A Primary and Backup Cooperative Protection System I

IEEE Transactions on Power Delivery 21, 1222-1230 DOI: 10.1109/tpwrd.2006.876984

Citation Report

#	Article	IF	CITATIONS
1	Multi-Agent Systems for Power Engineering Applications—Part I: Concepts, Approaches, and Technical Challenges. IEEE Transactions on Power Systems, 2007, 22, 1743-1752.	4.6	881
2	Vulnerability of interconnected power systems to malicious attacks under limited information. European Transactions on Electrical Power, 2008, 18, 820-834.	1.0	19
3	Study of information model for wide-area backup protection agent in substation based on IEC61850. , 2008, , .		4
4	A web services based wide-area corporation multi-agent system platform for power system. , 2008, , .		0
5	An agent brokering-based scheme for anti-islanding protection of distributed generation. , 2009, , .		5
6	Research of the Structure and Working Mechanisms of Wide-Area Backup Protection Agent. , 2009, , .		2
7	Performance evaluation for damping controllers of power systems based on multi-agent models. Journal of Systems Science and Complexity, 2009, 22, 77-87.	1.6	3
8	Quality-of-Service Considerations in Utility Communication Networks. IEEE Transactions on Power Delivery, 2009, 24, 1465-1474.	2.9	30
9	The Modeling and Verification of Peer-to-Peer Negotiating Multiagent Colored Petri Nets for Wide-Area Backup Protection. IEEE Transactions on Power Delivery, 2009, 24, 61-72.	2.9	20
11	A Robust Communication-Based Special Protection System. IEEE Transactions on Power Delivery, 2010, 25, 1314-1324.	2.9	11
12	IP-based communication systems for wide-area frequency stability predictive control. , 2010, , .		2
13	Multi-Agent Based Wide Area Backup Protection for Series Compensated Lines. , 2011, , .		4
14	Reliability Evaluation of the Communication Network in Wide-Area Protection. IEEE Transactions on Power Delivery, 2011, 26, 2523-2530.	2.9	38
15	Reputation-Based Trust for a Cooperative Agent-Based Backup Protection Scheme. IEEE Transactions on Smart Grid, 2011, 2, 287-301.	6.2	20
16	Novel protection scheme based on IEC61850. Electric Power Systems Research, 2011, 81, 2178-2187.	2.1	11
17	Fault location for aircraft distribution systems using harmonic impedance estimation. IET Electrical Systems in Transportation, 2012, 2, 119.	1.5	5
18	Analysis on the Reliability of Wide Area Protection Communication System. , 2012, , .		4
19	Fault Diagnosis Algorithm Based on MAS for Smart Grid. , 2012, , .		4

#	Article	IF	CITATIONS
20	GECO: Global Event-Driven Co-Simulation Framework for Interconnected Power System and Communication Network. IEEE Transactions on Smart Grid, 2012, 3, 1444-1456.	6.2	259
21	Energy Management in Microgrids Using Demand Response and Distributed Storage—A Multiagent Approach. IEEE Transactions on Power Delivery, 2013, 28, 939-947.	2.9	156
22	The Study of a Regional Decentralized Peer-to-Peer Negotiation-Based Wide-Area Backup Protection Multi-Agent System. IEEE Transactions on Smart Grid, 2013, 4, 1197-1206.	6.2	56
23	Interfacing Issues in Multiagent Simulation for Smart Grid Applications. IEEE Transactions on Power Delivery, 2013, 28, 1918-1927.	2.9	25
24	A co-simulation method as an enabler for joint analysis and design of MAS-based electrical power protection and communication. Simulation, 2013, 89, 790-809.	1.1	9
25	An embedded solution for multi-agent control of PEBB based power electronic systems. , 2014, , .		6
26	Substation automation for replacing faulted CTs in distribution feeders. , 2014, , .		1
27	Routing Selection for Communication of Power System Wide-Area Protection Considering Backup Path. Applied Mechanics and Materials, 0, 644-650, 3556-3559.	0.2	0
28	An unsupervised learning algorithm for the classification of the protection device in the fault diagnosis system. , 2014, , .		3
29	Hierarchy of distribution centralized substation area protection system based on All-in-One devices. , 2015, , .		1
30	The protection cooperation of distribution network based on protection intelligent center and the validation of its reliability. , 2015, , .		1
31	The structure for the fault diagnosis system aided for the power system operating. , 2015, , .		0
32	A wide area protection scheme for smart distribution network with DG. , 2015, , .		1
33	Synchrophasor-Based Wide-Area Backup Protection Scheme with Data Requirement Analysis. IEEE Transactions on Power Delivery, 2015, 30, 1410-1419.	2.9	84
34	A two-stage hybrid online fault detection method based on wide-area protection and limited PMUs. , 2016, , .		0
35	Development and research on integrated protection system based on redundant information analysis. Protection and Control of Modern Power Systems, 2016, 1, .	4.3	13
36	Improved WABP based on direction comparison principle and fault current component distribution. , 2016, , .		0
37	The multi-section weighed fault matching and detecting algorithm using wide-area protections. , 2016, , .		0

