Histone H2B Monoubiquitination Functions Cooperativ Elongation by RNA Polymerase II

Cell 125, 703-717

DOI: 10.1016/j.cell.2006.04.029

Citation Report

#	Article	IF	CITATIONS
1	Nucleosomes Can Form a Polar Barrier to Transcript Elongation by RNA Polymerase II. Molecular Cell, 2006, 24, 469-479.	4.5	248
2	RSC Exploits Histone Acetylation to Abrogate the Nucleosomal Block to RNA Polymerase II Elongation. Molecular Cell, 2006, 24, 481-487.	4.5	171
3	"Cullin 4 makes its mark on chromatin". Cell Division, 2006, 1, 14.	1.1	16
4	Ubiquitin crosstalk connecting cellular processes. Cell Division, 2006, 1, 21.	1.1	56
5	Breaking barriers to transcription elongation. Nature Reviews Molecular Cell Biology, 2006, 7, 557-567.	16.1	434
6	Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15392-15397.	3.3	148
7	Histone H3 Lys 4 methylation: caught in a bind?. Genes and Development, 2006, 20, 2779-2786.	2.7	213
8	Thioredoxinâ€ASK1 complex levels regulate ROSâ€mediated p38 MAPK pathway activity in livers of aged and longâ€lived Snell dwarf mice. FASEB Journal, 2006, 20, 259-268.	0.2	180
9	de FACTo Nucleosome Dynamics*. Journal of Biological Chemistry, 2006, 281, 23297-23301.	1.6	210
10	A Gene-Specific Requirement for FACT during Transcription Is Related to the Chromatin Organization of the Transcribed Region. Molecular and Cellular Biology, 2006, 26, 8710-8721.	1.1	43
11	Human SSRP1 Has Spt16-dependent and -independent Roles in Gene Transcription*. Journal of Biological Chemistry, 2007, 282, 6936-6945.	1.6	58
12	Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation. Genes and Development, 2007, 21, 835-847.	2.7	140
13	HULC, a Histone H2B Ubiquitinating Complex, Modulates Heterochromatin Independent of Histone Methylation in Fission Yeast*. Journal of Biological Chemistry, 2007, 282, 14065-14072.	1.6	56
14	H2B ubiquitylation in transcriptional control: a FACT-finding mission. Genes and Development, 2007, 21, 737-743.	2.7	57
15	Negotiating the nucleosome: factors that allow RNA polymerase II to elongate through chromatinThis paper is one of a selection of papers published in this Special Issue, entitled 28th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2007, 85, 426-434.	0.9	9
16	Transcription-coupled deposition of histone modifications during MHC class II gene activation. Nucleic Acids Research, 2007, 35, 3431-3441.	6.5	38
17	The Spt6 SH2 domain binds Ser2-P RNAPII to direct lws1-dependent mRNA splicing and export. Genes and Development, 2007, 21, 160-174.	2.7	221
18	Impact of Core Histone Modifications on Transcriptional Regulation and Plant Growth. Critical Reviews in Plant Sciences, 2007, 26, 243-263.	2.7	32

#	ARTICLE	IF	CITATIONS
19	Evidence that the Localization of the Elongation Factor Spt16 Across Transcribed Genes Is Dependent Upon Histone H3 Integrity in Saccharomyces cerevisiae. Genetics, 2007, 177, 101-112.	1.2	46
20	A 368-Base-Pair cis-Acting HWP1 Promoter Region, HCR, of Candida albicans Confers Hypha-Specific Gene Regulation and Binds Architectural Transcription Factors Nhp6 and Gcf1p. Eukaryotic Cell, 2007, 6, 693-709.	3.4	31
21	Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes and Development, 2007, 21, 1422-1430.	2.7	177
22	H2B-K123 ubiquitination stimulates RNAPII elongation independent of H3-K4 methylation. Biochemical and Biophysical Research Communications, 2007, 359, 214-220.	1.0	38
23	The Role of Chromatin during Transcription. Cell, 2007, 128, 707-719.	13.5	3,062
24	RBP2 Belongs to a Family of Demethylases, Specific for Tri-and Dimethylated Lysine 4 on Histone 3. Cell, 2007, 128, 1063-1076.	13.5	485
25	Chromatin Modifications and Their Function. Cell, 2007, 128, 693-705.	13.5	9,258
26	Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4. Cell, 2007, 131, 58-69.	13.5	769
27	RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly. Cell, 2007, 131, 901-914.	13.5	906
28	Histone Crosstalk between H2B Monoubiquitination and H3 Methylation Mediated by COMPASS. Cell, 2007, 131, 1084-1096.	13.5	373
29	Transcriptional regulation by chromatin disassembly and reassembly. Current Opinion in Genetics and Development, 2007, 17, 88-93.	1.5	73
30	Activator-Mediated Recruitment of the MLL2 Methyltransferase Complex to the \hat{I}^2 -Globin Locus. Molecular Cell, 2007, 27, 573-584.	4.5	122
31	A Histone H2A Deubiquitinase Complex Coordinating Histone Acetylation and H1 Dissociation in Transcriptional Regulation. Molecular Cell, 2007, 27, 609-621.	4.5	268
32	Recognition of Trimethylated Histone H3 Lysine 4 Facilitates the Recruitment of Transcription Postinitiation Factors and Pre-mRNA Splicing. Molecular Cell, 2007, 28, 665-676.	4.5	478
33	Histone proteomics and the epigenetic regulation of nucleosome mobility. Expert Review of Proteomics, 2007, 4, 465-478.	1.3	60
34	Combined Action of PHD and Chromo Domains Directs the Rpd3S HDAC to Transcribed Chromatin. Science, 2007, 316, 1050-1054.	6.0	294
35	A Synthetic Kiss of Death: Expressed Protein Ligation of a Ubiquitin–Peptide Conjugate. ChemBioChem, 2007, 8, 1221-1223.	1,3	11
36	Auxiliary-Mediated Site-Specific Peptide Ubiquitylation. Angewandte Chemie - International Edition, 2007, 46, 2814-2818.	7.2	168

#	ARTICLE	IF	CITATIONS
38	Human RNA polymerase II-associated factor complex: dysregulation in cancer. Oncogene, 2007, 26, 7499-7507.	2.6	100
39	The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene, 2007, 26, 5329-5340.	2.6	189
40	Noncoding transcription controls downstream promoters to regulate T-cell receptor \hat{l}_{\pm} recombination. EMBO Journal, 2007, 26, 4380-4390.	3.5	114
41	Covalent modifications of histones during development and disease pathogenesis. Nature Structural and Molecular Biology, 2007, 14, 1008-1016.	3.6	574
42	The complex language of chromatin regulation during transcription. Nature, 2007, 447, 407-412.	13.7	2,432
43	Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature, 2007, 449, 933-937.	13.7	402
44	The ins and outs of ATP-dependent chromatin remodeling in budding yeast: Biophysical and proteomic perspectives. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 153-171.	2.4	38
45	Nucleolin: a multiFACeTed protein. Trends in Cell Biology, 2007, 17, 80-86.	3.6	285
46	Multi-tasking on chromatin with the SAGA coactivator complexes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 618, 135-148.	0.4	94
47	Histone H3K4 demethylases are essential in development and differentiationThis paper is one of a selection of papers published in this Special Issue, entitled 28th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2007, 85, 435-443.	0.9	75
48	The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cellular and Molecular Life Sciences, 2007, 64, 2590-2606.	2.4	236
49	Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cellular and Molecular Life Sciences, 2008, 65, 414-444.	2.4	177
50	The Paf1 complex promotes displacement of histones upon rapid induction of transcription by RNA polymerase II. BMC Molecular Biology, 2008, 9, 4.	3.0	22
51	Iron(III)-salen damages DNA and induces apoptosis in human cell via mitochondrial pathway. Journal of Inorganic Biochemistry, 2008, 102, 740-747.	1.5	74
52	A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nature Structural and Molecular Biology, 2008, 15, 881-888.	3.6	172
53	Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nature Cell Biology, 2008, 10, 483-488.	4.6	333
54	Structure and DNA Binding of the Human Rtf1 Plus3 Domain. Structure, 2008, 16, 149-159.	1.6	39
55	Mechanism of T7 RNAP Pausing and Termination at the T7 Concatemer Junction: A Local Change in Transcription Bubble Structure Drives a Large Change in Transcription Complex Architecture. Journal of Molecular Biology, 2008, 376, 541-553.	2.0	5

#	ARTICLE	IF	Citations
56	Insights into the Impact of Histone Acetylation and Methylation on Sir Protein Recruitment, Spreading, and Silencing in Saccharomyces cerevisiae. Journal of Molecular Biology, 2008, 381, 826-844.	2.0	30
57	Friedreich's Ataxia GAA·TTC Duplex and GAA·GAA·TTC Triplex Structures Exclude Nucleosome Assembly. Journal of Molecular Biology, 2008, 383, 292-300.	2.0	23
58	Histone H2A Monoubiquitination Represses Transcription by Inhibiting RNA Polymerase II Transcriptional Elongation. Molecular Cell, 2008, 29, 69-80.	4.5	335
59	Histone Ubiquitination: Triggering Gene Activity. Molecular Cell, 2008, 29, 653-663.	4.5	610
60	H2B Ubiquitylation Plays a Role in Nucleosome Dynamics during Transcription Elongation. Molecular Cell, 2008, 31, 57-66.	4.5	319
61	Getting the Message Out. Molecular Cell, 2008, 31, 4-6.	4.5	0
62	Just the FACTs: Histone H2B Ubiquitylation and Nucleosome Dynamics. Molecular Cell, 2008, 31, 2-4.	4.5	6
63	Ezh1 and Ezh2 Maintain Repressive Chromatin through Different Mechanisms. Molecular Cell, 2008, 32, 503-518.	4.5	748
64	Human CpG binding protein interacts with MLL1, MLL2 and hSet1 and regulates Hox gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 66-73.	0.9	56
65	Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nature Cell Biology, 2008, 10, 707-715.	4.6	188
66	FACT and the reorganized nucleosome. Molecular BioSystems, 2008, 4, 1085.	2.9	64
67	The lws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes and Development, 2008, 22, 3422-3434.	2.7	211
68	Histone H2B Monoubiquitination in the Chromatin of <i>FLOWERING LOCUS C</i> Regulates Flowering Time in <i>Arabidopsis </i> . Plant Cell, 2008, 20, 2586-2602.	3.1	234
69	High-Resolution Mapping of Epigenetic Modifications of the Rice Genome Uncovers Interplay between DNA Methylation, Histone Methylation, and Gene Expression. Plant Cell, 2008, 20, 259-276.	3.1	281
70	Human PAF complexes in endocrine tumors and pancreatic cancer. Expert Review of Endocrinology and Metabolism, 2008, 3, 557-565.	1.2	4
71	Parafibromin, a Component of the Human PAF Complex, Regulates Growth Factors and Is Required for Embryonic Development and Survival in Adult Mice. Molecular and Cellular Biology, 2008, 28, 2930-2940.	1.1	97
72	Physical and Functional Interactions of Monoubiquitylated Transactivators with the Proteasome. Journal of Biological Chemistry, 2008, 283, 21789-21798.	1.6	34
73	The parafibromin tumor suppressor protein inhibits cell proliferation by repression of the <i>c-myc</i> proto-oncogene. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17420-17425.	3.3	97

