Release of Arsenic to the Environment from CCA-Treated during Service

Environmental Science & amp; Technology 40, 988-993 DOI: 10.1021/es0514702

Citation Report

#	Article	IF	CITATIONS
1	Response to Comments on "Release of Arsenic to the Environment from CCA-Treated Wood. 2. Leaching and Speciation during Disposal― Environmental Science & Technology, 2006, 40, 4811-4812.	4.6	1
2	Arsenic Leaching from Mulch Made from Recycled Construction and Demolition Wood and Impacts of Iron-Oxide Colorants. Environmental Science & Technology, 2006, 40, 5102-5107.	4.6	19
3	Release of Arsenic to the Environment from CCA-Treated Wood. 2. Leaching and Speciation during Disposal. Environmental Science & Technology, 2006, 40, 994-999.	4.6	94
4	A Chemical Stain for Identifying Arsenicâ€Treated Wood Products. Journal of Wood Chemistry and Technology, 2007, 27, 201-217.	0.9	6
5	Evaluating landfill disposal of chromated copper arsenate (CCA) treated wood and potential effects on groundwater: Evidence from Florida. Chemosphere, 2007, 66, 496-504.	4.2	35
6	Atomic spectrometry update. Environmental analysis. Journal of Analytical Atomic Spectrometry, 2007, 22, 187.	1.6	52
7	Environmental Applications of Arsenic Speciation Using Atomic Spectrometry Detection. Applied Spectroscopy Reviews, 2007, 42, 1-22.	3.4	42
8	Comment on "Release of Arsenic to the Environment from CCA-Treated Wood. 2. Leaching and Speciation during Disposal― Environmental Science & Technology, 2007, 41, 345-346.	4.6	3
9	Evaluation of commercial landscaping mulch for possible contamination from CCA. Waste Management, 2007, 27, 1765-1773.	3.7	15
10	CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal. Waste Management, 2007, 27, S21-S28.	3.7	51
11	A mass balance approach for evaluating leachable arsenic and chromium from an in-service CCA-treated wood structure. Science of the Total Environment, 2007, 372, 624-635.	3.9	33
12	Arsenic Bioaccessibility in a Soil Amended with Drinking-Water Treatment Residuals in the Presence of Phosphorus Fertilizer. Archives of Environmental Contamination and Toxicology, 2007, 53, 329-336.	2.1	26
13	INORGANIC ARSENIC SPECIATION IN SOIL AND GROUNDWATER NEAR IN-SERVICE CHROMATED COPPER ARSENATE-TREATED WOOD POLES. Environmental Toxicology and Chemistry, 2008, 27, 799.	2.2	23
14	Reaction and Transport of Arsenic in Soils: Equilibrium and Kinetic Modeling. Advances in Agronomy, 2008, 98, 45-115.	2.4	58
15	Reply to Comment of Helena M. Solo-Gabriele et al. on "Evaluating landfill disposal of chromated copper arsenate (CCA) treated wood and potential effects on groundwater: Evidence from Florida―by Jennifer K. Saxe, Eric J. Wannamaker, Scott W. Conklin, Todd F. Shupe and Barbara D. Beck [Chemosphere 66 (3) (2007) 496–504]. Chemosphere, 2008, 70, 1932-1934.	4.2	0
16	Comment on "Evaluating landfill disposal of chromated copper arsenate (CCA) treated wood and potential effects on groundwater: Evidence from Florida―by Jennifer K. Saxe, Eric J. Wannamaker, Scott W. Conklin, Todd F. Shupe and Barbara D. Beck [Chemosphere 66 (3) (2007) 496–504]. Chemosphere. 2008. 70. 1930-1931.	4.2	3
17	Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry. Chemosphere, 2008, 71, 1617-1628.	4.2	33
18	Arsenic and Chromium Partitioning in a Podzolic Soil Contaminated by Chromated Copper Arsenate. Environmental Science & Technology, 2008, 42, 6481-6486.	4.6	33

