Elucidation of Residue-Level Structure and Dynamics o Infrared Spectroscopy

Accounts of Chemical Research 39, 169-175

DOI: 10.1021/ar050135f

Citation Report

#	Article	IF	Citations
1	Tuning the Cooperativity of the Helixâ^'Coil Transition by Aqueous Reverse Micelles. Journal of Physical Chemistry B, 2006, 110, 11615-11619.	1.2	40
2	Infrared Line Shape of an α-Carbon Deuterium-Labeled Amino Acid. Journal of the American Chemical Society, 2006, 128, 13334-13335.	6.6	48
3	Direct UV Raman Monitoring of 310-Helix and π-Bulge Premelting during α-Helix Unfolding. Journal of the American Chemical Society, 2006, 128, 13789-13795.	6.6	52
5	Vibrational spectroscopic characteristics of secondary structure polypeptides in liquid water: Constrained MD simulation studies. Biopolymers, 2006, 83, 519-536.	1.2	39
6	Vibrational relaxation of C–D stretching vibrations in CDCl3, CDBr3, and CDI3. Journal of Chemical Physics, 2006, 125, 174503.	1.2	15
7	A mechanistic link between oxidative stress and membrane mediated amyloidogenesis revealed by infrared spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1913-1922.	1.4	31
8	Infrared spectroscopy of proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1073-1101.	0.5	3,547
9	Amide I two-dimensional infrared spectroscopy of \hat{I}^2 -hairpin peptides. Journal of Chemical Physics, 2007, 126, 045109.	1.2	74
10	Cross-Strand Coupling of a \hat{l}^2 -Hairpin Peptide Stabilized with an Aib-Gly Turn Studied Using Isotope-Edited IR Spectroscopy. Journal of the American Chemical Society, 2007, 129, 13592-13603.	6.6	41
11	UV Raman Spatially Resolved Melting Dynamics of Isotopically Labeled Polyalanyl Peptide:  Slow α-Helix Melting Follows 310-Helices and π-Bulges Premelting. Journal of Physical Chemistry B, 2007, 111, 3280-3292.	1.2	32
12	Peptide Bond Vibrational Coupling. Journal of Physical Chemistry B, 2007, 111, 4271-4279.	1.2	47
13	A Simple and Economical Method for the Production of ¹³ C, ¹⁸ O-Labeled Fmoc-Amino Acids with High Levels of Enrichment:  Applications to Isotope-Edited IR Studies of Proteins. Organic Letters, 2007, 9, 4935-4937.	2.4	46
14	Thermal Denaturation of Polyalanine Peptide in Water by Molecular Dynamics Simulations and Theoretical Prediction of Infrared Spectra:Â Helixâ ⁻ Coil Transition Kinetics. Journal of Physical Chemistry B, 2007, 111, 605-617.	1.2	19
15	Computational spectroscopy of ubiquitin: Comparison between theory and experiments. Journal of Chemical Physics, 2007, 126, 045102.	1.2	76
16	Probing Local Structural Events in βâ€Hairpin Unfolding with Transient Nonlinear Infrared Spectroscopy. Angewandte Chemie - International Edition, 2007, 46, 7984-7987.	7.2	53
18	Doubly resonant two-dimensional three-wave-mixing spectroscopy of polypeptides: Structure–spectrum relationships. Chemical Physics, 2007, 337, 81-92.	0.9	6
19	Infrared Study of the Effect of Hydration on the Amide I Band and Aggregation Properties of Helical Peptides. Journal of Physical Chemistry B, 2007, 111, 4596-4602.	1.2	77
20	Vibrational circular dichroism and IR spectral analysis as a test of theoretical conformational modeling for a cyclic hexapeptide. Chirality, 2008, 20, 1104-1119.	1.3	21

#	Article	IF	CITATIONS
21	The Solventâ€Dependent Shift of the Amide I Band of a Fully Solvated Peptide as a Local Probe for the Solvent Composition in the Peptide/Solvent Interface. ChemPhysChem, 2008, 9, 2742-2750.	1.0	15
22	Steric Zipper of the Amyloid Fibrils Formed by Residues 109–122 of the Syrian Hamster Prion Protein. Journal of Molecular Biology, 2008, 378, 1142-1154.	2.0	53
23	Time-Resolved Infrared Spectroscopy of pH-Induced Aggregation of the Alzheimer Aβ1–28 Peptide. Journal of Molecular Biology, 2008, 379, 589-596.	2.0	54
24	Conformational Plasticity of the Gerstmann–StrÃ ¤ ssler–Scheinker Disease Peptide as Indicated by Its Multiple Aggregation Pathways. Journal of Molecular Biology, 2008, 381, 1349-1361.	2.0	56