#	Article	IF	CITATIONS
74	Molecular Regulation of H3K4 Trimethylation by Wdr82, a Component of Human Set1/COMPASS. Molecular and Cellular Biology, 2008, 28, 7337-7344.	1.1	281
75	Histone H2B ubiquitination: the cancer connection. Genes and Development, 2008, 22, 2743-2749.	2.7	57
76	The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes and Development, 2008, 22, 2664-2676.	2.7	240
77	Regulation of Acetylation at the Major Histocompatibility Complex Class II Proximal Promoter by the 19S Proteasomal ATPase Sug1. Molecular and Cellular Biology, 2008, 28, 5837-5850.	1.1	40
78	Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes and Development, 2008, 22, 1115-1140.	2.7	581
80	Histone Modifications and Expression of Light-Regulated Genes in Arabidopsis Are Cooperatively Influenced by Changing Light Conditions Â. Plant Physiology, 2008, 147, 2070-2083.	2.3	80
81	An NF-Y-Dependent Switch of Positive and Negative Histone Methyl Marks on CCAAT Promoters. PLoS ONE, 2008, 3, e2066.	1.1	28
82	ACTIVATION OF GENE EXPRESSION BY TRANSCRIPTION FACTORS. , 2008, , 161-228.		2
83	Uncoupling of the Patterns of Chromatin Association of Different Transcription Elongation Factors by a Histone H3 Mutant in Saccharomyces cerevisiae. Eukaryotic Cell, 2009, 8, 257-260.	3.4	14
84	A tale of coupling, Sus1 function in transcription and mRNA export. RNA Biology, 2009, 6, 141-144.	1.5	29
85	Phosphorylation of the Transcription Elongation Factor Spt5 by Yeast Bur1 Kinase Stimulates Recruitment of the PAF Complex. Molecular and Cellular Biology, 2009, 29, 4852-4863.	1.1	155
86	Mutational Uncoupling of the Role of Sus1 in Nuclear Pore Complex Targeting of an mRNA Export Complex and Histone H2B Deubiquitination. Journal of Biological Chemistry, 2009, 284, 12049-12056.	1.6	21
87	Ubiquitination of histone H2B regulates chromatin dynamics by enhancing nucleosome stability. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16686-16691.	3.3	175
88	The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes and Development, 2009, 23, 439-451.	2.7	290
89	Phosphorylated Intrinsically Disordered Region of FACT Masks Its Nucleosomal DNA Binding Elements. Journal of Biological Chemistry, 2009, 284, 24610-24621.	1.6	50
90	Methylation of H3 K4 and K79 is not strictly dependent on H2B K123 ubiquitylation. Journal of Cell Biology, 2009, 184, 631-638.	2.3	19
91	The cap binding complex influences H2B ubiquitination by facilitating splicing of the <i>SUS1</i> pre-mRNA. Rna, 2009, 15, 1515-1527.	1.6	31
92	FACT and the Proteasome Promote Promoter Chromatin Disassembly and Transcriptional Initiation. Journal of Biological Chemistry, 2009, 284, 23461-23471.	1.6	63

#	Article	IF	CITATIONS
93	DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes and Development, 2009, 23, 2765-2777.	2.7	95
94	Chapter 10 Roles of Histone H3â€Lysine 4 Methyltransferase Complexes in NRâ€Mediated Gene Transcription. Progress in Molecular Biology and Translational Science, 2009, 87, 343-382.	0.9	32
95	Histone H2BK123 monoubiquitination is the critical determinant for H3K4 and H3K79 trimethylation by COMPASS and Dot1. Journal of Cell Biology, 2009, 186, 371-377.	2.3	118
96	The role of RAD6 in recombinational repair, checkpoints and meiosis via histone modification. DNA Repair, 2009, 8, 470-482.	1.3	61
97	New mutant versions of yeast FACT subunit Spt16 affect cell integrity. Molecular Genetics and Genomics, 2009, 282, 487-502.	1.0	7
98	Histone methylation and ubiquitination with their cross-talk and roles in gene expression and stability. Cellular and Molecular Life Sciences, 2009, 66, 1419-1433.	2.4	90
99	Repression of the floral transition via histone H2B monoubiquitination. Plant Journal, 2009, 57, 522-533.	2.8	152
100	Global analysis of mutual interaction surfaces of nucleosomes with comprehensive point mutants. Genes To Cells, 2009, 14, 1271-1330.	0.5	23
101	Parafibromin – functional insights. Journal of Internal Medicine, 2009, 266, 84-98.	2.7	78
102	FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO Journal, 2009, 28, 854-865.	3.5	106
102	FACT facilitates chromatin transcription by RNA polymerases I and III. EMBO Journal, 2009, 28, 854-865. Escaping fates with open states. Nature, 2009, 460, 802-803.	3.5	106
103	Escaping fates with open states. Nature, 2009, 460, 802-803.	13.7	9
103	Escaping fates with open states. Nature, 2009, 460, 802-803. Elementary factors. Nature, 2009, 460, 803-804. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature	13.7	9
103 104 105	Escaping fates with open states. Nature, 2009, 460, 802-803. Elementary factors. Nature, 2009, 460, 803-804. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature Structural and Molecular Biology, 2009, 16, 923-929. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nature	13.7 13.7 3.6	9 65 382
103 104 105	Escaping fates with open states. Nature, 2009, 460, 802-803. Elementary factors. Nature, 2009, 460, 803-804. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature Structural and Molecular Biology, 2009, 16, 923-929. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nature Structural and Molecular Biology, 2009, 16, 1272-1278. Dynamic association of MLL1, H3K4 trimethylation with chromatin and <i>Hox</i>	13.7 13.7 3.6	9 65 382
103 104 105 106	Escaping fates with open states. Nature, 2009, 460, 802-803. Elementary factors. Nature, 2009, 460, 803-804. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature Structural and Molecular Biology, 2009, 16, 923-929. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nature Structural and Molecular Biology, 2009, 16, 1272-1278. Dynamic association of MLL1, H3K4 trimethylation with chromatin and <i>Hox</i> ji> gene expression during the cell cycle. FEBS Journal, 2009, 276, 1629-1640.	13.7 13.7 3.6 3.6	9 65 382 162 54

#	Article	IF	CITATIONS
111	RAD6-Mediated Transcription-Coupled H2B Ubiquitylation Directly Stimulates H3K4 Methylation in Human Cells. Cell, 2009, 137, 459-471.	13.5	453
112	Control of Inducible Gene Expression by Signal-Dependent Transcriptional Elongation. Cell, 2009, 138, 129-145.	13.5	578
113	Protein modifications in transcription elongation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 26-36.	0.9	59
114	The ATTCT repeats of spinocerebellar ataxia type 10 display strong nucleosome assembly which is enhanced by repeat interruptions. Gene, 2009, 434, 29-34.	1.0	12
115	A transcriptionally permissive epigenetic landscape at the vasoactive intestinal peptide receptor-1 promoter suggests a euchromatin nuclear position in murine CD4 T cells. Regulatory Peptides, 2009, 158, 68-76.	1.9	4
116	SKIP Interacts with c-Myc and Menin to Promote HIV-1 Tat Transactivation. Molecular Cell, 2009, 36, 75-87.	4.5	65
117	HPC2 and ubinuclein define a novel family of histone chaperones conserved throughout eukaryotes. Molecular BioSystems, 2009, 5, 269.	2.9	51
119	Iron(III)-salen complexes with less DNA cleavage activity exhibit more efficient apoptosis in MCF7 cells. Organic and Biomolecular Chemistry, 2009, 7, 926.	1.5	68
120	Control of the Transition to Flowering by Chromatin Modifications. Molecular Plant, 2009, 2, 554-564.	3.9	141
121	Structural basis for H3K4 trimethylation by yeast Set1/COMPASS. Advances in Enzyme Regulation, 2010, 50, 104-110.	2.9	14
122	The impact of histone post-translational modifications on developmental gene regulation. Amino Acids, 2010, 39, 1087-1105.	1.2	24
123	Epigenetic chromatin modifications in the cortical spreading depression. Brain Research, 2010, 1329, 1-9.	1.1	26
124	The PAF Complex Synergizes with MLL Fusion Proteins at HOX Loci to Promote Leukemogenesis. Cancer Cell, 2010, 17, 609-621.	7.7	206
125	Targeting epigenetic enzymes for drug discovery. Current Opinion in Chemical Biology, 2010, 14, 505-510.	2.8	99
126	Menin and RNF20 recruitment is associated with dynamic histone modifications that regulate signal transducer and activator of transcription 1 (STAT1)-activated transcription of the interferon regulatory factor 1 gene (IRF1). Epigenetics and Chromatin, 2010, 3, 16.	1.8	27
127	The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. Plant Journal, 2010, 61, 686-697.	2.8	134
128	ANCORP: a high-resolution approach that generates distinct chromatin state models from multiple genome-wide datasets. Plant Journal, 2010, 63, 339-351.	2.8	20
129	Global analysis of functional relationships between histone point mutations and the effects of histone deacetylase inhibitors. Genes To Cells, 2010, 15, 553-594.	0.5	6

