Identification of a Dynamic Atmosphere at Enceladus w

Science 311, 1406-1409 DOI: 10.1126/science.1120985

Citation Report

#	Article	IF	CITATIONS
1	A simple scale height model of the electron density in Saturn's plasma disk. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	62
2	Enceladus: A significant plasma source for Saturn's magnetosphere. Journal of Geophysical Research, 2006, 111, .	3.3	57
3	Titan's near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys TA, TB, and T3. Journal of Geophysical Research, 2006, 111, .	3.3	82
4	Nature of magnetic fluctuations in Saturn's middle magnetosphere. Journal of Geophysical Research, 2006, 111, .	3.3	47
5	The Interaction of the Atmosphere of Enceladus with Saturn's Plasma. Science, 2006, 311, 1409-1412.	12.6	176
6	Enceladus' Varying Imprint on the Magnetosphere of Saturn. Science, 2006, 311, 1412-1415.	12.6	57
7	The Enceladus and OH Tori at Saturn. Astrophysical Journal, 2006, 644, L137-L139.	4.5	116
8	Science-Driven Design of ENCELADUS Flyby Geometry. , 2006, , .		4
10	Enceladus: Cosmic Gymnast, Volatile Miniworld. Science, 2006, 311, 1389-1391.	12.6	58
11	Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot. Science, 2006, 311, 1401-1405.	12.6	481
12	Composition and Physical Properties of Enceladus' Surface. Science, 2006, 311, 1425-1428.	12.6	199
13	Enceladus' Water Vapor Plume. Science, 2006, 311, 1422-1425.	12.6	473
14	Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring. Science, 2006, 311, 1416-1418.	12.6	304
15	Does Enceladus Govern Magnetospheric Dynamics at Saturn?. Science, 2006, 311, 1391-1392.	12.6	31
16	Cassini Observes the Active South Pole of Enceladus. Science, 2006, 311, 1393-1401.	12.6	1,008
17	PLANETARY SCIENCE: A New Spin on Saturn's Rotation. Science, 2007, 316, 380-381.	12.6	3
18	The Variable Rotation Period of the Inner Region of Saturn's Plasma Disk. Science, 2007, 316, 442-445.	12.6	223
19	Hydrogen Peroxide on Enceladus. Astrophysical Journal, 2007, 670, L143-L146.	4.5	39

# 20	ARTICLE Planetary Magnetospheres. , 2007, , 469-492.	IF	CITATIONS 2
21	Polar wind outflow model: Saturn results. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	45
22	Electron microdiffusion in the Saturnian radiation belts: Cassini MIMI/LEMMS observations of energetic electron absorption by the icy moons. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	63
23	Understanding the escape of water from Enceladus. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	77
24	Mass loading of Saturn's magnetosphere near Enceladus. Journal of Geophysical Research, 2007, 112, .	3.3	64
25	Saturn's neutral torus versus Jupiter's plasma torus. Geophysical Research Letters, 2007, 34, .	4.0	40
26	Strong rapid dipolarizations in Saturn's magnetotail: In situ evidence of reconnection. Geophysical Research Letters, 2007, 34, .	4.0	93
27	Saturnian magnetospheric dynamics: Elucidation of a camshaft model. Journal of Geophysical Research, 2007, 112, .	3.3	121
28	Hemisphere coupling in Enceladus' asymmetric plasma interaction. Journal of Geophysical Research, 2007, 112, .	3.3	35
29	Shapes of the saturnian icy satellites and their significance. Icarus, 2007, 190, 573-584.	2.5	153
30	Optical magnetometry. Nature Physics, 2007, 3, 227-234.	16.7	1,329
31	Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus, 2007, 188, 345-355.	2.5	141
32	Exospheres and Atmospheric Escape. Space Science Reviews, 2008, 139, 355-397.	8.1	103
33	In den eisigen Welten des Saturn. Planetenforschung. Physik in Unserer Zeit, 2008, 39, 220-228.	0.0	1
34	Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planetary and Space Science, 2008, 56, 3-18.	1.7	119
35	Geysers of Enceladus: Quantitative analysis of qualitative models. Planetary and Space Science, 2008, 56, 1596-1606.	1.7	26
36	Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini. Icarus, 2008, 193, 397-406.	2.5	37
37	The E ring in the vicinity of Enceladus. Icarus, 2008, 193, 420-437.	2.5	114

