Physicochemical and Functional Properties of Hemp (C

Journal of Agricultural and Food Chemistry 54, 8945-8950 DOI: 10.1021/jf0619176

Citation Report

#	Article	IF	CITATIONS
1	Properties of Cast Films from Hemp (<i>Cannabis sativa</i> L.) and Soy Protein Isolates. A Comparative Study. Journal of Agricultural and Food Chemistry, 2007, 55, 7399-7404.	5.2	62
2	Direct NMR analysis of cannabis water extracts and tinctures and semi-quantitative data on Δ9-THC and Δ9-THC-acid. Phytochemistry, 2008, 69, 562-570.	2.9	42

 $_{3}$ Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 $\frac{10}{155}$

4	Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chemistry, 2008, 107, 11-18.	8.2	203
5	Study of Some Physicochemical and Functional Properties of Quinoa (Chenopodium Quinoa Willd) Protein Isolates. Journal of Agricultural and Food Chemistry, 2008, 56, 4745-4750.	5.2	214
6	Hempseed Oil. , 2009, , 185-213.		13
7	Hemp Seed and Hemp Milk. ICAN: Infant, Child, & Adolescent Nutrition, 2009, 1, 232-234.	0.2	11
8	Stability of quinoa flour proteins (<i>Chenopodium quinoa</i> Willd.) during storage. International Journal of Food Science and Technology, 2009, 44, 2013-2020.	2.7	48
9	Functional and structural properties and <i>in vitro</i> digestibility of acylated hemp (<i>Cannabis) Tj ETQq0 0 0 2653-2661.</i>	rgBT /Ove 2.7	erlock 10 Tf 5 37
10	Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates. Food Chemistry, 2009, 114, 1484-1490.	8.2	187
11	Silkworm Pupae (Bombyx mori) Are New Sources of High Quality Protein and Lipid. Journal of Nutritional Science and Vitaminology, 2010, 56, 446-448.	0.6	97
13	Chemical and functional characterization of Gum karaya (Sterculia urens L.) seed meal. Food Hydrocolloids, 2010, 24, 479-485.	10.7	49
14	Hempseed protein derived antioxidative peptides: Purification, identification and protection from hydrogen peroxide-induced apoptosis in PC12 cells. Food Chemistry, 2010, 123, 1210-1218.	8.2	109
15	Functional properties of yellow field pea (Pisum sativum L.) seed flours and the in vitro bioactive properties of their polyphenols. Food Research International, 2010, 43, 582-588.	6.2	38
16	Effect of extraction and isolation on physicochemical and functional properties of an underutilized seed protein: Gingerbread plum (Neocarya macrophylla). Food Research International, 2011, 44, 2843-2850.	6.2	42
17	Functional Properties of Protein Isolates Extracted from Stabilized Rice Bran by Microwave, Dry Heat, and Parboiling. Journal of Agricultural and Food Chemistry, 2011, 59, 2416-2420.	5.2	88
18	In Vitro Antioxidant Properties of Hemp Seed (<i>Cannabis sativa</i> L.) Protein Hydrolysate Fractions. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 381-389.	1.9	192
19	Kinetics of Enzyme Inhibition and Antihypertensive Effects of Hemp Seed (<i>Cannabis sativa</i> L.) Protein Hydrolysates. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1767-1774.	1.9	136

#	Article	IF	CITATIONS
20	Antioxidative Activity and Functional Properties of Hydrolysates of Camellia Seed Meal Treated with Trypsin. Advanced Materials Research, 2012, 554-556, 1174-1177.	0.3	1
21	Hemp seed cake in organic broiler diets. Animal Feed Science and Technology, 2012, 171, 205-213.	2.2	27
22	Proteomic profiling of hempseed proteins from Cheungsam. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 374-382.	2.3	33
23	Extraction, identification and characterization of the water-insoluble proteins from tobacco biomass. Journal of the Science of Food and Agriculture, 2012, 92, 1368-1374.	3.5	28
24	Chemical, amino acid and fatty acid composition of Sterculia urens L. seed. Food Hydrocolloids, 2012, 28, 320-324.	10.7	13
25	Housefly larvae hydrolysate: orthogonal optimization of hydrolysis, antioxidant activity, amino acid composition and functional properties. BMC Research Notes, 2013, 6, 197.	1.4	35