25	Synthesis, characterization and applicability of three isotope labeled azobenzene photoswitches. Organic and Biomolecular Chemistry, 2008, 6, 3508.	1.5	13
26	Two-dimensional nonlinear optical activity spectroscopy of coupled multi-chromophore system. Physical Chemistry Chemical Physics, 2008, 10, 3839.	1.3	23
27	Two-Dimensional Infrared Spectroscopy as a Probe of the Solvent Electrostatic Field for a Twelve Residue Peptide. Journal of Physical Chemistry B, 2008, 112, 5930-5937.	1.2	53
28	Coherent Two-Dimensional Optical Spectroscopy. Chemical Reviews, 2008, 108, 1331-1418.	23.0	724
29	Cross-Strand Pairing and Amyloid Assembly. Biochemistry, 2008, 47, 10018-10026.	1.2	84
30	\hat{l}^2 -Azidoalanine as an IR Probe: Application to Amyloid A \hat{l}^2 (16-22) Aggregation. Journal of Physical Chemistry B, 2008, 112, 10352-10357.	1.2	108
31	Optimized Quantum Mechanics/Molecular Mechanics Strategies for Nitrile Vibrational Probes: Acetonitrile and <i>para</i> -Tolunitrile in Water and Tetrahydrofuran. Journal of Physical Chemistry B, 2008, 112, 13991-14001.	1.2	44
32	Site-Specific Unfolding Thermodynamics of a Helix-Turn-Helix Protein. Journal of the American Chemical Society, 2008, 130, 8146-8147.	6.6	31
33	Nitrile Groups as Vibrational Probes: Calculations of the C≡N Infrared Absorption Line Shape of Acetonitrile in Water and Tetrahydrofuran. Journal of Physical Chemistry B, 2008, 112, 6301-6303.	1.2	92
34	Molecular Design of Î ² -Hairpin Peptides for Material Construction. MRS Bulletin, 2008, 33, 530-535.	1.7	64
35	Integrated and dispersed photon echo studies of nitrile stretching vibration of 4-cyanophenol in methanol. Journal of Chemical Physics, 2009, 130, 204509.	1.2	20
36	Carbon-deuterium vibrational probes of peptide conformation: Alanine dipeptide and glycine dipeptide. Journal of Chemical Physics, 2009, 130, 125103.	1.2	19
37	Quantum mechanical studies on model αâ€pleated sheets. Journal of Computational Chemistry, 2010, 31, 1216-1223.	1.5	10
38	Beyond the nearestâ€neighbor Zimm–Bragg model for helixâ€coil transition in peptides. Biopolymers, 2009, 91, 120-131.	1.2	9

#	Article	IF	CITATIONS
39	Calculations of intermode coupling constants and simulations of amide I, II, and III vibrational spectra of dipeptides. Chemical Physics, 2009, 361, 168-175.	0.9	27
40	Mode-Specific Vibrational Energy Relaxation of Amide I′ and II′ Modes in <i>N</i> Hethylacetamide/Water Clusters: Intra- and Intermolecular Energy Transfer Mechanisms. Journal of Physical Chemistry A, 2009, 113, 3051-3060.	1.1	30
41	Efforts toward Developing Probes of Protein Dynamics: Vibrational Dephasing and Relaxation of Carbon–Deuterium Stretching Modes in Deuterated Leucine. Journal of Physical Chemistry B, 2009, 113, 7991-7994.	1.2	26
42	Cross-Strand Coupling and Site-Specific Unfolding Thermodynamics of a Trpzip \hat{l}^2 -Hairpin Peptide Using ¹³ C Isotopic Labeling and IR Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 5661-5674.	1.2	55
43	Two-dimensional Infrared Spectroscopy Provides Evidence of an Intermediate in the Membrane-catalyzed Assembly of Diabetic Amyloid. Journal of Physical Chemistry B, 2009, 113, 2498-2505.	1.2	68
44	The Determinants of Stability and Folding in Evolutionarily Diverged Cytochromes c. Journal of Molecular Biology, 2009, 388, 159-167.	2.0	11
45	Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochemical and Photobiological Sciences, 2009, 8, 499-512.	1.6	62
46	Strategies for Extracting Structural Information from 2D IR Spectroscopy of Amyloid: Application to Islet Amyloid Polypeptide. Journal of Physical Chemistry B, 2009, 113, 15679-15691.	1.2	95
47	Nitrile groups as vibrational probes of biomolecular structure and dynamics: an overview. Physical Chemistry Chemical Physics, 2009, 11, 8119.	1.3	143
48	How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopiesvia pulse shaping. Physical Chemistry Chemical Physics, 2009, 11, 748-761.	1.3	373
49	The \hat{l}^2 -Sheet Structure pH Dependence of the Core Fragments of \hat{l}^2 2-Microglobulin Amyloid Fibrils. Bulletin of the Chemical Society of Japan, 2010, 83, 495-504.	2.0	14