#	Article	IF	CITATIONS
38	Magnetic portraits of Tethys and Rhea. Icarus, 2008, 193, 465-474.	2.5	56
39	The E-ring in the vicinity of Enceladus. Icarus, 2008, 193, 438-454.	2.5	126
40	Model of explosive eruptions of water vapor and dust on icy satellites. Solar System Research, 2008, 42, 124-138.	0.7	1
41	Ionization chemistry in H2O-dominated atmospheres of icy moons. Solar System Research, 2008, 42, 473-487.	0.7	12
42	Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures. Nature, 2008, 451, 685-688.	27.8	162
43	Water vapour jets inside the plume of gas leaving Enceladus. Nature, 2008, 456, 477-479.	27.8	115
44	Investigating the origins of the Jovian decimetric emission's variability. Journal of Geophysical Research, 2008, 113, .	3.3	22
45	Interaction evidence between Enceladus' atmosphere and Saturn's magnetosphere. Journal of Geophysical Research, 2008, 113, .	3.3	16
46	Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion. Reviews of Geophysics, 2008, 46, .	23.0	23
47	Comparative Aeronomy. Space Sciences Series of ISSI, 2008, , .	0.0	7
47 48		0.0	7 30
	Comparative Aeronomy. Space Sciences Series of ISSI, 2008, , .	0.0	
48	Comparative Aeronomy. Space Sciences Series of ISSI, 2008, , . Overview of the Cassini Extended Mission Trajectory. , 2008, , .		30
48 49	Comparative Aeronomy. Space Sciences Series of ISSI, 2008, , . Overview of the Cassini Extended Mission Trajectory. , 2008, , . Origin of oxygen species in Titan's atmosphere. Journal of Geophysical Research, 2008, 113, . Cassini detection of waterâ€group pickâ€up ions in the Enceladus torus. Geophysical Research Letters,	3.3	30 129
48 49 50	Comparative Aeronomy. Space Sciences Series of ISSI, 2008, , . Overview of the Cassini Extended Mission Trajectory. , 2008, , . Origin of oxygen species in Titan's atmosphere. Journal of Geophysical Research, 2008, 113, . Cassini detection of waterâ€group pickâ€up ions in the Enceladus torus. Geophysical Research Letters, 2008, 35, . Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. Geophysical	3.3 4.0	30 129 47
48 49 50 51	Comparative Aeronomy. Space Sciences Series of ISSI, 2008, , . Overview of the Cassini Extended Mission Trajectory. , 2008, , . Origin of oxygen species in Titan's atmosphere. Journal of Geophysical Research, 2008, 113, . Cassini detection of waterâ€group pickâ€up ions in the Enceladus torus. Geophysical Research Letters, 2008, 35, . Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. Geophysical Research Letters, 2008, 35, . Cassini-Huygens Mission Overview and Recent Science Results. Aerospace Conference Proceedings	3.3 4.0 4.0	30 129 47 78
48 49 50 51 52	Comparative Aeronomy. Space Sciences Series of ISSI, 2008, , . Overview of the Cassini Extended Mission Trajectory. , 2008, , . Origin of oxygen species in Titan's atmosphere. Journal of Geophysical Research, 2008, 113, . Cassini detection of waterâ€group pickâ€up ions in the Enceladus torus. Geophysical Research Letters, 2008, 35, . Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. Geophysical Research Letters, 2008, 35, . Cassini-Huygens Mission Overview and Recent Science Results. Aerospace Conference Proceedings IEEE, 2008, , . COMMISSION 16: PHYSICAL STUDY OF PLANETS AND SATELLITES. Proceedings of the International	 3.3 4.0 4.0 0.0 	 30 129 47 78 4

	CITATION	Report	
#	Article	IF	CITATIONS
56	Comparing Jupiter and Saturn: dimensionless input rates from plasma sources within the magnetosphere. Annales Geophysicae, 2008, 26, 1341-1343.	1.6	27
57	Real-time 3-D hybrid simulation of Titan's plasma interaction during a solar wind excursion. Annales Geophysicae, 2009, 27, 3349-3365.	1.6	5
58	Deep Space Craft. , 2009, , .		9
59	Plasma in Saturn's nightside magnetosphere and the implications for global circulation. Planetary and Space Science, 2009, 57, 1714-1722.	1.7	85
60	Saturn Satellites as Seen by Cassini Mission. Earth, Moon and Planets, 2009, 105, 289-310.	0.6	4
61	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	3.7	77
62	Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 2009, 459, 1098-1101.	27.8	435
63	Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 2009, 460, 487-490.	27.8	470
64	Energetic particles in Saturn's magnetosphere during the Cassini nominal mission (July 2004–July) Tj ETQq0	0 0 rgBT /O	verlock 10 Tf
65	Old Faithful model for radiolytic gas-driven cryovolcanism at Enceladus. Planetary and Space Science, 2009, 57, 1607-1620.	1.7	37
66	The plasma interaction of Enceladus: 3D hybrid simulations and comparison with Cassini MAG data. Planetary and Space Science, 2009, 57, 2113-2122.	1.7	51
67	Plume ionosphere of Enceladus as seen by the Cassini ion and neutral mass spectrometer. Geophysical Research Letters, 2009, 36, .	4.0	31
68	Fine jet structure of electrically charged grains in Enceladus' plume. Geophysical Research Letters, 2009, 36, .	4.0	86
69	Cassini detection of Enceladus' cold waterâ€group plume ionosphere. Geophysical Research Letters, 2009, 36, .	4.0	57
70	ldentification of photoelectron energy peaks in Saturn's inner neutral torus. Journal of Geophysical Research, 2009, 114, .	3.3	19
71	Analysis of architectures for the scientific exploration of Enceladus. , 2009, , .		3
72	Interior Models of Icy Satellites and Prospects of Investigation. Proceedings of the International Astronomical Union, 2009, 5, 113-120.	0.0	0

73 Th As	ne surface composition of Enceladus: clues from the Ultraviolet. Proceedings of the International stronomical Union, 2009, 5, 126-130.	0.0	1
-------------	---	-----	---

