A Spätzle-Processing Enzyme Required for Toll Signal Immunity

Developmental Cell 10, 45-55 DOI: 10.1016/j.devcel.2005.11.013

Citation Report

#	Article	IF	CITATIONS
1	Expression and regulation of SpÃæle-processing enzyme inDrosophila. FEBS Letters, 2006, 580, 5406-5410.	1.3	29
2	Dual Detection of Fungal Infections in Drosophila via Recognition of Glucans and Sensing of Virulence Factors. Cell, 2006, 127, 1425-1437.	13.5	394
3	Metamorphosis and collagen-IV-fragments stimulate innate immune response in the greater wax moth, Galleria mellonella. Developmental and Comparative Immunology, 2006, 30, 1108-1118.	1.0	65
4	Gene silencing of serine proteases affects melanization of Sephadex beads in Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2006, 36, 701-711.	1.2	63
5	Pathogen recognition and signalling in the Drosophila innate immune response. Immunobiology, 2006, 211, 251-261.	0.8	82
7	Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. Insect Molecular Biology, 2006, 15, 603-614.	1.0	170
9	Drosophila Immunity: A Large-Scale In Vivo RNAi Screen Identifies Five Serine Proteases Required for Toll Activation. Current Biology, 2006, 16, 808-813.	1.8	189
10	Weckle Is a Zinc Finger Adaptor of the Toll Pathway in Dorsoventral Patterning of the Drosophila Embryo. Current Biology, 2006, 16, 1183-1193.	1.8	27
11	Plant hormone receptors: perception is everything. Genes and Development, 2006, 20, 1998-2008.	2.7	88
12	Toll and IMD Pathways Synergistically Activate an Innate Immune Response in Drosophila melanogaster. Molecular and Cellular Biology, 2007, 27, 4578-4588.	1.1	304
13	Crystal Structure of the Serine Protease Domain of Prophenoloxidase Activating Factor-I. Journal of Biological Chemistry, 2007, 282, 10783-10791.	1.6	26
14	Role of the SpÃæle Pro-domain in the Generation of an Active Toll Receptor Ligand. Journal of Biological Chemistry, 2007, 282, 13522-13531.	1.6	48
15	Peptidoglycan recognition in Drosophila. Biochemical Society Transactions, 2007, 35, 1496-1500.	1.6	44
16	Infection-induced proteolysis of PGRP-LC controls the IMD activation and melanization cascades in Drosophila. FASEB Journal, 0, , .	0.2	0
17	An Ectopic Expression Screen Reveals the Protective and Toxic Effects of Drosophila Seminal Fluid Proteins. Genetics, 2007, 175, 777-783.	1.2	102
18	Proteolytic activation of pro-spÜle is required for the induced transcription of antimicrobial peptide genes in lepidopteran insects. Developmental and Comparative Immunology, 2007, 31, 1002-1012.	1.0	57
19	Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro: Snake-like hemolymph proteinase 21 (HP21) cleaved by HP14 activates prophenoloxidase-activating proteinase-2 precursor. Insect Biochemistry and Molecular Biology, 2007, 37, 1015-1025.	1.2	80
20	Comparative genomic analysis of the Tribolium immune system. Genome Biology, 2007, 8, R177.	13.9	271

#	Article	IF	CITATIONS
21	Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science, 2007, 316, 1738-1743.	6.0	550
22	Structure and Function of Toll Receptors and Their Ligands. Annual Review of Biochemistry, 2007, 76, 141-165.	5.0	562
23	The Host Defense ofDrosophila melanogaster. Annual Review of Immunology, 2007, 25, 697-743.	9.5	2,854
24	The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nature Reviews Immunology, 2007, 7, 862-874.	10.6	757
25	Identification of unannotated exons of low abundance transcripts in Drosophila melanogaster and cloning of a new serine protease gene upregulated upon injury. BMC Genomics, 2007, 8, 249.	1.2	9
26	Crystallization of SpÃæle, a cystine-knot protein involved in embryonic development and innate immunity in <i>Drosophila melanogaster</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 707-710.	0.7	14
27	Innate immunity in <i>Drosophila</i> : Pathogens and pathways. Insect Science, 2008, 15, 29-43.	1.5	120
28	Sensing of 'danger signals' and pathogen-associated molecular patterns defines binary signaling pathways 'upstream' of Toll. Nature Immunology, 2008, 9, 1165-1170.	7.0	189
29	Dissecting innate immunity by germline mutagenesis. Immunology, 2008, 123, 459-468.	2.0	4
30	Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan. Molecular Immunology, 2008, 45, 2521-2530.	1.0	76
31	EVIDENCE FOR SPECIFICITY AND MEMORY IN THE INSECT INNATE IMMUNE RESPONSE. , 2008, , 97-127.		21
32	Infectionâ€induced proteolysis of PGRPâ€LC controls the IMD activation and melanization cascades in <i>Drosophila</i> . FASEB Journal, 2008, 22, 918-929.	0.2	67
33	A Three-step Proteolytic Cascade Mediates the Activation of the Peptidoglycan-induced Toll Pathway in an Insect. Journal of Biological Chemistry, 2008, 283, 7599-7607.	1.6	142
34	Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling. Journal of Biological Chemistry, 2008, 283, 33447-33454.	1.6	60
35	Biophysical Characterization of Refolded Drosophila SpÃæle, a Cystine Knot Protein, Reveals Distinct Properties of Three Isoforms. Journal of Biological Chemistry, 2008, 283, 32598-32609.	1.6	44
36	Molecular Control of Phenoloxidase-induced Melanin Synthesis in an Insect. Journal of Biological Chemistry, 2008, 283, 25316-25323.	1.6	198
37	The N-terminal Domain of Drosophila Gram-negative Binding Protein 3 (GNBP3) Defines a Novel Family of Fungal Pattern Recognition Receptors. Journal of Biological Chemistry, 2009, 284, 28687-28697.	1.6	51
38	Regulation and function of the melanization reaction in Drosophila. Fly, 2009, 3, 105-111.	0.9	176