50	Differential effects of phe19 and phe20 on fibril formation by amyloidogenic peptide Aβ16–22 (Acâ€KLVFFAEâ€NH ₂). Proteins: Structure, Function and Bioinformatics, 2010, 78, 2306-2321.	1.5	55
51	Structural features of proinsulin Câ€peptide oligomeric and amyloid states. FEBS Journal, 2010, 277, 3759-3768.	2.2	18
52	Intermolecular charge flux as the origin of infrared intensity enhancement upon halogen-bond formation of the peptide group. Journal of Chemical Physics, 2010, 133, 034504.	1.2	28
53	Carbonâ^'Deuterium Vibrational Probes of the Protonation State of Histidine in the Gas-Phase and in Aqueous Solution. Journal of Physical Chemistry B, 2010, 114, 8565-8573.	1.2	14
54	Comparison of Isotopic Substitution Methods for Equilibrium and T-Jump Infrared Studies of \hat{l}^2 -Hairpin Peptide Conformation. Journal of Physical Chemistry B, 2010, 114, 11628-11637.	1.2	18
55	Influence of Salt on the Self-Assembly of Two Model Amyloid Heptapeptides. Journal of Physical Chemistry B, 2010, 114, 8002-8008.	1.2	53
56	Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy. Methods, 2010, 52, 12-22.	1.9	112

#	Article	IF	Citations
57	α-Synuclein in α-helical conformation at air–water interface: implication of conformation and orientation changes during its accumulation/aggregation. Chemical Communications, 2010, 46, 6702.	2.2	30
58	Comparative Study of Electrostatic Models for the Amide-I and -II Modes: Linear and Two-Dimensional Infrared Spectra. Journal of Physical Chemistry B, 2010, 114, 1434-1446.	1.2	61
59	Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid- \hat{l}^2 fragment peptide. Molecular BioSystems, 2011, 7, 486-496.	2.9	83
60	Clarifying the influence of core amino acid hydrophobicity, secondary structure propensity, and molecular volume on amyloid-β 16–22 self-assembly. Molecular BioSystems, 2011, 7, 497-510.	2.9	57
61	2DIR Spectroscopy of Human Amylin Fibrils Reflects Stable \hat{l}^2 -Sheet Structure. Journal of the American Chemical Society, 2011, 133, 16062-16071.	6.6	114
62	Site-Specific Spectroscopic Reporters of the Local Electric Field, Hydration, Structure, and Dynamics of Biomolecules. Journal of Physical Chemistry Letters, 2011, 2, 2598-2609.	2.1	145
63	Probing Local Environments with the Infrared Probe: <scp>I</scp> -4-Nitrophenylalanine. Journal of Physical Chemistry B, 2011, 115, 2380-2385.	1.2	34
64	Simulation of the Amide I Absorption of Stacked \hat{I}^2 -Sheets. Journal of Physical Chemistry B, 2011, 115, 749-757.	1.2	44
65	Modulating Accidental Fermi Resonance: What a Difference a Neutron Makes. Journal of Physical Chemistry Letters, 2011, 2, 1672-1676.	2.1	53
66	New Insight into the IR-Spectra/Structure Relationship in Amyloid Fibrils: A Theoretical Study on a Prion Peptide. Journal of the American Chemical Society, 2011, 133, 11414-11417.	6.6	28
67	Polarization-Angle-Scanning Two-Dimensional Spectroscopy: Application to Dipeptide Structure Determination. Journal of Physical Chemistry A, 2011, 115, 3766-3777.	1.1	1
68	Experimental and Theoretical Spectroscopic Study of 3 ₁₀ -Helical Peptides Using Isotopic Labeling to Evaluate Vibrational Coupling. Journal of Physical Chemistry B, 2011, 115, 6252-6264.	1.2	21
69	Development and Validation of Transferable Amide I Vibrational Frequency Maps for Peptides. Journal of Physical Chemistry B, 2011, 115, 3713-3724.	1.2	162
70	Steric Zipper Formed by Hydrophobic Peptide Fragment of Syrian Hamster Prion Protein. Biochemistry, 2011, 50, 6815-6823.	1.2	32
71	Isotope-assisted vibrational circular dichroism investigations of amyloid \hat{l}^2 peptide fragment, $\hat{Al}^2(16\hat{a}\in 22)$. Journal of Structural Biology, 2011, 176, 212-219.	1.3	20
72	A B3LYP investigation of the conformational and environmental sensitivity of carbon–deuterium frequencies of aryl-perdeuterated phenylalanine and tryptophan. Theoretical Chemistry Accounts, 2011, 130, 883-889.	0.5	4