CITATION	DEDODT
CITATION	KEPORT

#	Article	IF	CITATIONS
74	Negative ions in the Enceladus plume. Icarus, 2010, 206, 618-622.	2.5	51
75	The ultraviolet reflectance of Enceladus: Implications for surface composition. Icarus, 2010, 206, 608-617.	2.5	52
76	Magnetic Fields of the Satellites of Jupiter and Saturn. Space Science Reviews, 2010, 152, 271-305.	8.1	41
77	Induced Magnetic Fields in Solar System Bodies. Space Science Reviews, 2010, 152, 391-421.	8.1	58
78	Atmospheric/Exospheric Characteristics of Icy Satellites. Space Science Reviews, 2010, 153, 155-184.	8.1	31
79	Environments in the Outer Solar System. Space Science Reviews, 2010, 153, 11-59.	8.1	8
80	Chemical Composition of Icy Satellite Surfaces. Space Science Reviews, 2010, 153, 113-154.	8.1	65
81	Titan's highly dynamic magnetic environment: A systematic survey of Cassini magnetometer observations from flybys TA–T62. Planetary and Space Science, 2010, 58, 1230-1251.	1.7	68
82	Disk-integrated bolometric Bond albedos and rotational light curves of saturnian satellites from Cassini Visual and Infrared Mapping Spectrometer. Icarus, 2010, 206, 537-560.	2.5	39
83	Shock protection of penetrator-based instrumentation via a sublimation approach. Advances in Space Research, 2010, 45, 460-467.	2.6	19
84	Squeezed-Light Optical Magnetometry. Physical Review Letters, 2010, 105, 053601.	7.8	163
85	Ion Pickup at Comets: Comparison with Other Unmagnetized Objects. AIP Conference Proceedings, 2010, , .	0.4	2
86	Modeling the Enceladus plumeâ \in "plasma interaction. Geophysical Research Letters, 2010, 37, .	4.0	27
87	Hybrid simulations of the plasma environment around Enceladus. Journal of Geophysical Research, 2010, 115, .	3.3	8
88	Interaction of Saturn's magnetosphere and its moons: 1. Interaction between corotating plasma and standard obstacles. Journal of Geophysical Research, 2010, 115, .	3.3	20
89	Interaction of Saturn's magnetosphere and its moons: 2. Shape of the Enceladus plume. Journal of Geophysical Research, 2010, 115, .	3.3	11
90	Periodic plasma escape from the massâ€loaded Kronian magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	43
91	Harmonic growth of ion yclotron waves in Saturn's magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	12

		CITATION R	EPORT	
#	Article		IF	CITATIONS
92	Azimuthal plasma flow in the Kronian magnetosphere. Journal of Geophysical Research	, 2010, 115, .	3.3	32
93	Detection and measurement of ice grains and gas distribution in the Enceladus plume Neutral Mass Spectrometer. Journal of Geophysical Research, 2010, 115, .	by Cassini's Ion	3.3	56
94	An approach to numerical simulation of the gas distribution in the atmosphere of Ence of Geophysical Research, 2010, 115, .	ladus. Journal	3.3	31
95	Timeâ€varying magnetospheric environment near Enceladus as seen by the Cassini ma Geophysical Research Letters, 2010, 37, .	gnetometer.	4.0	18
96	Modification of the plasma in the nearâ€vicinity of Enceladus by the enveloping dust. (Research Letters, 2010, 37, .	Geophysical	4.0	26
97	Cassini INMS observations of neutral molecules in Saturn's Eâ€ring. Journal of Geophy 2010, 115, .	sical Research,	3.3	25
98	Interaction of Saturn's magnetosphere and its moons: 3. Time variation of the Encelad Journal of Geophysical Research, 2010, 115, .	us plume.	3.3	11
99	Negative ions at Titan and Enceladus: recent results. Faraday Discussions, 2010, 147, 2	293.	3.2	51
100	Seismometers on the satellites of the Outer Solar System. , 2011, , .			0
101	lo's Tortured Interior. Science, 2011, 332, 1157-1158.		12.6	0
102	Outer magnetospheric structure: Jupiter and Saturn compared. Journal of Geophysical 116, n/a-n/a.	Research, 2011,	3.3	30
103	Influence of negatively charged plume grains and hemisphere coupling currents on the Enceladus' AlfvA©n wings: Analytical modeling of Cassini magnetometer observations Geophysical Research, 2011, 116, n/a-n/a.		3.3	50
104	Joule heating of the south polar terrain on Enceladus. Journal of Geophysical Research,	2011, 116, .	3.3	8
105	Auroral hiss, electron beams and standing Alfvén wave currents near Saturn's moon Geophysical Research Letters, 2011, 38, n/a-n/a.	Enceladus.	4.0	23
106	The composition and structure of the Enceladus plume. Geophysical Research Letters,	2011, 38, n/a-n/a.	4.0	136
107	Cassini magnetometer observations over the Enceladus poles. Geophysical Research L n/a-n/a.	etters, 2011, 38,	4.0	10
108	Electron energetics in the Enceladus torus. Journal of Geophysical Research, 2011, 116	o, n/a-n/a.	3.3	15
109	Probing Saturn's ion cyclotron waves on high-inclination orbits: Lessons for wave gene Journal of Geophysical Research, 2011, 116, n/a-n/a.	ration.	3.3	18

#	Article	IF	CITATIONS
110	Influence of negatively charged plume grains on the structure of Enceladus' Alfvén wings: Hybrid simulations versus Cassini Magnetometer data. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
111	Dusty plasma in the vicinity of Enceladus. Journal of Geophysical Research, 2011, 116, .	3.3	89
112	<i>HUBBLE SPACE TELESCOPE</i> /ADVANCED CAMERA FOR SURVEYS OBSERVATIONS OF EUROPA'S ATMOSPHERIC ULTRAVIOLET EMISSION AT EASTERN ELONGATION. Astrophysical Journal, 2011, 738, 153.	4.5	34
113	The auroral footprint of Enceladus on Saturn. Nature, 2011, 472, 331-333.	27.8	82
114	Search for and limits on plume activity on Mimas, Tethys, and Dione with the Cassini Visual Infrared Mapping Spectrometer (VIMS). Icarus, 2011, 214, 534-540.	2.5	14
115	ARTEMIS Science Objectives. Space Science Reviews, 2011, 165, 59-91.	8.1	47
116	Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations. Space Science Reviews, 2011, 164, 1-83.	8.1	40
117	Characteristics of the dust–plasma interaction near Enceladus' South Pole. Planetary and Space Science, 2011, 59, 17-25.	1.7	43
118	Exploring the satellites of the outer planets with in situ elements. , 2011, , .		0
119	A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 2011, 474, 620-622.	27.8	394
120	Applications of NanoSats to Small Body Exploration. , 2012, , .		2
121	lon densities and velocities in the inner plasma torus of Saturn. Planetary and Space Science, 2012, 73, 151-160.	1.7	36
122	Ion pickup and acceleration: Measurements from planetary missions. AIP Conference Proceedings, 2012,	0.4	4
123	Water vapor in Titan's stratosphere from Cassini CIRS far-infrared spectra. Icarus, 2012, 220, 855-862.	2.5	39
124	Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life. Electrophoresis, 2012, 33, 2624-2638.	2.4	44
125	Ion chemistry in space. Reports on Progress in Physics, 2012, 75, 066901.	20.1	194
126	Life in the Saturnian Neighborhood. Cellular Origin and Life in Extreme Habitats, 2012, , 485-522.	0.3	0
127	Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size. Journal of Geophysical Research, 2012, 117, .	3.3	50