#	Article	IF	Citations
130	Chromatin dynamics mediated by histone modifiers and histone chaperones in postreplicative recombination. Genes To Cells, 2010, 15, 945-958.	0.5	12
131	Epigenetic regulation of development by histone lysine methylation. Heredity, 2010, 105, 24-37.	1.2	80
132	Histone Ubiquitination., 2010,, 2449-2460.		1
133	Long Noncoding RNAs, Chromatin, and Development. Scientific World Journal, The, 2010, 10, 90-102.	0.8	130
134	Histone H3K4 and K36 Methylation, Chd1 and Rpd3S Oppose the Functions of ⟨i⟩Saccharomyces cerevisiae⟨/i⟩ Spt4–Spt5 in Transcription. Genetics, 2010, 184, 321-334.	1.2	68
135	Mammalian SWI/SNF-A Subunit BAF250/ARID1 Is an E3 Ubiquitin Ligase That Targets Histone H2B. Molecular and Cellular Biology, 2010, 30, 1673-1688.	1.1	107
136	Novel <i>trans</i> -Tail Regulation of H2B Ubiquitylation and H3K4 Methylation by the N Terminus of Histone H2A. Molecular and Cellular Biology, 2010, 30, 3635-3645.	1.1	43
137	Histone3 lysine4 trimethylation regulated by the facilitates chromatin transcription complex is critical for DNA cleavage in class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22190-22195.	3.3	100
138	Leo1 Subunit of the Yeast Paf1 Complex Binds RNA and Contributes to Complex Recruitment*. Journal of Biological Chemistry, 2010, 285, 33671-33679.	1.6	38
139	Structure-Specific Recognition Protein 1 Facilitates Microtubule Growth and Bundling Required for Mitosis. Molecular and Cellular Biology, 2010, 30, 935-947.	1.1	23
140	A homogeneous method for investigation of methylation-dependent protein-protein interactions in epigenetics. Nucleic Acids Research, 2010, 38, e11-e11.	6.5	51
141	FACT Prevents the Accumulation of Free Histones Evicted from Transcribed Chromatin and a Subsequent Cell Cycle Delay in G1. PLoS Genetics, 2010, 6, e1000964.	1.5	59
142	Single nucleosome ChIPs identify an extensive switch of acetyl marks on cell cycle promoters. Cell Cycle, 2010, 9, 2149-2159.	1.3	22
143	P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms. RNA Biology, 2010, 7, 145-150.	1.5	51
144	BRCA1/BARD1 E3 Ubiquitin Ligase Can Modify Histones H2A and H2B in the Nucleosome Particle. Journal of Biomolecular Structure and Dynamics, 2010, 27, 399-405.	2.0	52
145	Chatting histone modifications in mammals. Briefings in Functional Genomics, 2010, 9, 429-443.	1.3	102
146	Chromatin in the Nuclear Landscape. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 11-22.	2.0	24
147	Transcript Elongation by RNA Polymerase II. Annual Review of Biochemistry, 2010, 79, 271-293.	5.0	160

#	Article	IF	CITATIONS
148	Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes and Development, 2010, 24, 2133-2145.	2.7	90
149	Highly Compacted Chromatin Formed In Vitro Reflects the Dynamics of Transcription Activation In Vivo. Molecular Cell, 2010, 38, 41-53.	4.5	85
150	The Chromatin Signaling Pathway: Diverse Mechanisms of Recruitment of Histone-Modifying Enzymes and Varied Biological Outcomes. Molecular Cell, 2010, 40, 689-701.	4.5	195
151	RNF8-Dependent Histone Modifications Regulate Nucleosome Removal during Spermatogenesis. Developmental Cell, 2010, 18, 371-384.	3.1	200
152	The Paf1 complex: Platform or player in RNA polymerase II transcription?. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 379-388.	0.9	215
153	Small molecule modulators of histone acetylation and methylation: A disease perspective. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 810-828.	0.9	45
154	Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Developmental Biology, 2010, 339, 240-249.	0.9	290
155	Synthesis of K48-linked diubiquitin using dual native chemical ligation at lysine. Chemical Communications, 2010, 46, 7199.	2.2	76
156	Whole Genome Expression in Peripheral-Blood Samples of Workers Professionally Exposed to Polycyclic Aromatic Hydrocarbons. Chemical Research in Toxicology, 2011, 24, 1636-1643.	1.7	11
158	Chromatin and the DNA damage response: The cancer connection. Molecular Oncology, 2011, 5, 349-367.	2.1	107
159	Role for Dpy-30 in ES Cell-Fate Specification by Regulation of H3K4 Methylation within Bivalent Domains. Cell, 2011, 144, 513-525.	13.5	282
160	Chromatin higher-order structures and gene regulation. Current Opinion in Genetics and Development, 2011, 21, 175-186.	1.5	373
161	The proteasome and its regulatory roles in gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 88-96.	0.9	34
162	Glucose metabolism induces mono-ubiquitination of histone H2B in mammalian cells. Biochemical and Biophysical Research Communications, 2011, 404, 428-433.	1.0	18
163	WAC, a Functional Partner of RNF20/40, Regulates Histone H2B Ubiquitination and Gene Transcription. Molecular Cell, 2011, 41, 384-397.	4.5	128
164	Regulation of Homologous Recombination by RNF20-Dependent H2B Ubiquitination. Molecular Cell, 2011, 41, 515-528.	4.5	306
165	Histone Chaperones: Modulators of Chromatin Marks. Molecular Cell, 2011, 41, 502-514.	4.5	183
166	RNF20 Inhibits TFIIS-Facilitated Transcriptional Elongation to Suppress Pro-oncogenic Gene Expression. Molecular Cell, 2011, 42, 477-488.	4.5	87

#	Article	IF	CITATIONS
167	L3MBTL2 Protein Acts in Concert with PcG Protein-Mediated Monoubiquitination of H2A to Establish a Repressive Chromatin Structure. Molecular Cell, 2011, 42, 438-450.	4.5	124
168	Enzymatic assays for assessing histone deubiquitylation activity. Methods, 2011, 54, 339-347.	1.9	1
171	Free Histones and the Cell Cycle. , 2011, , .		0
172	Identification of the Arabidopsis REDUCED DORMANCY 2 Gene Uncovers a Role for the Polymerase Associated Factor 1 Complex in Seed Dormancy. PLoS ONE, 2011, 6, e22241.	1.1	77
173	Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nature Chemical Biology, 2011, 7, 113-119.	3.9	392
174	DNA interstrand crosslink repair and cancer. Nature Reviews Cancer, 2011, 11, 467-480.	12.8	847
175	A member of the ETS family, EHF, and the ATPase RUVBL1 inhibit p53â€mediated apoptosis. EMBO Reports, 2011, 12, 682-689.	2.0	31
176	The role of deubiquitinating enzymes in chromatin regulation. FEBS Letters, 2011, 585, 2016-2023.	1.3	62
177	RNF20–RNF40: A ubiquitinâ€driven link between gene expression and the DNA damage response. FEBS Letters, 2011, 585, 2795-2802.	1.3	67
178	Epigenetic regulation by nuclear receptors. Epigenomics, 2011, 3, 59-72.	1.0	29
179	Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants. Frontiers in Biology, 2011, 6, 109-117.	0.7	3
180	H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast. BMC Genomics, 2011, 12, 627.	1.2	27
181	Histone Tails: Ideal Motifs for Probing Epigenetics through Chemical Biology Approaches. ChemBioChem, 2011, 12, 236-252.	1.3	33
182	Nonenzymatic Ubiquitylation. ChemBioChem, 2011, 12, 21-33.	1.3	24
183	Elongin B-Mediated Epigenetic Alteration of Viral Chromatin Correlates with Efficient Human Cytomegalovirus Gene Expression and Replication. MBio, 2011, 2, e00023-11.	1.8	18
184	The mechanism of nucleosome traversal by RNA polymerase II. RNA Biology, 2011, 8, 581-585.	1.5	14
185	The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair. Cell Cycle, 2011, 10, 3495-3504.	1.3	68
186	Epigenotype switching at the CD14 and CD209 genes during differentiation of human monocytes to dendritic cells. Epigenetics, 2011, 6, 45-51.	1.3	44

#	Article	IF	CITATIONS
187	Identification of a Role for Histone H2B Ubiquitylation in Noncoding RNA 3′-End Formation Through Mutational Analysis of Rtf1 in <i>Saccharomyces cerevisiae</i>). Genetics, 2011, 188, 273-289.	1.2	38
188	The Tightly Controlled Deubiquitination Activity of the Human SAGA Complex Differentially Modifies Distinct Gene Regulatory Elements. Molecular and Cellular Biology, 2011, 31, 3734-3744.	1.1	113
189	Rapid activation of the bivalent gene Sox21 requires displacement of multiple layers of geneâ€silencing machinery. FASEB Journal, 2011, 25, 206-218.	0.2	22
190	The Paf1 Complex Represses <i>SER3</i> Transcription in Saccharomyces cerevisiae by Facilitating Intergenic Transcription-Dependent Nucleosome Occupancy of the <i>SER3</i> Promoter. Eukaryotic Cell, 2011, 10, 1283-1294.	3.4	40
191	The Paf1 Complex Represses <i>ARG1</i> Transcription in Saccharomyces cerevisiae by Promoting Histone Modifications. Eukaryotic Cell, 2011, 10, 712-723.	3.4	13
192	Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes and Development, 2011, 25, 2254-2265.	2.7	171
193	Histone Chaperones Spt6 and FACT: Similarities and Differences in Modes of Action at Transcribed Genes. Genetics Research International, 2011, 2011, 1-12.	2.0	38
194	The Roles of the Paf1 Complex and Associated Histone Modifications in Regulating Gene Expression. Genetics Research International, 2011, 2011, 1-15.	2.0	29
195	Histone Variant H2A.Z and RNA Polymerase II Transcription Elongation. Molecular and Cellular Biology, 2011, 31, 1848-1860.	1.1	56
196	Histone H2B ubiquitylation and H3 lysine 4 methylation prevent ectopic silencing of euchromatic loci important for the cellular response to heat. Molecular Biology of the Cell, 2011, 22, 2741-2753.	0.9	13
197	Protein-arginine Methyltransferase 1 (PRMT1) Methylates Ash2L, a Shared Component of Mammalian Histone H3K4 Methyltransferase Complexes. Journal of Biological Chemistry, 2011, 286, 12234-12244.	1.6	25
198	RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta Biochimica Et Biophysica Sinica, 2011, 43, 339-345.	0.9	43
199	The flip side of the coin: Role of ZRF1 and histone H2A ubiquitination in transcriptional activation. Cell Cycle, 2011, 10, 745-750.	1.3	12
200	Mass Spectrometric Studies on Epigenetic Interaction Networks in Cell Differentiation. Journal of Biological Chemistry, 2011, 286, 13657-13668.	1.6	23
201	The Histone Chaperone FACT: Structural Insights and Mechanisms for Nucleosome Reorganization. Journal of Biological Chemistry, 2011, 286, 18369-18374.	1.6	181
202	Estrogen-Dependent Gene Transcription in Human Breast Cancer Cells Relies upon Proteasome-Dependent Monoubiquitination of Histone H2B. Cancer Research, 2011, 71, 5739-5753.	0.4	138
203	E2 Ligase dRad6 Regulates DMP53 Turnover in Drosophila. Journal of Biological Chemistry, 2011, 286, 9020-9030.	1.6	16
204	Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO Journal, 2012, 31, 3494-3505.	3.5	67