#	Article	IF	CITATIONS
39	Functions of Manduca sexta Hemolymph Proteinases HP6 and HP8 in Two Innate Immune Pathways. Journal of Biological Chemistry, 2009, 284, 19716-19726.	1.6	149
40	Proteolytic Cascade for the Activation of the Insect Toll Pathway Induced by the Fungal Cell Wall Component. Journal of Biological Chemistry, 2009, 284, 19474-19481.	1.6	138
41	Immunity Without Antibodies…. Advances in Cell Biology, 2009, -1, 1-15.	1.5	2
42	<i>Drosophila</i> Toll Pathway: The New Model. Science Signaling, 2009, 2, jc1.	1.6	14
43	A single modular serine protease integrates signals from pattern-recognition receptors upstream of the <i>Drosophila</i> Toll pathway. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12442-12447.	3.3	175
44	Combinatorial patterning mechanisms in the Drosophila embryo. Briefings in Functional Genomics & Proteomics, 2009, 8, 243-249.	3.8	24
45	NF-ÂB in the Immune Response of Drosophila. Cold Spring Harbor Perspectives in Biology, 2009, 1, a000232-a000232.	2.3	205
46	Evolutionary and functional epitopes of the SpÃæle protein: New insights into activation of the Toll receptor. Cellular and Molecular Life Sciences, 2009, 66, 1595-1602.	2.4	12
47	Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis. Nature Immunology, 2009, 10, 249-256.	7.0	173
48	Purification and characterization of silkworm hemocytes by flow cytometry. Developmental and Comparative Immunology, 2009, 33, 439-448.	1.0	50
49	Regulation of DUOX by the Gαq-Phospholipase Cβ-Ca2+ Pathway in Drosophila Gut Immunity. Developmental Cell, 2009, 16, 386-397.	3.1	196
50	Distinct Melanization Pathways in the Mosquito Aedes aegypti. Immunity, 2010, 32, 41-53.	6.6	125
51	Proteolytic activation and function of the cytokine SpÃæle in the innate immune response of a lepidopteran insect, <i>Manduca sexta</i> . FEBS Journal, 2010, 277, 148-162.	2.2	105
52	Functional analysis of <i>Toll</i> â€ŧelated genes in <i>Drosophila</i> . Development Growth and Differentiation, 2010, 52, 771-783.	0.6	55
53	Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC. International Immunology, 2010, 22, 143-148.	1.8	65
54	Molecular Mechanism That Induces Activation of SpĀæzle, the Ligand for the Drosophila Toll Receptor. Journal of Biological Chemistry, 2010, 285, 19502-19509.	1.6	72
55	Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects. Journal of Biological Chemistry, 2010, 285, 32937-32945.	1.6	61
56	Role for Sumoylation in Systemic Inflammation and Immune Homeostasis in Drosophila Larvae. PLoS Pathogens, 2010, 6, e1001234.	2.1	60