#	Article	IF	Citations
128	Flow stagnation at Enceladus: The effects of neutral gas and charged dust. Journal of Geophysical Research, 2012, 117, .	3.3	9
129	Modeling of electron fluxes in the Enceladus plume. Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	8
130	Enceladus: A hypothesis for bringing both heat and chemicals to the surface. Icarus, 2012, 221, 53-62.	2.5	46
131	Analysis of Cassini magnetic field observations over the poles of Rhea. Journal of Geophysical Research, 2012, 117, .	3.3	30
132	The Cassini Enceladus encounters 2005–2010 in the view of energetic electron measurements. Icarus, 2012, 218, 433-447.	2.5	14
133	The electromagnetic pickup of submicron-sized dust above Enceladus's northern hemisphere. Icarus, 2012, 219, 498-501.	2.5	12
134	UV spectrum of Enceladus. Icarus, 2012, 220, 29-35.	2.5	7
135	The Rosetta campaign to detect an exosphere at Lutetia. Planetary and Space Science, 2012, 66, 165-172.	1.7	9
136	An observed correlation between plume activity and tidal stresses on Enceladus. Nature, 2013, 500, 182-184.	27.8	136
137	Experimental Investigations into Astrophysically Relevant Ionic Reactions. Chemical Reviews, 2013, 113, 8872-8905.	47.7	52
138	Constraints on the detection of cryovolcanic plumes on Europa. Planetary and Space Science, 2013, 86, 1-9.	1.7	34
139	The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover. Icarus, 2013, 226, 1128-1137.	2.5	69
140	Core electron temperature and density in the innermost Saturn's magnetosphere from HF power spectra analysis on Cassini. Journal of Geophysical Research: Space Physics, 2013, 118, 7170-7180.	2.4	22
141	Energetic aspects of Enceladus' magnetospheric interaction. Journal of Geophysical Research: Space Physics, 2013, 118, 3430-3445.	2.4	8
142	The extended Saturnian neutral cloud as revealed by global ENA simulations using Cassini/MIMI measurements. Journal of Geophysical Research: Space Physics, 2013, 118, 3027-3041.	2.4	30
143	Enceladus auroral hiss observations: Implications for electron beam locations. Journal of Geophysical Research: Space Physics, 2013, 118, 160-166.	2.4	8
144	Review of Exchange Processes on Ganymede in View of Its Planetary Protection Categorization. Astrobiology, 2013, 13, 991-1004.	3.0	16
145	A 1â€Ð model of physical chemistry in Saturn's inner magnetosphere. Journal of Geophysical Research E: Planets, 2013, 118, 1567-1581.	3.6	21

#	ARTICLE	IF	CITATIONS
146	Photoelectrons in the Enceladus plume. Journal of Geophysical Research: Space Physics, 2013, 118, 5099-5108.	2.4	13
147	Quantum metrology with cold atomic ensembles. EPJ Web of Conferences, 2013, 57, 03004.	0.3	0
148	Auroral Processes Associated with Saturn's Moon Enceladus. Geophysical Monograph Series, 2013, , 305-314.	0.1	7
149	Discontinuities in the magnetic field near Enceladus. Geophysical Research Letters, 2014, 41, 3359-3366.	4.0	13
150	Dayside/nightside asymmetry of ion densities and velocities in Saturn's inner magnetosphere. Geophysical Research Letters, 2014, 41, 3717-3723.	4.0	16
151	Saturn's mysterious magnetism. Astronomy and Geophysics, 2014, 55, 1.13-1.18.	0.2	0
152	Science goals and mission concept for the future exploration of Titan and Enceladus. Planetary and Space Science, 2014, 104, 59-77.	1.7	15
153	Nonlinear optical magnetometry with accessible in situ optical squeezing. Optics Letters, 2014, 39, 6533.	3.3	62
154	A model of the spatial and size distribution of Enceladus× ³ dust plume. Planetary and Space Science, 2014, 104, 216-233.	1.7	15
155	Giant magnetospheres in our solar system: Jupiter and Saturn compared. Astronomy and Astrophysics Review, 2014, 22, 1.	25.5	2
156	Thermophysical property variations across Dione and Rhea. Icarus, 2014, 241, 239-247.	2.5	23
157	Large-Scale Structure and Dynamics of the Magnetotails of Mercury, Earth, Jupiter and Saturn. Space Science Reviews, 2014, 182, 85-154.	8.1	41
158	An estimate of the dust pickup current at Enceladus. Icarus, 2014, 239, 217-221.	2.5	8
159	Electron density inside Enceladus plume inferred from plasma oscillations excited by dust impacts. Journal of Geophysical Research: Space Physics, 2014, 119, 3373-3380.	2.4	22
160	Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft. Journal of Geophysical Research: Space Physics, 2014, 119, 6294-6312.	2.4	40
161	Ion densities and magnetic signatures of dust pickup at Enceladus. Journal of Geophysical Research: Space Physics, 2014, 119, 2740-2774.	2.4	38
162	A new upper limit to the fieldâ€ e ligned potential near Titan. Geophysical Research Letters, 2015, 42, 4676-4684.	4.0	15
163	Internally driven largeâ€scale changes in the size of Saturn's magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 7289-7306.	2.4	39