26	Effects of protein solubilisation and precipitation pH values on the functional properties of defatted wheat germ protein isolates. International Journal of Food Science and Technology, 2013, 48, 1490-1497.	2.7	21
27	Changes in baking quality of composite wheat/hemp flour detected by means of mixolab. Cereal Research Communications, 2013, 41, 150-159.	1.6	8
28	Complete Chemical Analysis of Carmagnola Hemp Hurds and Structural Features of Its Components. BioResources, 2013, 8, .	1.0	46
29	Effect of Hempseed (Cannabis sativa sp.) Inclusion to the Diet on Performance, Carcass and Antioxidative Activity in Japanese Quail (Coturnix coturnix japonica). Korean Journal for Food Science of Animal Resources, 2014, 34, 141-150.	1.5	14
30	Study on Solubility, Water-Holding Capacity and Stability of Polypeptide from <i>Camellia Seed</i> Meal. Advanced Materials Research, 2014, 1033-1034, 758-761.	0.3	0
31	Structural and Functional Properties of Hemp Seed Protein Products. Journal of Food Science, 2014, 79, C1512-21.	3.1	173
32	Gelatin and Other Proteins for Microencapsulation. , 2014, , 227-239.		14
33	Characterization of Byproducts Originating from Hemp Oil Processing. Journal of Agricultural and Food Chemistry, 2014, 62, 12436-12442.	5.2	122
34	Effect of the defatting process, acid and alkali extraction on the physicochemical and functional properties of hemp, flax and canola seed cake protein isolates. Journal of Food Measurement and Characterization, 2014, 8, 92-104.	3.2	83
35	Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods, 2014, 6, 384-394.	3.4	207
36	Molecular characterization of edestin gene family in Cannabis sativa L Plant Physiology and Biochemistry, 2014, 84, 142-148.	5.8	40
37	A Novel Hemp Seed Meal Protein Hydrolysate Reduces Oxidative Stress Factors in Spontaneously Hypertensive Rats. Nutrients, 2014, 6, 5652-5666.	4.1	81

#	Article	IF	CITATIONS
39	Bread Supplementation with Hemp Seed Cake: A Byâ€Product of Hemp Oil Processing. Journal of Food Quality, 2015, 38, 431-440.	2.6	72
41	Multienzyme Modification of Hemp Protein for Functional Peptides Synthesis. Journal of Food Processing, 2015, 2015, 1-5.	2.0	7
42	Agricultural Biomass Based Potential Materials. , 2015, , .		32
43	Characterization of Lignanamides from Hemp (<i>Cannabis sativa</i> L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities. Journal of Agricultural and Food Chemistry, 2015, 63, 10611-10619.	5.2	120
44	Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocolloids, 2015, 51, 361-374.	10.7	68
45	Ethanol and supercritical fluid extracts of hemp seed (Cannabis sativa L.) increase gene expression of antioxidant enzymes in HepG2 cells. Asian Pacific Journal of Reproduction, 2015, 4, 147-152.	0.4	23
46	Conversion of a low protein hemp seed meal into a functional protein concentrate through enzymatic digestion of fibre coupled with membrane ultrafiltration. Innovative Food Science and Emerging Technologies, 2015, 31, 151-159.	5.6	75
47	Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment. Plant Foods for Human Nutrition, 2015, 70, 304-309.	3.2	33
48	Seed composition of ten industrial hemp cultivars approved for production in Canada. Journal of Food Composition and Analysis, 2015, 39, 8-12.	3.9	174
49	A comparative study of the structural and functional properties of isolated hemp seed (Cannabis) Tj ETQq1 1 0.7	84314 rgB 10.7	ST /Overlock
50	The Mixolab parameters of composite wheat/hemp flour and their relation to quality features. LWT - Food Science and Technology, 2015, 60, 623-629.	5.2	49
51	Key cultivation techniques for hemp in Europe and China. Industrial Crops and Products, 2015, 68, 2-16.	5.2	233