#	Article	IF	CITATIONS
205	Genome-Wide RNA Polymerase II Profiles and RNA Accumulation Reveal Kinetics of Transcription and Associated Epigenetic Changes During Diurnal Cycles. PLoS Biology, 2012, 10, e1001442.	2.6	178
206	Histone H2B Monoubiquitination Facilitates the Rapid Modulation of Gene Expression during Arabidopsis Photomorphogenesis. PLoS Genetics, 2012, 8, e1002825.	1.5	115
207	CDK9 and H2B Monoubiquitination: A Well-Choreographed Dance. PLoS Genetics, 2012, 8, e1002860.	1.5	6
208	A role for the RNA pol II–associated PAF complex in AID-induced immune diversification. Journal of Experimental Medicine, 2012, 209, 2099-2111.	4.2	65
209	A Positive Feedback Loop Links Opposing Functions of P-TEFb/Cdk9 and Histone H2B Ubiquitylation to Regulate Transcript Elongation in Fission Yeast. PLoS Genetics, 2012, 8, e1002822.	1.5	53
210	Small region of Rtf1 protein can substitute for complete Paf1 complex in facilitating global histone H2B ubiquitylation in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10837-10842.	3.3	52
211	WRAD: enabler of the SET1-family of H3K4 methyltransferases. Briefings in Functional Genomics, 2012, 11, 217-226.	1.3	114
212	Phosphorylation by cyclin-dependent kinase-9 controls ubiquitin-conjugating enzyme-2A function. Cell Cycle, 2012, 11, 2122-2127.	1.3	43
213	H2B monoubiquitylation is a $5\hat{a}\in^2$ -enriched active transcription mark and correlates with exon $\hat{a}\in^*$ intron structure in human cells. Genome Research, 2012, 22, 1026-1035.	2.4	60
214	Dynamic Loss of H2B Ubiquitylation without Corresponding Changes in H3K4 Trimethylation during Myogenic Differentiation. Molecular and Cellular Biology, 2012, 32, 1044-1055.	1.1	54
215	Plant Proteins Containing High Mobility Group Box DNA-Binding Domains Modulate Different Nuclear Processes Â. Plant Physiology, 2012, 159, 875-883.	2.3	50
216	RAD6 Regulates the Dosage of p53 by a Combination of Transcriptional and Posttranscriptional Mechanisms. Molecular and Cellular Biology, 2012, 32, 576-587.	1.1	31
217	The ubiquitin hydrolase USP22 contributes to 3'â€end processing of JAKâ€STATâ€inducible genes. FASEB Journal, 2012, 26, 842-854.	0.2	33
218	Cdc73 Subunit of Paf1 Complex Contains C-terminal Ras-like Domain That Promotes Association of Paf1 Complex with Chromatin. Journal of Biological Chemistry, 2012, 287, 10863-10875.	1.6	50
219	Term myometrium is characterized by increased activating epigenetic modifications at the progesterone receptor-A promoter. Molecular Human Reproduction, 2012, 18, 401-409.	1.3	29
220	The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Human Molecular Genetics, 2012, 21, 559-568.	1.4	85
221	Promoters active in interphase are bookmarked during mitosis by ubiquitination. Nucleic Acids Research, 2012, 40, 10187-10202.	6.5	8
222	Codependency of H2B monoubiquitination and nucleosome reassembly on Chd1. Genes and Development, 2012, 26, 914-919.	2.7	64

#	Article	IF	CITATIONS
223	Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes in Arabidopsis. Plant Journal, 2012, 72, 249-260.	2.8	76
224	Histone Monoubiquitylation Position Determines Specificity and Direction of Enzymatic Cross-talk with Histone Methyltransferases Dot1L and PRC2. Journal of Biological Chemistry, 2012, 287, 23718-23725.	1.6	32
225	Sus1/ENY2: a multitasking protein in eukaryotic gene expression. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 556-568.	2.3	14
226	Human Histone H3K79 Methyltransferase DOT1L Methyltransferase Binds Actively Transcribing RNA Polymerase II to Regulate Gene Expression. Journal of Biological Chemistry, 2012, 287, 39698-39709.	1.6	96
227	Stability of Nucleosomes Containing Homogenously Ubiquitylated H2A and H2B Prepared Using Semisynthesis. Journal of the American Chemical Society, 2012, 134, 19548-19551.	6.6	83
228	Ubiquitin and Proteasomes in Transcription. Annual Review of Biochemistry, 2012, 81, 177-201.	5.0	256
229	The Ubiquitin–Proteasome System of <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 192, 319-360.	1.2	360
230	Expression Noise and Acetylation Profiles Distinguish HDAC Functions. Molecular Cell, 2012, 47, 193-202.	4.5	112
231	The Histone H2B Monoubiquitination Regulatory Pathway Is Required for Differentiation of Multipotent Stem Cells. Molecular Cell, 2012, 46, 705-713.	4.5	115
232	RNF20 and USP44 Regulate Stem Cell Differentiation by Modulating H2B Monoubiquitylation. Molecular Cell, 2012, 46, 662-673.	4.5	187
233	The Histone Methyltransferase Wbp7 Controls Macrophage Function through GPI Glycolipid Anchor Synthesis. Immunity, 2012, 36, 572-585.	6.6	79
234	The role of FACT in making and breaking nucleosomes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 247-255.	0.9	178
235	Histone exchange and histone modifications during transcription and aging. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 332-342.	0.9	79
236	mRNA export and gene expression: The SAGA–TREX-2 connection. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 555-565.	0.9	71
237	Chromatin dynamics in DNA double-strand break repair. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 811-819.	0.9	56
238	Proteome analysis of a CTR9 deficient yeast strain suggests that Ctr9 has function(s) independent of the Paf1 complex. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 759-768.	1.1	5
239	The Histone Chaperone Spt6 Is Required for Activation-induced Cytidine Deaminase Target Determination through H3K4me3 Regulation. Journal of Biological Chemistry, 2012, 287, 32415-32429.	1.6	66
240	Chromatin regulation of flowering. Trends in Plant Science, 2012, 17, 556-562.	4.3	154

#	Article	IF	CITATIONS
241	Histone Ubiquitination and Deubiquitination in Transcription, DNA Damage Response, and Cancer. Frontiers in Oncology, 2012, 2, 26.	1.3	225
242	Histone ubiquitylation and chromatin dynamics. Frontiers in Bioscience - Landmark, 2012, 17, 1051.	3.0	42
243	The COMPASS Family of Histone H3K4 Methylases: Mechanisms of Regulation in Development and Disease Pathogenesis. Annual Review of Biochemistry, 2012, 81, 65-95.	5.0	896
244	Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin. EMBO Reports, 2012, 13, 619-630.	2.0	43
245	Epigenetic regulation of genomic integrity. Chromosoma, 2012, 121, 131-151.	1.0	43
246	Haploinsufficiency of ARID1B, a Member of the SWI/SNF-A Chromatin-Remodeling Complex, Is a Frequent Cause of Intellectual Disability. American Journal of Human Genetics, 2012, 90, 565-572.	2.6	225
247	The <i>SLC6A4</i> VNTR genotype determines transcription factor binding and epigenetic variation of this gene in response to cocaine <i>in vitro</i> . Addiction Biology, 2012, 17, 156-170.	1.4	26
248	Making sense of transcribing chromatin. Current Opinion in Cell Biology, 2012, 24, 296-304.	2.6	25
249	Bivalent histone modifications in early embryogenesis. Current Opinion in Cell Biology, 2012, 24, 374-386.	2.6	253
250	Roles of ubiquitin signaling in transcription regulation. Cellular Signalling, 2012, 24, 410-421.	1.7	87
251	The enigmatic role of H2Bub1 in cancer. FEBS Letters, 2012, 586, 1592-1601.	1.3	73
252	Histone H2B ubiquitin ligases RNF2O and RNF4O in androgen signaling and prostate cancer cell growth. Molecular and Cellular Endocrinology, 2012, 350, 87-98.	1.6	47
253	Overcoming the nucleosome barrier during transcript elongation. Trends in Genetics, 2012, 28, 285-294.	2.9	150
254	The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chemical Reviews, 2013, 113, 8491-8522.	23.0	101
255	Identifying cross-category relations in gene ontology and constructing genome-specific term association networks. BMC Bioinformatics, 2013, 14, S15.	1.2	14
256	Balancing chromatin remodeling and histone modifications in transcription. Trends in Genetics, 2013, 29, 621-629.	2.9	90
257	The ZFP-1(AF10)/DOT-1 Complex Opposes H2B Ubiquitination to Reduce Pol II Transcription. Molecular Cell, 2013, 50, 894-907.	4.5	53
258	Histone H2B ubiquitin ligase RNF20 is required for <i>MLL</i> -rearranged leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3901-3906.	3.3	103

#	Article	IF	CITATIONS
259	Transcription-associated histone modifications and cryptic transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 84-97.	0.9	160
260	Histone chaperone FACT regulates homologous recombination by chromatin remodeling through interaction with RNF20. Journal of Cell Science, 2014, 127, 763-72.	1.2	48
261	Molecular mechanisms of transcription through a nucleosome by RNA polymerase II. Molecular Biology, 2013, 47, 655-667.	0.4	4
262	Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis. Cancer and Metastasis Reviews, 2013, 32, 363-376.	2.7	50
263	Regulation of transcription by the MLL2 complex and MLL complex–associated AKAP95. Nature Structural and Molecular Biology, 2013, 20, 1156-1163.	3.6	51
264	The RNA Polymerase II Carboxy-Terminal Domain (CTD) Code. Chemical Reviews, 2013, 113, 8456-8490.	23.0	368
265	Control of Transcriptional Elongation. Annual Review of Genetics, 2013, 47, 483-508.	3.2	359
266	The Epigenetic Modifier Ubiquitin-specific Protease 22 (USP22) Regulates Embryonic Stem Cell Differentiation via Transcriptional Repression of Sex-determining Region Y-box 2 (SOX2). Journal of Biological Chemistry, 2013, 288, 24234-24246.	1.6	74
267	Histone chaperones in nucleosome assembly and human disease. Nature Structural and Molecular Biology, 2013, 20, 14-22.	3.6	323
268	The Oncogenic Polycomb Histone Methyltransferase EZH2Methylates Lysine 120 on Histone H2B and Competes Ubiquitination. Neoplasia, 2013, 15, 1251-IN10.	2.3	36
269	The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 116-126.	0.9	120
270	Dynamic Integration of Splicing within Gene Regulatory Pathways. Cell, 2013, 152, 1252-1269.	13.5	371
271	Mechanism of transcription through a nucleosome by RNA polymerase II. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 76-83.	0.9	121
272	Structural basis of histone H2A–H2B recognition by the essential chaperone FACT. Nature, 2013, 499, 111-114.	13.7	159
273	Epigenetic Control of Cytokine Gene Expression. Advances in Immunology, 2013, 118, 37-128.	1.1	60
275	Set2 mediated H3 lysine 36 methylation: regulation of transcription elongation and implications in organismal development. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 685-700.	5.9	59
276	A PHD in histone language. Plant Signaling and Behavior, 2013, 8, e24381.	1.2	21
277	Plant E3 Ligases: Flexible Enzymes in a Sessile World. Molecular Plant, 2013, 6, 1388-1404.	3.9	149

