Field-Deployable, High-Resolution, Time-of-Flight Aero

Analytical Chemistry 78, 8281-8289 DOI: 10.1021/ac061249n

Citation Report

#	Article	IF	CITATIONS
11	Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2006, 6, 5649-5666.	4.9	39
12	Demonstration of a VUV Lamp Photoionization Source for Improved Organic Speciation in an Aerosol Mass Spectrometer. Aerosol Science and Technology, 2007, 41, 828-839.	3.1	50
13	Comparison of a Quadrupole and a Time-of-Flight Aerosol Mass Spectrometer during the Feldberg Aerosol Characterization Experiment 2004. Aerosol Science and Technology, 2007, 41, 679-691.	3.1	23
14	Technical Note: Description and Use of the New Jump Mass Spectrum Mode of Operation for the Aerodyne Quadrupole Aerosol Mass Spectrometers (Q-AMS). Aerosol Science and Technology, 2007, 41, 865-872.	3.1	28
15	Chemical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science, 2007, 38, 1079-1118.	3.8	745
16	Oxygenated and water-soluble organic aerosols in Tokyo. Journal of Geophysical Research, 2007, 112, .	3.3	256
17	Cloud condensation nucleus activity of secondary organic aerosol particles mixed with sulfate. Geophysical Research Letters, 2007, 34, .	4.0	68
18	Effect of hydrophobic primary organic aerosols on secondary organic aerosol formation from ozonolysis of <i>α</i> â€pinene. Geophysical Research Letters, 2007, 34, .	4.0	104
19	Interference of organic signals in highly time resolved nitrate measurements by low mass resolution aerosol mass spectrometry. Journal of Geophysical Research, 2007, 112, .	3.3	35
20	Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry. Analytical Chemistry, 2007, 79, 8350-8358.	6.5	490
21	Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 2007, 26, 185-222.	5.4	1,708
23	Instrumentation, data evaluation and quantification in on-line aerosol mass spectrometry. Journal of Mass Spectrometry, 2007, 42, 843-860.	1.6	68
24	Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer. International Journal of Mass Spectrometry, 2007, 263, 152-170.	1.5	167
25	Development and characterization of an ion trap mass spectrometer for the on-line chemical analysis of atmospheric aerosol particles. International Journal of Mass Spectrometry, 2007, 265, 30-39.	1.5	15
26	Chemical analysis of atmospheric aerosols. Analytical and Bioanalytical Chemistry, 2008, 390, 277-280.	3.7	23
27	Source apportionment of 1h semi-continuous data during the 2005 Study of Organic Aerosols in Riverside (SOAR) using positive matrix factorization. Atmospheric Environment, 2008, 42, 2706-2719.	4.1	39
28	Characterization of aerosol particles from grass mowing by joint deployment of ToF-AMS and ATOFMS instruments. Atmospheric Environment, 2008, 42, 3006-3017.	4.1	31
29	Analysis of Atmospheric Aerosols. Annual Review of Analytical Chemistry, 2008, 1, 485-514.	5.4	145

#	Article	IF	CITATIONS
30	Submicron particles at Thompson Farm during ICARTT measured using aerosol mass spectrometry. Journal of Geophysical Research, 2008, 113, .	3.3	35
31	Photochemical evolution of submicron aerosol chemical composition in the Tokyo megacity region in summer. Journal of Geophysical Research, 2008, 113, .	3.3	25
32	The State of the Art in the Field of Non-Stationary Instruments for the Determination and Monitoring of Atmospheric Pollutants. Critical Reviews in Analytical Chemistry, 2008, 38, 259-268.	3.5	14
33	O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2008, 42, 4478-4485.	10.0	1,524
34	Comparative Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis (PESA), and Aerosol Mass Spectrometry (AMS). Environmental Science & Technology, 2008, 42, 6619-6624.	10.0	36
35	Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1). Environmental Science & Technology, 2008, 42, 7655-7662.	10.0	273
36	Combined Determination of the Chemical Composition and of Health Effects of Secondary Organic Aerosols: The POLYSOA Project. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, 21, 145-154.	1.4	95
37	Development and Characterization of a Fast-Stepping/Scanning Thermodenuder for Chemically-Resolved Aerosol Volatility Measurements. Aerosol Science and Technology, 2008, 42, 395-407.	3.1	201
38	Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol Lens. Aerosol Science and Technology, 2008, 42, 465-471.	3.1	122
39	An Eddy-Covariance System for the Measurement of Surface/Atmosphere Exchange Fluxes of Submicron Aerosol Chemical Species—First Application Above an Urban Area. Aerosol Science and Technology, 2008, 42, 636-657.	3.1	107
40	Comparison of Two Aerodynamic Lenses as an Inlet for a Single Particle Laser Ablation Mass Spectrometer. Aerosol Science and Technology, 2008, 42, 970-980.	3.1	26
41	Rapid Sampling of Individual Organic Aerosol Species in Ambient Air with the Photoionization Aerosol Mass Spectrometer. Aerosol Science and Technology, 2008, 42, 18-27.	3.1	27
42	The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties. Atmospheric Chemistry and Physics, 2008, 8, 5649-5667.	4.9	171
43	Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene. Atmospheric Chemistry and Physics, 2008, 8, 2073-2088.	4.9	175
44	Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmospheric Chemistry and Physics, 2008, 8, 2999-3014.	4.9	259
45	CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles. Atmospheric Chemistry and Physics, 2008, 8, 3735-3748.	4.9	41
46	Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmospheric Chemistry and Physics, 2008, 8, 4027-4048.	4.9	411
47	Characterization of the South Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2008, 8, 4711-4728.	4.9	143

#	Article	IF	CITATIONS
48	Measurements of HNO ₃ and N ₂ O ₅ using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign. Atmospheric Chemistry and Physics, 2008, 8, 6823-6838.	4.9	83
49	The time evolution of aerosol composition over the Mexico City plateau. Atmospheric Chemistry and Physics, 2008, 8, 1559-1575.	4.9	250
50	Joint cluster and non-negative least squares analysis for aerosol mass spectrum data. Journal of Physics: Conference Series, 2008, 125, 012026.	0.4	1
51	Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects. Atmospheric Measurement Techniques, 2009, 2, 33-46.	3.1	75
52	Contamination from electrically conductive silicone tubing during aerosol chemical analysis. Atmospheric Environment, 2009, 43, 2836-2839.	4.1	22
53	Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment, 2009, 43, 5193-5267.	4.1	609
54	Measuring atmospheric composition change. Atmospheric Environment, 2009, 43, 5351-5414.	4.1	160
56	Chemical Composition of Cloud Water in the Puerto Rican Tropical Trade Wind Cumuli. Water, Air, and Soil Pollution, 2009, 200, 3-14.	2.4	27
57	A laser desorption–electron impact ionization ion trap mass spectrometer for real-time analysis of single atmospheric particles. International Journal of Mass Spectrometry, 2009, 281, 140-149.	1.5	9
58	Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Motor Vehicles with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and Chamber Observations. Environmental Science & Technology, 2009, 43, 2443-2449.	10.0	365
59	Intermediate-Volatility Organic Compounds: A Potential Source of Ambient Oxidized Organic Aerosol. Environmental Science & Technology, 2009, 43, 4744-4749.	10.0	103
60	Chemically-Resolved Volatility Measurements of Organic Aerosol from Different Sources. Environmental Science & Technology, 2009, 43, 5351-5357.	10.0	201
61	Characterization of the volatile fraction of laboratory-generated aerosol particles by thermodenuder-aerosol mass spectrometer coupling experiments. Journal of Aerosol Science, 2009, 40, 603-612.	3.8	21
62	An examination of soot composition in premixed hydrocarbon flames via laser ablation particle mass spectrometry. Journal of Aerosol Science, 2009, 40, 844-857.	3.8	36
63	Atmospheric condensedâ€phase reactions of glyoxal with methylamine. Geophysical Research Letters, 2009, 36, .	4.0	147
64	Mixing and phase partitioning of primary and secondary organic aerosols. Geophysical Research Letters, 2009, 36, .	4.0	50
65	Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin. Geophysical Research Letters, 2009, 36, .	4.0	171
66	Direct observations of N ₂ O ₅ reactivity on ambient aerosol particles. Geophysical Research Letters, 2009, 36, .	4.0	124

#	Article	IF	Citations
67	Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research, 2009, 114, .	3.3	162
68	Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids. Environmental Science & Technology, 2009, 43, 2818-2824.	10.0	206
69	Characterizing Spatial and Temporal Variability of Dissolved Gases in Aquatic Environments with in situ Mass Spectrometry. Environmental Science & amp; Technology, 2009, 43, 5014-5021.	10.0	38
70	Secondary Organic Aerosol Formation by Self-Reactions of Methylglyoxal and Glyoxal in Evaporating Droplets. Environmental Science & Technology, 2009, 43, 8184-8190.	10.0	174
71	Photooxidation of 2-Methyl-3-Buten-2-ol (MBO) as a Potential Source of Secondary Organic Aerosol. Environmental Science & Technology, 2009, 43, 4647-4652.	10.0	50
72	Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Physical Chemistry Chemical Physics, 2009, 11, 8005.	2.8	318
73	Particulate emissions from commercial shipping: Chemical, physical, and optical properties. Journal of Geophysical Research, 2009, 114, .	3.3	162
74	Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. Journal of Geophysical Research, 2009, 114, .	3.3	230
75	Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmospheric Chemistry and Physics, 2009, 9, 3049-3060.	4.9	300
76	Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign. Atmospheric Chemistry and Physics, 2009, 9, 3721-3730.	4.9	83
77	Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields. Atmospheric Chemistry and Physics, 2009, 9, 6685-6703.	4.9	208
78	Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols. Atmospheric Chemistry and Physics, 2009, 9, 6949-6981.	4.9	119
79	Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmospheric Chemistry and Physics, 2009, 9, 3331-3345.	4.9	380
80	Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study. Atmospheric Chemistry and Physics, 2009, 9, 3425-3442.	4.9	114
81	The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 2009, 9, 5155-5236.	4.9	3,486
82	Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. Atmospheric Chemistry and Physics, 2009, 9, 6191-6215.	4.9	138
83	Secondary organic aerosol formation from primary aliphatic amines with NO ₃ radical. Atmospheric Chemistry and Physics, 2009, 9, 2051-2060.	4.9	84
84	Real-time secondary aerosol formation during a fog event in London. Atmospheric Chemistry and Physics, 2009, 9, 2459-2469.	4.9	114

# 85	ARTICLE Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 2009, 9, 2891-2918.	IF 4.9	Citations 1,276
86	Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings. Atmospheric Chemistry and Physics, 2009, 9, 2959-2971.	4.9	100
87	Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 3095-3111.	4.9	119
88	The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. Atmospheric Chemistry and Physics, 2009, 9, 3209-3222.	4.9	211
89	Biomass burning and urban air pollution over the Central Mexican Plateau. Atmospheric Chemistry and Physics, 2009, 9, 4929-4944.	4.9	138
90	Vertical distribution of sub-micron aerosol chemical composition from North-Western Europe and the North-East Atlantic. Atmospheric Chemistry and Physics, 2009, 9, 5389-5401.	4.9	86
91	Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. Atmospheric Chemistry and Physics, 2009, 9, 5417-5432.	4.9	109
92	Modeling of secondary organic aerosol yields from laboratory chamber data. Atmospheric Chemistry and Physics, 2009, 9, 5669-5680.	4.9	26
93	Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9, 5785-5812.	4.9	433
94	Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) $\hat{a} \in$ Part 1: Fine particle composition and organic source apportionment. Atmospheric Chemistry and Physics, 2009, 9, 6633-6653.	4.9	525
95	Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 6727-6742.	4.9	76
96	Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmospheric Chemistry and Physics, 2009, 9, 7161-7182.	4.9	289
97	Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 7257-7287.	4.9	170
98	Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmospheric Chemistry and Physics, 2009, 9, 7551-7575.	4.9	347
99	Loading-dependent elemental composition of α-pinene SOA particles. Atmospheric Chemistry and Physics, 2009, 9, 771-782.	4.9	272
100	Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2009, 9, 7769-7793.	4.9	98
101	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 8283-8308.	4.9	99
102	Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer. Atmospheric Chemistry and Physics, 2009, 9, 8949-8966.	4.9	119

ARTICLE IF CITATIONS Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase 103 4.9 58 uptake rates. Atmospheric Chemistry and Physics, 2009, 9, 9299-9314. Chemical Smoke Marker Emissions During Flaming and Smoldering Phases of Laboratory Open Burning 104 3.1 of Wildland Fuels. Aerosol Science and Technology, 2010, 44, i-v. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 105 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmospheric 4.9 322 Chemistry and Physics, 2010, 10, 8933-8945. Recent Developments in the Mass Spectrometry of Atmospheric Aerosols. European Journal of Mass Spectrometry, 2010, 16, 389-395. Impact of aftertreatment devices on primary emissions and secondary organic aerosol formation 107 potential from in-use diesel vehicles: results from smog chamber experiments. Atmospheric Chemistry 4.9 178 and Physics, 2010, 10, 11545-11563. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B. Atmospheric Chemistry and Physics, 2010, 10, 6627-6644. Role of aldehyde chemistry and NO<sub&gt;x&lt;/sub&gt; concentrations in 109 4.9 190 secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2010, 10, 7169-7188. The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions. 110 Atmospheric Chemistry and Physics, 2010, 10, 7253-7265. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne 111 4.9 105 measurements in North-Western Europe. Atmospheric Chemistry and Physics, 2010, 10, 8151-8171. An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and 349 transformation. Atmospheric Chemistry and Physics, 2010, 10, 8697-8760. Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City 113 107 4.9 and Houston. Atmospheric Chemistry and Physics, 2010, 10, 8947-8968. Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR-MS). Atmospheric Chemistry and Physics, 2010, 10, 10111-10128. The sensitivity of secondary organic aerosol component partitioning to the predictions of component properties $\hat{a} \in \mathcal{C}$ Part 1: A systematic evaluation of some available estimation techniques. Atmospheric 115 4.9 45 Chemistry and Physics, 2010, 10, 10255-10272. An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics, 2010, 10, 11415-11438. 170 Characterization of high-resolution aerosol mass spectra of primary organic aerosol emissions from 117 183 4.9 Chinese cooking and biomass burning. Atmospheric Chemistry and Physics, 2010, 10, 11535-11543. Reconciliation of measurements of hygroscopic growth and critical supersaturation of aerosol particles in central Germany. Atmospheric Chemistry and Physics, 2010, 10, 11737-11752. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia 119 4.9 81 Aerosol Measurement Experiment (FAME-2008). Atmospheric Chemistry and Physics, 2010, 10, 12149-12160. Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols. Atmospheric Chemistry and Physics, 2010, 10, 2257-2267.

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
121	Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 2010, 10, 2319-2333.	4.9	92
122	Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests. Atmospheric Chemistry and Physics, 2010, 10, 2825-2845.	4.9	164
123	Towards closing the gap between hygroscopic growth and CCN activation for secondary organic aerosols – Part 3: Influence of the chemical composition on the hygroscopic properties and volatile fractions of aerosols. Atmospheric Chemistry and Physics, 2010, 10, 3775-3785.	4.9	58
124	Temperature effect on physical and chemical properties of secondary organic aerosol from <i>m</i> -xylene photooxidation. Atmospheric Chemistry and Physics, 2010, 10, 3847-3854.	4.9	33
125	Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction. Atmospheric Chemistry and Physics, 2010, 10, 4065-4083.	4.9	184
126	Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2010, 10, 4111-4131.	4.9	165
127	Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008. Atmospheric Chemistry and Physics, 2010, 10, 4167-4186.	4.9	132
128	Large estragole fluxes from oil palms in Borneo. Atmospheric Chemistry and Physics, 2010, 10, 4343-4358.	4.9	58
129	Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products. Atmospheric Chemistry and Physics, 2010, 10, 5075-5088.	4.9	54
130	Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO. Atmospheric Chemistry and Physics, 2010, 10, 5257-5280.	4.9	325
131	Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (TO) – Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction. Atmospheric Chemistry and Physics, 2010, 10, 5315-5341.	4.9	182
132	Quantitative estimates of the volatility of ambient organic aerosol. Atmospheric Chemistry and Physics, 2010, 10, 5409-5424.	4.9	233
133	Chemistry of hydrogen oxide radicals (HO _x) in the Arctic troposphere in spring. Atmospheric Chemistry and Physics, 2010, 10, 5823-5838.	4.9	220
134	Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 2010, 10, 6195-6212.	4.9	82
135	Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. Atmospheric Chemistry and Physics, 2010, 10, 647-668.	4.9	366
136	The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols. Atmospheric Chemistry and Physics, 2010, 10, 7267-7283.	4.9	206
137	Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics, 2010, 10, 7891-7906.	4.9	104
138	Aerosol fluxes and dynamics within and above a tropical rainforest in South-East Asia. Atmospheric Chemistry and Physics, 2010, 10, 9369-9382.	4.9	41

#	Article	IF	CITATIONS
139	Major components of atmospheric organic aerosol in southern California as determined by hourly measurements of source marker compounds. Atmospheric Chemistry and Physics, 2010, 10, 11577-11603.	4.9	114
140	Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4809-4822.	4.9	205
141	Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations. Atmospheric Chemistry and Physics, 2010, 10, 5371-5389.	4.9	48
142	Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2010, 10, 5491-5514.	4.9	340
143	Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview. Atmospheric Chemistry and Physics, 2010, 10, 8413-8435.	4.9	61
144	Composition and temporal behavior of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2010, 10, 8513-8530.	4.9	170
145	High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time. Journal of the American Society for Mass Spectrometry, 2010, 21, 1037-1044.	2.8	353
146	Potential of laser mass spectrometry for the analysis of environmental dust particles—A review. Analytica Chimica Acta, 2010, 659, 34-54.	5.4	30
147	Evaluation of the particle measurement programme (PMP) protocol to remove the vehicles' exhaust aerosol volatile phase. Science of the Total Environment, 2010, 408, 5106-5116.	8.0	65
148	A high-resolution mass spectrometer to measure atmospheric ion composition. Atmospheric Measurement Techniques, 2010, 3, 1039-1053.	3.1	436
149	Elemental analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry. Atmospheric Measurement Techniques, 2010, 3, 301-310.	3.1	63
150	High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS. Atmospheric Measurement Techniques, 2010, 3, 1063-1074.	3.1	51
151	First eddy covariance flux measurements by PTR-TOF. Atmospheric Measurement Techniques, 2010, 3, 387-395.	3.1	117
152	Near-infrared laser desorption/ionization aerosol mass spectrometry for measuring organic aerosol at atmospherically relevant aerosol mass loadings. Atmospheric Measurement Techniques, 2010, 3, 1175-1183.	3.1	17
154	Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641.	4.9	908
155	Review of Recent Advances in Detection of Organic Markers in Fine Particulate Matter and Their Use for Source Apportionment. Journal of the Air and Waste Management Association, 2010, 60, 3-25.	1.9	64
156	The Formation of Sulfate and Elemental Sulfur Aerosols under Varying Laboratory Conditions: Implications for Early Earth. Astrobiology, 2010, 10, 773-781.	3.0	29
157	Particulate Organic Matter Detection Using a Micro-Orifice Volatilization Impactor Coupled to a Chemical Ionization Mass Spectrometer (MOVI-CIMS). <u>Aerosol Science and Technology</u> , 2010, 44, 61-74.	3.1	53

#	Article	IF	CITATIONS
160	Gas Turbine Engine Emissions—Part II: Chemical Properties of Particulate Matter. Journal of Engineering for Gas Turbines and Power, 2010, 132, .	1.1	87
161	Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview. Atmospheric Chemistry and Physics, 2010, 10, 10453-10471.	4.9	261
162	A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophysical Research Letters, 2010, 37, .	4.0	412
163	Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles. Geophysical Research Letters, 2010, 37, .	4.0	257
164	Primary and secondary organic aerosols in urban air masses intercepted at a rural site. Journal of Geophysical Research, 2010, 115, .	3.3	27
165	Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Particulate Organic Nitrates. Environmental Science & Technology, 2010, 44, 1056-1061.	10.0	155
166	Chemical Composition of Gas- and Aerosol-Phase Products from the Photooxidation of Naphthalene. Journal of Physical Chemistry A, 2010, 114, 913-934.	2.5	233
167	Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis. Analytical Chemistry, 2010, 82, 5922-5927.	6.5	39
168	Oxidative Potential of Logwood and Pellet Burning Particles Assessed by a Novel Profluorescent Nitroxide Probe. Environmental Science & Technology, 2010, 44, 6601-6607.	10.0	63
169	Identification and characterisation of local aerosol sources using high temporal resolution measurements. Journal of Environmental Monitoring, 2010, 12, 1709.	2.1	7
170	Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6670-6675.	7.1	437
171	Characterization and Source Apportionment of Water-Soluble Organic Matter in Atmospheric Fine Particles (PM _{2.5}) with High-Resolution Aerosol Mass Spectrometry and GC–MS. Environmental Science & Technology, 2011, 45, 4854-4861.	10.0	114
172	Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints. Environmental Science & Technology, 2011, 45, 4763-4770.	10.0	167
173	Cloud condensation nuclei (CCN) activity and oxygen-to-carbon elemental ratios following thermodenuder treatment of organic particles grown by α-pinene ozonolysis. Physical Chemistry Chemical Physics, 2011, 13, 14571.	2.8	22
174	Application of Modern Online Instrumentation for Chemical Analysis of Gas and Particulate Phases of Exhaust at the European Commission Heavy-Duty Vehicle Emission Laboratory. Analytical Chemistry, 2011, 83, 67-76.	6.5	21
175	Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols. Journal of Physical Chemistry A, 2011, 115, 4630-4635.	2.5	23
176	Characterization of Solvent-Extractable Organics in Urban Aerosols Based on Mass Spectrum Analysis and Hygroscopic Growth Measurement. Environmental Science & amp; Technology, 2011, 45, 9168-9174.	10.0	38
177	Evaluating the Mixing of Organic Aerosol Components Using High-Resolution Aerosol Mass Spectrometry. Environmental Science & amp; Technology, 2011, 45, 6329-6335.	10.0	44

#	Article	IF	CITATIONS
178	Depression of Ammonia Uptake to Sulfuric Acid Aerosols by Competing Uptake of Ambient Organic Gases. Environmental Science & Technology, 2011, 45, 2790-2796.	10.0	42
179	Detecting high contributions of primary organic matter to marine aerosol: A case study. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	113
180	Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry. Journal of Geophysical Research, 2011, 116, .	3.3	182
181	Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. Journal of Geophysical Research, 2011, 116, .	3.3	91
182	Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. Journal of Geophysical Research, 2011, 116, .	3.3	206
183	Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. Journal of Geophysical Research, 2011, 116, .	3.3	103
184	Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	56
185	Primary marine organic aerosol: A dichotomy of low hygroscopicity and high CCN activity. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	118
186	Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Physical Chemistry Chemical Physics, 2011, 13, 3612.	2.8	147
187	Formation of Nitrogen-Containing Oligomers by Methylglyoxal and Amines in Simulated Evaporating Cloud Droplets. Environmental Science & Technology, 2011, 45, 984-991.	10.0	220
188	Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmospheric Measurement Techniques, 2011, 4, 445-461.	3.1	298
189	Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes. Atmospheric Measurement Techniques, 2011, 4, 1275-1289.	3.1	39
190	Condensational uptake of semivolatile organic compounds in gasoline engine exhaust onto pre-existing inorganic particles. Atmospheric Chemistry and Physics, 2011, 11, 10157-10171.	4.9	15
191	Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest. Atmospheric Chemistry and Physics, 2011, 11, 1039-1050.	4.9	152
192	Mass-spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia. Atmospheric Chemistry and Physics, 2011, 11, 11415-11429.	4.9	59
193	Relating hygroscopicity and composition of organic aerosol particulate matter. Atmospheric Chemistry and Physics, 2011, 11, 1155-1165.	4.9	326
194	Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 2011, 11, 12049-12064.	4.9	520
195	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	4.9	278

#	Article	IF	CITATIONS
196	Chemical, physical, and optical evolution of biomass burning aerosols: a case study. Atmospheric Chemistry and Physics, 2011, 11, 1491-1503.	4.9	122
197	Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmospheric Chemistry and Physics, 2011, 11, 1865-1877.	4.9	162
198	South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx. Atmospheric Chemistry and Physics, 2011, 11, 5237-5262.	4.9	119
199	Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmospheric Chemistry and Physics, 2011, 11, 8913-8928.	4.9	307
200	Aircraft study of the impact of lake-breeze circulations on trace gases and particles during BAQS-Met 2007. Atmospheric Chemistry and Physics, 2011, 11, 10173-10192.	4.9	23
201	Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California. Atmospheric Chemistry and Physics, 2011, 11, 10219-10241.	4.9	81
202	Secondary organic aerosol formation from phenolic compounds in the absence of NO _x . Atmospheric Chemistry and Physics, 2011, 11, 10649-10660.	4.9	78
203	Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component. Atmospheric Chemistry and Physics 2011 11 10995-11006	4.9	297
204	Volatility of secondary organic aerosol during OH radical induced ageing. Atmospheric Chemistry and Physics, 2011, 11, 11055-11067.	4.9	66
205	Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. Atmospheric Chemistry and Physics, 2011, 11, 11477-11496.	4.9	119
206	Aging induced changes on NEXAFS fingerprints in individual combustion particles. Atmospheric Chemistry and Physics, 2011, 11, 11777-11791.	4.9	17
207	Hygroscopicity and composition of Alaskan Arctic CCN during April 2008. Atmospheric Chemistry and Physics, 2011, 11, 11807-11825.	4.9	85
208	Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem. Atmospheric Chemistry and Physics, 2011, 11, 11951-11975.	4.9	99
209	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmospheric Chemistry and Physics, 2011, 11, 12067-12084.	4.9	157
210	Second-generation products contribute substantially to the particle-phase organic material produced by β-caryophyllene ozonolysis. Atmospheric Chemistry and Physics, 2011, 11, 121-132.	4.9	70
211	The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition. Atmospheric Chemistry and Physics, 2011, 11, 12387-12420.	4.9	129
212	Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz. Atmospheric Chemistry and Physics, 2011, 11, 12579-12599.	4.9	81
213	Diurnal variations of ambient particulate wood burning emissions and their contribution to the concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Seiffen, Germany. Atmospheric Chemistry and Physics, 2011, 11, 12697-12713.	4.9	45

#	Article	IF	CITATIONS
214	A case study of aerosol processing and evolution in summer in New York City. Atmospheric Chemistry and Physics, 2011, 11, 12737-12750.	4.9	49
215	Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign. Atmospheric Chemistry and Physics, 2011, 11, 13305-13323.	4.9	30
216	Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer. Atmospheric Chemistry and Physics, 2011, 11, 1581-1602.	4.9	378
217	The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met. Atmospheric Chemistry and Physics, 2011, 11, 3195-3210.	4.9	13
218	Airborne observation of aerosol optical depth during ARCTAS: vertical profiles, inter-comparison and fine-mode fraction. Atmospheric Chemistry and Physics, 2011, 11, 3673-3688.	4.9	51
219	The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol. Atmospheric Chemistry and Physics, 2011, 11, 7417-7443.	4.9	98
220	Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. Atmospheric Chemistry and Physics, 2011, 11, 7561-7582.	4.9	70
221	Measurements of gaseous H ₂ SO ₄ by AP-ID-CIMS during CAREBeijing 2008 Campaign. Atmospheric Chemistry and Physics, 2011, 11, 7755-7765.	4.9	60
222	Elemental composition and oxidation of chamber organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 8827-8845.	4.9	190
223	Investigating organic aerosol loading in the remote marine environment. Atmospheric Chemistry and Physics, 2011, 11, 8847-8860.	4.9	54
224	Source attribution of Bornean air masses by back trajectory analysis during the OP3 project. Atmospheric Chemistry and Physics, 2011, 11, 9605-9630.	4.9	35
225	Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3. Atmospheric Chemistry and Physics, 2011, 11, 11157-11174.	4.9	34
226	Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol. Atmospheric Chemistry and Physics, 2011, 11, 2991-3006.	4.9	77
227	Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. Atmospheric Chemistry and Physics, 2011, 11, 8945-8963.	4.9	90
228	Accumulation-mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long-range transport of polluted and clean air from the Asian continent. Journal of Geophysical Research, 2011, 116, .	3.3	22
229	The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010. Journal of Geophysical Research, 2011, 116, .	3.3	99
230	Current instrumentation for aerosol mass spectrometry. TrAC - Trends in Analytical Chemistry, 2011, 30, 1486-1496.	11.4	19
231	Enhanced spectral analysis of C-TOF Aerosol Mass Spectrometer data: Iterative residual analysis and cumulative peak fitting. International Journal of Mass Spectrometry, 2011, 306, 1-8.	1.5	36

