Global distribution of agricultural fires in croplands fro Resolution Imaging Spectroradiometer (MODIS) data

Global Biogeochemical Cycles 20, n/a-n/a DOI: 10.1029/2005gb002529

Citation Report

#	Article	IF	CITATIONS
1	Arctic smoke – aerosol characteristics during a record smoke event in the European Arctic and its radiative impact. Atmospheric Chemistry and Physics, 2007, 7, 3035-3053.	4.9	65
2	Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmospheric Chemistry and Physics, 2007, 7, 511-534.	4.9	372
3	The Tension between Fire Risk and Carbon Storage: Evaluating U.S. Carbon and Fire Management Strategies through Ecosystem Models. Earth Interactions, 2007, 11, 1-33.	1.5	13
4	ASSESSING THE RISK OF IGNITION IN THE RUSSIAN FAR EAST WITHIN A MODELING FRAMEWORK OF FIRE THREAT. , 2007, 17, 791-805.		29
5	Impacts of Russian biomass burning on UK air quality. Atmospheric Environment, 2007, 41, 8075-8090.	4.1	59
6	Agricultural burning in the Southeastern United States detected by MODIS. Remote Sensing of Environment, 2007, 108, 151-162.	11.0	78
7	The collection 5 MODIS burned area product — Global evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment, 2008, 112, 3690-3707.	11.0	600
8	Detection rates of the MODIS active fire product in the United States. Remote Sensing of Environment, 2008, 112, 2656-2664.	11.0	161
9	Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biology, 2008, 14, 1488-1502.	9.5	275
10	Monitoring Agricultural Burning in the Mississippi River Valley Region from the Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of the Air and Waste Management Association, 2008, 58, 1235-1239.	1.9	12
11	Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chemistry and Physics, 2008, 8, 1723-1735.	4.9	346
12	A Hybrid Remote Sensing Approach to Quantifying Crop Residue Burning in the United States. Applied Engineering in Agriculture, 2008, 24, 515-527.	0.7	21
13	Origin of aerosol particles in the mid-latitude and subtropical upper troposphere and lowermost stratosphere from cluster analysis of CARIBIC data. Atmospheric Chemistry and Physics, 2009, 9, 8413-8430.	4.9	15
14	Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements. Atmospheric Chemistry and Physics, 2009, 9, 2431-2440.	4.9	136
15	Smoke injection heights from agricultural burning in Eastern Europe as seen by CALIPSO. Atmospheric Chemistry and Physics, 2010, 10, 11567-11576.	4.9	59
16	Comparison of global inventories of CO emissions from biomass burning derived from remotely sensed data. Atmospheric Chemistry and Physics, 2010, 10, 12173-12189.	4.9	39
17	Seasonality of vegetation fires as modified by human action: observing the deviation from ecoâ€elimatic fire regimes. Global Ecology and Biogeography, 2010, 19, 575-588.	5.8	126
18	New Insights on the Chemical Composition of the Siberian Air Shed From The Yak-Aerosib Aircraft Campaigns. Bulletin of the American Meteorological Society, 2010, 91, 625-642.	3.3	32

