Initial Transcribed Sequence Mutations Specifically Affe

Biochemistry 45, 8841-8854 DOI: 10.1021/bi060247u

Citation Report

#	Article	IF	CITATIONS
1	Effects of Discontinuities in the DNA Template on Abortive Initiation and Promoter Escape by Escherichia coli RNA Polymerase. Journal of Biological Chemistry, 2007, 282, 26917-26927.	1.6	4
2	Analysis of Promoter Targets for <i>Escherichia coli</i> Transcription Elongation Factor GreA In Vivo and In Vitro. Journal of Bacteriology, 2007, 189, 8772-8785.	1.0	73
3	An Alternate Mechanism of Abortive Release Marked by the Formation of Very Long Abortive Transcripts. Biochemistry, 2007, 46, 12687-12699.	1.2	8
4	Environmental regulation operating at the promoter clearance step of bacterial transcription. Genes and Development, 2007, 21, 1258-1272.	2.7	38
5	Promoter Escape by <i>Escherichia coli</i> RNA Polymerase. EcoSal Plus, 2008, 3, .	2.1	15
6	Early Transcriptional Arrest at Escherichia coli rplN and ompX Promoters. Journal of Biological Chemistry, 2009, 284, 35702-35713.	1.6	20
7	Monitoring abortive initiation. Methods, 2009, 47, 25-36.	1.9	49
8	RNA polymerase: A nexus of gene regulation. Methods, 2009, 47, 1-5.	1.9	22
9	Mechanism of Bacterial Transcription Initiation: RNA Polymerase - Promoter Binding, Isomerization to Initiation-Competent Open Complexes, and Initiation of RNA Synthesis. Journal of Molecular Biology, 2011, 412, 754-771.	2.0	284
10	Factor-independent transcription pausing caused by recognition of the RNA-DNA hybrid sequence. EMBO Journal, 2012, 31, 630-639.	3.5	59
11	Predicting the strength of UP-elements and full-length E. coli σE promoters. Nucleic Acids Research, 2012, 40, 2907-2924.	6.5	66
12	Exploring the 5′-UTR DNA region as a target for optimizing recombinant gene expression from the strong and inducible Pm promoter in Escherichia coli. Journal of Biotechnology, 2012, 158, 224-230.	1.9	14
13	Technologies for Biosystems Engineering. , 2012, , 83-115.		2
14	Tuning Response Curves for Synthetic Biology. ACS Synthetic Biology, 2013, 2, 547-567.	1.9	139
15	Insights into the Mechanism of Initial Transcription in Escherichia coli RNA Polymerase. Journal of Biological Chemistry, 2013, 288, 31993-32003.	1.6	31
16	Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 409-419.	2.5	8
17	Kinetics of promoter escape by bacterial RNA polymerase: effects of promoter contacts and transcription bubble collapse. Biochemical Journal, 2014, 463, 135-144.	1.7	44
18	Regulation of promoter-proximal transcription elongation: enhanced DNA scrunching drives λQ antiterminator-dependent escape from a σ70-dependent pause. Nucleic Acids Research, 2014, 42, 5097-5108.	6.5	26

#	Article	IF	CITATIONS
19	Differential Role of Base Pairs on gal Promoters Strength. Journal of Molecular Biology, 2015, 427, 792-806.	2.0	5
20	Mechanisms of Very Long Abortive Transcript Release during Promoter Escape. Biochemistry, 2015, 54, 7393-7408.	1.2	4
21	Sequence-Dependent Promoter Escape Efficiency Is Strongly Influenced by Bias for the Pretranslocated State during Initial Transcription. Biochemistry, 2015, 54, 4267-4275.	1.2	17
22	Four-Nucleotide and Six-Nucleotide Abortive Transcripts Can Inhibit Transcription. , 2016, , .		0
23	Backtracked and paused transcription initiation intermediate of <i>Escherichia coli</i> RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6562-E6571.	3.3	78
24	RNA Polymerase Pausing during Initial Transcription. Molecular Cell, 2016, 63, 939-950.	4.5	96
25	Synthetic recombinase-based state machines in living cells. Science, 2016, 353, aad8559.	6.0	196
26	Improvement of DNA minicircle production by optimization of the secondary structure of the 5′-UTR of ParA resolvase. Applied Microbiology and Biotechnology, 2016, 100, 6725-6737.	1.7	12
27	Mechanism of transcription initiation and promoter escape by <i>E</i> . <i>coli</i> RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3032-E3040.	3.3	72
28	Different types of pausing modes during transcription initiation. Transcription, 2017, 8, 242-253.	1.7	16
29	Interplay between Ï f region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase. Biochemical Journal, 2017, 474, 4053-4064.	1.7	14
30	Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules. PLoS ONE, 2017, 12, e0175766.	1.1	27
31	DNA template sequence control of bacterial RNA polymerase escape from the promoter. Nucleic Acids Research, 2018, 46, 4469-4486.	6.5	29
32	Recent Advances in Understanding σ70-Dependent Transcription Initiation Mechanisms. Journal of Molecular Biology, 2019, 431, 3947-3959.	2.0	58
33	Dual UTR-A novel 5′ untranslated region design for synthetic biology applications. Synthetic Biology, 2020, 5, ysaa006.	1.2	15
34	Role of Interactions of the CRE Region of Escherichia coli RNA Polymerase with Nontemplate DNA during Promoter Escape. Biochemistry (Moscow), 2020, 85, 792-800.	0.7	1
35	Escherichia coli Ï f 70 promoters allow expression rate control at the cellular level in genome-integrated expression systems. Microbial Cell Factories, 2020, 19, 58.	1.9	16
36	The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. Journal of Bacteriology, 2021, 203, .	1.0	16

CITATION REPORT

.

#	Article	IF	CITATIONS
38	MethylMeter(r): A Quantitative, Sensitive, and Bisulfite-Free Method for Analysis of DNA Methylation. , 0, , .		2
40	Development of a novel platform for recombinant protein production in Corynebacterium glutamicum on ethanol. Synthetic and Systems Biotechnology, 2022, 7, 765-774.	1.8	8
41	Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria. Nature Communications, 2022, 13, .	5.8	52