#	Article	IF	CITATIONS
278	The PAF Complex and Prf1/Rtf1 Delineate Distinct Cdk9-Dependent Pathways Regulating Transcription Elongation in Fission Yeast. PLoS Genetics, 2013, 9, e1004029.	1.5	45
279	The Recruitment of the <i>Saccharomyces cerevisiae</i> Paf1 Complex to Active Genes Requires a Domain of Rtf1 That Directly Interacts with the Spt4-Spt5 Complex. Molecular and Cellular Biology, 2013, 33, 3259-3273.	1.1	53
280	Ubiquitination Regulates the Morphogenesis and Function of Sperm Organelles. Cells, 2013, 2, 732-750.	1.8	35
281	Functional Analysis of Bre1p, an E3 Ligase for Histone H2B Ubiquitylation, in Regulation of RNA Polymerase II Association with Active Genes and Transcription in Vivo. Journal of Biological Chemistry, 2013, 288, 9619-9633.	1.6	18
282	Catch me if you can. Nucleus, 2013, 4, 443-449.	0.6	35
283	Transcriptional stimulatory and repressive functions of histone H2B ubiquitin ligase. Transcription, 2013, 4, 221-226.	1.7	12
284	Physical and Genetic Associations of the Irc20 Ubiquitin Ligase with Cdc48 and SUMO. PLoS ONE, 2013, 8, e76424.	1.1	7
285	Unveiling novel interactions of histone chaperone Asf1 linked to TREX-2 factors Sus1 and Thp1. Nucleus, 2014, 5, 247-259.	0.6	10
286	UV damage-induced RNA polymerase II stalling stimulates H2B deubiquitylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12811-12816.	3.3	38
287	Dynamic regulation and function of histone monoubiquitination in plants. Frontiers in Plant Science, 2014, 5, 83.	1.7	64
288	H2B Mono-ubiquitylation Facilitates Fork Stalling and Recovery during Replication Stress by Coordinating Rad53 Activation and Chromatin Assembly. PLoS Genetics, 2014, 10, e1004667.	1.5	26
289	Transcribing through the nucleosome. Trends in Biochemical Sciences, 2014, 39, 577-586.	3.7	141
290	Subnucleosomal Structures and Nucleosome Asymmetry across a Genome. Cell, 2014, 159, 1377-1388.	13.5	193
291	Roles of common subunits within distinct multisubunit complexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 699-704.	3.3	11
292	Histone H2B Monoubiquitination Is Involved in Regulating the Dynamics of Microtubules during the Defense Response to <i>Verticillium dahliae</i> Toxins in Arabidopsis Â. Plant Physiology, 2014, 164, 1857-1865.	2.3	48
293	A Highly Conserved Region within H2B Is Important for FACT To Act on Nucleosomes. Molecular and Cellular Biology, 2014, 34, 303-314.	1.1	32
294	Chromatin modification by the RNA Polymerase II elongation complex. Transcription, 2014, 5, e988093.	1.7	43
295	AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Research, 2014, 42, 5594-5604.	6.5	72

#	Article	IF	CITATIONS
296	Regulation of stem cell function by protein ubiquitylation. EMBO Reports, 2014, 15, 365-382.	2.0	57
297	The impact of chromatin dynamics on plant light responses and circadian clock function. Journal of Experimental Botany, 2014, 65, 2895-2913.	2.4	58
298	Identification of RNF114 as a novel positive regulatory protein for T cell activation. Immunobiology, 2014, 219, 432-439.	0.8	12
299	Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nature Structural and Molecular Biology, 2014, 21, 236-243.	3.6	75
300	Regulation of histone modifying enzymes by the ubiquitin–proteasome system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 694-702.	1.9	42
301	Context dependency of Set1/COMPASS-mediated histone H3 Lys4 trimethylation. Genes and Development, 2014, 28, 115-120.	2.7	46
302	Message control in developmental transitions; deciphering chromatin's role using zebrafish genomics. Briefings in Functional Genomics, 2014, 13, 106-120.	1.3	0
303	The U4/U6 Recycling Factor SART3 Has Histone Chaperone Activity and Associates with USP15 to Regulate H2B Deubiquitination. Journal of Biological Chemistry, 2014, 289, 8916-8930.	1.6	90
304	Catalysis-dependent stabilization of Bre1 fine-tunes histone H2B ubiquitylation to regulate gene transcription. Genes and Development, 2014, 28, 1647-1652.	2.7	18
305	Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Research, 2014, 24, 1572-1583.	2.4	74
306	Writing and reading H2B monoubiquitylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 694-701.	0.9	115
307	Histone H2B ubiquitination: signaling not scrapping. Drug Discovery Today: Technologies, 2014, 12, e19-e27.	4.0	22
308	Global mapping of the regulatory interactions of histone residues. FEBS Letters, 2015, 589, 4061-4070.	1.3	8
309	Structure of the yeast Bre1 <scp>RING</scp> domain. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1185-1190.	1.5	21
310	A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair. Cell Discovery, 2015, 1, 15034.	3.1	30
311	MED 23: a new Mediator of H2B monoubiquitylation. EMBO Journal, 2015, 34, 2863-2864.	3.5	1
312	The <scp>M</scp> ediator subunit <scp>MED</scp> 23 couples H2B monoâ€ubiquitination to transcriptional control and cell fate determination. EMBO Journal, 2015, 34, 2885-2902.	3.5	29
313	Role of a non-canonical surface of Rad6 in ubiquitin conjugating activity. Nucleic Acids Research, 2015, 43, 9039-9050.	6.5	31

#	Article	IF	CITATIONS
315	Replication Stress: A Lifetime of Epigenetic Change. Genes, 2015, 6, 858-877.	1.0	28
316	RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair. Genes, 2015, 6, 592-606.	1.0	14
317	The Nucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cascade and Transcription Elongation in Saccharomyces cerevisiae. PLoS Genetics, 2015, 11, e1005420.	1.5	29
318	Involvement of histone H2B monoubiquitination in the regulation of mouse preimplantation development. Journal of Reproduction and Development, 2015, 61, 179-184.	0.5	12
319	DUBs, the regulation of cell identity and disease. Biochemical Journal, 2015, 465, 1-26.	1.7	81
320	Proteasome regulates transcription-favoring histone methylation, acetylation and ubiquitination in long-term synaptic plasticity. Neuroscience Letters, 2015, 591, 59-64.	1.0	16
321	Structure and function of histone chaperone FACT. Molecular Biology, 2015, 49, 796-809.	0.4	16
322	Gonadotropin gene transcription is activated by menin-mediated effects on the chromatin. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 328-341.	0.9	15
323	The Ino80 complex prevents invasion of euchromatin into silent chromatin. Genes and Development, 2015, 29, 350-355.	2.7	38
324	Histone exchange, chromatin structure and the regulation of transcription. Nature Reviews Molecular Cell Biology, 2015, 16, 178-189.	16.1	776
326	In Vitro and In Vivo Assays for Studying Histone Ubiquitination and Deubiquitination. Methods in Molecular Biology, 2015, 1288, 213-230.	0.4	1
327	Histone H2A/H2B chaperones: from molecules to chromatinâ€based functions in plant growth and development. Plant Journal, 2015, 83, 78-95.	2.8	83
328	A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Research, 2015, 25, 872-883.	2.4	51
329	Molecular Mechanisms of AID Function. , 2015, , 305-344.		1
330	Histone H2B monoubiquitination: roles to play in human malignancy. Endocrine-Related Cancer, 2015, 22, T19-T33.	1.6	108
331	<i>In Vivo</i> Mapping of FACT–Histone Interactions Identifies a Role of Pob3 C-terminus in H2A–H2B Binding. ACS Chemical Biology, 2015, 10, 2753-2763.	1.6	25
332	PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell, 2015, 162, 1003-1015.	13.5	196
333	Histone ubiquitylation and its roles in transcription and DNA damage response. DNA Repair, 2015, 36, 36-42.	1.3	60

#	Article	IF	CITATIONS
334	Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex. Molecular and Cellular Biology, 2015, 35, 3459-3470.	1.1	39
335	Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation. Nature Communications, 2015, 6, 7978.	5.8	51
336	Post-Translational Modifications of Histones That Influence Nucleosome Dynamics. Chemical Reviews, 2015, 115, 2274-2295.	23.0	384
337	Crosstalk Between Histone Modifications Integrates Various Signaling Inputs to Fine-Tune Transcriptional Output., 2016, , 217-239.		1
338	Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair. Frontiers in Genetics, 2016, 7, 122.	1.1	35
339	Synthetic Nucleosomes Reveal that GlcNAcylation Modulates Direct Interaction with the FACT Complex. Angewandte Chemie, 2016, 128, 9064-9068.	1.6	4
340	Synthetic Nucleosomes Reveal that GlcNAcylation Modulates Direct Interaction with the FACT Complex. Angewandte Chemie - International Edition, 2016, 55, 8918-8922.	7.2	32
341	Chemical Synthesis of Phosphorylated Histone H2A at Tyr57 Reveals Insight into the Inhibition Mode of the SAGA Deubiquitinating Module. Angewandte Chemie - International Edition, 2016, 55, 4972-4976.	7.2	63
342	Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing. Journal of Molecular Biology, 2016, 428, 2623-2635.	2.0	245
343	Noncoding Transcription Is a Driving Force for Nucleosome Instability in <i>spt16</i> Mutant Cells. Molecular and Cellular Biology, 2016, 36, 1856-1867.	1.1	39
344	Quantitative Analysis of Dynamic Protein Interactions during Transcription Reveals a Role for Casein Kinase II in Polymerase-associated Factor (PAF) Complex Phosphorylation and Regulation of Histone H2B Monoubiquitylation. Journal of Biological Chemistry, 2016, 291, 13410-13420.	1.6	15
345	Monoubiquitination of Histone H2B Blocks Eviction of Histone Variant H2A.Z from Inducible Enhancers. Molecular Cell, 2016, 64, 334-346.	4.5	42
346	Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast. Biochemical and Biophysical Research Communications, 2016, 476, 515-521.	1.0	13
347	Epigenetic memory: A macrophage perspective. Seminars in Immunology, 2016, 28, 359-367.	2.7	49
348	DOT1L Activity Promotes Proliferation and Protects Cortical Neural Stem Cells from Activation of ATF4-DDIT3-Mediated ER Stress In Vitro. Stem Cells, 2016, 34, 233-245.	1.4	40
349	USP44 Is an Integral Component of N-CoR that Contributes to Gene Repression by Deubiquitinating Histone H2B. Cell Reports, 2016, 17, 2382-2393.	2.9	41
350	The structural basis of modified nucleosome recognition by 53BP1. Nature, 2016, 536, 100-103.	13.7	201
351	H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation. Nucleic Acids Research, 2016, 44, gkw652.	6.5	59