52	Emerging Industrial Oil Crops. , 2016, , 275-341.		17
53	Variability in Seed Traits in a Collection of Cannabis sativa L. Genotypes. Frontiers in Plant Science, 2016, 7, 688.	3.6	90
54	Identification and characterization of two novel $\hat{I}\pm$ -glucosidase inhibitory oligopeptides from hemp () Tj ETQqO O	ΟrgβT /Ον	erlock 10 Tf
55	Proteomic characterization of hempseed (Cannabis sativa L.). Journal of Proteomics, 2016, 147, 187-196.	2.4	64
56	Nutritional and Phytochemical Content of High-Protein Crops. Journal of Agricultural and Food Chemistry, 2016, 64, 7800-7811.	5.2	65
57	Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain. Food Chemistry, 2016, 203, 199-206.	8.2	64

#	Article	IF	CITATIONS
58	Preparation, characterization and functional properties of flax seed protein isolate. Food Chemistry, 2016, 197, 212-220.	8.2	176
59	Physicochemical and functional properties of protein extracts from Torreya grandis seeds. Food Chemistry, 2017, 227, 453-460.	8.2	56
60	Effects of thermal processing on the nutritional and functional properties of defatted conophor nut (<i>Tetracarpidium conophorum</i>) flour and protein isolates. Food Science and Nutrition, 2017, 5, 1170-1178.	3.4	13
61	Polypeptide Profile, Amino Acid Composition and Some Functional Properties of Calabash Nutmeg (<i>Monodora myristica</i>) Flour and Protein Products. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1361-1371.	1.9	7
62	Waterâ€soluble myofibrillar proteins prepared by highâ€pressure homogenisation: a comparison study on the composition and functionality. International Journal of Food Science and Technology, 2017, 52, 2334-2342.	2.7	11
63	New ACE-Inhibitory Peptides from Hemp Seed (<i>Cannabis sativa</i> L.) Proteins. Journal of Agricultural and Food Chemistry, 2017, 65, 10482-10488.	5.2	64
64	Bioactivities of alternative protein sources and their potential health benefits. Food and Function, 2017, 8, 3443-3458.	4.6	79
65	Modulation of the secondary and tertiary structures of African yam bean (Sphenostylis) Tj ETQq1 1 0.784314 rgB Biochemistry, 2017, 41, e12321.	T /Overloc 2.9	k 10 Tf 50 4 0
66	Hemp Seed (Cannabis sativa L.) Proteins. , 2017, , 121-132.		35
67	Proteins from oil-producing plants. , 2018, , 187-221.		10
67 68	Proteins from oil-producing plants. , 2018, , 187-221. Hempseed meal protein isolates prepared by different isolation techniques. Part II. gelation properties at different ionic strengths. Food Hydrocolloids, 2018, 81, 481-489.	10.7	10
	Hempseed meal protein isolates prepared by different isolation techniques. Part II. gelation properties	10.7	
68	Hempseed meal protein isolates prepared by different isolation techniques. Part II. gelation properties at different ionic strengths. Food Hydrocolloids, 2018, 81, 481-489. Hempseed meal protein isolates prepared by different isolation techniques. Part I. physicochemical		40
68 69	 Hempseed meal protein isolates prepared by different isolation techniques. Part II. gelation properties at different ionic strengths. Food Hydrocolloids, 2018, 81, 481-489. Hempseed meal protein isolates prepared by different isolation techniques. Part I. physicochemical properties. Food Hydrocolloids, 2018, 79, 526-533. Heating-Aided pH Shifting Modifies Hemp Seed Protein Structure, Cross-Linking, and Emulsifying 	10.7	40 128
68 69 70	 Hempseed meal protein isolates prepared by different isolation techniques. Part II. gelation properties at different ionic strengths. Food Hydrocolloids, 2018, 81, 481-489. Hempseed meal protein isolates prepared by different isolation techniques. Part I. physicochemical properties. Food Hydrocolloids, 2018, 79, 526-533. Heating-Aided pH Shifting Modifies Hemp Seed Protein Structure, Cross-Linking, and Emulsifying Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 10827-10834. Developments in oilfield scale handling towards green technology-A review. Journal of Petroleum 	10.7 5.2	40 128 108
