Updated streamflow reconstructions for the Upper Cold

Water Resources Research 42, DOI: 10.1029/2005wr004455

Citation Report

#	Article	IF	CITATIONS
1	Long Hydroclimate Records from Tree-Rings in Western Canada: Potential, Problems and Prospects. Canadian Water Resources Journal, 2006, 31, 205-228.	0.5	12
2	Paleoenvironmental Perspectives on Drought in Western Canada — Introduction. Canadian Water Resources Journal, 2006, 31, 197-204.	0.5	9
3	Tree-Ring Inferences on Water-Level Fluctuations of Lake Athabasca. Canadian Water Resources Journal, 2006, 31, 229-248.	0.5	18
4	Drought, Tree Rings and Water Resource Management in Colorado. Canadian Water Resources Journal, 2006, 31, 297-310.	0.5	59
5	Response of bankfull flood magnitudes to Holocene climate change, Uinta Mountains, northeastern Utah. Bulletin of the Geological Society of America, 2007, 119, 1066-1078.	1.6	20
6	Evaluation of Interdecadal Drought Variability Using Reconstructed Streamflow Data. , 2007, , 1.		0
7	Exorcising the `segment length curse': summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene, 2007, 17, 435-446.	0.9	159
8	Development of a Midge-Based Summer Surface Water Temperature Inference Model for the Great Basin of the Western United States. Arctic, Antarctic, and Alpine Research, 2007, 39, 566-577.	0.4	17
9	Stochastic Streamflow Generation Incorporating Paleo-Reconstruction. , 2007, , .		0
10	Medieval drought in the upper Colorado River Basin. Geophysical Research Letters, 2007, 34, .	1.5	297
11	Warming may create substantial water supply shortages in the Colorado River basin. Geophysical Research Letters, 2007, 34, .	1.5	105
12	A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrology and Earth System Sciences, 2007, 11, 1417-1434.	1.9	435
13	Validation of Climate-Based Lake Okeechobee Net Inflow Outlooks. , 2007, , .		0
14	Associations of Decadal to Multidecadal Seaâ€6urface Temperature Variability with Upper Colorado River Flow ¹ . Journal of the American Water Resources Association, 2007, 43, 183-192.	1.0	54
15	Five Hundred Years of Hydrological Drought in the Upper Colorado River Basin. Journal of the American Water Resources Association, 2007, 43, 798-812.	1.0	38
16	Climate Science and Decision Making. Geography Compass, 2007, 1, 302-324.	1.5	17
17	Climate and cultural history in the Americas: An overview. Climatic Change, 2007, 83, 1-8.	1.7	23
18	Droughts. Annual Review of Environment and Resources, 2008, 33, 85-118.	5.6	214

#	Article	IF	CITATIONS
19	Models, Assumptions, and Stakeholders: Planning for Water Supply Variability in the Colorado River Basin ¹ . Journal of the American Water Resources Association, 2008, 44, 381-398.	1.0	33
20	Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783. Quaternary Research, 2008, 70, 158-172.	1.0	27
21	A new stochastic model of episode peak and duration for eco-hydro-climatic applications. Ecological Modelling, 2008, 211, 383-395.	1.2	52
22	A stochastic nonparametric approach for streamflow generation combining observational and paleoreconstructed data. Water Resources Research, 2008, 44, .	1.7	53
23	Southern California and the perfect drought: Simultaneous prolonged drought in southern California and the Sacramento and Colorado River systems. Quaternary International, 2008, 188, 11-23.	0.7	31
24	What a difference a century makes: Understanding the changing hydrologic regime and storage requirements in the Upper Colorado River basin. Geophysical Research Letters, 2008, 35, .	1.5	7
25	Stationarity Is Dead: Whither Water Management?. Science, 2008, 319, 573-574.	6.0	3,381
26	Drought Recurrence and Seasonal Rainfall Prediction in the RÃo Yaqui Basin, Mexico. Journal of Applied Meteorology and Climatology, 2008, 47, 991-1005.	0.6	16
27	Trends in the hydrology of the western US bear the imprint of manmade climate change. Physics Today, 2008, 61, 16-18.	0.3	15
28	Frequency and Duration of Drought in the Upper Green River Basin, Wyoming, USA. , 2008, , .		0
29	Warming and Implications for Water Supply in the Colorado River Basin. , 2008, , .		2
30	Making Science Useful to Decision Makers: Climate Forecasts, Water Management, and Knowledge Networks. Weather, Climate, and Society, 2009, 1, 9-21.	0.5	152
31	Sustainable water deliveries from the Colorado River in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7334-7338.	3.3	136
32	Two Modes of North American Drought from Instrumental and Paleoclimatic Data*. Journal of Climate, 2009, 22, 4336-4347.	1.2	42
33	Associations of interdecadal/interannual climate variability and long-term colorado river basin streamflow. Journal of Hydrology, 2009, 365, 289-301.	2.3	28
34	A principal component regression approach to simulate the bed-evolution of reservoirs. Journal of Hydrology, 2009, 368, 30-41.	2.3	14
35	Future Hydroclimatology and theResearch Challenges of a Postâ€ S tationary World. Journal of Contemporary Water Research and Education, 2009, 142, 4-9.	0.7	5
36	Reconstructed Streamflows for the Headwaters of the Wind River, Wyoming, United States ¹ . Journal of the American Water Resources Association, 2009, 45, 224-236.	1.0	43

