molecular Dynamic 2.5 Simulation. <i>Fluid Phase Equilibria</i> , 2021 , 544-545, 113099	O
103	Thermodynamic Properties of Liquid Toluene from Speed-of-Sound Measurements at Temperatures from 283.15 K to 473.15 K and at Pressures up to 390 MPa. 2021 , 42, 1	2
102	Surface light scattering in reflection geometry: capabilities and limitations. 2021, 60, 9042-9053	1
101	Binary mixture isothermal vapour-liquid equilibrium: Trifluoromethane (R23) [1-] Coctafluoropropane (R218) at the temperature from 223.150 K to 263.150 K. <i>Journal of Chemical Thermodynamics</i> , 2021 , 2.9 162, 106567	1
100	Prediction of dynamic viscosities of carbon dioxide lorganic solvent mixtures with combined equation of state and Eyring theory. 2021 , 177, 105345	Ο
99	Measurement procedure for acoustic absorption and bulk viscosity of liquids. 2021 , 184, 109919	O
98	Stripping phase model for steam pressure filtration in combination with a water insoluble pore liquid. 2022 , 248, 117108	
97	Surface Tension, Large Scale Thermodynamic Data Generation and Vapor-Liquid Equilibria of Real Compounds. 2013 , 635-646	2
96	Molecular Simulation Study of Transport Properties for 20 Binary Liquid Mixtures and New Force Fields for Benzene, Toluene and CCl4. 2016 , 613-634	2
95	Applications of Molecular Simulations to Studies on Working Fluids. 2017 , 257-289	1
94	Unified Framework of Multiscale Density Functional Theories and Its Recent Applications. 2015 , 47, 1-83	25
93	Off-design analysis of a Hybrid Rankine-Brayton cycle used as the power block of a solar thermal power plant. <i>Energy</i> , 2017 , 134, 369-381	14
92	Chapter 12:Multi-parameter Equations of State for Pure Fluids and Mixtures. 2010 , 394-432	6
91	Recommended Values for the Viscosity in the Limit of Zero Density and its Initial Density Dependence for Twelve Gases and Vapors: Revisited from Experiment between 297 K and 691 K. 2020 , 49, 043102	1

90	Experimental study of convection in the compressible regime. 2019 , 4,		3
89	The Effect of Isentropic Exponent on Transonic Turbine Performance. 2020 , 142,		7
88	Empirical Fundamental Equations of State for Pure Fluids and Mixtures. 2020, 365-407		7
87	Computation of Isobaric Thermal Expansivity from Liquid Density Measurements. Application to Toluene. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 3961-3976	2.8	4
86	Computation of Nucleation Rates for n-Nonane Using the Gradient Theory. 2007, 97-101		
85	Equilibrium Water Content Measurements For Acid Gas Mixtures. 3-20		3
84	Equilibrium Water Content Measurements for Acid Gas at High Pressures and Temperatures. 1-20		
83	H2S Viscosities and Densities at High-Temperatures and Pressures. 37-47		
82	Importance and Uses of Cryogenic Fluid Properties. 2017 , 1-10		
81	Krypton. 2017 , 199-210		
81 80	Krypton. 2017 , 199-210 Carbon Monoxide. 2017 , 131-143		
80	Carbon Monoxide. 2017 , 131-143 RELATIONS BETWEEN THE DIFFERENCES OF DIFFERENT PROPERTIES OF FREONES ON THE		
80 79	Carbon Monoxide. 2017, 131-143 RELATIONS BETWEEN THE DIFFERENCES OF DIFFERENT PROPERTIES OF FREONES ON THE SATURATION LINES UPON LIQUID-VAPOR PHASE TRANSITION. 2018, 13, 33-44 The Joule-Thomson Effect for Refrigerants with Dopants of the Fullerenes and Carbon Nanotubes.		