ARTICLE IF CITATIONS Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat 4.9 2,326 19 fires (1997–2009). Atmospheric Chemistry and Physics, 2010, 10, 11707-11735. Estimation of Biomass Burned Areas Using Multiple-Satellite-Observed Active Fires. IEEE Transactions 6.3 on Geoscience and Remote Sensing, 2011, 49, 4469-4482. Fields and Forests in Flames: Vegetation Smoke and Human Health. Environmental Health Perspectives, 21 6.0 23 2011, 119, a386-93. Biomass burning contribution to black carbon in the Western United States Mountain Ranges. 4.9 Atmospheric Chemistry and Physics, 2011, 11, 11253-11266. An important fingerprint of wildfires on the European aerosol load. Atmospheric Chemistry and 23 4.9 65 Physics, 2011, 11, 10487-10501. The human dimension of fire regimes on Earth. Journal of Biogeography, 2011, 38, 2223-2236. 845 MODIS derived fire characteristics and aerosol optical depth variations during the agricultural 25 7.5 163 residue burning season, north India. Environmental Pollution, 2011, 159, 1560-1569. Spatial and temporal heterogeneity of agricultural fires in the central United States in relation to 4.2 26 19 land cover and land use. Landscape Ecology, 2011, 26, 211-224. Remote Sensing-Based Estimates of Annual and Seasonal Emissions from Crop Residue Burning in the 27 1.9 47 Contiguous United States. Journal of the Air and Waste Management Association, 2011, 61, 22-34. Wildfires as a Source of Aerosol Particles Transported to the Northern European Regions. Handbook 0.4 of Environmental Chemistry, 2012, , 101-121. Combining Satellite-Based Fire Observations and Ground-Based Lightning Detections to Identify Lightning Fires Across the Conterminous USA. IEEE Journal of Selected Topics in Applied Earth 29 4.9 8 Observations and Remote Sensing, 2012, 5, 1438-1447. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite 3.8 39 observations of active fires. Ecological Applications, 2012, 22, 1345-1364. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation $\mathbf{31}$ 3.3 156 Model. Biogeosciences, 2012, 9, 2761-2780. Separating agricultural and non-agricultural fire seasonality at regional scales. Biogeosciences, 2012, 3.3 9, 3003-3012 Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of 33 2.1 28 Central Asia. Frontiers of Earth Science, 2012, 6, 196-205. Overview of sun photometer measurements of aerosol properties in Scandinavia and Svalbard. 34 Atmospheric Environment, 2012, 52, 18-28. A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal 35 4.1 196 Anomalies/Fire products. Atmospheric Environment, 2012, 50, 9-15. Pyrogeography and the Global Quest for Sustainable Fire Management. Annual Review of Environment 13.4 and Resources, 2013, 38, 57-80.

CITATION REPORT

#	Article	IF	CITATIONS
37	Tropospheric ozone over Siberia in spring 2010: remote influences and stratospheric intrusion. Tellus, Series B: Chemical and Physical Meteorology, 2013, 65, 19688.	1.6	12
38	Exceptionally active agricultural fire season in midâ€eastern China in June 2012 and its impact on the atmospheric environment. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9889-9900.	3.3	31
39	Variability of aerosol properties over Eastern Europe observed from ground and satellites in the period from 2003 to 2011. Atmospheric Chemistry and Physics, 2013, 13, 6587-6602.	4.9	40
40	Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1). Biogeosciences, 2013, 10, 2293-2314.	3.3	137
41	Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia. Environmental Research Letters, 2014, 9, 035004.	5.2	43
42	Long-term particle measurements in Finnish Arctic: Part I – Chemical composition and trace metal solubility. Atmospheric Environment, 2014, 88, 275-284.	4.1	18
43	Characterizing the spatio-temporal fire regime in Ethiopia using the MODIS-active fire product: a replicable methodology for country-level fire reporting. African Geographical Review, 2014, 33, 99-123.	1.0	10
44	Forty-seven years of weekly atmospheric black carbon measurements in the Finnish Arctic: Decrease in black carbon with declining emissions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7667-7683.	3.3	34
45	Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan. Atmospheric Environment, 2014, 84, 189-197.	4.1	73
46	Long-term particle measurements in Finnish Arctic: Part II – Trend analysis and source location identification. Atmospheric Environment, 2014, 88, 285-296.	4.1	8
47	Top-down estimates of biomass burning emissions of black carbon in the Western United States. Atmospheric Chemistry and Physics, 2014, 14, 7195-7211.	4.9	16
48	Changes in atmospheric aerosol loading retrieved from space-based measurements during the past decade. Atmospheric Chemistry and Physics, 2014, 14, 6881-6902.	4.9	72
49	Management and climate contributions to satelliteâ€derived active fire trends in the contiguous United States. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 645-660.	3.0	13
50	Pollution and its Impacts on the South American Cryosphere. Earth's Future, 2015, 3, 345-369.	6.3	42
51	TES observations of the interannual variability of PAN over Northern Eurasia and the relationship to springtime fires. Geophysical Research Letters, 2015, 42, 7230-7237.	4.0	15
52	Worldwide spatiotemporal atmospheric ammonia (NH ₃) columns variability revealed by satellite. Geophysical Research Letters, 2015, 42, 8660-8668.	4.0	66
53	Estimates of black carbon emissions in the western United States using the GEOS-Chem adjoint model. Atmospheric Chemistry and Physics, 2015, 15, 7685-7702.	4.9	12
54	Tropospheric NO ₂ Trends over South Asia during the Last Decade (2004–2014) Using OMI Data. Advances in Meteorology, 2015, 2015, 1-18.	1.6	31

