Reciprocal Gut Microbiota Transplants from Zebrafish a Reveal Host Habitat Selection

Cell

127, 423-433

DOI: 10.1016/j.cell.2006.08.043

Citation Report

#	Article	IF	CITATIONS
1	Human gut microbes associated with obesity. Nature, 2006, 444, 1022-1023.	13.7	7,595
2	An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444, 1027-1031.	13.7	10,136
3	Functional Genomic and Metabolic Studies of the Adaptations of a Prominent Adult Human Gut Symbiont, Bacteroides thetaiotaomicron, to the Suckling Period. Journal of Biological Chemistry, 2006, 281, 36269-36279.	1.6	283
5	In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7622-7627.	3.3	154
6	Effect of a Milk Formula Containing Probiotics on the Fecal Microbiota of Asian Infants at Risk of Atopic Diseases. Pediatric Research, 2007, 62, 674-679.	1.1	49
7	Long-term maintenance of species-specific bacterial microbiota in the basal metazoan <i>Hydra</i> Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13146-13151.	3.3	320
8	Zebrafish Ribonucleases Are Bactericidal: Implications for the Origin of the Vertebrate RNase A Superfamily. Molecular Biology and Evolution, 2007, 24, 1259-1268.	3.5	68
9	We know you are in there: Conversing with the indigenous gut microbiota. Research in Microbiology, 2007, 158, 2-9.	1.0	78
10	Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Seminars in Immunology, 2007, 19, 70-83.	2.7	346
11	Enteric Infection and Inflammation Alter Gut Microbial Ecology. Cell Host and Microbe, 2007, 2, 73-74.	5.1	25
12	Intestinal Alkaline Phosphatase Detoxifies Lipopolysaccharide and Prevents Inflammation in Zebrafish in Response to the Gut Microbiota. Cell Host and Microbe, 2007, 2, 371-382.	5.1	613
13	Modeling inflammatory bowel disease: the zebrafish as a way forward. Expert Review of Molecular Diagnostics, 2007, 7, 177-193.	1.5	11
15	Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota. PLoS Biology, 2007, 5, e244.	2.6	905
18	Inter-species transplantation of gut microbiota from human to pigs. ISME Journal, 2007, 1, 156-162.	4.4	152
19	The Human Microbiome Project. Nature, 2007, 449, 804-810.	13.7	4,750
20	Examination of the microbial ecology of the avian intestinein vivousing bromodeoxyuridine. Environmental Microbiology, 2007, 9, 1801-1809.	1.8	17
21	Dominance of Mycoplasma in the guts of the Longâ€Jawed Mudsucker, <i>Gillichthys mirabilis</i> , from five California salt marshes. Environmental Microbiology, 2007, 9, 2636-2641.	1.8	109
22	The candidate phylum â€Â~Termite Group 1' of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiology Ecology, 2007, 60, 467-476.	1.3	97

#	Article	IF	Citations
23	Testing the functional significance of microbial composition in natural communities. FEMS Microbiology Ecology, 2007, 62, 161-170.	1.3	173
26	A Review of the Functionality of Probiotics in the Larviculture Food Chain. Marine Biotechnology, 2008, 10, 1-12.	1.1	125
27	Evolution of Mammals and Their Gut Microbes. Science, 2008, 320, 1647-1651.	6.0	3,171
28	Evaluating different approaches that test whether microbial communities have the same structure. ISME Journal, 2008, 2, 265-275.	4.4	164
29	Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 2008, 455, 1109-1113.	13.7	1,745
30	Use of 16S rRNA gene sequencing analysis to characterize culturable intestinal bacteria in Atlantic salmon (Salmo salar) fed diets with cellulose or non-starch polysaccharides from soy. Aquaculture Research, 2008, 39, 1087-1100.	0.9	75
31	XplorSeq: A software environment for integrated management and phylogenetic analysis of metagenomic sequence data. BMC Bioinformatics, 2008, 9, 420.	1.2	47
32	Regional variations in Paneth cell antimicrobial peptide expression along the mouse intestinal tract. BMC Immunology, 2008, 9, 37.	0.9	79
33	The Microbes of the Intestine: An Introduction to Their Metabolic and Signaling Capabilities. Endocrinology and Metabolism Clinics of North America, 2008, 37, 857-871.	1.2	67
34	The search for disease-associated compositional shifts in bowel bacterial communities of humans. Trends in Microbiology, 2008, 16, 488-495.	3.5	36
35	An Invitation to the Marriage of Metagenomics and Metabolomics. Cell, 2008, 134, 708-713.	13.5	236
36	Metagenomic Approaches for Defining the Pathogenesis of Inflammatory Bowel Diseases. Cell Host and Microbe, 2008, 3, 417-427.	5.1	423
37	Methods for generating and colonizing gnotobiotic zebrafish. Nature Protocols, 2008, 3, 1862-1875.	5.5	181
38	Bacterial-Modulated Signaling Pathways in Gut Homeostasis. Science Signaling, 2008, 1, pe24.	1.6	58
39	Bacterial chemotaxis differences in <i>Escherichia coli</i> isolated from different hosts. Canadian Journal of Microbiology, 2008, 54, 1043-1052.	0.8	4
40	Differential clustering of bowel biopsy-associated bacterial profiles of specimens collected in Mexico and Canada: what do these profiles represent?. Journal of Medical Microbiology, 2008, 57, 111-117.	0.7	24
41	New challenges in studying nutrition-disease interactions in the developing world. Journal of Clinical Investigation, 2008, 118, 1322-1329.	3.9	66
42	Microbial Imprinting in Gut Development and Health. Journal of Applied Poultry Research, 2008, 17, 174-188.	0.6	27

#	Article	IF	Citations
43	Intestinal microbiota are transiently altered during Salmonella-induced gastroenteritis. Expert Review of Gastroenterology and Hepatology, 2008, 2, 525-529.	1.4	5
44	Spleen Size Predicts Resistance of Rainbow Trout to <i>Flavobacterium psychrophilum</i> Challenge. Journal of Immunology, 2008, 180, 4156-4165.	0.4	140
45	Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13580-13585.	3.3	797
46	Dissecting the Genetic Components of Adaptation of Escherichia coli to the Mouse Gut. PLoS Genetics, 2008, 4, e2.	1.5	89
47	Prebiotics and Lipid Metabolism. , 2008, , 201-218.		4
48	Gastrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology, 2008, 24, 4-10.	1.0	348
49	Bacterial Communities Associated with Retail Alfalfa Sprouts. Journal of Food Protection, 2008, 71, 200-204.	0.8	19
50	Gut Microbiota of Children Living in Rural South Thailand and Urban Singapore. Allergology International, 2008, 57, 65-71.	1.4	18
51	Prolonged Impact of Antibiotics on Intestinal Microbial Ecology and Susceptibility to Enteric <i>Salmonella</i> Infection. Infection and Immunity, 2009, 77, 2741-2753.	1.0	249
52	Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). Journal of Lipid Research, 2009, 50, 1641-1652.	2.0	197
53	A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology, 2009, 19, 756-766.	1.3	216
54	Role of Autophagy and Autophagy Genes in Inflammatory Bowel Disease. Current Topics in Microbiology and Immunology, 2009, 335, 141-167.	0.7	43
55	Primary immune deficiencies affecting lymphocyte differentiation: lessons from the spectrum of resulting infections. International Immunology, 2009, 21, 1003-1011.	1.8	19
56	Ecology, DNA, and the Future of Microbial Source Tracking. Water, Air, and Soil Pollution, 2009, 201, 219-232.	1.1	4
57	Molecular Analysis of Microbiota Along the Digestive Tract of Juvenile Atlantic Salmon (Salmo salar) Tj ETQq0 0 0) rgBT /Ove	erlock 10 Tf 5
58	The secret garden. EMBO Reports, 2009, 10, 1082-1086.	2.0	1
59	<i>Pseudomonas aeruginosa</i> Type III secretion system interacts with phagocytes to modulate systemic infection of zebrafish embryos. Cellular Microbiology, 2009, 11, 755-768.	1.1	130
60	Use of metagenomics to understand the genetic basis of malnutrition. Nutrition Reviews, 2009, 67, S201-S206.	2.6	32

#	Article	IF	CITATIONS
61	The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresource Technology, 2009, 100, 4564-4571.	4.8	144
62	The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science Translational Medicine, 2009, 1, 6ra14.	5.8	2,492
63	The Human Intestinal Microbiome: A New Frontier of Human Biology. DNA Research, 2009, 16, 1-12.	1.5	227
64	Identifying Genetic Determinants Needed to Establish a Human Gut Symbiont in Its Habitat. Cell Host and Microbe, 2009, 6, 279-289.	5.1	612
65	Enhanced transcription of complement and coagulation genes in the absence of adaptive immunity. Molecular Immunology, 2009, 46, 1505-1516.	1.0	31
66	Bacterial Community Variation in Human Body Habitats Across Space and Time. Science, 2009, 326, 1694-1697.	6.0	2,713
67	Microbes in Gastrointestinal Health and Disease. Gastroenterology, 2009, 136, 65-80.	0.6	1,150
68	Patterns and Scales in Gastrointestinal Microbial Ecology. Gastroenterology, 2009, 136, 1989-2002.	0.6	84
69	Oxazolone-Induced Enterocolitis in Zebrafish Depends on the Composition of the Intestinal Microbiota. Gastroenterology, 2009, 137, 1757-1767.e1.	0.6	121
70	Autophagy in Infection and Immunity. Current Topics in Microbiology and Immunology, 2009, , .	0.7	4
71	Panorganismal Gut Microbiomeâ^'Host Metabolic Crosstalk. Journal of Proteome Research, 2009, 8, 2090-2105.	1.8	151
72	Community-Wide Response of the Gut Microbiota to Enteropathogenic <i>Citrobacter rodentium</i> Infection Revealed by Deep Sequencing. Infection and Immunity, 2009, 77, 4668-4678.	1.0	121
73	Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys. Applied and Environmental Microbiology, 2009, 75, 5227-5236.	1.4	362
74	Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nature Reviews Immunology, 2009, 9, 883-889.	10.6	344
75	The gut microbiota of tollâ€like receptor 2â€deficient mice exhibits lineageâ€specific modifications. Environmental Microbiology Reports, 2009, 1, 65-70.	1.0	13
77	Diet and husbandry techniques to improve disease resistance: new technologies and prospects. , 2009, , 267-311.		1
78	The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Current Opinion in Gastroenterology, 2010, 26, 327-331.	1.0	133
79	The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Current Opinion in Gastroenterology, 2010, 26, 564-571.	1.0	142

#	Article	IF	CITATIONS
80	Mucosal control of the intestinal microbial community. Journal of Molecular Medicine, 2010, 88, 881-888.	1.7	20
81	Oral-Derived Bacterial Flora Defends Its Domain by Recognizing and Killing Intruders—A Molecular Analysis Using Escherichia coli as a Model Intestinal Bacterium. Microbial Ecology, 2010, 60, 655-664.	1.4	29
82	In Vitro Communities Derived from Oral and Gut Microbial Floras Inhibit the Growth of Bacteria of Foreign Origins. Microbial Ecology, 2010, 60, 665-676.	1.4	18
83	Host–microbe interactions in the developing zebrafish. Current Opinion in Immunology, 2010, 22, 10-19.	2.4	214
84	Molecular detection of transcriptionally active bacteria from failed prosthetic hip joints removed during revision arthroplasty. European Journal of Clinical Microbiology and Infectious Diseases, 2010, 29, 823-834.	1.3	13
85	Identification of facultative anaerobic bacteria isolated from the intestine of the minke whale Balaenoptera acutorostrata by 16S rRNA sequencing analysis. Fisheries Science, 2010, 76, 177-181.	0.7	4
88	Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome. BMC Genomics, 2010, 11, 46.	1.2	57
89	Investigation of the intestinal microbiota in preterm infants using different methods. Anaerobe, 2010, 16, 362-370.	1.0	118
91	Why bacteria matter in animal development and evolution. BioEssays, 2010, 32, 571-580.	1.2	257
92	Validation on high variance metabolic profiles: Taste stratification in a free living population. Chemometrics and Intelligent Laboratory Systems, 2010, 104, 8-19.	1.8	3
93	The persistence of bacterial and methanogenic archaeal communities residing in the rumen of young lambs. FEMS Microbiology Ecology, 2010, 72, 272-278.	1.3	78
94	Role of gastrointestinal microbiota in fish. Aquaculture Research, 2010, 41, 1553-1573.	0.9	751
95	Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. Journal of Applied Microbiology, 2010, 109, no-no.	1.4	46
96	Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression. ISME Journal, 2010, 4, 367-376.	4.4	102
97	Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME Journal, 2010, 4, 17-27.	4.4	1,025
98	Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunology, 2010, 11, 76-82.	7.0	1,013
99	The future of mucosal immunology: studying an integrated system-wide organ. Nature Immunology, 2010, 11, 558-560.	7.0	104
100	Web of ecological interactions in an experimental gut microbiota. Environmental Microbiology, 2010, 12, 2677-2687.	1.8	36