#	Article	IF	CITATIONS
37	Science and Decision Making: Water Management and Treeâ€Ring Data in the Western United States ¹ . Journal of the American Water Resources Association, 2009, 45, 1248-1259.	1.0	66
38	Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophysical Research Letters, 2009, 36, .	1.5	218
39	A nonparametric approach for paleohydrologic reconstruction of annual streamflow ensembles. Water Resources Research, 2009, 45, .	1.7	44
40	New reconstructions of streamflow variability in the South Saskatchewan River Basin from a network of tree ring chronologies, Alberta, Canada. Water Resources Research, 2009, 45, .	1.7	56
41	Water supply risk on the Colorado River: Can management mitigate?. Water Resources Research, 2009, 45, .	1.7	119
42	Paleo Pacific Ocean Sea Surface Temperature Variability and Upper Colorado River Basin Streamflow. , 2009, , .		0
43	The Tree-Ring Record of Drought on the Canadian Prairiesa,b. Journal of Climate, 2009, 22, 689-710.	1.2	47
44	Current Water Management Practices and the Effects of Climate Change on the Colorado River Basin. , 2009, , .		Ο
45	Geography in the Social Studies: High School Simulation on Water Supply. Journal of Geography, 2009, 108, 21-29.	1.8	3
46	Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years. Science Bulletin, 2010, 55, 4179-4186.	1.7	111
47	Streamflow simulation using a water-balance model with annually-resolved inputs. Journal of Hydrology, 2010, 387, 46-53.	2.3	12
48	A Bimillennial-Length Tree-Ring Reconstruction of Precipitation for the Tavaputs Plateau, Northeastern Utah. Quaternary Research, 2010, 73, 107-117.	1.0	40
49	A multiâ€species dendroclimatic reconstruction of Chilko River streamflow, British Columbia, Canada. Hydrological Processes, 2010, 24, 2752-2761.	1.1	28
51	Longâ€Term Relationships Between Ocean Variability and Water Resources in Northeastern Utah ¹ . Journal of the American Water Resources Association, 2010, 46, 987-1002.	1.0	8
53	Upper Green River Basin (United States) Streamflow Reconstructions. Journal of Hydrologic Engineering - ASCE, 2010, 15, 567-579.	0.8	28
54	Response of Colorado River runoff to dust radiative forcing in snow. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17125-17130.	3.3	324
55	Observed Trends in Summertime Precipitation over the Southwestern United States. Journal of Climate, 2010, 23, 1937-1944.	1.2	27
56	Predicting regime shifts in flow of the Colorado River. Geophysical Research Letters, 2010, 37, .	1.5	11

#	Article	IF	CITATIONS
57	Tree ring record of streamflow and drought in the upper Snake River. Water Resources Research, 2010, 46, .	1.7	37
58	Intensified pluvial conditions during the twentieth century in the inland Heihe River Basin in arid northwestern China over the past millennium. Global and Planetary Change, 2010, 72, 192-200.	1.6	53
59	A combined water balance and tree ring approach to understanding the potential hydrologic effects of climate change in the central Rocky Mountain region. Water Resources Research, 2010, 46, .	1.7	42
61	Multicentury tree ring reconstruction of annual streamflow for the Maule River watershed in south central Chile. Water Resources Research, 2011, 47, .	1.7	56
62	A multispecies tree ring reconstruction of Potomac River streamflow (950–2001). Water Resources Research, 2011, 47, .	1.7	75
63	Spring flood reconstruction from continuous and discrete tree ring series. Water Resources Research, 2011, 47, .	1.7	23
65	Development of streamflow projections under changing climate conditions over Colorado River basin headwaters. Hydrology and Earth System Sciences, 2011, 15, 2145-2164.	1.9	23
66	Historical Legacies, Information and Contemporary Water Science and Management. Water (Switzerland), 2011, 3, 566-575.	1.2	4
67	Potential for release of sediment phosphorus to Lake Powell (Utah and Arizona) due to sediment resuspension during low water level. Lake and Reservoir Management, 2011, 27, 365-375.	0.4	14
68	Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 2011, 15, 471-504.	1.9	476
69	Millennial-Length Records of Streamflow From Three Major Upper Colorado River Tributaries1. Journal of the American Water Resources Association, 2011, 47, 702-712.	1.0	34
70	Trends in Western U.S. Snowpack and Related Upper Colorado River Basin Streamflow1. Journal of the American Water Resources Association, 2011, 47, 1197-1210.	1.0	15
71	A tree-ring reconstruction of streamflow in the Santa Fe River, New Mexico. Journal of Hydrology, 2011, 397, 118-127.	2.3	53
72	An 1800-yr record of decadal-scale hydroclimatic variability in the upper Arkansas River basin from bristlecone pine. Quaternary Research, 2011, 75, 483-490.	1.0	9
73	Reconstructed streamflow for Citarum River, Java, Indonesia: linkages to tropical climate dynamics. Climate Dynamics, 2011, 36, 451-462.	1.7	56
74	The Unusual Nature of Recent Snowpack Declines in the North American Cordillera. Science, 2011, 333, 332-335.	6.0	290
75	Holocene record of precipitation seasonality from lake calcite δ180 in the central Rocky Mountains, United States. Geology, 2011, 39, 211-214.	2.0	68
77	Modes and Forcing of Hydroclimatic Variability in the Upper North Saskatchewan River Basin Since 1063. Canadian Water Resources Journal, 2011, 36, 205-217.	0.5	31