#	Article	IF	CITATIONS
19	Roofing Materials' Contributions to Storm-Water Runoff Pollution. Journal of Irrigation and Drainage Engineering - ASCE, 2008, 134, 638-645.	0.6	52
20	Phytofiltration of Arsenic-Contaminated Groundwater Using <i>Pteris Vittata</i> L.: Effect of Plant Density and Nitrogen and Phosphorus Levels. International Journal of Phytoremediation, 2008, 10, 222-235.	1.7	21
21	Early-Life Roof Runoff Quality: Green vs. Traditional Roofs. , 2008, , .		0
22	Runoff Quality from Roofing during Early Life. Proceedings of the Water Environment Federation, 2008, 2008, 1048-1062.	0.0	1
24	Rainwater Harvesting for Non-Potable Use in Gardens: A Comparison of Runoff Water Quality from Green vs. Traditional Roofs. , 2009, , .		4
25	Arsenic in Human History and Modern Societies. , 0, , 277-302.		3
26	Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy, 2009, 96, 318-326.	1.8	78
27	Optimization of a chemical leaching process for decontamination of CCA-treated wood. Journal of Hazardous Materials, 2009, 169, 136-145.	6.5	48
28	Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry—A review. Analytica Chimica Acta, 2010, 668, 114-129.	2.6	107
29	Soil arsenic surveys of New Orleans: localized hazards in children's play areas. Environmental Geochemistry and Health, 2010, 32, 431-440.	1.8	11
30	Field-scale leaching of arsenic, chromium and copper from weathered treated wood. Environmental Pollution, 2010, 158, 1479-1486.	3.7	51
31	Metal loss from treated wood products in contact with municipal solid waste landfill leachate. Journal of Hazardous Materials, 2010, 175, 558-568.	6.5	18
32	Arsenic contamination in New Orleans soil: Temporal changes associated with flooding. Environmental Research, 2010, 110, 19-25.	3.7	27
33	Transport and interaction of arsenic, chromium, and copper associated with CCA-treated wood in columns of sand and sand amended with peat. Chemosphere, 2010, 78, 989-995.	4.2	14
34	In situ arsenic speciation on solid surfaces by desorption electrospray ionization tandem mass spectrometry. Analyst, The, 2010, 135, 1268.	1.7	18
35	Modeling leachability of metals from preservative-treated wood during rainfall events. , 2011, , .		0
36	The behavior and long-term fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. Journal of Hazardous Materials, 2011, 194, 369-377.	6.5	18
37	Distribution and seasonal dynamics of arsenic in a shallow lake in northwestern New Jersey, USA. Environmental Geochemistry and Health, 2011, 33, 1-22.	1.8	25

_

#	Article	IF	CITATIONS
38	Performance and mechanism of simultaneous removal of chromium and arsenate by Fe(II) from contaminated groundwater. Separation and Purification Technology, 2011, 80, 179-185.	3.9	42
39	Online sorting of recovered wood waste by automated XRF-technology: Part II. Sorting efficiencies. Waste Management, 2011, 31, 695-704.	3.7	22
40	Arsenic Pollution by Chromated-Copper-Arsenate Treated Woody Debris. , 2011, , .		0
41	Release of metals from synthetic Cr-goethites under acidic and reductive conditions: Effect of aging and composition. Applied Clay Science, 2012, 58, 88-95.	2.6	7
42	Bioavailability and form of copper in wood treated with copper-based preservative. Wood Science and Technology, 2012, 46, 1203-1213.	1.4	14
43	Leaching characteristics of CCA-treated wood waste: A UK study. Science of the Total Environment, 2012, 427-428, 165-174.	3.9	32
44	Arsenic toxicity in the human nerve cell line SK-N-SH in the presence of chromium and copper. Chemosphere, 2013, 91, 1082-1087.	4.2	24
45	Arsenic in Groundwater: A Summary of Sources and the Biogeochemical and Hydrogeologic Factors Affecting Arsenic Occurrence and Mobility. , 0, , .		10
46	Sustainable Construction Materials. , 2014, , 371-401.		0
48	Leaching and decay resistance of alder and pine wood treated with copper based wood preservatives. Maderas: Ciencia Y Tecnologia, 2014, , 0-0.	0.7	13
49	Evaluating the potential for environmental pollution from chromated copper arsenate (CCA)-treated wood waste: A new mass balance approach. Journal of Hazardous Materials, 2014, 276, 10-18.	6.5	27
50	Evaluating the Leaching of Biocides from Preservative-Treated Wood Products. ACS Symposium Series, 2014, , 239-254.	0.5	1
51	Sustainable Construction Materials. , 2015, , 183-226.		0
52	Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials. Water Environment Research, 2015, 87, 835-844.	1.3	18
53	Cleaning-induced arsenic mobilization and chromium oxidation from CCA-wood deck: Potential risk to children. Environment International, 2015, 82, 35-40.	4.8	29
54	Variation of arsenic concentration on surfaces of in-service CCA-treated wood planks in a park and its influencing field factors. Environmental Monitoring and Assessment, 2015, 187, 4214.	1.3	5
55	Arsenic and Fluoride Pollution in Water and Soils. , 2015, , 1-20.		2
56	Selective Reduction of Cr(VI) in Chromium, Copper and Arsenic (CCA) Mixed Waste Streams Using UV/TiO2 Photocatalysis. Molecules, 2015, 20, 2622-2635.	1.7	31