#	Article	IF	CITATIONS
101	Site and Strain-Specific Variation in Gut Microbiota Profiles and Metabolism in Experimental Mice. PLoS ONE, 2010, 5, e8584.	1.1	186
102	Characterization of the Fecal Microbiome from Non-Human Wild Primates Reveals Species Specific Microbial Communities. PLoS ONE, 2010, 5, e13963.	1.1	225
103	Nutrition, intestinal defence and the microbiome. Proceedings of the Nutrition Society, 2010, 69, 261-268.	0.4	22
104	Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Research, 2010, 20, 1411-1419.	2.4	284
105	Cultivation of epithelial-associated microbiota by the immune system. Future Microbiology, 2010, 5, 1483-1492.	1.0	11
106	The gut microbiota modulates host energy and lipid metabolism in mice. Journal of Lipid Research, 2010, 51, 1101-1112.	2.0	508
107	Paneth cell defensins and the regulation of the microbiome. Gut Microbes, 2010, 1, 401-406.	4.3	112
108	The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes, 2010, 1, 51-54.	4.3	173
109	Evolutionary Relationships of Wild Hominids Recapitulated by Gut Microbial Communities. PLoS Biology, 2010, 8, e1000546.	2.6	464
110	The role of the immune system in regulating the microbiota. Gut Microbes, 2010, 1, 213-223.	4.3	32
111	The human gut mobile metagenome. Gut Microbes, 2010, 1, 415-431.	4.3	36
112	Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Beneficial Microbes, 2010, 1, 343-350.	1.0	27
113	Genetics and Environmental Interactions Shape the Intestinal Microbiome to Promote Inflammatory Bowel Disease Versus Mucosal Homeostasis. Gastroenterology, 2010, 139, 1816-1819.	0.6	156
114	Digestive Challenges for Vertebrate Animals: Microbial Diversity, Cardiorespiratory Coupling, and Dietary Specialization. Physiological and Biochemical Zoology, 2010, 83, 764-774.	0.6	30
115	Gut Microbiota in Health and Disease. Physiological Reviews, 2010, 90, 859-904.	13.1	3,287
116	Probiotics and Other Microbial Manipulations in Fish Feeds. , 2010, , 541-552.		15
117	Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Developmental and Comparative Immunology, 2010, 34, 352-359.	1.0	125
118	Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 240-245.	1.2	61

#	Article	IF	CITATIONS
119	Homeostasis and Inflammation in the Intestine. Cell, 2010, 140, 859-870.	13.5	671
120	Models and approaches to dissect host–symbiont specificity. Trends in Microbiology, 2010, 18, 504-511.	3.5	41
121	Food Digestibility by Microbes in Wild Ruminants: The Effect of Host Species and Dietary Substrate. Rangelands, 2011, 33, 31-34.	0.9	3
122	Study of Host–Microbe Interactions in Zebrafish. Methods in Cell Biology, 2011, 105, 87-116.	0.5	110
123	Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews Endocrinology, 2011, 7, 639-646.	4.3	653
125	Topographical distribution of antimicrobial genes in the zebrafish intestine. Developmental and Comparative Immunology, 2011, 35, 385-391.	1.0	55
126	Teleost intestinal immunology. Fish and Shellfish Immunology, 2011, 31, 616-626.	1.6	467
127	Mechanisms controlling pathogen colonization of the gut. Current Opinion in Microbiology, 2011, 14, 82-91.	2.3	345
128	Common key acidogen populations in anaerobic reactors treating different wastewaters: Molecular identification and quantitative monitoring. Water Research, 2011, 45, 2539-2549.	5.3	27
129	Communityâ€based interference against integration of <i>Pseudomonas aeruginosa</i> into human salivary microbial biofilm. Molecular Oral Microbiology, 2011, 26, 337-352.	1.3	18
130	Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System. PLoS Genetics, 2011, 7, e1002272.	1.5	650
131	Microbial Colonization Induces Dynamic Temporal and Spatial Patterns of NF-κB Activation in the Zebrafish Digestive Tract. Gastroenterology, 2011, 141, 197-207.	0.6	213
132	Ecological Physiology of Diet and Digestive Systems. Annual Review of Physiology, 2011, 73, 69-93.	5.6	256
133	Outdoor immunology: methodological considerations for ecologists. Functional Ecology, 2011, 25, 81-100.	1.7	151
134	The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiology Reviews, 2011, 35, 681-704.	3.9	232
135	Evidence for a core gut microbiota in the zebrafish. ISME Journal, 2011, 5, 1595-1608.	4.4	990
136	Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Microbiology, 2011, 9, 356-368.	13.6	932
137	The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annual Review of Microbiology, 2011, 65, 411-429.	2.9	589

#	Article	IF	CITATIONS
138	Metagenomics of the human microbiome. Biology Bulletin Reviews, 2011, 1, 83-93.	0.3	0
139	The potter's wheel: the host's role in sculpting its microbiota. Cellular and Molecular Life Sciences, 2011, 68, 3675-3685.	2.4	110
140	Diversity and novelty of the gut microbial community of an herbivorous rodent (Neotoma bryanti). Symbiosis, 2011, 54, 47-54.	1.2	44
141	Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 2011, 1, 41.	1.4	186
142	Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn $\hat{E}\frac{1}{4}$ s disease. Inflammatory Bowel Diseases, 2011, 17, 2027-2037.	0.9	91
143	Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflammatory Bowel Diseases, 2011, 17, 2299-2307.	0.9	243
144	Host-Pathogen Interactions Made Transparent with the Zebrafish Model. Current Drug Targets, 2011, 12, 1000-1017.	1.0	232
145	Anammox bacteria in different compartments of recirculating aquaculture systems. Biochemical Society Transactions, 2011, 39, 1817-1821.	1.6	15
146	Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4570-4577.	3.3	231
147	Programming of Host Metabolism by the Gut Microbiota. Annals of Nutrition and Metabolism, 2011, 58, 44-52.	1.0	201
148	COMPANION ANIMALS SYMPOSIUM: Humanized animal models of the microbiome1. Journal of Animal Science, 2011, 89, 1531-1537.	0.2	58
149	Intronic Cis-Regulatory Modules Mediate Tissue-Specific and Microbial Control of angptl4/fiaf Transcription. PLoS Genetics, 2012, 8, e1002585.	1.5	44
150	Application of Complementary and Alternative Medicine on Neurodegenerative Disorders: Current Status and Future Prospects. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-2.	0.5	15
151	Infectious (Non)toleranceFrustrated Commensalism Gone Awry?. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007328-a007328.	2.3	13
152	A New Zebrafish Model of Oro-Intestinal Pathogen Colonization Reveals a Key Role for Adhesion in Protection by Probiotic Bacteria. PLoS Pathogens, 2012, 8, e1002815.	2.1	108
153	From Omics to Drug Metabolism and High Content Screen of Natural Product in Zebrafish: A New Model for Discovery of Neuroactive Compound. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-20.	0.5	42
154	Chapter 12: Human Microbiome Analysis. PLoS Computational Biology, 2012, 8, e1002808.	1.5	408
155	Fundamental Approaches to the Study of Zebrafi sh Nutrition. ILAR Journal, 2012, 53, 144-160.	1.8	80

#	ARTICLE	IF	CITATIONS
156	Transposon Mutagenesis of Planctomyces limnophilus and Analysis of a <i>pckA</i> Mutant. Applied and Environmental Microbiology, 2012, 78, 7120-7123.	1.4	12
157	Detailed O-glycomics of the Muc2 mucin from colon of wild-type, core 1- and core 3-transferase-deficient mice highlights differences compared with human MUC2. Glycobiology, 2012, 22, 1128-1139.	1.3	72
158	Rodent models to study the relationships between mammals and their bacterial inhabitants. Gut Microbes, 2012, 3, 536-543.	4.3	21
159	Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioengineered, 2012, 3, 13-31.	1.4	27
160	Comparative evaluation of establishing a human gut microbial community within rodent models. Gut Microbes, 2012, 3, 234-249.	4.3	113
161	Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2605-14.	3.3	213
162	Ecological Succession of Bacterial Communities during Conventionalization of Germ-Free Mice. Applied and Environmental Microbiology, 2012, 78, 2359-2366.	1.4	68
163	Molecular Characterisation of Bacterial Community Structure along the Intestinal Tract of Zebrafish (<i>Danio rerio</i>): A Pilot Study., 2012, 2012, 1-10.		28
164	Investigating Bacterial-Animal Symbioses with Light Sheet Microscopy. Biological Bulletin, 2012, 223, 7-20.	0.7	48
165	Host genetic and environmental effects on mouse intestinal microbiota. ISME Journal, 2012, 6, 2033-2044.	4.4	206
166	Microbiota Regulate Intestinal Absorption and Metabolism of Fatty Acids in the Zebrafish. Cell Host and Microbe, 2012, 12, 277-288.	5.1	717
167	Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nature Immunology, 2012, 13, 947-953.	7.0	128
168	Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Cell, 2012, 149, 1578-1593.	13.5	1,050
169	Intestinal commensals: influence on immune system and tolerance to pathogens. Current Opinion in Immunology, 2012, 24, 255-260.	2.4	27
170	Impact of antibiotic treatments on the expression of the R plasmid tra genes and on the host innate immune activity during pRAS1 bearing Aeromonas hydrophila infection in zebrafish (Danio rerio). BMC Microbiology, 2012, 12, 37.	1.3	31
171	The contribution of dietary broccoli sprouts towards the microbial metabolite profile in the hind gut of mice. International Journal of Food Science and Technology, 2012, 47, 1328-1332.	1.3	7
172	A Symbiotic View of Life: We Have Never Been Individuals. Quarterly Review of Biology, 2012, 87, 325-341.	0.0	744
173	Efficacy of Hepatitis B Vaccination and Revaccination and Factors Impacting on Response in Patients With Inflammatory Bowel Disease. American Journal of Gastroenterology, 2012, 107, 1460-1466.	0.2	121

#	Article	IF	CITATIONS
174	Lactobacillus rhamnosus Accelerates Zebrafish Backbone Calcification and Gonadal Differentiation through Effects on the GnRH and IGF Systems. PLoS ONE, 2012, 7, e45572.	1.1	116
175	The human gastrointestinal microbiotaâ€"An unexplored frontier for pharmaceutical discovery. Pharmacological Research, 2012, 66, 443-447.	3.1	18
176	Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients, 2012, 4, 1095-1119.	1.7	533
177	Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut, 2012, 61, 1124-1131.	6.1	321
178	The Microbiome and Inflammatory Bowel Disease: Is There a Therapeutic Role for Fecal Microbiota Transplantation?. American Journal of Gastroenterology, 2012, 107, 1452-1459.	0.2	181
179	Culturable Gut Microbiota Diversity in Zebrafish. Zebrafish, 2012, 9, 26-37.	0.5	94
180	Controlling Symbiotic Microbes with Antimicrobial Peptides. ACS Symposium Series, 2012, , 215-233.	0.5	1
181	Bacterial Community Associated with the Intestinal Tract of P. monodon in Commercial Farms. Microbial Ecology, 2012, 63, 938-953.	1.4	101
182	Infant gut microbiota is protective against cow's milk allergy in mice despite immature ileal T-cell response. FEMS Microbiology Ecology, 2012, 79, 192-202.	1.3	86
183	Environmental and ecological factors that shape the gut bacterial communities of fish: a metaâ€analysis. Molecular Ecology, 2012, 21, 3363-3378.	2.0	814
184	Intestinal microbiota composition in fishes is influenced by host ecology and environment. Molecular Ecology, 2012, 21, 3100-3102.	2.0	209
185	The Phylogenetic Kantorovich–Rubinstein Metric for Environmental Sequence Samples. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2012, 74, 569-592.	1.1	97
186	Characterization of the Gastrointestinal Microbiota in Health and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2012, 18, 372-390.	0.9	91
187	Dietary Protein Source Influence on Body Size and Composition in Growing Zebrafish. Zebrafish, 2013, 10, 439-446.	0.5	40
188	Interpreting infective microbiota: the importance of an ecological perspective. Trends in Microbiology, 2013, 21, 271-276.	3.5	69
189	Omics approaches to study host–microbiota interactions. Current Opinion in Microbiology, 2013, 16, 270-277.	2.3	22
190	From meta-omics to causality: experimental models for human microbiome research. Microbiome, 2013, 1, 14.	4.9	173
191	Dysbiosis—A consequence of Paneth cell dysfunction. Seminars in Immunology, 2013, 25, 334-341.	2.7	87