#	Article	IF	CITATIONS
78	Tree Rings and Climate: Sharpening the Focus. Developments in Paleoenvironmental Research, 2011, , 331-353.	7.5	3
79	Quantitative Assessment of Climate Change Impacts on the Hydrology of the North Platte River Watershed, Wyoming. Journal of Hydrologic Engineering - ASCE, 2012, 17, 1071-1083.	0.8	15
80	Colorado River Basin Hydroclimatic Variability. Journal of Climate, 2012, 25, 4389-4403.	1.2	61
81	Hydroclimatology of the US Intermountain West. Progress in Physical Geography, 2012, 36, 458-479.	1.4	48
82	Snowpack Reconstructions Incorporating Climate In the Upper Green River Basin (Wyoming). Tree-Ring Research, 2012, 68, 105-114.	0.4	15
83	Tree ring-based annual streamflow reconstruction for the Heihe River in arid northwestern China from <scp>ad</scp> 575 and its implications for water resource management. Holocene, 2012, 22, 773-784.	0.9	59
84	Low-Dimensional Models of Annual Streamflow Using Tree Ring Data and Nino 3.4 Forecasts. , 2012, , .		0
85	Restoration flows for the Colorado River estuary, México: estimates from oxygen isotopes in the bivalve mollusk Mulinia coloradoensis (Mactridae: Bivalvia). Wetlands Ecology and Management, 2012, 20, 313-327.	0.7	13
86	Paleoreconstruction of cool season precipitation and warm season streamflow in the Pacific Northwest with applications to climate change assessments. Water Resources Research, 2012, 48, .	1.7	21
87	Less water: How will agriculture in Southern Mountain states adapt?. Water Resources Research, 2012, 48, .	1.7	29
88	Climate and Water: Knowledge of Impacts to Action on Adaptation. Annual Review of Environment and Resources, 2012, 37, 163-194.	5.6	64
89	A tree-ring-based reconstruction of the Yimin River annual runoff in the Hulun Buir region, Inner Mongolia, for the past 135 years. Science Bulletin, 2012, 57, 4765-4775.	1.7	22
90	Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina. Climate of the Past, 2012, 8, 815-829.	1.3	36
91	Dendrohydrology in 2050: Challenges and Opportunities. , 2012, , 355-362.		5
92	Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Treeâ€Ring Chronologies ¹ . Journal of the American Water Resources Association, 2012, 48, 849-858.	1.0	6
93	Management of Water Shortage in the Colorado River Basin: Evaluating Current Policy and the Viability of Interstate Water Trading ¹ . Journal of the American Water Resources Association, 2012, 48, 411-422.	1.0	20
94	Using Pacific Ocean climatic variability to improve hydrologic reconstructions. Journal of Hydrology, 2012, 434-435, 69-77.	2.3	11
95	Dendrohydroclimate reconstructions of July–August runoff for two nivalâ€regime rivers in west central British Columbia. Hydrological Processes, 2013, 27, 405-420.	1.1	18

#	Article	IF	CITATIONS
96	A comprehensive review of climate adaptation in the United States: more than before, but less than needed. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 361-406.	1.0	334
97	Availability, volatility, stability, and teleconnectivity changes in prairie water supply from Canadian Rocky Mountain sources over the last millennium. Water Resources Research, 2013, 49, 64-74.	1.7	23
98	12.10 Tree-Ring Records of Variation in Flow and Channel Geometry. , 2013, , 145-164.		12
99	Using Paleo Reconstructions to Improve Streamflow Forecast Lead Time in the Western <scp>U</scp> nited <scp>S</scp> tates. Journal of the American Water Resources Association, 2013, 49, 1351-1366.	1.0	55
100	Loss Rates from Lake Powell and Their Impact on Management of the Colorado River. Journal of the American Water Resources Association, 2013, 49, 1213-1224.	1.0	5
101	Tree rings and multiseason drought variability in the lower Rio Grande Basin, USA. Water Resources Research, 2013, 49, 844-850.	1.7	32
102	The Continuum of Hydroclimate Variability in Western North America during the Last Millennium. Journal of Climate, 2013, 26, 5863-5878.	1.2	106
103	Five centuries of Upper Indus River flow from tree rings. Journal of Hydrology, 2013, 486, 365-375.	2.3	125
104	KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Research, 2013, 69, 3-13.	0.4	380
105	Managing hydroclimatic risks in federal rivers: a diagnostic assessment. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120415.	1.6	30
106	Annual chronology and climate response in Abies guatemalensis Rehder (Pinaceae) in Central America. Holocene, 2013, 23, 270-277.	0.9	14
107	Linking morphodynamic response with sediment mass balance on the Colorado River in Marble Canyon: Issues of scale, geomorphic setting, and sampling design. Journal of Geophysical Research F: Earth Surface, 2013, 118, 361-381.	1.0	51
108	A Tree-Ring-Based Reconstruction of Delaware River Basin Streamflow Using Hierarchical Bayesian Regression. Journal of Climate, 2013, 26, 4357-4374.	1.2	71
109	Predicting regime shifts in flow of the Gunnison River under changing climate conditions. Water Resources Research, 2013, 49, 2966-2974.	1.7	10
110	Key landscape ecology metrics for assessing climate change adaptation options: rate of change and patchiness of impacts. Ecosphere, 2013, 4, 1-18.	1.0	8
111	A tree-ring based reconstruction of Logan River streamflow, northern Utah. Water Resources Research, 2013, 49, 8579-8588.	1.7	28
112	Minute 319: a cooperative approach to Mexico–US hydro-relations on the Colorado River. Water International, 2014, 39, 263-276.	0.4	16
113	Understanding Uncertainties in Future Colorado River Streamflow. Bulletin of the American Meteorological Society, 2014, 95, 59-78.	1.7	159