68 69 70 71	 Hempseed meal protein isolates prepared by different isolation techniques. Part II. gelation properties at different ionic strengths. Food Hydrocolloids, 2018, 81, 481-489. Hempseed meal protein isolates prepared by different isolation techniques. Part I. physicochemical properties. Food Hydrocolloids, 2018, 79, 526-533. Heating-Aided pH Shifting Modifies Hemp Seed Protein Structure, Cross-Linking, and Emulsifying Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 10827-10834. Developments in oilfield scale handling towards green technology-A review. Journal of Petroleum Science and Engineering, 2018, 169, 428-444. Strategy for the Prediction, Control, and Optimization of the Functional Properties of Food Proteins: 	10.7 5.2	40 128 108 70
68 69 70 71 72	 Hempseed meal protein isolates prepared by different isolation techniques. Part II. gelation properties at different ionic strengths. Food Hydrocolloids, 2018, 81, 481-489. Hempseed meal protein isolates prepared by different isolation techniques. Part I. physicochemical properties. Food Hydrocolloids, 2018, 79, 526-533. Heating-Aided pH Shifting Modifies Hemp Seed Protein Structure, Cross-Linking, and Emulsifying Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 10827-10834. Developments in oilfield scale handling towards green technology-A review. Journal of Petroleum Science and Engineering, 2018, 169, 428-444. Strategy for the Prediction, Control, and Optimization of the Functional Properties of Food Proteins: Using Statistical and Chemometric Tools. , 2018, , 313-345. Cenome-wide identification and organization of seed storage protein genes of Cannabis sativa. 	10.7 5.2 4.2	40 128 108 70 1

#	Article	IF	CITATIONS
76	Valorisation of hemp inflorescence after seed harvest: Cultivation site and harvest time influence agronomic characteristics and essential oil yield and composition. Industrial Crops and Products, 2019, 139, 111541.	5.2	51
77	Effects of heating or ultrasound treatment on the enzymolysis and the structure characterization of hempseed protein isolates. Journal of Food Science and Technology, 2019, 56, 3337-3346.	2.8	28
78	Hydro-mechanical processing of brewer's spent grain as a novel route for separation of protein products with differentiated techno-functional properties. Innovative Food Science and Emerging Technologies, 2019, 56, 102184.	5.6	22
79	Effect of pH and defatting on the functional attributes of safflower, sunflower, canola, and hemp protein concentrates. Cereal Chemistry, 2019, 96, 1036-1047.	2.2	20
80	Genipin-Aided Protein Cross-linking to Modify Structural and Rheological Properties of Emulsion-Filled Hempseed Protein Hydrogels. Journal of Agricultural and Food Chemistry, 2019, 67, 12895-12903.	5.2	39
81	Hemp (<i>Cannabis sativa</i> L.) Protein Extraction Conditions Affect Extraction Yield and Protein Quality. Journal of Food Science, 2019, 84, 3682-3690.	3.1	42
82	Investigating appropriate molecular and chemical methods for ingredient identity testing of plant-based protein powder dietary supplements. Scientific Reports, 2019, 9, 12130.	3.3	4
83	Phytochemical and Ecological Analysis of Two Varieties of Hemp (Cannabis sativa L.) Grown in a Mountain Environment of Italian Alps. Frontiers in Plant Science, 2019, 10, 1265.	3.6	93
84	Cannabisin F from Hemp (Cannabis sativa) Seed Suppresses Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglia as SIRT1 Modulator. International Journal of Molecular Sciences, 2019, 20, 507.	4.1	37
85	Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chemistry, 2019, 283, 539-548.	8.2	118