#	Article	IF	CITATIONS
352	EPOP Interacts with Elongin BC and USP7 to Modulate the Chromatin Landscape. Molecular Cell, 2016, 64, 659-672.	4.5	91
353	Light behind the curtain: photoregulation of nuclear architecture and chromatin dynamics in plants. New Phytologist, 2016, 212, 908-919.	3.5	44
354	Ubiquitin ligase RNF20/40 facilitates spindle assembly and promotes breast carcinogenesis through stabilizing motor protein Eg5. Nature Communications, 2016, 7, 12648.	5.8	50
355	The RING finger domain E3 ubiquitin ligases BRCA1 and the RNF20/RNF40 complex in global loss of the chromatin mark histone H2B monoubiquitination (H2Bub1) in cell line models and primary high-grade serous ovarian cancer. Human Molecular Genetics, 2016, 25, ddw362.	1.4	26
356	On the way of revealing coactivator complexes cross-talk during transcriptional activation. Cell and Bioscience, 2016, 6, 15.	2.1	36
357	Diversity and Divergence of Dinoflagellate Histone Proteins. G3: Genes, Genomes, Genetics, 2016, 6, 397-422.	0.8	38
358	Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Research, 2016, 44, 1133-1150.	6.5	46
359	Structural and biochemical analyses of monoubiquitinated human histones H2B and H4. Open Biology, 2016, 6, 160090.	1.5	35
360	RNF20 Links Histone H2B Ubiquitylation with Inflammation and Inflammation-Associated Cancer. Cell Reports, 2016, 14, 1462-1476.	2.9	99
361	Conservation and divergence of the histone code in nucleomorphs. Biology Direct, 2016, 11, 18.	1.9	12
362	Dynamic and Combinatorial Landscape of Histone Modifications during the Intraerythrocytic Developmental Cycle of the Malaria Parasite. Journal of Proteome Research, 2016, 15, 2787-2801.	1.8	49
363	Histone Chaperone SSRP1 is Essential for Wnt Signaling Pathway Activity During Osteoblast Differentiation. Stem Cells, 2016, 34, 1369-1376.	1.4	32
364	Chemical Synthesis of Phosphorylated Histone H2A at Tyr57 Reveals Insight into the Inhibition Mode of the SAGA Deubiquitinating Module. Angewandte Chemie, 2016, 128, 5056-5060.	1.6	16
365	Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science, 2016, 351, 725-728.	6.0	206
366	mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science, 2016, 351, 728-733.	6.0	585
367	Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation. Molecular Cell, 2016, 61, 54-67.	4.5	86
368	Loss of H2Bub1 Expression is Linked to Poor Prognosis in Nodal Negative Colorectal Cancers. Pathology and Oncology Research, 2016, 22, 95-102.	0.9	19
369	PHF13: A new player involved in RNA polymerase II transcriptional regulation and co-transcriptional splicing. Transcription, 2017, 8, 106-112.	1.7	3

#	Article	IF	Citations
370	Chromatin potentiates transcription. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1536-1541.	3.3	52
371	RNF40 regulates gene expression in an epigenetic context-dependent manner. Genome Biology, 2017, 18, 32.	3.8	41
372	Recent Perspectives on the Roles of Histone Chaperones in Transcription Regulation. Current Molecular Biology Reports, 2017, 3, 1-10.	0.8	4
373	Chromatin-remodeling for transcription. Quarterly Reviews of Biophysics, 2017, 50, e5.	2.4	52
374	Loss of H2B monoubiquitination is associated with poorâ€differentiation and enhanced malignancy of lung adenocarcinoma. International Journal of Cancer, 2017, 141, 766-777.	2.3	27
375	Fbxl19 recruitment to CpG islands is required for Rnf20-mediated H2B mono-ubiquitination. Nucleic Acids Research, 2017, 45, 7151-7166.	6.5	10
376	H2B ubiquitylation and the histone chaperone Asf1 cooperatively mediate the formation and maintenance of heterochromatin silencing. Nucleic Acids Research, 2017, 45, 8225-8238.	6.5	9
377	H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis. Nucleus, 2017, 8, 461-468.	0.6	22
378	let-7b and let-7c microRNAs promote histone H2B ubiquitylation and inhibit cell migration by targeting multiple components of the H2B deubiquitylation machinery. Oncogene, 2017, 36, 5819-5828.	2.6	28
379	Histone H2B monoubiquitination regulates salt stressâ€induced microtubule depolymerization in ⟨i>Arabidopsis⟨ i>. Plant, Cell and Environment, 2017, 40, 1512-1530.	2.8	58
380	H2B monoubiquitination: t'ub or not t'ub for inducible enhancers. Transcription, 2017, 8, 126-132.	1.7	2
381	The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors. Plant Cell, 2017, 29, 854-870.	3.1	118
382	Is H3K4me3 instructive for transcription activation?. BioEssays, 2017, 39, 1-12.	1.2	373
383	Histone chaperone networks shaping chromatin function. Nature Reviews Molecular Cell Biology, 2017, 18, 141-158.	16.1	401
384	Dissecting Nucleosome Function with a Comprehensive Histone H2A and H2B Mutant Library. G3: Genes, Genomes, Genetics, 2017, 7, 3857-3866.	0.8	7
385	UBE3A-mediated regulation of imprinted genes and epigenome-wide marks in human neurons. Epigenetics, 2017, 12, 982-990.	1.3	18
386	RAD6 promotes DNA repair and stem cell signaling in ovarian cancer and is a promising therapeutic target to prevent and treat acquired chemoresistance. Oncogene, 2017, 36, 6680-6690.	2.6	53
387	Ubiquitin Specific Peptidase 22 Regulates Histone H2B Mono-Ubiquitination and Exhibits Both Oncogenic and Tumor Suppressor Roles in Cancer. Cancers, 2017, 9, 167.	1.7	43

#	Article	IF	CITATIONS
388	MYC Modulation around the CDK2/p27/SKP2 Axis. Genes, 2017, 8, 174.	1.0	58
389	Mechanisms of Histone Modifications. , 2017, , 25-46.		3
390	E3 ubiquitin ligase Bre1 couples sister chromatid cohesion establishment to DNA replication in Saccharomyces cerevisiae. ELife, 2017, 6, .	2.8	21
391	The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathogens, 2017, 13, e1006587.	2.1	56
393	The interplay of histone H2B ubiquitination with budding and fission yeast heterochromatin. Current Genetics, 2018, 64, 799-806.	0.8	9
394	Bre1 mediates the ubiquitination of histone H2B by regulating Lge1 stability. FEBS Letters, 2018, 592, 1565-1574.	1.3	14
395	One signal stimulates different transcriptional activation mechanisms. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 178-189.	0.9	16
396	Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants. Nature Communications, 2018, 9, 1394.	5.8	59
397	The ubiquitin-specific protease USP36 is a conserved histone H2B deubiquitinase. Biochemical and Biophysical Research Communications, 2018, 495, 2363-2368.	1.0	24
398	Replication-Coupled Nucleosome Assembly in the Passage of Epigenetic Information and Cell Identity. Trends in Biochemical Sciences, 2018, 43, 136-148.	3.7	84
399	Recruitment and allosteric stimulation of a histone-deubiquitinating enzyme during heterochromatin assembly. Journal of Biological Chemistry, 2018, 293, 2498-2509.	1.6	9
400	FACT complex is required for DNA demethylation at heterochromatin during reproduction in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4720-E4729.	3.3	54
401	Acetylation-Dependent Recruitment of the FACT Complex and Its Role in Regulating Pol II Occupancy Genome-Wide in <i>Saccharomyces cerevisiae</i>). Genetics, 2018, 209, 743-756.	1.2	39
402	Regulation of <scp>RNA</scp> polymerase <scp>II</scp> processivity by Spt5 is restricted to a narrow window during elongation. EMBO Journal, 2018, 37, .	3.5	64
403	ZSCAN4 is negatively regulated by the ubiquitin-proteasome system and the E3 ubiquitin ligase RNF20. Biochemical and Biophysical Research Communications, 2018, 498, 72-78.	1.0	10
404	The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia, 2018, 32, 323-331.	3.3	50
405	RNF20 controls astrocytic differentiation through epigenetic regulation of STAT3 in the developing brain. Cell Death and Differentiation, 2018, 25, 294-306.	5.0	15
406	The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia. Oncogene, 2018, 37, 450-460.	2.6	28

#	Article	IF	CITATIONS
407	Function of RAD6B and RNF8 in spermatogenesis. Cell Cycle, 2018, 17, 162-173.	1.3	19
408	mRNA Processing Factor CstF-50 and Ubiquitin Escort Factor p97 Are BRCA1/BARD1 Cofactors Involved in Chromatin Remodeling during the DNA Damage Response. Molecular and Cellular Biology, 2018, 38, .	1.1	8
409	Targeting bromodomain and extraterminal proteins in breast cancer. Pharmacological Research, 2018, 129, 156-176.	3.1	38
410	Transcription-associated histone pruning demarcates macroH2A chromatin domains. Nature Structural and Molecular Biology, 2018, 25, 958-970.	3.6	36
411	Waves of chromatin modifications in mouse dendritic cells in response to LPS stimulation. Genome Biology, 2018, 19, 138.	3.8	19
412	A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Reports, 2018, 19, .	2.0	11
413	Effects of DNA Superhelical Stress on the Stability of H2B-Ubiquitylated Nucleosomes. Journal of Molecular Biology, 2018, 430, 5002-5014.	2.0	7
414	Dissection of structural dynamics of chromatin fibers by single-molecule magnetic tweezers. Biophysics Reports, 2018, 4, 222-232.	0.2	5
415	Bre1-dependent H2B ubiquitination promotes homologous recombination by stimulating histone eviction at DNA breaks. Nucleic Acids Research, 2018, 46, 11326-11339.	6.5	37
416	Stable Histone Methylation Changes at Proteoglycan Network Genes Following Ethanol Exposure. Frontiers in Genetics, 2018, 9, 346.	1.1	14
417	Spinal RNF20-Mediated Histone H2B Monoubiquitylation Regulates mGluR5 Transcription for Neuropathic Allodynia. Journal of Neuroscience, 2018, 38, 9160-9174.	1.7	13
418	Effects of histone H2B ubiquitylation on the nucleosome structure and dynamics. Nucleic Acids Research, 2018, 46, 7631-7642.	6.5	34
419	Structure and function of the histone chaperone FACT – Resolving FACTual issues. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 892-904.	0.9	84
420	Functions of FACT in Breaking the Nucleosome and Maintaining Its Integrity at the Single-Nucleosome Level. Molecular Cell, 2018, 71, 284-293.e4.	4.5	87
421	Born to run: control of transcription elongation by RNA polymerase II. Nature Reviews Molecular Cell Biology, 2018, 19, 464-478.	16.1	304
422	Structural alteration of DNA induced by viral protein R of HIV-1 triggers the DNA damage response. Retrovirology, 2018, 15, 8.	0.9	15
423	Principles of Ubiquitin-Dependent Signaling. Annual Review of Cell and Developmental Biology, 2018, 34, 137-162.	4.0	225
424	The Histone Deacetylase SIRT6 Restrains Transcription Elongation via Promoter-Proximal Pausing. Molecular Cell, 2019, 75, 683-699.e7.	4.5	50