4

#	Article	IF	Citations
57	A Large-Scale RNAi Screen Identifies <i>Deaf1 </i> as a Regulator of Innate Immune Responses in <i>Drosophila</i> . Journal of Innate Immunity, 2010, 2, 181-194.	1.8	39
58	Drosophila immune response: From systemic antimicrobial peptide production in fat body cells to local defense in the intestinal tract. Fly, 2010, 4, 40-47.	0.9	104
59	Fly Immunity: Recognition of Pathogens and Induction of Immune Responses. Advances in Experimental Medicine and Biology, 2010, 708, 205-217.	0.8	9
60	Analysis of Mutually Exclusive Alternatively Spliced Serpin-1 Isoforms and Identification of Serpin-1 Proteinase Complexes in Manduca sexta Hemolymph. Journal of Biological Chemistry, 2010, 285, 29642-29650.	1.6	24
61	Manduca sexta serpin-5 regulates prophenoloxidase activation and the Toll signaling pathway by inhibiting hemolymph proteinase HP6. Insect Biochemistry and Molecular Biology, 2010, 40, 683-689.	1.2	82
62	Endocytic pathway is required for <i>Drosophila</i> Toll innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8322-8327.	3.3	74
63	Beetle Immunity. Advances in Experimental Medicine and Biology, 2010, 708, 163-180.	0.8	44
65	NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster. Current Topics in Microbiology and Immunology, 2010, 349, 25-60.	0.7	159
67	Identification of three different types of serine proteases (one SP and two SPHs) in Chinese white shrimp. Fish and Shellfish Immunology, 2011, 30, 456-466.	1.6	20
68	The <i>Drosophila</i> Toll Signaling Pathway. Journal of Immunology, 2011, 186, 649-656.	0.4	736
69	Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight. PLoS ONE, 2011, 6, e15361.	1.1	35
70	Wild-type <i>Drosophila melanogaster</i> as an alternative model system for investigating the pathogenicity of <i>Candida albicans</i> . DMM Disease Models and Mechanisms, 2011, 4, 504-514.	1.2	45
71	Cleavage of PGRP-LC receptor in the <i>Drosophila</i> IMD pathway in response to live bacterial infection in S2 cells. Self/nonself, 2011, 2, 125-141.	2.0	12
72	Regulation of Toll and Toll-like receptor signaling by the endocytic pathway. Small GTPases, 2011, 2, 95-98.	0.7	13
73	Spn1 Regulates the GNBP3-Dependent Toll Signaling Pathway in Drosophila melanogaster. Molecular and Cellular Biology, 2011, 31, 2960-2972.	1.1	39
74	Structure-Function Analysis of Grass Clip Serine Protease Involved in Drosophila Toll Pathway Activation. Journal of Biological Chemistry, 2011, 286, 12300-12307.	1.6	29
75	Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of <i>Drosophila</i> larvae by <i>Candida albicans</i> . DMM Disease Models and Mechanisms, 2011, 4, 515-525.	1.2	60
76	<i>Drosophila</i> as a model system to unravel the layers of innate immunity to infection. Open Biology, 2012, 2, 120075.	1.5	162

	Сітатіс	on Report	
#	Article	IF	CITATIONS
77	The Drosophila melanogaster host model. Journal of Oral Microbiology, 2012, 4, 10368.	1.2	21
78	Roles of Peptidoglycan Recognition Protein (PCRP) in Immunity and Implications for Novel Anti-infective Measures. Critical Reviews in Eukaryotic Gene Expression, 2012, 22, 259-268.	0.4	12
79	Antimicrobial peptide gene induction, involvement of Toll and IMD pathways and defense against bacteria in the red flour beetle, Tribolium castaneum. Results in Immunology, 2012, 2, 72-82.	2.2	72
80	Conserved microRNA miR-8 in fat body regulates innate immune homeostasis in Drosophila. Developmental and Comparative Immunology, 2012, 37, 50-54.	1.0	67
81	Non-apoptotic functions of cell death effectors in inflammation and innate immunity. Microbes and Infection, 2012, 14, 1241-1253.	1.0	9
82	Insect Immunology. , 2012, , 480-512.		7
83	Insect Proteases. , 2012, , 346-364.		13
84	Insect Innate Immunity Database (IIID): An Annotation Tool for Identifying Immune Genes in Insect Genomes. PLoS ONE, 2012, 7, e45125.	1.1	62
85	Genetic evidence of a redox-dependent systemic wound response via Hayan Protease-Phenoloxidase system in <i>Drosophila</i> . EMBO Journal, 2012, 31, 1253-1265.	3.5	99
86	Pefabloc – A sulfonyl fluoride serine protease inhibitor blocks induction of <i>Diptericin</i> in <i>Drosophila</i> l(2)mbn cells. Insect Science, 2012, 19, 472-476.	1.5	2
87	Genetics of Immune Recognition and Response in Drosophila host defense. Advances in Genetics, 2013, 83, 71-97.	0.8	20
88	A comparative perspective on lipid storage in animals. Journal of Cell Science, 2013, 126, 1541-1552.	1.2	112
89	Polyploidy in Animals: Effects of Gene Expression on Sex Determination, Evolution and Ecology. Cytogenetic and Genome Research, 2013, 140, 256-269.	0.6	72
91	Polydnaviral Ankyrin Proteins Aid Parasitic Wasp Survival by Coordinate and Selective Inhibition of Hematopoietic and Immune NF-kappa B Signaling in Insect Hosts. PLoS Pathogens, 2013, 9, e1003580.	2.1	75
92	High level expression of the Drosophila Toll receptor ectodomain and crystallization of its complex with the morphogen SpĀĦzle. Biological Chemistry, 2013, 394, 1091-1096.	1.2	2
93	<i>In vitro</i> maturation of <i>Drosophila melanogaster</i> SpÃæle protein with refolded Easter reveals a novel cleavage site within the prodomain. Biological Chemistry, 2013, 394, 1069-1075.	1.2	4
94	Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera. Insects, 2013, 4, 320-338.	1.0	36
95	The Drosophila Toll Pathway Controls but Does Not Clear Candida glabrata Infections. Journal of Immunology, 2013, 190, 2818-2827.	0.4	29