#	Article	IF	CITATIONS
232	Aerosol and trace gas vehicle emission factors measured in a tunnel using anÂAerosol Mass Spectrometer and other on-line instrumentation. Atmospheric Environment, 2011, 45, 2182-2192.	4.1	73
233	Peculiarities in atmospheric particle number and size-resolved speciation in an urban area in the western Mediterranean: Results from the DAURE campaign. Atmospheric Environment, 2011, 45, 5282-5293.	4.1	42
235	Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 2011, 401, 3045-3067.	3.7	764
236	The novel use of gas chromatography-ion mobility-time of flight mass spectrometry with secondary electrospray ionization for complex mixture analysis. International Journal for Ion Mobility Spectrometry, 2011, 14, 23-30.	1.4	16
237	Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis. Rapid Communications in Mass Spectrometry, 2011, 25, 1282-1290.	1.5	28
238	Real-time aerosol mass spectrometry with millisecond resolution. International Journal of Mass Spectrometry, 2011, 303, 15-26.	1.5	63
239	Thermal desorption metastable atom bombardment ionization aerosol mass spectrometer. International Journal of Mass Spectrometry, 2011, 303, 164-172.	1.5	4
240	Aviation gas turbine alternative fuels: A review. Proceedings of the Combustion Institute, 2011, 33, 2863-2885.	3.9	414
241	Secondary Organic Material Produced by the Dark Ozonolysis of α-Pinene Minimally Affects the Deliquescence and Efflorescence of Ammonium Sulfate. Aerosol Science and Technology, 2011, 45, 244-261.	3.1	69
242	Relating cloud condensation nuclei activity and oxidation level of <i>α</i> -pinene secondary organic aerosols. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	57
243	Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2011, 11, 5945-5957.	4.9	215
244	Characterization of Aerosol Particles in the Tokyo Metropolitan Area using Two Different Particle Mass Spectrometers. Aerosol Science and Technology, 2011, 45, 315-326.	3.1	11
245	Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber. Aerosol Science and Technology, 2011, 45, 964-972.	3.1	57
246	An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol. Aerosol Science and Technology, 2011, 45, 780-794.	3.1	675
248	Characterisation of corona-generated ions used in a Neutral cluster and Air Ion Spectrometer (NAIS). Atmospheric Measurement Techniques, 2011, 4, 2767-2776.	3.1	47
249	A field-deployable, chemical ionization time-of-flight mass spectrometer. Atmospheric Measurement Techniques, 2011, 4, 1471-1479.	3.1	200
251	Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City. Atmospheric Measurement Techniques, 2012, 5, 195-224.	3.1	39
253	Particle Size Distributions following Condensational Growth in Continuous Flow Aerosol Reactors as Derived from Residence Time Distributions: Theoretical Development and Application to Secondary Organic Aerosol Aerosol Science and Technology 2012, 46, 937-949	3.1	22

#	ARTICLE	IF	CITATIONS
254	Feasibility of the Detection of Trace Elements in Particulate Matter Using Online High-Resolution Aerosol Mass Spectrometry. Aerosol Science and Technology, 2012, 46, 1187-1200.	3.1	28
255	Pollution Gradients and Chemical Characterization ofÂParticulateÂMatter from Vehicular Traffic near Major Roadways: Results from the 2009 Queens College Air Quality Study in NYC. Aerosol Science and Technology, 2012, 46, 1201-1218.	3.1	102
256	A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species. Aerosol Science and Technology, 2012, 46, 1313-1327.	3.1	99
258	Aging of secondary organic aerosol from α-pinene ozonolysis: Roles of hydroxyl and nitrate radicals. Journal of the Air and Waste Management Association, 2012, 62, 1359-1369.	1.9	15
259	Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements. Atmospheric Measurement Techniques, 2012, 5, 1443-1457.	3.1	65
260	Hydrolysis of Organonitrate Functional Groups in Aerosol Particles. Aerosol Science and Technology, 2012, 46, 1359-1369.	3.1	153
261	Images reveal that atmospheric particles can undergo liquid–liquid phase separations. Proceedings of the United States of America, 2012, 109, 13188-13193.	7.1	205
262	Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13503-13508.	7.1	251
263	Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application. Aerosol Science and Technology, 2012, 46, 804-817.	3.1	316
264	Phase of atmospheric secondary organic material affects its reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17354-17359.	7.1	182
265	Real-Time Measurements of Engine-Out Trace Elements: Application of a Novel Soot Particle Aerosol Mass Spectrometer for Emissions Characterization. Journal of Engineering for Gas Turbines and Power, 2012, 134, .	1.1	21
266	Organic matter and non-refractory aerosol over the remote Southeast Pacific: oceanic and combustion sources. Atmospheric Chemistry and Physics, 2012, 12, 557-576.	4.9	89
267	Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES. Atmospheric Chemistry and Physics, 2012, 12, 8131-8156.	4.9	146
268	Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy. Atmospheric Chemistry and Physics, 2012, 12, 8401-8421.	4.9	101
269	Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2012, 12, 8537-8551.	4.9	112
270	Technical Note: The application of an improved gas and aerosol collector for ambient air pollutants in China. Atmospheric Chemistry and Physics, 2012, 12, 10519-10533.	4.9	82
271	Relationships between particles, cloud condensation nuclei and cloud droplet activation during the third Pallas Cloud Experiment. Atmospheric Chemistry and Physics, 2012, 12, 11435-11450.	4.9	29
272	Analysis of secondary organic aerosol formation and aging using positive matrix factorization of high-resolution aerosol mass spectra: application to the dodecane low-NO _x system. Atmospheric Chemistry and Physics, 2012, 12, 11272	4.9	42

# 273	ARTICLE Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 2012, 12, 1649-1665.	IF 4.9	CITATIONS
274	Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris. Atmospheric Chemistry and Physics, 2012, 12, 1681-1700.	4.9	128
275	Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2012, 12, 2215-2227.	4.9	55
276	Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF. Atmospheric Chemistry and Physics, 2012, 12, 309-325.	4.9	41
277	Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley. Atmospheric Chemistry and Physics, 2012, 12, 3147-3163.	4.9	129
278	Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia. Atmospheric Chemistry and Physics, 2012, 12, 3761-3782.	4.9	17
279	Impact of aerosol composition on cloud condensation nuclei activity. Atmospheric Chemistry and Physics, 2012, 12, 3783-3790.	4.9	40
280	Chamber studies of SOA formation from aromatic hydrocarbons: observation of limited glyoxal uptake. Atmospheric Chemistry and Physics, 2012, 12, 3927-3937.	4.9	32
281	Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated. Atmospheric Chemistry and Physics, 2012, 12, 4525-4537.	4.9	57
282	Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009. Atmospheric Chemistry and Physics, 2012, 12, 4723-4742.	4.9	60
283	Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmospheric Chemistry and Physics, 2012, 12, 5113-5127.	4.9	222
284	Aqueous phase processing of secondary organic aerosol from isoprene photooxidation. Atmospheric Chemistry and Physics, 2012, 12, 5879-5895.	4.9	59
285	The lofting of Western Pacific regional aerosol by island thermodynamics as observed around Borneo. Atmospheric Chemistry and Physics, 2012, 12, 5963-5983.	4.9	10
286	α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO _x environments. Atmospheric Chemistry and Physics, 2012, 12, 7413-7427.	4.9	133
287	Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors. Atmospheric Chemistry and Physics, 2012, 12, 7517-7529.	4.9	219
288	Lessons learnt from the first EMEP intensive measurement periods. Atmospheric Chemistry and Physics, 2012, 12, 8073-8094.	4.9	58
289	Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy. Atmospheric Chemistry and Physics, 2012, 12, 941-959.	4.9	51
290	Total OH reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign. Atmospheric Chemistry and Physics, 2012, 12, 9593-9612.	4.9	95

#	Article	IF	CITATIONS
291	Deliquescence, efflorescence, and phase miscibility of mixed particles of ammonium sulfate and isoprene-derived secondary organic material. Atmospheric Chemistry and Physics, 2012, 12, 9613-9628.	4.9	73
292	Chemical aging of <i>m</i> -xylene secondary organic aerosol: laboratory chamber study. Atmospheric Chemistry and Physics, 2012, 12, 151-167.	4.9	83
293	A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra. Atmospheric Chemistry and Physics, 2012, 12, 2189-2203.	4.9	32
294	Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions. Atmospheric Chemistry and Physics, 2012, 12, 3065-3114.	4.9	124
295	Particle mass yield from <i>l²</i> -caryophyllene ozonolysis. Atmospheric Chemistry and Physics, 2012, 12, 3165-3179.	4.9	44
296	Urban organic aerosols measured by single particle mass spectrometry in the megacity of London. Atmospheric Chemistry and Physics, 2012, 12, 4127-4142.	4.9	49
297	Organic molecular markers and signature from wood combustion particles in winter ambient aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg, Germany. Atmospheric Chemistry and Physics, 2012, 12, 6113-6128.	4.9	52
298	Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN. Atmospheric Chemistry and Physics, 2012, 12, 8377-8388.	4.9	24
299	Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmospheric Chemistry and Physics, 2012, 12, 4897-4907.	4.9	143
300	Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime. Environmental Chemistry, 2012, 9, 221.	1.5	159
301	Measurement of Gas- and Particle-phase Organic Species in Diesel Exhaust Using Vacuum Ultraviolet Single Photon Ionization Time-of-flight Mass Spectrometry. Chemistry Letters, 2012, 41, 292-294.	1.3	4
302	Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS ARB 2008. Journal of Geophysical Research, 2012, 117, .	3.3	73
303	On the gasâ€particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk waterâ€soluble organic carbon. Journal of Geophysical Research, 2012, 117, .	3.3	53
304	Characterization and optimization of an online system for the simultaneous measurement of atmospheric water-soluble constituents in the gas and particle phases. Journal of Environmental Monitoring, 2012, 14, 1872.	2.1	72
305	Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols. Environmental Science & Technology, 2012, 46, 8315-8324.	10.0	44
306	Inadequacy of Optical Smoke Measurements for Characterization of Non–Light Absorbing Particulate Matter Emissions from Gas Turbine Engines. Combustion Science and Technology, 2012, 184, 2068-2083.	2.3	14
307	Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine – Part 2: Volatile and Semivolatile Particulate Matter Emissions. Environmental Science & Technology, 2012, 46, 10812-10819.	10.0	29
308	Secondary Organic Aerosol Formation from Low-NO _{<i>x</i>} Photooxidation of Dodecane: Evolution of Multigeneration Gas-Phase Chemistry and Aerosol Composition. Journal of Physical Chemistry A, 2012, 116, 6211-6230.	2.5	79

#	Article	IF	CITATIONS
309	Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen. Environmental Science & Technology, 2012, 46, 787-794.	10.0	209
310	Simulating the Degree of Oxidation in Atmospheric Organic Particles. Environmental Science & Technology, 2012, 46, 331-339.	10.0	84
311	lsoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds. Environmental Science & Technology, 2012, 46, 250-258.	10.0	363
312	Time-Resolved Characterization of Primary Emissions from Residential Wood Combustion Appliances. Environmental Science & Technology, 2012, 46, 11418-11425.	10.0	57
313	Heterogeneous OH Oxidation of Motor Oil Particles Causes Selective Depletion of Branched and Less Cyclic Hydrocarbons. Environmental Science & Technology, 2012, 46, 10632-10640.	10.0	39
314	Transitions from Functionalization to Fragmentation Reactions of Laboratory Secondary Organic Aerosol (SOA) Generated from the OH Oxidation of Alkane Precursors. Environmental Science & Technology, 2012, 46, 5430-5437.	10.0	181
315	Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine – Part 1: Gaseous and Particulate Matter Emissions. Environmental Science & Technology, 2012, 46, 10805-10811.	10.0	64
316	Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere. Environmental Science & Technology, 2012, 46, 9437-9446.	10.0	128
317	Organic Constituents on the Surfaces of Aerosol Particles from Southern Finland, Amazonia, and California Studied by Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2012, 116, 8271-8290.	2.5	41
318	Secondary Organic Aerosol Formation from Intermediate-Volatility Organic Compounds: Cyclic, Linear, and Branched Alkanes. Environmental Science & Technology, 2012, 46, 8773-8781.	10.0	178
319	Application of Time-of-Flight Aerosol Mass Spectrometry for the Online Measurement of Gaseous Molecular Iodine. Analytical Chemistry, 2012, 84, 1439-1445.	6.5	14
320	Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon. Science, 2012, 337, 1075-1078.	12.6	188
321	Nitrogen Incorporation in CH ₄ -N ₂ Photochemical Aerosol Produced by Far Ultraviolet Irradiation. Astrobiology, 2012, 12, 315-326.	3.0	54
322	Online characterization of regulated and unregulated gaseous and particulate exhaust emissions from two-stroke mopeds: A chemometric approach. Analytica Chimica Acta, 2012, 717, 28-38.	5.4	39
323	Comparison of three techniques for analysis of data from an Aerosol Time-of-Flight Mass Spectrometer. Atmospheric Environment, 2012, 61, 316-326.	4.1	34
324	Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: An analysis of possible aerosol sources. Journal of Environmental Sciences, 2012, 24, 1954-1965.	6.1	67
325	Formation of nitrogen―and sulfurâ€containing lightâ€absorbing compounds accelerated by evaporation of water from secondary organic aerosols. Journal of Geophysical Research, 2012, 117, .	3.3	189
326	Hygroscopicity and composition of California CCN during summer 2010. Journal of Geophysical Research, 2012, 117, .	3.3	70

#	Article	IF	CITATIONS
327	On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. Journal of Geophysical Research, 2012, 117, .	3.3	107
328	Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. Journal of Geophysical Research, 2012, 117, .	3.3	44
329	Measurements of ocean derived aerosol off the coast of California. Journal of Geophysical Research, 2012, 117, .	3.3	100
330	Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry. Journal of Geophysical Research, 2012, 117, .	3.3	133
331	A review of methods for long term in situ characterization of aerosol dust. Aeolian Research, 2012, 6, 55-74.	2.7	61
332	Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China. Frontiers of Environmental Science and Engineering, 2012, 6, 725-733.	6.0	39
333	Application of mass spectrometric techniques for the trace analysis of short-lived iodine-containing volatiles emitted by seaweed. Analytical and Bioanalytical Chemistry, 2012, 402, 3345-3357.	3.7	21
334	The Eyjafjallajökull ash plume – Part I: Physical, chemical and optical characteristics. Atmospheric Environment, 2012, 48, 129-142.	4.1	24
335	Impact of volcanic ash plume aerosol on cloud microphysics. Atmospheric Environment, 2012, 48, 205-218.	4.1	9
336	Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmospheric Environment, 2012, 51, 250-259.	4.1	296
337	Aerosol optical properties at Pasadena, CA during CalNex 2010. Atmospheric Environment, 2012, 55, 190-200.	4.1	47
338	Biomass burning contributions to urban aerosols in a coastal Mediterranean City. Science of the Total Environment, 2012, 427-428, 175-190.	8.0	130
339	Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part II: Onâ€line mass spectrometry techniques. Mass Spectrometry Reviews, 2012, 31, 17-48.	5.4	204
340	In situ measurement of PM1 organic aerosol in Beijing winter using a high-resolution aerosol mass spectrometer. Science Bulletin, 2012, 57, 819-826.	1.7	36
341	Dynamic Changes of the Aerosol Composition and Concentration during Different Burning Phases of Wood Combustion. Energy & Fuels, 2013, 27, 4959-4968.	5.1	70
342	Aerosol Transport and Source Attribution Using Sunphotometers, Models and In-Situ Chemical Composition Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 3803-3811.	6.3	6
343	Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry. Atmospheric Environment, 2013, 77, 1043-1051.	4.1	25
344	Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland. Journal of Aerosol Science, 2013, 56, 61-77.	3.8	89

#	ARTICLE	IF	Citations
345	Seasonal characteristics of submicrometer organic aerosols in urban Gwangju, Korea using an aerosol mass spectrometer. Atmospheric Environment, 2013, 80, 445-454.	4.1	6
346	NO3 radical, OH radical and O3-initiated secondary aerosol formation from aliphatic amines. Atmospheric Environment, 2013, 72, 105-112.	4.1	44
347	Physical and chemical characterization of ambient aerosol by HRâ€ToFâ€AMS at a suburban site in Hong Kong during springtime 2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8625-8639.	3.3	56
348	Droplet activation properties of organic aerosols observed at an urban site during CalNex‣A. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2903-2917.	3.3	73
349	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	3.3	199
350	Average chemical properties and potential formation pathways of highly oxidized organic aerosol. Faraday Discussions, 2013, 165, 181.	3.2	46
351	A statistical description of the evolution of cloud condensation nuclei activity during the heterogeneous oxidation of squalane and bis(2-ethylhexyl) sebacate aerosol by hydroxyl radicals. Physical Chemistry Chemical Physics, 2013, 15, 9679.	2.8	25
352	OH-initiated oxidation of sub-micron unsaturated fatty acid particles. Physical Chemistry Chemical Physics, 2013, 15, 18649.	2.8	39
353	Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation. Atmospheric Environment, 2013, 64, 200-207.	4.1	109
354	A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. Journal of Analytical Atomic Spectrometry, 2013, 28, 226-233.	3.0	150
356	Characterization of the origin of fine particulate matter in a medium size urban area in the Mediterranean. Atmospheric Environment, 2013, 80, 264-274.	4.1	43
357	Density and elemental ratios of secondary organic aerosol: Application of a density prediction method. Atmospheric Environment, 2013, 68, 273-277.	4.1	79
358	Dissolved Organic Matter and Inorganic Ions in a Central Himalayan Glacier—Insights into Chemical Composition and Atmospheric Sources. Environmental Science & Technology, 2013, 47, 6181-6188.	10.0	55
359	Gas Phase Oxidation of Monoethanolamine (MEA) with OH Radical and Ozone: Kinetics, Products, and Particles. Environmental Science & Technology, 2013, 47, 6377-6383.	10.0	65
360	On the Mixing and Evaporation of Secondary Organic Aerosol Components. Environmental Science & Technology, 2013, 47, 6173-6180.	10.0	46
361	Probing molecular associations of field ollected and laboratoryâ€generated SOA with nanoâ€DESI highâ€resolution mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1042-1051.	3.3	19
362	Gas-Phase CO ₂ Subtraction for Improved Measurements of the Organic Aerosol Mass Concentration and Oxidation Degree by an Aerosol Mass Spectrometer. Environmental Science & Technology, 2013, 47, 14324-14331.	10.0	30
363	Reactive Aging of Films of Secondary Organic Material Studied by Infrared Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 108-116.	2.5	18

ARTICLE IF CITATIONS # Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution 10.0 21 364 Droplets. Environmental Science & amp; Technology, 2013, 47, 12123-12130. Characterization of volcanic ash from the 2011 GrAmsvA¶tn eruption byÂmeans of single-particle 4.1 analysis. Atmospheric Environment, 2013, 79, 411-420. Realistic indoor nano-aerosols for a human exposure facility. Journal of Aerosol Science, 2013, 60, 366 3.8 15 55-66. Overview of the meteorology and transport patterns during the DAURE field campaign and their impact to PM observations. Atmospheric Environment, 2013, 77, 607-620. Laboratory Studies on Secondary Organic Aerosol Formation from Crude Oil Vapors. Environmental 368 10.0 38 Science & amp; Technology, 2013, 47, 12566-12574. Real-Time Black Carbon Emission Factor Measurements from Light Duty Vehicles. Environmental Science & Amp; Technology, 2013, 47, 13104-13112. Changes in Droplet Surface Tension Affect the Observed Hygroscopicity of Photochemically Aged 370 10.0 33 Biomass Burning Aerosol. Environmental Science & amp; Technology, 2013, 47, 10980-10986. Effective Henry's Law Partitioning and the Salting Constant of Glyoxal in Aerosols Containing 371 10.0 Sulfate. Environmental Science & amp; Technology, 2013, 47, 4236-4244. Aerosol Chemical Composition in Cloud Events by High Resolution Time-of-Flight Aerosol Mass 372 10.0 40 Spectrometry. Environmental Science & amp; Technology, 2013, 47, 2645-2653. Particulate Matter: Environmental Monitoring and Mitigation., 2013,,. 1 Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization. Topics in 374 7 4.0Current Chemistry, 2013, 339, 145-199. Identification and quantification of particle growth channels during new particle formation., 2013, , . Secondary organic aerosol formation from the oxidation of a series of sesquiterpenes: 1±-cedrene, \hat{l}^2 -caryophyllene, \hat{l}_{\pm} -humulene and \hat{l}_{\pm} -farnesene with O3, OH and NO3 radicals. Environmental Chemistry, 377 1.5 75 2013, 10, 178. Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with a light scattering module. Atmospheric Measurement Techniques, 2013, 6, 380 3.1 187-197. Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler – high-performance anion-exchange chromatography – mass spectrometry (PlLS–HPAEC–MS). 381 3.127 Atmospheric Measurement Techniques, 2013, 6, 2839-2849. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection. Atmospheric 3.1 184 Measurement Techniques, 2013, 6, 3225-3241. Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic 384 3.150 Aerosols. Aerosol Science and Technology, 2013, 47, 294-309. Los Angeles Basin airborne organic aerosol characterization during CalNex. Journal of Geophysical 3.3 Research D: Atmospheres, 2013, 118, 11,453.

#	Article	IF	CITATIONS
386	IN SITU MEASUREMENTS OF THE SIZE AND DENSITY OF TITAN AEROSOL ANALOGS. Astrophysical Journal Letters, 2013, 770, L10.	8.3	52
387	Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008. Atmospheric Chemistry and Physics, 2013, 13, 2735-2756.	4.9	117
388	Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2013, 13, 9479-9496.	4.9	108
390	Variations in the OM/OC ratio of urban organic aerosol next to a major roadway. Journal of the Air and Waste Management Association, 2013, 63, 1422-1433.	1.9	32
391	Secondary Organic Aerosol Coating Formation and Evaporation: Chamber Studies Using Black Carbon Seed Aerosol and the Single-Particle Soot Photometer. Aerosol Science and Technology, 2013, 47, 326-347.	3.1	42
392	Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6783-6796.	3.3	69
393	Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China. Atmospheric Chemistry and Physics, 2013, 13, 10095-10112.	4.9	145
394	Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace. Atmospheric Chemistry and Physics, 2013, 13, 10919-10932.	4.9	63
395	Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign. Atmospheric Chemistry and Physics, 2013, 13, 2091-2113.	4.9	146
396	Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud Condensation Nuclei (CCN). Atmospheric Chemistry and Physics, 2013, 13, 5309-5324.	4.9	67
397	Observations of fluorescent and biological aerosol at a high-altitude site in central France. Atmospheric Chemistry and Physics, 2013, 13, 7415-7428.	4.9	67
398	Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Atmospheric Chemistry and Physics, 2013, 13, 8739-8753.	4.9	66
399	Burning of olive tree branches: a major organic aerosol source in the Mediterranean. Atmospheric Chemistry and Physics, 2013, 13, 8797-8811.	4.9	45
400	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.	4.9	27
401	Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution. Atmospheric Chemistry and Physics, 2013, 13, 933-959.	4.9	101
402	Identification and quantification of particle growth channels during new particle formation. Atmospheric Chemistry and Physics, 2013, 13, 10215-10225.	4.9	20
403	Effect of chemical structure on secondary organic aerosol formation from C ₁₂ alkanes. Atmospheric Chemistry and Physics, 2013, 13, 11121-11140.	4.9	48
404	Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmospheric Chemistry and Physics, 2013, 13, 2015-2029.	4.9	152

#	Article	IF	CITATIONS
405	The link between organic aerosol mass loading and degree of oxygenation: an α-pinene photooxidation study. Atmospheric Chemistry and Physics, 2013, 13, 6493-6506.	4.9	48
406	Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft. Atmospheric Chemistry and Physics, 2013, 13, 7845-7858.	4.9	36
407	Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols. Atmospheric Chemistry and Physics, 2013, 13, 8019-8043.	4.9	181
408	Naphthalene SOA: redox activity and naphthoquinone gas–particle partitioning. Atmospheric Chemistry and Physics, 2013, 13, 9731-9744.	4.9	90
409	Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study. Atmospheric Chemistry and Physics, 2013, 13, 10125-10141.	4.9	36
410	Effects of relative humidity on aerosol light scattering: results from different European sites. Atmospheric Chemistry and Physics, 2013, 13, 10609-10631.	4.9	184
411	Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3. Atmospheric Chemistry and Physics, 2013, 13, 11551-11571.	4.9	218
412	CCN activity of organic aerosols observed downwind of urban emissions during CARES. Atmospheric Chemistry and Physics, 2013, 13, 12155-12169.	4.9	88
413	Application of the Statistical Oxidation Model (SOM) to Secondary Organic Aerosol formation from photooxidation of C ₁₂ alkanes. Atmospheric Chemistry and Physics, 2013, 13, 1591-1606.	4.9	45
414	A new source of oxygenated organic aerosol and oligomers. Atmospheric Chemistry and Physics, 2013, 13, 2989-3002.	4.9	17
415	Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010. Atmospheric Chemistry and Physics, 2013, 13, 3393-3407.	4.9	14
416	Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 4997-5015.	4.9	75
417	Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM) chamber. Atmospheric Chemistry and Physics, 2013, 13, 5017-5031.	4.9	24
418	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	4.9	33
419	Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model. Atmospheric Chemistry and Physics, 2013, 13, 5767-5790.	4.9	105
420	Black carbon physical properties and mixing state in the European megacity Paris. Atmospheric Chemistry and Physics, 2013, 13, 5831-5856.	4.9	174
421	Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmospheric Chemistry and Physics, 2013, 13, 6101-6116.	4.9	129
422	Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth. Atmospheric Chemistry and Physics, 2013, 13, 6637-6646.	4.9	29

#	Article	IF	CITATIONS
423	Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign. Atmospheric Chemistry and Physics, 2013, 13, 7983-7996.	4.9	108
424	Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment. Atmospheric Chemistry and Physics, 2013, 13, 8411-8426.	4.9	96
425	Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2013, 13, 8585-8605.	4.9	150
426	Sub-Antarctic marine aerosol: dominant contributions from biogenic sources. Atmospheric Chemistry and Physics, 2013, 13, 8669-8694.	4.9	82
427	Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmospheric Chemistry and Physics, 2013, 13, 9141-9158.	4.9	207
428	Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmospheric Chemistry and Physics, 2013, 13, 961-981.	4.9	391
429	Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere. Atmospheric Chemistry and Physics, 2013, 13, 9819-9835.	4.9	30
430	Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9233-9257.	3.3	231
431	Heterogeneous formation of nitryl chloride and its role as a nocturnal NO <i>_x</i> reservoir species during CalNexâ€LA 2010. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,638.	3.3	65
432	Gasâ€particle partitioning of primary organic aerosol emissions: 3. Biomass burning. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,327.	3.3	178
433	Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1950-1963.	3.3	142
434	Atmospheric aerosol properties over the equatorial Indian Ocean and the impact of the Maddenâ€Julian Oscillation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5736-5749.	3.3	22
435	Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties. Atmospheric Chemistry and Physics, 2013, 13, 2837-2855.	4.9	73
436	Vertically resolved chemical characteristics and sources of submicron aerosols measured on a Tall Tower in a suburban area near Denver, Colorado in winter. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,591.	3.3	18
437	Atmospheric Prebiotic Chemistry and Organic Hazes. Current Organic Chemistry, 2013, 17, 1710-1723.	1.6	48
438	Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmospheric Measurement Techniques, 2014, 7, 301-313.	3.1	89
439	A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmospheric Measurement Techniques, 2014, 7, 983-1001.	3.1	345
440	Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area. Atmospheric Measurement Techniques, 2014, 7, 279-299.	3.1	21

#	Article	IF	CITATIONS
441	Evaluation of the performance of a particle concentrator for online instrumentation. Atmospheric Measurement Techniques, 2014, 7, 2121-2135.	3.1	14
442	Development of a Transfer Function for a Personal, Thermophoretic Nanoparticle Sampler. Aerosol Science and Technology, 2014, 48, 81-89.	3.1	23
443	Simultaneous HTDMA and HRâ€ToFâ€AMS measurements at the HKUST Supersite in Hong Kong in 2011. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9864-9883.	3.3	44
444	The First Combined Thermal Desorption Aerosol Gas Chromatograph—Aerosol Mass Spectrometer (TAG-AMS). Aerosol Science and Technology, 2014, 48, 358-370.	3.1	47
445	Adhesion of Dust Particles to Common Indoor Surfaces in an Air-Conditioned Environment. Aerosol Science and Technology, 2014, 48, 541-551.	3.1	33
450	Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol. Tellus, Series B: Chemical and Physical Meteorology, 2014, 66, 22716.	1.6	61
451	Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmospheric Chemistry and Physics, 2014, 14, 2887-2903.	4.9	280
452	Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon. Atmospheric Measurement Techniques, 2014, 7, 4507-4516.	3.1	71
453	Dependence of Real Refractive Indices on O:C, H:C and Mass Fragments of Secondary Organic Aerosol Generated from Ozonolysis and Photooxidation of Limonene and α-Pinene. Aerosol Science and Technology, 2014, 48, 498-507.	3.1	29
454	Source apportionment of urban fine particle number concentration during summertime in Beijing. Atmospheric Environment, 2014, 96, 359-369.	4.1	75
456	Online Characterization of Syngas Particulates Using Aerosol Mass Spectrometry in Entrained-Flow Biomass Gasification. Aerosol Science and Technology, 2014, 48, 1145-1155.	3.1	17
457	Effects of alkylate fuel on exhaust emissions and secondary aerosol formation of a 2-stroke and a 4-stroke scooter. Atmospheric Environment, 2014, 94, 307-315.	4.1	24
458	Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Science China Earth Sciences, 2014, 57, 14-25.	5.2	626
459	Toward Understanding Amines and Their Degradation Products from Postcombustion CO ₂ Capture Processes with Aerosol Mass Spectrometry. Environmental Science & Technology, 2014, 48, 5066-5075.	10.0	52
460	Mapping the Operation of the Miniature Combustion Aerosol Standard (Mini-CAST) Soot Generator. Aerosol Science and Technology, 2014, 48, 467-479.	3.1	94
461	Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2014, 27, 229-254.	1.4	111
462	Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia. Physical Chemistry Chemical Physics, 2014, 16, 10629-10642.	2.8	98
463	Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles. Environmental Science & amp; Technology, 2014, 48, 3698-3706.	10.0	145