#	ARTICLE	IF	CITATIONS
425	USP11 acts as a histone deubiquitinase functioning in chromatin reorganization during DNA repair. Nucleic Acids Research, 2019, 47, 9721-9740.	6.5	50
426	Ubiquitin-specific protease USP36 knockdown impairs Parkin-dependent mitophagy via downregulation of Beclin-1-associated autophagy-related ATG14L. Experimental Cell Research, 2019, 384, 111641.	1.2	26
427	Writing Histone Monoubiquitination in Human Malignancyâ€"The Role of RING Finger E3 Ubiquitin Ligases. Genes, 2019, 10, 67.	1.0	35
428	E3 Ubiquitin Ligases RNF20 and RNF40 Are Required for Double-Stranded Break (DSB) Repair: Evidence for Monoubiquitination of Histone H2B Lysine 120 as a Novel Axis of DSB Signaling and Repair. Molecular and Cellular Biology, 2019, 39, .	1.1	45
429	The nucleosome acidic patch directly interacts with subunits of the Paf1 and FACT complexes and controls chromatin architecture in vivo. Nucleic Acids Research, 2019, 47, 8410-8423.	6.5	27
430	Paf1C regulates RNA polymerase II progression by modulating elongation rate. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14583-14592.	3.3	83
431	LIM-domain transcription complexes interact with ring-finger ubiquitin ligases and thereby impact islet \hat{l}^2 -cell function. Journal of Biological Chemistry, 2019, 294, 11728-11740.	1.6	12
432	The PAF1c Subunit CDC73 Is Required for Mouse Hematopoietic Stem Cell Maintenance but Displays Leukemia-Specific Gene Regulation. Stem Cell Reports, 2019, 12, 1069-1083.	2.3	14
433	Post-translational regulation of ubiquitin signaling. Journal of Cell Biology, 2019, 218, 1776-1786.	2.3	186
434	Mammalian SWI/SNF collaborates with a polycomb-associated protein to regulate male germ line transcription in the mouse. Development (Cambridge), 2019, 146, .	1.2	29
435	Interactive roles of chromatin regulation and circadian clock function in plants. Genome Biology, 2019, 20, 62.	3.8	26
436	Post-translational modifications and chromatin dynamics. Essays in Biochemistry, 2019, 63, 89-96.	2.1	64
437	Epigenetic regulation of progesterone receptors and the onset of labour. Reproduction, Fertility and Development, 2019, 31, 1035.	0.1	7
438	Developing Targeted Therapies That Exploit Aberrant Histone Ubiquitination in Cancer. Cells, 2019, 8, 165.	1.8	44
439	Redirection of SKN-1 abates the negative metabolic outcomes of a perceived pathogen infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22322-22330.	3.3	64
440	TRAIP regulates Histone�H2B monoubiquitination in DNA damage response pathways. Oncology Reports, 2019, 41, 3305-3312.	1.2	8
441	Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics and Chromatin, 2019, 12, 7.	1.8	113
442	USP44 is dispensable for normal hematopoietic stem cell function, lymphocyte development, and B-cell-mediated immune response in a mouse model. Experimental Hematology, 2019, 72, 1-8.	0.2	8

#	Article	IF	Citations
443	Loss of RNF40 Decreases NF-κB Activity in Colorectal Cancer Cells and Reduces Colitis Burden in Mice. Journal of Crohn's and Colitis, 2019, 13, 362-373.	0.6	28
444	The RNF20/40 complex regulates p53-dependent gene transcription and mRNA splicing. Journal of Molecular Cell Biology, 2020, 12, 113-124.	1.5	16
445	H2Bub1 Regulates <i>RbohD</i> -Dependent Hydrogen Peroxide Signal Pathway in the Defense Responses to <i>Verticillium dahliae</i> -Toxins. Plant Physiology, 2020, 182, 640-657.	2.3	49
446	"Direct―and "Indirect―Effects of Histone Modifications: Modulation of Sterical Bulk as a Novel Source of Functionality. BioEssays, 2020, 42, 1900136.	1.2	6
447	The Chaperone FACT and Histone H2B Ubiquitination Maintain S.Âpombe Genome Architecture through Genic and Subtelomeric Functions. Molecular Cell, 2020, 77, 501-513.e7.	4.5	32
448	The intrinsic stability of H2B-ubiquitylated nucleosomes and their in vitro assembly/disassembly by histone chaperone NAP1. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129497.	1.1	4
449	The histone H2B ubiquitin ligase RNF40 is required for HER2-driven mammary tumorigenesis. Cell Death and Disease, 2020, 11, 873.	2.7	10
450	USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation. Advanced Science, 2020, 7, 2002680.	5.6	25
451	Egr2-guided histone H2B monoubiquitination is required for peripheral nervous system myelination. Nucleic Acids Research, 2020, 48, 8959-8976.	6.5	14
452	The Ubiquitin Proteasome System in Hematological Malignancies: New Insight into Its Functional Role and Therapeutic Options. Cancers, 2020, 12, 1898.	1.7	9
453	Histone Monoubiquitination in Chromatin Remodelling: Focus on the Histone H2B Interactome and Cancer. Cancers, 2020, 12, 3462.	1.7	26
454	Conformational changes in myeloperoxidase induced by ubiquitin and NETs containing free ISG15 from systemic lupus erythematosus patients promote a pro-inflammatory cytokine response in CD4+ T cells. Journal of Translational Medicine, 2020, 18, 429.	1.8	5
455	Restraining and unleashing chromatin remodelers – structural information guides chromatin plasticity. Current Opinion in Structural Biology, 2020, 65, 130-138.	2.6	3
456	Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks. Cells, 2020, 9, 1699.	1.8	24
457	Interactions With Histone H3 & Developmental Biology, 2020, 8, 701.	1.8	17
458	Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity. Nucleic Acids Research, 2020, 48, 9840-9858.	6.5	14
459	Histone chaperone FACT represses retrotransposon MERVL and MERVL-derived cryptic promoters. Nucleic Acids Research, 2020, 48, 10211-10225.	6.5	27
460	Overexpression of GmUBC9 Gene Enhances Plant Drought Resistance and Affects Flowering Time via Histone H2B Monoubiquitination. Frontiers in Plant Science, 2020, 11, 555794.	1.7	17

#	ARTICLE	IF	Citations
461	The Bre1/Rad6 machinery: writing the central histone ubiquitin mark on H2B and beyond. Chromosome Research, 2020, 28, 247-258.	1.0	7
462	RNF20 Is Critical for Snail-Mediated E-Cadherin Repression in Human Breast Cancer. Frontiers in Oncology, 2020, 10, 613470.	1.3	8
463	Advances on Plant Ubiquitylomeâ€"From Mechanism to Application. International Journal of Molecular Sciences, 2020, 21, 7909.	1.8	9
464	Cyclin Y Is Expressed in Platelets and Modulates Integrin Outside-in Signaling. International Journal of Molecular Sciences, 2020, 21, 8239.	1.8	4
465	Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194567.	0.9	82
466	DUBs Activating the Hedgehog Signaling Pathway: A Promising Therapeutic Target in Cancer. Cancers, 2020, 12, 1518.	1.7	16
467	Structural Basis of Nucleosome Recognition and Modulation. BioEssays, 2020, 42, e1900234.	1.2	12
468	Structure and mechanism of the RNA polymerase II transcription machinery. Genes and Development, 2020, 34, 465-488.	2.7	167
469	E2 conjugases UBC1 and UBC2 regulate MYB42â€mediated SOS pathway in response to salt stress in <i>Arabidopsis</i> . New Phytologist, 2020, 227, 455-472.	3.5	73
470	Dynamic modules of the coactivator SAGA in eukaryotic transcription. Experimental and Molecular Medicine, 2020, 52, 991-1003.	3.2	31
471	Sharing Marks: H3K4 Methylation and H2B Ubiquitination as Features of Meiotic Recombination and Transcription. International Journal of Molecular Sciences, 2020, 21, 4510.	1.8	12
472	Poly(ADP-ribosyl)ation mediates early phase histone eviction at DNA lesions. Nucleic Acids Research, 2020, 48, 3001-3013.	6.5	29
473	The H2B ubiquitin-protein ligase RNF40 is required for somatic cell reprogramming. Cell Death and Disease, 2020, 11, 287.	2.7	11
474	Deubiquitinase MYSM1 in the Hematopoietic System and beyond: A Current Review. International Journal of Molecular Sciences, 2020, 21, 3007.	1.8	23
475	Cracking the Monoubiquitin Code of Genetic Diseases. International Journal of Molecular Sciences, 2020, 21, 3036.	1.8	18
476	Ubiquitin chromatin remodelling after DNA damage is associated with the expression of key cancer genes and pathways. Cellular and Molecular Life Sciences, 2021, 78, 1011-1027.	2.4	10
477	NEDD4-like ubiquitin ligase 2 protein (NEDL2) in porcine spermatozoa, oocytes, and preimplantation embryos and its role in oocyte fertilization. Biology of Reproduction, 2021, 104, 117-129.	1.2	7
478	Bre1 and Ubp8 regulate H2B monoâ€ubiquitination and the reversible yeastâ€hyphae transition in <i>Candida albicans</i> . Molecular Microbiology, 2021, 115, 332-343.	1.2	10

#	ARTICLE	IF	CITATIONS
479	Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene, 2021, 40, 465-474.	2.6	24
480	The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends in Cell Biology, 2021, 31, 75-85.	3.6	18
481	Social defeat stress in adult mice causes alterations in gene expression, alternative splicing, and the epigenetic landscape of H3K4me3 in the prefrontal cortex: An impact of early-life stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110068.	2.5	24
482	RNF40 exerts stage-dependent functions in differentiating osteoblasts and is essential for bone cell crosstalk. Cell Death and Differentiation, 2021, 28, 700-714.	5.0	13
483	Destruction or Reconstruction: A Subtle Liaison between the Proteolytic and Signaling Role of Protein Ubiquitination in Spermatogenesis. Advances in Experimental Medicine and Biology, 2021, 1288, 215-240.	0.8	2
484	Chemical methods for protein site-specific ubiquitination. RSC Chemical Biology, 2021, 2, 450-467.	2.0	21
485	Chromatin-Associated Protein Complexes Link DNA Base J and Transcription Termination in <i>Leishmania < /i>. MSphere, 2021, 6, .</i>	1.3	12
486	A CSB-PAF1C axis restores processive transcription elongation after DNA damage repair. Nature Communications, 2021, 12, 1342.	5.8	31
487	Function of histone H2B monoubiquitination in transcriptional regulation of auxin biosynthesis in Arabidopsis. Communications Biology, 2021, 4, 206.	2.0	8
488	Regulation of chromatin structure and function: insights into the histone chaperone FACT. Cell Cycle, 2021, 20, 465-479.	1.3	16
489	New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Frontiers in Molecular Neuroscience, 2021, 14, 642016.	1.4	24
491	Post-translational modifications regulate the activity of the growth-restricting protease DA1. Journal of Experimental Botany, 2021, 72, 3352-3366.	2.4	24
492	Collaboration through chromatin: motors of transcription and chromatin structure. Journal of Molecular Biology, 2021, 433, 166876.	2.0	11
493	Histone H2Bub1 deubiquitylation is essential for mouse development, but does not regulate global RNA polymerase II transcription. Cell Death and Differentiation, 2021, 28, 2385-2403.	5.0	14
494	Ubiquitinâ€dependent regulation of transcription in development and disease. EMBO Reports, 2021, 22, e51078.	2.0	16
496	Cryptochromes and the Circadian Clock: The Story of a Very Complex Relationship in a Spinning World. Genes, 2021, 12, 672.	1.0	22
497	The Histone Chaperone HIRA Is a Positive Regulator of Seed Germination. International Journal of Molecular Sciences, 2021, 22, 4031.	1.8	9
498	Histone sumoylation and chromatin dynamics. Nucleic Acids Research, 2021, 49, 6043-6052.	6.5	70