73	Dynamics of protein folding: Probing the kinetic network of folding–unfolding transitions with experiment and theory. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1001-1020.	1.1	51
74	Vibrational excitons in ionophores: experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels. New Journal of Physics, 2011, 13, 113030.	1.2	32

#	Article	IF	CITATIONS
75	Structural heterogeneities of self-assembled peptide nanomaterials., 2012,,.		2
76	Single-conformation infrared spectra of model peptides in the amide I and amide II regions: Experiment-based determination of local mode frequencies and inter-mode coupling. Journal of Chemical Physics, 2012, 137, 094301.	1.2	71
77	Side-chain specific isotopic labeling of proteins for infrared structural biology: The case of ring-D4-tyrosine isotope labeling of photoactive yellow protein. Protein Expression and Purification, 2012, 85, 125-132.	0.6	7
78	Thermally Induced Protein Unfolding Probed by Isotope-Edited IR Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 9627-9634.	1.2	17
79	In Situ Molecular-Level Insights into the Interfacial Structure Changes of Membrane-Associated Prion Protein Fragment [118–135] Investigated by Sum Frequency Generation Vibrational Spectroscopy. Langmuir, 2012, 28, 16979-16988.	1.6	34
80	Formation of Two Different Types of Oligomers in the Early Phase of pH-Induced Aggregation of the Alzheimer Al 2 (12-28) Peptide. Journal of Physical Chemistry B, 2012, 116, 12389-12397.	1.2	7
81	Deamidation Accelerates Amyloid Formation and Alters Amylin Fiber Structure. Journal of the American Chemical Society, 2012, 134, 12658-12667.	6.6	88
84	Isotope-Edited Infrared Spectroscopy. Methods in Molecular Biology, 2012, 895, 347-358.	0.4	6
86	Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP(20–29) amyloid selfâ€assembly. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1053-1065.	1.5	64
87	Coassembly of Enantiomeric Amphipathic Peptides into Amyloid-Inspired Rippled \hat{l}^2 -Sheet Fibrils. Journal of the American Chemical Society, 2012, 134, 5556-5559.	6.6	169
88	Three-Dimensional Structures by Two-Dimensional Vibrational Spectroscopy. Accounts of Chemical Research, 2012, 45, 1896-1905.	7.6	69
90	Remodeling Crossâ€Î² Nanotube Surfaces with Peptide/Lipid Chimeras. Angewandte Chemie - International Edition, 2012, 51, 6635-6638.	7.2	40
91	Review selfâ€assembly of amphipathic βâ€sheet peptides: Insights and applications. Biopolymers, 2012, 98, 169-184.	1,2	199
92	Control of strand registry by attachment of PEG chains to amyloid peptides influences nanostructure. Soft Matter, 2012, 8, 5434.	1.2	21
93	Synthesis of 4-thia-[6-13C]lysine from [2-13C]glycine: access to site-directed isotopomers of 2-aminoethanol, 2-bromoethylamine and 4-thialysine. Amino Acids, 2012, 42, 309-315.	1.2	6
94	Infrared, Vibrational Circular Dichroism, and Raman Spectral Simulations for Î ² -Sheet Structures with Various Isotopic Labels, Interstrand, and Stacking Arrangements Using Density Functional Theory. Journal of Physical Chemistry B, 2013, 117, 10343-10358.	1.2	63
95	ATR-FTIR: A "rejuvenated―tool to investigate amyloid proteins. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2328-2338.	1.4	338
96	ATR-FTIR studies in pore forming and membrane induced fusion peptides. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2306-2313.	1.4	31

#	Article	IF	CITATIONS
97	Parallel \hat{l}^2 -Sheet Fibril and Antiparallel \hat{l}^2 -Sheet Oligomer: New Insights into Amyloid Formation of Hen Egg White Lysozyme under Heat and Acidic Condition from FTIR Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 4003-4013.	1.2	122
98	Simulation of the Amide I Infrared Spectrum in Photoinduced Peptide Folding/Unfolding Transitions. Journal of Physical Chemistry B, 2013, 117, 12383-12390.	1.2	17
99	Insight into the Packing Pattern of \hat{l}^2 ₂ Fibrils: A Model Study of Glutamic Acid Rich Oligomers with ¹³ C Isotopic Edited Vibrational Spectroscopy. Biomacromolecules, 2013, 14, 3880-3891.	2.6	34