#	Article	IF	CITATIONS
464	Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques. Science of the Total Environment, 2014, 493, 197-208.	8.0	18
465	Secondary Organic Aerosol Formation from Acyclic, Monocyclic, and Polycyclic Alkanes. Environmental Science & Technology, 2014, 48, 10227-10234.	10.0	55
466	Secondary Organic Aerosol Formation via the Isolation of Individual Reactive Intermediates: Role of Alkoxy Radical Structure. Journal of Physical Chemistry A, 2014, 118, 8807-8816.	2.5	16
467	Influence of Molecular Structure and Chemical Functionality on the Heterogeneous OH-Initiated Oxidation of Unsaturated Organic Particles. Journal of Physical Chemistry A, 2014, 118, 4106-4119.	2.5	32
468	Shifts in the Gas-Particle Partitioning of Ambient Organics with Transport into the Indoor Environment. Aerosol Science and Technology, 2014, 48, 271-281.	3.1	25
469	Proposed chemical mechanisms leading to secondary organic aerosol in the reactions of aliphatic amines with hydroxyl and nitrate radicals. Atmospheric Environment, 2014, 96, 135-144.	4.1	21
470	Effects of NO _{<i>x</i>} on the Volatility of Secondary Organic Aerosol from Isoprene Photooxidation. Environmental Science & Technology, 2014, 48, 2253-2262.	10.0	99
471	Synthesizing Scientific Progress: Outcomes from U.S. EPA's Carbonaceous Aerosols and Source Apportionment STAR Grants. Environmental Science & Technology, 2014, 48, 10561-10570.	10.0	6
472	High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514, 218-222.	27.8	3,582
473	Wintertime Aerosol Chemistry in Sub-Arctic Urban Air. Aerosol Science and Technology, 2014, 48, 313-323.	3.1	26
474	Particulate PAH Emissions from Residential Biomass Combustion: Time-Resolved Analysis with Aerosol Mass Spectrometry. Environmental Science & Technology, 2014, 48, 7143-7150.	10.0	80
475	Reactive and Nonreactive Ozone Uptake during Aging of Oleic Acid Particles. Journal of Physical Chemistry A, 2014, 118, 9471-9481.	2.5	17
476	Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment. Environmental Science & Technology, 2014, 48, 6300-6308.	10.0	103
477	Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan. Journal of Geophysical Research D: Atmospheres, 2014, 119, 259-273.	3.3	16
478	SOA Formation Potential of Emissions from Soil and Leaf Litter. Environmental Science & amp;	10.0	38
	Technology, 2014, 48, 938-946.	10.0	
479	Technology, 2014, 48, 938-946. Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6818-6835.	3.3	82
479 480	Technology, 2014, 48, 938-946. Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6818-6835. The role of benzene photolysis in Titan haze formation. Icarus, 2014, 233, 233-241.	3.3 2.5	82 40

#	Article	IF	CITATIONS
482	Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles. Aerosol Science and Technology, 2014, 48, v-x.	3.1	25
484	A large source of low-volatility secondary organic aerosol. Nature, 2014, 506, 476-479.	27.8	1,448
485	Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4978-5010.	3.3	49
486	Properties of lightâ€absorbing aerosols in the Nagoya urban area, Japan, in August 2011 and January 2012: Contributions of brown carbon and lensing effect. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,721.	3.3	57
487	Dimethyl sulfide: Less important than longâ€range transport as a source of sulfate to the remote tropical Pacific marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9142-9167.	3.3	14
488	Cloud partitioning of isocyanic acid (HNCO) and evidence of secondary source of HNCO in ambient air. Geophysical Research Letters, 2014, 41, 6962-6969.	4.0	23
489	Predicting hygroscopic growth using single particle chemical composition estimates. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9567-9577.	3.3	16
490	Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing. Geophysical Research Letters, 2014, 41, 7701-7709.	4.0	77
491	Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,826-11,849.	3.3	116
492	Suppression in droplet growth kinetics by the addition of organics to sulfate particles. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,222.	3.3	6
493	Volatile and intermediate volatility organic compounds in suburban Paris: variability, origin and importance for SOA formation. Atmospheric Chemistry and Physics, 2014, 14, 10439-10464.	4.9	97
494	Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques. Atmospheric Chemistry and Physics, 2014, 14, 12109-12132.	4.9	46
495	Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2014, 14, 12593-12611.	4.9	132
496	Atmospheric submicron aerosol composition and particulate organic nitrate formation in a boreal forestland–urban mixed region. Atmospheric Chemistry and Physics, 2014, 14, 13483-13495.	4.9	53
497	Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical. Atmospheric Chemistry and Physics, 2014, 14, 13801-13816.	4.9	187
498	Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (¹ H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy). Atmospheric Chemistry and Physics, 2014, 14, 5089-5110.	4.9	51
499	Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2014, 14, 7585-7599.	4.9	115
500	Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime. Atmospheric Chemistry and Physics, 2014, 14, 10061-10084.	4.9	171

#	Article	IF	CITATIONS
501	Chemical mass balance of 300 °C non-volatile particles at the tropospheric research site Melpitz, Germany. Atmospheric Chemistry and Physics, 2014, 14, 10145-10162.	4.9	55
502	Size-resolved cloud condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong. Atmospheric Chemistry and Physics, 2014, 14, 10267-10282.	4.9	69
503	Airborne characterization of smoke marker ratios from prescribed burning. Atmospheric Chemistry and Physics, 2014, 14, 10535-10545.	4.9	47
504	Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state. Atmospheric Chemistry and Physics, 2014, 14, 11731-11752.	4.9	33
505	Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area. Atmospheric Chemistry and Physics, 2014, 14, 12931-12950.	4.9	22
506	Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds. Atmospheric Chemistry and Physics, 2014, 14, 13531-13549.	4.9	60
507	Secondary organic aerosol yields of 12-carbon alkanes. Atmospheric Chemistry and Physics, 2014, 14, 1423-1439.	4.9	100
508	Role of ozone in SOA formation from alkane photooxidation. Atmospheric Chemistry and Physics, 2014, 14, 1733-1753.	4.9	43
509	A sea spray aerosol flux parameterization encapsulating wave state. Atmospheric Chemistry and Physics, 2014, 14, 1837-1852.	4.9	113
510	Chemical composition, main sources and temporal variability of PM ₁ aerosols in southern African grassland. Atmospheric Chemistry and Physics, 2014, 14, 1909-1927.	4.9	81
511	Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation. Atmospheric Chemistry and Physics, 2014, 14, 2383-2397.	4.9	83
512	Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques. Atmospheric Chemistry and Physics, 2014, 14, 25-45.	4.9	53
513	Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado. Atmospheric Chemistry and Physics, 2014, 14, 2657-2667.	4.9	62
514	Aqueous-phase photochemical oxidation and direct photolysis of vanillin – a model compound of methoxy phenols from biomass burning. Atmospheric Chemistry and Physics, 2014, 14, 2871-2885.	4.9	73
515	An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands. Atmospheric Chemistry and Physics, 2014, 14, 5073-5087.	4.9	27
516	Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 5793-5806.	4.9	60
517	Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol. Atmospheric Chemistry and Physics, 2014, 14, 5959-5967.	4.9	16
518	The effect of local sources on particle size and chemical composition and their role in aerosol–cloud interactions at Puijo measurement station. Atmospheric Chemistry and Physics, 2014, 14, 6021-6034.	4.9	15

#	Article	IF	CITATIONS
519	Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013. Atmospheric Chemistry and Physics, 2014, 14, 6345-6367.	4.9	62
520	Chemistry of new particle growth in mixed urban and biogenic emissions – insights from CARES. Atmospheric Chemistry and Physics, 2014, 14, 6477-6494.	4.9	52
521	Fog scavenging of organic and inorganic aerosol in the Po Valley. Atmospheric Chemistry and Physics, 2014, 14, 6967-6981.	4.9	98
522	Cloud droplet activity changes of soot aerosol upon smog chamber ageing. Atmospheric Chemistry and Physics, 2014, 14, 9831-9854.	4.9	47
523	Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution. Atmospheric Chemistry and Physics, 2014, 14, 10773-10784.	4.9	40
524	Aerosol hygroscopicity and cloud condensation nuclei activity during the AC ³ Exp campaign: implications for cloud condensation nuclei parameterization. Atmospheric Chemistry and Physics, 2014, 14, 13423-13437.	4.9	71
525	Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS. Atmospheric Chemistry and Physics, 2014, 14, 1527-1546.	4.9	89
526	Hygroscopic and chemical characterisation of Po Valley aerosol. Atmospheric Chemistry and Physics, 2014, 14, 1557-1570.	4.9	11
527	The role of low volatile organics on secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2014, 14, 1689-1700.	4.9	64
528	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	4.9	308
529	Single particle diversity and mixing state measurements. Atmospheric Chemistry and Physics, 2014, 14, 6289-6299.	4.9	49
530	Submicron NE Atlantic marine aerosol chemical composition and abundance: Seasonal trends and air mass categorization. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,850-11,863.	3.3	65
531	Marine and urban influences on summertime PM2.5 aerosol in the Po basin using mobile measurements. Atmospheric Environment, 2015, 120, 447-454.	4.1	9
532	Measurement of Aircraft Engine Non-Volatile PM Emissions: Results of the Aviation-Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 Campaign. Aerosol Science and Technology, 2015, 49, 472-484.	3.1	82
533	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	4.0	43
534	CCN closure study: Effects of aerosol chemical composition and mixing state. Journal of Geophysical Research D: Atmospheres, 2015, 120, 766-783.	3.3	66
535	Signal-to-Noise Performance Evaluation of a New 12-Bit Digitizer on a Time-of-Flight Mass Spectrometer. European Journal of Mass Spectrometry, 2015, 21, 13-17.	1.0	7
536	Non-linear photochemical pathways in laser-induced atmospheric aerosol formation. Scientific Reports, 2015, 5, 14978.	3.3	17

#	Article	IF	CITATIONS
537	Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?. Scientific Reports, 2015, 5, 14883.	3.3	75
538	Revealing important nocturnal and dayâ€ŧoâ€day variations in fire smoke emissions through a multiplatform inversion. Geophysical Research Letters, 2015, 42, 3609-3618.	4.0	73
539	Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways. Journal of Geophysical Research: Oceans, 2015, 120, 7300-7315.	2.6	22
540	Primary marine aerosolâ€eloud interactions off the coast of California. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4282-4303.	3.3	83
541	Characterization of iceâ€nucleating bacteria using onâ€line electron impact ionization aerosol mass spectrometry. Journal of Mass Spectrometry, 2015, 50, 662-671.	1.6	10
542	Evolution of brown carbon in wildfire plumes. Geophysical Research Letters, 2015, 42, 4623-4630.	4.0	284
543	Characteristics of submicron particulate matter at the urban roadside in downtown Hong Kong—Overview of 4 months of continuous highâ€resolution aerosol mass spectrometer measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7040-7058.	3.3	70
544	Realâ€ŧime measurements of ambient aerosols in a polluted Indian city: Sources, characteristics, and processing of organic aerosols during foggy and nonfoggy periods. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9006-9019.	3.3	68
545	Characterization of black carbonâ€containing particles from soot particle aerosol mass spectrometer measurements on the R/V <i>Atlantis</i> during CalNex 2010. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2575-2593.	3.3	47
546	Investigating a two-component model of solid fuel organic aerosol in London: processes, PM ₁ contributions, and seasonality. Atmospheric Chemistry and Physics, 2015, 15, 2429-2443.	4.9	31
547	Fine-particle water and pH in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 5211-5228.	4.9	413
548	Secondary organic aerosol formation from the β-pinene+NO ₃ system: effect of humidity and peroxy radical fate. Atmospheric Chemistry and Physics, 2015, 15, 7497-7522.	4.9	203
549	On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 8679-8694.	4.9	98
550	Mixing state of carbonaceous aerosol in an urban environment: single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS). Atmospheric Chemistry and Physics, 2015, 15, 1823-1841.	4.9	83
551	Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation – Part 1: Aging processes of oligomers. Atmospheric Chemistry and Physics, 2015, 15, 21-35.	4.9	39
552	Receptor modelling of fine particles in southern England using CMB including comparison with AMS-PMF factors. Atmospheric Chemistry and Physics, 2015, 15, 2139-2158.	4.9	40
553	Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene. Atmospheric Chemistry and Physics, 2015, 15, 3339-3358.	4.9	33
554	Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: inter- and intra-species variability for six coniferous species. Atmospheric Chemistry and Physics, 2015, 15, 3629-3646.	4.9	12

#	Article	IF	CITATIONS
555	Aerosol optical hygroscopicity measurements during the 2010 CARES campaign. Atmospheric Chemistry and Physics, 2015, 15, 4045-4061.	4.9	24
556	Near-highway aerosol and gas-phase measurements in a high-diesel environment. Atmospheric Chemistry and Physics, 2015, 15, 4373-4387.	4.9	24
557	Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects. Atmospheric Chemistry and Physics, 2015, 15, 6023-6034.	4.9	126
558	Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes. Atmospheric Chemistry and Physics, 2015, 15, 6323-6335.	4.9	78
559	Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London. Atmospheric Chemistry and Physics, 2015, 15, 6351-6366.	4.9	46
560	Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chemistry and Physics, 2015, 15, 7307-7336.	4.9	259
561	Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 737-752.	4.9	19
562	Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing. Atmospheric Chemistry and Physics, 2015, 15, 7841-7858.	4.9	96
563	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	4.9	641
564	Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity. Atmospheric Chemistry and Physics, 2015, 15, 8301-8313.	4.9	41
565	In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmospheric Chemistry and Physics, 2015, 15, 9577-9591.	4.9	92
566	Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes. Atmospheric Chemistry and Physics, 2015, 15, 991-1012.	4.9	67
567	Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter. Atmospheric Chemistry and Physics, 2015, 15, 11291-11309.	4.9	71
568	Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign. Atmospheric Chemistry and Physics, 2015, 15, 11327-11340.	4.9	23
569	Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2015, 15, 11807-11833.	4.9	185
570	Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment. Atmospheric Chemistry and Physics, 2015, 15, 11999-12009.	4.9	18
571	Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of hygroscopicity measurements. Atmospheric Chemistry and Physics, 2015, 15, 13071-13083.	4.9	28
572	Organic nitrate aerosol formation via NO ₃ + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 13377-13392.	4.9	124

#	Article	IF	CITATIONS
573	Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation. Atmospheric Chemistry and Physics, 2015, 15, 13569-13584.	4.9	90
574	Size-resolved observations of refractory black carbon particles in cloud droplets at a marine boundary layer site. Atmospheric Chemistry and Physics, 2015, 15, 1367-1383.	4.9	28
575	Long-term real-time measurements of aerosol particle composition in Beijing, China: seasonal variations, meteorological effects, and source analysis. Atmospheric Chemistry and Physics, 2015, 15, 10149-10165.	4.9	324
576	Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean. Atmospheric Chemistry and Physics, 2015, 15, 11355-11371.	4.9	68
577	Kerb and urban increment of highly time-resolved trace elements in PM ₁₀ , PM _{2.5} and PM _{1.0} winter aerosol in London during ClearfLo 2012. Atmospheric Chemistry and Physics, 2015, 15, 2367-2386.	4.9	46
578	Characterization of primary and secondary wood combustion products generated under different burner loads. Atmospheric Chemistry and Physics, 2015, 15, 2825-2841.	4.9	99
579	Gaseous products and secondary organic aerosol formation during long term oxidation of isoprene and methacrolein. Atmospheric Chemistry and Physics, 2015, 15, 2953-2968.	4.9	41
580	Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield. Atmospheric Chemistry and Physics, 2015, 15, 3063-3075.	4.9	177
581	Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmospheric Chemistry and Physics, 2015, 15, 37-53.	4.9	108
582	lodine observed in new particle formation events in the Arctic atmosphere during ACCACIA. Atmospheric Chemistry and Physics, 2015, 15, 5599-5609.	4.9	102
583	Aging of secondary organic aerosol generated from the ozonolysis of α-pinene: effects of ozone, light and temperature. Atmospheric Chemistry and Physics, 2015, 15, 883-897.	4.9	27
584	Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber. Atmospheric Chemistry and Physics, 2015, 15, 9049-9062.	4.9	90
585	Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophysical Research Letters, 2015, 42, 653-664.	4.0	212
586	Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8448-8468.	3.3	56
587	Chemical apportionment of aerosol optical properties during the Asiaâ€Pacific Economic Cooperation summit in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12,281.	3.3	34
588	ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	3.1	104
589	Comparison of advanced offline and in situ techniques of organic aerosol composition measurement during the CalNex campaign. Atmospheric Measurement Techniques, 2015, 8, 5177-5187.	3.1	7
590	Aerosol mass spectrometry: particle–vaporizer interactions and their consequences for the measurements. Atmospheric Measurement Techniques, 2015, 8, 3811-3830.	3.1	53

#	Article	IF	CITATIONS
591	Characterization of trace metals on soot aerosol particles with the SP-AMS: detection and quantification. Atmospheric Measurement Techniques, 2015, 8, 4803-4815.	3.1	26
592	Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds. Atmospheric Chemistry and Physics, 2015, 15, 7765-7776.	4.9	126
593	A switchable reagent ion high resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: characterization from the 2013 southern oxidant and aerosol study. Atmospheric Measurement Techniques, 2015, 8, 2945-2959.	3.1	69
594	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measurement Techniques, 2015, 8, 2555-2576.	3.1	118
595	Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products. Atmospheric Measurement Techniques, 2015, 8, 1-18.	3.1	63
596	Statistical precision of the intensities retrieved from constrained fitting of overlapping peaks in high-resolution mass spectra. Atmospheric Measurement Techniques, 2015, 8, 2333-2345.	3.1	53
597	Peak-fitting and integration imprecision in the Aerodyne aerosol mass spectrometer: effects of mass accuracy on location-constrained fits. Atmospheric Measurement Techniques, 2015, 8, 4615-4636.	3.1	20
598	Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition. Atmospheric Measurement Techniques, 2015, 8, 2315-2332.	3.1	110
599	Organic PM Emissions from Vehicles: Composition, O/C Ratio, and Dependence on PM Concentration. Aerosol Science and Technology, 2015, 49, 86-97.	3.1	44
600	Improved Time-Resolved Measurements of Inorganic Ions in Particulate Matter by PILS-IC Integrated with a Sample Pre-Concentration System. Aerosol Science and Technology, 2015, 49, 521-530.	3.1	6
601	Airborne measurements of organosulfates over the continental U.S Journal of Geophysical Research D: Atmospheres, 2015, 120, 2990-3005.	3.3	96
602	Role of ammonia in forming secondary aerosols from gasoline vehicle exhaust. Science China Chemistry, 2015, 58, 1377-1384.	8.2	35
604	Implementing marine organic aerosols into the GEOS-Chem model. Geoscientific Model Development, 2015, 8, 619-629.	3.6	12
606	Aerosol particle and trace gas emissions from earthworks, road construction, and asphalt paving in Germany: Emission factors and influence on local air quality. Atmospheric Environment, 2015, 122, 662-671.	4.1	39
607	Mass Spectrometry and Ion Mobility Spectrometry. Comprehensive Analytical Chemistry, 2015, 70, 311-329.	1.3	1
608	Comprehensive Chemical Characterization of Hydrocarbons in NIST Standard Reference Material 2779 Gulf of Mexico Crude Oil. Environmental Science & Technology, 2015, 49, 13130-13138.	10.0	39
609	The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13514-13519.	7.1	76
610	Physical state and acidity of inorganic sulfate can regulate the production of secondary organic material from isoprene photooxidation products. Physical Chemistry Chemical Physics, 2015, 17, 5670-5678.	2.8	30

#	Article	IF	CITATIONS
611	New Methodology for Quantifying Polycyclic Aromatic Hydrocarbons (PAHs) Using High-Resolution Aerosol Mass Spectrometry. Aerosol Science and Technology, 2015, 49, 1131-1148.	3.1	20
612	Relationship between pyrolysis products and organic aerosols formed during coal combustion. Proceedings of the Combustion Institute, 2015, 35, 2347-2354.	3.9	31
613	High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols. Journal of Physical Chemistry A, 2015, 119, 2594-2606.	2.5	63
614	Methods for characterization of organic compounds in atmospheric aerosol particles. Analytical and Bioanalytical Chemistry, 2015, 407, 5877-5897.	3.7	28
615	A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM). Environmental Pollution, 2015, 199, 227-234.	7.5	14
616	Changes to the Chemical Composition of Soot from Heterogeneous Oxidation Reactions. Journal of Physical Chemistry A, 2015, 119, 1154-1163.	2.5	33
617	Elemental Analysis of Complex Organic Aerosol Using Isotopic Labeling and Unit-Resolution Mass Spectrometry. Analytical Chemistry, 2015, 87, 2741-2747.	6.5	10
618	Uptake of Epoxydiol Isomers Accounts for Half of the Particle-Phase Material Produced from Isoprene Photooxidation via the HO ₂ Pathway. Environmental Science & Technology, 2015, 49, 250-258.	10.0	48
619	Real-Time Chemical Composition Analysis of Particulate Emissions from Woodchip Combustion. Energy & Fuels, 2015, 29, 1143-1150.	5.1	14
620	The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chemical Reviews, 2015, 115, 3919-3983.	47.7	417
621	Investigations of SP-AMS Carbon Ion Distributions as a Function of Refractory Black Carbon Particle Type. Aerosol Science and Technology, 2015, 49, 409-422.	3.1	29
624	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology, 2015, 49, 10330-10339.	10.0	172
625	Probing the Evaporation Dynamics of Mixed SOA/Squalane Particles Using Size-Resolved Composition and Single-Particle Measurements. Environmental Science & (amp; Technology, 2015, 49, 9724-9732.	10.0	23
626	A study of summer and winter highly time-resolved submicron aerosol composition measured at a suburban site in Prague. Atmospheric Environment, 2015, 118, 45-57.	4.1	23
627	Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 2015, 518-519, 626-635.	8.0	403
628	Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Scientific Reports, 2015, 5, 11801.	3.3	71
629	Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Applied Energy, 2015, 155, 204-217.	10.1	76
630	Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle. Atmospheric Environment, 2015, 117, 200-211.	4.1	59

#	Article	IF	CITATIONS
631	Radical Reactivity in the Condensed Phase: Intermolecular versus Intramolecular Reactions of Alkoxy Radicals. Journal of Physical Chemistry Letters, 2015, 6, 2388-2392.	4.6	9
632	Assessment of the sensitivity of core / shell parameters derived using the single-particle soot photometer to density and refractive index. Atmospheric Measurement Techniques, 2015, 8, 1701-1718.	3.1	98
634	Transport, biomass burning, and in-situ formation contribute to fine particle concentrations at a remote site near Grand Teton National Park. Atmospheric Environment, 2015, 112, 257-268.	4.1	16
635	Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator. Analytical and Bioanalytical Chemistry, 2015, 407, 5911-5922.	3.7	23
636	Controlled exposure to particulate matter from urban street air is associated with decreased vasodilation and heart rate variability in overweight and older adults. Particle and Fibre Toxicology, 2015, 12, 6.	6.2	46
637	Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs. Physical Chemistry Chemical Physics, 2015, 17, 14796-14804.	2.8	14
638	Analysis of Organic Sulfur Compounds in Atmospheric Aerosols at the HKUST Supersite in Hong Kong Using HR-ToF-AMS. Environmental Science & Technology, 2015, 49, 3672-3679.	10.0	57
639	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 2015, 15, 253-272.	4.9	736
640	Organic Aerosols Associated with the Generation of Reactive Oxygen Species (ROS) by Water-Soluble PM _{2.5} . Environmental Science & Technology, 2015, 49, 4646-4656.	10.0	259
641	Photochemical Aging of Secondary Organic Aerosols Generated from the Photooxidation of Polycyclic Aromatic Hydrocarbons in the Gas-Phase. Environmental Science & Technology, 2015, 49, 5407-5416.	10.0	41
642	Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer. Advances in Atmospheric Sciences, 2015, 32, 877-888.	4.3	29
643	Fine and Ultrafine Particles in the Vicinity of Industrial Activities: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 2305-2356.	12.8	50
644	Isoprene NO ₃ Oxidation Products from the RO ₂ + HO ₂ Pathway. Journal of Physical Chemistry A, 2015, 119, 10158-10171.	2.5	86
645	Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon. Journal of Physical Chemistry A, 2015, 119, 10767-10783.	2.5	126
646	Insights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation. Environmental Science & Technology, 2015, 49, 13168-13178.	10.0	42
647	Spatial Variation of Aerosol Chemical Composition and Organic Components Identified by Positive Matrix Factorization in the Barcelona Region. Environmental Science & Technology, 2015, 49, 10421-10430.	10.0	24
648	Ion/Molecule Attachment Reactions: Mass Spectrometry. , 2015, , .		17
649	Methods to extract molecular and bulk chemical information from series of complex mass spectra with limited mass resolution. International Journal of Mass Spectrometry, 2015, 389, 26-38	1.5	78

#	Article	IF	CITATIONS
650	Organic Emissions from a Wood Stove and a Pellet Stove Before and After Simulated Atmospheric Aging. Aerosol Science and Technology, 2015, 49, 1037-1050.	3.1	31
651	Effect of heterogeneous aqueous reactions on the secondary formation of inorganic aerosols during haze events. Atmospheric Environment, 2015, 122, 306-312.	4.1	116
652	Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nature Communications, 2015, 6, 8435.	12.8	266
653	Chemical Reactivity and Liquid/Nonliquid States of Secondary Organic Material. Environmental Science & Technology, 2015, 49, 13264-13274.	10.0	74
654	Contribution of Brown Carbon to Direct Radiative Forcing over the Indo-Gangetic Plain. Environmental Science & Technology, 2015, 49, 10474-10481.	10.0	70
655	Relative Humidity-Dependent HTDMA Measurements of Ambient Aerosols at the HKUST Supersite in Hong Kong, China. Aerosol Science and Technology, 2015, 49, 643-654.	3.1	24
656	Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer. Atmospheric Environment, 2015, 120, 297-306.	4.1	53
657	Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air. Physical Chemistry Chemical Physics, 2015, 17, 12500-12514.	2.8	78
658	Characterization and Identification of Polycyclic Aromatic Hydrocarbons in Diesel Particulate Matter. Analytical Letters, 2015, 48, 2303-2318.	1.8	7
659	Universal electronics for miniature and automated chemical assays. Analyst, The, 2015, 140, 963-975.	3.5	73
664	Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts. Atmospheric Measurement Techniques, 2016, 9, 1505-1512.	3.1	132
667	Applications and limitations of constrained high-resolution peak fitting on low resolving power mass spectra from the ToF-ACSM. Atmospheric Measurement Techniques, 2016, 9, 3263-3281.	3.1	24
669	Measurement of nonvolatile particle number size distribution. Atmospheric Measurement Techniques, 2016, 9, 103-114.	3.1	22
670	An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air. Atmospheric Measurement Techniques, 2016, 9, 179-194.	3.1	13
671	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	3.1	58
675	Evaluation of NO ⁺ reagent ion chemistry for online measurements of atmospheric volatile organic compounds. Atmospheric Measurement Techniques, 2016, 9, 2909-2925.	3.1	48
676	Variability of Biomass Burning Aerosols Layers and Near Ground. EPJ Web of Conferences, 2016, 119, 24004.	0.3	0
679	Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 2016, 9, 23-39.	3.1	110
#	Article	IF	CITATIONS
-----	---	------	-----------
680	Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers. Atmospheric Measurement Techniques, 2016, 9, 6117-6137.	3.1	31
681	Clustering, methodology, and mechanistic insights into acetate chemical ionization using high-resolution time-of-flight mass spectrometry. Atmospheric Measurement Techniques, 2016, 9, 3969-3986.	3.1	43
686	Organic and inorganic decomposition products from the thermal desorption of atmospheric particles. Atmospheric Measurement Techniques, 2016, 9, 1569-1586.	3.1	11
687	Wintertime Residential Biomass Burning in Las Vegas, Nevada; Marker Components and Apportionment Methods. Atmosphere, 2016, 7, 58.	2.3	18
688	Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer. Atmospheric Chemistry and Physics, 2016, 16, 14937-14957.	4.9	83
690	Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign. Environmental Science & amp; Technology, 2016, 50, 8613-8622.	10.0	89
691	BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bulletin of the American Meteorological Society, 2016, 97, 1909-1928.	3.3	71
692	Meteorological and aerosol effects on marine cloud microphysical properties. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4142-4161.	3.3	24
693	Submicron aerosols during the Beijing Asia–Pacific Economic Cooperation conference in 2014. Atmospheric Environment, 2016, 124, 224-231.	4.1	42
694	Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 6049-6065.	3.3	35
695	Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol. Astrobiology, 2016, 16, 822-830.	3.0	29
696	Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two olumn Aerosol Project. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9814-9848.	3.3	15
697	Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,355.	3.3	176
698	Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential. Scientific Reports, 2016, 6, 36623.	3.3	51
699	Oil sands operations as a large source of secondary organic aerosols. Nature, 2016, 534, 91-94.	27.8	136
700	Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: Unified Method for Predicting Aerosol Composition and Formation. Environmental Science & Technology, 2016, 50, 6249-6256.	10.0	19
701	Airmass aging metrics derived from particle and other measurements near Fort Worth. Atmospheric Environment, 2016, 126, 45-54.	4.1	3
702	Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry. Atmospheric Environment, 2016, 136, 144-155	4.1	34