80 79 78	Carbon Monoxide. 2017, 131-143 RELATIONS BETWEEN THE DIFFERENCES OF DIFFERENT PROPERTIES OF FREONES ON THE SATURATION LINES UPON LIQUID-VAPOR PHASE TRANSITION. 2018, 13, 33-44 The Joule-Thomson Effect for Refrigerants with Dopants of the Fullerenes and Carbon Nanotubes. 2018, 54, 38-44		
80 79 78 77	Carbon Monoxide. 2017, 131-143 RELATIONS BETWEEN THE DIFFERENCES OF DIFFERENT PROPERTIES OF FREONES ON THE SATURATION LINES UPON LIQUID-VAPOR PHASE TRANSITION. 2018, 13, 33-44 The Joule-Thomson Effect for Refrigerants with Dopants of the Fullerenes and Carbon Nanotubes. 2018, 54, 38-44 Stoffmodelle der Technischen Thermodynamik. 2019, 1-29		
80 79 78 77 76	Carbon Monoxide. 2017, 131-143 RELATIONS BETWEEN THE DIFFERENCES OF DIFFERENT PROPERTIES OF FREONES ON THE SATURATION LINES UPON LIQUID-VAPOR PHASE TRANSITION. 2018, 13, 33-44 The Joule-Thomson Effect for Refrigerants with Dopants of the Fullerenes and Carbon Nanotubes. 2018, 54, 38-44 Stoffmodelle der Technischen Thermodynamik. 2019, 1-29 Solar Refrigeration for Post-Harvest Storage of Agricultural Products. 2019, 108-139		

72	A Reference Correlation for the Viscosity of Krypton From Entropy Scaling. 2022, 43, 1		2
71	Simulations of internal energy and pl properties of monatomic fluids from accurate ab initio potentials and their uncertainty analysis. 2022 , 180, 105425		O
70	Micro turbo expander design for small scale ORC.		1
69	Methane I-Theo-pentane system: VLE measurements, modeling of the phase diagram including solid phases. <i>Journal of Chemical Thermodynamics</i> , 2022 , 166, 106687	2.9	
68	High-pressure density measurements of poly(ethylene glycol) 600 [PEG600] saturated with carbon dioxide with an oscillating device of advanced accuracy. 2021 , 181, 105497		
67	Fundamental aspects of pure supercritical fluids. 2021 , 8, 31-49		1
66	Optimization of a recompression supercritical nitrous oxide and helium Brayton cycle for space nuclear system. <i>Energy</i> , 2022 , 242, 123023	7.9	О
65	Crystal morphology regulation of pronamide through solvent selection: prediction and implementation. <i>Journal of Chemical Thermodynamics</i> , 2022 , 106743	2.9	1
64	Improvements for a Fully Consistent Description of the New Semi-Empirical Vapor Density Model for Pure Compounds. <i>Fluid Phase Equilibria</i> , 2022 , 113374	2.5	
63	Liquid density measurement of n-decane with a random temperature signal cross-correlation densimeter at high temperatures and pressures. 2022 , 709, 179162		О
62	Assessment of thermodynamic models via JouleThomson inversion. <i>Fluid Phase Equilibria</i> , 2022 , 556, 113401	2.5	1
61	Properties of Nitrous Oxide and Helium mixtures for space nuclear recompression Brayton cycle. 2022 , 8, 2480-2489		3
60	Diffusivities in Binary Mixtures of n-Decane, n-Hexadecane, n-Octacosane, 2-Methylpentane, 2,2-Dimethylbutane, Cyclohexane, Benzene, Ethanol, 1-Decanol, Ethyl Butanoate, or n-Hexanoic Acid with Dissolved He or Kr Close to Infinite Dilution. <i>Journal of Chemical & Dissolved He or Kr Close to Infinite Dilution</i> .	2.8	1
59	2022 , 67, 622-635 Thermodynamic Properties of Liquid Toluene and n-Butane Determined from Speed of Sound Data. 2022 , 43, 1		
58	Ideal Gas Heat Capacity and Critical Properties of HFE-Type Engineering Fluids: Ab Initio Predictions of Cpig, Modeling of Phase Behavior and Thermodynamic Properties Using PengRobinson and Volume-Translated PengRobinson Equations of State. 2022 , 43, 1		
57	Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc. <i>Symmetry</i> , 2022 , 14, 758	2.7	2
56	Adsorption of CO2 at T = 298 K and Pressures up to 6 MPa on Quasi Nonporous Al13Fe4. <i>Journal of Chemical & Data</i> ,	2.8	
55	Volumetric Properties of Binary Liquid Mixtures of Water with N-Methylpyrrolidone at (278.15B23.15) K and up to 70 MPa. <i>Journal of Chemical & Data</i> ,	2.8	