#	Article	IF	CITATIONS
499	Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bulletin Du Cancer, 2021, 108, 385-398.	0.6	10
500	R-loops as Janus-faced modulators of DNA repair. Nature Cell Biology, 2021, 23, 305-313.	4.6	94
501	USP22 Suppresses SPARC Expression in Acute Colitis and Inflammation-Associated Colorectal Cancer. Cancers, 2021, 13, 1817.	1.7	10
503	New connections between ubiquitylation and methylation in the co-transcriptional histone modification network. Current Genetics, 2021, 67, 695-705.	0.8	8
504	Histone Ubiquitination: An Integrative Signaling Platform in Genome Stability. Trends in Genetics, 2021, 37, 566-581.	2.9	98
505	RNF20 and RNF40 regulate vitamin D receptor-dependent signaling in inflammatory bowel disease. Cell Death and Differentiation, 2021, 28, 3161-3175.	5.0	10
507	The HIF complex recruits the histone methyltransferase SET1B to activate specific hypoxia-inducible genes. Nature Genetics, 2021, 53, 1022-1035.	9.4	38
508	The Elongation Regulators and Architectural Proteins as New Participants of Eukaryotic Gene Transcription. Russian Journal of Genetics, 2021, 57, 751-763.	0.2	2
509	The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radical Biology and Medicine, 2021, 170, 85-108.	1.3	3
510	Integrative proteomics reveals the role of E3 ubiquitin ligase SYVN1 in hepatocellular carcinoma metastasis. Cancer Communications, 2021, 41, 1007-1023.	3.7	21
511	The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. Journal of Molecular Biology, 2021, 433, 166979.	2.0	65
512	Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nature Communications, 2021, 12, 4442.	5.8	27
513	Studying PAR-Dependent Chromatin Remodeling to Tackle PARPi Resistance. Trends in Molecular Medicine, 2021, 27, 630-642.	3.5	18
514	Biochemical insights into Paf1 complex–induced stimulation of Rad6/Bre1-mediated H2B monoubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
515	The Yin and Yang of Histone Marks in Transcription. Annual Review of Genomics and Human Genetics, 2021, 22, 147-170.	2.5	41
516	Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair. DNA Repair, 2021, 107, 103206.	1.3	6
517	Identification of Histone Modifications Reveals a Role of H2b Monoubiquitination in Transcriptional Regulation of <i>dmrt1</i> in <i>Monopterus albus</i> lnternational Journal of Biological Sciences, 2021, 17, 2009-2020.	2.6	5
518	Germline Transcription: A Key Regulator of Accessibility and Recombination. Advances in Experimental Medicine and Biology, 2009, 650, 93-102.	0.8	37

#	Article	IF	CITATIONS
519	Transcription Through Chromatin. , 2014, , 427-489.		2
520	Histone Ubiquitylation Control of Gene Expression. , 2014, , 257-307.		7
521	Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death and Differentiation, 2021, 28, 538-556.	5.0	27
527	FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC. PLoS Genetics, 2016, 12, e1006221.	1.5	39
528	Evolution of Streptococcus pneumoniae and Its Close Commensal Relatives. PLoS ONE, 2008, 3, e2683.	1.1	269
529	hPaf1/PD2 interacts with OCT3/4 to promote self-renewal of ovarian cancer stem cells. Oncotarget, 2017, 8, 14806-14820.	0.8	28
530	PAF1 complex interactions with SETDB1 mediate promoter H3K9 methylation and transcriptional repression of <i>Hoxa9</i> and <i>Meis1</i> i>in acute myeloid leukemia. Oncotarget, 2018, 9, 22123-22136.	0.8	22
531	H4K12ac is regulated by estrogen receptor-alpha and is associated with BRD4 function and inducible transcription. Oncotarget, 2015, 6, 7305-7317.	0.8	27
532	Overexpression of PD2 leads to increased tumorigenicity and metastasis in pancreatic ductal adenocarcinoma. Oncotarget, 2016, 7, 3317-3331.	0.8	19
533	A Histone Cycle., 0,,.		1
534	Histone H2B ubiquitylation represses gametogenesis by opposing RSC-dependent chromatin remodeling at the stell master regulator locus. ELife, 2016, 5 , .	2.8	19
535	The Chd1 chromatin remodeler shifts hexasomes unidirectionally. ELife, 2016, 5, .	2.8	69
536	Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. ELife, 2018, 7, .	2.8	69
537	Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome. ELife, $2018, 7, .$	2.8	72
538	DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis. ELife, 2018, 7, .	2.8	63
539	FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics. ELife, 2019, 8,	2.8	25
541	Proteins That Alter Histone Modifications in Cancer. , 2008, , 181-195.		0
551	Transcription recycling assays identify PAF1 as a driver for RNA Pol II recycling. Nature Communications, 2021, 12, 6318.	5.8	4

#	Article	IF	CITATIONS
552	The FAcilitates Chromatin Transcription (FACT) complex: Its roles in DNA repair and implications for cancer therapy. DNA Repair, 2022, 109, 103246.	1.3	7
553	XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair. Nature Cell Biology, 2021, 23, 1287-1298.	4.6	26
554	Trans-tail regulation-mediated suppression of cryptic transcription. Experimental and Molecular Medicine, 2021, 53, 1683-1688.	3.2	6
555	O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discover Oncology, 2021, 12, 54.	0.8	13
557	USP49-Mediated Histone H2B Deubiquitination Regulates HCT116 Cell Proliferation through MDM2-p53 Axis. Molecular and Cellular Biology, 2022, 42, MCB0043421.	1.1	3
558	Pyruvate Facilitates FACTâ€Mediated <i>γ</i> H2AX Loading to Chromatin and Promotes the Radiation Resistance of Glioblastoma. Advanced Science, 2022, 9, e2104055.	5.6	18
559	Epoxymicheliolide directly targets histone H2B to inhibit neuroinflammation via recruiting E3 ligase RNF20. Pharmacological Research, 2022, 177, 106093.	3.1	6
560	Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Seminars in Cancer Biology, 2022, 86, 782-798.	4.3	8
561	Coordinated regulation of RNA polymerase II pausing and elongation progression by PAF1. Science Advances, 2022, 8, eabm5504.	4.7	18
562	H2A mono-ubiquitination differentiates FACT's functions in nucleosome assembly and disassembly. Nucleic Acids Research, 2022, 50, 833-846.	6.5	14
563	Potent macrocycle inhibitors of the human SAGA deubiquitinating module. Cell Chemical Biology, 2022, 29, 544-554.e4.	2.5	13
584	Nutrient sensitive protein <i>O</i> -GlcNAcylation modulates the transcriptome through epigenetic mechanisms during embryonic neurogenesis. Life Science Alliance, 2022, 5, e202201385.	1.3	6
585	Functions of HP1 proteins in transcriptional regulation. Epigenetics and Chromatin, 2022, 15, 14.	1.8	15
589	A versatile new tool derived from a bacterial deubiquitylase to detect and purify ubiquitylated substrates and their interacting proteins. PLoS Biology, 2022, 20, e3001501.	2.6	2
590	SAGA-Dependent Histone H2Bub1 Deubiquitination Is Essential for Cellular Ubiquitin Balance during Embryonic Development. International Journal of Molecular Sciences, 2022, 23, 7459.	1.8	5
591	Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells, 2022, 11, 2404.	1.8	14
592	The roles of epigenetic modifications in the regulation of auxin biosynthesis. Frontiers in Plant Science, $0,13,.$	1.7	2
593	Reversal of histone H2B mono-ubiquitination is required for replication stress recovery. DNA Repair, 2022, 119, 103387.	1.3	1

#	Article	IF	CITATIONS
594	PRC1-independent binding and activity of RYBP on the KSHV genome during de novo infection. PLoS Pathogens, 2022, 18, e1010801.	2.1	5
595	Mechanisms of Histone Modifications. , 2023, , 27-54.		1
596	Decoding histone ubiquitylation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8
598	Pirh2 restricts influenza A virus replication by modulating shortâ€chain ubiquitination of its nucleoprotein. FASEB Journal, 2022, 36, .	0.2	2
600	Histone H2Bub dynamics in the 5′ region of active genes are tightly linked to the UV-induced transcriptional response. Computational and Structural Biotechnology Journal, 2023, 21, 614-629.	1.9	1
601	Usp22 is an intracellular regulator of systemic emergency hematopoiesis. Science Immunology, 2022, 7,	5.6	3
602	The anaphase promoting complex/cyclosome ubiquitylates histone <scp>H2B</scp> on the promoter during <scp>UbcH10</scp> transactivation. FEBS Letters, 0, , .	1.3	0
603	Histone modification in Saccharomyces cerevisiae: A review of the current status. Computational and Structural Biotechnology Journal, 2023, 21, 1843-1850.	1.9	3
604	Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. International Journal of Biochemistry and Cell Biology, 2023, 157, 106384.	1.2	1
605	Recycling of modified H2A-H2B provides short-term memory of chromatin states. Cell, 2023, 186, 1050-1065.e19.	13.5	27
607	H2B ubiquitination recruits FACT to maintain a stable altered nucleosome state for transcriptional activation. Nature Communications, 2023, 14, .	5.8	4
608	BMAL1-TTK-H2Bub1 loop deficiency contributes to impaired BM-MSC-mediated bone formation in senile osteoporosis. Molecular Therapy - Nucleic Acids, 2023, 31, 568-585.	2.3	0
609	The regulation of transcription elongation in embryonic stem cells. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	0
610	The <scp>SMC5</scp> /6 complex recruits the <scp>PAF1</scp> complex toÂfacilitate <scp>DNA</scp> doubleâ€strand break repair inÂ <i>Arabidopsis</i> . EMBO Journal, 2023, 42, .	3.5	7
611	Structural basis for the Rad6 activation by the Bre1 N-terminal domain. ELife, 0, 12, .	2.8	4
615	RNF20 is required for male fertility through regulation of H2B ubiquitination in the Sertoli cells. Cell and Bioscience, 2023, 13 , .	2.1	1
619	RNA modification: mechanisms and therapeutic targets. Molecular Biomedicine, 2023, 4, .	1.7	9
623	Mechanism of histone H2B monoubiquitination by Bre1. Nature Structural and Molecular Biology, 2023, 30, 1623-1627.	3.6	3

ARTICLE IF CITATIONS

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$