#	Article	IF	CITATIONS
114	DRIVERS OF RIPARIAN TREE INVASION ON A DESERT STREAM. River Research and Applications, 2014, 30, 60-70.	0.7	5
115	The role of economics in transboundary restoration water management in the Colorado River Delta. Water Resources and Economics, 2014, 8, 43-56.	0.9	13
116	Paleoclimate Scenarios to Inform Decision Making in Water Resource Management: Example from Southern California's Inland Empire. Journal of Water Resources Planning and Management - ASCE, 2014, 140, .	1.3	20
117	The imprint of climate within Northern Hemisphere trees. Quaternary Science Reviews, 2014, 89, 1-4.	1.4	85
118	A sensitivity-based approach to evaluating future changes in Colorado River discharge. Climatic Change, 2014, 122, 621-634.	1.7	51
119	A "toad's eye―view of drought: regional socio-natural vulnerability and responses in 2002 in Northwest Colorado. Regional Environmental Change, 2014, 14, 1451-1461.	1.4	20
120	Tree-ring reconstruction of the level of Great Salt Lake, USA. Holocene, 2014, 24, 805-813.	0.9	19
121	Bark beetles and dwarf mistletoe interact to alter downed woody material, canopy structure, and stand characteristics in northern Colorado ponderosa pine. Forest Ecology and Management, 2014, 315, 63-71.	1.4	17
122	A 576‥ear Weber River Streamflow Reconstruction from Tree Rings for Water Resource Risk Assessment in the Wasatch Front, Utah. Journal of the American Water Resources Association, 2014, 50, 1338-1348.	1.0	27
123	Six centuries of May–July precipitation in Cyprus from tree rings. Climate Dynamics, 2014, 43, 3281-3292.	1.7	10
124	An overview of tree-ring width records across the Northern Hemisphere. Quaternary Science Reviews, 2014, 95, 132-150.	1.4	174
125	On modeling the paleohydrologic response of closedâ€basin lakes to fluctuations in climate: Methods, applications, and implications. Water Resources Research, 2014, 50, 2975-2992.	1.7	6
126	Dominant patterns of US warm season precipitation variability in a fine resolution observational record, with focus on the southwest. International Journal of Climatology, 2014, 34, 687-707.	1.5	25
127	Reconstruction of missing daily streamflow data using dynamic regression models. Water Resources Research, 2015, 51, 9447-9463.	1.7	45
128	Annually resolved late Holocene paleohydrology of the southern Sierra Nevada and Tulare Lake, California. Water Resources Research, 2015, 51, 9708-9724.	1.7	13
129	Beyond annual streamflow reconstructions for the Upper Colorado River Basin: A paleoâ€waterâ€balance approach. Water Resources Research, 2015, 51, 9763-9774.	1.7	12
130	Toward understanding nonstationarity in climate and hydrology through tree ring proxy records. Water Resources Research, 2015, 51, 1813-1830.	1.7	57
131	Improved reservoir sizing utilizing observed and reconstructed streamflows within a B ayesian combination framework. Water Resources Research, 2015, 51, 5677-5697.	1.7	11

	Сітаті	on Report	
#	Article	IF	CITATIONS
132	Western water and climate change. Ecological Applications, 2015, 25, 2069-2093.	1.8	164
133	Evolution of the human–water relationships in the Heihe River basin in the past 2000 years. Hydrology and Earth System Sciences, 2015, 19, 2261-2273.	1.9	36
134	Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions. Climate of the Past, 2015, 11, 1107-1125.	1.3	2
135	A comparison of integrated river basin management strategies: A global perspective. Physics and Chemistry of the Earth, 2015, 89-90, 10-17.	1.2	8
136	Simulating the hydrologic impacts of land-cover and climate changes in a semi-arid watershed. Hydrological Sciences Journal, 2015, 60, 1739-1758.	1.2	10
137	A millennium-length reconstruction of Bear River stream flow, Utah. Journal of Hydrology, 2015, 529, 524-534.	2.3	32
138	Total water storage dynamics derived from tree-ring records and terrestrial gravity observations. Journal of Hydrology, 2015, 529, 640-649.	2.3	9
139	Hydrology: The interdisciplinary science of water. Water Resources Research, 2015, 51, 4409-4430.	1.7	145
140	Reconstructed streamflow using SST and tree-ring chronologies over the southeastern United States. Journal of Hydrology, 2015, 527, 761-775.	2.3	14
141	Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. Journal of Hydrology, 2015, 529, 1060-1069.	2.3	207
142	Palaeohydrology in climatological context: Developing the case for use of remote predictors in Australian streamflow reconstructions. Applied Geography, 2015, 64, 132-152.	1.7	10
143	Quantifying ecological memory in plant and ecosystem processes. Ecology Letters, 2015, 18, 221-235.	3.0	324
145	Tree Rings. , 2015, , 453-497.		0
146	A 477-year dendrohydrological assessment of drought severity for Tsable River, Vancouver Island, British Columbia, Canada. Hydrological Processes, 2016, 30, 1676-1690.	1.1	13
147	Time scale effect and uncertainty in reconstruction of paleoâ€hydrology. Hydrological Processes, 2016, 30, 1985-1999.	1.1	11
148	Waveletâ€based time series bootstrap model for multidecadal streamflow simulation using climate indicators. Water Resources Research, 2016, 52, 4061-4077.	1.7	27
149	Streamflow variability in the Chilean Temperate-Mediterranean climate transition (35°S–42°S) during the last 400Âyears inferred from tree-ring records. Climate Dynamics, 2016, 47, 4051-4066.	g 1.7	50
150	Bounding US electricity demand in 2050. Technological Forecasting and Social Change, 2016, 105, 215-223.	6.2	14