#	Article	IF	Citations
164	Cavity enhanced atomic magnetometry. Scientific Reports, 2015, 5, 15448.	3.3	18
165	Saturn Plasma Sources and Associated Transport Processes. Space Science Reviews, 2015, 192, 237-283.	8.1	25
166	Electrostatic solitary waves observed at Saturn by Cassini inside 10 <i>R_s</i> and near Enceladus. Journal of Geophysical Research: Space Physics, 2015, 120, 6569-6580.	2.4	34
167	Asymmetries observed in Saturn's magnetopause geometry. Geophysical Research Letters, 2015, 42, 6890-6898.	4.0	18
168	Modeling insights into the locations of density enhancements from the Enceladus water vapor jets. Journal of Geophysical Research E: Planets, 2015, 120, 1763-1773.	3.6	3
170	The impact of Callisto's atmosphere on its plasma interaction with the Jovian magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 9401-9427.	2.4	39
171	Evidence for a seasonally dependent ring plasma in the region between Saturn's A Ring and Enceladus' orbit. Journal of Geophysical Research: Space Physics, 2015, 120, 6276-6285.	2.4	17
172	Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations. Planetary and Space Science, 2015, 119, 208-221.	1.7	10
173	Possible evidence for a methane source in Enceladus' ocean. Geophysical Research Letters, 2015, 42, 1334-1339.	4.0	65
174	Linking Europa's plume activity to tides, tectonics, and liquid water. Icarus, 2015, 253, 169-178.	2.5	22
175	On understanding the physics of the Enceladus south polar plume via numerical simulation. Icarus, 2015, 253, 205-222.	2.5	34
176	The interaction between Saturn's moons and their plasma environments. Physics Reports, 2015, 602, 1-65.	25.6	21
177	Plasma regions, charged dust and field-aligned currents near Enceladus. Planetary and Space Science, 2015, 117, 453-469.	1.7	16
178	Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra. Space Science Reviews, 2015, 187, 99-179.	8.1	86
179	Transport and chemical loss rates in Saturn's inner plasma disk. Journal of Geophysical Research: Space Physics, 2016, 121, 2321-2334.	2.4	3
180	Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Scientific Reports, 2016, 6, 37077.	3.3	61
183	A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn. Planetary and Space Science, 2016, 129, 47-60.	1.7	17
184	Plasma dynamics in Saturn's middle-latitude ionosphere and implications for magnetosphere-ionosphere coupling. Icarus, 2016, 274, 261-271.	2.5	4

#	Article	IF	CITATIONS
185	THEO concept mission: Testing the Habitability of Enceladus's Ocean. Advances in Space Research, 2016, 58, 1117-1137.	2.6	13
186	The Plume Chaser mission: Two-spacecraft search for organics on the dwarf planet Ceres. Advances in Space Research, 2016, 57, 1133-1146.	2.6	0
187	Loess and life out of Earth?. Quaternary International, 2016, 399, 208-217.	1.5	6
188	Investigation of diurnal variability of water vapor in Enceladus' plume by the Cassini ultraviolet imaging spectrograph. Geophysical Research Letters, 2017, 44, 672-677.	4.0	20
189	Ion trapping by dust grains: Simulation applications to the Enceladus plume. Journal of Geophysical Research E: Planets, 2017, 122, 729-743.	3.6	5
190	Radioisotope power system-based enceladus smallsat mission concept: Enceladus express. , 2017, , .		0
191	Deciphering sub-micron ice particles on Enceladus surface. Icarus, 2017, 290, 183-200.	2.5	22
192	Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS. Icarus, 2017, 292, 1-12.	2.5	10
193	Magnetic signatures of ion cyclotron waves during Cassini's high-inclination orbits of Saturn. Planetary and Space Science, 2017, 136, 34-45.	1.7	4
195	Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations. Astrobiology, 2017, 17, 926-940.	3.0	43
196	Water and Volatiles in the Outer Solar System. Space Science Reviews, 2017, 212, 835-875.	8.1	44
197	Dust ablation on the giant planets: Consequences for stratospheric photochemistry. Icarus, 2017, 297, 33-58.	2.5	82
199	High energy electron sintering of icy regoliths: Formation of the PacMan thermal anomalies on the icy Saturnian moons. Icarus, 2017, 285, 211-223.	2.5	13
200	Modeling the compressibility of Saturn's magnetosphere in response to internal and external influences. Journal of Geophysical Research: Space Physics, 2017, 122, 1572-1589.	2.4	13
201	A Community Grows around the Geysering World of Enceladus. Astrobiology, 2017, 17, 815-819.	3.0	4
202	Density Structures, Dynamics, and Seasonal and Solar Cycle Modulations of Saturn's Inner Plasma Disk. Journal of Geophysical Research: Space Physics, 2017, 122, 12,258.	2.4	8
203	Generation of squeezed vacuum on cesium D2 line down to kilohertz range. Chinese Physics B, 2017, 26, 124206.	1.4	9
204	Swept Forward Magnetic Field Variability in High‣atitude Regions of Saturn's Magnetosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 12,328.	2.4	1