#	Article	IF	Citations
192	Chemically Induced Intestinal Damage Models in Zebrafish Larvae. Zebrafish, 2013, 10, 184-193.	0.5	78
193	<i>zebraflash</i> transgenic lines for <i>in vivo</i> bioluminescence imaging of stem cells and regeneration in adult zebrafish. Development (Cambridge), 2013, 140, 4988-4997.	1.2	41
194	Microbial fingerprinting detects intestinal microbiota dysbiosis in Zebrafish models with chemically-induced enterocolitis. BMC Microbiology, 2013, 13, 289.	1.3	51
195	Experimental Approaches for Defining Functional Roles of Microbes in the Human Gut. Annual Review of Microbiology, 2013, 67, 459-475.	2.9	39
196	Developing â€~integrative' zebrafish models of behavioral and metabolic disorders. Behavioural Brain Research, 2013, 256, 172-187.	1.2	48
197	Modulation of the microbial fermentation in the gut by fermentable carbohydrates. Bioactive Carbohydrates and Dietary Fibre, 2013, 2, 133-142.	1.5	34
198	Microbiota regulation of inflammatory bowel disease and colorectal cancer. Seminars in Cancer Biology, 2013, 23, 543-552.	4.3	45
199	The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications, 2013, 4, 1829.	5.8	1,089
200	Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radical Biology and Medicine, 2013, 55, 130-140.	1.3	310
201	The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Molecular Ecology, 2013, 22, 1904-1916.	2.0	171
202	A novel galanin receptor 1a gene in zebrafish: Tissue distribution, developmental expression roles in nutrition regulation. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2013, 164, 159-167.	0.7	18
203	The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 352-361.	8.2	1,026
204	Live feed is not a major determinant of the microbiota associated with cod larvae (<i><scp>G</scp>adus morhua</i>). Environmental Microbiology Reports, 2013, 5, 537-548.	1.0	72
205	Effects of probiotic administration on zebrafish development and reproduction. General and Comparative Endocrinology, 2013, 188, 297-302.	0.8	83
206	The Gut Microbiota., 2013,, 3-24.		18
207	Laying better plans for mice. Nature Biotechnology, 2013, 31, 263-263.	9.4	3
208	Short-term effects of dietary soybean meal and lactic acid bacteria on the intestinal morphology and microbiota of Atlantic salmon (<i>Salmo salar</i>). Aquaculture Nutrition, 2013, 19, 827-836.	1.1	55
209	Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis. Mucosal Immunology, 2013, 6, 358-368.	2.7	52

#	ARTICLE	IF	CITATIONS
210	Gut microbiota and kin recognition. Trends in Ecology and Evolution, 2013, 28, 325-326.	4.2	54
211	Microbiology and immunology of fish larvae. Reviews in Aquaculture, 2013, 5, S1.	4.6	122
212	Colonizing the Embryonic Zebrafish Gut with Anaerobic Bacteria Derived from the Human Gastrointestinal Tract. Zebrafish, 2013, 10, 194-198.	0.5	37
213	Quantitatively Different, yet Qualitatively Alike: A Meta-Analysis of the Mouse Core Gut Microbiome with a View towards the Human Gut Microbiome. PLoS ONE, 2013, 8, e62578.	1.1	182
214	Quantitative Genetic Background of the Host Influences Gut Microbiomes in Chickens. Scientific Reports, 2013, 3, 1163.	1.6	286
215	Invertebrate systems for hypothesis-driven microbiome research. Microbiome Science and Medicine, $2013, 1, \dots$	0.3	25
216	Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin <i>O</i> glycan patterns reveal a regiospecific distribution. American Journal of Physiology - Renal Physiology, 2013, 305, G357-G363.	1.6	153
217	Linking Microbial Community Structure to Function in Representative Simulated Systems. Applied and Environmental Microbiology, 2013, 79, 2552-2559.	1.4	16
218	Examination of a Culturable Microbial Population from the Gastrointestinal Tract of the Wood-Eating Loricariid Catfish Panaque nigrolineatus. Diversity, 2013, 5, 641-656.	0.7	14
219	Exploring host–microbiota interactions in animal models and humans. Genes and Development, 2013, 27, 701-718.	2.7	413
220	Interspecific variations in the gastrointestinal microbiota in penguins. MicrobiologyOpen, 2013, 2, 195-204.	1.2	95
221	Diet and phylogeny shape the gut microbiota of <scp>A</scp> ntarctic seals: a comparison of wild and captive animals. Environmental Microbiology, 2013, 15, 1132-1145.	1.8	199
222	Restructuring of the amphibian gut microbiota through metamorphosis. Environmental Microbiology Reports, 2013, 5, 899-903.	1.0	148
223	Evolution of the gut microbiota and the influence of diet. Beneficial Microbes, 2013, 4, 31-37.	1.0	31
224	Factors that drive variation among gut microbial communities. Gut Microbes, 2013, 4, 403-408.	4.3	24
225	Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3730-8.	3.3	312
226	Aquacultured Rainbow Trout (Oncorhynchus mykiss) Possess a Large Core Intestinal Microbiota That Is Resistant to Variation in Diet and Rearing Density. Applied and Environmental Microbiology, 2013, 79, 4974-4984.	1.4	191
228	Scanning Electron Microscopy of the Gastrointestinal Tract of Nile Perch (Lates niloticus, Linneaus,) Tj ETQq1 1 (0.784314	rgBT /Overlo

#	ARTICLE	IF	CITATIONS
229	Gut Microbiota Contributes to the Growth of Fast-Growing Transgenic Common Carp (Cyprinus) Tj ETQq0 0 0 rgB	3T ₁ /Overloo	ck 10 Tf 50 7
230	Metabolic Signatures of Triatomine Vectors of Trypanosoma cruzi Unveiled by Metabolomics. PLoS ONE, 2013, 8, e77283.	1.1	43
231	The Gut Bacterial Community of Mammals from Marine and Terrestrial Habitats. PLoS ONE, 2013, 8, e83655.	1.1	88
232	The Metabolic and Ecological Interactions of Oxalate-Degrading Bacteria in the Mammalian Gut. Pathogens, 2013, 2, 636-652.	1.2	63
233	The Gut Microbial Community of Midas Cichlid Fish in Repeatedly Evolved Limnetic-Benthic Species Pairs. PLoS ONE, 2014, 9, e95027.	1.1	68
235	Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?. Journal of Computer Science and Systems Biology, 2014, 7, 119-136.	0.0	3
236	T lymphocytes control microbial composition by regulating the abundance of Vibrio in the zebrafish gut. Gut Microbes, 2014, 5, 737-747.	4.3	51
238	In this issue of <i>Gut Microbes</i> . Gut Microbes, 2014, 5, 83-85.	4.3	0
239	Dietary supplementation with lactose or artificial sweetener enhances swine gut <i>Lactobacillus</i> population abundance. British Journal of Nutrition, 2014, 111, S30-S35.	1.2	77
240	Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME Journal, 2014, 8, 2360-2368.	4.4	243
241	Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 2014, 5, 207.	1.5	551
242	Blowing on Embers: Commensal Microbiota and Our Immune System. Frontiers in Immunology, 2014, 5, 318.	2.2	62
243	Commensal microbiota stimulate systemic neutrophil migration through induction of Serum amyloid A. Cellular Microbiology, 2014, 16, 1053-1067.	1,1	91
244	Role of Gut Microbiota in a Zebrafish Model with Chemically Induced Enterocolitis Involving Toll-Like Receptor Signaling Pathways. Zebrafish, 2014, 11, 255-264.	0.5	33
245	<scp><i>D</i></scp> <i>hodotorula mucilaginosa</i> comprised the yeast core gut microbiota of wild and reared carnivorous salmonids, croaker and yellowtail. Environmental Microbiology, 2014, 16, 2791-2803.	1.8	49
246	Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. Journal of Applied Microbiology, 2014, 117, 1750-1760.	1.4	155
247	Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiology Ecology, 2014, 90, 883-894.	1.3	183
248	Acquisition and Structuring of Midgut Bacterial Communities in Gypsy Moth (Lepidoptera: Erebidae) Larvae. Environmental Entomology, 2014, 43, 595-604.	0.7	106

#	Article	IF	CITATIONS
249	Characterization of Intestinal Bacteria in Wild and Domesticated Adult Black Tiger Shrimp (Penaeus) Tj ETQq0 0	0 rgBT /O\	verlock 10 Tf 213
250	Body Weight Selection Affects Quantitative Genetic Correlated Responses in Gut Microbiota. PLoS ONE, 2014, 9, e89862.	1.1	59
251	Mathematical modeling of primary succession of murine intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 439-444.	3.3	183
252	Microbiota and radiation-induced bowel toxicity: lessons from inflammatory bowel disease for the radiation oncologist. Lancet Oncology, The, 2014, 15, e139-e147.	5.1	101
253	Drosophila as a model for intestinal dysbiosis and chronic inflammatory diseases. Developmental and Comparative Immunology, 2014, 42, 102-110.	1.0	71
254	The Impact of Proton Pump Inhibitors on the Human Gastrointestinal Microbiome. Clinics in Laboratory Medicine, 2014, 34, 771-785.	0.7	128
255	Induction of Bacterial Antigen-Specific Colitis by a Simplified Human Microbiota Consortium in Gnotobiotic Interleukin-10 ^{â^'/â^'} Mice. Infection and Immunity, 2014, 82, 2239-2246.	1.0	113
256	Bacteria from Diverse Habitats Colonize and Compete in the Mouse Gut. Cell, 2014, 159, 253-266.	13.5	324
257	Immune-directed support of rich microbial communities in the gut has ancient roots. Developmental and Comparative Immunology, 2014, 47, 36-51.	1.0	45
258	Conducting a Microbiome Study. Cell, 2014, 158, 250-262.	13.5	625
259	Individual diet has sex-dependent effects on vertebrate gut microbiota. Nature Communications, 2014, 5, 4500.	5.8	464
260	Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using highâ€ŧhroughput parallel pyrosequencing. Molecular Ecology, 2014, 23, 5048-5060.	2.0	66
261	Structure of the gut microbiome following colonization with human feces determines colonic tumor burden. Microbiome, 2014, 2, 20.	4.9	268
262	Host–microbe interactions shaping the gastrointestinal environment. Trends in Immunology, 2014, 35, 538-548.	2.9	138
263	Resistance of bacterial communities in the potato rhizosphere to disturbance and its application to agroecology. Soil Biology and Biochemistry, 2014, 79, 125-131.	4.2	9
264	B cells as a critical node in the microbiota–host immune system network. Immunological Reviews, 2014, 260, 50-66.	2.8	47
265	Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape. Genome Research, 2014, 24, 1504-1516.	2.4	119
266	Ecology and characteristics of methanogenic archaea in animals and humans. Critical Reviews in Microbiology, 2014, 40, 97-116.	2.7	61

#	Article	IF	CITATIONS
268	Could a Swimming Creature Inform Us on Intestinal Diseases? Lessons from Zebrafish. Inflammatory Bowel Diseases, 2014, 20, 956-966.	0.9	33
269	Immunogenetic control of the intestinal microbiota. Immunology, 2015, 145, 313-322.	2.0	54
270	The impact of rearing environment on the development of gut microbiota in tilapia larvae. Scientific Reports, 2015, 5, 18206.	1.6	228
271	Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathogens, 2015, 7, 29.	1.6	160
272	Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates. Frontiers in Immunology, 2015, 6, 512.	2.2	145
273	Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression. Frontiers in Microbiology, 2015, 6, 818.	1.5	33
274	<i>Lactobacillus rhamnosus</i> GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice. Journal of Clinical Biochemistry and Nutrition, 2015, 56, 240-246.	0.6	66
275	The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments. PLoS ONE, 2015, 10, e0117441.	1.1	349
276	Impact of a novel protein meal on the gastrointestinal microbiota and the host transcriptome of larval zebrafish Danio rerio. Frontiers in Physiology, 2015, 6, 133.	1.3	22
277	The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease, 2015, 26, 26050.	3.8	766
278	Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology - Progress Series, 2015, 518, 209-223.	0.9	277
279	Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome. Genome Medicine, 2015, 7, 120.	3.6	68
280	Identification of Population Bottlenecks and Colonization Factors during Assembly of Bacterial Communities within the Zebrafish Intestine. MBio, 2015, 6, e01163-15.	1.8	56
281	A high-throughput assay for quantifying appetite and digestive dynamics. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R345-R357.	0.9	24
282	Metagenomic analysis of the gut microbiota of the Timber Rattlesnake, Crotalus horridus. Molecular Biology Reports, 2015, 42, 1187-1195.	1.0	28
283	Zebrafish as a model to study live mucus physiology. Scientific Reports, 2014, 4, 6653.	1.6	57
284	Analysis of gene–environment interactions in postnatal development of the mammalian intestine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1929-1936.	3.3	77
285	Use of Gnotobiotic Zebrafish to Study <i>Vibrio anguillarum</i> Pathogenicity. Zebrafish, 2015, 12, 71-80.	0.5	34