100	Protein Fluorescent Dye Labeling. , 2013, , 2015-2015.		0
102	The dynamic nature of incubation solution after cooling to room temperature in amyloid formation of hen egg white lysozyme: An FTIR assessment. Vibrational Spectroscopy, 2013, 64, 44-50.	1.2	5
103	Deducing conformational variability of intrinsically disordered proteins from infrared spectroscopy with Bayesian statistics. Chemical Physics, 2013, 422, 143-155.	0.9	13
104	Conformation and Dynamics of a Cyclic Disulfide-Bridged Peptide: Effects of Temperature and Solvent. Journal of Physical Chemistry B, 2013, 117, 3560-3570.	1.2	15
105	Structural Characterization of Membrane Proteins and Peptides by FTIR and ATR-FTIR Spectroscopy. Methods in Molecular Biology, 2013, 974, 177-218.	0.4	71
106	Photoblinking., 2013,, 1862-1862.		0
107	Positron Emission Tomography Methodology. , 2013, , 1912-1919.		O
108	Infrared Probes for Studying the Structure and Dynamics of Biomolecules. Chemical Reviews, 2013, 113, 5817-5847.	23.0	190
109	Infrared Probes Based on Nitrile-Derivatized Prolines: Thermal Insulation Effect and Enhanced Dynamic Range. Journal of Physical Chemistry Letters, 2013, 4, 2105-2110.	2.1	51
110	Site-specific structure of Aβ(25–35) peptide: Isotope-assisted vibrational circular dichroism study. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 308-316.	1.1	12
111	Insights into the Molecular Architecture of a Peptide Nanotube Using FTIR and Solidâ€State NMR Spectroscopic Measurements on an Aligned Sample. Angewandte Chemie - International Edition, 2013, 52, 10537-10540.	7.2	59
112	Site-Specific Orientation of an \hat{l} ±-Helical Peptide Ovispirin-1 from Isotope-Labeled SFG Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 14625-14634.	1.2	33
113	Vibrational Energy and Molecular Thermometers in Liquids: Ultrafast IR-Raman Spectroscopy. , 2013, , 282-317.		29
114	Substrate-Induced Unfolding of Protein Disulfide Isomerase Displaces the Cholera Toxin A1 Subunit from Its Holotoxin. PLoS Pathogens, 2014, 10, e1003925.	2.1	29
115	⟨sup⟩13⟨ sup⟩Câ•⟨sup⟩18⟨ sup⟩0 ⟨sup⟩15⟨ sup⟩N Isotope Dependence of the Amide-I/II 2D IR Cross Peaks for the Fully Extended Peptides. Journal of Physical Chemistry C, 2014, 118, 29448-29457.	1.5	15

#	Article	IF	CITATIONS
116	Kinetic Intermediates in Amyloid Assembly. Journal of the American Chemical Society, 2014, 136, 15146-15149.	6.6	85
117	Isotope-edited FTIR in H2O: determination of the conformation of specific residues in a model α-helix peptide by 13C labeled carbonyls. Chemical Communications, 2014, 50, 3931.	2.2	13
118	Aggregates from Perylene Bisimide Oligopeptides as a Test Case for Giant Vibrational Circular Dichroism. Journal of Physical Chemistry B, 2014, 118, 11152-11160.	1.2	15
119	Cryogenic Ion Chemistry and Spectroscopy. Accounts of Chemical Research, 2014, 47, 202-210.	7.6	256
120	Ultrafast Structural Dynamics of BlsA, a Photoreceptor from the Pathogenic Bacterium <i>Acinetobacter baumannii</i> . Journal of Physical Chemistry Letters, 2014, 5, 220-224.	2.1	25
121	FT-IR Spectroscopy and Density Functional Theory Calculations of ¹³ C Isotopologues of the Helical Peptide Z-Aib ₆ -OtBu. Journal of Physical Chemistry B, 2014, 118, 58-68.	1.2	6
122	Pyroglutamylated Amyloid- \hat{l}^2 Peptide Reverses Cross \hat{l}^2 -Sheets by a Prion-Like Mechanism. Journal of Physical Chemistry B, 2014, 118, 5637-5643.	1.2	22
123	Substrate-Induced Unfolding of Protein Disulfide Isomerase Displaces the Cholera Toxin A1 Subunit from its Holotoxin. Biophysical Journal, 2014, 106, 472a.	0.2	2
124	Dimethyl Sulfoxide Induced Destabilization and Disassembly of Various Structural Variants of Insulin Fibrils Monitored by Vibrational Circular Dichroism. Biochemistry, 2015, 54, 7193-7202.	1.2	23
125	How Sensitive is the Amideâ€I Vibration of the Polypeptide Backbone to Electric Fields?. ChemPhysChem, 2015, 16, 3595-3598.	1.0	16
126	Defining the Dynamic Conformational Networks of Crossâ€Î² Peptide Assembly. Israel Journal of Chemistry, 2015, 55, 763-769.	1.0	16