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
205	Cassini–Huygens: Saturn, rings and moons. Astronomy and Geophysics, 2017, 58, 4.20-4.25.	0.2	1
206	Cassini's magnetometer at Saturn. Astronomy and Geophysics, 2017, 58, 4.36-4.42.	0.2	1
207	Dusty Rings. , 0, , 308-337.		6
208	Plasma, Neutral Atmosphere, and Energetic Radiation Environments of Planetary Rings. , 0, , 363-398.		3
210	Modeling, Analysis, and Interpretation of Photoelectron Energy Spectra at Enceladus Observed by Cassini. Journal of Geophysical Research: Space Physics, 2018, 123, 287-296.	2.4	5
211	Energetic electron measurements near Enceladus by Cassini during 2005–2015. Icarus, 2018, 306, 256-274.	2.5	4
212	Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR) as tracers of solar wind conditions near Saturn: Event lists and applications. Icarus, 2018, 300, 47-71.	2.5	31
213	Explorer of Enceladus and Titan (E2T): Investigating ocean worlds' evolution and habitability in the solar system. Planetary and Space Science, 2018, 155, 73-90.	1.7	26
214	Enceladus' near-surface CO2 gas pockets and surface frost deposits. Icarus, 2018, 302, 18-26.	2.5	8
215	Limits on Dione's Activity Using Cassini/CIRS Data. Geophysical Research Letters, 2018, 45, 5876-5898.	4.0	2
216	Cassini/MIMI Observations on the Dungey Cycle Reconnection and Kelvinâ€Helmholtz Instability in Saturn's Magnetosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 7271-7275.	2.4	3
217	Saturn's Magnetic Field and Dynamo. , 2018, , 69-96.		1
218	Global Configuration and Seasonal Variations of Saturn's Magnetosphere. , 2018, , 126-165.		2
219	Dust Emission by Active Moons. Space Science Reviews, 2018, 214, 1.	8.1	3
220	The Liquidus Temperature for Methanolâ€Water Mixtures at High Pressure and Low Temperature, With Application to Titan. Journal of Geophysical Research E: Planets, 2018, 123, 3080-3087.	3.6	7
221	Energetic Ion Moments and Polytropic Index in Saturn's Magnetosphere using Cassini/MIMI Measurements: A Simple Model Based on <i>ΰ</i> â€Distribution Functions. Journal of Geophysical Research: Space Physics, 2018, 123, 8066-8086.	2.4	34
222	Quantifying the Stress of the Saturnian Magnetosphere During the Cassini Era. Geophysical Research Letters, 2018, 45, 8704-8711.	4.0	1
223	Higher harmonics electrostatic ion cyclotron parallel flow velocity shear instability with inhomogeneous DC electric field in the magnetosphere of Saturn. Astrophysics and Space Science, 2018, 363, 1.	1.4	3

#	Article	IF	CITATIONS
224	Internal Versus External Sources of Plasma at Saturn: Overview From Magnetospheric Imaging Investigation/Chargeâ€Energyâ€Mass Spectrometer Data. Journal of Geophysical Research: Space Physics, 2018, 123, 4712-4727.	2.4	15
225	Review of Saturn's icy moons following the Cassini mission. Reports on Progress in Physics, 2018, 81, 065901.	20.1	9
226	Enceladus Auroral Hiss Emissions During Cassini's Grand Finale. Geophysical Research Letters, 2018, 45, 7347-7353.	4.0	16
227	Tightly coupled navigation system of a differential magnetometer system and a MEMS-IMU for Enceladus. , 2018, , .		1
228	Nature, distribution and origin of CO2 on Enceladus. Icarus, 2019, 317, 491-508.	2.5	14
229	Local Time Variation in the Largeâ€6cale Structure of Saturn's Magnetosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 7425-7441.	2.4	6
230	Voyager 2 constraints on plasmoidâ€based transport at Uranus. Geophysical Research Letters, 2019, 46, 10710-10718.	4.0	17
231	Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5231-5243.	4.4	98
232	Energetic Ion Dynamics in the Perturbed Electromagnetic Fields Near Europa. Journal of Geophysical Research: Space Physics, 2019, 124, 7592-7613.	2.4	21
233	Circumplanetary Dust Populations. Space Science Reviews, 2019, 215, 1.	8.1	8
234	Cassini-Huygens' exploration of the Saturn system: 13 years of discovery. Science, 2019, 364, 1046-1051.	12.6	35
235	Quantifying Mass and Magnetic Flux Transport in Saturn's Magnetosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 1916-1926.	2.4	6
236	Ultraviolet observation of Enceladus' plume in transit across Saturn, compared to Europa. Icarus, 2019, 330, 256-260.	2.5	8
237	Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Space Missions in High Speed Impacts?. Sci, 2019, 1, 53.	3.0	4
238	Observations of the chemical and thermal response of â€ring rain' on Saturn's ionosphere. Icarus, 2019, 322, 251-260.	2.5	22
239	Surface deposition of the Enceladus plume and the zenith angle of emissions. Icarus, 2019, 319, 33-42.	2.5	36
240	Ground-based detection of a cloud of methanol from Enceladus: when is a biomarker not a biomarker?. International Journal of Astrobiology, 2019, 18, 25-32.	1.6	4
241	Catastrophic disruption of icy bodies with sub-surface oceans. Icarus, 2020, 336, 113457.	2.5	2

#	Article	IF	CITATIONS
242	The composition and structure of Enceladus' plume from the complete set of Cassini UVIS occultation observations. Icarus, 2020, 344, 113461.	2.5	29
243	On the Habitability and Future Exploration of Ocean Worlds. Space Science Reviews, 2020, 216, 1.	8.1	36
244	Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Space Missions in High-Speed Impacts?. Sci, 2020, 2, 56.	3.0	3
245	Nitrogen Atmospheres of the Icy Bodies in the Solar System. Space Science Reviews, 2020, 216, 1.	8.1	11
246	Magnetospheric Studies: A Requirement for Addressing Interdisciplinary Mysteries in the Ice Giant Systems. Space Science Reviews, 2020, 216, 1.	8.1	16
247	An Improbable Collaboration. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028407.	2.4	1
248	Organic Molecules: Is It Possible To Distinguish Aromatics From Aliphatics Collected By Space Missions in High-Speed Impacts. Sci, 2020, 2, 12.	3.0	0
249	Magnetopause Compressibility at Saturn with Internal Drivers. Geophysical Research Letters, 2020, 47, e2019GL086438.	4.0	3
250	Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Space Missions in High-Speed Impacts?. Sci, 2020, 2, 41.	3.0	0
251	Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Science Reviews, 2020, 216, 1.	8.1	43
252	Fast and Slow Water Ion Populations in the Enceladus Plume. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027591.	2.4	2
253	On the Restricted 3-Body Problem for the Saturn-Enceladus system: mission geometry & orbit design for plume sampling missions. , 2020, , .		6
254	Determining the Nominal Thickness and Variability of the Magnetodisc Current Sheet at Saturn. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027794.	2.4	8
255	Comment on "An Active Plume Eruption on Europa During Galileo Flyby E26 as Indicated by Energetic Proton Depletions―by Huybrighs etÂal Geophysical Research Letters, 2021, 48, e2020GL091550.	4.0	7
256	The 3D Structure of Saturn Magnetospheric Neutral Tori Produced by the Enceladus Plumes. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028775.	2.4	4
257	Machine Learning Applications to Kronian Magnetospheric Reconnection Classification. Frontiers in Astronomy and Space Sciences, 2021, 7, .	2.8	5
260	Sampling Accelerated Micron Scale Ice Particles with a Quadrupole Ion Trap Mass Spectrometer. Journal of the American Society for Mass Spectrometry, 2021, 32, 1162-1168.	2.8	9
261	On the structure of the Enceladus plume. Monthly Notices of the Royal Astronomical Society, 2021, 504, 6216-6222.	4.4	0