#	Article	IF	CITATIONS
286	Metabonomics and Gut Microbiota in Nutrition and Disease. Molecular and Integrative Toxicology, $2015, , .$	0.5	5
287	Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. ISME Journal, 2015, 9, 1508-1522.	4.4	133
288	Neutrophils in host defense: new insights from zebrafish. Journal of Leukocyte Biology, 2015, 98, 523-537.	1.5	103
289	Production attributes of Merino sheep genetically divergent for wool growth are reflected in differing rumen microbiotas. Livestock Science, 2015, 178, 119-129.	0.6	5
290	Metagenomic Surveys of Gut Microbiota. Genomics, Proteomics and Bioinformatics, 2015, 13, 148-158.	3.0	76
291	The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. Annual Review of Microbiology, 2015, 69, 145-166.	2.9	312
292	Gut Microbiota Dynamics during Dietary Shift in Eastern African Cichlid Fishes. PLoS ONE, 2015, 10, e0127462.	1.1	109
293	Atlantic Salmon Carries a Range of Novel <i>O</i> -Glycan Structures Differentially Localized on Skin and Intestinal Mucins. Journal of Proteome Research, 2015, 14, 3239-3251.	1.8	52
294	A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture, 2015, 448, 464-475.	1.7	468
295	Role of the Gut Microbiota in Maintaining GI Health: Highlights on Inflammatory Bowel Disease. Molecular and Integrative Toxicology, 2015, , 261-310.	0.5	0
296	Selection in the host structures the microbiota associated with developing cod larvae (<scp><i>G</i></scp> <i>adus morhua</i>). Environmental Microbiology, 2015, 17, 3914-3924.	1.8	100
297	Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nature Communications, 2015, 6, 6440.	5.8	107
298	Comparison of DNA extraction protocols for the analysis of gut microbiota in fishes. FEMS Microbiology Letters, 2015, 362, .	0.7	35
299	Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut. MBio, 2015, 6, e00687-15.	1.8	101
300	Community assembly of a euryhaline fish microbiome during salinity acclimation. Molecular Ecology, 2015, 24, 2537-2550.	2.0	219
301	Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nature Reviews Genetics, 2015, 16, 611-622.	7.7	281
302	A Review of Applied Aspects of Dealing with Gut Microbiota Impact on Rodent Models. ILAR Journal, 2015, 56, 250-264.	1.8	28
303	Manipulating the Gut Microbiota: Methods and Challenges: FigureÂ1. ILAR Journal, 2015, 56, 205-217.	1.8	114

#	Article	IF	CITATIONS
305	Intra- and Interindividual Variations Mask Interspecies Variation in the Microbiota of Sympatric Peromyscus Populations. Applied and Environmental Microbiology, 2015, 81, 396-404.	1.4	54
306	The surprisingly complex immune gene repertoire of a simple sponge, exemplified by the NLR genes: A capacity for specificity?. Developmental and Comparative Immunology, 2015, 48, 269-274.	1.0	40
307	Microbial Dysbiosis: Rethinking Disease in Marine Ecosystems. Frontiers in Microbiology, 2016, 7, 991.	1.5	212
308	Exploring Relationships between Host Genome and Microbiome: New Insights from Genome-Wide Association Studies. Frontiers in Microbiology, 2016, 7, 1611.	1.5	22
309	Host-Specific Functional Significance of Caenorhabditis Gut Commensals. Frontiers in Microbiology, 2016, 7, 1622.	1.5	79
310	The Development of Our Organ of Other Kindsâ€"The Gut Microbiota. Frontiers in Microbiology, 2016, 7, 2107.	1.5	12
311	Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish. PLoS ONE, 2016, 11, e0154632.	1.1	126
312	Proteinaceous Pheromone Homologs Identified from the Cloacal Gland Transcriptome of a Male Axolotl, Ambystoma mexicanum. PLoS ONE, 2016, 11, e0146851.	1.1	6
313	Helicobacter pylori Eradication Causes Perturbation of the Human Gut Microbiome in Young Adults. PLoS ONE, 2016, 11, e0151893.	1.1	109
314	Long-Term Transcriptomic Effects of Prebiotics and Synbiotics Delivered In Ovo in Broiler Chickens. PLoS ONE, 2016, 11, e0168899.	1.1	43
315	Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Frontiers in Physiology, 2016, 7, 498.	1.3	142
316	Effects of environmental temperature on the gut microbial communities of tadpoles. Environmental Microbiology, 2016, 18, 1561-1565.	1.8	141
317	Partitioning of functional and taxonomic diversity in surfaceâ€associated microbial communities. Environmental Microbiology, 2016, 18, 4391-4402.	1.8	55
318	The microbiome and innate immunity. Nature, 2016, 535, 65-74.	13.7	1,502
320	Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nature Communications, 2016, 7, 13699.	5.8	145
321	Impact of the gut microbiota on the neuroendocrine and behavioural responses to stress in rodents. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D116.	0.6	6
322	Beyond killing. Evolution, Medicine and Public Health, 2016, 2016, 148-157.	1.1	87
323	Moving microbiota research toward establishing causal associations that represent viable targets for effective public health interventions. Annals of Epidemiology, 2016, 26, 306-310.	0.9	12

#	Article	IF	CITATIONS
324	Thymol and Carvacrol Affect Hybrid Tilapia through the Combination of Direct Stimulation and an Intestinal Microbiota-Mediated Effect: Insights from a Germ-Free Zebrafish Model. Journal of Nutrition, 2016, 146, 1132-1140.	1.3	78
325	Influence of Fishmeal-Free Diets on Microbial Communities in Atlantic Salmon (Salmo salar) Recirculation Aquaculture Systems. Applied and Environmental Microbiology, 2016, 82, 4470-4481.	1.4	114
326	Human Microbiota-Associated Mice: A Model with Challenges. Cell Host and Microbe, 2016, 19, 575-578.	5.1	190
327	Focusing the Spotlight on the Zebrafish Intestine to Illuminate Mechanisms of Colorectal Cancer. Advances in Experimental Medicine and Biology, 2016, 916, 411-437.	0.8	11
328	Genetic and Transcriptional Analysis of Human Host Response to Healthy Gut Microbiota. MSystems, 2016, 1 , \dots	1.7	28
329	Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology, 2016, 16, 639-649.	10.6	613
330	Non-alcoholic fatty liver and the gut microbiota. Molecular Metabolism, 2016, 5, 782-794.	3.0	193
331	From the Cover: Exposure to Oral Antibiotics Induces Gut Microbiota Dysbiosis Associated with Lipid Metabolism Dysfunction and Low-Grade Inflammation in Mice. Toxicological Sciences, 2016, 154, 140-152.	1.4	70
332	Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail. Mucosal Immunology, 2016, 9, 1360-1365.	2.7	64
333	Rethinking "mutualism―in diverse hostâ€symbiont communities. BioEssays, 2016, 38, 100-108.	1.2	52
334	Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence. Trends in Food Science and Technology, 2016, 57, 233-243.	7.8	22
335	pH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (Colossoma) Tj ETQq $1\ 1$	0.784314 1.6	rgBT/Overlo
336	Genomic sequencing-based mutational enrichment analysis identifies motility genes in a genetically intractable gut microbe. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14127-14132.	3.3	10
337	Effects of Fruit Toxins on Intestinal and Microbial Î ² -Glucosidase Activities of Seed-Predating and Seed-Dispersing Rodents (<i>Acomys</i>). Physiological and Biochemical Zoology, 2016, 89, 198-205.	0.6	8
338	Environment shapes the fecal microbiome of invasive carp species. Microbiome, 2016, 4, 44.	4.9	166
339	Individual Apostichopus japonicus fecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps. Scientific Reports, 2016, 6, 21631.	1.6	81
340	Probiotic legacy effects on gut microbial assembly in tilapia larvae. Scientific Reports, 2016, 6, 33965.	1.6	49
341	Use of Metatranscriptomics in Microbiome Research. Bioinformatics and Biology Insights, 2016, 10, BBI.S34610.	1.0	328

#	Article	IF	Citations
342	Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiology, 2016, 16, 33.	1.3	78
343	Fostering of advanced mutualism with gut microbiota by Immunoglobulin A. Immunological Reviews, 2016, 270, 20-31.	2.8	79
344	Environmental filtering decreases with fish development for the assembly of gut microbiota. Environmental Microbiology, 2016, 18, 4739-4754.	1.8	267
345	Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities. Zebrafish, 2016, 13, S-138-S-148.	0.5	36
346	Host Selection of Microbiota via Differential Adhesion. Cell Host and Microbe, 2016, 19, 550-559.	5.1	149
347	Effect of dietary components on the gut microbiota ofÂaquatic animals. A neverâ€ending story?. Aquaculture Nutrition, 2016, 22, 219-282.	1.1	476
348	Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology, 2016, 23, 67-80.	1.0	67
349	The zebrafish as a model to study intestinal inflammation. Developmental and Comparative Immunology, 2016, 64, 82-92.	1.0	230
350	The Host Shapes the Gut Microbiota via Fecal MicroRNA. Cell Host and Microbe, 2016, 19, 32-43.	5.1	570
351	The Densely O-Glycosylated MUC2 Mucin Protects the Intestine and Provides Food for the Commensal Bacteria. Journal of Molecular Biology, 2016, 428, 3221-3229.	2.0	137
352	The mouse gut microbiome revisited: From complex diversity to model ecosystems. International Journal of Medical Microbiology, 2016, 306, 316-327.	1.5	70
353	Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes, 2016, 7, 216-234.	4.3	340
354	Identification of Specialists and Abundance-Occupancy Relationships among Intestinal Bacteria of <i>Aves</i> , Mammalia, and Actinopterygii. Applied and Environmental Microbiology, 2016, 82, 1496-1503.	1.4	3
355	Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME Journal, 2016, 10, 655-664.	4.4	627
356	Psychological Stress, Immunity, and the Effects on Indigenous Microflora. Advances in Experimental Medicine and Biology, 2016, 874, 225-246.	0.8	31
357	Probiotics and Other Microbial Manipulations in Fish Feeds. , 2016, , 319-328.		3
358	The biogeography of the atlantic salmon (<i>Salmo salar</i>) gut microbiome. ISME Journal, 2016, 10, 1280-1284.	4.4	301
359	Introduction: Gastroinstestinal System and Colorectal Cancer. , 2016, , 1-14.		0

#	Article	IF	CITATIONS
360	The composition of the zebrafish intestinal microbial community varies across development. ISME Journal, 2016, 10, 644-654.	4.4	524
361	Fishing the targets of myeloid malignancies in the era of next generation sequencing. Blood Reviews, 2016, 30, 119-130.	2.8	3
362	Gut microbiota-bone axis. Critical Reviews in Food Science and Nutrition, 2017, 57, 1664-1672.	5.4	72
363	Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome. Neuropsychopharmacology, 2017, 42, 178-192.	2.8	174
364	Exploring the microbial diversity of the distal intestinal lumen and mucosa of farmed rainbow trout <i>Oncorhynchus mykiss</i> (Walbaum) using next generation sequencing (NGS). Aquaculture Research, 2017, 48, 77-91.	0.9	70
365	Insights into resource consumption, cross-feeding, system collapse, stability and biodiversity from an artificial ecosystem. Journal of the Royal Society Interface, 2017, 14, 20160816.	1.5	7
366	Dysbiosis in Crohn's disease - Joint action of stochastic injuries and focal inflammation in the gut. Gut Microbes, 2017, 8, 53-58.	4.3	16
367	Evolutionary and ecological forces that shape the bacterial communities of the human gut. Mucosal Immunology, 2017, 10, 567-579.	2.7	24
368	Composition of Gut Microbiota in the Gibel Carp (Carassius auratus gibelio) Varies with Host Development. Microbial Ecology, 2017, 74, 239-249.	1.4	115
369	Uncoupling of mucosal gene regulation, mRNA splicing and adherent microbiota signatures in inflammatory bowel disease. Gut, 2017, 66, 2087-2097.	6.1	81
370	Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metabolism, 2017, 25, 522-534.	7.2	108
371	Modeling intestinal disorders using zebrafish. Methods in Cell Biology, 2017, 138, 241-270.	0.5	43
372	Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. Journal of Applied Microbiology, 2017, 123, 2-17.	1.4	290
373	The Immune System in IBD: Antimicrobial Peptides. , 2017, , 75-86.		1
374	Mixing and pumping functions of the intestine of zebrafish larvae. Journal of Theoretical Biology, 2017, 419, 152-158.	0.8	9
375	Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods in Cell Biology, 2017, 138, 61-100.	0.5	117
376	Functional relevance of microbiome signatures: The correlation era requires tools for consolidation. Journal of Allergy and Clinical Immunology, 2017, 139, 1092-1098.	1.5	20
377	Teleosts as Model Organisms To Understand Host-Microbe Interactions. Journal of Bacteriology, 2017, 199, .	1.0	52