#	Article	IF	CITATIONS
96	Bacteria- and IMD Pathway-Independent Immune Defenses against Plasmodium falciparum in Anopheles gambiae. PLoS ONE, 2013, 8, e72130.	1.1	57
97	Characteristic and Functional Analysis of Toll-like Receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, Reveals Ancient Origin of TLR-Mediated Innate Immunity. PLoS ONE, 2013, 8, e76464.	1.1	84
98	In Vivo RNAi-Based Screens: Studies in Model Organisms. Genes, 2013, 4, 646-665.	1.0	15
99	Overview of Drosophila immunity: A historical perspective. Developmental and Comparative Immunology, 2014, 42, 3-15.	1.0	107
100	Peptidoglycan recognition proteins in Drosophila immunity. Developmental and Comparative Immunology, 2014, 42, 36-41.	1.0	188
101	Conventional and non-conventional Drosophila Toll signaling. Developmental and Comparative Immunology, 2014, 42, 16-24.	1.0	149
102	Proteomics of larval hemolymph in Bombyx mori reveals various nutrient-storage and immunity-related proteins. Amino Acids, 2014, 46, 1021-1031.	1.2	39
103	Structure of the Toll-SpAtele complex, a molecular hub in <i>Drosophila</i> development and innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6281-6286.	3.3	57
104	Retromer Promotes Immune Quiescence by Suppressing SpÃæleâ€Toll Pathway in <i>Drosophila</i> . Journal of Cellular Physiology, 2014, 229, 512-520.	2.0	9
105	A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science, 2014, 346, 646-650.	6.0	330
106	A Spaetzle-like role for nerve growth factor β in vertebrate immunity to <i>Staphylococcus aureus</i> . Science, 2014, 346, 641-646.	6.0	68
107	The Acetate Switch of an Intestinal Pathogen Disrupts Host Insulin Signaling and Lipid Metabolism. Cell Host and Microbe, 2014, 16, 592-604.	5.1	92
108	Persephone/SpÃæle Pathogen Sensors Mediate the Activation of Toll Receptor Signaling in Response to Endogenous Danger Signals in Apoptosis-deficient Drosophila. Journal of Biological Chemistry, 2014, 289, 7558-7568.	1.6	71
109	Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection. Developmental and Comparative Immunology, 2014, 46, 208-221.	1.0	25
110	The Role of the Phylogenetically Conserved Cochaperone Protein Droj2/DNAJA3 in NF-κB Signaling. Journal of Biological Chemistry, 2015, 290, 23816-23825.	1.6	7
111	A Critical Role for CLSP2 in the Modulation of Antifungal Immune Response in Mosquitoes. PLoS Pathogens, 2015, 11, e1004931.	2.1	61
112	Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics, 2015, 16, 867.	1.2	52
113	Serine proteases SP1 and SP13 mediate the melanization response of Asian corn borer, Ostrinia furnacalis, against entomopathogenic fungus Beauveria bassiana. Journal of Invertebrate Pathology, 2015, 128, 64-72.	1.5	27