#	Article	IF	CITATIONS
151	Multi-decadal and multi-centennial variability in Colorado River streamflow. International Journal of River Basin Management, 2016, 14, 143-149.	1.5	3
152	Reconstructions of Columbia River Streamflow from Treeâ€Ring Chronologies in the Pacific Northwest, USA. Journal of the American Water Resources Association, 2016, 52, 1121-1141.	1.0	17
153	Flow reconstructions in the Upper Missouri River Basin using riparian tree rings. Water Resources Research, 2016, 52, 8159-8173.	1.7	18
154	Can a paleodrought record be used to reconstruct streamflow?: A case study for the Missouri River Basin. Water Resources Research, 2016, 52, 5195-5212.	1.7	25
155	Management Options During the 2011–2012 Drought on the Apalachicola River: A Systems Dynamic Model Evaluation. Environmental Management, 2016, 58, 193-207.	1.2	15
156	A Bayesian hierarchical nonhomogeneous hidden Markov model for multisite streamflow reconstructions. Water Resources Research, 2016, 52, 7837-7850.	1.7	18
157	Extreme hydrological changes in the southwestern US drive reductions in water supply to Southern California by mid century. Environmental Research Letters, 2016, 11, 094026.	2.2	37
158	Regimeâ€shifting streamflow processes: Implications for water supply reservoir operations. Water Resources Research, 2016, 52, 3984-4002.	1.7	28
159	A review of the relationships between drought and forest fire in the United States. Global Change Biology, 2016, 22, 2353-2369.	4.2	328
160	Increasing influence of air temperature on upper Colorado River streamflow. Geophysical Research Letters, 2016, 43, 2174-2181.	1.5	121
161	Bridging the gaps: An overview of wood across time and space in diverse rivers. Geomorphology, 2017, 279, 3-26.	1.1	126
162	The future role of dams in the <scp>U</scp> nited <scp>S</scp> tates of <scp>A</scp> merica. Water Resources Research, 2017, 53, 982-998.	1.7	135
163	The twentyâ€first century Colorado River hot drought and implications for the future. Water Resources Research, 2017, 53, 2404-2418.	1.7	368
164	Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective. Geophysical Research Letters, 2017, 44, 4124-4133.	1.5	57
165	A large-scale environmental flow experiment for riparian restoration in the Colorado River Delta. Ecological Engineering, 2017, 106, 645-660.	1.6	54
166	Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow. Water Resources Research, 2017, 53, 3047-3066.	1.7	32
167	A 277 year cool season dam inflow reconstruction for <scp>T</scp> asmania, southeastern <scp>A</scp> ustralia. Water Resources Research, 2017, 53, 400-414.	1.7	22
168	Suwannee River flow variability 1550–2005 CE reconstructed from a multispecies tree-ring network. Journal of Hydrology, 2017, 544, 438-451.	2.3	41

#	Article	IF	CITATIONS
169	Reconstructing the suspended sediment load of the Yellow River since 1470 CE using the Drought and Flood Index. Geomorphology, 2017, 299, 131-141.	1.1	6
170	Evidence that Recent Warming is Reducing Upper Colorado River Flows. Earth Interactions, 2017, 21, 1-14.	0.7	65
171	Improved spectral comparisons of paleoclimate models and observations via proxy system modeling: Implications for multi-decadal variability. Earth and Planetary Science Letters, 2017, 476, 34-46.	1.8	36
172	Wavelet and Hidden Markov-Based Stochastic Simulation Methods Comparison on Colorado River Streamflow. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	9
173	Hydraulic Cities, Colonial Catastrophes, and Nomadic Empires: Human-Environment Interactions in Asia. Ecological Studies, 2017, , 345-363.	0.4	2
174	Application of synthetic scenarios to address water resource concerns: A management-guided case study from the Upper Colorado River Basin. Climate Services, 2017, 8, 26-35.	1.0	6
175	The Regional Hydrologic Extremes Assessment System: A software framework for hydrologic modeling and data assimilation. PLoS ONE, 2017, 12, e0176506.	1.1	24
176	Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate of the Past, 2017, 13, 1851-1900.	1.3	93
177	A Linear Dynamical Systems Approach to Streamflow Reconstruction Reveals History of Regime Shifts in Northern Thailand. Water Resources Research, 2018, 54, 2057-2077.	1.7	16
178	Investigating Runoff Efficiency in Upper Colorado River Streamflow Over Past Centuries. Water Resources Research, 2018, 54, 286-300.	1.7	31
179	Estimating the Natural Flow Regime of Rivers With Long‣tanding Development: The Northern Branch of the Rio Grande. Water Resources Research, 2018, 54, 1212-1236.	1.7	49
180	Variation in Rising Limb of Colorado River Snowmelt Runoff Hydrograph Controlled by Dust Radiative Forcing in Snow. Geophysical Research Letters, 2018, 45, 797-808.	1.5	81
181	Reducing uncertainty in stochastic streamflow generation and reservoir sizing by combining observed, reconstructed and projected streamflow. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1065-1083.	1.9	3
182	Monthly paleostreamflow reconstruction from annual tree-ring chronologies. Journal of Hydrology, 2018, 557, 791-804.	2.3	16
183	Sustainable Water Resources Management: Groundwater Depletion. , 2018, , 53-77.		2
184	A cave \hat{l}' 18 O based 1800-year reconstruction of sediment load and streamflow: The Yellow River source area. Catena, 2018, 161, 137-147.	2.2	3
185	Prewhitening of hydroclimatic time series? Implications for inferred change and variability across time scales. Journal of Hydrology, 2018, 557, 109-115.	2.3	40
186	Current declines of Pecos River (New Mexico, USA) streamflow in a 700-year context. Holocene, 2018, 28, 767-777.	0.9	13