#	Article	IF	CITATIONS
57	Occurrence and speciation of polymeric chromium(III), monomeric chromium(III) and chromium(VI) in environmental samples. Chemosphere, 2016, 156, 14-20.	4.2	42
58	Anthropogenic arsenic cycles: A research framework and features. Journal of Cleaner Production, 2016, 139, 328-336.	4.6	48
59	Decontamination of CCA-treated eucalyptus wood waste by acid leaching. Waste Management, 2016, 49, 253-262.	3.7	22
60	How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?. Chemosphere, 2016, 152, 407-414.	4.2	10
61	Monitoring Urban Copper Flows in Stockholm, Sweden: Implications of Changes Over Time. Journal of Industrial Ecology, 2017, 21, 903-912.	2.8	3
62	Persistent Hazardous Waste and the Quest Toward a Circular Economy: The Example of Arsenic in Chromated Copper Arsenate–Treated Wood. Journal of Industrial Ecology, 2017, 21, 689-699.	2.8	15
63	Anthropogenic Cycles of Arsenic in Mainland China: 1990–2010. Environmental Science & Technology, 2017, 51, 1670-1678.	4.6	51
64	Novel biomaterials from citric acid fermentation as biosorbents for removal of metals from waste chromated copper arsenate wood leachates. International Biodeterioration and Biodegradation, 2017, 119, 147-154.	1.9	24
65	Removal of toxic elements from wastewater generated in the decontamination of CCA-treated Eucalyptus sp. and Pinus canadense wood. Journal of Material Cycles and Waste Management, 2018, 20, 1299-1309.	1.6	4
66	Hepatotoxicity of Copper, Iron, Cadmium, and Arsenic. , 2018, , 575-596.		0
67	Risk Assessment for Children Exposed to Arsenic on Baseball Fields with Contaminated Fill Material. International Journal of Environmental Research and Public Health, 2018, 15, 67.	1.2	6
69	Agroecotoxicological Aspect of Arsenic (As) and Cadmium (Cd) on Field Crops and its Mitigation: Current Status and Future Prospect. , 2019, , 217-246.		15
70	Effectiveness of Monitored Natural Attenuation (MNA) as a Groundwater Remedy for Arsenic in Phosphatic Wastes. Ground Water Monitoring and Remediation, 2019, 39, 52-68.	0.6	3
71	Metals leaching from common residential and commercial roofing materials across four years of weathering and implications for environmental loading. Environmental Pollution, 2019, 255, 113262.	3.7	6
72	Biosensors for Monitoring Water Pollutants: A Case Study With Arsenic in Groundwater. Separation Science and Technology, 2019, , 285-328.	0.0	7
73	Bayesian Mapping Reveals Large-Effect Pleiotropic QTLs for Wood Density and Slenderness Index in 17-Year-Old Trees of Eucalyptus cladocalyx. Forests, 2019, 10, 241.	0.9	11
74	Arsenic, copper, and chromium from treated wood products in the U.S. disposal sector. Waste Management, 2019, 87, 731-740.	3.7	38
75	Florida Arsenic Distribution Index: Quantifying the Distribution of Past and Present Arsenic Usage. International Journal of Environmental Research and Public Health, 2019, 16, 744.	1.2	7

#	Article	IF	CITATIONS
76	Aluminum-Impregnated Biochar for Adsorption of Arsenic(V) in Urban Stormwater Runoff. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	23
77	Arsenic speciation analysis of environmental samples. Journal of Analytical Atomic Spectrometry, 2020, 35, 215-237.	1.6	43
78	Improvement of wood decay resistance by salicylic acid / silica microcapsule: Effects on the salicylic leaching, microscopic structure and decay resistance. International Biodeterioration and Biodegradation, 2021, 156, 105134.	1.9	16
79	Roof runoff contamination: Establishing material-pollutant relationships and material benchmarking based on laboratory leaching tests. Chemosphere, 2021, 283, 131112.	4.2	10
80	Engineering in Environmental Management. , 0, , 151-172.		1
81	Environmental Monitoring of Heavy Metals and Arsenic in Soils Adjacent to CCA-Treated Wood Structures in Gangwon Province, South Korea. Korean Journal of Environmental Agriculture, 2009, 28, 340-346.	0.0	6
82	Service Life Estimation of ACQ-treated Wood Based on Biodeterioration Resistance. Journal of the Korean Wood Science and Technology, 2015, 43, 641-651.	0.8	2
83	Sustainable construction materials. , 2016, , 199-214.		Ο
84	Effects of sewage sludge biosolid amendments on the potential of maize (Zea mays L.) in phytoremediation of trace metals in chromated copper arsenate contaminated soils. French-Ukrainian Journal of Chemistry, 2020, 8, 113-125.	0.1	0
87	Arsenic: Various species with different effects on cytochrome P450 regulation in humans. EXCLI Journal, 2021, 20, 1184-1242.	0.5	0
88	A Review of Habitat Impacts from Residential Docks and Recommended Best Management Practices with an Emphasis on the Northeastern United States. Estuaries and Coasts, 2022, 45, 1189-1216.	1.0	1
89	Lavender oil as eco-friendly alternative to protect wood against termites without negative effect on wood properties. Scientific Reports, 2022, 12, 1909.	1.6	10
90	Bioaccumulation of trace metals in two oyster species from southwest Puerto Rico. Marine Pollution Bulletin, 2022, 178, 113581.	2.3	2
92	Sustainability in Wood Products: A New Perspective for Handling Natural Diversity. Chemical Reviews, 2023, 123, 1889-1924.	23.0	15
93	Distribution and Speciation of Heavy Metal(loid)s in Soils under Multiple Preservative-Treated Wooden Trestles. Toxics, 2023, 11, 249.	1.6	0

6