127	Temperature Determination by EPR at 275 GHz and the Detection of Temperature Jumps in Aqueous Samples. Journal of Physical Chemistry B, 2015, 119, 13416-13421.	1.2	5
128	The ¹³ C amide I band is still sensitive to conformation change when the regular amide I band cannot be distinguished at the typical position in H ₂ O. Chemical Communications, 2015, 51, 12537-12539.	2.2	8
129	Isotope-edited FTIR reveals distinct aggregation and structural behaviors of unmodified and pyroglutamylated amyloid \hat{l}^2 peptides. Physical Chemistry Chemical Physics, 2015, 17, 32149-32160.	1.3	14
130	Site-Specific Infrared Probes of Proteins. Annual Review of Physical Chemistry, 2015, 66, 357-377.	4.8	151
131	Probing Site-Specific Structural Information of Peptides at Model Membrane Interface In Situ. Journal of the American Chemical Society, 2015, 137, 10190-10198.	6.6	51
132	Temperature dependence of C-terminal carboxylic group IR absorptions in the amide l′ region. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 134, 473-483.	2.0	4
133	Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an "Elephant and Blind Men―Situation. Advances in Experimental Medicine and Biology, 2015, 870, 215-260.	0.8	33

#	Article	IF	Citations
134	Sequence, structure, and cooperativity in folding of elementary protein structural motifs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9890-9895.	3.3	22
135	Interplay between Lipid Interaction and Homo-coiling of Membrane-Tethered Coiled-Coil Peptides. Langmuir, 2015, 31, 9953-9964.	1.6	30
136	Theoretical Sum Frequency Generation Spectroscopy of Peptides. Journal of Physical Chemistry B, 2015, 119, 8969-8983.	1.2	25
137	Surface FTIR Techniques to Analyze the Conformation of Proteins/ Peptides in H2O Environment. , 2016, 6, .		5
138	Chiral recognition in amyloid fiber growth. Journal of Peptide Science, 2016, 22, 290-304.	0.8	25
139	Infrared and Fluorescence Assessment of Protein Dynamics: From Folding to Function. Journal of Physical Chemistry B, 2016, 120, 5103-5113.	1.2	25
140	Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics. Annual Review of Physical Chemistry, 2016, 67, 359-386.	4.8	93
141	Covalent Tethering and Residues with Bulky Hydrophobic Side Chains Enable Selfâ€Assembly of Distinct Amyloid Structures. ChemBioChem, 2016, 17, 2274-2285.	1.3	9
142	Toward Extreme Biophysics: Deciphering the Infrared Response of Biomolecular Solutions at High Pressures. Angewandte Chemie, 2016, 128, 9686-9690.	1.6	4
143	Self-assembled peptide nanostructures for functional materials. Nanotechnology, 2016, 27, 402002.	1.3	76
144	Toward Extreme Biophysics: Deciphering the Infrared Response of Biomolecular Solutions at High Pressures. Angewandte Chemie - International Edition, 2016, 55, 9534-9538.	7.2	47
145	Refining Disordered Peptide Ensembles with Computational Amide I Spectroscopy: Application to Elastin-Like Peptides. Journal of Physical Chemistry B, 2016, 120, 11395-11404.	1.2	19
146	Two-Dimensional Infrared Study of ¹³ C-Natural Abundant Vibrational Transition Reveals Intramolecular Vibrational Redistribution Rather than Fluxional Exchange in Mn(CO) ₅ Br. Journal of Physical Chemistry B, 2016, 120, 1304-1311.	1.2	17
147	Efficient Isotope Editing of Proteins for Site-Directed Vibrational Spectroscopy. Journal of the American Chemical Society, 2016, 138, 2312-2318.	6.6	29
148	Infrared Probe Technique Reveals a Millipede-like Structure for Aβ(8–28) Amyloid Fibril. Langmuir, 2016, 32, 937-946.	1.6	14
149	Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chemical Reviews, 2017, 117, 1927-1969.	23.0	104
150	Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. International Reviews in Physical Chemistry, 2017, 36, 377-431.	0.9	32
151	Isotope-labeled aspartate sidechain as a non-perturbing infrared probe: Application to investigate the dynamics of a carboxylate buried inside a protein. Chemical Physics Letters, 2017, 683, 193-198.	1.2	11