CITATION	REPORT

#	Article	IF	CITATIONS
55	Quantifying regional, time-varying effects of cropland and pasture on vegetation fire. Biogeosciences, 2015, 12, 6591-6604.	3.3	28
56	New field-based agricultural biomass burning trace gas, PM 2.5 , and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China. Atmospheric Environment, 2015, 121, 22-34.	4.1	77
57	Linking the Molecular Signature of Heteroatomic Dissolved Organic Matter to Watershed Characteristics in World Rivers. Environmental Science & Technology, 2015, 49, 13798-13806.	10.0	166
58	Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region. Science of the Total Environment, 2015, 524-525, 32-39.	8.0	64
59	Carbon monoxide (CO) emissions and its tropospheric variability over Pakistan using satellite-sensed data. Advances in Space Research, 2015, 56, 583-595.	2.6	32
60	Satellite remote sensing of total ozone column (TOC) over Pakistan and neighbouring regions. International Journal of Remote Sensing, 2015, 36, 1038-1054.	2.9	23
61	Spatial distribution of pollutant emissions from crop residue burning in the Punjab and Sindh provinces of Pakistan: uncertainties and challenges. Environmental Science and Pollution Research, 2015, 22, 16475-16491.	5.3	30
62	Fire Disturbance in Tropical Forests of Myanmar—Analysis Using MODIS Satellite Datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 2273-2281.	4.9	36
63	Identification of surface NO x emission sources on a regional scale using OMI NO 2. Atmospheric Environment, 2015, 101, 82-93.	4.1	25
64	Dynamic Monitoring of Agricultural Fires in China from 2010 to 2014 Using MODIS and GlobeLand30 Data. ISPRS International Journal of Geo-Information, 2016, 5, 172.	2.9	19
65	Contributions of open crop straw burning emissions to PM _{2.5} concentrations in China. Environmental Research Letters, 2016, 11, 014014.	5.2	138
66	Substantial Underestimation of Post-Harvest Burning Emissions in the North China Plain Revealed by Multi-Species Space Observations. Scientific Reports, 2016, 6, 32307.	3.3	49
67	Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products. Journal of Environmental Sciences, 2016, 44, 158-170.	6.1	68
68	Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010). Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150177.	4.0	12
69	Hotspot Pattern Distribution in Peat Land Area in Sumatera Based on Spatio Temporal Clustering. Procedia Environmental Sciences, 2016, 33, 635-645.	1.4	21
70	Sulphur dioxide loadings over megacity Lahore (Pakistan) and adjoining region of Indo-Gangetic Basin. International Journal of Remote Sensing, 2016, 37, 3021-3041.	2.9	12
71	A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sensing of Environment, 2016, 184, 506-521.	11.0	95
72	Quantifying the human influence on fire ignition across the western <scp>USA</scp> . Ecological Applications, 2016, 26, 2390-2401.	3.8	60