#	Article	IF	CITATIONS
187	Conditioned empirical orthogonal functions for interpolation of runoff time series along rivers: Application to reconstruction of missing monthly records. Journal of Hydrology, 2018, 556, 262-278.	2.3	10
188	Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin. Water Resources Research, 2018, 54, 132-149.	1.7	27
189	Moisture transport associated with large precipitation events in the Upper Colorado River Basin. International Journal of Climatology, 2018, 38, 5323-5338.	1.5	5
190	Land and water use changes in the US–Mexico border region, 1992–2011. Environmental Research Letters, 2018, 13, 114005.	2.2	18
191	DOs and DON'Ts for using climate change information for water resource planning and management: guidelines for study design. Climate Services, 2018, 12, 1-13.	1.0	21
192	Distinguishing brackish lacustrine from brackish marine deposits in the stratigraphic record: A case study from the late Miocene and early Pliocene Bouse Formation, Arizona and California, USA. Earth-Science Reviews, 2018, 185, 974-1003.	4.0	15
193	Cross-Basin Decadal Climate Regime Connecting the Colorado River with the Great Salt Lake. Journal of Hydrometeorology, 2018, 19, 659-665.	0.7	4
194	Streamflow Reconstruction in the Upper Missouri River Basin Using a Novel Bayesian Network Model. Water Resources Research, 2019, 55, 7694-7716.	1.7	16
195	A Nonlinear Dynamical Systemsâ€Based Modeling Approach for Stochastic Simulation of Streamflow and Understanding Predictability. Water Resources Research, 2019, 55, 6268-6284.	1.7	11
196	Assessing Retrospective National Water Model Streamflow with Respect to Droughts and Low Flows in the Colorado River Basin. Journal of the American Water Resources Association, 2019, 55, 964-975.	1.0	17
197	1200 years of Upper Missouri River streamflow reconstructed from tree rings. Quaternary Science Reviews, 2019, 224, 105971.	1.4	17
198	Impacts of water resource planning on regional water consumption pattern: A case study in Dunhuang Oasis, China. Journal of Arid Land, 2019, 11, 713-728.	0.9	9
199	An analysis of past and present megadrought impacts on a modern water resource system. Hydrological Sciences Journal, 2019, 64, 45-65.	1.2	3
200	Risks of hydroclimatic regime shifts across the western United States. Scientific Reports, 2019, 9, 6303.	1.6	3
201	Increased Variability of Thailand's Chao Phraya River Peak Season Flow and Its Association With ENSO Variability: Evidence From Tree Ring δ ¹⁸ 0. Geophysical Research Letters, 2019, 46, 4863-4872.	1.5	27
202	Tree-Ring Reconstructions of Streamflow for the Tennessee Valley. Hydrology, 2019, 6, 34.	1.3	15
203	New York City Panel on Climate Change 2019 Report Chapter 2: New Methods for Assessing Extreme Temperatures, Heavy Downpours, and Drought. Annals of the New York Academy of Sciences, 2019, 1439, 30-70.	1.8	21
204	Comparing three approaches to reconstructing streamflow using tree rings in the Wabash River basin in the Midwestern, US. Journal of Hydrology, 2019, 573, 829-840.	2.3	12

#	Article	IF	CITATIONS
205	Influence factors and an evaluation method about breakthrough pressure of carbonate rocks: An experimental study on the Ordovician of carbonate rock from the Kalpin area, Tarim Basin, China. Marine and Petroleum Geology, 2019, 104, 313-330.	1.5	24
206	Simple Approaches to Examine Economic Impacts of Water Reallocations from Agriculture. Journal of Contemporary Water Research and Education, 2019, 168, 29-48.	0.7	1
207	How Long Does a 15-Year Drought Last? On the Correlation of Rare Events. Journal of Climate, 2019, 32, 1345-1359.	1.2	5
208	Gap-filling of daily streamflow time series using Direct Sampling in various hydroclimatic settings. Journal of Hydrology, 2019, 569, 573-586.	2.3	43
209	Dendrochronological assessment of springs effects on ponderosa pine growth, Arizona, USA. Forest Ecology and Management, 2019, 435, 89-96.	1.4	8
210	Bias Correction of Paleoclimatic Reconstructions: A New Look at 1,200+ Years of Upper Colorado River Flow. Geophysical Research Letters, 2020, 47, e2019GL086689.	1.5	23
211	Coherent Streamflow Variability in Monsoon Asia Over the Past Eight Centuries—Links to Oceanic Drivers. Water Resources Research, 2020, 56, e2020WR027883.	1.7	18
212	Developing the hydrological dependency structure between streamgage and reservoir networks. Scientific Data, 2020, 7, 319.	2.4	5
213	Direct Versus Indirect Tree Ring Reconstruction of Annual Discharge of Chemora River, Algeria. Forests, 2020, 11, 986.	0.9	5
214	Does Channel Narrowing by Floodplain Growth Necessarily Indicate Sediment Surplus? Lessons From Sediment Transport Analyses in the Green and Colorado Rivers, Canyonlands, Utah. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005414.	1.0	10
215	Channel narrowing by inset floodplain formation of the lower Green River in the Canyonlands region, Utah. Bulletin of the Geological Society of America, 2020, 132, 2333-2352.	1.6	15
216	Can Exploratory Modeling of Water Scarcity Vulnerabilities and Robustness Be Scenario Neutral?. Earth's Future, 2020, 8, e2020EF001650.	2.4	30
217	A multi-century, tree-ring-derived perspective of the North Cascades (USA) 2014–2016 snow drought. Climatic Change, 2020, 162, 127-143.	1.7	16
218	Increased drought severity tracks warming in the United States' largest river basin. Proceedings of the United States of America, 2020, 117, 11328-11336.	3.3	71
219	Reconstruction of seasonal and water-year precipitation anomalies from tree-ring records of the southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547, 109689.	1.0	4
220	Defining Robustness, Vulnerabilities, and Consequential Scenarios for Diverse Stakeholder Interests in Institutionally Complex River Basins. Earth's Future, 2020, 8, e2020EF001503.	2.4	30
221	New frontiers in tree-ring research. Holocene, 2020, 30, 923-941.	0.9	39
222	Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quaternary Science Reviews, 2020, 230, 106074.	1.4	50