#	Article	IF	CITATIONS
378	Host-probiotic interaction: new insight into the role of the endocannabinoid system by in vivo and ex vivo approaches. Scientific Reports, 2017, 7, 1261.	1.6	30
379	Little Fish, Big Data: Zebrafish as a Model for Cardiovascular and Metabolic Disease. Physiological Reviews, 2017, 97, 889-938.	13.1	250
380	Nutrition of red drum, <i>Sciaenops ocellatus </i> L: An additional evaluation of the effects of soya-based diets and supplemental prebiotic. Aquaculture Research, 2017, 48, 5224-5234.	0.9	9
381	The scales of the zebrafish: host–microbiota interactions from proteins to populations. Current Opinion in Microbiology, 2017, 38, 137-141.	2.3	36
382	From complex gut communities to minimal microbiomes via cultivation. Current Opinion in Microbiology, 2017, 38, 148-155.	2.3	23
383	Sequence and functional analysis of intestinal alkaline phosphatase from Lateolabrax maculatus. Fish Physiology and Biochemistry, 2017, 43, 1463-1476.	0.9	7
384	The Growth-Promoting Effect of Dietary Nucleotides in Fish Is Associated with an Intestinal Microbiota-Mediated Reduction in Energy Expenditure. Journal of Nutrition, 2017, 147, 781-788.	1.3	73
385	Alternative Protein Sources in the Diet Modulate Microbiota and Functionality in the Distal Intestine of Atlantic Salmon (Salmo salar). Applied and Environmental Microbiology, 2017, 83, .	1.4	142
386	A first insight into the intestinal microbiota of snow trout (Schizothorax zarudnyi). Symbiosis, 2017, 72, 183-193.	1.2	16
387	Multi-omics Comparative Analysis Reveals Multiple Layers of Host Signaling Pathway Regulation by the Gut Microbiota. MSystems, 2017, 2, .	1.7	19
388	The Microbiome. Toxicologic Pathology, 2017, 45, 190-194.	0.9	24
389	Mink (Mustela vison) Gut Microbial Communities from Northeast China and Its Internal Relationship with Gender and Food Additives. Current Microbiology, 2017, 74, 1169-1177.	1.0	6
390	Links between Natural Variation in the Microbiome and Host Fitness in Wild Mammals. Integrative and Comparative Biology, 2017, 57, 756-769.	0.9	92
391	Manipulation of Gut Microbiota Reveals Shifting Community Structure Shaped by Host Developmental Windows in Amphibian Larvae. Integrative and Comparative Biology, 2017, 57, 786-794.	0.9	34
392	Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. Cell Host and Microbe, 2017, 22, 142-155.	5.1	404
393	Hypothesis testing and statistical analysis of microbiome. Genes and Diseases, 2017, 4, 138-148.	1.5	142
394	Interplay of Regulatory T Cell and Th17 Cells during Infectious Diseases in Humans and Animals. Frontiers in Immunology, 2017, 8, 341.	2.2	74
395	Application of Zebrafish Models in Inflammatory Bowel Disease. Frontiers in Immunology, 2017, 8, 501.	2.2	32

#	Article	IF	CITATIONS
396	Under Pressure: Interactions between Commensal Microbiota and the Teleost Immune System. Frontiers in Immunology, 2017, 8, 559.	2.2	159
397	Regular Wounding in a Natural System: Bacteria Associated With Reproductive Organs of Bedbugs and Their Quorum Sensing Abilities. Frontiers in Immunology, 2017, 8, 1855.	2.2	14
398	Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live?. Frontiers in Microbiology, 2017, 8, 1935.	1.5	113
399	Microbiome–Gut–Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS—A Novel Hypothesis. Frontiers in Pediatrics, 2016, 4, 136.	0.9	7
400	Gnotobiotic Fish as Models to Study Host–Microbe Interactions. , 2017, , 369-383.		6
401	Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome, 2017, 5, 156.	4.9	73
402	Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 2017, 5, 164.	4.9	186
403	Microbial Signatures as a Predictive Tool in IBDâ€"Pearls and Pitfalls. Inflammatory Bowel Diseases, 2018, 24, 1123-1132.	0.9	10
404	Racing to Stay Put: How Resident Microbiota Stimulate Intestinal Epithelial Cell Proliferation. Current Pathobiology Reports, 2018, 6, 23-28.	1.6	5
405	Sex dependent effects of silver nanoparticles on the zebrafish gut microbiota. Environmental Science: Nano, 2018, 5, 740-751.	2.2	55
406	Multiple colonist pools shape fiddler crab-associated bacterial communities. ISME Journal, 2018, 12, 825-837.	4.4	22
407	Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota. Zebrafish, 2018, 15, 96-106.	0.5	10
408	Processes shaping gut microbiota diversity in allopatric populations of the endemic lizard Podarcis lilfordi from Menorcan islets (Balearic Islands). FEMS Microbiology Ecology, 2018, 94, .	1.3	20
409	Microbiota and metabolic diseases. Endocrine, 2018, 61, 357-371.	1.1	280
410	EMDUniFrac: exact linear time computation of the UniFrac metric and identification of differentially abundant organisms. Journal of Mathematical Biology, 2018, 77, 935-949.	0.8	26
411	Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 2018, 10, 626-640.	4.6	413
412	Combined or Individual Effects of Dietary Probiotic Pedicoccus acidilactici and Nucleotide on Growth Performance, Intestinal Microbiota, Hemato-biochemical Parameters, and Innate Immune Response in Goldfish (Carassius auratus). Probiotics and Antimicrobial Proteins, 2018, 10, 558-565.	1.9	12
413	Host effects on microbiota community assembly. Journal of Animal Ecology, 2018, 87, 331-340.	1.3	39

#	Article	IF	CITATIONS
414	Spatial and temporal expression of bmp8a and its role in regulation of lipid metabolism in zebrafish Danio rerio. Gene Reports, 2018, 10, 33-41.	0.4	7
415	Gut Microbiota and Host Juvenile Growth. Calcified Tissue International, 2018, 102, 387-405.	1.5	40
416	Characterization of the gut microbiota in early life stages of pikeperch <scp><i>Sander lucioperca</i></scp> . Journal of Fish Biology, 2018, 92, 94-104.	0.7	17
417	Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences, 2018, 75, 149-160.	2.4	380
418	Composition of Intestinal Microbiota in Two Lines of Rainbow Trout (Oncorhynchus Mykiss) Divergently Selected for Muscle Fat Content. Open Microbiology Journal, 2018, 12, 308-320.	0.2	15
419	Comparison of Gut Microbial Diversity in Beijing Oil and Arbor Acres Chickens. Brazilian Journal of Poultry Science, 2018, 20, 37-44.	0.3	5
421	Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-human Primate, and Human Feces. Frontiers in Microbiology, 2018, 9, 2897.	1.5	170
422	Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 2018, 10, 1651.	1.7	181
423	Echinococcus granulosus Infection Results in an Increase in Eisenbergiella and Parabacteroides Genera in the Gut of Mice. Frontiers in Microbiology, 2018, 9, 2890.	1.5	19
424	Gut Microbiota Is a Major Contributor to Adiposity in Pigs. Frontiers in Microbiology, 2018, 9, 3045.	1.5	63
425	Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nature Communications, 2018, 9, 4099.	5.8	73
426	Divergence of Fecal Microbiota and Their Associations With Host Phylogeny in Cervinae. Frontiers in Microbiology, 2018, 9, 1823.	1.5	9
427	The Intestinal Microbiota – â€~Your Eating Feeds a Plethora of Guests' and â€~This Plethora of Guests Determines Who You Are and How Well You Do'. , 2018, , 61-136.		1
428	Introductory Overview of Statistical Analysis of Microbiome Data. ICSA Book Series in Statistics, 2018, , 43-75.	0.0	7
429	Critical Role for a Subset of Intestinal Macrophages in Shaping Gut Microbiota in Adult Zebrafish. Cell Reports, 2018, 25, 424-436.	2.9	77
430	Fecal microbiota transplant & Double to the same of th	1.6	50
431	Effects of extruded aquafeed on growth performance and gut microbiome of juvenile Totoaba macdonaldi. Animal Feed Science and Technology, 2018, 245, 91-103.	1.1	34
432	Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian Journal of Microbiology, 2018, 58, 397-414.	1.5	121

#	Article	IF	CITATIONS
433	Intestinal microbiota in rainbow trout, <i>Oncorhynchus mykiss </i> , fed diets with different levels of fish-based and plant ingredients: A correlative approach with some plasma metabolites. Aquaculture Nutrition, 2018, 24, 1563-1576.	1.1	18
434	Microbial Physiology of the Digestive Tract and Its Role in Inflammatory Bowel Diseases. , 2018, , 795-810.		9
435	The Hepatotoxicity of Palmitic Acid in Zebrafish Involves the Intestinal Microbiota. Journal of Nutrition, 2018, 148, 1217-1228.	1.3	39
436	Managing the Microbial Community of Marine Fish Larvae: A Holistic Perspective for Larviculture. Frontiers in Microbiology, 2018, 9, 1820.	1.5	64
437	Water system is a controlling variable modulating bacterial diversity of gastrointestinal tract and performance in rainbow trout. PLoS ONE, 2018, 13, e0195967.	1.1	20
438	Evaluating the Capacity of Human Gut Microorganisms to Colonize the Zebrafish Larvae (Danio rerio). Frontiers in Microbiology, 2018, 9, 1032.	1.5	26
439	Assessment of gut microbiota in different developmental stages of Malaysian Mahseer (<i>Tor) Tj ETQq0 0 0 rgBT</i>	/Oyerlock	10 Tf 50 50
440	Faecal microRNA as a biomarker of the activity and prognosis of inflammatory bowel diseases. Biochemical and Biophysical Research Communications, 2018, 503, 2443-2450.	1.0	43
441	The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nature Neuroscience, 2018, 21, 1061-1071.	7.1	141
442	Holobionts and ecological speciation: the intestinal microbiota of lake whitefish species pairs. Microbiome, 2018, 6, 47.	4.9	67
443	Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathogens, 2018, 10, 3.	1.6	153
444	Mind the gut: genomic insights to population divergence and gut microbial composition of two marine keystone species. Microbiome, 2018, 6, 82.	4.9	28
445	Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota. Nature Communications, 2018, 9, 3402.	5.8	65
446	A Comparative Review on Microbiota Manipulation: Lessons From Fish, Plants, Livestock, and Human Research. Frontiers in Nutrition, 2018, 5, 80.	1.6	95
447	Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. Journal of Nutritional Biochemistry, 2018, 61, 111-128.	1.9	66
448	Lactic Acid Bacteria in Finfish—An Update. Frontiers in Microbiology, 2018, 9, 1818.	1.5	254
449	Utilization of Host-Derived Glycans by Intestinal Lactobacillus and Bifidobacterium Species. Frontiers in Microbiology, 2018, 9, 1917.	1.5	82
450	Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus) Tj ETQq1 1 0.7 e0193652.	'84314 rgE 1.1	3T /Overlo <mark>ck</mark> 108

#	Article	IF	CITATIONS
451	Effect of Dietary Probiotic Lactobacillus helveticus on Growth Performance, Antioxidant Levels, and Absorption of Essential Trace Elements in Goldfish (Carassius auratus). Probiotics and Antimicrobial Proteins, 2019, 11, 559-568.	1.9	16
452	Epithelial delamination is protective during pharmaceutical-induced enteropathy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16961-16970.	3.3	8
453	Commensal Bacteria Regulate Gene Expression and Differentiation in Vertebrate Olfactory Systems Through Transcription Factor REST. Chemical Senses, 2019, 44, 615-630.	1.1	13
454	Gut dysbiosis and its epigenomic impact on disease. , 2019, , 409-422.		1
455	Population Genetic Divergence and Environment Influence the Gut Microbiome in Oregon Threespine Stickleback. Genes, 2019, 10, 484.	1.0	27
456	Basal Diet Determined Long-Term Composition of the Gut Microbiome and Mouse Phenotype to a Greater Extent than Fecal Microbiome Transfer from Lean or Obese Human Donors. Nutrients, 2019, 11, 1630.	1.7	23
457	Molecular techniques and their limitations shape our view of the holobiont. Zoology, 2019, 137, 125695.	0.6	5
458	Experimental Evidence for Adaptation to Species-Specific Gut Microbiota in House Mice. MSphere, 2019, 4, .	1.3	27
459	Propionate suppresses hepatic gluconeogenesis via GPR43/AMPK signaling pathway. Archives of Biochemistry and Biophysics, 2019, 672, 108057.	1.4	63
460	How the Interplay Between the Commensal Microbiota, Gut Barrier Integrity, and Mucosal Immunity Regulates Brain Autoimmunity. Frontiers in Immunology, 2019, 10, 1937.	2.2	53
461	Polymorphic Immune Mechanisms Regulate Commensal Repertoire. Cell Reports, 2019, 29, 541-550.e4.	2.9	55
462	The Responses of Germ-Free Zebrafish (Danio rerio) to Varying Bacterial Concentrations, Colonization Time Points, and Exposure Duration. Frontiers in Microbiology, 2019, 10, 2156.	1.5	24
463	Floral organs act as environmental filters and interact with pollinators to structure the yellow monkeyflower (<i>Mimulus guttatus</i>) floral microbiome. Molecular Ecology, 2019, 28, 5155-5171.	2.0	32
464	Detecting Changes in the <i>Caenorhabditis elegans</i> Intestinal Environment Using an Engineered Bacterial Biosensor. ACS Synthetic Biology, 2019, 8, 2620-2628.	1.9	21
465	Evidence for host effect on the intestinal microbiota of whitefish (<i>Coregonus</i> sp.) species pairs and their hybrids. Ecology and Evolution, 2019, 9, 11762-11774.	0.8	29
466	Evolutionary transitions revisited: Holobiont evoâ€devo. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2019, 332, 307-314.	0.6	17
467	Commensal Microbiota Regulate Vertebrate Innate Immunity-Insights From the Zebrafish. Frontiers in Immunology, 2019, 10, 2100.	2,2	51
468	Gut segments outweigh the diet in shaping the intestinal microbiota composition in grass carp Ctenopharyngodon idellus. AMB Express, 2019, 9, 44.	1.4	14