#	Article	IF	CITATIONS
703	Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China. Science of the Total Environment, 2016, 562, 812-821.	8.0	71
704	Temperature Effects on Secondary Organic Aerosol (SOA) from the Dark Ozonolysis and Photo-Oxidation of Isoprene. Environmental Science & Technology, 2016, 50, 5564-5571.	10.0	37
705	Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing. Science of the Total Environment, 2016, 572, 289-300.	8.0	28
706	Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation, composition, and evolution. Science of the Total Environment, 2016, 573, 690-698.	8.0	24
707	Highly time resolved chemical characterization of submicron organic aerosols at a polluted urban location. Environmental Sciences: Processes and Impacts, 2016, 18, 1285-1296.	3.5	17
708	Chemical Characterization of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides. Environmental Science & Technology, 2016, 50, 9889-9899.	10.0	105
709	Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10013-10018.	7.1	243
710	The Two olumn Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2016, 121, 336-361.	3.3	33
711	Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC ⁴ RS campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4188-4210.	3.3	67
712	Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway. Environmental Science & Technology, 2016, 50, 9872-9880.	10.0	100
713	Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation. Environmental Science & Technology, 2016, 50, 9952-9962.	10.0	69
714	Ambient observations of hygroscopic growth factor and <i>f</i> (RH) below 1: Case studies from surface and airborne measurements. Journal of Geophysical Research D: Atmospheres, 2016, 121, 661-677.	3.3	25
715	Characterization of organic residues of sizeâ€resolved fog droplets and their atmospheric implications. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4317-4332.	3.3	30
716	Inorganic Salt Interference on CO ₂ ⁺ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies. Environmental Science & Technology, 2016, 50, 10494-10503.	10.0	88
717	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophysical Research Letters, 2016, 43, 7735-7744.	4.0	182
718	Deriving aerosol hygroscopic mixing state from size-resolved CCN activity and HR-ToF-AMS measurements. Atmospheric Environment, 2016, 142, 57-70.	4.1	18
719	Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1955-1977.	3.3	259
720	A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis. European Physical Journal D, 2016, 70, 1.	1.3	14

#	Article	IF	CITATIONS
722	Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols. Environmental Science & Technology, 2016, 50, 12241-12249.	10.0	42
723	Effects of temperature on the formation of secondary organic aerosol from amine precursors. Aerosol Science and Technology, 2016, 50, 1216-1226.	3.1	28
724	Near real-time measurement of carbonaceous aerosol using microplasma spectroscopy: Application to measurement of carbon nanomaterials. Aerosol Science and Technology, 2016, 50, 1155-1166.	3.1	15
725	Impact of molecular structure on secondary organic aerosol formation from aromatic hydrocarbon photooxidation under low-NO _{<i>x</i>} conditions. Atmospheric Chemistry and Physics, 2016, 16, 10793-10808	4.9	40
726	Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area. Atmospheric Chemistry and Physics, 2016, 16, 1139-1160.	4.9	32
727	Optical properties and aging of light-absorbing secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 12815-12827.	4.9	150
728	Light absorption of brown carbon aerosol in the PRD region of China. Atmospheric Chemistry and Physics, 2016, 16, 1433-1443.	4.9	76
729	Secondary organic aerosol formation from isoprene photooxidation during cloud condensation–evaporation cycles. Atmospheric Chemistry and Physics, 2016, 16, 1747-1760.	4.9	27
730	In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor. Atmospheric Chemistry and Physics, 2016, 16, 2943-2970.	4.9	122
731	Aerosol optical properties in the southeastern United States in summer – PartÂ1: Hygroscopic growth. Atmospheric Chemistry and Physics, 2016, 16, 4987-5007.	4.9	88
732	Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry. Atmospheric Chemistry and Physics, 2016, 16, 6721-6733.	4.9	30
733	Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements. Atmospheric Chemistry and Physics, 2016, 16, 7117-7134.	4.9	31
734	Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns. Atmospheric Chemistry and Physics, 2016, 16, 7295-7315.	4.9	17
735	Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with <i>α</i> -pinene ozonolysis. Atmospheric Chemistry and Physics, 2016, 16, 9361-9379.	4.9	75
736	Atmospheric aerosol compositions and sources at two national background sites in northern and southern China. Atmospheric Chemistry and Physics, 2016, 16, 10283-10297.	4.9	34
737	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmospheric Chemistry and Physics, 2016, 16, 1693-1712.	4.9	47
738	Phase, composition, and growth mechanism for secondary organic aerosol from the ozonolysis of <i>α</i> -cedrene. Atmospheric Chemistry and Physics, 2016, 16, 3245-3264.	4.9	33
739	Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium. Atmospheric Chemistry and Physics, 2016, 16, 5561-5572.	4.9	41

#	Article	IF	CITATIONS
740	Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO ₂ . Atmospheric Chemistry and Physics, 2016, 16, 675-689.	4.9	70
741	Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy. Atmospheric Chemistry and Physics, 2016, 16, 8095-8108.	4.9	39
742	Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 11163-11176.	4.9	64
743	Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmospheric Chemistry and Physics, 2016, 16, 1123-1138.	4.9	118
744	Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Atmospheric Chemistry and Physics, 2016, 16, 11563-11580.	4.9	82
745	Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2016, 16, 1187-1205.	4.9	28
746	Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China. Atmospheric Chemistry and Physics, 2016, 16, 13213-13230.	4.9	46
747	Estimating N⁢sub>2⁢/sub>O⁢sub>5⁢/sub> uptake coefficients using ambient measurements of NO ₃ , N ₂ O ₅ , ClNO ₂ and particle-phase nitrate. Atmospheric Chemistry and	4.9	71
748	Physics, 2016, 16, 19231-19249. Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging. Atmospheric Chemistry and Physics, 2016, 16, 13251-13269.	4.9	76
749	Model simulations of cooking organic aerosol (COA) over the UK using estimates of emissions based on measurements at two sites in London. Atmospheric Chemistry and Physics, 2016, 16, 13773-13789.	4.9	36
750	The effect of particle acidity on secondary organic aerosol formation from <i>α</i> -pinene photooxidation under atmospherically relevant conditions. Atmospheric Chemistry and Physics, 2016, 16, 13929-13944.	4.9	30
751	Particulate matter (PM) episodes at a suburban site in Hong Kong: evolution of PM characteristics and role of photochemistry in secondary aerosol formation. Atmospheric Chemistry and Physics, 2016, 16, 14131-14145.	4.9	20
752	Atmospheric aerosols in Rome, Italy: sources, dynamics and spatial variations during two seasons. Atmospheric Chemistry and Physics, 2016, 16, 15277-15299.	4.9	38
753	Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO ₂ emission controls. Atmospheric Chemistry and Physics, 2016, 16, 1603-1618.	4.9	257
754	Volatility of organic aerosol and its components in the megacity of Paris. Atmospheric Chemistry and Physics, 2016, 16, 2013-2023.	4.9	36
755	Role of methyl group number on SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NO _{<i>x</i>} conditions. Atmospheric Chemistry and Physics 2016, 16, 2255, 2272	4.9	32
756	New insights into PM _{2.5} chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 3207-3225.	4.9	300
757	Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns. Atmospheric Chemistry and Physics, 2016, 16, 3727-3741.	4.9	34

#	Article	IF	CITATIONS
758	Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010. Atmospheric Chemistry and Physics, 2016, 16, 505-524.	4.9	53
759	Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California. Atmospheric Chemistry and Physics, 2016, 16, 5427-5451.	4.9	80
760	Chemical and physical characterization of traffic particles in four different highway environments in the Helsinki metropolitan area. Atmospheric Chemistry and Physics, 2016, 16, 5497-5512.	4.9	43
761	Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. Atmospheric Chemistry and Physics, 2016, 16, 7411-7433.	4.9	137
762	Growth of nucleation mode particles in the summertime Arctic: a case study. Atmospheric Chemistry and Physics, 2016, 16, 7663-7679.	4.9	111
763	Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car. Atmospheric Chemistry and Physics, 2016, 16, 8559-8570.	4.9	76
764	Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands. Atmospheric Chemistry and Physics, 2016, 16, 8831-8847.	4.9	38
765	Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 9109-9127.	4.9	96
766	Combustion process apportionment of carbonaceous particulate emission from a diesel fuel burner. Journal of Aerosol Science, 2016, 100, 61-72.	3.8	5
767	Redefining the importance of nitrate during haze pollution to help optimize an emission control strategy. Atmospheric Environment, 2016, 141, 197-202.	4.1	90
768	Simulation of particle diversity and mixing state over Greater Paris: a model–measurement inter-comparison. Faraday Discussions, 2016, 189, 547-566.	3.2	23
769	Modeling of the chemical composition of fine particulate matter: Development and performance assessment of EASYWRF-Chem. Atmospheric Research, 2016, 170, 41-51.	4.1	3
770	Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA. Environmental Science & amp; Technology, 2016, 50, 2200-2209.	10.0	141
771	Anthropogenic Sulfur Perturbations on Biogenic Oxidation: SO ₂ Additions Impact Gas-Phase OH Oxidation Products of α- and β-Pinene. Environmental Science & Technology, 2016, 50, 1269-1279.	10.0	45
772	Characteristics of atmospheric organic and elemental carbon aerosols in urban Beijing, China. Atmospheric Environment, 2016, 125, 293-306.	4.1	104
773	Size-Resolved Identification, Characterization, and Quantification of Primary Biological Organic Aerosol at a European Rural Site. Environmental Science & Technology, 2016, 50, 3425-3434.	10.0	57
774	Effects of Condensed-Phase Oxidants on Secondary Organic Aerosol Formation. Journal of Physical Chemistry A, 2016, 120, 1386-1394.	2.5	31
775	Development of a volatility and polarity separator (VAPS) for volatility- and polarity-resolved organic aerosol measurement. Aerosol Science and Technology, 2016, 50, 255-271.	3.1	19

#	Article	IF	CITATIONS
776	Chemical Structural Characteristics of HULIS and Other Fractionated Organic Matter in Urban Aerosols: Results from Mass Spectral and FT-IR Analysis. Environmental Science & Technology, 2016, 50, 1721-1730.	10.0	92
777	Formation of high-molecular-weight compounds via the heterogeneous reactions of gaseous C8–C10 n-aldehydes in the presence of atmospheric aerosol components. Atmospheric Environment, 2016, 126, 290-297.	4.1	12
778	Observation of Fullerene Soot in Eastern China. Environmental Science and Technology Letters, 2016, 3, 121-126.	8.7	67
779	SOA formation from naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene photooxidation. Atmospheric Environment, 2016, 131, 424-433.	4.1	38
780	Outdoor and indoor aerosol size, number, mass and compositional dynamics at an urban background site during warm season. Atmospheric Environment, 2016, 131, 171-184.	4.1	20
781	Uptake and release of gaseous species accompanying the reactions of isoprene photo-oxidation products with sulfate particles. Physical Chemistry Chemical Physics, 2016, 18, 1595-1600.	2.8	20
782	Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013. Environmental Science and Pollution Research, 2016, 23, 6845-6860.	5.3	50
783	Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation. Environmental Science & Technology, 2016, 50, 222-231.	10.0	95
784	Physical and Chemical Characterization of Real-World Particle Number and Mass Emissions from City Buses in Finland. Environmental Science & Technology, 2016, 50, 294-304.	10.0	41
785	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	2.5	23
786	Fine particles sampled at an urban background site and an industrialized coastal site in Northern France — Part 1: Seasonal variations and chemical characterization. Science of the Total Environment, 2017, 578, 203-218.	8.0	22
787	Realâ€ŧime transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry. Indoor Air, 2017, 27, 230-240.	4.3	60
788	More unsaturated, cooking-type hydrocarbon-like organic aerosol particle emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology, 2017, 51, 135-146.	3.1	14
789	Quantification of the sources and composition of particulate matter by field-deployable mass spectrometry: implications for air quality and public health. Analyst, The, 2017, 142, 687-690.	3.5	3
790	Environmental conditions regulate the impact of plants on cloud formation. Nature Communications, 2017, 8, 14067.	12.8	62
791	Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmospheric Environment, 2017, 158, 270-304.	4.1	203
792	Molecular-Size-Separated Brown Carbon Absorption for Biomass-Burning Aerosol at Multiple Field Sites. Environmental Science & Technology, 2017, 51, 3128-3137.	10.0	77
793	Evaluation of the new capture vaporizer for aerosol mass spectrometers (AMS) through field studies of inorganic species. Aerosol Science and Technology, 2017, 51, 735-754.	3.1	63

#	Article	IF	CITATIONS
794	Role of persistent low-level clouds in mitigating air quality impacts of wintertime cold pool conditions. Atmospheric Environment, 2017, 154, 236-246.	4.1	11
795	Hygroscopic properties of urban aerosols and their cloud condensation nuclei activities measured in Seoul during the MAPS-Seoul campaign. Atmospheric Environment, 2017, 153, 217-232.	4.1	22
796	Contributions of wood smoke and vehicle emissions to ambient concentrations of volatile organic compounds and particulate matter during the Yakima wintertime nitrate study. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1871-1883.	3.3	11
797	Factors controlling the evaporation of secondary organic aerosol from αâ€pinene ozonolysis. Geophysical Research Letters, 2017, 44, 2562-2570.	4.0	95
798	Composition and sources of winter haze in the Bakken oil and gas extraction region. Atmospheric Environment, 2017, 156, 77-87.	4.1	27
799	Aerosol optical properties measurements by a CAPS single scattering albedo monitor: Comparisons between summer and winter in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2513-2526.	3.3	30
800	Atmospheric Aerosols: Clouds, Chemistry, and Climate. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 427-444.	6.8	76
801	Volatility of source apportioned wintertime organic aerosol in the city of Athens. Atmospheric Environment, 2017, 158, 138-147.	4.1	38
802	Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4565-4577.	3.3	10
803	Microphysical explanation of the RHâ€dependent water affinity of biogenic organic aerosol and its importance for climate. Geophysical Research Letters, 2017, 44, 5167-5177.	4.0	74
804	Effects of organic aerosol loading and fog processing on organic aerosol volatility. Journal of Aerosol Science, 2017, 105, 73-83.	3.8	8
805	Vehicle Emissions as an Important Urban Ammonia Source in the United States and China. Environmental Science & Technology, 2017, 51, 2472-2481.	10.0	202
806	Secondary Organic Aerosol (SOA) from Nitrate Radical Oxidation of Monoterpenes: Effects of Temperature, Dilution, and Humidity on Aerosol Formation, Mixing, and Evaporation. Environmental Science & Technology, 2017, 51, 7831-7841.	10.0	71
807	Secondary organic aerosol from VOC mixtures in an oxidation flow reactor. Atmospheric Environment, 2017, 161, 210-220.	4.1	51
808	Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature, 2017, 546, 637-641.	27.8	232
809	Development of an analytical methodology for obtaining quantitative mass concentrations from LAAP-ToF-MS measurements. Talanta, 2017, 174, 715-724.	5.5	13
810	Ambient and laboratory observations of organic ammonium salts in PM ₁ . Faraday Discussions, 2017, 200, 331-351.	3.2	14
811	Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove. Environmental Research, 2017, 158, 33-42.	7.5	34

#	ARTICLE	IF	CITATIONS
812	Emission of volatile organic compounds and production of secondary organic aerosol from stir-frying spices. Science of the Total Environment, 2017, 599-600, 1614-1621.	8.0	54
813	Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nature Geoscience, 2017, 10, 486-489.	12.9	168
814	Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry. Analyst, The, 2017, 142, 2395-2403.	3.5	33
815	Water soluble organic aerosols in indo gangetic plain (IGP): Insights from aerosol mass spectrometry. Science of the Total Environment, 2017, 599-600, 1573-1582.	8.0	28
816	Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: current capabilities and remaining gaps. Faraday Discussions, 2017, 200, 579-598.	3.2	37
817	Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry. Environmental Pollution, 2017, 222, 567-582.	7.5	30
819	Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland. Atmospheric Environment, 2017, 158, 60-75.	4.1	38
820	Atmospheric particle composition-hygroscopic growth measurements using an in-series hybrid tandem differential mobility analyzer and aerosol mass spectrometer. Aerosol Science and Technology, 2017, 51, 694-703.	3.1	5
821	Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environmental Pollution, 2017, 225, 74-85.	7.5	82
822	Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China. Science of the Total Environment, 2017, 593-594, 462-469.	8.0	53
823	Contribution of bacteria-like particles to PM2.5 aerosol in urban and rural environments. Atmospheric Environment, 2017, 160, 97-106.	4.1	15
824	In-depth compositional analysis of water-soluble and -insoluble organic substances in fine (PM2.5) airborne particles using ultra-high-resolution 15T FT-ICR MS and GCA—GC-TOFMS. Environmental Pollution, 2017, 225, 329-337.	7.5	32
825	The effect of gas-phase polycyclic aromatic hydrocarbons on the formation and properties of biogenic secondary organic aerosol particles. Faraday Discussions, 2017, 200, 143-164.	3.2	27
826	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	5.3	44
827	Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Aircraft Turbine Engines. Environmental Science & Technology, 2017, 51, 3621-3629.	10.0	6
828	Elevated production of NH 4 NO 3 from the photochemical processing of vehicle exhaust: Implications for air quality in the Seoul Metropolitan Region. Atmospheric Environment, 2017, 156, 95-101.	4.1	59
829	Chemical and physical properties of biomass burning aerosols and their CCN activity: A case study in Beijing, China. Science of the Total Environment, 2017, 579, 1260-1268.	8.0	24
830	Latitudinal and Seasonal Distribution of Particulate MSA over the Atlantic using a Validated Quantification Method with HR-ToF-AMS. Environmental Science & amp; Technology, 2017, 51, 418-426.	10.0	43

#	Article	IF	CITATIONS
831	Contribution of methyl group to secondary organic aerosol formation from aromatic hydrocarbon photooxidation. Atmospheric Environment, 2017, 151, 133-139.	4.1	10
832	In situ measurements of water uptake by black carbonâ€containing aerosol in wildfire plumes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1086-1097.	3.3	21
833	Evolution of In-Cylinder Diesel Engine Soot and Emission Characteristics Investigated with Online Aerosol Mass Spectrometry. Environmental Science & Technology, 2017, 51, 1876-1885.	10.0	38
834	Evaporation rate of particles in the vaporizer of the Aerodyne aerosol mass spectrometer. Aerosol Science and Technology, 2017, 51, 501-508.	3.1	8
835	Secondary organic aerosol formation from photo-oxidation of toluene with NO x and SO 2 : Chamber simulation with purified air versus urban ambient air as matrix. Atmospheric Environment, 2017, 150, 67-76.	4.1	36
836	Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Chemical Reviews, 2017, 117, 13187-13229.	47.7	282
837	Aerosol concentrations and composition in the North Pacific marine boundary layer. Atmospheric Environment, 2017, 171, 165-172.	4.1	20
838	Distinct high molecular weight organic compound (HMW-OC) types in aerosol particles collected at a coastal urban site. Atmospheric Environment, 2017, 171, 118-125.	4.1	3
839	Diesel soot aging in urban plumes within hours under cold dark and humid conditions. Scientific Reports, 2017, 7, 12364.	3.3	24
840	Atmospheric Photooxidation Diminishes Light Absorption by Primary Brown Carbon Aerosol from Biomass Burning. Environmental Science and Technology Letters, 2017, 4, 540-545.	8.7	135
841	Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode. Atmospheric Environment, 2017, 171, 126-142.	4.1	25
842	Real-Time Characterization of Aerosol Particle Composition During Winter High-Pollution Events in China. , 2017, , 221-244.		0
843	Primary and Secondary Sources of Gas-Phase Organic Acids from Diesel Exhaust. Environmental Science & Technology, 2017, 51, 10872-10880.	10.0	29
844	Direct Sampling and Analysis of Atmospheric Particulate Organic Matter by Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2017, 89, 10889-10897.	6.5	34
845	Submicrometer Particles Are in the Liquid State during Heavy Haze Episodes in the Urban Atmosphere of Beijing, China. Environmental Science and Technology Letters, 2017, 4, 427-432.	8.7	139
846	Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency. Atmospheric Environment, 2017, 169, 65-79.	4.1	48
847	Direct Analysis of Aerosolized Chemical Warfare Simulants Captured on a Modified Glass-Based Substrate by "Paper-Spray―Ionization. Analytical Chemistry, 2017, 89, 10866-10872.	6.5	35
849	Evidence for marine biogenic influence on summertime Arctic aerosol. Geophysical Research Letters, 2017, 44, 6460-6470.	4.0	56

#	Article	IF	CITATIONS
850	Overview of surface measurements and spatial characterization of submicrometer particulate matter during the DISCOVER-AQ 2013 campaign in Houston, TX. Journal of the Air and Waste Management Association, 2017, 67, 854-872.	1.9	14
851	Complementary online aerosol mass spectrometry and offline FT-IR spectroscopy measurements: Prospects and challenges for the analysis of anthropogenic aerosol particle emissions. Atmospheric Environment, 2017, 166, 92-98.	4.1	13
852	Internally mixed black carbon in the Indo-Gangetic Plain and its effect on absorption enhancement. Atmospheric Research, 2017, 197, 211-223.	4.1	50
853	Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols. Scientific Reports, 2017, 7, 6047.	3.3	63
854	The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene. Environmental Sciences: Processes and Impacts, 2017, 19, 1220-1234.	3.5	32
855	Characteristics of chemical composition and role of meteorological factors during heavy aerosol pollution episodes in northern Beijing area in autumn and winter of 2015. Tellus, Series B: Chemical and Physical Meteorology, 2022, 69, 1347484.	1.6	17
856	Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2017, 1, 673-682.	2.7	42
857	Formation of Nitrogen-Containing Organic Aerosol during Combustion of High-Sulfur-Content Coal. Energy & Fuels, 2017, 31, 14161-14168.	5.1	5
858	First Chemical Characterization of Refractory Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l). Environmental Science & amp; Technology, 2017, 51, 14072-14082.	10.0	55
859	Time-resolved analysis of particle emissions from residential biomass combustion – Emissions of refractory black carbon, PAHs and organic tracers. Atmospheric Environment, 2017, 165, 179-190.	4.1	47
860	Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Scientific Reports, 2017, 7, 4926.	3.3	133
861	Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species. Environmental Science & Technology, 2017, 51, 8491-8500.	10.0	117
862	Chemical characterization and source apportionment of atmospheric submicron particles on the western coast of Taiwan Strait, China. Journal of Environmental Sciences, 2017, 52, 293-304.	6.1	11
863	Chemical and cellular oxidant production induced by naphthalene secondary organic aerosol (SOA): effect of redox-active metals and photochemical aging. Scientific Reports, 2017, 7, 15157.	3.3	37
864	Biological Impacts on Carbon Speciation and Morphology of Sea Spray Aerosol. ACS Earth and Space Chemistry, 2017, 1, 551-561.	2.7	36
865	Ageing and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber. Atmospheric Chemistry and Physics, 2017, 17, 10333-10348.	4.9	47
866	Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry. Atmospheric Chemistry and Physics, 2017, 17, 14485-14500.	4.9	15
867	Uptake of nitric acid, ammonia, and organics in orographic clouds: mass spectrometric analyses of droplet residual and interstitial aerosol particles. Atmospheric Chemistry and Physics, 2017, 17, 1571-1593.	4.9	27

#	Article	IF	CITATIONS
868	Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using aÂhigh-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2017, 17, 2009-2033.	4.9	50
869	Estimates of the organic aerosol volatility in a boreal forest using two independent methods. Atmospheric Chemistry and Physics, 2017, 17, 4387-4399.	4.9	14
870	Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, 2017, 17, 6611-6629.	4.9	45
871	Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China. Atmospheric Chemistry and Physics, 2017, 17, 10245-10258.	4.9	51
872	Inflammatory responses to secondary organic aerosolsÂ(SOA) generated from biogenic and anthropogenic precursors. Atmospheric Chemistry and Physics, 2017, 17, 11423-11440.	4.9	67
873	Investigation of global particulate nitrate from the AeroCom phaseÂIII experiment. Atmospheric Chemistry and Physics, 2017, 17, 12911-12940.	4.9	99
874	Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2017, 17, 14821-14839.	4.9	66
875	Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmospheric Chemistry and Physics, 2017, 17, 1759-1773.	4.9	52
876	Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 2017, 17, 3659-3672.	4.9	7
877	Ozonolysis of <i>α</i> -phellandrene – PartÂ1: Gas- and particle-phase characterisation. Atmospheric Chemistry and Physics, 2017, 17, 6583-6609.	4.9	11
878	Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds. Atmospheric Chemistry and Physics, 2017, 17, 839-853.	4.9	135
879	A missing source of aerosols in Antarctica – beyond long-range transport, phytoplankton, and photochemistry. Atmospheric Chemistry and Physics, 2017, 17, 1-20.	4.9	173
880	Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe. Atmospheric Chemistry and Physics, 2017, 17, 117-141.	4.9	59
881	CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry and Physics, 2017, 17, 11779-11801.	4.9	71
882	Diurnal and day-to-day characteristics of ambient particle mass size distributions from HR-ToF-AMS measurements at an urban site and a suburban site in Hong Kong. Atmospheric Chemistry and Physics, 2017, 17, 13605-13624.	4.9	5
883	Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions. Atmospheric Chemistry and Physics, 2017, 17, 15055-15067.	4.9	30
884	Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong. Atmospheric Chemistry and Physics, 2017, 17, 15121-15135.	4.9	16
885	Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments. Atmospheric Chemistry and Physics, 2017, 17, 2297-2310.	4.9	50

#	Article	IF	CITATIONS
886	Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2477-2493.	4.9	107
887	The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities. Atmospheric Chemistry and Physics, 2017, 17, 3145-3163.	4.9	87
888	Resolving anthropogenic aerosol pollution types – deconvolution and exploratory classification of pollution events. Atmospheric Chemistry and Physics, 2017, 17, 3165-3197.	4.9	23
889	Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260â€⁻m in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 3215-3232.	4.9	90
890	Assessing the influence of NO _{<i>x</i>} concentrations and relative humidity on secondary organic aerosol yields from <i>l±</i> -pinene photo-oxidation through smog chamber experiments and modelling calculations. Atmospheric Chemistry and Physics, 2017, 17, 5035-5061	4.9	37
891	Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle. Atmospheric Chemistry and Physics, 2017, 17, 5311-5329.	4.9	55
892	Secondary organic aerosol formation from in situ OH, O ₃ , and NO ₃ oxidation of ambient forest air in an oxidation flow reactor. Atmospheric Chemistry and Physics, 2017, 17, 5331-5354.	4.9	57
893	Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer. Atmospheric Chemistry and Physics, 2017, 17, 5515-5535.	4.9	62
894	Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmospheric Chemistry and Physics, 2017, 17, 5703-5719.	4.9	168
895	Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils. Atmospheric Chemistry and Physics, 2017, 17, 7333-7344.	4.9	59
896	Organic aerosol source apportionment by offline-AMS over a full year in Marseille. Atmospheric Chemistry and Physics, 2017, 17, 8247-8268.	4.9	75
900	First Results of the "Carbonaceous Aerosol in Rome and Environs (CARE)―Experiment: Beyond Current Standards for PM10. Atmosphere, 2017, 8, 249.	2.3	54
905	A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions. Atmospheric Measurement Techniques, 2017, 10, 4865-4876.	3.1	11
907	Collection efficiency of <i>α</i> -pinene secondary organic aerosol particles explored via light-scattering single-particle aerosol mass spectrometry. Atmospheric Measurement Techniques, 2017, 10, 1139-1154.	3.1	16
908	Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species. Atmospheric Measurement Techniques, 2017, 10, 2897-2921.	3.1	51
913	Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements. Atmospheric Measurement Techniques, 2017, 10, 3909-3918.	3.1	28
914	Characteristics of brown carbon in the urban Po Valley atmosphere. Atmospheric Chemistry and Physics, 2017, 17, 313-326.	4.9	42
919	Comprehensive characterization of atmospheric organic carbon at a forested site. Nature Geoscience, 2017, 10, 748-753.	12.9	66