#	Article	IF	CITATIONS
114	ExÂvivo genome-wide RNAi screening of the Drosophila Toll signaling pathway elicited by a larva-derived tissue extract. Biochemical and Biophysical Research Communications, 2015, 467, 400-406.	1.0	16
115	The first mollusk spĀæle homolog gene in the clam, Paphia undulate. Fish and Shellfish Immunology, 2015, 47, 712-716.	1.6	8
116	Genome-wide RNAi screening implicates the E3 ubiquitin ligase Sherpa in mediating innate immune signaling by Toll in <i>Drosophila</i> adults. Science Signaling, 2015, 8, ra107.	1.6	24
117	Clip-domain serine proteases as immune factors in insect hemolymph. Current Opinion in Insect Science, 2015, 11, 47-55.	2.2	194
118	The Toll/NF-κB pathway in cuttlefish symbiotic accessory nidamental gland. Developmental and Comparative Immunology, 2015, 53, 42-46.	1.0	14
119	Immunity in Insects. , 2016, , 454-461.		4
120	Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted byLucilia sericataMedical Maggots. BioMed Research International, 2016, 2016, 1-27.	0.9	24
121	How Insects Combat Infections. , 2016, , 117-128.		10
122	The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biology, 2016, 17, 192.	3.8	130
123	Understanding the immune system architecture and transcriptome responses to southern rice black-streaked dwarf virus in Sogatella furcifera. Scientific Reports, 2016, 6, 36254.	1.6	24
124	The Drosophila Toll Pathway: A Model of Innate Immune Signalling Activated by Endogenous Ligands. , 2016, , 119-129.		0
125	Functional screening of mammalian mechanosensitive genes using Drosophila RNAi library– Smarcd3/Bap60 is a mechanosensitive pro-inflammatory gene. Scientific Reports, 2016, 6, 36461.	1.6	7
126	SpÃæle-Processing Enzyme-independent Activation of the Toll Pathway in <i>Drosophila</i> Innate Immunity. Cell Structure and Function, 2016, 41, 55-60.	0.5	17
127	Serpin-5 regulates prophenoloxidase activation and antimicrobial peptide pathways in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 2016, 73, 27-37.	1.2	52
128	Cytokines in Drosophila immunity. Immunology Letters, 2016, 170, 42-51.	1.1	39
129	Drosophila melanogaster clip-domain serine proteases: Structure, function and regulation. Biochimie, 2016, 122, 255-269.	1.3	109
130	Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin. Developmental and Comparative Immunology, 2017, 68, 34-45.	1.0	37
131	Arthropod Innate Immune Systems and Vector-Borne Diseases. Biochemistry, 2017, 56, 907-918.	1.2	79

#	Article	IF	Citations
132	Advances in Myeloid-Like Cell Origins and Functions in the Model Organism <i>Drosophila melanogaster</i> . Microbiology Spectrum, 2017, 5, .	1.2	4
133	A Venom Serpin Splicing Isoform of the Endoparasitoid Wasp Pteromalus puparum Suppresses Host Prophenoloxidase Cascade by Forming Complexes with Host Hemolymph Proteinases. Journal of Biological Chemistry, 2017, 292, 1038-1051.	1.6	66
134	A novel mode of induction of the humoral innate immune response in <i>Drosophila</i> larvae. DMM Disease Models and Mechanisms, 2017, 10, 271-281.	1.2	43
135	Characterization of PmSpÓ"tzle 1 from the black tiger shrimp Peneaus monodon. Fish and Shellfish Immunology, 2017, 65, 88-95.	1.6	19
136	A chymotrypsin-like serine protease from Portunus trituberculatus involved in pathogen recognition and AMP synthesis but not required for prophenoloxidase activation. Fish and Shellfish Immunology, 2017, 66, 307-316.	1.6	9
137	An alternative pathway to eusociality: Exploring the molecular and functional basis of fortress defense. Evolution; International Journal of Organic Evolution, 2017, 71, 1986-1998.	1.1	8
138	Insect Proteases: Structural-Functional Outlook. , 2017, , 451-473.		3
139	Binding of PmClipSP2 to microbial cell wall components and activation of the proPO-activating system in the black tiger shrimp Penaeus monodon. Developmental and Comparative Immunology, 2017, 77, 38-45.	1.0	14
140	iTRAQ proteomic analysis of the interactions between Bombyx mori nuclear polyhedrosis virus and silkworm. Journal of Proteomics, 2017, 166, 138-145.	1.2	15
141	A role of tumor susceptibility gene 101 (TSG101) in innate immune response of crayfish Procambarus clarkii. Developmental and Comparative Immunology, 2017, 76, 268-273.	1.0	7
142	Advances in Myeloid-Like Cell Origins and Functions in the Model Organism Drosophila melanogaster. , 2017, , 59-77.		0
143	Insect Antimicrobial Defences. Advances in Insect Physiology, 2017, , 1-33.	1.1	30
144	Insect Proteases â~†. , 2017, , .		0
145	Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. ELife, 2017, 6, .	2.8	70
146	Innate immune responses in the Chinese oak silkworm, Antheraea pernyi. Developmental and Comparative Immunology, 2018, 83, 22-33.	1.0	15
147	Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. Developmental and Comparative Immunology, 2018, 83, 3-11.	1.0	71
148	Immune functions of insect Î ² GRPs and their potential application. Developmental and Comparative Immunology, 2018, 83, 80-88.	1.0	31
149	The immune strategies of mosquito Aedes aegypti against microbial infection. Developmental and Comparative Immunology, 2018, 83, 12-21.	1.0	44