CITATION REPORT

ARTICLE IF CITATIONS # Substation area joint defensive protection strategy based on distributed cooperative all-in-one device. 38 3.3 0 Journal of Modern Power Systems and Clean Energy, 2016, 4, 467-477. MultiAgent Systems in Power System Protection: Review, Classification and Perspectives. IEEE Latin 1.2 America Transactions, 2016, 14, 3285-3290. State of art of multiagent systems in power engineering: A review. Renewable and Sustainable Energy 40 8.2 41 Reviews, 2016, 58, 814-824. A Wide-Area Backup Protection Algorithm Based on Distance Protection Fitting Factor. IEEE 44 Transactions on Power Delivery, 2016, 31, 2196-2205. A backup wideâ€area protection technique for power transmission network. IEEJ Transactions on 42 0.8 8 Electrical and Electronic Engineering, 2017, 12, 702-709. Transmission system wide-area back-up protection using current phasor measurements. International Journal of Electrical Power and Energy Systems, 2017, 92, 93-103. 3.3 An adaptive supervised wide-area backup protection scheme for transmission lines protection. 44 4.3 10 Protection and Control of Modern Power Systems, 2017, 2, . Research on a Distance Relay-Based Wide-Area Backup Protection Algorithm for Transmission Lines. 2.9 37 IEEE Transactions on Power Delivery, 2017, 32, 97-105. Probabilistic identification method of distance protection misoperation due to power flow transfer. 1.2 46 1 International Transactions on Electrical Energy Systems, 2017, 27, e2258. Multi-agent based systems on micro grid â€" A review. , 2017, , . An ellipsoidal expansion algorithm for estimating and representing regions of attraction for large 1 48 power systems., 2017, , . Evolving optical networks for latency-sensitive smart-grid communications via optical time slice 49 switching (OTSS) technologies., 2017,,. A wide-area relaying protection system based on multi-point measurement information. IEEJ 50 0.8 3 Transactions on Electrical and Electronic Engineering, 2018, 13, 529-536. Transient stability assessment of large lossy power systems. IET Generation, Transmission and Distribution, 2018, 12, 1822-1830. 1.4 Multi agent system: concepts, platforms and applications in power systems. Artificial Intelligence 52 9.7 40 Review, 2018, 49, 153-182. A Special Protection Scheme for Transmission Lines based on Wide Area Monitoring System., 2018, , . Time delay aspect for basic line protection functions with synchrophasor in WAMPAC system., 2018, , . 54 2 A New Differential Backup Protection Strategy for Smart Distribution Networks: A Fast and Reliable 24 Approach. IEEE Access, 2019, 7, 38135-38145.

CITATION REPORT

	CITATION RE	CITATION REPORT		
#	Article	IF	Citations	
56	Local penetrationâ€free control approach against numerous changes in PV generation level in MASâ€based protection schemes. IET Renewable Power Generation, 2019, 13, 1197-1204.	1.7	8	
57	Variable Tripping Time Differential Protection for Microgrids Considering DG Stability. IEEE Transactions on Smart Grid, 2019, 10, 2407-2415.	6.2	56	
58	PMU Placement With Channel Limitation for Faulty Line Detection in Transmission Systems. IEEE Transactions on Power Delivery, 2020, 35, 819-827.	2.9	28	
59	Wide-Area Backup Protection Against Asymmetrical Faults Using Available Phasor Measurements. IEEE Transactions on Power Delivery, 2020, 35, 2032-2039.	2.9	20	
60	Wide area backup protection scheme for distance relays considering the uncertainty of network protection. Electric Power Systems Research, 2020, 189, 106651.	2.1	5	
61	Reliability Modeling and Assessment of Cyber Space in Cyber-Physical Power Systems. IEEE Transactions on Smart Grid, 2020, 11, 3763-3773.	6.2	41	
62	PMU-Assisted Zone-3 Protection Scheme for PV Integrated Power Systems Immune to Interharmonics. IEEE Systems Journal, 2020, 14, 3267-3276.	2.9	5	
63	A Multi-Agent-Based Self-Healing Framework Considering Fault Tolerance and Automatic Restoration for Distribution Networks. IEEE Access, 2021, 9, 21522-21531.	2.6	16	
64	Integrated Wide-Area Backup Protection Algorithm During Stressed Power System Condition in Presence of Wind Farm. Arabian Journal for Science and Engineering, 2021, 46, 9363-9376.	1.7	5	
65	Reliability Analyses of Wide-Area Protection System Considering Cyber-Physical System Constraints. IEEE Transactions on Smart Grid, 2021, 12, 3458-3467.	6.2	16	
66	Agent-based Colored Petri Net Modeling of Grid Information Flows : Modeling of Wide Area Protection System. Transactions of the Korean Institute of Electrical Engineers, 2011, 60, 1347-1353.	0.1	0	
67	Agent-Based Smart Grid Protection and Security. Green Energy and Technology, 2014, , 383-409.	0.4	0	
68	Protection Technologies. Power Systems, 2014, , 241-253.	0.3	0	
69	A novel sufficient protection criterion based on adjacent maximal current differences. Energy Reports, 2020, 6, 1344-1348.	2.5	0	
71	Testing of WAMS-based Supervised Zone-3 Distance Relay Protection Scheme using a Real-Time Digital Simulator. , 2021, , .		0	
73	A threeâ€stage multiâ€agentâ€based peerâ€ŧoâ€peer method for fault isolation of high distributed generation penetrated distribution networks. IET Renewable Power Generation, 0, , .	1.7	0	
74	A Report on Multi-agent System Application in Power System. Lecture Notes in Electrical Engineering, 2023, , 133-143.	0.3	1	