#	Article	IF	CITATIONS
920	New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS). Atmospheric Measurement Techniques, 2017, 10, 1373-1386.	3.1	19
921	The ion trap aerosol mass spectrometer: field intercomparison with the ToF-AMS and the capability of differentiating organic compound classes via MS-MS. Atmospheric Measurement Techniques, 2017, 10, 1623-1637.	3.1	2
922	The Impact of Sampling Medium and Environment on Particle Morphology. Atmosphere, 2017, 8, 162.	2.3	6
925	Characteristics and Formation Mechanisms of Fine Particulate Nitrate in Typical Urban Areas in China. Atmosphere, 2017, 8, 62.	2.3	52
926	Evolution of the Complex Refractive Index of Secondary Organic Aerosols during Atmospheric Aging. Environmental Science & Technology, 2018, 52, 3456-3465.	10.0	40
927	Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging. Analytical Chemistry, 2018, 90, 4046-4053.	6.5	6
928	Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 3235.	3.3	103
929	SOA formation from photooxidation of naphthalene and methylnaphthalenes with m-xylene and surrogate mixtures. Atmospheric Environment, 2018, 180, 256-264.	4.1	24
930	Molecular structure impacts on secondary organic aerosol formation from glycol ethers. Atmospheric Environment, 2018, 180, 206-215.	4.1	11
931	Chemical evolution of atmospheric organic carbon over multiple generations of oxidation. Nature Chemistry, 2018, 10, 462-468.	13.6	92
932	Communal biofuel burning for district heating: Emissions and immissions from medium-sized (0.4 and) Tj ETQq0	0	Overlock 10
933	Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA). ACS Earth and Space Chemistry, 2018, 2, 410-421.	2.7	24
934	Identification of amines in wintertime ambient particulate material using high resolution aerosol mass spectrometry. Atmospheric Environment, 2018, 180, 173-183.	4.1	14
935	New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events. Scientific Reports, 2018, 8, 6095.	3.3	78
936	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	4.9	108
937	Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 4617-4638.	4.9	29
938	Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 467-493.	4.9	63
939	Photopolarimetric Sensitivity to Black Carbon Content of Wildfire Smoke: Results From the 2016 ImPACTâ€PM Field Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5376-5396.	3.3	15

#	Article	IF	Citations
940	Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions. Atmospheric Environment, 2018, 178, 109-117.	4.1	52
941	Heterogeneous N ₂ O ₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4345-4372.	3.3	103
942	Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment. Environmental Science & amp; Technology, 2018, 52, 5308-5318.	10.0	76
943	Characterization of distinct Arctic aerosol accumulation modes and their sources. Atmospheric Environment, 2018, 183, 1-10.	4.1	36
944	Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 635-639.	2.8	4
945	Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications. Chemosphere, 2018, 199, 546-568.	8.2	61
946	Following Particle-Particle Mixing in Atmospheric Secondary Organic Aerosols by Using Isotopically Labeled Terpenes. CheM, 2018, 4, 318-333.	11.7	40
947	Gas-phase kinetics modifies the CCN activity of a biogenic SOA. Physical Chemistry Chemical Physics, 2018, 20, 6591-6597.	2.8	1
948	Novel insights on new particle formation derived from a pan-european observing system. Scientific Reports, 2018, 8, 1482.	3.3	39
949	Aqueous-Phase Secondary Organic Aerosol Formation Via Reactions with Organic Triplet Excited States—a Short Review. Current Pollution Reports, 2018, 4, 8-12.	6.6	19
950	Physical and Chemical Properties of 3-Methyl-1,2,3-butanetricarboxylic Acid (MBTCA) Aerosol. Environmental Science & Technology, 2018, 52, 1150-1155.	10.0	24
951	Comparative performance of a thermal denuder and a catalytic stripper in sampling laboratory and marine exhaust aerosols. Aerosol Science and Technology, 2018, 52, 420-432.	3.1	26
952	Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens. Atmospheric Environment, 2018, 178, 66-72.	4.1	18
953	Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China. Atmospheric Chemistry and Physics, 2018, 18, 1729-1743.	4.9	38
954	Insights into organic-aerosol sources via a novel laser-desorption/ionization mass spectrometry technique applied to one year of PM ₁₀ samples from nine sites in central Europe. Atmospheric Chemistry and Physics, 2018, 18, 2155-2174.	4.9	7
955	Ubiquitous influence of wildfire emissions and secondary organic aerosol on summertime atmospheric aerosol in the forested Great Lakes region. Atmospheric Chemistry and Physics, 2018, 18, 3701-3715.	4.9	44
956	Ozonolysis of <i>α</i> -phellandrene – PartÂ2: Compositional analysis of secondary organic aerosol highlights the role of stabilised Criegee intermediates. Atmospheric Chemistry and Physics, 2018, 18, 4673-4693.	4.9	11
957	Exploring the observational constraints on the simulation of brown carbon. Atmospheric Chemistry and Physics, 2018, 18, 635-653.	4.9	121

#	Article	IF	CITATIONS
958	Hygroscopicity of Organic Aerosols and Their Contributions to CCN Concentrations Over a Midlatitude Forest in Japan. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9703-9723.	3.3	21
959	Bulk and molecular-level characterization of laboratory-aged biomass burning organic aerosol from oak leaf and heartwood fuels. Atmospheric Chemistry and Physics, 2018, 18, 2199-2224.	4.9	30
960	Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 427-443.	4.9	42
961	Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions. Atmospheric Chemistry and Physics, 2018, 18, 4497-4518.	4.9	11
962	Exploring Conditions for Ultrafine Particle Formation from Oxidation of Cigarette Smoke in Indoor Environments. Environmental Science & amp; Technology, 2018, 52, 4623-4631.	10.0	26
963	Investigation of the absorption Ãngström exponent and its relation to physicochemical properties for mini-CAST soot. Aerosol Science and Technology, 2018, 52, 757-767.	3.1	38
964	Software-aided quality control of parallel reaction monitoring based quantitation of lipid mediators. Analytica Chimica Acta, 2018, 1037, 168-176.	5.4	4
965	Effect of relative humidity on non-refractory submicron aerosol evolution during summertime in Hangzhou, China. Journal of Zhejiang University: Science A, 2018, 19, 45-59.	2.4	3
966	Evaluation of the new capture vaporizer for aerosol mass spectrometers: Characterization of organic aerosol mass spectra. Aerosol Science and Technology, 2018, 52, 725-739.	3.1	25
967	Characterization of submicron particles during autumn in Beijing, China. Journal of Environmental Sciences, 2018, 63, 16-27.	6.1	26
968	Laboratory investigations of Titan haze formation: In situ measurement of gas and particle composition. Icarus, 2018, 301, 136-151.	2.5	37
969	Mass Spectrometry Analysis in Atmospheric Chemistry. Analytical Chemistry, 2018, 90, 166-189.	6.5	87
970	Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou. Environmental Pollution, 2018, 232, 42-54.	7.5	35
971	Realtime chemical characterization of post monsoon organic aerosols in a polluted urban city: Sources, composition, and comparison with other seasons. Environmental Pollution, 2018, 232, 310-321.	7.5	24
972	Aerosol radiative effects on mesoscale cloud–precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign. Atmospheric Environment, 2018, 172, 109-123.	4.1	13
973	Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol. Environmental Science & Technology, 2018, 52, 1191-1199.	10.0	85
974	Significant Production of Secondary Organic Aerosol from Emissions of Heated Cooking Oils. Environmental Science and Technology Letters, 2018, 5, 32-37.	8.7	69
975	Production of N ₂ O ₅ and ClNO ₂ through Nocturnal Processing of Biomass-Burning Aerosol. Environmental Science & Technology, 2018, 52, 550-559.	10.0	42

#	Article	IF	CITATIONS
976	Source apportionment of particulate matter and trace gases near a major refinery near the Houston Ship Channel. Atmospheric Environment, 2018, 173, 16-29.	4.1	32
977	Fine particles sampled at an urban background site and an industrialized coastal site in Northern France—Part 2: Comparison of offline and online analyses for carbonaceous aerosols. Aerosol Science and Technology, 2018, 52, 287-299.	3.1	9
978	Source apportionment of PM 2.5 light extinction in an urban atmosphere in China. Journal of Environmental Sciences, 2018, 63, 277-284.	6.1	26
979	Short-pulse lasers for weather control. Reports on Progress in Physics, 2018, 81, 026001.	20.1	58
980	The impacts of regional shipping emissions on the chemical characteristics of coastal submicron aerosols near Houston, TX. Atmospheric Chemistry and Physics, 2018, 18, 14217-14241.	4.9	16
981	The importance of blowing snow to halogen-containing aerosol in coastal Antarctica: influence of source region versus wind speed. Atmospheric Chemistry and Physics, 2018, 18, 16689-16711.	4.9	19
983	Autonomous Conflict Resolution Method for multi-UAVs Based on Preorder Flight Information. , 2018, , .		0
985	Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions. Atmospheric Chemistry and Physics, 2018, 18, 6985-7000.	4.9	31
986	Identification of secondary aerosol precursors emitted by an aircraft turbofan. Atmospheric Chemistry and Physics, 2018, 18, 7379-7391.	4.9	14
987	Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols. Atmospheric Chemistry and Physics, 2018, 18, 15601-15622.	4.9	34
988	Effect of solubility limitation on hygroscopic growth and cloud drop activation of SOA particles produced from traffic exhausts. Journal of Atmospheric Chemistry, 2018, 75, 359-383.	3.2	5
989	The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014. Atmospheric Chemistry and Physics, 2018, 18, 16419-16437.	4.9	29
990	High-spatial-resolution mapping and source apportionment of aerosol composition in Oakland, California, using mobile aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 16325-16344.	4.9	46
992	Organosulfates in aerosols downwind of an urban region in central Amazon. Environmental Sciences: Processes and Impacts, 2018, 20, 1546-1558.	3.5	40
994	Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new particle formation periods. Atmospheric Chemistry and Physics, 2018, 18, 17705-17716.	4.9	17
995	Source apportionment of the organic aerosol over the Atlantic Ocean from 53° N to 53° S: significant contributions from marine emissions and long-range transport. Atmospheric Chemistry and Physics, 2018, 18, 18043-18062.	4.9	32
996	Efficient N ₂ O ₅ uptake and NO ₃ oxidation in the outflow of urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 9705-9721.	4.9	64
1000	Comparison of Measurement-Based Methodologies to Apportion Secondary Organic Carbon (SOC) in PM2.5: A Review of Recent Studies. Atmosphere, 2018, 9, 452.	2.3	37

#	ARTICLE Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium	IF 4.9	CITATIONS
1002	Understanding Composition, Formation, and Aging of Organic Aerosols in Wildfire Emissions via Combined Mountain Top and Airborne Measurements. ACS Symposium Series, 2018, , 363-385.	0.5	10
1003	Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 17769-17800.	4.9	105
1004	Is there an aerosol signature of chemical cloud processing?. Atmospheric Chemistry and Physics, 2018, 18, 16099-16119.	4.9	30
1007	The underappreciated role of nonvolatile cations in aerosol ammonium-sulfate molar ratios. Atmospheric Chemistry and Physics, 2018, 18, 17307-17323.	4.9	53
1009	ClNO ₂ Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,994.	3.3	31
1011	Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation stateÂandÂhygroscopicity. Atmospheric Chemistry and Physics, 2018, 18, 5799-5819.	4.9	22
1013	Inhalation and Dermal Uptake of Particle and Gas-Phase Phthalates—A Human Exposure Study. Environmental Science & Technology, 2018, 52, 12792-12800.	10.0	47
1015	Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei. Scientific Reports, 2018, 8, 13844.	3.3	63
1017	Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China. Journal of Environmental Sciences, 2018, 73, 69-77.	6.1	26
1018	Primary and secondary organic aerosol from heated cooking oil emissions. Atmospheric Chemistry and Physics, 2018, 18, 11363-11374.	4.9	35
1019	Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol. Atmospheric Chemistry and Physics, 2018, 18, 13197-13214.	4.9	61
1020	An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol. Communications Chemistry, 2018, 1, .	4.5	25
1021	Experimental and model estimates of the contributions from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol in the southeastern United States. Atmospheric Chemistry and Physics, 2018, 18, 12613-12637.	4.9	78
1022	Selective Uptake of Third-Hand Tobacco Smoke Components to Inorganic and Organic Aerosol Particles. Environmental Science & Technology, 2018, 52, 13195-13201.	10.0	28
1023	Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,368.	3.3	49
1024	Mitigation of Secondary Organic Aerosol Formation from Log Wood Burning Emissions by Catalytic Removal of Aromatic Hydrocarbons. Environmental Science & Technology, 2018, 52, 13381-13390.	10.0	10
1025	Speciated online PM ₁ from South Asian combustion sources – PartÂ1: Fuel-based emission factors and size distributions. Atmospheric Chemistry and Physics, 2018, 18, 14653-14679.	4.9	38

#	Article	IF	CITATIONS
1026	Functional Group Composition of Secondary Organic Aerosol Formed from Ozonolysis of α-Pinene Under High VOC and Autoxidation Conditions. ACS Earth and Space Chemistry, 2018, 2, 1196-1210.	2.7	58
1027	Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO ₂ and subsequent gas- and particle-phase Cl–VOC production. Atmospheric Chemistry and Physics, 2018, 18, 13013-13030.	4.9	54
1028	Gas-to-particle partitioning of major biogenic oxidation products: a study on freshly formed and aged biogenic SOA. Atmospheric Chemistry and Physics, 2018, 18, 12969-12989.	4.9	18
1029	Wintertime Gasâ€Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,897.	3.3	21
1030	Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of Coalâ€Fired Power Plants. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11225-11237.	3.3	33
1031	An Overview of Dynamic Heterogeneous Oxidations in the Troposphere. Environments - MDPI, 2018, 5, 104.	3.3	34
1033	Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 7149-7168.	4.9	105
1034	Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS. Atmospheric Chemistry and Physics, 2018, 18, 10355-10371.	4.9	62
1035	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	53
1036	Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 11547-11562.	4.9	39
1038	Simulation of fine organic aerosols in the western Mediterranean area during the ChArMEx 2013 summer campaign. Atmospheric Chemistry and Physics, 2018, 18, 7287-7312.	4.9	27
1039	Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 2018, 18, 7423-7438.	4.9	208
1041	Cloud droplet activation of black carbon particles coated with organic compounds of varying solubility. Atmospheric Chemistry and Physics, 2018, 18, 12477-12489.	4.9	36
1043	Production of N ₂ O ₅ and ClNO ₂ in summer in urban Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 11581-11597.	4.9	57
1044	Determining the link between hygroscopicity and composition for semi-volatile aerosol species. Atmospheric Measurement Techniques, 2018, 11, 4361-4372.	3.1	4
1045	Predicting Secondary Organic Aerosol Enhancement in the Presence of Atmospherically Relevant Organic Particles. ACS Earth and Space Chemistry, 2018, 2, 1035-1046.	2.7	19
1048	Exploring the Atmosphere of Neoproterozoic Earth: The Effect of O ₂ on Haze Formation and Composition. Astrophysical Journal, 2018, 858, 119.	4.5	18
1049	Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data. Science of the Total Environment, 2018, 637-638, 1137-1149.	8.0	47

#	Article	IF	CITATIONS
1050	Brown and Black Carbon Emitted by a Marine Engine Operated on Heavy Fuel Oil and Distillate Fuels: Optical Properties, Size Distributions, and Emission Factors. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6175-6195.	3.3	62
1051	Comparison of primary aerosol emission and secondary aerosol formation from gasoline direct injection and port fuel injection vehicles. Atmospheric Chemistry and Physics, 2018, 18, 9011-9023.	4.9	47
1054	Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA. Atmospheric Measurement Techniques, 2018, 11, 1481-1500.	3.1	17
1055	Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmospheric Environment, 2018, 189, 187-212.	4.1	85
1056	Evolution of the chemical fingerprint of biomass burning organic aerosol during aging. Atmospheric Chemistry and Physics, 2018, 18, 7607-7624.	4.9	67
1057	Hygroscopicity of dimethylaminium-, sulfate-, and ammonium-containing nanoparticles. Aerosol Science and Technology, 2018, 52, 971-983.	3.1	4
1058	Ultrahigh-Resolution Mass Spectrometry in Real Time: Atmospheric Pressure Chemical Ionization Orbitrap Mass Spectrometry of Atmospheric Organic Aerosol. Analytical Chemistry, 2018, 90, 8816-8823.	6.5	40
1059	Larger Submicron Particles for Emissions With Residential Burning in Wintertime San Joaquin Valley (Fresno) than for Vehicle Combustion in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,526.	3.3	10
1060	Organic Aerosol Particle Chemical Properties Associated With Residential Burning and Fog in Wintertime San Joaquin Valley (Fresno) and With Vehicle and Firework Emissions in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,707.	3.3	22
1061	Aircraft observations of the chemical composition and aging of aerosol in the Manaus urban plume during GoAmazon 2014/5. Atmospheric Chemistry and Physics, 2018, 18, 10773-10797.	4.9	32
1062	Restaurant Impacts on Outdoor Air Quality: Elevated Organic Aerosol Mass from Restaurant Cooking with Neighborhood-Scale Plume Extents. Environmental Science & Technology, 2018, 52, 9285-9294.	10.0	61
1063	Gas-phase composition and secondary organic aerosol formation from standard and particle filter-retrofitted gasoline direct injection vehicles investigated in a batch and flow reactor. Atmospheric Chemistry and Physics, 2018, 18, 9929-9954.	4.9	57
1064	Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8110-8115.	7.1	118
1065	A study of elevated pollution layer over the North China Plain using aircraft measurements. Atmospheric Environment, 2018, 190, 188-194.	4.1	29
1066	Characterization of the Real Part of Dry Aerosol Refractive Index Over North America From the Surface to 12Âkm. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8283-8300.	3.3	24
1067	A Closure Study of Total Scattering Using Airborne In Situ Measurements from the Winter Phase of TCAP. Atmosphere, 2018, 9, 228.	2.3	2
1068	Formation and Evolution of aqSOA from Aqueous-Phase Reactions of Phenolic Carbonyls: Comparison between Ammonium Sulfate and Ammonium Nitrate Solutions. Environmental Science & amp; Technology, 2018, 52, 9215-9224.	10.0	68
1069	Toward Confirmatory On-Site Real-Time Detection of Emerging Drugs Using Portable Ultrafast Capillary Electrophoresis Mass Spectrometry. Methods in Molecular Biology, 2018, 1810, 43-58.	0.9	3

#	Article	IF	CITATIONS
1070	Thirdhand smoke uptake to aerosol particles in the indoor environment. Science Advances, 2018, 4, eaap8368.	10.3	69
1071	Trends in the oxidation and relative volatility of chamber-generated secondary organic aerosol. Aerosol Science and Technology, 2018, 52, 992-1004.	3.1	16
1072	Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7771-7796.	3.3	71
1073	An inter-comparison of black-carbon-related instruments in a laboratory study of biomass burning aerosol. Aerosol Science and Technology, 2018, 52, 1320-1331.	3.1	14
1074	Abiotic and biotic sources influencing spring new particle formation in North East Greenland. Atmospheric Environment, 2018, 190, 126-134.	4.1	30
1075	Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 12185-12206.	4.9	30
1076	Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5. Atmospheric Environment, 2018, 191, 513-524.	4.1	17
1077	Regional Similarities and NO x â€Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10620-10636.	3.3	14
1078	NO _{x} Lifetime and NO _{y} Partitioning During WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9813-9827.	3.3	52
1079	First long-term and near real-time measurement of trace elements in China's urban atmosphere: temporal variability, source apportionment and precipitation effect. Atmospheric Chemistry and Physics, 2018, 18, 11793-11812.	4.9	102
1080	Cloud condensation nuclei activity of CaCO ₃ particles with oleic acid and malonic acid coatings. Atmospheric Chemistry and Physics, 2018, 18, 7345-7359.	4.9	5
1081	Characterization of aerosol composition, aerosol acidity, and organic acid partitioning at an agriculturally intensive rural southeastern US site. Atmospheric Chemistry and Physics, 2018, 18, 11471-11491.	4.9	88
1082	Marine and Terrestrial Organic Iceâ€Nucleating Particles in Pristine Marine to Continentally Influenced Northeast Atlantic Air Masses. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6196-6212.	3.3	98
1083	Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 6907-6921.	4.9	49
1084	Characterization of Individual Aerosol Particles. , 2018, , 353-402.		5
1086	Secondary Organic Aerosol Formation from Healthy and Aphid-Stressed Scots Pine Emissions. ACS Earth and Space Chemistry, 2019, 3, 1756-1772.	2.7	32
1087	Photochemical impacts of haze pollution in an urban environment. Atmospheric Chemistry and Physics, 2019, 19, 9699-9714.	4.9	32
1088	The Old and the New: Aging of Sea Spray Aerosol and Formation of Secondary Marine Aerosol through OH Oxidation Reactions. ACS Earth and Space Chemistry, 2019, 3, 2307-2314.	2.7	24

#	Article	IF	CITATIONS
1089	Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations. Scientific Reports, 2019, 9, 11824.	3.3	47
1090	External and internal cloud condensation nuclei (CCN) mixtures: controlled laboratory studies of varying mixing states. Atmospheric Measurement Techniques, 2019, 12, 4277-4289.	3.1	17
1091	Potential of renewable fuel to reduce diesel exhaust particle emissions. Applied Energy, 2019, 254, 113636.	10.1	29
1092	Mapping sources of atmospheric pollution: integrating spatial and cluster bibliometrics. Environmental Reviews, 2019, , 1-11.	4.5	1
1093	Land-Use Regression Modeling of Source-Resolved Fine Particulate Matter Components from Mobile Sampling. Environmental Science & Technology, 2019, 53, 8925-8937.	10.0	29
1094	Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products. Atmospheric Measurement Techniques, 2019, 12, 3081-3099.	3.1	59
1095	Characterization of submicron aerosol volatility in the regional atmosphere in Southern China. Chemosphere, 2019, 236, 124383.	8.2	9
1096	Impacts of SO ₂ , Relative Humidity, and Seed Acidity on Secondary Organic Aerosol Formation in the Ozonolysis of Butyl Vinyl Ether. Environmental Science & Technology, 2019, 53, 8845-8853.	10.0	22
1097	Speciation of organic fractions does matter for aerosol source apportionment. Part 3: Combining off-line and on-line measurements. Science of the Total Environment, 2019, 690, 944-955.	8.0	39
1098	Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. Environmental Sciences: Processes and Impacts, 2019, 21, 1280-1300.	3.5	140
1099	No Particle Mass Enhancement from Induced Atmospheric Ageing at a Rural Site in Northern Europe. Atmosphere, 2019, 10, 408.	2.3	7
1100	Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics, 2019, 19, 7973-8001.	4.9	36
1101	Influences of Primary Emission and Secondary Coating Formation on the Particle Diversity and Mixing State of Black Carbon Particles. Environmental Science & Technology, 2019, 53, 9429-9438.	10.0	15
1102	Chemical characterization and sources of submicron aerosols in the northeastern Qinghai–Tibet Plateau: insights from high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, 7897-7911.	4.9	21
1103	Detailed Measurements of Submicron Particles from an Independence Day Fireworks Event in Albany, New York Using HR-ToF-AMS. ACS Earth and Space Chemistry, 2019, 3, 1451-1459.	2.7	10
1104	Photolytic Aging of Secondary Organic Aerosol: Evidence for a Substantial Photo-Recalcitrant Fraction. Journal of Physical Chemistry Letters, 2019, 10, 4003-4009.	4.6	31
1105	Observational Constraints on the Formation of Cl ₂ From the Reactive Uptake of ClNO ₂ on Aerosols in the Polluted Marine Boundary Layer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8851-8869.	3.3	19
1106	Comparison of Airborne Reactive Nitrogen Measurements During WINTER. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10483-10502.	3.3	7

#	Article	IF	CITATIONS
1107	A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 2019, 574, 399-403.	27.8	135
1108	Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter. Atmospheric Chemistry and Physics, 2019, 19, 10319-10334.	4.9	42
1109	In situ constraints on the vertical distribution of global aerosol. Atmospheric Chemistry and Physics, 2019, 19, 11765-11790.	4.9	24
1110	Ultrafine Particles from Residential Biomass Combustion: A Review on Experimental Data and Toxicological Response. International Journal of Molecular Sciences, 2019, 20, 4992.	4.1	27
1111	Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10248-10263.	3.3	56
1112	Measurement techniques for identifying and quantifying hydroxymethanesulfonate (HMS) in an aqueous matrix and particulate matter using aerosol mass spectrometry and ion chromatography. Atmospheric Measurement Techniques, 2019, 12, 5303-5315.	3.1	23
1113	Photochemical Aging Alters Secondary Organic Aerosol Partitioning Behavior. ACS Earth and Space Chemistry, 2019, 3, 2704-2716.	2.7	18
1114	Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. Atmospheric Chemistry and Physics, 2019, 19, 12797-12809.	4.9	67
1115	A large contribution of anthropogenic organo-nitrates to secondary organic aerosol in the Alberta oil sands. Atmospheric Chemistry and Physics, 2019, 19, 12209-12219.	4.9	18
1116	Quantification of the impact of cooking processes on indoor concentrations of volatile organic species and primary and secondary organic aerosols. Indoor Air, 2019, 29, 926-942.	4.3	28
1117	Investigation of dark condition nitrate radical- and ozone-initiated aging of toluene secondary organic aerosol: Importance of nitrate radical reactions with phenolic products. Atmospheric Environment, 2019, 219, 117049.	4.1	14
1118	Biomass Burning Markers and Residential Burning in the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1846-1861.	3.3	30
1119	Direct measurements of semi-volatile organic compound dynamics show near-unity mass accommodation coefficients for diverse aerosols. Communications Chemistry, 2019, 2, .	4.5	42
1122	Exploring a route to a selective and sensitive portable system for explosive detection– swab spray ionisation coupled to of high-field assisted waveform ion mobility spectrometry (FAIMS). Forensic Science International (Online), 2019, 1, 214-220.	1.3	7
1123	Seasonal differences in formation processes of oxidized organic aerosol near Houston, TX. Atmospheric Chemistry and Physics, 2019, 19, 9641-9661.	4.9	24
1129	Laboratory and field evaluation of the Aerosol Dynamics Inc. concentrator (ADIc) for aerosol mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 3907-3920.	3.1	3
1130	Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials. Environmental Science & amp; Technology, 2019, 53, 12054-12061.	10.0	71
1132	Bulk Organic Aerosol Analysis by Proton-Transfer-Reaction Mass Spectrometry: An Improved Methodology for the Determination of Total Organic Mass, O:C and H:C Elemental Ratios, and the Average Molecular Formula. Analytical Chemistry, 2019, 91, 12619-12624.	6.5	11