#	Article	IF	CITATIONS
469	A longitudinal assessment of host-microbe-parasite interactions resolves the zebrafish gut microbiome's link to Pseudocapillaria tomentosa infection and pathology. Microbiome, 2019, 7, 10.	4.9	70
470	Experimental evolution reveals microbial traits for association with the host gut. PLoS Biology, 2019, 17, e3000129.	2.6	6
471	Microbiota alter metabolism and mediate neurodevelopmental toxicity of $17\hat{l}^2$ -estradiol. Scientific Reports, 2019, 9, 7064.	1.6	23
472	Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. American Journal of Pathology, 2019, 189, 1300-1310.	1.9	31
473	The use of non-rodent model species in microbiota studies. Laboratory Animals, 2019, 53, 259-270.	0.5	15
474	Diversity and composition of the gut microbiota of Atlantic salmon (<i>Salmo salar</i>) farmed in Irish waters. Journal of Applied Microbiology, 2019, 127, 648-657.	1.4	36
475	The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiology Letters, 2019, 366, .	0.7	63
476	Modeling gut-brain interactions in zebrafish. Brain Research Bulletin, 2019, 148, 55-62.	1.4	22
477	Sodium butyrate supplementation in high-soybean meal diets for turbot (Scophthalmus maximus L.): Effects on inflammatory status, mucosal barriers and microbiota in the intestine. Fish and Shellfish Immunology, 2019, 88, 65-75.	1.6	122
478	Intestinal Serum amyloid A suppresses systemic neutrophil activation and bactericidal activity in response to microbiota colonization. PLoS Pathogens, 2019, 15, e1007381.	2.1	54
479	Interaction between microplastics and microorganism as well as gut microbiota: A consideration on environmental animal and human health. Science of the Total Environment, 2019, 667, 94-100.	3.9	258
480	Insights into the intestinal microbiota of several aquatic organisms and association with the surrounding environment. Aquaculture, 2019, 507, 196-202.	1.7	51
481	Effects of a gut microbiota transfer on emotional reactivity in Japanese quails (<i>Coturnix) Tj ETQq0 0 0 rgBT /Ov</i>	erlock 10	Tf 50 262 To
482	Effect of stock density on the microbial community in biofloc water and Pacific white shrimp (Litopenaeus vannamei) gut microbiota. Applied Microbiology and Biotechnology, 2019, 103, 4241-4252.	1.7	61
483	Genus <i>bacillus</i> , promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science and Aquaculture, 2019, 27, 331-379.	5.1	149
484	Succession of embryonic and the intestinal bacterial communities of Atlantic salmon (<i>Salmo) Tj ETQq1 1 0.784</i>	1314 rgBT	/Oyerlock 10
485	Host and Microbiome Genome-Wide Association Studies: Current State and Challenges. Frontiers in Genetics, 2018, 9, 637.	1.1	71
486	Glabridin Prevents Doxorubicin-Induced Cardiotoxicity Through Gut Microbiota Modulation and Colonic Macrophage Polarization in Mice. Frontiers in Pharmacology, 2019, 10, 107.	1.6	44

#	Article	IF	CITATIONS
487	Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. Environmental Pollution, 2019, 248, 989-999.	3.7	160
488	The Role of Feed in Aquatic Laboratory Animal Nutrition and the Potential Impact on Animal Models and Study Reproducibility. ILAR Journal, 2019, 60, 197-215.	1.8	4
489	Using Zebrafish to Investigate Interactions Between Xenobiotics and Microbiota. Current Pharmacology Reports, 2019, 5, 468-480.	1.5	17
490	Microbial diversity within the digestive tract contents of Dezhou donkeys. PLoS ONE, 2019, 14, e0226186.	1.1	26
491	The Microbiome and Its Potential for Pharmacology. Handbook of Experimental Pharmacology, 2019, 260, 301-326.	0.9	14
492	Dietary nucleotides can directly stimulate the immunity of zebrafish independent of the intestinal microbiota. Fish and Shellfish Immunology, 2019, 86, 1064-1071.	1.6	28
493	Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia. Fish and Shellfish Immunology, 2019, 86, 53-63.	1.6	34
494	Host Developmental Toxicity of BPA and BPA Alternatives Is Inversely Related to Microbiota Disruption in Zebrafish. Toxicological Sciences, 2019, 167, 468-483.	1.4	62
495	Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecological Monographs, 2019, 89, e01346.	2.4	56
496	Characterization of the skin and gill microbiomes of the farmed seabass (Dicentrarchus labrax) and seabream (Sparus aurata). Aquaculture, 2019, 500, 57-64.	1.7	69
497	The adherence and colonization of microorganisms in fish gastrointestinal tract. Reviews in Aquaculture, 2019, 11, 603-618.	4.6	101
498	Oral Administration of Compound Probiotics Ameliorates HFD-Induced Gut Microbe Dysbiosis and Chronic Metabolic Inflammation via the G Protein-Coupled Receptor 43 in Non-alcoholic Fatty Liver Disease Rats. Probiotics and Antimicrobial Proteins, 2019, 11, 175-185.	1.9	87
499	The composition and stability of the faecal microbiota of Merino sheep. Journal of Applied Microbiology, 2020, 128, 280-291.	1.4	19
500	A microbial sea of possibilities: current knowledge and prospects for an improved understanding of the fish microbiome. Reviews in Aquaculture, 2020, 12, 1101-1134.	4.6	117
501	Recent advances of nucleotide nutrition research in aquaculture: a review. Reviews in Aquaculture, 2020, 12, 1028-1053.	4.6	69
502	The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria. Nature Communications, $2020,11,79.$	5.8	55
503	Dynamic distribution of intestinal microbes in Schizothorax o'connori at different growth stages. Fisheries Science, 2020, 86, 87-95.	0.7	3
504	Zebrafish as a Model for Investigating Animal–Microbe Interactions. , 2020, , 627-635.		2

#	Article	IF	CITATIONS
505	Zebrafish Nutrition—Moving Forward. , 2020, , 379-401.		12
506	Gnotobiotic models: Powerful tools for deeply understanding intestinal microbiota-host interactions in aquaculture. Aquaculture, 2020, 517, 734800.	1.7	29
507	Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. NeuroToxicology, 2020, 76, 235-244.	1.4	37
508	The zebrafish as a model for gastrointestinal tract–microbe interactions. Cellular Microbiology, 2020, 22, e13152.	1.1	69
509	Conserved anti-inflammatory effects and sensing of butyrate in zebrafish. Gut Microbes, 2020, 12, 1824563.	4.3	41
510	Dynamic change of the gastrointestinal bacterial ecology in cows from birth to adulthood. MicrobiologyOpen, 2020, 9, e1119.	1.2	14
511	The bacterioplankton community composition and a host genotype dependent occurrence of taxa shape the Daphnia magna gut bacterial community. FEMS Microbiology Ecology, 2020, 96, .	1.3	29
512	Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Frontiers in Molecular Neuroscience, 2020, 13, 575575.	1.4	32
513	Microbial co-occurrence networks of gut microbiota reveal community conservation and diet-associated shifts in cichlid fishes. Animal Microbiome, 2020, 2, 36.	1.5	21
514	Interplay between engineered nanomaterials and microbiota. Environmental Science: Nano, 2020, 7, 2454-2485.	2.2	21
515	Microbially competent 3D skin: a test system that reveals insight into host–microbe interactions and their potential toxicological impact. Archives of Toxicology, 2020, 94, 3487-3502.	1.9	12
516	Oral Microbiome Metabarcoding in Two Invasive Small Mammals from New Zealand. Diversity, 2020, 12, 278.	0.7	2
517	Antibiotic-induced alterations and repopulation dynamics of yellowtail kingfish microbiota. Animal Microbiome, 2020, 2, 26.	1.5	23
518	The potential role of the gut microbiota in shaping host energetics and metabolic rate. Journal of Animal Ecology, 2020, 89, 2415-2426.	1.3	52
519	Bacterial community assembly in Atlantic cod larvae (Gadus morhua): contributions of ecological processes and metacommunity structure. FEMS Microbiology Ecology, 2020, 96, .	1.3	24
520	Differential longitudinal establishment of human fecal bacterial communities in germ-free porcine and murine models. Communications Biology, 2020, 3, 760.	2.0	13
521	Interactions between Food Hazards and Intestinal Barrier: Impact on Foodborne Diseases. Journal of Agricultural and Food Chemistry, 2020, 68, 14728-14738.	2.4	21
522	The Microbiota and Gut-Related Disorders: Insights from Animal Models. Cells, 2020, 9, 2401.	1.8	18

#	ARTICLE	IF	CITATIONS
523	Pancreatic Diseases and Microbiota: A Literature Review and Future Perspectives. Journal of Clinical Medicine, 2020, 9, 3535.	1.0	10
524	Sea Cucumber Intestinal Regeneration Reveals Deterministic Assembly of the Gut Microbiome. Applied and Environmental Microbiology, 2020, 86, .	1.4	21
525	Dietary SWF® enhanced growth performance and disease resistance in hybrid sturgeon (Acipenser) Tj ETQq0 C	0 rgBT /0	Overlock 10 Tf
526	A continuously changing selective context on microbial communities associated with fish, from egg to fork. Evolutionary Applications, 2020, 13, 1298-1319.	1.5	14
527	Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation. Scientific Reports, 2020, 10, 7805.	1.6	36
528	Review of microplastic occurrence and toxicological effects in marine environment: Experimental evidence of inflammation. Chemical Engineering Research and Design, 2020, 142, 1-14.	2.7	152
529	Zebrafish microbiome studies make waves. Lab Animal, 2020, 49, 201-207.	0.2	50
530	Comparative analysis of microbial community structure between healthy and Aeromonas veronii-infected Yangtze finless porpoise. Microbial Cell Factories, 2020, 19, 123.	1.9	28
531	Pseudozyma Priming Influences Expression of Genes Involved in Metabolic Pathways and Immunity in Zebrafish Larvae. Frontiers in Immunology, 2020, 11, 978.	2.2	11
532	The Effects of Temperature on Animal Gut Microbiomes. Frontiers in Microbiology, 2020, 11, 384.	1.5	150
533	Characterization of the gastrointestinal microbiota in paddlefish (Polyodon spathula). Aquaculture Reports, 2020, 17, 100402.	0.7	5
534	Intestinal Microbiota and Immune Modulation in Zebrafish by Fucoidan From Okinawa Mozuku (Cladosiphon okamuranus). Frontiers in Nutrition, 2020, 7, 67.	1.6	30
535	Review: Comparative methane production in mammalian herbivores. Animal, 2020, 14, s113-s123.	1.3	28
536	The structure of microbial populations in Nelore GIT reveals inter-dependency of methanogens in feces and rumen. Journal of Animal Science and Biotechnology, 2020, 11, 6.	2.1	28
537	Into the wild: microbiome transplant studies need broader ecological reality. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192834.	1.2	21
538	Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Frontiers in Immunology, 2020, 11, 114.	2.2	142
539	Nutrients and Microbiota in Lung Diseases of Prematurity: The Placenta-Gut-Lung Triangle. Nutrients, 2020, 12, 469.	1.7	33
540	Insights into the microbiome of farmed Asian sea bass (Lates calcarifer) with symptoms of tenacibaculosis and description of Tenacibaculum singaporense sp. nov Antonie Van Leeuwenhoek, 2020, 113, 737-752.	0.7	28

#	Article	IF	Citations
541	Gut microbiota induced by dietary GWFÂ $^{\odot}$ contributes to growth promotion, immune regulation and disease resistance in hybrid sturgeon (Acipenserbaerii x Acipenserschrenckii): Insights from a germ-free zebrafish model. Aquaculture, 2020, 520, 734966.	1.7	9
542	Cottonseed meal fermented by Candida tropical reduces the fat deposition in white-feather broilers through cecum bacteria-host metabolic cross-talk. Applied Microbiology and Biotechnology, 2020, 104, 4345-4357.	1.7	14
543	Colonizing microbiota protect zebrafish larvae against silver nanoparticle toxicity. Nanotoxicology, 2020, 14, 725-739.	1.6	14
544	The role of host molecules in communication with the resident and pathogenic microbiota: A review. Medicine in Microecology, 2020, 4, 100005.	0.7	16
545	Sequence variant analysis reveals poor correlations in microbial taxonomic abundance between humans and mice after gnotobiotic transfer. ISME Journal, 2020, 14, 1809-1820.	4.4	30
546	Bighorn sheep gut microbiomes associate with genetic and spatial structure across a metapopulation. Scientific Reports, 2020, 10, 6582.	1.6	26
547	Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190251.	1.8	85
548	Ecological and Ontogenetic Components of Larval Lake Sturgeon Gut Microbiota Assembly, Successional Dynamics, and Ecological Evaluation of Neutral Community Processes. Applied and Environmental Microbiology, 2020, 86, .	1.4	14
549	Mucins and the Microbiome. Annual Review of Biochemistry, 2020, 89, 769-793.	5.0	184
550	Endosymbiotic pathogen-inhibitory gut bacteria in three Indian Major Carps under polyculture system: A step toward making a probiotics consortium. Aquaculture and Fisheries, 2021, 6, 192-204.	1.2	9
551	Dynamic changes of gut microbiota of discus fish (Symphysodon haraldi) at different feeding stages. Aquaculture, 2021, 531, 735912.	1.7	23
552	Gut immunity in European sea bass (Dicentrarchus labrax): a review. Fish and Shellfish Immunology, 2021, 108, 94-108.	1.6	19
553	Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host and Microbe, 2021, 29, 179-196.e9.	5.1	129
554	High-throughput sequencing reveals significant diversity in the gut microbiomes of humpback		