#	Article	IF	CITATIONS
73	Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 2016, 16, 14421-14461.	4.9	57
74	Ground-based remote sensing of aerosol climatology in China: Aerosol optical properties, direct radiative effect and its parameterization. Atmospheric Environment, 2016, 124, 243-251.	4.1	104
75	Bimodal fire regimes unveil a globalâ€scale anthropogenic fingerprint. Global Ecology and Biogeography, 2017, 26, 799-811.	5.8	37
76	Issues and Possible Improvements in Winter Fires Detection by Satellite Radiances Analysis: Lesson Learned in Two Regions of Northern Italy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 3297-3313.	4.9	10
77	A review of and perspectives on global change modeling for Northern Eurasia. Environmental Research Letters, 2017, 12, 083001.	5.2	17
78	Modelling the drivers of natural fire activity: the bias created by cropland fires. International Journal of Wildland Fire, 2017, 26, 845.	2.4	6
79	Linking fire ignitions hotspots and fuel phenology: The importance of being seasonal. Ecological Indicators, 2017, 82, 433-440.	6.3	23
80	A misfit in policy to protect Russia's black soil region. An institutional analytical lens applied to the ban on burning of crop residues. Land Use Policy, 2017, 67, 517-526.	5.6	19
81	Quantifying the Impact of Biomass Burning Emissions on Major Inorganic Aerosols and Their Precursors in the U.S Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,020.	3.3	31
82	Spatiotemporal assessment of CO 2 emissions and its satellite remote sensing over Pakistan and neighboring regions. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 152-153, 11-19.	1.6	12
83	Mortality due to Vegetation Fire–Originated PM _{2.5} Exposure in Europe—Assessment for the Years 2005 and 2008. Environmental Health Perspectives, 2017, 125, 30-37.	6.0	52
84	A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geoscientific Model Development, 2017, 10, 4443-4476.	3.6	51
85	Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam. Environmental Pollution, 2018, 236, 795-806.	7.5	82
86	Accuracy assessment of <scp>MODIS</scp> active fire products in southern African savannah woodlands. African Journal of Ecology, 2018, 56, 563-571.	0.9	4
87	Spatio-temporal distribution of burned areas by ecoregions in Mexico and Central America. International Journal of Remote Sensing, 2018, 39, 949-970.	2.9	15
88	Investigation of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast ensembles. Atmospheric Chemistry and Physics, 2018, 18, 31-47.	4.9	13
89	The sedimentary and remoteâ€sensing reflection of biomass burning in Europe. Global Ecology and Biogeography, 2018, 27, 199-212.	5.8	73
90	Variations in FINN Emissions of Particulate Matters and Associated Carbonaceous Aerosols from Remote Sensing of Open Biomass Burning over Northeast China during 2002–2016. Sustainability, 2018, 10, 3353.	3.2	9

#	ARTICLE Climate change and its impact on Forest Fire in the state of Himachal Pradesh and Uttarakhand states	IF	CITATIONS
91 92	of India: Remote Sensing and GIS Analysis. Contemporary Trends in Geoscience, 2018, 7, 229-246. Land Use Controls on the Spatial Variability of Dissolved Black Carbon in a Subtropical Watershed. Environmental Science & amp; Technology, 2018, 52, 8104-8114.	0.5	13 39
93	A New Picture of Fire Extent, Variability, and Drought Interaction in Prescribed Fire Landscapes: Insights From Florida Government Records. Geophysical Research Letters, 2018, 45, 7874-7884.	4.0	49
94	Global patterns of interannual climate–fire relationships. Global Change Biology, 2018, 24, 5164-5175.	9.5	191
95	Reducing Uncertainties in Applying Remotely Sensed Land Use and Land Cover Maps in Land-Atmosphere Interaction: Identifying Change in Space and Time. Remote Sensing, 2018, 10, 506.	4.0	14
96	Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events. Environmental Research Letters, 2018, 13, 055010.	5.2	10
97	A MODIS-based spatiotemporal assessment of agricultural residue burning in Madhya Pradesh, India. Ecological Indicators, 2019, 105, 496-504.	6.3	16
98	A circular nonhomogeneous hidden Markov field for the spatial segmentation of wildfire occurrences. Environmetrics, 2019, 30, e2501.	1.4	5
99	Thermal decomposition study and pyrolysis kinetics of coal and agricultural residues under non-isothermal conditions. Fuel, 2019, 235, 504-514.	6.4	71
100	Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics, 2019, 19, 12545-12567.	4.9	64
101	Source apportionment of PM2.5 measured in South Texas near U.S.A. – Mexico border. Atmospheric Pollution Research, 2019, 10, 1663-1676.	3.8	16
102	The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe. Atmospheric Chemistry and Physics, 2019, 19, 4211-4233.	4.9	20
103	Impact of wildfires on particulate matter in the Euro-Mediterranean in 2007: sensitivity to some parameterizations of emissions in air quality models. Atmospheric Chemistry and Physics, 2019, 19, 785-812.	4.9	23
104	Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 2019, 16, 57-76.	3.3	85
105	Land-Cover Dependent Relationships between Fire and Soil Moisture. Fire, 2019, 2, 55.	2.8	7
106	Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences, 2019, 16, 3883-3910.	3.3	32
107	Global validation of the collection 6 MODIS burned area product. Remote Sensing of Environment, 2019, 235, 111490.	11.0	125
108	Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sensing of Environment, 2019, 222, 1-17.	11.0	251