#	Article	IF	CITATIONS
1133	The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Nature Communications, 2019, 10, 4370.	12.8	91
1134	Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station. Atmospheric Chemistry and Physics, 2019, 19, 10239-10256.	4.9	25
1135	Indoor Illumination of Terpenes and Bleach Emissions Leads to Particle Formation and Growth. Environmental Science & Technology, 2019, 53, 11792-11800.	10.0	47
1136	Biogenic emissions and land–atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US. Atmospheric Chemistry and Physics, 2019, 19, 701-729.	4.9	11
1137	Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment. Environmental Sciences: Processes and Impacts, 2019, 21, 528-547.	3.5	36
1138	Real-time assessment of wintertime organic aerosol characteristics and sources at a suburban site in northern France. Atmospheric Environment, 2019, 203, 48-61.	4.1	11
1139	Characterization of aerosol chemical composition from urban pollution in Brazil and its possible impacts on the aerosol hygroscopicity and size distribution. Atmospheric Environment, 2019, 202, 149-159.	4.1	18
1140	Characterization of submicron aerosol chemical composition and sources in the coastal area of Central Chile. Atmospheric Environment, 2019, 199, 391-401.	4.1	13
1141	Formation of Polycyclic Aromatic Hydrocarbon Oxidation Products in α-Pinene Secondary Organic Aerosol Particles Formed through Ozonolysis. Environmental Science & Technology, 2019, 53, 6669-6677.	10.0	13
1142	Rates of Wintertime Atmospheric SO ₂ Oxidation based on Aircraft Observations during Clearâ€Sky Conditions over the Eastern United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6630-6649.	3.3	12
1143	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS) – PartÂ2: Biomass burning influences in winter. Atmospheric Chemistry and Physics, 2019, 19, 8037-8062.	4.9	57
1144	Emission and Evolution of Submicron Organic Aerosol in Smoke from Wildfires in the Western United States. ACS Earth and Space Chemistry, 2019, 3, 1237-1247.	2.7	99
1145	Observed below-Cloud and Cloud Interstitial Submicron Aerosol Chemical and Physical Properties at Whiteface Mountain, New York, during August 2017. ACS Earth and Space Chemistry, 2019, 3, 1438-1450.	2.7	11
1146	Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics, 2019, 19, 2765-2785.	4.9	15
1147	Insights into the O : C-dependent mechanisms controlling the evaporation of <i>α</i> -pinene secondary organic aerosol particles. Atmospheric Chemistry and Physics, 2019, 19, 4061-4073.	4.9	23
1148	Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China. Atmospheric Chemistry and Physics, 2019, 19, 5235-5249.	4.9	41
1149	Influence of semi- and intermediate-volatile organic compounds (S/IVOC) parameterizations, volatility distributions and aging schemes on organic aerosol modelling in winter conditions. Atmospheric Environment, 2019, 213, 11-24.	4.1	19
1151	Understanding the Impact of Relative Humidity and Coexisting Soluble Iron on the OH-Initiated Heterogeneous Oxidation of Organophosphate Flame Retardants. Environmental Science & Technology, 2019, 53, 6794-6803.	10.0	21

#	Article	IF	CITATIONS
1152	Investigating secondary organic aerosol formation pathways in China during 2014. Atmospheric Environment, 2019, 213, 133-147.	4.1	38
1153	Effects of Photolysis on the Chemical and Optical Properties of Secondary Organic Material Over Extended Time Scales. ACS Earth and Space Chemistry, 2019, 3, 1226-1236.	2.7	19
1154	Understanding atmospheric aerosol particles with improved particle identification and quantification by single-particle mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 2219-2240.	3.1	18
1156	A Case Study of the Transport/Transformation of Air Pollutants Over the Yellow Sea During the MAPS 2015 Campaign. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6532-6553.	3.3	22
1157	Increased inorganic aerosol fraction contributes to air pollution and haze in China. Atmospheric Chemistry and Physics, 2019, 19, 5881-5888.	4.9	37
1159	Secondary Organic Aerosol Formation from Reaction of 3-Methylfuran with Nitrate Radicals. ACS Earth and Space Chemistry, 2019, 3, 922-934.	2.7	33
1160	Human occupant contribution to secondary aerosol mass in the indoor environment. Environmental Sciences: Processes and Impacts, 2019, 21, 1301-1312.	3.5	32
1161	The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Atmospheric Chemistry and Physics, 2019, 19, 3137-3160.	4.9	86
1162	Bouncier Particles at Night: Biogenic Secondary Organic Aerosol Chemistry and Sulfate Drive Diel Variations in the Aerosol Phase in a Mixed Forest. Environmental Science & Technology, 2019, 53, 4977-4987.	10.0	72
1163	Atmospheric Acetaldehyde: Importance of Airâ€6ea Exchange and a Missing Source in the Remote Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.	4.0	41
1164	Chemistry of new particle growth during springtime in the Seoul metropolitan area, Korea. Chemosphere, 2019, 225, 713-722.	8.2	13
1165	Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5629-5649.	3.3	28
1166	Secondary organic aerosol formation from the OH-initiated oxidation of guaiacol under different experimental conditions. Atmospheric Environment, 2019, 207, 30-37.	4.1	27
1167	Investigation on the near-field evolution of industrial plumes from metalworking activities. Science of the Total Environment, 2019, 668, 443-456.	8.0	16
1168	Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3583-3606.	3.3	67
1169	Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol. Aerosol Science and Technology, 2019, 53, 663-674.	3.1	55
1170	Effect of aqueous-phase processing on the formation and evolution of organic aerosol (OA) under different stages of fog life cycles. Atmospheric Environment, 2019, 206, 60-71.	4.1	29
1171	Effect of salt seed particle surface area, composition and phase on secondary organic aerosol mass yields in oxidation flow reactors. Atmospheric Chemistry and Physics, 2019, 19, 2701-2712.	4.9	10

#	Article	IF	CITATIONS
1172	Characteristics and sources of fine organic aerosol over a big semi-arid urban city of western India using HR-ToF-AMS. Atmospheric Environment, 2019, 208, 103-112.	4.1	26
1173	Case study of the effects of aerosol chemical composition and hygroscopicity on the scattering coefficient in summer, Xianghe, southeast of Beijing, China. Atmospheric Research, 2019, 225, 81-87.	4.1	10
1174	Using a new Mobile Atmospheric Chamber (MACh) to investigate the formation of secondary aerosols from mobile sources: The case of gasoline direct injection vehicles. Journal of Aerosol Science, 2019, 133, 1-11.	3.8	16
1175	Rate constant and secondary organic aerosol formation from the gas-phase reaction of eugenol with hydroxyl radicals. Atmospheric Chemistry and Physics, 2019, 19, 2001-2013.	4.9	20
1176	Importance of biogenic volatile organic compounds to acyl peroxy nitrates (APN) production in the southeastern US during SOAS 2013. Atmospheric Chemistry and Physics, 2019, 19, 1867-1880.	4.9	10
1177	Enhancement of secondary organic aerosol formation and its oxidation state by SO ₂ during photooxidation of 2-methoxyphenol. Atmospheric Chemistry and Physics, 2019, 19, 2687-2700.	4.9	22
1178	Using collision-induced dissociation to constrain sensitivity of ammonia chemical ionization mass spectrometry (NH ₄ ⁺) Tj E 1861-1870.	۲ 0 0 QqO 0 r المجال	ggŢ /Overlo
1179	Influence of Particle Surface Area Concentration on the Production of Organic Particulate Matter in a Continuously Mixed Flow Reactor. Environmental Science & amp; Technology, 2019, 53, 4968-4976.	10.0	4
1180	Evolution of Aerosol Size and Composition in the Indo-Gangetic Plain: Size-Resolved Analysis of High-Resolution Aerosol Mass Spectra. ACS Earth and Space Chemistry, 2019, 3, 823-832.	2.7	7
1181	Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze. Atmospheric Chemistry and Physics, 2019, 19, 1357-1371.	4.9	97
1182	Retrieval of black carbon aerosol surface concentration using satellite remote sensing observations. Remote Sensing of Environment, 2019, 226, 93-108.	11.0	20
1183	Using Ionic Liquids To Study the Migration of Semivolatile Organic Vapors in Smog Chamber Experiments. Journal of Physical Chemistry A, 2019, 123, 3887-3892.	2.5	0
1184	Catalyzed Gasoline Particulate Filters Reduce Secondary Organic Aerosol Production from Gasoline Direct Injection Vehicles. Environmental Science & Technology, 2019, 53, 3037-3047.	10.0	14
1185	Oxidative and Toxicological Evolution of Engineered Nanoparticles with Atmospherically Relevant Coatings. Environmental Science & Technology, 2019, 53, 3058-3066.	10.0	14
1186	Analytical Challenges and Opportunities For Indoor Air Chemistry Field Studies. Analytical Chemistry, 2019, 91, 3761-3767.	6.5	27
1187	Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging. Atmospheric Chemistry and Physics, 2019, 19, 139-163.	4.9	81
1188	Spatially dense air pollutant sampling: Implications of spatial variability on the representativeness of stationary air pollutant monitors. Atmospheric Environment: X, 2019, 2, 100012.	1.4	48
1189	Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition. Atmospheric Chemistry and Physics, 2019, 19, 57-76.	4.9	32

ARTICLE IF CITATIONS EURODELTA III exercise: An evaluation of air quality models' capacity to reproduce the carbonaceous 1190 11 1.4 aerosol. Atmospheric Environment: X, 2019, 2, 100018. Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States. Geophysical Research Letters, 2019, 46, 2974-2983. 1191 Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2). 1192 3.8 87 Journal of Advances in Modeling Earth Systems, 2019, 11, 4323-4351. Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometerÂ(EESI-TOF-MS) $\hat{a} \in$ PartÂ1: Biogenic influences and day $\hat{a} \in$ night chemistry in summer. Atmospheric Chemistry and Physics, 2019, 19, 14825-14848. Shipborne measurements of CINO<sub&gt;2&lt;/sub&gt; in the Mediterranean Sea and around the Arabian Peninsula during summer. Atmospheric Chemistry and Physics, 2019, 19, 1194 4.9 23 12121-12140. Predominance of secondary organic aerosol to particle-bound reactive oxygen species activity in fine ambient aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14703-14720. Mechanistic study of the formation of ring-retaining and ring-opening products from the oxidation of aromatic compounds under urban atmospheric conditions. Atmospheric Chemistry and Physics, 2019, 19, 15117-15129. 1196 4.9 52 Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set. Atmospheric Chemistry and Physics, 2019, 19, 4.9 24 11461-11484. Summertime Aerosol over the West of Ireland Dominated by Secondary Aerosol during Long-Range 1198 2.3 7 Transport. Atmosphere, 2019, 10, 59. Composition and origin of PM<sub&gt;2.5&lt;/sub&gt; aerosol particles in the upper 1199 Rhine valley in summer. Atmospheric Chemistry and Physics, 2019, 19, 13189-13208. Experimental Study of OH-Initiated Heterogeneous Oxidation of Organophosphate Flame Retardants: 1200 10.025 Kinetics, Mechanism, and Toxicity. Environmental Science & amp; Technology, 2019, 53, 14398-14408. Mixing order of sulfate aerosols and isoprene epoxydiols affects secondary organic aerosol 4.1 formation in chamber experiments. Atmospheric Environment, 2019, 217, 116953. Chemical composition and hydrolysis of organic nitrate aerosol formed from hydroxyl and nitrate radical oxidation of & amp; lt; i& amp; gt; î±& amp; lt; /i& amp; gt; -pinene and 1202 4.9 66 <i&gt;l²&lt;/i&gt;-pinene. Atmospheric Chemistry and Physics, 2019, 19, 12749-12766. Significantly Enhanced Aerosol CCN Activity and Number Concentrations by Nucleationâ€Initiated Haze Events: A Case Study in Urban Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3.3 14102-14113. Improvement of peaks identification and dynamic range for bi-polar Single Particle Mass Spectrometer. 1204 7 1.5 International Journal of Mass Spectrometry, 2019, 436, 7-17. Characteristics of submicron particles coming from a big firecrackers burning event: Implications to atmospheric pollution. Atmospheric Pollution Research, 2019, 10, 629-634. Chemical Composition of Gas-Phase Positive lons during Laboratory Simulations of Titan's Haze 1206 2.7 11 Formation. ACS Earth and Space Chemistry, 2019, 3, 202-211. Relating aerosol mass spectra to composition and nanostructure of soot particles. Carbon, 2019, 142, 535-546.

#	Article	IF	CITATIONS
1208	Vertical Profiles of Aerosol Composition over Beijing, China: Analysis of In Situ Aircraft Measurements. Journals of the Atmospheric Sciences, 2019, 76, 231-245.	1.7	25
1209	Primary emissions and secondary organic aerosol formation from in-use diesel vehicle exhaust: Comparison between idling and cruise mode. Science of the Total Environment, 2020, 699, 134357.	8.0	30
1210	Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Science and Technology, 2020, 54, 465-495.	3.1	144
1211	Emissions and source allocation of carbonaceous air pollutants from wood stoves in developed countries: A review. Atmospheric Pollution Research, 2020, 11, 234-251.	3.8	31
1212	Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China. Atmospheric Environment, 2020, 220, 117070.	4.1	34
1213	Influence of Airborne Particles' Chemical Composition on SVOC Uptake from PVC Flooring—Time-Resolved Analysis with Aerosol Mass Spectrometry. Environmental Science & Technology, 2020, 54, 85-91.	10.0	8
1214	Diverse Reactions in Highly Functionalized Organic Aerosols during Thermal Desorption. ACS Earth and Space Chemistry, 2020, 4, 283-296.	2.7	24
1215	Particulate methanesulfonic acid over the central Mediterranean Sea: Source region identification and relationship with phytoplankton activity. Atmospheric Research, 2020, 237, 104837.	4.1	11
1216	Evidence for a kinetically controlled burying mechanism for growth of high viscosity secondary organic aerosol. Environmental Sciences: Processes and Impacts, 2020, 22, 66-83.	3.5	14
1217	Highly time-resolved chemical characterization and implications of regional transport for submicron aerosols in the North China Plain. Science of the Total Environment, 2020, 705, 135803.	8.0	18
1218	Chemical and Physical Characterization of 3D Printer Aerosol Emissions with and without a Filter Attachment. Environmental Science & amp; Technology, 2020, 54, 947-954.	10.0	21
1219	Understanding the Key Role of Atmospheric Processing in Determining the Oxidative Potential of Airborne Engineered Nanoparticles. Environmental Science and Technology Letters, 2020, 7, 7-13.	8.7	12
1220	Wintertime hygroscopic growth factors (HGFs) of accumulation mode particles and their linkage to chemical composition in a heavily polluted urban atmosphere of Kanpur at the Centre of IGP, India: Impact of ambient relative humidity. Science of the Total Environment, 2020, 704, 135363.	8.0	12
1221	Sensitivity of Simulated PM2.5 Concentrations over Northeast Asia to Different Secondary Organic Aerosol Modules during the KORUS-AQ Campaign. Atmosphere, 2020, 11, 1004.	2.3	17
1222	Evolution of Aerosol Under Moist and Fog Conditions in a Rural Forest Environment: Insights From Highâ€Resolution Aerosol Mass Spectrometry. Geophysical Research Letters, 2020, 47, e2020GL089714.	4.0	7
1223	COVIDâ€19 Impact on the Concentration and Composition of Submicron Particulate Matter in a Typical City of Northwest China. Geophysical Research Letters, 2020, 47, e2020GL089035.	4.0	33
1224	Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations. Earth and Space Science, 2020, 7, e2020EA001098.	2.6	15
1225	Optical and Chemical Analysis of Absorption Enhancement by Mixed Carbonaceous Aerosols in the 2019 Woodbury, AZ, Fire Plume. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020ID032399.	3.3	13

#	Article	IF	CITATIONS
1226	Atmospheric OH Oxidation Chemistry of Particulate Liquid Crystal Monomers: An Emerging Persistent Organic Pollutant in Air. Environmental Science and Technology Letters, 2020, 7, 646-652.	8.7	43
1228	Insights into the formation and properties of secondary organic aerosol at a background site in Yangtze River Delta region of China: Aqueous-phase processing vs. photochemical oxidation. Atmospheric Environment, 2020, 239, 117716.	4.1	13
1229	Enhanced Gas Uptake during α-Pinene Ozonolysis Points to a Burying Mechanism. ACS Earth and Space Chemistry, 2020, 4, 1435-1447.	2.7	4
1230	Hourly Measurements of Organic Molecular Markers in Urban Shanghai, China: Primary Organic Aerosol Source Identification and Observation of Cooking Aerosol Aging. ACS Earth and Space Chemistry, 2020, 4, 1670-1685.	2.7	43
1231	Trajectory-based analysis on the source areas and transportation pathways of atmospheric particulate matter over Eastern Finland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1799687.	1.6	2
1232	Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. Environmental Science & Technology, 2020, 54, 11838-11847.	10.0	69
1233	Aerosol Measurements by Soot Particle Aerosol Mass Spectrometer: a Review. Current Pollution Reports, 2020, 6, 440-451.	6.6	12
1234	Synergistic Uptake by Acidic Sulfate Particles of Gaseous Mixtures of Glyoxal and Pinanediol. Environmental Science & Technology, 2020, 54, 11762-11770.	10.0	5
1235	Synthesis of Carboxylic Acid and Dimer Ester Surrogates to Constrain the Abundance and Distribution of Molecular Products in α-Pinene and β-Pinene Secondary Organic Aerosol. Environmental Science & Technology, 2020, 54, 12829-12839.	10.0	31
1236	Dark Chemistry during Bleach Cleaning Enhances Oxidation of Organics and Secondary Organic Aerosol Production Indoors. Environmental Science and Technology Letters, 2020, 7, 795-801.	8.7	35
1237	Quantification and source characterization of volatile organic compounds from exercising and application of chlorineâ€based cleaning products in a university athletic center. Indoor Air, 2021, 31, 1323-1339.	4.3	32
1238	Secondary Marine Aerosol Plays a Dominant Role over Primary Sea Spray Aerosol in Cloud Formation. ACS Central Science, 2020, 6, 2259-2266.	11.3	40
1239	Influence of vessel characteristics and atmospheric processes on the gas and particle phase of ship emission plumes: in situ measurements in the Mediterranean Sea and around the Arabian Peninsula. Atmospheric Chemistry and Physics, 2020, 20, 4713-4734.	4.9	35
1240	Biomass burning aerosol as aÂmodulator of the droplet number in the southeast Atlantic region. Atmospheric Chemistry and Physics, 2020, 20, 3029-3040.	4.9	43
1241	Linking Marine Biological Activity to Aerosol Chemical Composition and Cloudâ€Relevant Properties Over the North Atlantic Ocean. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032246.	3.3	10
1242	Mobile Laboratory Measurements of High Surface Ozone Levels and Spatial Heterogeneity During LISTOS 2018: Evidence for Sea Breeze Influence. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031961.	3.3	23
1243	Cooking and electronic cigarettes leading to large differences between indoor and outdoor particle composition and concentration measured by aerosol mass spectrometry. Environmental Sciences: Processes and Impacts, 2020, 22, 1382-1396.	3.5	14
1244	Coupling Filter-Based Thermal Desorption Chemical Ionization Mass Spectrometry with Liquid Chromatography/Electrospray Ionization Mass Spectrometry for Molecular Analysis of Secondary Organic Aerosol. Environmental Science & amp; Technology, 2020, 54, 13238-13248.	10.0	7

#	Article	IF	CITATIONS
1245	Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing. Journal of Environmental Sciences, 2020, 95, 99-110.	6.1	11
1246	Contribution of Water-Soluble Organic Matter from Multiple Marine Geographic Eco-Regions to Aerosols around Antarctica. Environmental Science & Technology, 2020, 54, 7807-7817.	10.0	13
1247	InnFLUX – an open-source code for conventional and disjunct eddy covariance analysis of trace gas measurements: an urban test case. Atmospheric Measurement Techniques, 2020, 13, 1447-1465.	3.1	6
1248	Synchronized Structure and Surface Tension Measurement on Individual Secondary Aerosol Particles by Low-Voltage Transmission Electron Microscopy. Environmental Science and Technology Letters, 2020, 7, 560-566.	8.7	2
1249	Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments. Atmospheric Chemistry and Physics, 2020, 20, 1021-1041.	4.9	19
1250	Characterising mass-resolved mixing state of black carbon in Beijing using a morphology-independent measurement method. Atmospheric Chemistry and Physics, 2020, 20, 3645-3661.	4.9	26
1251	Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses. Atmospheric Chemistry and Physics, 2020, 20, 3777-3791.	4.9	19
1252	Formation of highly oxygenated organic molecules from chlorine-atom-initiated oxidation of alpha-pinene. Atmospheric Chemistry and Physics, 2020, 20, 5145-5155.	4.9	20
1253	Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmospheric Measurement Techniques, 2020, 13, 661-684.	3.1	12
1254	Effects of Sources and Meteorology on Ambient Particulate Matter in Austin, Texas. ACS Earth and Space Chemistry, 2020, 4, 602-613.	2.7	9
1255	Photolysis Controls Atmospheric Budgets of Biogenic Secondary Organic Aerosol. Environmental Science & Technology, 2020, 54, 3861-3870.	10.0	36
1256	Efficient Nighttime Biogenic SOA Formation in a Polluted Residual Layer. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031583.	3.3	14
1257	The Impact of Molecular Oxygen on Anion Composition in a Hazy Archean Earth Atmosphere. Astrobiology, 2020, 20, 658-669.	3.0	4
1258	How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmospheric Chemistry and Physics, 2020, 20, 2073-2097.	4.9	67
1259	Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 2020, 7, 1331-1339.	9.5	284
1260	Challenges in determining atmospheric organic aerosol volatility distributions using thermal evaporation techniques. Aerosol Science and Technology, 2020, 54, 941-957.	3.1	8
1261	The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy. Atmospheric Chemistry and Physics, 2020, 20, 1233-1254.	4.9	45
1262	Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmospheric Chemistry and Physics, 2020, 20, 2927-2951.	4.9	40

#	Article	IF	CITATIONS
1263	Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitrate-dominated particulate matter pollution and low visibility. Atmospheric Chemistry and Physics, 2020, 20, 2161-2175.	4.9	74
1264	Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer. Atmospheric Measurement Techniques, 2020, 13, 2457-2472.	3.1	33
1265	Characterization of carbonaceous aerosols in Singapore: insight from black carbon fragments and trace metal ions detected by a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2020, 20, 5977-5993.	4.9	32
1266	Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics, 2020, 20, 4607-4635.	4.9	66
1267	Exploration of oxidative chemistry and secondary organic aerosol formation in the Amazon during the wet season: explicit modeling of the Manaus urban plume with GECKO-A. Atmospheric Chemistry and Physics, 2020, 20, 5995-6014.	4.9	9
1268	Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 6455-6478.	4.9	18
1269	Condensation/immersion mode ice-nucleating particles in a boreal environment. Atmospheric Chemistry and Physics, 2020, 20, 6687-6706.	4.9	9
1270	A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. Environmental Sciences: Processes and Impacts, 2020, 22, 1616-1653.	3.5	57
1271	Real-time measurement and source apportionment of elements in Delhi's atmosphere. Science of the Total Environment, 2020, 742, 140332.	8.0	78
1272	Closure Investigation on Cloud Condensation Nuclei Ability of Processed Anthropogenic Aerosols. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032680.	3.3	10
1273	Multi-generation OH oxidation as a source for highly oxygenated organic molecules from aromatics. Atmospheric Chemistry and Physics, 2020, 20, 515-537.	4.9	78
1274	Evolution of the light-absorption properties of combustion brown carbon aerosols following reaction with nitrate radicals. Aerosol Science and Technology, 2020, 54, 849-863.	3.1	17
1275	Chemical characterization of submicron particulate matter (PM1) emitted by burning highland barley in the northeastern part of the Qinghai–Tibet Plateau. Atmospheric Environment, 2020, 224, 117351.	4.1	4
1276	Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer. ACS Earth and Space Chemistry, 2020, 4, 676-689.	2.7	10
1277	Paper spray mass spectrometry for the analysis of picoliter droplets. Analyst, The, 2020, 145, 2639-2648.	3.5	8
1278	Quantifying and improving the optical performance of the laser ablation aerosol particle time of flight mass spectrometer (LAAPToF) instrument. Aerosol Science and Technology, 2020, 54, 761-771.	3.1	3
1279	Seasonal effects of ambient PM _{2.5} on the cardiovascular system of hyperlipidemic mice. Journal of the Air and Waste Management Association, 2020, 70, 307-323.	1.9	4
1280	Experimental investigation into the volatilities of highly oxygenated organic molecules (HOMs). Atmospheric Chemistry and Physics, 2020, 20, 649-669.	4.9	45

#	Article	IF	CITATIONS
1281	Chemical characterization of submicron aerosol in summertime Beijing: A case study in southern suburbs in 2018. Chemosphere, 2020, 247, 125918.	8.2	17
1282	Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. Environmental Science & Technology, 2020, 54, 1730-1739.	10.0	87
1283	Comparison between idling and cruising gasoline vehicles in primary emissions and secondary organic aerosol formation during photochemical ageing. Science of the Total Environment, 2020, 722, 137934.	8.0	26
1284	Relative contributions of selected multigeneration products to chamber SOA formed from photooxidation of a range (C10–C17) of n-alkanes under high NO conditions. Atmospheric Environment, 2021, 244, 117976.	4.1	6
1285	Particle detection using the dual-vaporizer configuration of the soot particle Aerosol Mass Spectrometer (SP-AMS). Aerosol Science and Technology, 2021, 55, 254-267.	3.1	7
1286	Realâ€time organic aerosol chemical speciation in the indoor environment using extractive electrospray ionization mass spectrometry. Indoor Air, 2021, 31, 141-155.	4.3	29
1287	Differential inflammatory potential of particulate matter (PM) size fractions from imperial valley, CA. Atmospheric Environment, 2021, 244, 117992.	4.1	7
1288	Review of online source apportionment research based on observation for ambient particulate matter. Science of the Total Environment, 2021, 762, 144095.	8.0	21
1289	Long Island enhanced aerosol event during 2018 LISTOS: Association with heatwave and marine influences. Environmental Pollution, 2021, 270, 116299.	7.5	8
1290	Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environmental Science & Technology, 2021, 55, 44-64.	10.0	146
1291	Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD032657.	3.3	41
1292	Drivers of the rapid rise and daily-based accumulation in PM1. Science of the Total Environment, 2021, 760, 143394.	8.0	4
1293	Characteristics and sources of water-soluble organic aerosol in a heavily polluted environment in Northern China. Science of the Total Environment, 2021, 758, 143970.	8.0	18
1295	A review of the main strategies used in the interpretation of similar chemical profiles yielded by receptor models in the source apportionment of particulate matter. Chemosphere, 2021, 269, 128746.	8.2	19
1296	Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART. Atmospheric Chemistry and Physics, 2021, 21, 831-851.	4.9	15
1297	Multi-Oxygenated Organic Compounds in Fine Particulate Matter Collected in the Western Mediterranean Area. Atmosphere, 2021, 12, 94.	2.3	1
1298	Emerging investigator series: chemical and physical properties of organic mixtures on indoor surfaces during HOMEChem. Environmental Sciences: Processes and Impacts, 2021, 23, 559-568.	3.5	12
1299	Multi-model intercomparisons of air quality simulations for the KORUS-AQ campaign. Elementa, 2021, 9, .	3.2	41

#	Article	IF	CITATIONS
1300	Near real-time PM1 chemical composition measurements at a French urban background and coastal site under industrial influence over more than a year: Temporal variability and assessment of sulfur-containing emissions. Atmospheric Environment, 2021, 244, 117960.	4.1	9
1301	Continuous measurement of reactive oxygen species inside and outside of a residential house during summer. Indoor Air, 2021, 31, 1199-1216.	4.3	8
1302	Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 1545-1559.	3.1	20
1303	Characterization of Organic Aerosol at a Rural Site in the North China Plain Region: Sources, Volatility and Organonitrates. Advances in Atmospheric Sciences, 2021, 38, 1115-1127.	4.3	16
1305	Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033484.	3.3	36
1306	Measurement report: Effects of photochemical aging on the formation and evolution of summertime secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 1341-1356.	4.9	18
1307	Ambient nitro-aromatic compounds – biomass burning versus secondary formation in rural China. Atmospheric Chemistry and Physics, 2021, 21, 1389-1406.	4.9	46
1308	Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region. Atmospheric Chemistry and Physics, 2021, 21, 1889-1916.	4.9	14
1309	Large Discrepancy in the Formation of Secondary Organic Aerosols from Structurally Similar Monoterpenes. ACS Earth and Space Chemistry, 2021, 5, 632-644.	2.7	17
1310	Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO ₃ -Initiated Oxidation of Isoprene under Varied Chemical Regimes. ACS Earth and Space Chemistry, 2021, 5, 785-800.	2.7	15
1311	Large contribution to secondary organic aerosol from isoprene cloud chemistry. Science Advances, 2021, 7, .	10.3	24
1312	Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements. Atmospheric Measurement Techniques, 2021, 14, 2237-2260.	3.1	12
1313	Aerosol characteristics at the Southern Great Plains site during the HI-SCALE campaign. Atmospheric Chemistry and Physics, 2021, 21, 5101-5116.	4.9	16
1314	Characteristics of BrC and BC emissions from controlled diffusion flame and diesel engine combustion. Aerosol Science and Technology, 2021, 55, 769-784.	3.1	7
1315	Technical note: Emission factors, chemical composition, and morphology of particles emitted from Euro 5 diesel and gasoline light-duty vehicles during transient cycles. Atmospheric Chemistry and Physics, 2021, 21, 4779-4796.	4.9	23
1316	Measurement report: Long-range transport patterns into the tropical northwest Pacific during the CAMP ² Ex aircraft campaign: chemical composition, size distributions, and the impact of convection. Atmospheric Chemistry and Physics, 2021, 21, 3777-3802.	4.9	22
1317	The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests. Atmospheric Chemistry and Physics, 2021, 21, 3899-3918.	4.9	31
1318	Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate Formation in Polluted Environments. Environmental Science & amp; Technology, 2021, 55, 4227-4242.	10.0	88