#	ARTICLE	IF	CITATIONS
559	Human impact on symbioses between aquatic organisms and microbes. Aquatic Microbial Ecology, 2021, 87, 113-138.	0.9	14
560	Evolution of bacteria in the human gut in response to changing environments: An invisible player in the game of health. Computational and Structural Biotechnology Journal, 2021, 19, 752-758.	1.9	6
561	Animal development in the microbial world: Re-thinking the conceptual framework. Current Topics in Developmental Biology, 2021, 141, 399-427.	1.0	24
562	Intestinal Flora: A Pivotal Role in Investigation of Traditional Chinese Medicine. The American Journal of Chinese Medicine, 2021, 49, 237-268.	1.5	36
563	DNA methylation as a regulator of intestinal gene expression. British Journal of Nutrition, 2021, 126, 1611-1625.	1.2	8
564	Changes in the gut microbial community of the eastern newt ($\langle i \rangle$ Notophthalmus viridescens $\langle i \rangle$) across its three distinct life stages. FEMS Microbiology Ecology, 2021, 97, .	1.3	7
565	Comparative analysis of bacterial communities of water and intestines of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) reared in aquaculture pond systems. Aquaculture, 2021, 534, 736334.	1.7	11
566	Ribonuclease 1 contributes to the antibacterial response and immune defense in blunt snout bream (Megalobrama amblycephala). International Journal of Biological Macromolecules, 2021, 172, 309-320.	3.6	1
567	Effects of biochar on microbial community in bioflocs and gut of Oreochromis niloticus reared in a biofloc system. Aquaculture International, 2021, 29, 1295-1315.	1.1	8
568	Composition and potential functions of the dominant microbiota in deep-sea hagfish gut from the South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 169, 103488.	0.6	5
569	The effects of fish meal replacement with ultra-micro ground mixed plant proteins (uPP) in practical diet on growth, gut and liver health of common carp (Cyprinus carpio). Aquaculture Reports, 2021, 19, 100558.	0.7	16
570	Genetic Approaches Using Zebrafish to Study the Microbiota–Gut–Brain Axis in Neurological Disorders. Cells, 2021, 10, 566.	1.8	26
572	Gut microbiota of homologous Chinese soft-shell turtles (Pelodiscus sinensis) in different habitats. BMC Microbiology, 2021, 21, 142.	1.3	12
573	Effects of low and high levels of nano-selenium on intestinal microbiota of Chinese tongue sole (Cynoglossus semilaevis). Aquaculture and Fisheries, 2022, 7, 623-631.	1.2	4
574	Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis) Tj ETQq0 0 0 rgBT /0 Feed Science and Technology, 2021, 275, 114892.	Overlock 1 1.1	10 Tf 50 187 T 26
575	Probiotics in Fish Nutrition—Long-Standing Household Remedy or Native Nutraceuticals?. Water (Switzerland), 2021, 13, 1348.	1.2	34
576	Intestinal microbiota in health and disease $\hat{a}\in$ seeding multidisciplinary research in Germany. International Journal of Medical Microbiology, 2021, 311, 151514.	1.5	0
577	Zebrafish model for human gut microbiome-related studies: advantages and limitations. Medicine in Microecology, 2021, 8, 100042.	0.7	17

#	Article	IF	CITATIONS
578	miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. Nature Communications, 2021, 12, 3339.	5.8	16
579	Coculture of primary human colon monolayer with human gut bacteria. Nature Protocols, 2021, 16, 3874-3900.	5.5	28
580	Probiotics Improve Eating Disorders in Mandarin Fish (Siniperca chuatsi) Induced by a Pellet Feed Diet via Stimulating Immunity and Regulating Gut Microbiota. Microorganisms, 2021, 9, 1288.	1.6	23
581	Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health: A special reference to zebrafish. Environmental Pollution, 2021, 279, 116925.	3.7	26
582	Propionate induces intestinal oxidative stress via Sod2 propionylation in zebrafish. IScience, 2021, 24, 102515.	1.9	17
583	Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. Journal of Experimental Medicine, 2021, 218, .	4.2	30
584	Gut microorganisms and neurological disease perspectives. Future Neurology, 2021, 16, .	0.9	8
585	Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 2021, 9, 166.	4.9	100
586	Opportunistic gill infection is associated with TiO2 nanoparticle-induced mortality in zebrafish. PLoS ONE, 2021, 16, e0247859.	1.1	9
588	Comparative analysis of intestinal microbiota of discus fish (Symphysodon haraldi) with different growth rates. Aquaculture, 2021, 540, 736740.	1.7	17
589	Modulation of Antioxidant Enzymes, Heat Shock Protein, and Intestinal Microbiota of Large Yellow Croaker (Larimichthys crocea) Under Acute Cold Stress. Frontiers in Marine Science, 2021, 8, .	1.2	10
590	Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Frontiers in Microbiology, 2021, 12, 689958.	1.5	38
591	The gut vascular barrier: a new player in the gut–liver–brain axis. Trends in Molecular Medicine, 2021, 27, 844-855.	3.5	61
592	Promotion of pellet-feed feeding in mandarin fish (Siniperca chuatsi) by Bdellovibrio bacteriovorus is influenced by immune and intestinal flora. Aquaculture, 2021, 542, 736864.	1.7	15
593	Controlled Complexity: Optimized Systems to Study the Role of the Gut Microbiome in Host Physiology. Frontiers in Microbiology, 2021, 12, 735562.	1.5	2
594	Geographical Relationships between Long-Tailed Goral (Naemorhedus caudatus) Populations Based on Gut Microbiome Analysis. Microorganisms, 2021, 9, 2002.	1.6	3
595	Artificial Rearing of Atlantic Salmon Juveniles for Supportive Breeding Programs Induces Long-Term Effects on Gut Microbiota after Stocking. Microorganisms, 2021, 9, 1932.	1.6	9
596	Early-Life Microbial Restitution Reduces Colitis Risk Promoted by Antibiotic-Induced Gut Dysbiosis in Interleukin 10–/– Mice. Gastroenterology, 2021, 161, 940-952.e15.	0.6	20

#	Article	IF	CITATIONS
597	Colonizing Microbes, IL-10 and IL-22: Keeping the Peace at the Mucosal Surface. Frontiers in Microbiology, 2021, 12, 729053.	1.5	5
599	Therapeutic modulation of fish gut microbiota, a feasible strategy for aquaculture?. Aquaculture, 2021, 544, 737050.	1.7	54
600	Microplastics as an aquatic pollutant affect gut microbiota within aquatic animals. Journal of Hazardous Materials, 2022, 423, 127094.	6.5	46
601	Time to integrate biotechnological approaches into fish gut microbiome research. Current Opinion in Biotechnology, 2022, 73, 121-127.	3.3	30
602	Kazak faecal microbiota transplantation induces short-chain fatty acids that promote glucagon-like peptide-1 secretion by regulating gut microbiota in <i>db/db</i> mice. Pharmaceutical Biology, 2021, 59, 1075-1085.	1.3	12
603	Host development overwhelms environmental dispersal in governing the ecological succession of zebrafish gut microbiota. Npj Biofilms and Microbiomes, 2021, 7, 5.	2.9	64
604	Psychological Stress, Immunity, and the Effects on Indigenous Microflora. , 2010, , 191-212.		3
605	Metagenomics of the Human Body. , 2011, , .		18
606	Host Genotype and the Effect on Microbial Communities. , 2011, , 15-41.		11
607	The Commensal Microbiota. , 2012, , 3-11.		4
608	Recent Progress in Engineering Human-Associated Microbiomes. Methods in Molecular Biology, 2014, 1151, 3-25.	0.4	15
609	The Family Cryomorphaceae. , 2014, , 539-550.		28
610	Bioprospecting Gastrointestinal Microflora of Common Fishes for Disease Control in Aquaculture. , 2017, , 161-182.		1
611	Microbial communities modulating brain functioning and behaviors in zebrafish: A mechanistic approach. Microbial Pathogenesis, 2020, 145, 104251.	1.3	18
612	Sporofaciens musculi gen. nov., sp. nov., a novel bacterium isolated from the caecum of an obese mouse. International Journal of Systematic and Evolutionary Microbiology, 2019, 71, .	0.8	15
625	Prebiotics and Lipid Metabolism. , 0, , 183-192.		7
626	Role of the Indigenous Microbiota in Health and Disease. , 0, , 7-18.		1
627	Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis. JCl Insight, 2016, $1, \dots$	2.3	11

#	ARTICLE	IF	CITATIONS
628	Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLoS Biology, 2016, 14, e2000225.	2.6	475
629	Stochastic assembly produces heterogeneous communities in the Caenorhabditis elegans intestine. PLoS Biology, 2017, 15, e2000633.	2.6	104
630	PCR-TTGE Analysis of 16S rRNA from Rainbow Trout (Oncorhynchus mykiss) Gut Microbiota Reveals Host-Specific Communities of Active Bacteria. PLoS ONE, 2012, 7, e31335.	1.1	160
631	Ontogenetic Characterization of the Intestinal Microbiota of Channel Catfish through 16S rRNA Gene Sequencing Reveals Insights on Temporal Shifts and the Influence of Environmental Microbes. PLoS ONE, 2016, 11, e0166379.	1.1	102
632	The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLoS ONE, 2017, 12, e0177735.	1.1	96
633	Integrating Microbiome Network: Establishing Linkages Between Plants, Microbes and Human Health. Open Microbiology Journal, 2019, 13, 330-342.	0.2	8
634	æ³æ²³çŒ´å'Œé£ŸèŸ¹çŒ´ç›´è,微生物èŒç¾Œ҉s"å®åŸºå›ç»"比较. Zoological Research, 2019, 40, 89-93.	0.9	14
635	è,é°èŒç¾®œ¨é±¼ç±»ç–¾ç—…å'Œå…ç–«ä¸ä½œç"¨çš"ç"究进展. Zoological Research, 2019, 40, 70-76.	0.9	102
636	Caenorhabditis elegans, a Host to Investigate the Probiotic Properties of Beneficial Microorganisms. Frontiers in Nutrition, 2020, 7, 135.	1.6	36
637	Cultivable intestinal microbiota of yellowtail juveniles (Seriola lalandi) in an aquaculture system. Latin American Journal of Aquatic Research, 2017, 41, 395-403.	0.2	21
638	Chapter 2: The composition and role of the microbiota in chickens. , 2015, , 21-50.		3
639	Simultaneous Quantification of Cyanobacteria and Microcystis spp. Using Real-Time PCR. Journal of Microbiology and Biotechnology, 2012, 22, 248-255.	0.9	14
640	Spatial Heterogeneity of Bacteria: Evidence from Hot Composts by Culture-independent Analysis. Asian-Australasian Journal of Animal Sciences, 2012, 25, 1045-1054.	2.4	4
641	Consumption of antimicrobial manuka honey does not significantly perturb the microbiota in the hind gut of mice. PeerJ, 2016, 4, e2787.	0.9	8
642	Salt marsh sediment bacterial communities maintain original population structure after transplantation across a latitudinal gradient. Peerl, 2018, 6, e4735.	0.9	14
643	Microbiome differences between river-dwelling and cave-adapted populations of the fish <i>Astyanax mexicanus</i> /i>(De Filippi, 1853). PeerJ, 2018, 6, e5906.	0.9	25
644	Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 2019, 7, e7502.	0.9	360
646	Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron, 2021, 109, 3930-3953.	3.8	54