CITATION REPORT

#	Article	IF	CITATIONS
109	Agricultural Fires and Health at Birth. Review of Economics and Statistics, 2019, 101, 616-630.	4.3	68
110	Climate seasonality as an essential predictor of global fire activity. Global Ecology and Biogeography, 2019, 28, 198-210.	5.8	14
111	Bottom-up emission inventories of multiple air pollutants from open straw burning: A case study of Jiangsu province, Eastern China. Atmospheric Pollution Research, 2019, 10, 501-507.	3.8	14
112	Fire risk assessment along the climate, vegetation type variability over the part of Asian region: a geospatial approach. Modeling Earth Systems and Environment, 2019, 5, 41-57.	3.4	5
113	MODIS based forest fire hotspot analysis and its relationship with climatic variables. Spatial Information Research, 2020, 28, 87-99.	2.2	33
114	Post-Soviet Land-Use Change Affected Fire Regimes on the Eurasian Steppes. Ecosystems, 2020, 23, 943-956.	3.4	26
115	Characterizing Vegetation Fire dynamics in Myanmar and South Asian Countries. Journal of the Indian Society of Remote Sensing, 2020, 48, 1829-1843.	2.4	7
117	Crop Loss Evaluation Using Digital Surface Models from Unmanned Aerial Vehicles Data. Remote Sensing, 2020, 12, 981.	4.0	14
118	Chemical characterization of fine particles (PM2.5) at a coastal site in the South Western Mediterranean during the ChArMex experiment. Environmental Science and Pollution Research, 2020, 27, 20427-20445.	5.3	13
119	Improvement of physico-chemical properties and microbiome in different salinity soils by incorporating Jerusalem artichoke residues. Applied Soil Ecology, 2021, 158, 103791.	4.3	18
120	Strong impacts of smoke polluted air demonstrated on the flight behaviour of the painted lady butterfly (Vanessa cardui L.). Ecological Entomology, 2021, 46, 195-208.	2.2	8
121	Photochemical environment over Southeast Asia primed for hazardous ozone levels with influx of nitrogen oxides from seasonal biomass burning. Atmospheric Chemistry and Physics, 2021, 21, 1917-1935.	4.9	16
122	Global search for temporal shifts in fire activity: potential human influence on southwest Russia and north Australia fire seasons. Environmental Research Letters, 2021, 16, 044023.	5.2	12
123	Historical and future global burned area with changing climate and human demography. One Earth, 2021, 4, 517-530.	6.8	43
124	How Will Deforestation and Vegetation Degradation Affect Global Fire Activity?. Earth's Future, 2021, 9, e2020EF001786.	6.3	8
125	ADABBOY: African Dust And Biomass Burning Over Yucatan. Bulletin of the American Meteorological Society, 2021, 102, E1543-E1556.	3.3	7
126	From flames to inflammation: how wildfires affect patterns of wildlife disease. Fire Ecology, 2021, 17, .	3.0	18
127	Interannual variability and climatic sensitivity of global wildfire activity. Advances in Climate Change Research, 2021, 12, 686-695.	5.1	9