#	Article	IF	CITATIONS
1319	Source apportionment and impact of long-range transport on carbonaceous aerosol particles in central Germany during HCCT-2010. Atmospheric Chemistry and Physics, 2021, 21, 3667-3684.	4.9	8
1320	New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals. ACS Earth and Space Chemistry, 2021, 5, 801-811.	2.7	15
1322	Influence of the NO/NO ₂ Ratio on Oxidation Product Distributions under High-NO Conditions. Environmental Science & Technology, 2021, 55, 6594-6601.	10.0	13
1323	A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe. Atmospheric Environment: X, 2021, 10, 100108.	1.4	23
1324	Elemental analysis of oxygenated organic coating on black carbon particles using a soot-particle aerosol mass spectrometer. Atmospheric Measurement Techniques, 2021, 14, 2799-2812.	3.1	5
1325	Evolution of Aerosol Optical Properties from Wood Smoke in Real Atmosphere Influenced by Burning Phase and Solar Radiation. Environmental Science & Technology, 2021, 55, 5677-5688.	10.0	22
1326	Evolution of Organic Aerosol From Wood Smoke Influenced by Burning Phase and Solar Radiation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034534.	3.3	8
1327	Low-Molecular-Weight Carboxylic Acids in the Southeastern U.S.: Formation, Partitioning, and Implications for Organic Aerosol Aging. Environmental Science & Technology, 2021, 55, 6688-6699.	10.0	30
1328	Uptake of Waterâ€soluble Gasâ€phase Oxidation Products Drives Organic Particulate Pollution in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091351.	4.0	24
1329	Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere. Atmospheric Chemistry and Physics, 2021, 21, 6509-6539.	4.9	5
1330	Interpretation of aerosol effects on precipitation susceptibility in warm clouds inferred from satellite measurements and model evaluation over Northeast Asia. Journals of the Atmospheric Sciences, 2021, , .	1.7	2
1331	Aircraft measurements of aerosol and trace gas chemistry in the eastern North Atlantic. Atmospheric Chemistry and Physics, 2021, 21, 7983-8002.	4.9	19
1332	Properties and emission factors of cloud condensation nuclei from biomass cookstoves – observations of a strong dependency on potassium content in the fuel. Atmospheric Chemistry and Physics, 2021, 21, 8023-8044.	4.9	7
1333	Seasonal Trends of Aerosol Hygroscopicity and Mixing State in Clean Marine and Polluted Continental Air Masses Over the Northeast Atlantic. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033851.	3.3	5
1335	Exploring the inorganic and organic nitrate aerosol formation regimes at a suburban site on the North China Plain. Science of the Total Environment, 2021, 768, 144538.	8.0	26
1336	Characteristics, sources and evolution processes of atmospheric organic aerosols at a roadside site in Hong Kong. Atmospheric Environment, 2021, 252, 118298.	4.1	13
1337	Photodegradation of α-Pinene Secondary Organic Aerosol Dominated by Moderately Oxidized Molecules. Environmental Science & Technology, 2021, 55, 6936-6943.	10.0	11
1338	Effect of COVID-19 lockdown on the concentration and composition of NR-PM2.5 over Ahmedabad, a big city in western India. Urban Climate, 2021, 37, 100818.	5.7	6

ARTICLE IF CITATIONS Reactive nitrogen around the Arabian Peninsula and in the Mediterranean Sea during the 2017 AQABA 1339 4.9 12 ship campaign. Atmospheric Chemistry and Physics, 2021, 21, 7473-7498. The importance of size ranges in aerosol instrument intercomparisons: a case study for the 1340 3.1 34 Atmospheric Tomography Mission. Atmospheric Measurement Techniques, 2021, 14, 3631-3655. Real-time characterization and source apportionment of fine particulate matter in the Delhi megacity 1341 8.0 35 area during late winter. Science of the Total Environment, 2021, 770, 145324. Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the 1342 6.8 atmosphere. Communications Earth & Environment, 2021, 2, . Ambient marine shipping emissions determined by vessel operation mode along the East China Sea. 1343 8.0 14 Science of the Total Environment, 2021, 769, 144713. New methodology shows short atmospheric lifetimes of oxidized sulfur and nitrogen due to dry deposition. Atmospheric Chemistry and Physics, 2021, 21, 8377-8392. 1344 Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol 1345 Spectrometer (LAS) to changes in submicron aerosol composition and refractive index. Atmospheric 3.128 Measurement Techniques, 2021, 14, 4517-4542. The impact of aerosol size-dependent hygroscopicity and mixing state on the cloud condensation 1346 nuclei potential over the north-east Atlantic. Atmospheric Chemistry and Physics, 2021, 21, 8655-8675. Seasonal variation of aerosol compositions in Shanghai, China: Insights from particle aerosol mass 1347 8.0 17 spectrometer observations. Science of the Total Environment, 2021, 771, 144948. Light-absorption enhancement of black carbon in the Asian outflow inferred from airborne SP2 and 1348 8.0 in-situ measurements during KORUS-AQ. Science of the Total Environment, 2021, 773, 145531. Quantification of cooking organic aerosol in the indoor environment using aerodyne aerosol mass 1349 3.120 spectrometers. Aerosol Science and Technology, 2021, 55, 1099-1114. Large Emissions of Low-Volatility Siloxanes during Residential Oven Use. Environmental Science and Technology Letters, 2021, 8, 519-524. Sizeâ€dependent Molecular Characteristics and Possible Sources of Organic Aerosols at a Coastal New Particle Formation Hotspot of East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, 1352 3.3 0 e2021JD034610. Mitigating NOX emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei, China. Environmental Pollution, 2021, 279, 116931. Emissions of soot, PAHs, ultrafine particles, NO _{x,} and other health relevant compounds 1354 4.3 11 from stressed burning of candles in indoor air. Indoor Air, 2021, 31, 2033-2048. Quantification of solid fuel combustion and aqueous chemistry contributions to secondary organic aerosol during wintertime haze events in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 9859-9886. Technical note: A new approach to discriminate different black carbon sources by utilising fullerene 1356 and metals in positive matrix factorisation analysis of high-resolution soot particle aerosol mass 4.9 3 spectrometer data. Atmospheric Chemistry and Physics, 2021, 21, 10763-10777. Ice nucleation on surrogates of boreal forest SOA particles: effect of water content and oxidative age. Atmospheric Chemistry and Physics, 2021, 21, 11069-11078.

#	Article	IF	CITATIONS
1360	Phase state of secondary organic aerosol in chamber photo-oxidation of mixed precursors. Atmospheric Chemistry and Physics, 2021, 21, 11303-11316.	4.9	7
1361	Research Progress on Onâ€Chip Fourier Transform Spectrometer. Laser and Photonics Reviews, 2021, 15, 2100016.	8.7	25
1362	Direct Quantification of Droplet Activation of Ambient Black Carbon Under Water Supersaturation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034649.	3.3	8
1363	Vertical profiles of trace gas and aerosol properties over the eastern North Atlantic: variations with season and synoptic condition. Atmospheric Chemistry and Physics, 2021, 21, 11079-11098.	4.9	14
1364	Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom. Atmospheric Chemistry and Physics, 2021, 21, 11113-11132.	4.9	5
1365	Mediterranean nascent sea spray organic aerosol and relationships with seawater biogeochemistry. Atmospheric Chemistry and Physics, 2021, 21, 10625-10641.	4.9	12
1366	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Technology, 2021, 55, 10280-10290.	10.0	31
1367	Airborne and ground-based measurements of aerosol optical depth of freshly emitted anthropogenic plumes in the Athabasca Oil Sands Region. Atmospheric Chemistry and Physics, 2021, 21, 10671-10687.	4.9	3
1368	Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification. Atmospheric Chemistry and Physics, 2021, 21, 10133-10158.	4.9	15
1369	Insights into the chemistry of aerosol growth in Beijing: Implication of fine particle episode formation during wintertime. Chemosphere, 2021, 274, 129776.	8.2	11
1370	Characterization of primary and aged wood burning and coal combustion organic aerosols in an environmental chamber and its implications for atmospheric aerosols. Atmospheric Chemistry and Physics, 2021, 21, 10273-10293.	4.9	17
1371	Using Micro-Raman Spectroscopy to Investigate Chemical Composition, Mixing States, and Heterogeneous Reactions of Individual Atmospheric Particles. Environmental Science & Technology, 2021, 55, 10243-10254.	10.0	13
1372	Formation of Oxidized Gases and Secondary Organic Aerosol from a Commercial Oxidant-Generating Electronic Air Cleaner. Environmental Science and Technology Letters, 2021, 8, 691-698.	8.7	17
1373	Exposure to Particulate Matter and Estimation of Volatile Organic Compounds across Wildland Firefighter Job Tasks. Environmental Science & Technology, 2021, 55, 11795-11804.	10.0	9
1374	Effects of different stagnant meteorological conditions on aerosol chemistry and regional transport changes in Beijing, China. Atmospheric Environment, 2021, 258, 118483.	4.1	4
1375	Humidity Dependence of the Condensational Growth of α-Pinene Secondary Organic Aerosol Particles. Environmental Science & Technology, 2021, 55, 14360-14369.	10.0	15
1376	PM ₁ composition and source apportionment at two sites in Delhi, India, across multiple seasons. Atmospheric Chemistry and Physics, 2021, 21, 11655-11667.	4.9	13
1378	Temperature and volatile organic compound concentrations as controlling factors for chemical composition of <i>α</i> -pinene-derived secondary organic aerosol. Atmospheric Chemistry and Physics, 2021, 21, 11545-11562.	4.9	1

#	Article	IF	CITATIONS
1379	Insights into aqueous-phase and photochemical formation of secondary organic aerosol in the winter of Beijing. Atmospheric Environment, 2021, 259, 118535.	4.1	21
1380	Measuring the Chemical Evolution of Levitated Particles: A Study on the Evaporation of Multicomponent Organic Aerosol. Analytical Chemistry, 2021, 93, 12472-12479.	6.5	21
1381	Kinetics and impacting factors of HO ₂ uptake onto submicron atmospheric aerosols during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan. Atmospheric Chemistry and Physics, 2021, 21, 12243-12260.	4.9	16
1382	Real-time quantification and source apportionment of fine particulate matter including organics and elements in Delhi during summertime. Atmospheric Environment, 2021, 261, 118598.	4.1	23
1383	Total organic carbon and the contribution from speciated organics in cloud water: airborne data analysis from the CAMP ² Ex field campaign. Atmospheric Chemistry and Physics, 2021, 21, 14109-14129.	4.9	10
1384	Immersion Freezing Ability of Freshly Emitted Soot with Various Physico-Chemical Characteristics. Atmosphere, 2021, 12, 1173.	2.3	5
1385	Methanesulfonic acid and sulfuric acid Aerosol Formed through oxidation of reduced sulfur compounds in a humid environment. Atmospheric Environment, 2021, 261, 118504.	4.1	9
1387	Investigation of solvent microparticle formation in spray ionization–quadrupole ion trap–mass spectrometry, 2021, 56, e4785.	1.6	0
1388	Exploring the composition and volatility of secondary organic aerosols in mixed anthropogenic and biogenic precursor systems. Atmospheric Chemistry and Physics, 2021, 21, 14251-14273.	4.9	20
1389	Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035203.	3.3	16
1390	Measurement report: Cloud condensation nuclei activity and its variation with organic oxidation level and volatility observed during an aerosol life cycle intensive operational period (ALC-IOP). Atmospheric Chemistry and Physics, 2021, 21, 13019-13029.	4.9	3
1391	Observations and Modeling of NO <i></i> Photochemistry and Fate in Fresh Wildfire Plumes. ACS Earth and Space Chemistry, 2021, 5, 2652-2667.	2.7	17
1392	Evolution of Atmospheric Total Organic Carbon from Petrochemical Mixtures. Environmental Science & Technology, 2021, 55, 12841-12851.	10.0	3
1393	Primary and secondary aerosols in small passenger vehicle emissions: Evaluation of engine technology, driving conditions, and regulatory standards. Environmental Pollution, 2021, 286, 117195.	7.5	9
1394	Salton Sea aerosol exposure in mice induces a pulmonary response distinct from allergic inflammation. Science of the Total Environment, 2021, 792, 148450.	8.0	8
1395	Primary emissions and secondary production of organic aerosols from heated animal fats. Science of the Total Environment, 2021, 794, 148638.	8.0	2
1396	Boundary layer versus free tropospheric submicron particle formation: A case study from NASA DC-8 observations in the Asian continental outflow during the KORUS-AQ campaign. Atmospheric Research, 2021, 264, 105857.	4.1	4
1397	Investigation of physico-chemical characteristics and associated CCN activation for different combustion sources through Chamber experiment approach. Atmospheric Environment, 2021, 266, 118726	4.1	2
#	Article	IF	CITATIONS
------	---	-----	-----------
1398	Seasonal characteristics of PM1 in Seoul, Korea, measured using HR-ToF-Aerosol Mass Spectrometer in 2018. Atmospheric Environment, 2021, 266, 118717.	4.1	8
1399	Evolution of size and composition of fine particulate matter in the Delhi megacity during later winter. Atmospheric Environment, 2021, 267, 118752.	4.1	3
1400	Characterization and source identification of submicron aerosol during serious haze pollution periods in Beijing. Journal of Environmental Sciences, 2022, 112, 25-37.	6.1	11
1402	Insights into the molecular composition of semi-volatile aerosols in the summertime central Arctic Ocean using FIGAERO-CIMS. Environmental Science Atmospheres, 2021, 1, 161-175.	2.4	18
1403	Comparative study of chemical characterization and source apportionment of PM2.5 in South China by filter-based and single particle analysis. Elementa, 2021, 9, .	3.2	4
1404	Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33028-33033.	7.1	63
1405	Acidity across the interface from the ocean surface to sea spray aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	73
1406	Socio-economic disparities in exposure to urban restaurant emissions are larger than for traffic. Environmental Research Letters, 2020, 15, 114039.	5.2	21
1407	Combined Determination of the Chemical Composition and of Health Effects of Secondary Organic Aerosols: The POLYSOA Project. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, .	1.2	14
1408	Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ. Elementa, 2020, 8, .	3.2	44
1409	Comparison of Aerosol Hygroscopcity, Volatility, and Chemical Composition between a Suburban Site in the Pearl River Delta Region and a Marine Site in Okinawa. Aerosol and Air Quality Research, 2017, 17, 3194-3208.	2.1	23
1410	Aircraft Measurements of Physicochemical Evolution of Atmospheric Aerosols in Air Pollution Plumes over a Megacity and Suburban Areas. Aerosol and Air Quality Research, 2020, 20, 2485-2494.	2.1	10
1411	Oligomer and highly oxygenated organic molecule formation from oxidation of oxygenated monoterpenes emitted by California sage plants. Atmospheric Chemistry and Physics, 2020, 20, 10953-10965.	4.9	8
1412	Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic. Atmospheric Chemistry and Physics, 2020, 20, 11275-11285.	4.9	7
1413	Measurement report: Characterization of severe spring haze episodes and influences of long-range transport in the Seoul metropolitan area in March 2019. Atmospheric Chemistry and Physics, 2020, 20, 11527-11550.	4.9	27
1414	Model bias in simulating major chemical components of PM _{2.5} in China. Atmospheric Chemistry and Physics, 2020, 20, 12265-12284.	4.9	25
1415	The Aarhus Chamber Campaign on Highly Oxygenated Organic Molecules and Aerosols (ACCHA): particle formation, organic acids, and dimer esters from <i>l±</i> -pinene ozonolysis at different temperatures. Atmospheric Chemistry and Physics, 2020, 20, 12549-12567.	4.9	21
1416	The effects of morphology, mobility size, and secondary organic aerosol (SOA) material coating on the ice nucleation activity of black carbon in the cirrus regime. Atmospheric Chemistry and Physics, 2020, 20, 13957-13984.	4.9	23

#	Article	IF	CITATIONS
1417	Direct contribution of ammonia to <i>α</i> -pinene secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2020, 20, 14393-14405.	4.9	17
1418	Kinetic modeling of formation and evaporation of secondary organic aerosol from NO ₃ oxidation of pure and mixed monoterpenes. Atmospheric Chemistry and Physics, 2020, 20, 15513-15535.	4.9	14
1419	Chemical characterization of secondary organic aerosol at a rural site in the southeastern US: insights from simultaneous high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and FIGAERO chemical ionization mass spectrometer (CIMS) measurements. Atmospheric Chemistry and Physics, 2020, 20, 8421-8440.	4.9	42
1652	A new approach for measuring the carbon and oxygen content of atmospherically relevant compounds and mixtures. Atmospheric Measurement Techniques, 2020, 13, 4911-4925.	3.1	5
1653	Multi-year ACSM measurements at the central European research station Melpitz (Germany) – PartÂ1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter. Atmospheric Measurement Techniques, 2020, 13, 4973-4994.	3.1	20
1654	Improved chloride quantification in quadrupole aerosol chemical speciation monitors (Q-ACSMs). Atmospheric Measurement Techniques, 2020, 13, 5293-5301.	3.1	9
1655	Measurement of NO _{<i>x</i>} and NO _{<i>y</i>} with a thermal dissociation cavity ring-down spectrometer (TD-CRDS): instrument characterisation and first deployment. Atmospheric Measurement Techniques, 2020, 13, 5739-5761.	3.1	10
1656	Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples. Atmospheric Measurement Techniques, 2020, 13, 6193-6213.	3.1	6
1669	Comparison of Chemical Composition of Particulate Matter Emitted from a Gasoline Direct Injected (GDI) Vehicle and a Port Fuel Injected (PFI) Vehicle using High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Asian Journal of Atmospheric Environment, 2016, 10, 51-56.	1.1	2
1670	Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea. Asian Journal of Atmospheric Environment, 2017, 11, 300-312.	1.1	7
1671	Chemical Characteristics of PM1 using Aerosol Mass Spectrometer at Baengnyeong Island and Seoul Metropolitan Area. Journal of Korean Society for Atmospheric Environment, 2018, 34, 430-446.	1.1	12
1672	Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements. Atmospheric Chemistry and Physics, 2021, 21, 15023-15063.	4.9	15
1673	Observations of supermicron-sized aerosols originating from biomass burning in southern Central Africa. Atmospheric Chemistry and Physics, 2021, 21, 14815-14831.	4.9	6
1674	Formation and evolution of secondary organic aerosols derived from urban-lifestyle sources: vehicle exhaust and cooking emissions. Atmospheric Chemistry and Physics, 2021, 21, 15221-15237.	4.9	9
1675	Comparative Assessment of Cooking Emission Contributions to Urban Organic Aerosol Using Online Molecular Tracers and Aerosol Mass Spectrometry Measurements. Environmental Science & Technology, 2021, 55, 14526-14535.	10.0	21
1676	Anthropogenic Volatile Organic Compound (AVOC) Autoxidation as a Source of Highly Oxygenated Organic Molecules (HOM). Journal of Physical Chemistry A, 2021, 125, 9027-9039.	2.5	8
1677	Evaluation of a New Aerosol Chemical Speciation Monitor (ACSM) System at an Urban Site in Atlanta, GA: The Use of Capture Vaporizer and PM _{2.5} Inlet. ACS Earth and Space Chemistry, 2021, 5, 2565-2576.	2.7	16
1678	Photochemistry of Volatile Organic Compounds in the Yellow River Delta, China: Formation of O ₃ and Peroxyacyl Nitrates. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035296.	3.3	11

#	Article	IF	CITATIONS
1735	Hybrid System with Ion Attachment Techniques. , 2015, , 175-204.		0
1736	Characterization of Particulate Emissions from Biodiesel using High Resolution Time of Flight Aerosol Mass Spectrometer. Asian Journal of Atmospheric Environment, 2015, 9, 78-85.	1.1	4
1747	Physicochemical Characteristics of Particulate Matter Emissions of Different Vehicles' Fuel Types. Journal of Korean Society for Atmospheric Environment, 2016, 32, 593-602.	1.1	1
1748	Kinetic Modeling of SOA Formation for \$\$alpha \$\$ α - and \$\$eta \$\$ β -Pinene. Springer Proceedings in Complexity, 2018, , 559-564.	0.3	0
1749	Study of Sea Salt Aerosol Characteristics Using an On-Board Single Particle Aerosol Mass Spectrometer. Advances in Marine Sciences, 2019, 06, 11-18.	0.1	0
1750	The Chemical Characteristics and Formation of Potential Secondary Aerosol (PSA) using an Oxidation Flow Reactor (OFR) in the Summer: Focus on the Residential Area, Suwon. Journal of Korean Society for Atmospheric Environment, 2019, 35, 786-801.	1.1	1
1751	Spatial Confinement of Microobjects in the Radiofrequency Ion Trap in a Viscous Medium. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 1292-1297.	0.6	3
1752	Air Pollution in New Delhi during Late Winter: An Overview of a Group of Campaign Studies Focusing on Composition and Sources. Atmosphere, 2021, 12, 1432.	2.3	13
1753	Real-Time Laboratory Measurements of VOC Emissions, Removal Rates, and Byproduct Formation from Consumer-Grade Oxidation-Based Air Cleaners. Environmental Science and Technology Letters, 2021, 8, 1020-1025.	8.7	14
1754	Determining Activity Coefficients of SOA from Isothermal Evaporation in a Laboratory Chamber. Environmental Science and Technology Letters, 2021, 8, 212-217.	8.7	7
1755	Real-world particle emissions and secondary aerosol formation from a diesel oxidation catalyst and scrubber equipped ship operating with two fuels in a SECA area. Environmental Pollution, 2022, 292, 118278.	7.5	10
1756	Constraining the response factors of an extractive electrospray ionization mass spectrometer for near-molecular aerosol speciation. Atmospheric Measurement Techniques, 2021, 14, 6955-6972.	3.1	10
1757	Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloudâ€Forming Particles. Geophysical Research Letters, 2021, 48, .	4.0	7
1758	Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification. Atmospheric Chemistry and Physics, 2021, 21, 16161-16182.	4.9	9
1759	A 1-year characterization of organic aerosol composition and sources using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). Atmospheric Chemistry and Physics, 2020, 20, 7875-7893.	4.9	20
1761	Comparing secondary organic aerosol (SOA) volatility distributions derived from isothermal SOA particle evaporation data and FIGAERO–CIMS measurements. Atmospheric Chemistry and Physics, 2020, 20, 10441-10458.	4.9	7
1762	Application of time-of-flight aerosol mass spectrometry for the real-time measurement of particle-phase organic peroxides: an online redox derivatization–aerosol mass spectrometer (ORD-AMS). Atmospheric Measurement Techniques, 2020, 13, 5725-5738.	3.1	4
1763	Preliminary Study on Small-Scale Environment Chambers for Simulating Formation of Fine Particulate Matter at Roadsides. International Journal of Highway Engineering, 2020, 22, 25-35.	0.1	2

#	Article	IF	CITATIONS
1764	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	22
1765	Aqueous aging of secondary organic aerosol coating onto black carbon: Insights from simultaneous L-ToF-AMS and SP-AMS measurements at an urban site in southern China. Journal of Cleaner Production, 2022, 330, 129888.	9.3	8
1766	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Technology, 2021, 55, 15646-15657.	10.0	11
1767	Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM _{2.5}): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations. Atmospheric Chemistry and Physics, 2021, 21, 16775-16791.	4.9	18
1768	Polycyclic aromatic hydrocarbons from cooking emissions. Science of the Total Environment, 2022, 818, 151700.	8.0	20
1769	Observed Relationships between Cloud Droplet Effective Radius and Biogenic Gas Concentrations in Summertime Marine Stratocumulus over the Eastern North Atlantic. Earth and Space Science, 0, , .	2.6	2
1770	Particulate Oxalateâ€Toâ€Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations. Geophysical Research Letters, 2021, 48, e2021GL096520.	4.0	6
1772	Transport-driven aerosol differences above and below the canopy of a mixed deciduous forest. Atmospheric Chemistry and Physics, 2021, 21, 17031-17050.	4.9	0
1773	Herbicide Drift from Genetically Engineered Herbicide-Tolerant Crops. Environmental Science & Technology, 2021, 55, 15559-15568.	10.0	9
1774	Source identification and characterization of organic nitrogen in atmospheric aerosols at a suburban site in China. Science of the Total Environment, 2022, 818, 151800.	8.0	3
1775	Fine Ashâ€Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	13
1776	Rapid growth of anthropogenic organic nanoparticles greatly alters cloud life cycle in the Amazon rainforest. Science Advances, 2022, 8, eabj0329.	10.3	19
1777	Modelling the gas–particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity. Atmospheric Chemistry and Physics, 2022, 22, 215-244.	4.9	8
1778	Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol. Atmospheric Chemistry and Physics, 2022, 22, 805-821.	4.9	5
1779	Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	10
1780	The Sea Spray Chemistry and Particle Evolution study (SeaSCAPE): overview and experimental methods. Environmental Sciences: Processes and Impacts, 2022, 24, 290-315.	3.5	11
1781	The effects of number and mass concentration of aerosol components on scattering coefficients in Xianghe, southeast of Beijing, China – A case study. Atmospheric Environment, 2022, 272, 118938.	4.1	3
1782	Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs). Environmental Health Perspectives, 2022, 130, 27003.	6.0	44

0			n	
		\mathbf{O} N		IDT
\sim	IIAI		NLFU	

#	Article	IF	CITATIONS
1783	Current status of source apportionment of ambient aerosols in India. Atmospheric Environment, 2022, 274, 118987.	4.1	11
1784	Effect of Biomass Burning on PM _{2.5} Composition and Secondary Aerosol Formation During Postâ€Monsoon and Winter Haze Episodes in Delhi. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	21
1785	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	10.3	45
1786	Chemical composition and sources of organic aerosol on the Adriatic coast in Croatia. Atmospheric Environment: X, 2022, 13, 100159.	1.4	0
1787	Molecular Insights into Dissolved Organic Matter in Natural Dew Water: Biogrime Films on Leaf Surfaces. ACS Earth and Space Chemistry, 2022, 6, 775-787.	2.7	3
1788	Role of Upwind Precipitation in Transboundary Pollution and Secondary Aerosol Formation: A Case Study during the KORUS-AQ Field Campaign. Journal of Applied Meteorology and Climatology, 2022, 61, 159-174.	1.5	0
1789	Phase Behavior of Internal Mixtures of Hydrocarbon-like Primary Organic Aerosol and Secondary Aerosol Based on Their Differences in Oxygen-to-Carbon Ratios. Environmental Science & Technology, 2022, 56, 3960-3973.	10.0	12
1790	Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles. Journal of Environmental Sciences, 2023, 123, 183-202.	6.1	7
1791	The impact of chlorine chemistry combined with heterogeneous N ₂ O ₅ reactions on air quality in China. Atmospheric Chemistry and Physics, 2022, 22, 3743-3762.	4.9	2
1792	Identifying chemical aerosol signatures using optical suborbital observations: how much can optical properties tell us about aerosol composition?. Atmospheric Chemistry and Physics, 2022, 22, 3713-3742.	4.9	6
1793	Secondary organic aerosol formation from camphene oxidation: measurements and modeling. Atmospheric Chemistry and Physics, 2022, 22, 3131-3147.	4.9	5
1794	Formation and Evolution of Catechol-Derived SOA Mass, Composition, Volatility, and Light Absorption. ACS Earth and Space Chemistry, 0, , .	2.7	3
1795	A Method for the Measurement of the Water Solubility Distribution of Atmospheric Organic Aerosols. Environmental Science & Technology, 2022, 56, 3952-3959.	10.0	5
1796	Persistent Influence of Wildfire Emissions in the Western United States and Characteristics of Aged Biomass Burning Organic Aerosols under Clean Air Conditions. Environmental Science & Technology, 2022, 56, 3645-3657.	10.0	13
1797	North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories. Atmospheric Chemistry and Physics, 2022, 22, 2795-2815.	4.9	4
1798	Using Real Time Measurements to Derive the Indoor and Outdoor Contributions of Submicron Particulate Species and Trace Gases. Toxics, 2022, 10, 161.	3.7	4
1799	On the evolution of sub- and super-saturated water uptake of secondary organic aerosol in chamber experiments from mixed precursors. Atmospheric Chemistry and Physics, 2022, 22, 4149-4166.	4.9	4
1800	Seasonality of Aerosol Sources Calls for Distinct Air Quality Mitigation Strategies. Toxics, 2022, 10, 121.	3.7	2