#	Article	IF	Citations
647	Environmental effects of nanoparticles on the ecological succession of gut microbiota across zebrafish development. Science of the Total Environment, 2022, 806, 150963.	3.9	22
648	Human placental biology at singleâ€eell resolution: a contemporaneous review. BJOG: an International Journal of Obstetrics and Gynaecology, 2022, 129, 208-220.	1.1	12
649	Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders. Scientific Reports, 2021, 11, 20493.	1.6	7
650	Transplantation of high fat fed mouse microbiota into zebrafish larvae identifies MyD88 â€dependent acceleration of hyperlipidaemia by Gramâ€positive cell wall components. BioFactors, 2021, , .	2.6	6
651	Molecular Interactions of Commensal Enteric Bacteria with the Intestinal Epithelium and the Mucosal Immune System. Bioscience and Microflora, 2008, 27, 37-48.	0.5	0
652	State-of-the-Art Lecture: The enteric microbiota: implications in inflammatory bowel disease. , 2009, , 29-37.		0
653	What Pediatricians Need to Know about the Analysis of the Gut Microbiota., 2009, , 17-28.		1
655	Gutmicrobiota as a factor in obesitydevelopment. Acta Agriculturae Slovenica, 2010, 96, .	0.2	0
656	Antimicrobial Peptides in Inflammatory Bowel Disease., 2012,, 119-132.		1
658	Marine Vertebrate Animal Metagenomics, Salmonidae. , 2014, , 1-7.		0
659	The Gut Microbiota: Ecology and Function. , 0, , 39-65.		1
660	Phylosymbiosis: Novel Genomic Approaches Discover the Holobiont. , 2016, , 47-55.		0
664	The profiles of dysbiotic microbial communities. AIMS Microbiology, 2019, 5, 87-101.	1.0	1
672	Integrative Analysis of LGR5/6 Gene Variants, Gut Microbiota Composition and Osteoporosis Risk in Elderly Population. Frontiers in Microbiology, 2021, 12, 765008.	1.5	8
673	Zebrafish: a big fish in the study of the gut microbiota. Current Opinion in Biotechnology, 2022, 73, 308-313.	3.3	17
675	Plastic nanoparticles cause mild inflammation, disrupt metabolic pathways, change the gut microbiota and affect reproduction in zebrafish: A full generation multi-omics study. Journal of Hazardous Materials, 2022, 424, 127705.	6.5	30
677	Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comparative Medicine, 2010, 60, 336-47.	0.4	152
679	Mucin-Type O-Glycans: Barrier, Microbiota, and Immune Anchors in Inflammatory Bowel Disease. Journal of Inflammation Research, 2021, Volume 14, 5939-5953.	1.6	15

#	Article	IF	CITATIONS
680	Clinical Parasitology and Parasitome Maps as Old and New Tools to Improve Clinical Microbiomics. Pathogens, 2021, 10, 1550.	1.2	4
681	Comparative chronic toxicities of PFOS and its novel alternatives on the immune system associated with intestinal microbiota dysbiosis in adult zebrafish. Journal of Hazardous Materials, 2022, 425, 127950.	6.5	41
682	Exposure to the gut microbiota from cigarette smoke-exposed mice exacerbates cigarette smoke extract-induced inflammation in zebrafish larvae. Current Research in Immunology, 2021, 2, 229-236.	1.2	0
683	Robust host source tracking building on the divergent and non-stochastic assembly of gut microbiomes in wild and farmed large yellow croaker. Microbiome, 2022, 10, 18.	4.9	9
684	DHA Suppresses Hepatic Lipid Accumulation via Cyclin D1 in Zebrafish. Frontiers in Nutrition, 2021, 8, 797510.	1.6	7
686	Host tp53 mutation induces gut dysbiosis eliciting inflammation through disturbed sialic acid metabolism. Microbiome, 2022, 10, 3.	4.9	9
687	Host genetics, phenotype and geography structure the microbiome of a foundational seaweed. Molecular Ecology, 2022, 31, 2189-2206.	2.0	13
689	Mechanisms of the Beneficial Effects of Probiotic Bacillus spp. in Aquaculture. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2022, , 453-486.	0.6	4
690	Starvation causes changes in the intestinal transcriptome and microbiome that are reversed upon refeeding. BMC Genomics, 2022, 23, 225.	1.2	10
691	Distribution and Difference of Gastrointestinal Flora in Sheep with Different Body Mass Index. Animals, 2022, 12, 880.	1.0	6
692	Porcine Models of the Intestinal Microbiota: The Translational Key to Understanding How Gut Commensals Contribute to Gastrointestinal Disease. Frontiers in Veterinary Science, 2022, 9, 834598.	0.9	17
693	Gut microbiota analysis of Blenniidae fishes including an algae-eating fish and clear boundary formation among isolated Vibrio strains. Scientific Reports, 2022, 12, 4642.	1.6	13
695	Intestinal bacteria flora changes in patients with Mycoplasma pneumoniae pneumonia with or without wheezing. Scientific Reports, 2022, 12, 5683.	1.6	5
696	Interspecies microbiome transplantation recapitulates microbial acquisition in mosquitoes. Microbiome, 2022, 10, 58.	4.9	19
697	The gut microbiome influences host diet selection behavior. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117537119.	3.3	44
714	Transcriptional Integration of Distinct Microbial and Nutritional Signals by the Small Intestinal Epithelium. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 465-493.	2.3	8
715	Gut microbiota communities of reciprocal hybrids from koi (<i>Cyprinus carpio</i>) and goldfish () Tj ETQq0 0 0 2022, , .) rgBT /Ove 1.4	erlock 10 Tf 5 1
717	Impacts of Polystyrene Nanoplastics on the Oxidative Stress, Immune Responses, and Gut Microbiota to Grass Carp (Ctenopharyngodon Idella). SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
718	The Function and the Affecting Factors of the Zebrafish Gut Microbiota. Frontiers in Microbiology, 2022, 13 , .	1.5	6
720	Does Exposure of Broodstock to Dietary Soybean Meal Affect Its Utilization in the Offspring of Zebrafish (Danio rerio)?. Animals, 2022, 12, 1475.	1.0	0
721	Bee pollen in zebrafish diet affects intestinal microbiota composition and skin cutaneous melanoma development. Scientific Reports, 2022, 12, .	1.6	5
722	Genome-Resolved Characterization of Structure and Potential Functions of the Zebrafish Stool Microbiome. Frontiers in Cellular and Infection Microbiology, $0,12,.$	1.8	3
723	Comprehensive understanding the impacts of dietary exposure to polyethylene microplastics on genetically improved farmed tilapia (Oreochromis niloticus): tracking from growth, microbiota, metabolism to gene expressions. Science of the Total Environment, 2022, 841, 156571.	3.9	15
724	Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world. Journal of Neuroinflammation, 2022, 19, .	3.1	8
725	Bacterial community in Sinonovacula constricta intestine and its relationship with culture environment. Applied Microbiology and Biotechnology, 2022, 106, 5211-5220.	1.7	2
726	Gut microbiota-modulating agents in alcoholic liver disease: Links between host metabolism and gut microbiota. Frontiers in Medicine, 0, 9, .	1.2	6
727	The Gut Bacterial Community Potentiates Clostridioides difficile Infection Severity. MBio, 2022, 13, .	1.8	18
729	The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs. Communications Biology, 2022, 5, .	2.0	12
730	Characterization of fungal microbial diversity in Tibetan sheep, Tibetan gazelle and Tibetan antelope in the Qiangtang region of Tibet. Mycoscience, 2022, 63, 156-164.	0.3	2
731	Tenets in Microbial Endocrinology: A New Vista in Teleost Reproduction. Frontiers in Physiology, 0, 13,	1.3	2
732	Editorial: Composition, functions and modulation of gut microbiota in maricultural animals. Frontiers in Marine Science, 0, 9, .	1.2	1
733	Approaches to discern if microbiome associations reflect causation in metabolic and immune disorders. Gut Microbes, 2022, 14, .	4.3	5
734	Impacts of polystyrene nanoplastics at the environmentally relevant and sub-lethal concentrations on the oxidative stress, immune responses, and gut microbiota to grass carp (Ctenopharyngodon) Tj ETQq0 0 0 r	rg B oTa∫Over	rlo ck 10 Tf 50
735	Nanoplastics, Gut Microbiota, and Neurodegeneration. , 2022, , 211-234.		0
736	Temperature modulation alters the gut and skin microbial profiles of chum salmon (Oncorhynchus) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 50
737	Gut and Gill-Associated Microbiota of the Flatfish European Plaice (Pleuronectes platessa): Diversity, Metabolome and Bioactivity against Human and Aquaculture Pathogens. Marine Drugs, 2022, 20, 573.	2.2	6

#	Article	IF	CITATIONS
738	Improvement of Fish Growth and Metabolism by Oligosaccharide Prebiotic Supplement. Aquaculture Nutrition, 2022, 2022, 1-13.	1.1	5
739	The Role of Histo-Blood Group Antigens and Microbiota in Human Norovirus Replication in Zebrafish Larvae. Microbiology Spectrum, 0, , .	1.2	1
740	The Influence of Host Specificity and Temperature on Bacterial Communities Associated with <i>Sargassum</i> (Phaeophyceae) Species. Journal of Phycology, 2022, 58, 815-828.	1.0	3
741	The microbiota promotes social behavior by modulating microglial remodeling of forebrain neurons. PLoS Biology, 2022, 20, e3001838.	2.6	16
742	Principles for quorum sensing-based exogeneous denitrifier enhancement of nitrogen removal in biofilm: a review. Critical Reviews in Environmental Science and Technology, 2023, 53, 1404-1429.	6.6	3
743	Assessing the effects of dietary live prey versus an artificial compound feed on growth performance, immune response, and intestinal microflora of largemouth bass Micropterus salmoides. Aquaculture International, 2023, 31, 1213-1230.	1.1	1
744	A Golgi oxygen sensor controls intestinal mucin glycosylation. EMBO Journal, 0, , .	3.5	0
746	Timing matters: age-dependent impacts of the social environment and host selection on the avian gut microbiota. Microbiome, 2022, 10, .	4.9	3
747	Characterization and Dynamics of the Gut Microbiota in Rice Fishes at Different Developmental Stages in Rice-Fish Coculture Systems. Microorganisms, 2022, 10, 2373.	1.6	3
748	The microbiome buffers tadpole hosts from heat stress: a hologenomic approach to understand host–microbe interactions under warming. Journal of Experimental Biology, 2023, 226, .	0.8	9
749	Dynamic Monitoring of Changes in Fecal Flora of Giant Pandas in Mice: Co-Occurrence Network Reconstruction. Microbiology Spectrum, 2023, 11 , .	1.2	1
750	Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Molecular Medicine, 2022, 28, .	1.9	11
751	The Interaction between Oxidative Stress Biomarkers and Gut Microbiota in the Antioxidant Effects of Extracts from Sonchus brachyotus DC. in Oxazolone-Induced Intestinal Oxidative Stress in Adult Zebrafish. Antioxidants, 2023, 12, 192.	2.2	5
752	Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biology, 2022, 20, .	1.7	2
753	Lactobacillus rhamnosus GG treatment potentiates ethanol-induced behavioral changes through modulation of intestinal epithelium in Danio rerio. International Microbiology, 2023, 26, 551-561.	1.1	2
754	Using the Gut Microbiome to Assess Stocking Efforts of the Endangered Pallid Sturgeon, Scaphirhynchus albus. Life, 2023, 13, 309.	1.1	0
755	Dietary Sodium Butyrate Improves Intestinal Health of Triploid Oncorhynchus mykiss Fed a Low Fish Meal Diet. Biology, 2023, 12, 145.	1.3	3
756	Evolving interplay between natural products and gut microbiota. European Journal of Pharmacology, 2023, 949, 175557.	1.7	3

#	ARTICLE	IF	CITATIONS
757	Metabolite interactions between host and microbiota during health and disease: Which feeds the other?. Biomedicine and Pharmacotherapy, 2023, 160, 114295.	2.5	19
758	Comparison of growth performance and rumen metabolic pathways in sheep and goats under the same feeding pattern. Frontiers in Veterinary Science, $0,10,10$	0.9	1
759	Assessing the Effects of Rotifer Feed Enrichments on Turbot (Scophthalmus maximus) Larvae and Post-Larvae Gut-Associated Bacterial Communities. Microorganisms, 2023, 11, 520.	1.6	1
760	Biofilm Reactor Performance and Shifts of Microbial Community during the Start-Up and Operation Phase of MBBRs at 8 °C: Effect of Exogenous Quorum Sensing Bacteria. ACS ES&T Water, 2023, 3, 804-816.	2.3	2
761	Secreted $\langle i \rangle$ Aeromonas $\langle i \rangle$ GlcNAc binding protein GbpA stimulates epithelial cell proliferation in the zebrafish intestine. Gut Microbes, 2023, 15, .	4.3	2
762	Effects of dissolved oxygen on intestinal bacterial community and immunity of Atlantic salmon Salmo salar. Journal of Oceanology and Limnology, 2023, 41, 364-375.	0.6	0
763	Human Genes Involved in the Interaction between Host and Gut Microbiome: Regulation and Pathogenic Mechanisms. Genes, 2023, 14, 857.	1.0	3
764	Multi-omics reveals Dengzhan Shengmai formulation ameliorates cognitive impairments in D-galactose-induced aging mouse model by regulating CXCL12/CXCR4 and gut microbiota. Frontiers in Pharmacology, 0, 14, .	1.6	2
770	Microbiome therapeutics., 2023,, 1-40.		0
786	Finfish Microbiota and Direct-Fed Microbial Applications in Aquaculture. , 2023, , 249-300.		O
787	Commensal Gastrointestinal Microbiota as a Complex Interactive Consortia., 2023,, 3-20.		0
792	Impact of Climate Change on the Gut Microbiome of Fish and Shellfish. , 2023, , 255-294.		O
793	Microbiome Applications for the Growth and Development of the Aquaculture/Biopharma Industry. , 2023, , 121-145.		0
808	Impact of evolution on lifestyle in microbiome. Advances in Genetics, 2024, , .	0.8	O