86	Processing, Nutrition, and Functionality of Hempseed Protein: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 936-952.	11.7	143
87	Physicochemical and functional properties of a protein isolate from maca (Lepidium meyenii) and the secondary structure and immunomodulatory activity of its major protein component. Food and Function, 2019, 10, 2894-2905.	4.6	10
88	Novel remediation of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater using Cannabis Sativa L. (hemp) protein powder. Chemosphere, 2019, 229, 22-31.	8.2	50
89	Comparative study of plant protein extracts as wall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids, 2019, 95, 105-115.	10.7	41
90	The quality of pork loaves with the addition of hemp seeds, de-hulled hemp seeds, hemp protein and hemp flour. LWT - Food Science and Technology, 2019, 105, 190-199.	5.2	45
91	Hemp globulin heat aggregation is inhibited by the chaperone-like action of caseins. Food Hydrocolloids, 2019, 93, 46-55.	10.7	11
92	Neuroprotective protein hydrolysates from hemp (<i>Cannabis sativa</i> L.) seeds. Food and Function, 2019, 10, 6732-6739.	4.6	43
93	Production, digestibility and allergenicity of hemp (Cannabis sativa L.) protein isolates. Food Research International, 2019, 115, 562-571.	6.2	107

#	Article	IF	CITATIONS
94	Emulsifying properties of hemp proteins: Effect of isolation technique. Food Hydrocolloids, 2019, 89, 912-920.	10.7	56
95	Nuts, cereals, seeds and legumes proteins derived emulsifiers as a source of plant protein beverages: A review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2742-2762.	10.3	47
96	Effect of steaming and dehydration on the nutritional quality and functional properties of protein isolates produced from Lablab purpureus (L.) Sweet (hyacinth bean). Journal of Food Processing and Preservation, 2020, 44, e14334.	2.0	3
97	Formulation of bread model doughs with resistant starch, vegetable proteins and transglutaminase. European Food Research and Technology, 2020, 246, 397-408.	3.3	8
98	Hempseed in food industry: Nutritional value, health benefits, and industrial applications. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 282-308.	11.7	139
99	Concentrated Pickering emulsions stabilised by hemp globulin–caseinate nanoparticles: tuning the rheological properties by adjusting the hemp globulin : caseinate ratio. Food and Function, 2020, 11, 10193-10204.	4.6	15
100	The Influence of Hemp Extract in Combination with Ginger on the Metabolic Activity of Metastatic Cells and Microorganisms. Molecules, 2020, 25, 4992.	3.8	14
101	Industrial Hemp (Cannabis sativa subsp. sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules, 2020, 25, 4078.	3.8	119
102	Structural, physicochemical and functional properties of Semen Ziziphi Spinosae protein. RSC Advances, 2020, 10, 29555-29566.	3.6	9
109	Impact of Enzymatic and Microbial Bioprocessing on Antioxidant Properties of Hemp (Cannabis sativa) Tj ETQq1		
103		1 0.7843	14 rgBT /Over 29
103	Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods, 2020, 9, 772.	1 0.7843 5.1	14 rgBT /Over 130
	Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking.	0.1	20
104	Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods, 2020, 9, 772. Comparative study of the structural and functional properties of protein isolates prepared from	4.3	130
104 105	Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods, 2020, 9, 772. Comparative study of the structural and functional properties of protein isolates prepared from edible vegetable leaves. International Journal of Food Properties, 2020, 23, 955-970. Impact of Growth Stage and Biomass Fractions on Cannabinoid Content and Yield of Different Hemp	4.3 3.0	23 130 21