#	Article	IF	Citations
150	A tissue communication network coordinating innate immune response during muscle stress. Journal of Cell Science, 2018, 131, .	1.2	7
151	Drosophila as a Model to Study Brain Innate Immunity in Health and Disease. International Journal of Molecular Sciences, 2018, 19, 3922.	1.8	25
152	The Toll Pathway in the Central Nervous System of Flies and Mammals. NeuroMolecular Medicine, 2018, 20, 419-436.	1.8	15
153	Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects. Insect Biochemistry and Molecular Biology, 2018, 103, 53-69.	1.2	51
154	Characterization of Spz5 as a novel ligand for Drosophila Toll-1 receptor. Biochemical and Biophysical Research Communications, 2018, 506, 510-515.	1.0	15
155	Molecular characterization and functional analysis of MyD88 from the tropical sea cucumber, Holothuria leucospilota. Fish and Shellfish Immunology, 2018, 83, 1-7.	1.6	12
156	Antiviral Immunity in the Fruit Fly, Drosophila melanogaster. , 2018, , .		1
157	A clip domain serine protease stimulates melanization activation and expression of antimicrobial peptides in the Chinese oak silkworm, Antheraea pernyi. Journal of Asia-Pacific Entomology, 2018, 21, 864-871.	0.4	4
158	Spatially Restricted Regulation of SpÃæle/Toll Signaling during Cell Competition. Developmental Cell, 2018, 46, 706-719.e5.	3.1	67
159	Limulus Ancient Innate Responses. , 2019, , 631-682.		0
160	The white spot syndrome virus hijacks the expression of the Penaeus vannamei Toll signaling pathway to evade host immunity and facilitate its replication. Fish and Shellfish Immunology, 2019, 92, 905-912.	1.6	11
161	Nephrocytes Remove Microbiota-Derived Peptidoglycan from Systemic Circulation to Maintain Immune Homeostasis. Immunity, 2019, 51, 625-637.e3.	6.6	39
162	The miR-317 functions as a negative regulator of Toll immune response and influences Drosophila survival. Developmental and Comparative Immunology, 2019, 95, 19-27.	1.0	29
163	Anti-tumour effects of antimicrobial peptides, targets of the innate immune system, against haematopoietic tumours in <i>Drosophila mxc</i> mutants. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	26
164	Insect Immunity: From Systemic to Chemosensory Organs Protection. , 2019, , 205-229.		1
165	Toll family members bind multiple SpÃtzle proteins and activate antimicrobial peptide gene expression in Drosophila. Journal of Biological Chemistry, 2019, 294, 10172-10181.	1.6	58
166	More Than Black or White: Melanization and Toll Share Regulatory Serine Proteases in Drosophila. Cell Reports, 2019, 27, 1050-1061.e3.	2.9	106
167	Distinct Functions of Bombyx mori Peptidoglycan Recognition Protein 2 in Immune Responses to Bacteria and Viruses. Frontiers in Immunology, 2019, 10, 776.	2.2	45

#	Article	IF	CITATIONS
168	Functional characterization of two clip-domain serine proteases in the swimming crab Portunus trituberculatus. Fish and Shellfish Immunology, 2019, 89, 98-107.	1.6	9
169	Protein-Level Interactions as Mediators of Sexual Conflict in Ants*. Molecular and Cellular Proteomics, 2019, 18, S34-S45.	2.5	27
170	Parasitoid Jewel Wasp Mounts Multipronged Neurochemical Attack to Hijack a Host Brain. Molecular and Cellular Proteomics, 2019, 18, 99-114.	2.5	27
171	Two novel serine proteases from Scylla paramamosain involved in the synthesis of anti-lipopolysaccharide factors and activation of prophenoloxidase system. Fish and Shellfish Immunology, 2019, 84, 322-332.	1.6	13
172	Molecular isolation and characterization of a spÃæle gene from Macrobrachium rosenbergii. Fish and Shellfish Immunology, 2019, 84, 441-450.	1.6	17
173	Identification, characterization, and expression analysis of clip-domain serine protease genes in the silkworm, Bombyx mori. Developmental and Comparative Immunology, 2020, 105, 103584.	1.0	13
174	Biosurfactants Induce Antimicrobial Peptide Production through the Activation of TmSpatzles in Tenebrio molitor. International Journal of Molecular Sciences, 2020, 21, 6090.	1.8	7
175	A Toll-SpÃæle Pathway in the Immune Response of Bombyx mori. Insects, 2020, 11, 586.	1.0	26
176	The Posterior Signaling Center Is an Important Microenvironment for Homeostasis of the Drosophila Lymph Gland. Frontiers in Cell and Developmental Biology, 2020, 8, 382.	1.8	7
177	SpĀæle Homolog-Mediated Toll-Like Pathway Regulates Innate Immune Responses to Maintain the Homeostasis of Gut Microbiota in the Red Palm Weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Frontiers in Microbiology, 2020, 11, 846.	1.5	25
178	Osa-Containing Brahma Complex Regulates Innate Immunity and the Expression of Metabolic Genes in Drosophila. Journal of Immunology, 2020, 204, 2143-2155.	0.4	4
179	TmSpz6 Is Essential for Regulating the Immune Response to Escherichia coli and Staphylococcus aureus Infection in Tenebrio molitor. Insects, 2020, 11, 105.	1.0	24
180	Genetic Basis of Increased Lifespan and Postponed Senescence in Drosophila melanogaster. G3: Genes, Genomes, Genetics, 2020, 10, 1087-1098.	0.8	8
181	Uncovering and defragmenting the role of the Toll pathway in the innate immune responses of cultured crustaceans against viral pathogens. Reviews in Aquaculture, 2020, 12, 1818-1835.	4.6	18
182	Comparative Transcriptome Analysis of Thitarodes Armoricanus in Response to the Entomopathogenic Fungi Paecilomyces Hepiali and Ophiocordyceps Sinensis. Insects, 2020, 11, 4.	1.0	18
184	A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: an <i>in silico</i> investigation. Briefings in Bioinformatics, 2021, 22, 1476-1498.	3.2	58
185	Intracellular Interactions Between Arboviruses and Wolbachia in Aedes aegypti. Frontiers in Cellular and Infection Microbiology, 2021, 11, 690087.	1.8	12
186	Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias. BMC Genomics, 2021, 22, 562.	1.2	13