54	Measurement and correlation of PVT for organic-inorganic hybrid nanoparticles. <i>Fluid Phase Equilibria</i> , 2022 , 557, 113431	2.5	
53	Prediction of solid formation conditions in mixed refrigerants with iso-pentane and methane at high pressures and cryogenic temperatures. <i>Energy</i> , 2022 , 250, 123789	7.9	1
52	Empirical correlations for the third virial coefficients of nonpolar, polar and quantum fluids in a wide temperature range. <i>Fluid Phase Equilibria</i> , 2022 , 113477	2.5	1
51	Bi-Univalent Function Classes Defined by Using a Second Einstein Function. <i>Journal of Function Spaces</i> , 2022 , 2022, 1-10	0.8	
50	Systematic analysis of additives on the performance parameters of sCO2 cycles and their individual effects on the cycle characteristics. <i>Energy</i> , 2022 , 123957	7.9	О
49	The Expansion (Decompression) of the Solfatara Fumarolic Fluids. <i>Advances in Volcanology</i> , 2022 , 63-1	50 o	
48	Evaluation strategy towards an accurate determination of viscosity and interfacial tension by surface light scattering in presence of line-broadening effects. <i>Journal of Colloid and Interface Science</i> , 2022 ,	9.3	О
47	Effect of H2S content on relative permeability and capillary pressure characteristics of acid gas/brine/rock systems: A review. <i>Journal of Rock Mechanics and Geotechnical Engineering</i> , 2022 ,	5.3	
46	Simultaneous compressed liquid viscosity and density measurements of n-alkanes at temperatures between (291 and 353) K and pressures up to 50IMPa. <i>Journal of Chemical Thermodynamics</i> , 2022 , 172, 106830	2.9	O
45	Freezing density scaling of fluid transport properties: Application to liquified noble gases. <i>Journal of Chemical Physics</i> ,	3.9	2
44	The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	5
43	Thermodynamic modeling of hydrogenWater systems with gas impurity at various conditions using cubic and PC-SAFT equations of state. <i>Energy Conversion and Management: X</i> , 2022 , 15, 100257	2.5	1
42	Thermodynamic analysis of subcritical/transcritical ORCs with metal@rganic heat carriers for efficient power generation from low-grade thermal energy. <i>Energy</i> , 2022 , 255, 124519	7.9	О
41	Thermal degradation assessment study of a direct vaporization ORC based micro-CHP system under close-to-real operating conditions. <i>Applied Thermal Engineering</i> , 2022 , 214, 118878	5.8	
40	Modern fundamental equations of state for the most important hydrocarbons of oil, gas condensates, and associated gases. 2022 , 397-537		
39	Thermodynamic functions of hydrocarbons in the ideal gas state. 2022 , 323-334		
38	A novel formulation representation of the equilibrium constant for water gas shift reaction. <i>International Journal of Hydrogen Energy</i> , 2022 ,	6.7	0
37	Comments on temperature calibration and uncertainty estimate of the vibrating tube densimeter operated at atmospheric pressure. <i>Journal of Chemical Thermodynamics</i> , 2022 , 173, 106855	2.9	O

36	Thermophysical properties of hydrogen mixtures relevant for the development of the hydrogen economy: Review of available experimental data and thermodynamic models. 2022 ,	0
35	Experimental and numerical studies on the use of a needle for variable capacity single-phase ejectors. 2022 ,	o
34	Molecular cages in supercritical fluids at high pressures. 2022 , 562, 113564	
33	Thermodynamic properties of krypton from Monte Carlo simulations using ab initio potentials. 2022 , 157, 114504	0
32	Stoffmodelle der Technischen Thermodynamik. 2022 , 485-513	0
31	Krypton and the Fundamental Flaw of the Lennard-Jones Potential. 2022 , 13, 8284-8289	2
30	Optimal Nozzle Exit Position for a Single-Phase Ejector (Experimental, Numerical and Thermodynamic Modelling). 2022 ,	0