104 105 106	Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods, 2020, 9, 772. Comparative study of the structural and functional properties of protein isolates prepared from edible vegetable leaves. International Journal of Food Properties, 2020, 23, 955-970. Impact of Growth Stage and Biomass Fractions on Cannabinoid Content and Yield of Different Hemp (Cannabis sativa L.) Genotypes. Agronomy, 2020, 10, 372. Physicochemical and structural properties of proteins extracted from dehulled industrial hempseeds:	4.3 3.0 3.0	23 130 21 22
104 105 106 107	Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods, 2020, 9, 772. Comparative study of the structural and functional properties of protein isolates prepared from edible vegetable leaves. International Journal of Food Properties, 2020, 23, 955-970. Impact of Growth Stage and Biomass Fractions on Cannabinoid Content and Yield of Different Hemp (Cannabis sativa L.) Genotypes. Agronomy, 2020, 10, 372. Physicochemical and structural properties of proteins extracted from dehulled industrial hempseeds: Role of defatting process and precipitation pH. Food Hydrocolloids, 2020, 108, 106065. Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake. Foods, 2020, 9,	 4.3 3.0 3.0 10.7 	23 130 21 22 38
104 105 106 107 108	Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods, 2020, 9, 772. Comparative study of the structural and functional properties of protein isolates prepared from edible vegetable leaves. International Journal of Food Properties, 2020, 23, 955-970. Impact of Growth Stage and Biomass Fractions on Cannabinoid Content and Yield of Different Hemp (Cannabis sativa L.) Genotypes. Agronomy, 2020, 10, 372. Physicochemical and structural properties of proteins extracted from dehulled industrial hempseeds: Role of defatting process and precipitation pH. Food Hydrocolloids, 2020, 108, 106065. Physicochemical Characteristics of Protein Isolated from Thraustochytrid Oilcake. Foods, 2020, 9, 779. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for	 4.3 3.0 3.0 10.7 4.3 	23 130 21 22 38 14

	Сіта	ATION REPORT	
#	Article	IF	CITATIONS
112	Drying of cannabis—state of the practices and future needs. Drying Technology, 2021, 39, 2055-2064	ł. 3.1	18
113	Hempseed as a nutritious and healthy human food or animal feed source: a review. International Journal of Food Science and Technology, 2021, 56, 530-543.	2.7	41
114	Effect of structuring emulsion gels by whey or soy protein isolate on the structure, mechanical properties, and in-vitro digestion of alginate-based emulsion gel beads. Food Hydrocolloids, 2021, 110, 106165.	10.7	77
115	Protein isolate from Stauntonia brachyanthera seed: Chemical characterization, functional properties, and emulsifying performance after heat treatment. Food Chemistry, 2021, 345, 128542.	8.2	15
116	Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara. Food Hydrocolloids, 2021, 111, 106386.	10.7	18
117	Biochemical aspects of seeds from Cannabis sativa L. plants grown in a mountain environment. Scientific Reports, 2021, 11, 3927.	3.3	9
118	The Effect of Processing of Hempseed on Protein Recovery and Emulsification Properties. International Journal of Food Science, 2021, 2021, 1-12.	2.0	8
119	Characteristics and functional properties of Persian lime (Citrus latifolia) seed protein isolate and enzymatic hydrolysates. LWT - Food Science and Technology, 2021, 140, 110765.	5.2	39
120	Stabilization of hempseed protein dispersion: Influence of sonication, hydrocolloids, and sodium hexametaphosphate. Journal of Food Processing and Preservation, 2021, 45, e15592.	2.0	1
121	Ferreting out the secrets of industrial hemp protein as emerging functional food ingredients. Trends in Food Science and Technology, 2021, 112, 1-15.	15.1	63