CITATION REPORT

CITATION REPORT

#	ARTICLE	IF	CITATIONS
128	Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts. Science of the Total Environment, 2021, 789, 147935.	8.0	63
129	Validation of MCD64A1 and FireCCI51 cropland burned area mapping in Ukraine. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102443.	2.8	12
130	Climate change over the Arctic: impacts and assessment. , 2021, , 1-14.		3
131	MODIS-Derived Global Fire Products. Remote Sensing and Digital Image Processing, 2010, , 661-679.	0.7	41
132	Estimating Black Carbon Emissions from Agricultural Burning. Environmental Science and Engineering, 2014, , 347-364.	0.2	8
133	The NASA NEESPI Data Portal to Support Studies of Climate and Environmental Changes in Non-boreal Europe. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 9-16.	0.2	1
134	Interactions of Arctic Aerosols with Land-Cover and Land-Use Changes in Northern Eurasia and their Role in the Arctic Climate System. , 2010, , 237-268.		7
135	Smoke emissions from agricultural fires in Mexico and Central America. Journal of Applied Remote Sensing, 2019, 13, 1.	1.3	11
136	Fire seasonality identification with multimodality tests. Annals of Applied Statistics, 2019, 13, .	1.1	5
137	Spatial analysis of Fire Characterization along with various gradients of Season, Administrative units, Vegetation, Socio economy, Topography and Future climate change: A case study of Orissa state of India. Ecological Questions, 2018, 29, 1.	0.3	2
138	Analysis of forest fire and climate variability using Geospatial Technology for the State of Telangana, India. Environmental and Socio-Economic Studies, 2019, 7, 24-37.	0.8	2
139	A global overview of cranes: status, threats and conservation priorities. Chinese Birds: the International Journal of Ornithology, 2013, 4, 189-209.	0.6	83
152	Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment, 2021, 267, 112694.	11.0	92
156	Tendencia de la cobertura vegetacional afectada por incendios en el Parque Nacional Torres del Paine. Revista De Teledeteccion, 2017, , 71.	0.6	Ο
157	Study on the Optimum Degradation Process of Corn Stalk. , 2018, , .		0
158	Study on the Driving Factors of Straw Burning—Taking Nanzhang County of Hubei Province as the Research Object. Advances in Environmental Protection, 2018, 08, 219-232.	0.1	Ο
159	The Role of Institutional Policy Congruity for Sustainable Land Use in the Kulunda Steppe. Innovations in Landscape Research, 2020, , 275-287.	0.4	0
160	Agricultural activities and threat to fauna in Brazil: an analysis of the Red Book of Endangered Brazilian Fauna. Papeis Avulsos De Zoologia, 0, 61, e20216193.	0.4	2

#	Article	IF	CITATIONS
161	Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH ₃ trends in select African regions. Atmospheric Chemistry and Physics, 2021, 21, 16277-16291.	4.9	3
162	Unintended Consequences of Indian Groundwater Preservation Law on Crop Residue Burning. SSRN Electronic Journal, 0, , .	0.4	0
163	Monodominant natural vegetation provides models for nature-based cereal production. Outlook on Agriculture, 2022, 51, 11-21.	3.4	3
164	Semantic Segmentation and Analysis on Sensitive Parameters of Forest Fire Smoke Using Smoke-Unet and Landsat-8 Imagery. Remote Sensing, 2022, 14, 45.	4.0	34
165	Warming weakens the night-time barrier to global fire. Nature, 2022, 602, 442-448.	27.8	66
166	Estimating Long-Term Average Carbon Emissions from Fires in Non-Forest Ecosystems in the Temperate Belt. Remote Sensing, 2022, 14, 1197.	4.0	2
167	Unintended consequences of Indian groundwater preservation law on crop residue burning. Economics Letters, 2022, 214, 110446.	1.9	0
168	Respiratory and allergic health effects in children living near agriculture: A review. Science of the Total Environment, 2022, 832, 155009.	8.0	3
169	Burned Area Classification Based on Extreme Learning Machine and Sentinel-2 Images. Applied Sciences (Switzerland), 2022, 12, 9.	2.5	5
170	Mapping Cropland Burned Area in Northeastern China by Integrating Landsat Time Series and Multi-Harmonic Model. Remote Sensing, 2021, 13, 5131.	4.0	5
171	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	23.0	182
174	Climatological Aspects of Active Fires in Northeastern China and Their Relationship to Land Cover. Remote Sensing, 2022, 14, 2316.	4.0	4
175	Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling. Fire, 2022, 5, 87.	2.8	3
176	Performance evaluation of activated carbon sorbents for indoor air purification during normal and wildfire events. Chemosphere, 2022, 304, 135314.	8.2	7
178	Monitoring trends in global vegetation fire hot spots using MODIS data. Spatial Information Research, 0, , .	2.2	4
179	Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 2: Statistics of extreme AOD events, and implications for the impact of regional biomass burning processes. Atmospheric Chemistry and Physics, 2022, 22, 9949-9967.	4.9	11
180	Arctic spring and summertime aerosol optical depth baseline from long-term observations and model reanalyses – Part 1: Climatology and trend. Atmospheric Chemistry and Physics, 2022, 22, 9915-9947.	4.9	16
181	Assessment and characterization of sources of error impacting the accuracy of global burned area products. Remote Sensing of Environment, 2022, 280, 113214.	11.0	8