#	Article	IF	CITATIONS
152	Molecular, Local, and Network-Level Basis for the Enhanced Stiffness of Hydrogel Networks Formed from Coassembled Racemic Peptides: Predictions from Pauling and Corey. ACS Central Science, 2017, 3, 586-597.	5. 3	107
153	Unmodified and pyroglutamylated amyloid β peptides form hypertoxic heteroâ€oligomers of unique secondary structure. FEBS Journal, 2017, 284, 1355-1369.	2.2	15
154	Sensing siteâ€specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides. Chirality, 2017, 29, 763-773.	1.3	10
155	Amyloid β-peptides 1–40 and 1–42 form oligomers with mixed β-sheets. Chemical Science, 2017, 8, 8247-8254.	3.7	32
156	The covalently bound diazo group as an infrared probe for hydrogen bonding environments. Physical Chemistry Chemical Physics, 2017, 19, 19420-19426.	1.3	14
157	Balancing hydrophobicity and sequence pattern to influence selfâ€assembly of amphipathic peptides. Peptide Science, 2018, 110, e23099.	1.0	22
158	Spectroscopic methods for assessing the molecular origins of macroscopic solution properties of highly concentrated liquid protein solutions. Analytical Biochemistry, 2018, 561-562, 70-88.	1.1	19
159	Isotopically Site-Selected Dynamics of a Three-Stranded \hat{l}^2 -Sheet Peptide Detected with Temperature-Jump Infrared-Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 10445-10454.	1.2	14
160	Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR. Biophysical Reviews, 2018, 10, 1133-1149.	1.5	28
161	Effect of Mutations on the Global and Site-Specific Stability and Folding of an Elementary Protein Structural Motif. Journal of Physical Chemistry B, 2018, 122, 11083-11094.	1.2	3
162	A structural model of the hierarchical assembly of an amyloid nanosheet by an infrared probe technique. Physical Chemistry Chemical Physics, 2018, 20, 27261-27271.	1.3	8
163	Refinement of Peptide Conformational Ensembles by 2D IR Spectroscopy: Application to Alaâ€'Alaâ€'Ala. Biophysical Journal, 2018, 114, 2820-2832.	0.2	16
164	Conformation change of \hat{l} ±-synuclein(61 \hat{l} 1495) at the air-water interface and quantitative measurement of the tilt angle of the axis of its \hat{l} ±-helix by multiple angle incidence resolution spectroscopy. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110401.	2.5	7
165	FTIR Analysis of Proteins and Protein–Membrane Interactions. Methods in Molecular Biology, 2019, 2003, 281-325.	0.4	35
166	Vibrational Approach to the Dynamics and Structure of Protein Amyloids. Molecules, 2019, 24, 186.	1.7	46
167	Insight into the internal structure of amyloid- \hat{l}^2 oligomers by isotope-edited Fourier transform infrared spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 8587-8597.	1.3	22
168	Optimization of highly excited matrix product states with an application to vibrational spectroscopy. Journal of Chemical Physics, 2019, 150, 094113.	1.2	29
169	Evaluation of Dihedral Angles of Peptides Using IR Bands of Two Successive Isotope Labeled Residues. Bulletin of the Chemical Society of Japan, 2019, 92, 80-86.	2.0	1

#	Article	IF	CITATIONS
170	Effect of Silica Nanoparticles on the Amyloid Fibrillation of Lysozyme. ACS Omega, 2019, 4, 1015-1026.	1.6	42
171	Toxic Amyloid Tape: A Novel Mixed Antiparallel/Parallel β-Sheet Structure Formed by Amyloid β-Protein on GM1 Clusters. ACS Chemical Neuroscience, 2019, 10, 563-572.	1.7	43
172	Enhanced Sensitivity to Local Dynamics in Peptides by Use of Temperatureâ€Jump IR Spectroscopy and Isotope Labeling. Chemistry - A European Journal, 2020, 26, 3524-3534.	1.7	8
173	On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide. Biomacromolecules, 2020, 21, 4781-4794.	2.6	26
174	Two-dimensional IR spectroscopy reveals a hidden Fermi resonance band in the azido stretch spectrum of \hat{l}^2 -azidoalanine. Physical Chemistry Chemical Physics, 2020, 22, 19223-19229.	1.3	12
175	Vibrational relaxation dynamics of a potential local infrared probe: Isocyanate. Chemical Physics, 2020, 536, 110847.	0.9	2
176	Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chemical Reviews, 2020, 120, 3381-3419.	23.0	92