#	Article	IF	CITATIONS
1801	Mixing state and distribution of iodine-containing particles in Arctic Ocean during summertime. Science of the Total Environment, 2022, , 155030.	8.0	0
1802	The Effect of Land Use Classification on the Gasâ€Phase and Particle Composition of the Troposphere: Tree Species Versus Forest Type Information. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
1803	Sea spray as an obscured source for marine cloud nuclei. Nature Geoscience, 2022, 15, 282-286.	12.9	27
1804	Aerodynamic size-resolved composition and cloud condensation nuclei properties of aerosols in a Beijing suburban region. Atmospheric Chemistry and Physics, 2022, 22, 4375-4391.	4.9	9
1805	Background levels of black carbon over remote marine locations. Atmospheric Research, 2022, 271, 106119.	4.1	4
1806	Chemical characteristics and regional transport of submicron particulate matter at a suburban site near Lanzhou, China. Environmental Research, 2022, 212, 113179.	7.5	6
1807	Advanced instrumental approaches for chemical characterization of indoor particulate matter. Applied Spectroscopy Reviews, 2022, 57, 705-745.	6.7	13
1808	Impact of dry intrusion events on the composition and mixing state of particles during the winter Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA). Atmospheric Chemistry and Physics, 2021, 21, 18123-18146.	4.9	10
1809	Impact of Formation Pathways on Secondary Inorganic Aerosol During Haze Pollution in Beijing: Quantitative Evidence From Highâ€Resolution Observation and Modeling. Geophysical Research Letters, 2021, 48, .	4.0	9
1810	Reconciling Assumptions in Bottomâ€Up and Topâ€Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREXâ€AQ. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	3.3	10
1811	Contrasting Chemical Complexity and the Reactive Organic Carbon Budget of Indoor and Outdoor Air. Environmental Science & Technology, 2022, 56, 109-118.	10.0	13
1812	Oxidation Flow Reactor Results in a Chinese Megacity Emphasize the Important Contribution of S/IVOCs to Ambient SOA Formation. Environmental Science & Technology, 2022, 56, 6880-6893.	10.0	21
1813	Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ. Environmental Science & Technology, 2021, 55, 16326-16338.	10.0	8
1814	Complexity in the Evolution, Composition, and Spectroscopy of Brown Carbon in Aircraft Measurements of Wildfire Plumes. Geophysical Research Letters, 2022, 49, .	4.0	10
1815	Partitioning of Organonitrates in the Production of Secondary Organic Aerosols from α-Pinene Photo-Oxidation. Environmental Science & Technology, 2022, 56, 5421-5429.	10.0	4
1817	On the Redox-Activity and Health-Effects of Atmospheric Primary and Secondary Aerosol: Phenomenology. Atmosphere, 2022, 13, 704.	2.3	7
1818	Global simulations of monoterpene-derived peroxy radical fates and the distributions of highly oxygenated organic molecules (HOMs) and accretion products. Atmospheric Chemistry and Physics, 2022, 22, 5477-5494.	4.9	6
1819	Oxidation product characterization from ozonolysis of the diterpene <i>ent</i> -kaurene. Atmospheric Chemistry and Physics, 2022, 22, 5619-5637.	4.9	2

#	Article	IF	CITATIONS
1820	On the Complementarity and Informative Value of Different Electron Ionization Mass Spectrometric Techniques for the Chemical Analysis of Secondary Organic Aerosols. ACS Earth and Space Chemistry, 2022, 6, 1358-1374 online and online methods for measuring ambient heavy and trace elements and	2.7	4
1821	water-soluble inorganic ions (NO ₃ ^{â^2} ,) Tj ETQq1 1 0.784	4314 rgBT 3.1	/Overlock 10
1822	Fragment ion–functional group relationships in organic aerosols using aerosol mass spectrometry and mid-infrared spectroscopy. Atmospheric Measurement Techniques, 2022, 15, 2857-2874.	3.1	3
1823	Biological and Nonbiological Sources of Fluorescent Aerosol Particles in the Urban Atmosphere. Environmental Science & Technology, 2022, 56, 7588-7597.	10.0	6
1824	Offline analysis of the chemical composition and hygroscopicity of submicrometer aerosol at an Asian outflow receptor site and comparison with online measurements. Atmospheric Chemistry and Physics, 2022, 22, 5515-5533.	4.9	2
1825	Design, characterization, and first field deployment of a novel aircraft-based aerosol mass spectrometer combining the laser ablation and flash vaporization techniques. Atmospheric Measurement Techniques, 2022, 15, 2889-2921.	3.1	3
1826	Variations of PM2.5 sources in the context of meteorology and seasonality at an urban street canyon in Southwest Germany. Atmospheric Environment, 2022, 282, 119147.	4.1	7
1827	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	27.8	26
1828	Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	12
1829	Sources and processes of organic aerosol in non-refractory PM1 and PM2.5 during foggy and haze episodes in an urban environment of the Yangtze River Delta, China. Environmental Research, 2022, 212, 113557.	7.5	7
1830	Evolution of source attributed organic aerosols and gases in a megacity of central China. Atmospheric Chemistry and Physics, 2022, 22, 6937-6951.	4.9	6
1831	Effects of the VACES particle concentrator on secondary organic aerosol and ambient particle composition. Aerosol Science and Technology, 2022, 56, 785-801.	3.1	0
1832	Pre-monsoon submicron aerosol composition and source contribution in the Kathmandu Valley, Nepal. Environmental Science Atmospheres, 2022, 2, 978-999.	2.4	4
1833	Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai. Atmospheric Chemistry and Physics, 2022, 22, 8073-8096.	4.9	7
1834	Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry. Atmospheric Chemistry and Physics, 2022, 22, 7739-7761.	4.9	11
1835	Characteristics and evolution of brown carbon in western United States wildfires. Atmospheric Chemistry and Physics, 2022, 22, 8009-8036.	4.9	21
1836	Parameterization of the ambient aerosol refractive index with source appointed chemical compositions. Science of the Total Environment, 2022, 842, 156573.	8.0	1
1837	Aerosol mass spectrometry of neutral species based on a tunable vacuum ultraviolet free electron laser. Physical Chemistry Chemical Physics, 2022, 24, 16484-16492.	2.8	5

#	Article	IF	CITATIONS
1838	Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic. Atmospheric Chemistry and Physics, 2022, 22, 8299-8319.	4.9	9
1839	Substantial organic impurities at the surface of synthetic ammonium sulfate particles. Atmospheric Measurement Techniques, 2022, 15, 3859-3874.	3.1	1
1841	Secondary organic aerosol formation at an urban background site on the coastline of South China: Precursors and aging processes. Environmental Pollution, 2022, 309, 119778.	7.5	2
1842	Automated identification of local contamination in remote atmospheric composition time series. Atmospheric Measurement Techniques, 2022, 15, 4195-4224.	3.1	11
1843	Chemical Composition of an Ultrafine Sea Spray Aerosol during the Sea Spray Chemistry and Particle Evolution Experiment. ACS Earth and Space Chemistry, 2022, 6, 1914-1923.	2.7	3
1844	Simulating indoor inorganic aerosols of outdoor origin with the inorganic aerosol thermodynamic equilibrium model <scp>ISORROPIA</scp> . Indoor Air, 2022, 32, .	4.3	2
1845	Monoterpene Photooxidation in a Continuous-Flow Chamber: SOA Yields and Impacts of Oxidants, NO <i>_x</i> , and VOC Precursors. Environmental Science & Technology, 0, , .	10.0	1
1846	Simulating wildfire emissions and plume rise using geostationary satellite fire radiative power measurements: a case study of the 2019 Williams Flats fire. Atmospheric Chemistry and Physics, 2022, 22, 10195-10219.	4.9	8
1847	Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China. Atmospheric Chemistry and Physics, 2022, 22, 10409-10423.	4.9	4
1848	Chemical composition of secondary organic aerosol particles formed from mixtures of anthropogenic and biogenic precursors. Atmospheric Chemistry and Physics, 2022, 22, 9799-9826.	4.9	1
1849	Measurement report: Large contribution of biomass burning and aqueous-phase processes to the wintertime secondary organic aerosol formation in Xi'an, Northwest China. Atmospheric Chemistry and Physics, 2022, 22, 10139-10153.	4.9	10
1850	Heterogeneous iodine-organic chemistry fast-tracks marine new particle formation. Proceedings of the United States of America, 2022, 119, .	7.1	12
1851	Toward a molecular understanding of the surface composition of atmospherically relevant organic particles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
1852	Particleâ€Phase Uptake and Chemistry of Highly Oxygenated Organic Molecules (HOMs) From <i>α</i> â€Pinene OH Oxidation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
1853	Survey of Landmark-based Indoor Positioning Technologies. Information Fusion, 2023, 89, 166-188.	19.1	9
1854	Using aircraft measurements to characterize subgrid-scale variability of aerosol properties near the Atmospheric Radiation Measurement Southern Great Plains site. Atmospheric Chemistry and Physics, 2022, 22, 11217-11238.	4.9	4
1855	Characterization of aerosol particles containing trace elements (Ga, As, Rb, Mo, Cd, Cs, Tl, and others) and their atmospheric concentrations with a high temporal resolution. Atmospheric Environment, 2022, 290, 119360.	4.1	4
1856	Comparison of airborne measurements of NO, NO ₂ , HONO, NO _{<i>y</i>/i>} , and CO during FIREX-AQ. Atmospheric Measurement Techniques, 2022, 15, 4901-4930.	3.1	17

ARTICLE IF CITATIONS Compositional Constraints are Vital for Atmospheric PM_{2.5} Source Attribution over 1857 2.7 2 India. ACS Earth and Space Chemistry, 2022, 6, 2432-2445. A central arctic extreme aerosol event triggered by a warm air-mass intrusion. Nature 12.8 19 Communications, 2022, 13, . Tracing the Formation of Secondary Aerosols Influenced by Solar Radiation and Relative Humidity in 1859 3.3 4 Suburban Environment. Journal of Geophysical Research D: Atmospheres, 2022, 127, . National Exposure Models for Source-Specific Primary Particulate Matter Concentrations Using 1860 Aerosol Mass Spectrometry Data. Environmental Sciénce & amp; Technology, 2022, 56, 14284-14295. Aerosolâ€"stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations. Atmospheric Chemistry and Physics, 2022, 22, 1861 4.9 0 12417-12441. Using Novel Molecular-Level Chemical Composition Observations of High Arctic Organic Aerosol for 1862 Predictions of Cloud Condensation Nuclei. Environmental Science & Amp; Technology, 2022, 56, 13888-13899. Gas-Particle Uptake and Hygroscopic Growth by Organosulfate Particles. ACS Earth and Space 1863 2.7 5 Chemistry, 2022, 6, 2481-2490. Substantial contribution of iodine to Arctic ozone destruction. Nature Geoscience, 2022, 15, 770-773. 12.9 1864 16 Properties and Atmospheric Oxidation of Norpinic Acid Aerosol. Atmosphere, 2022, 13, 1481. 2.3 1865 1 Secondary Organic Aerosol Mass Yields from NO₃ Oxidation of α-Pinene and Δ-Carene: Effect 2.5 of RO₂ Radical Fate. Journal of Physical Chemistry A, 2022, 126, 7309-7330. Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation. Atmospheric Chemistry and Physics, 1867 4 4.9 2022, 22, 12803-12825. The response of summertime organic aerosol composition to emission controls in the northeastern 1868 3.3 United States. Journal of Geophysical Research D: Atmospheres, 0, , . Assessment of NAAPS-RA performance in Maritime Southeast Asia during CAMP²Ex. 1869 4.9 3 Atmospheric Chemistry and Physics, 2022, 22, 12961-12983. Hygroscopicity and CCN potential of DMS-derived aerosol particles. Atmospheric Chemistry and Physics, 2022, 22, 13449-13466. 1870 Molecular composition and gas-particle partitioning of indoor cooking aerosol: Insights from a 1871 3.14 FIGAERO-CIMS and kinetic aerosol modeling. Aerosol Science and Technology, 2022, 56, 1156-1173. Intercomparison of airborne and surface-based measurements during the CLARIFY, ORACLES and LASIC 3.1 field experiments. Atmospheric Measurement Techniques, 2022, 15, 6329-6371. Not all types of secondary organic aerosol mix: two phases observed when mixing different 1873 4.9 10 secondary organic aerosol types. Atmospheric Chemistry and Physics, 2022, 22, 13783-13796. Remote Aerosol Simulated During the Atmospheric Tomography (ATom) Campaign and Implications for 1874 3.3 Aerosol Lifetime. Journal of Geophysical Research D: Atmospheres, 2022, 127, .

#	Article	IF	CITATIONS
1875	Urgency of controlling agricultural nitrogen sources to alleviate summertime air pollution in the North China Plain. Chemosphere, 2023, 311, 137124.	8.2	3
1876	Spatio-temporal variation of C-PM2.5 (composition based PM2.5) sources using PMF*PMF (double-PMF) and single-combined PMF technique on real-time non-refractory, BC and elemental measurements during post-monsoon and winter at two sites in Delhi, India. Atmospheric Environment, 2023, 293, 119456.	4.1	3
1877	Characterizing formation mechanisms of secondary aerosols on black carbon in a megacity in South China. Science of the Total Environment, 2023, 859, 160290.	8.0	5
1878	Formation and impacts of nitryl chloride in Pearl River Delta. Atmospheric Chemistry and Physics, 2022, 22, 14837-14858.	4.9	1
1879	Role of Secondary Organic Matter on Soot Particle Toxicity in Reconstituted Human Bronchial Epithelia Exposed at the Air–Liquid Interface. Environmental Science & Technology, 2022, 56, 17007-17017.	10.0	5
1880	Inter-Comparisons of Major Ions and Organic Matter Using Aerodyne Aerosol Mass Spectrometer, Ion Chromatography and Sunset Lab Carbon Analyzer in Aged Aerosols from Okinawa in the Western North Pacific Rim. Separations, 2022, 9, 430.	2.4	1
1881	Submicron Aerosol Composition and Source Contribution across the Kathmandu Valley, Nepal, in Winter. ACS Earth and Space Chemistry, 2023, 7, 49-68.	2.7	3
1882	Detecting and Characterizing Particulate Organic Nitrates with an Aerodyne Long-ToF Aerosol Mass Spectrometer. ACS Earth and Space Chemistry, 0, , .	2.7	0
1883	Non-linear effects of secondary organic aerosol formation and properties in multi-precursor systems. Nature Communications, 2022, 13, .	12.8	6
1884	Quantification of primary and secondary organic aerosol sources by combined factor analysis of extractive electrospray ionisation and aerosol mass spectrometer measurements (EESI-TOF and AMS). Atmospheric Measurement Techniques, 2022, 15, 7265-7291.	3.1	2
1885	Chemical Compositions, Sources, and Intraâ€Regional Transportation of Submicron Particles Between North China Plain and Twainâ€Hu Basin of Central China in Winter. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	0
1886	Source characterization of volatile organic compounds in urban Beijing and its links to secondary organic aerosol formation. Science of the Total Environment, 2023, 860, 160469.	8.0	1
1887	Emission factors and evolution of SO ₂ measured from biomass burning in wildfires and agricultural fires. Atmospheric Chemistry and Physics, 2022, 22, 15603-15620.	4.9	7
1888	Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO ₂ regimes. Atmospheric Chemistry and Physics, 2022, 22, 16003-16015.	4.9	10
1889	Nocturnal Boundary Layer Height Uncertainty in Particulate Matter Simulations during the KORUS-AQ Campaign. Remote Sensing, 2023, 15, 300.	4.0	3
1890	Unwanted Indoor Air Quality Effects from Using Ultraviolet C Lamps for Disinfection. Environmental Science and Technology Letters, 2023, 10, 172-178.	8.7	13
1891	Impact of aging on the sources, volatility, and viscosity of organic aerosols in Chinese outflows. Atmospheric Chemistry and Physics, 2023, 23, 611-636.	4.9	3
1892	Fire Influence on Regional to Global Environments and Air Quality (FIREXâ€AQ). Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	24

#	Article	IF	CITATIONS
1893	Current air quality monitoring methods. , 2023, , 13-103.		0
1894	Cloud Condensation Nuclei Closure Study Using Airborne Measurements over the Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 0, , .	3.3	2
1895	Seasonal variability in size-resolved hygroscopicity of sub-micron aerosols over the Western Ghats, India: Closure and parameterization. Science of the Total Environment, 2023, 869, 161753.	8.0	3
1896	Insights into the compositional differences of PM1 and PM2.5 from aerosol mass spectrometer measurements in Beijing, China. Atmospheric Environment, 2023, 301, 119709.	4.1	1
1897	Measurement report: Aerosol vertical profiles over the western North Atlantic Ocean during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). Atmospheric Chemistry and Physics, 2023, 23, 1465-1490.	4.9	3
1898	Miniature Fourier Transform Spectrometer Based on Thin-Film Lithium Niobate. Micromachines, 2023, 14, 458.	2.9	0
1899	Measurement report: Emission factors of NH ₃ and NH _{<i>x</i>} for wildfires and agricultural fires in the United States. Atmospheric Chemistry and Physics, 2023, 23, 2331-2343.	4.9	3
1901	Tropospheric NO ₂ vertical profiles over South Korea and their relation to oxidant chemistry: implications for geostationary satellite retrievals and the observation of NO ₂ diurnal variation from space. Atmospheric Chemistry and Physics, 2023, 23, 2465-2481.	4.9	5
1902	Quantitative chemical assay of nanogram-level particulate matter using aerosol mass spectrometry: characterization of particles collected from uncrewed atmospheric measurement platforms. Atmospheric Measurement Techniques, 2023, 16, 955-968.	3.1	4
1903	Non-volatile marine and non-refractory continental sources of particle-phase amine during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). Atmospheric Chemistry and Physics, 2023, 23, 2765-2787.	4.9	2
1904	The AERosol and TRACe gas Collector (AERTRACC): an online-measurement-controlled sampler for source-resolved emission analysis. Atmospheric Measurement Techniques, 2023, 16, 1323-1341.	3.1	0
1905	Volatilization and partitioning of residual electronic cigarette emissions to particulate matter. Aerosol Science and Technology, 0, , 1-9.	3.1	0
1906	Real-time measurements of non-methane volatile organic compounds in the central Indo-Gangetic basin, Lucknow, India: source characterisation and their role in O ₃ and secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2023, 23, 3383-3408.	4.9	4
1907	Effects of polyoxymethylene dimethyl ether (PODEn) blended fuel on diesel engine emission: Insight from soot-particle aerosol mass spectrometry and aethalometer measurements. Atmospheric Environment: X, 2023, 18, 100216.	1.4	1
1908	A combined gas- and particle-phase analysis of highly oxygenated organic molecules (HOMs) from <i>î±</i> -pinene ozonolysis. Atmospheric Chemistry and Physics, 2023, 23, 3707-3730.	4.9	7
1909	Simulation of organic aerosol, its precursors, and related oxidants in the Landes pine forest in southwestern France: accounting for domain-specific land use and physical conditions. Atmospheric Chemistry and Physics, 2023, 23, 3679-3706.	4.9	1
1910	Airborne HSRL-2 measurements of elevated aerosol depolarization associated with non-spherical sea salt. Frontiers in Remote Sensing, 0, 4, .	3.5	3
1911	Chemical and Light-Absorption Properties of Water-Soluble Organic Aerosols in Northern California and Photooxidant Production by Brown Carbon Components. ACS Earth and Space Chemistry, 2023, 7, 1107-1119.	2.7	6

#	Article	IF	CITATIONS
1912	Insect Infestation Increases Viscosity of Biogenic Secondary Organic Aerosol. ACS Earth and Space Chemistry, 2023, 7, 1060-1071.	2.7	0
1913	Online chemical characterization of atmospheric fine secondary aerosols and organic nitrates in summer Nanjing, China. Atmospheric Research, 2023, 290, 106783.	4.1	2
1914	Simulating organic aerosol in Delhi with WRF-Chem using the volatility-basis-set approach: exploring model uncertainty with a Gaussian process emulator. Atmospheric Chemistry and Physics, 2023, 23, 5763-5782.	4.9	0
1915	Characterizing the Sources of Ambient PM10 Organic Aerosol in Urban and Rural Catalonia, Spain. SSRN Electronic Journal, 0, , .	0.4	0
1916	Reactive nitrogen and total organic carbon calibration techniques for the Aerodyne aerosol mass spectrometer. Aerosol Science and Technology, 2023, 57, 727-741.	3.1	1
1917	Viscosity, Glass Formation, and Mixing Times within Secondary Organic Aerosol from Biomass Burning Phenolics. ACS Earth and Space Chemistry, 2023, 7, 1388-1400.	2.7	4
1918	Laboratory evaluation of organic aerosol relative ionization efficiencies in the aerodyne aerosol mass spectrometer and aerosol chemical speciation monitor. Aerosol Science and Technology, 2023, 57, 981-997.	3.1	1
1919	Impact of nylon and teflon filter media on the sampling of inorganic aerosols over a high altitude site. Environmental Advances, 2023, 12, 100373.	4.8	1
1920	Recent advances in mass spectrometry techniques for atmospheric chemistry research on molecularâ€level. Mass Spectrometry Reviews, 0, , .	5.4	2
1921	Closing the Reactive Carbon Flux Budget: Observations From Dual Mass Spectrometers Over a Coniferous Forest. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	3
1922	Online detection of airborne nanoparticle composition with mass spectrometry: Recent advances, challenges, and opportunities. TrAC - Trends in Analytical Chemistry, 2023, 166, 117195.	11.4	0
1923	Time-Resolved Molecular Characterization of Secondary Organic Aerosol Formed from OH and NO ₃ Radical Initiated Oxidation of a Mixture of Aromatic Precursors. Environmental Science & Technology, 0, , .	10.0	1
1924	Chemically distinct particle-phase emissions from highly controlled pyrolysis of three wood types. Atmospheric Chemistry and Physics, 2023, 23, 8837-8854.	4.9	0
1925	The important contribution of secondary formation and biomass burning to oxidized organic nitrogen (OON) in a polluted urban area: insights from in situ measurements of a chemical ionization mass spectrometer (CIMS). Atmospheric Chemistry and Physics, 2023, 23, 8855-8877.	4.9	0
1926	Influence of natural and anthropogenic aerosols on cloud base droplet size distributions in clouds over the South China Sea and West Pacific. Atmospheric Chemistry and Physics, 2023, 23, 8959-8977.	4.9	0
1927	Engine preheating under real-world subfreezing conditions provides less than expected benefits to vehicle fuel economy and emission reduction for light-duty vehicles. Applied Energy, 2023, 351, 121805.	10.1	1
1928	Unexpected moderate contribution of intermediate volatility organic compounds from gasoline vehicle emission to secondary organic aerosol formation in summer of Beijing. Atmospheric Research, 2023, 295, 106990.	4.1	1
1929	Characterizing metals in particulate pollution in communities at the fenceline of heavy industry: combining mobile monitoring and size-resolved filter measurements. Environmental Sciences: Processes and Impacts, 2023, 25, 1491-1504.	3.5	1

#	Article	IF	CITATIONS
1930	Roadside air pollution and secondary organic aerosol seasonal trends from an oxidation flow reactor in Seoul. Atmospheric Environment, 2023, 312, 120051.	4.1	1
1931	Multi-campaign ship and aircraft observations of marine cloud condensation nuclei and droplet concentrations. Scientific Data, 2023, 10, .	5.3	0
1932	Aging effects on residential biomass burning emissions under quasi-real atmospheric conditions. Environmental Pollution, 2023, 337, 122615.	7.5	1
1933	Evaluation of aerosol- and gas-phase tracers for identification of transported biomass burning emissions in an industrially influenced location in Texas, USA. Atmospheric Chemistry and Physics, 2023, 23, 10845-10867.	4.9	0
1934	Characterizing the sources of ambient PM10 organic aerosol in urban and rural Catalonia, Spain. Science of the Total Environment, 2023, 902, 166440.	8.0	0
1936	Characterization of size-resolved effective density of atmospheric particles in an urban atmosphere in Southern China. Journal of Environmental Sciences, 2024, 141, 194-204.	6.1	0
1937	Response of organic aerosol to Delhi's pollution control measures over the period 2011–2018. Atmospheric Environment, 2023, 315, 120123.	4.1	0
1938	Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC. Scientific Data, 2023, 10, .	5.3	1
1939	Indoor Air Quality Implications of Germicidal 222 nm Light. Environmental Science & Technology, 2023, 57, 15990-15998.	10.0	1
1940	The potential of high temporal resolution automatic measurements of PM2.5 composition as an alternative to the filter-based manual method used in routine monitoring. Atmospheric Environment, 2023, 315, 120148.	4.1	0
1941	Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires. Environmental Science & Technology, 2023, 57, 17011-17021.	10.0	1
1942	Model Framework for Predicting Semivolatile Organic Material Emissions Indoors from Organic Aerosol Measurements: Applications to HOMEChem Stir-Frying. Environmental Science & Technology, 2023, 57, 17374-17383.	10.0	2
1943	Morphology and hygroscopicity of nanoplastics in sea spray. Physical Chemistry Chemical Physics, 2023, 25, 32430-32442.	2.8	0
1944	The Measurement of Atmospheric Black Carbon: A Review. Toxics, 2023, 11, 975.	3.7	1
1945	Multiphase interactions between sulfur dioxide and secondary organic aerosol from the photooxidation of toluene: Reactivity and sulfate formation. Science of the Total Environment, 2024, 912, 168736.	8.0	0
1946	Contribution of fossil and biomass-derived secondary organic carbon to winter water-soluble organic aerosols in Delhi, India. Science of the Total Environment, 2024, 912, 168655.	8.0	0
1947	Source apportionment of soot particles and aqueous-phase processing of black carbon coatings in an urban environment. Atmospheric Chemistry and Physics, 2023, 23, 15039-15056.	4.9	0
1948	Bulk and molecular-level composition of primary organic aerosol from wood, straw, cow dung, and plastic burning. Atmospheric Chemistry and Physics, 2023, 23, 14561-14576.	4.9	0

		CITATION REPORT		
#	Article		IF	Citations
1949	The effect of temperature and relative humidity on secondary organic aerosol formatio ozonolysis of Δ ³ -carene. Environmental Science Atmospheres, 2024, 4, 8	n from 8-103.	2.4	1
1951	Probing Atmospheric Aerosols by Multimodal Mass Spectrometry Techniques: Revealin Characteristics of Its Individual Molecular Components. ACS Earth and Space Chemistr 2498-2510.	g Aging y, 2023, 7,	2.7	0
1952	Gas–particle partitioning of toluene oxidation products: an experimental and modeli Atmospheric Chemistry and Physics, 2023, 23, 15537-15560.	ng study.	4.9	1
1953	A searchable database and mass spectral comparison tool for the Aerosol Mass Spectro and the Aerosol Chemical Speciation Monitor (ACSM). Atmospheric Measurement Tecl 6075-6095.	ometer (AMS) nniques, 2023, 16,	3.1	0
1954	Development and performance evaluation of online monitors for near real-time measur and water-soluble organic carbon in fine and coarse ambient PM. Atmospheric Environ 120316.	ement of total nent, 2024, 319,	4.1	0
1955	Secondary Brown Carbon Formation From Photooxidation of Furans From Biomass Bur Geophysical Research Letters, 2024, 51, .	ning.	4.0	Ο
1956	Enhancing characterization of organic nitrogen components in aerosols and droplets u high-resolution aerosol mass spectrometry. Atmospheric Measurement Techniques, 20	sing 24, 17, 423-439.	3.1	0
1957	Exploring the discrepancies between SMPS and AMS measurements in secondary orga formation experiments. Aerosol Science and Technology, 2024, 58, 195-205.	nic aerosol	3.1	Ο
1958	Airmass history, night-time particulate organonitrates, and meteorology impact urban rate. Atmospheric Environment, 2024, 322, 120362.	SOA formation	4.1	0
1959	Contributions of Cleaning Solution Residues to Indoor Organic Surface Films. , 2024, 1	, 129-138.		Ο
1960	Observations for Chemistry (In Situ): Particles. , 2024, , .			0
1961	Quantifying the Chemical Composition and Real-Time Mass Loading of Nanoplastic Par Atmosphere Using Aerosol Mass Spectrometry. Environmental Science & Amp; Technology	ticles in the pgy, 0, , .	10.0	0
1962	Applications of environmental mass spectrometry in atmospheric haze chemistry. TrAC Analytical Chemistry, 2024, 172, 117614.	- Trends in	11.4	0
1963	Direct Measurement of Aerosol Liquid Water Content: A Case Study in Summer in Nan Toxics, 2024, 12, 164.	iing, China.	3.7	Ο
1964	Quantitative Characterization of the Volatility Distribution of Organic Aerosols in a Pol Area: Intercomparison Between Thermodenuder and Molecular Measurements. Journal Research D: Atmospheres, 2024, 129, .	luted Urban of Geophysical	3.3	0
1965	Secondary organic aerosol formed by Euro 5 gasoline vehicle emissions: chemical com gas-to-particle phase partitioning. Atmospheric Chemistry and Physics, 2024, 24, 2705	oosition and -2729.	4.9	Ο
1966	Overview of the Alaskan Layered Pollution and Chemical Analysis (ALPACA) Field Exper 200-222.	ment. , 2024, 1,		0
1967	Characterization of the Vaporization Inlet for Aerosols (VIA) for online measurements of highly oxygenated organic molecules (HOMs). Atmospheric Measurement Techniques, 1527-1543.	of particulate 2024, 17,	3.1	0

#	Article	IF	CITATIONS
1968	A laboratory study of secondary organic aerosol formation in an oxidation flow reactor. Fuel, 2024, 367, 131491.	6.4	0