#	Article	IF	CITATIONS
182	Long term (2005–2016) study of formaldehyde (HCHO) columns from satellite data in two regions in the south of Mexico. Evidence of the impact of agricultural activity. Remote Sensing Applications: Society and Environment, 2023, 29, 100894.	1.5	0
183	MODIS-Derived Fire Characteristics and Greenhouse Gas Emissions from Cropland Residue Burning in Central India. Sustainability, 2022, 14, 16612.	3.2	0
184	Evaluation MODIS and Sentinel-2 Data for Detecting Crop Residue Burned Area. Springer Geography, 2023, , 143-158.	0.4	0
185	Aerosol variability and glacial chemistry over the western Himalayas. Environmental Chemistry, 2022, 19, 312-327.	1.5	3
186	Norms and Values in Ecosystem Restoration. , 2023, , 507-525.		1
187	Is global burned area declining due to cropland expansion? How much do we know based on remotely sensed data?. International Journal of Remote Sensing, 2023, 44, 1132-1150.	2.9	3
188	Impact of different sources of precursors on an ozone pollution outbreak over Europe analysed with IASI+GOME2 multispectral satellite observations and model simulations. Atmospheric Chemistry and Physics, 2023, 23, 7399-7423.	4.9	1
189	Global scale coupling of pyromes and fire regimes. Communications Earth & Environment, 2023, 4, .	6.8	1
190	A new look at agricultural fires and health: A replication of Rangel and Vogl (2019). Applied Economic Perspectives and Policy, 0, , .	5.6	1
191	Agricultural burning in Imperial Valley, California and respiratory symptoms in children: A cross-sectional, repeated measures analysis. Science of the Total Environment, 2023, 901, 165854.	8.0	0
192	Agricultural expansion dominates rapid increases in cropland fires in Asia. Environment International, 2023, 179, 108189.	10.0	1
193	Measuring flammability of crops, pastures, fruit trees, and weeds: A novel tool to fight wildfires in agricultural landscapes. Science of the Total Environment, 2024, 906, 167489.	8.0	0
195	Comprehensive Evaluation of Spatial Distribution and Temporal Trend of NO2, SO2 and AOD Using Satellite Observations over South and East Asia from 2011 to 2021. Remote Sensing, 2023, 15, 5069.	4.0	1
196	Soil erosion on arable land: An unresolved global environmental threat. Progress in Physical Geography, 2024, 48, 136-161.	3.2	0
197	Accounting for forest fire risks: global insights for climate change mitigation. Mitigation and Adaptation Strategies for Global Change, 2023, 28, .	2.1	0
198	Crop Residue burning from high-resolution satellite imagery and PM _{2.5} dispersion: A case study of Mississippi County, Arkansas, USA. Sustainable Environment, 2023, 9, .	2.4	0
199	Integration of a Deep‣earningâ€Based Fire Model Into a Global Land Surface Model. Journal of Advances in Modeling Earth Systems, 2024, 16, .	3.8	0
200	Forest fire estimation and risk prediction using multispectral satellite images: Case study. Natural Hazards Research, 2024, , .	3.8	0

#	Article	IF	CITATIONS
201	Food shortage driven crop residue burning and health risk. Journal of Cleaner Production, 2024, 448, 141645.	9.3	0