177	Structure of a Parkinson's Disease-Involved α-Synuclein Peptide Is Modulated by Membrane Composition and Physical State. Journal of Physical Chemistry B, 2020, 124, 3469-3481.	1.2	7
178	Structure Determination of Hen Egg-White Lysozyme Aggregates Adsorbed to Lipid/Water and Air/Water Interfaces. Langmuir, 2020, 36, 4766-4775.	1.6	24
179	Glutathione Self-Assembles into a Shell of Hydrogen-Bonded Intermolecular Aggregates on "Naked― Silver Nanoparticles. Journal of Physical Chemistry B, 2021, 125, 895-906.	1.2	7
180	CATCH Peptides Coassemble into Structurally Heterogeneous \hat{l}^2 -Sheet Nanofibers with Little Preference to \hat{l}^2 -Strand Alignment. Journal of Physical Chemistry B, 2021, 125, 4004-4015.	1.2	7
181	Computational IR Spectroscopy of Insulin Dimer Structure and Conformational Heterogeneity. Journal of Physical Chemistry B, 2021, 125, 4620-4633.	1.2	14
182	Probing the Hydrogen-Bonding Environment of Individual Bases in DNA Duplexes with Isotope-Edited Infrared Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 7613-7627.	1.2	9
183	Carbon–Deuterium Bonds as Non-perturbative Infrared Probes of Protein Dynamics, Electrostatics, Heterogeneity, and Folding. Methods in Molecular Biology, 2014, 1084, 101-119.	0.4	2
185	Effect of isotope substitution on the Fermi resonance and vibrational lifetime of unnatural amino acids modified with IR probe: A 2D-IR and pump-probe study of 4-azido-L-phenyl alanine. Journal of Chemical Physics, 2020, 153, 164309.	1.2	16
186	Structure and Stability of an Azoreductase with an FAD Cofactor from the Strict Anaerobe Clostridium perfringens. Protein and Peptide Letters, 2014, 21, 523-534.	0.4	8
187	Dynamics of \hat{l}_{\pm} -Helix and \hat{l}^2 -Sheet Formation Studied by Laser-Induced Temperature-Jump IR Spectroscopy. Biological and Medical Physics Series, 2012, , 147-170.	0.3	0
188	Peptide Cross-Î ² Nanoarchitectures: Characterizing Self-Assembly Mechanisms, Structure, and Physicochemical Properties. Nanostructure Science and Technology, 2022, , 179-207.	0.1	0

#	Article	IF	CITATIONS
190	Multi-Probe Equilibrium Analysis of Gradual (Un)Folding Processes. Methods in Molecular Biology, 2022, 2376, 161-171.	0.4	0
191	Site-Specific Interrogation of Protein Structure and Stability. Methods in Molecular Biology, 2022, 2376, 65-87.	0.4	0
192	Classical Model of Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy. Journal of Physical Chemistry A, 2022, , .	1.1	2
193	Analysis of Biomolecular Dynamics Under Fourier Transform Infrared Spectroscopy., 2022,, 215-241.		1
194	Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. Methods in Molecular Biology, 2022, 2405, 95-113.	0.4	1
195	Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning─ <i>Quo Vadis?</i> . Journal of Physical Chemistry B, 2022, 126, 2155-2167.	1.2	8
196	Determine both the conformation and orientation of a specific residue in α-synuclein(61–95) even in monolayer by 13C isotopic label and p-polarized multiple-angle incidence resolution spectrometry (pMAIRS). Analytical Sciences, 2022, 38, 935-940.	0.8	2
197	Emulation of the structure of the Saposin protein fold by a lung surfactant peptide construct of surfactant Protein B. PLoS ONE, 2022, 17, e0276787.	1.1	4
198	Isotope-edited vibrational circular dichroism study reveals a flexible N-terminal structure of islet amyloid peptide (NFGAIL) in amyloid fibril form: A site-specific local structural analysis. Journal of Structural Biology, 2022, 214, 107910.	1.3	3
199	Frequency Changes in Terminal Alkynes Provide Strong, Sensitive, and Solvatochromic Raman Probes of Biochemical Environments. Journal of Physical Chemistry B, 2023, 127, 85-94.	1.2	3
200	Modeling the Infrared Spectroscopy of Oligonucleotides with ¹³ C Isotope Labels. Journal of Physical Chemistry B, 2023, 127, 2351-2361.	1.2	1
201	Probing local changes to î±-helical structures with 2D IR spectroscopy and isotope labeling. Biophysical Journal, 2023, 122, 1491-1502.	0.2	1