29	Isothermal Vapor[liquid Equilibrium for the Tetrafluoromethane (R14) + Octafluoropropane (R218) Binary Mixture at Five Temperatures from 173.150 to 213.150 K.	o
28	Linking Thermal Conductivity and Self-Diffusion Coefficient with a Simple Dimensionless Calorimetric Parameter for Saturated Liquids.	0
27	An efficient IMEX-DG solver for the compressible Navier-Stokes equations for non-ideal gases. 2022 , 471, 111653	1
26	Relationship between physical parameters of supercritical fluids and normalshock characteristics.	0
25	Air-source hybrid absorption-compression heat pumps with three-stage thermal coupling configuration for temperature lift over 150 IC. 2022 , 271, 116304	o
24	Evaluation of cubic, PC-SAFT, and GERG2008 equations of state for accurate calculations of thermophysical properties of hydrogen-blend mixtures. 2022 , 8, 13876-13899	1
23	Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations. 2022 , 327, 120097	1
22	Force field comparison and thermodynamic property calculations for the phase behavior of H2S+CO2 using Monte Carlo simulations. 2023 , 565, 113663	0
21	Some Interfacial Properties of Water and CO2/H2S at Quasireservoir Conditions: A Molecular Dynamics Study. 2022 , 1-13	O
20	Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture. 2022, 125989	0
19	Unified non-fitting formulation representation of thermodynamic properties for diatomic substances. 2023 , 371, 121088	o

18	An investigation on the thermophysical properties of glycerol. 2023 , 178, 106975	О
17	Cross Second Virial Coefficients of the H2O⊞2S and H2OBO2 Systems from First Principles.	O
16	Thermodynamic Equilibrium Study of Anaerobic Digestion through Helmholtz Equation of State. 2023 , 9, 69	O
15	Screening activated carbons produced from recycled petroleum coke for acid gas separation. 2023 , 10, 100243	1
14	Bridgman formula for the thermal conductivity of atomic and molecular liquids. 2023, 381, 121786	0
13	High pressure adsorption of hydrogen sulfide and regeneration ability of ultra-stable Y zeolite for natural gas sweetening. 2023 , 343, 127937	O
12	Influence of dissolved argon or carbon dioxide on the viscosity and surface tension of the imidazolium-based ionic liquids [OMIM][PF6] or [m(PEG2)2IM]I. 2023 , 377, 121491	О
11	Net zero Flow Assurance - Validation of various equations of state for the prediction of VLE and density of CO2-rich mixtures for CCUS applications. 2023 , 125, 103877	O
10	Measurements and modeling of dimethyl ether (DME) solubility in n-decane and DME-saturated liquid density at Tଢ଼ ((293.15B93.15) K and Pଢ଼ ((0.345\).76) MPa. 2023 , 570, 113797	0
9	Density and Viscosity Measurements of n-Dodecane and Carbon Dioxide + n-Dodecane at Temperatures from (298 to 548) K. 2023 , 44,	O
8	Residual Entropy Scaling for Long-Chain Linear Alkanes and Isomers of Alkanes. 2023, 62, 3767-3791	0
7	Equation for the viscosity coefficient of liquid, gas, and fluid of inert gases. Krypton. 2022 , 29, 869-874	O
6	Reply to Comment on Computation of Isobaric Thermal Expansivity from Liquid Density Measurements. Application to Toluene 2023 , 68, 1047-1051	О
5	Comment on Computation of Isobaric Thermal Expansivity from Liquid Density Measurements. Application to Toluene (12023, 68, 1043-1046)	O
4	Sour Gas Adsorption on Silica Gels. 2023 , 8, 12592-12602	0
3	Solubility and Liquid Density of Binary Mixtures of n-Hexane or 1-Hexanol with Krypton, Sulfur Hexafluoride, or R143a. 2023 , 68, 813-834	O
2	Dehydration requirements for CO2 and impure CO2 for ship transport. 2023 , 113830	0
1	Phase diagram to demarcate supercritical, transcritical, and continuous phase regimes for binary fluid equilibrium mixing relevant to combustion applications. 2023 , 199, 105935	O