#	Article	IF	CITATIONS
223	Can riparian eucalypts be used for hydroclimatic reconstruction? The case for Eucalyptus coolabah to define palaeo-flood events. Journal of Arid Environments, 2021, 184, 104301.	1.2	0
224	Upper Colorado River Basin 20th century droughts under 21st century warming: Plausible scenarios for the future. Climate Services, 2021, 21, 100206.	1.0	9
225	A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow. Water (Switzerland), 2021, 13, 657.	1.2	6
226	Informing Seasonal Proxyâ€Based Flow Reconstructions Using Baseflow Separation: An Example From the Potomac River, United States. Water Resources Research, 2021, 57, e2020WR027706.	1.7	8
227	Snowpack signals in North American tree rings. Environmental Research Letters, 2021, 16, 034037.	2.2	20
228	Multi-century tree-ring anatomical evidence reveals increasing frequency and magnitude of spring discharge and floods in eastern boreal Canada. Global and Planetary Change, 2021, 199, 103444.	1.6	16
229	A lake sediment–based paleoecological reconstruction of late Holocene fire history and vegetation change in Great Basin National Park, Nevada, USA. Quaternary Research, 2021, 104, 28-42.	1.0	2
230	The unusual recent streamflow declines in the Bailong River, north-central China, from a multi-century perspective. Quaternary Science Reviews, 2021, 260, 106927.	1.4	9
231	Multiâ€Proxy, Multiâ€Season Streamflow Reconstruction With Mass Balance Adjustment. Water Resources Research, 2021, 57, e2020WR029394.	1.7	7
232	Adaptive Crop Management under Climate Uncertainty: Changing the Game for Sustainable Water Use. Atmosphere, 2021, 12, 1080.	1.0	5
233	Time to Use Dendrohydrological Data in Water Resources Management?. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	1.3	6
234	The variable climate response of Rocky Mountain bristlecone pine (Pinus aristata Engelm.). Dendrochronologia, 2021, 68, 125846.	1.0	1
235	Groundwaterâ€Mediated Memory of Past Climate Controls Water Yield in Snowmeltâ€Dominated Catchments. Water Resources Research, 2021, 57, e2021WR030605.	1.7	14
236	North American Tree Rings, Climatic Extremes, and Social Disasters. Developments in Paleoenvironmental Research, 2011, , 297-327.	7.5	21
237	Application of Streamflow Reconstruction to Water Resources Management. Developments in Paleoenvironmental Research, 2011, , 231-261.	7.5	47
238	Water Security and Adaptation to Climate Extremes in Transboundary Rivers of North America. Global Issues in Water Policy, 2017, , 121-137.	0.1	1
239	Sustainability indicators of water sharing compacts. Environment, Development and Sustainability, 2018, 20, 2027-2042.	2.7	6
244	An Annual Streamflow Reconstruction of the Red River, Kentucky Using a White Pine (Pinus Strobus) Chronology. Journal of Geography and Earth Sciences, 2015, 3, .	0.1	2