#	Article	IF	CITATIONS
262	Sampling Plume Deposits on Enceladus' Surface to Explore Ocean Materials and Search for Traces of Life or Biosignatures. Planetary Science Journal, 2021, 2, 100.	3.6	8
263	Photodetachment and Test-particle Simulation Constraints on Negative Ions in Solar System Plasmas. Planetary Science Journal, 2021, 2, 99.	3.6	4
264	Heading errors in all-optical alkali-metal-vapor magnetometers in geomagnetic fields. Physical Review A, 2021, 103, .	2.5	14
265	Exploration of Enceladus and Titan: investigating ocean worlds' evolution and habitability in the Saturn system. Experimental Astronomy, 2022, 54, 877-910.	3.7	3
266	The Science Case for a Return to Enceladus. Planetary Science Journal, 2021, 2, 132.	3.6	40
267	Exploration of Icy Ocean Worlds Using Geophysical Approaches. Planetary Science Journal, 2021, 2, 150.	3.6	14
268	Salt grains in hypervelocity impacts in the laboratory: Methods to sample plumes from the ice worlds Enceladus and Europa. Meteoritics and Planetary Science, 2021, 56, 1652-1668.	1.6	4
269	A Recipe for the Geophysical Exploration of Enceladus. Planetary Science Journal, 2021, 2, 157.	3.6	14
271	The Dynamics of Saturn's Magnetosphere. , 2009, , 257-279.		35
272	Fundamental Plasma Processes in Saturn's Magnetosphere. , 2009, , 281-331.		59
273	Icy Satellites: Geological Evolution and Surface Processes. , 2009, , 637-681.		34
274	Enceladus: An Active Cryovolcanic Satellite. , 2009, , 683-724.		65
275	Origin of the Saturn System. , 2009, , 55-74.		3
276	Saturn's Magnetospheric Configuration. , 2009, , 203-255.		44
277	Induced Magnetic Fields in Solar System Bodies. Space Sciences Series of ISSI, 2009, , 391-421.	0.0	5
278	ARTEMIS Science Objectives. , 2011, , 27-59.		4
279	Photometrically-corrected global infrared mosaics of Enceladus: New implications for its spectral diversity and geological activity. Icarus, 2020, 349, 113848.	2.5	10
280	Enceladus gets active. Nature, 0, , .	27.8	1

#	Article	IF	CITATIONS
281	Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astronomy and Astrophysics, 2013, 552, A119.	5.1	128
282	SPECTRAL OBSERVATIONS OF THE ENCELADUS PLUME WITH CASSINI-VIMS. Astrophysical Journal, 2009, 693, 1749-1762.	4.5	72
283	Polarimetry of Saturnian satellite Enceladus. Advances in Astronomy and Space Physics, 2015, 5, 29-32.	0.2	2
284	Exospheres and Atmospheric Escape. Space Sciences Series of ISSI, 2008, , 355-397.	0.0	7
285	Magnetic Fields of the Satellites of Jupiter and Saturn. Space Sciences Series of ISSI, 2009, , 271-305.	0.0	1
286	Science Instruments and Experiments. , 2009, , 181-240.		0
287	Environments in the Outer Solar System. Space Sciences Series of ISSI, 2010, , 11-59.	0.0	0
288	Chemical Composition of Icy Satellite Surfaces. Space Sciences Series of ISSI, 2010, , 111-152.	0.0	0
289	Atmospheric/Exospheric Characteristics of Icy Satellites. Space Sciences Series of ISSI, 2010, , 153-182.	0.0	0
290	10.1007/s11208-008-2004-x. , 2010, 42, 124.		0
292	Enceladus. , 2014, , 1-3.		0
293	Enceladus. , 2015, , 723-725.		1
294	Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra. Space Sciences Series of ISSI, 2016, , 99-179.	0.0	0
295	Saturn Plasma Sources and Associated Transport Processes. Space Sciences Series of ISSI, 2016, , 237-283.	0.0	1
296	Spacecraft and Instrumentation. Springer Theses, 2017, , 39-46.	0.1	0
297	Water and Volatiles in the Outer Solar System. Space Sciences Series of ISSI, 2017, , 191-231.	0.0	0
299	Enceladus. , 2019, , 1-3.		0
300	Deep Ocean Passive Acoustic Technologies for Exploration of Ocean and Surface Sea Worlds in the Outer Solar System. Oceanography, 2020, 33, .	1.0	1