122	Free amino acid contents of selected Ethiopian plant and fungi species: a search for alternative natural free amino acid sources for cosmeceutical applications. Amino Acids, 2021, 53, 1105-1122.	2.7	3
123	Identification and Characterization of the Seed Storage Proteins and Related Genes of Cannabis sativa L Frontiers in Nutrition, 2021, 8, 678421.	3.7	20
124	Seed composition of nonâ€industrial hemp (<i>Cannabis sativa</i> L.) varieties from four regions in northern Morocco. International Journal of Food Science and Technology, 2021, 56, 5931-5947.	2.7	15
125	Advanced Characterization of Hemp Flour (Cannabis sativa L.) from Dacia Secuieni and Zenit Varieties, Compared to Wheat Flour. Plants, 2021, 10, 1237.	3.5	15
126	Hemp (Cannabis sativa L.) Seed Protein–EGCG Conjugates: Covalent Bonding and Functional Researc Foods, 2021, 10, 1618.	h. 4.3	10
127	Improving the color and functional properties of seabuckthorn seed protein with phytase treatment combined with alkaline solubilization and isoelectric precipitation. Journal of the Science of Food and Agriculture, 2022, 102, 931-939.	3.5	2
128	Extraction of hemp seed using near-critical CO2, propane and dimethyl ether. Journal of Supercritical Fluids, 2021, 173, 105218.	3.2	5
129	Physicochemical, functional and bioactive properties of hempseed (Cannabis sativa L.) meal, a co-product of hempseed oil and protein production, as affected by drying process. Food Chemistry, 2021, 350, 129188.	8.2	20

#	Article	IF	CITATIONS
130	Complex coacervate formation between hemp protein isolate and gum Arabic: Formulation and characterization. International Journal of Biological Macromolecules, 2021, 182, 144-153.	7.5	23
131	Plant-based meat analogue (PBMA) as a sustainable food: a concise review. European Food Research and Technology, 2021, 247, 2499-2526.	3.3	95
132	Wonder or evil?: Multifaceted health hazards and health benefits of Cannabis sativa and its phytochemicals. Saudi Journal of Biological Sciences, 2021, 28, 7290-7313.	3.8	24
133	Nutritional Profile and Potential Health Benefits of Super Foods: A Review. Sustainability, 2021, 13, 9240.	3.2	28
134	The Effect of Hemp Cake (Cannabis sativa L.) on the Characteristics of Meatballs Stored in Refrigerated Conditions. Molecules, 2021, 26, 5284.	3.8	13
135	Examination of interfacial properties of quince seed extract on a sunflower oil-water interface. Chemical Engineering Science, 2021, 245, 116951.	3.8	3
136	Selective extraction of napins: Process optimization and impact on structural and functional properties. Food Hydrocolloids, 2022, 122, 107105.	10.7	6
137	Investigation of surface properties of quince seed extract as a novel polymeric surfactant. Food Hydrocolloids, 2022, 123, 107185.	10.7	13
138	Functional and Bioactive Properties of Hemp Proteins. Sustainable Agriculture Reviews, 2020, , 239-263.	1.1	5
139	Utilization of Oilseed Cakes for Human Nutrition and Health Benefits. , 2015, , 191-229.		9
140	Macro- and microelement content and health risk assessment of heavy metals in various herbs of Iran. Environmental Science and Pollution Research, 2020, 27, 12320-12331.	5.3	20
141	In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. Journal of Food Biochemistry, 2021, 45, e13587.	2.9	33
142	Isolation and Characterization of Edestin from Cheungsam Hempseed. Journal of Applied Biological Chemistry, 2011, 54, 84-88.	0.4	28
143	Study on the Effects of Enzymatic Hydrolysis on the Physical, Functional and Chemical Properties of Peanut Protein Isolates Extracted from Defatted Heat Pressed Peanut Meal Flour (Arachis hypogaea L.). Pakistan Journal of Nutrition, 2009, 8, 818-825.	0.2	13
145	Characterization of Hempseed Protein in Cheungsam from Korea. Journal of the Korea Academia-Industrial Cooperation Society, 2011, 12, 1763-1769.	0.1	3
146	Hydrolyzed hemp seed proteins as bioactive peptides. