Detection of Rooftop Cooling Unit Faults Based on Elect

HVAC and R Research 12, 151-175 DOI: 10.1080/10789669.2006.10391172

Citation Report

IF ARTICLE CITATIONS Using the Non-Intrusive Load Monitor for Shipboard Supervisory Control., 2007,,. 9 1 Shipboard Fluid System Diagnostic Indicators Using Nonâ€Intrusive Load Monitoring. Naval Engineers Journal, 2007, 119, 109-119. 0.1 9 Improving the efficiency of residential HVAC systems using computer-based power-electronic 3 1 controls., 2008, , . Creating low-cost energy-management systems for homes using non-intrusive energy monitoring devices., 2009, , . Diagnostics and prognostics for multiple induction machines using a single set of current 5 2 transducers. , 2009, , . Evaluating the performance of fault detection and diagnostics protocols applied to air-cooled unitary air-conditioning equipment. HVAC and R Research, 2013, 19, 882-891. 37 ARX model based fault detection and diagnosis for chillers using support vector machines. Energy 7 6.7 124 and Buildings, 2014, 81, 287-295. Experimental study on electrical signatures of common faults for packaged DX rooftop units. Energy 6.7 16 and Buildings, 2014, 77, 401-415. Development of a variable speed compressor power model for single-stage packaged DX rooftop units. 9 6.0 16 Applied Thermal Engineering, 2015, 78, 110-117. Data-driven Fault Detection and Diagnosis for HVAC water chillers. Control Engineering Practice, 5.5 143 2016, 53, 79-91. Effect of the distribution of faults and operating conditions on AFDD performance evaluations. 11 6.0 16 Applied Thermal Engineering, 2016, 106, 1329-1336. Effect of common faults on the performance of different types of vapor compression systems. Applied Thermal Engineering, 2016, 98, 61-72. Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels. Applied Energy, 2016, 169, 14-27. 13 10.1 47 A figure of merit for overall performance and value of AFDD tools. International Journal of Refrigeration, 2017, 74, 651-661. 14 3.4 Conducting a metering assessment to identify submetering needs at a manufacturing facility. CIRP 15 4.5 7 Journal of Manufacturing Science and Technology, 2017, 18, 107-114. A review of fault detection and diagnostics methods for building systems. Science and Technology 234 for the Built Environment, 2018, 24, 3-21. A review of fault detection and diagnosis methods for residential air conditioning systems. Building 17 6.9 71 and Environment, 2019, 161, 106236. Can non-intrusive load monitoring be used for identifying an appliance's anomalous behaviour?. 10.1 Applied Energy, 2019, 238, 796-805.

TATION RE

CITATION REPORT

#	Article	IF	CITATIONS
19	Evaluation of Non-intrusive Load Monitoring Algorithms for Appliance-level Anomaly Detection. , 2019, , .		20
20	Design of Intelligent Electricity Information Monitoring And Load Forecasting System Based on ADE7758. , 2019, , .		1
21	Uncertainty analysis and field implementation of a fault detection method for residential HVAC systems. Science and Technology for the Built Environment, 2020, 26, 320-333.	1.7	4
22	Development, implementation, and evaluation of a fault detection and diagnostics system based on integrated virtual sensors and fault impact models. Energy and Buildings, 2020, 228, 110368.	6.7	21
23	Data-driven fault detection and diagnosis for packaged rooftop units using statistical machine learning classification methods. Energy and Buildings, 2020, 225, 110318.	6.7	40
24	Nonintrusive Load Monitoring of Variable Speed Drive Cooling Systems. IEEE Access, 2020, 8, 211451-211463.	4.2	6
25	Review on Fault Detection and Diagnosis Feature Engineering in Building Heating, Ventilation, Air Conditioning and Refrigeration Systems. IEEE Access, 2021, 9, 2153-2187.	4.2	26
26	Automated fault detection of residential air-conditioning systems using thermostat drive cycles. Energy and Buildings, 2021, 236, 110691.	6.7	15
27	An Equilibrium Prediction Method for Control and Fault Detection of Energy Systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2021, 7, .	1.1	1
28	A review of the fault behavior of heat pumps and measurements, detection and diagnosis methods including virtual sensors. Journal of Building Engineering, 2021, 39, 102254.	3.4	29
29	Nonintrusive Ventilation System Diagnostics. IEEE Sensors Journal, 2021, 21, 19268-19278.	4.7	4
30	Effects of multiple simultaneous faults on characteristic fault detection features of a heat pump in cooling mode. Energy and Buildings, 2021, 251, 111355.	6.7	13
31	HVAC Equipment, Unitary: Fault Detection and Diagnosis. , 2014, , 854-864.		6
32	Multi-view Data Mining Approach for Behaviour Analysis of Smart Control Valve. , 2020, , .		3
35	Fault detection and diagnosis for variable-air-volume systems using combined residual, qualitative and quantitative techniques. Energy and Buildings, 2022, 254, 111491.	6.7	5
36	Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring: A Review. Energies, 2022, 15, 341.	3.1	28
37	Across working conditions fault diagnosis for chillers based on IoT intelligent agent with deep learning model. Energy and Buildings, 2022, 268, 112188.	6.7	10
38	A comprehensive review: Fault detection, diagnostics, prognostics, and fault modeling in HVAC systems. International Journal of Refrigeration, 2022, 144, 283-295.	3.4	27

IF ARTICLE CITATIONS # Refrigerant charge prediction based on start-up characteristics of an air conditioner using a gray box 39 1.5 2 model. Journal of Mechanical Science and Technology, 2022, 36, 4859-4868. A Review of Non-Intrusive Load Monitoring Applications in Industrial and Residential Contexts. 3.1 Energies, 2022, 15, 9011. Identification and classification of heat pump problems in the field and their implication for a 41 2.3 4 user-centric problem recognition. Energy Informatics, 2022, 5, . Diagnosis for the refrigerant undercharge fault of chiller using deep belief network enhanced extreme learning machine. Sustainable Energy Technologies and Assessments, 2023, 55, 102977. A review of fault diagnostics in heat pumps systems. Applied Thermal Engineering, 2023, 228, 120454. 43 6.0 3 Digital Twin for Fault Detection and Diagnosis of Building Operations: A Systematic Review. Buildings, 2023, 13, 1426. 3.1 Sensitivity analysis of an automated fault detection algorithm for residential air-conditioning systems. Applied Thermal Engineering, 2024, 238, 121895. 45 6.0 0 A statistical pattern analysis framework for rooftop unit diagnostics. HVAC and R Research, 2012, 18, 406-416.

CITATION REPORT