#	Article	IF	CITATIONS
301	Evidence of Electron Density Enhancements in the Postâ€Apoapsis Sector of Enceladus' Orbit. Journal of Geophysical Research: Space Physics, 2020, 125, .	2.4	0
302	The search for life in the solar system. Transactions of the American Clinical and Climatological Association, 2009, 120, 299-325.	0.5	2
303	Enceladus as a potential oasis for life: Science goals and investigations for future explorations. Experimental Astronomy, 2022, 54, 809-847.	3.7	5
305	Enceladus and Titan: emerging worlds of the Solar System. Experimental Astronomy, 0, , 1.	3.7	1
306	Cryovolcanism. , 2022, , 161-234.		3
307	Plasma Waves Around Comets. IETE Technical Review (Institution of Electronics and) Tj ETQq1 1 0.784314 rgBT	/Oyerlock	10,Tf 50 542
308	Modeling the complete set of Cassini's UVIS occultation observations of Enceladus' plume. Icarus, 2022, 383, 114918.	2.5	1
309	The Case for a New Frontiers–Class Uranus Orbiter: System Science at an Underexplored and Unique World with a Mid-scale Mission. Planetary Science Journal, 2022, 3, 58.	3.6	12
310	Effects of trapped ions concentration on the dynamics of dustâ€acoustic periodic travelling waves in dusty plasmas. Contributions To Plasma Physics, 2022, 62, .	1.1	3
311	Dust-acoustic solitary and periodic waves in a plasma with ion distribution with trapped particles. Radiation Effects and Defects in Solids, 0, , 1-16.	1.2	2
312	The Contribution of Planetary Period Oscillations Towards Circulation and Mass Loss in Saturn's Magnetosphere. Journal of Geophysical Research: Space Physics, 0, , .	2.4	0
313	Statistics of Water-group Band Ion Cyclotron Waves in Saturn's Inner Magnetosphere Based on 13 yr of Cassini Measurements. Astrophysical Journal, 2022, 932, 56.	4.5	3
314	Insight Into Io Enabled by Characterization of Its Neutral Oxygen Torus. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
315	Femtotesla Nearly-Quantum-Noise-Limited Pulsed Gradiometer at Earth-Scale Fields. Physical Review Applied, 2022, 18, .	3.8	17
316	Hydrothermal Processing of Microorganisms: Mass Spectral Signals of Degraded Biosignatures for Life Detection on Icy Moons. ACS Earth and Space Chemistry, 2022, 6, 2508-2518.	2.7	3
317	<i>Carnobacterium</i> Species Capable of Growth at Pressures Ranging Over 5 Orders of Magnitude, from the Surface of Mars (10 ³ Pa) to Deep Oceans (10 ⁷ Pa) in the Solar System. Astrobiology, 2023, 23, 94-104.	3.0	2
318	Moonraker: Enceladus Multiple Flyby Mission. Planetary Science Journal, 2022, 3, 268.	3.6	5
319	What the Upper Atmospheres of Giant Planets Reveal. Remote Sensing, 2022, 14, 6326.	4.0	Ο

ARTICLE IF CITATIONS # Highlight Advances in Planetary Physics in the Solar System: In Situ Detection Over the Past 20 Years. 320 2.5 0 Space: Science & Technology, 2023, 3, . Resonant Scattering of Radiation Belt Electrons at Saturn by Ion Cyclotron Waves. Geophysical 321 4.0 Research Letters, 2023, 50, . 322 The Fermi Paradox and Astrobiology., 2023, , 209-266. 0 Scaling laws for ablation waves formed by ice sublimation and rock dissolution: applications to the Earth, Mars and Pluto. Frontiers in Astronomy and Space Sciences, 0, 10, . New Insights into Variations in Enceladus Plume Particle Launch Velocities from Cassini-VIMS Spectral 324 3.6 0 Data. Planetary Science Journal, 2023, 4, 108. JWST molecular mapping and characterization of Enceladus' water plume feeding its torus. Nature Astronomy, 2023, 7, 1056-1062. 10.1 2022 Kuiper prize lecture: From pinpoints of light to geologic worlds: The magic of photometry. 326 2.5 0 Icarus, 2023, 402, 115635. Enceladus., 2023,, 891-893. Predicting the Effect of Surface Properties on Enceladus for Landing. Planetary Science Journal, 2023, 328 3.6 0 4, 150. Mass Spectrometric Fingerprints of Organic Compounds in Sulfate-Rich Ice Grains: Implications for 2.7 Europa Clipper. ACS Earth and Space Chemistry, 2023, 7, 1675-1693. A Possible Unified Picture for the Connected Recurrent Magnetic Dipolarization, Quasiâ€Periodic ENA Enhancement, SKR Lowâ€Frequency Extension and Narrowband Emission at Saturn. Journal of 330 2.4 0 Geophysical Research: Space Physics, 2023, 128, . Quantifying the Absorption Loss of Radiation Belt Energetic Particles by Saturn's Inner Moons. 3.6 Journal of Geophysical Research E: Planets, 2023, 128, Radial compositional profile of Saturn's E ring indicates substantial space weathering effects. 332 4.4 2 Monthly Notices of the Royal Astronomical Society, 0, , . Detection of HCN and diverse redox chemistry in the plume of Enceladus. Nature Astronomy, 2024, 8, 10.1 164-173. Unraveling the Fate of Impacted Ice Particles and the Consequences for Plume Flyâ€Through Missions. 334 3.6 0 Journal of Geophysical Research E: Planets, 2023, 128, . Geysers' Dust Dynamics Inside the Hill Sphere of Enceladus. Geophysical Research Letters, 2024, 51, . Titan, Enceladus, and other icy moons of Saturn., 2024, , 315-356. 336 0 The Geological Map of Mimas v1.0-2023. Geosciences (Switzerland), 2024, 14, 25. 2.2

#	Article	IF	CITATIONS
338	The Composition and Chemistry of Titan's Atmosphere. ACS Earth and Space Chemistry, 2024, 8, 406-456.	2.7	0