#	Article	IF	Citations
# 245	Changing the Law-Science Paradigm for Colorado River Restoration. SSRN Electronic Journal, 0, , .	0.4	1
240		0.4	1
246	Reconceptualizing Environmental Challenges Is Resilience the New Narrative?. SSRN Electronic Journal, 0, , .	0.4	3
247	Rio Grande and Rio Conchos water supply variability over the past 500 years. Climate Research, 2012, 51, 147-158.	0.4	36
248	Hydrology and its role in water engineering. IngenierÃa Del Agua, 2014, 18, 1.	0.2	4
249	Paleo-hydrologic reconstruction of 400 years of past flows at a weekly time step for major rivers of Western Canada. Earth System Science Data, 2020, 12, 231-243.	3.7	2
257	Runoff reconstruction for the <scp>Bailong River</scp> from tree rings back to <scp>AD</scp> 1601, reveals changing hydrological signals of <scp>China</scp> north–south transition zone. Hydrological Processes, 2021, 35, e14417.	1.1	3
258	Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development. SSRN Electronic Journal, 0, , .	0.4	0
264	Managing Drought and Water Scarcity in Federal Political Systems. Drought and Water Crises, 2017, , 369-384.	0.1	0
265	TWO RECONSTRUCTIONS OF AUGUST–JULY PRECIPITATION FOR CENTRAL NORTHERN ARIZONA FROM TREE RINGS. Tree-Ring Research, 2019, 75, 116.	0.4	0
266	Effects of Reservoir Levels on Arizona National Recreation Area Visitation, Visitor Spending, and Local Economies. Journal of the American Water Resources Association, 2022, 58, 622-638.	1.0	2
267	RECONSTRUCTIONS OF HYDROLOGIC VARIABLES IN THE NORTH PLATTE RIVER BASIN. International Journal of Engineering Technologies and Management Research, 2019, 6, 59-71.	0.1	0
268	Assimilation of Ground and Satellite Snow Observations in a Distributed Hydrologic Model for Water Supply Forecasting. Journal of the American Water Resources Association, 2022, 58, 1030-1048.	1.0	9
269	Paleohydrological context for recent floods and droughts in the Fraser River Basin, British Columbia, Canada. Environmental Research Letters, 2021, 16, 124074.	2.2	2
270	Unprecedented acceleration of winter discharge of Upper Yenisei River inferred from tree rings. Environmental Research Letters, 2021, 16, 125014.	2.2	6
271	Reconstrucción de la precipitación y caudal medio del rÃo Piaxtla mediante anillos de crecimiento de Pseudotsuga menziesii (Mirb.) Franco. Madera Bosques, 2020, 26, .	0.1	0
272	A hydrological simulation dataset of the Upper Colorado River Basin from 1983 to 2019. Scientific Data, 2022, 9, 16.	2.4	12
273	The Three Colorado Rivers: Hydrologic, Infrastructural, and Economic Flows of Water in a Shared River Basin. Journal of the American Water Resources Association, 2022, 58, 269-281.	1.0	2
274	Treeâ€Ring Perspectives on the Colorado River: Looking Back and Moving Forward. Journal of the American Water Resources Association, 2022, 58, 604-621.	1.0	3

	CITA	CITATION REPORT	
#	ARTICLE Reconstructing Missing and Anomalous Data Collected from High-Frequency In-Situ Sensors in Fresh	IF	CITATIONS
275	Waters. International Journal of Environmental Research and Public Health, 2021, 18, 12803.	1.2	5
276	Hydrological Extremes in the Upper Yangtze River Over the Past 700Âyr Inferred From a Tree Ring <i>δ</i> ¹⁸ 0 Record. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	10
277	Tree-Ring Records of Variation in Flow and Channel Geometry. , 2013, , 723-742.		0
278	Dendrochronology: Fundamentals and Innovations. Tree Physiology, 2022, , 21-59.	0.9	5
279	Tree Rings Reveal Unmatched 2nd Century Drought in the Colorado River Basin. Geophysical Research Letters, 2022, 49, .	1.5	21
280	The Press and Pulse of Climate Change: Extreme Events in the Colorado River Basin. Journal of the American Water Resources Association, 2022, 58, 1076-1097.	1.0	8
281	How Does Flow Alteration Propagate Across a Large, Highly Regulated Basin? Dam Attributes, Network Context, and Implications for Biodiversity. Earth's Future, 2022, 10, .	2.4	3
282	Effects of flow regulation and drought on geomorphology and floodplain habitat along the Colorado River in Canyonlands National Park, Utah. River Research and Applications, 2022, 38, 1266-1276.	0.7	1
283	Two Centuries of Drought History in the Center of Chihuahua, Mexico. Forests, 2022, 13, 921.	0.9	7
284	Colorado River Water Use and Climate: Model and Application. Journal of the American Water Resources Association, 2022, 58, 673-689.	1.0	2
285	An Assessment of Potential Severe Droughts in the Colorado River Basin. Journal of the American Water Resources Association, 2022, 58, 1053-1075.	1.0	4
286	1,100‥ear Reconstruction of Baseflow for the Santee River, South Carolina, USA Reveals Connection to the North Atlantic Subtropical High. Geophysical Research Letters, 2022, 49, .	1.5	1
287	Extension Methods for Non-stationary Time Series Based on Wavelet Analysis. Korean Society of Hazard Mitigation, 2022, 22, 41-53.	0.1	0
288	Historic Variability of the Water Inflow to the Lazaro Cardenas Dam and Water Allocation in the Irrigation District 017, Comarca Lagunera, Mexico. Forests, 2022, 13, 2057.	0.9	1
289	The Influence of Drying on the Aeolian Transport of Riverâ€Sourced Sand. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	1.0	2
290	High Resolution SnowModel Simulations Reveal Future Elevationâ€Dependent Snow Loss and Earlier, Flashier Surface Water Input for the Upper Colorado River Basin. Earth's Future, 2023, 11, .	2.4	1
291	On the use of distributed hydrologic model for filling large gaps at different parts of the streamflow data. Engineering Science and Technology, an International Journal, 2023, 37, 101321.	2.0	1
292	Study on the allocation of resources based on SD-MOP coupling model and genetic hybridization algorithm. , 2022, , .		0

#	Article	IF	CITATIONS
294	Total Streamflow Variation for the Upper Catchment of Bosten Lake Basin in China Inferred from Tree-Ring Width Records. Forests, 2023, 14, 622.	0.9	0