#	Article	IF	CITATIONS
187	A humoral factor, hemolymph proteinase 8, elicits a cellular defense response of nodule formation in Bombyx mori larvae in association with recognition by C-type lectins. Journal of Insect Physiology, 2021, 132, 104252.	0.9	11
188	Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cellular Signalling, 2021, 83, 110003.	1.7	55
191	lncRNA-CR46018 positively regulates the Drosophila Toll immune response by interacting with Dif/Dorsal. Developmental and Comparative Immunology, 2021, 124, 104183.	1.0	14
192	Characterization and functional analysis of a clip domain serine protease (MncSP) and its alternative transcript (MncSP-isoform) from Macrobrachium nipponense. Developmental and Comparative Immunology, 2022, 126, 104237.	1.0	3
193	Immune mechanism in silkworm Bombyx mori L Methods in Microbiology, 2021, 49, 115-141.	0.4	2
194	The Role of p38 MAPK, JNK, and ERK in Antibacterial Responses of Chilo suppressalis (Lepidoptera:) Tj ETQq1 1 C).784314 r 0.8	gBT1Overlo <mark>c</mark> i
198	Immune-Related Gene Spatzle4 and Its Differential Immune Responses against Microbes in the Silkworm, Bombyx Mori. American Journal of Clinical and Experimental Medicine, 2015, 3, 344.	0.1	4
199	Genome-Wide Identification and Immune Response Analysis of Serine Protease Inhibitor Genes in the Silkworm, Bombyx mori. PLoS ONE, 2012, 7, e31168.	1.1	77
200	Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila. PLoS ONE, 2013, 8, e61773.	1.1	39
201	The serine protease homolog spheroide is involved in sensing of pathogenic Gram-positive bacteria. PLoS ONE, 2017, 12, e0188339.	1.1	8
202	Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal. BMB Reports, 2008, 41, 93-101.	1.1	13
203	CLIP-domain serine proteases in Drosophila innate immunity. BMB Reports, 2008, 41, 102-107.	1.1	76
204	Positive and negative regulation of the Drosophila immune response. BMB Reports, 2008, 41, 267-277.	1.1	155
205	Dual role for Jumu in the control of hematopoietic progenitors in the Drosophila lymph gland. ELife, 2017, 6, .	2.8	30
207	Bug Versus Bug: Humoral Immune Responses in Drosophila melanogaster. Nucleic Acids and Molecular Biology, 2008, , 43-72.	0.2	1
208	Toll-Dorsal Pathway Regulates Immunity as well as Dorso-Ventral Patterning in Drosophila. Proceedings of the Indian National Science Academy, 2015, 81, .	0.5	0
209	Multiple Toll-Spptzle Pathways in <i>Drosophila melanogaster</i> Immunity. SSRN Electronic Journal, 0, , .	0.4	0
211	A role of peptidoglycan recognition proteins in regulating innate immune response. Russian Journal of Infection and Immunity, 2020, 10, 469-476.	0.2	0

#	Article	IF	CITATIONS
212	Comparative transcriptome analyses of the <i>Drosophila</i> pupal eye. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	2
213	Tenebrio molitor SpĀĦzle 1b Is Required to Confer Antibacterial Defense Against Gram-Negative Bacteria by Regulation of Antimicrobial Peptides. Frontiers in Physiology, 2021, 12, 758859.	1.3	9
214	cGMP signaling pathway that modulates NF-κB activation in innate immune responses. IScience, 2021, 24, 103473.	1.9	6
215	The potential role of eyestalk in the immunity of Litopenaeus vannamei to Vibrio infection. Fish and Shellfish Immunology, 2022, 121, 62-73.	1.6	5
216	Bacterial recognition by PGRP-SA and downstream signalling by Toll/DIF sustain commensal gut bacteria in Drosophila. PLoS Genetics, 2022, 18, e1009992.	1.5	7
217	Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics, 2022, 74, 35-62.	1.2	15
218	A genetic screen in Drosophila reveals the role of fucosylation in host susceptibility to Candida infection. DMM Disease Models and Mechanisms, 2022, , .	1.2	2
219	Characterized Gene Repertoires and Functional Gene Reference for Forensic Entomology: Genomic and Developmental Transcriptomic Analysis of <i>Aldrichina grahami</i> (Diptera: Calliphoridae). Journal of Medical Entomology, 2022, 59, 810-819.	0.9	2
220	Injury-induced inflammatory signaling and hematopoiesis in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119109119.	3.3	15
221	The potential role of eyestalk in the immunity of Litopenaeus vannamei to Vibrio parahaemolyticus infection II. From the perspective of long non-coding RNA. Fish and Shellfish Immunology, 2022, 124, 300-312.	1.6	6
223	Regulating metabolism to shape immune function: Lessons from Drosophila. Seminars in Cell and Developmental Biology, 2023, 138, 128-141.	2.3	18
229	Toll-9 interacts with Toll-1 to mediate a feedback loop during apoptosis-induced proliferation in Drosophila. Cell Reports, 2022, 39, 110817.	2.9	7
230	Meta-Analysis of Immune Induced Gene Expression Changes in Diverse Drosophila melanogaster Innate Immune Responses. Insects, 2022, 13, 490.	1.0	2
231	Insect multicopper oxidase-2: Molecular properties, roles in cuticle formation, and impacts on evolutionary success of insects. Advances in Insect Physiology, 2022, , 273-337.	1.1	3
232	IL-1 family cytokines serve as 'activity recognition receptors' for aberrant protease activity indicative of danger. Cytokine, 2022, 157, 155935.	1.4	10
233	Drosophila caspases as guardians of host-microbe interactions. Cell Death and Differentiation, 2023, 30, 227-236.	5.0	4
234	Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Frontiers in Immunology, 0, 13, .	2.2	33
235	Structure and dynamics of Toll immunoreceptor activation in the mosquito Aedes aegypti. Nature Communications, 2022, 13, .	5.8	7

#	Article	IF	CITATIONS
236	An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity. Journal of Advanced Research, 2023, 48, 1-16.	4.4	16
237	Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. International Journal of Molecular Sciences, 2022, 23, 11244.	1.8	8
238	SpÃæle, a signaling molecule that interacts with pathogen-associated molecules and Toll-like receptor in Portunus trituberculatus. International Journal of Biological Macromolecules, 2022, 223, 17-25.	3.6	2
239	<i>Drosophila</i> hemocytes recognize lymph gland tumors of <i>mxc</i> mutants and activate the innate immune pathway in a reactive oxygen species-dependent manner. Biology Open, 2022, 11, .	0.6	4
241	Chronic sleep loss disrupts rhythmic gene expression in Drosophila. Frontiers in Physiology, 0, 13, .	1.3	2
242	The role of micro RNAs (miRNAs) in the regulation of <i>Drosophila melanogaster</i> 's innate immunity. Fly, 2022, 16, 382-396.	0.9	2
243	Analysis of the Toll and Spaetzle Genes Involved in Toll Pathway-Dependent Antimicrobial Gene Induction in the Red Flour Beetle, Tribolium castaneum (Coleoptera; Tenebrionidae). International Journal of Molecular Sciences, 2023, 24, 1523.	1.8	3
245	A novel Toll receptor from Pacific white shrimp Penaeus vannamei is involved in immune defense against Vibrio parahaemolyticus infection. Aquaculture, 2023, 569, 739396.	1.7	2
246	Drosophila suzukii displays a sex-dependent immune response to Microbacterium thalassium and Providencia sp. infection. Biological Control, 2023, 181, 105204.	1.4	1
247	Exposure of chlorothalonil and acetamiprid reduce the survival and cause multiple internal disturbances in Apis mellifera larvae reared in vitro. Frontiers in Physiology, 0, 14, .	1.3	1
248	The genetic basis of wing spots in Pieris canidia butterflies. BMC Genomics, 2023, 24, .	1.2	1
249	Rift Valley Fever Virus Primes Immune Responses in Aedes aegypti Cells. Pathogens, 2023, 12, 563.	1.2	5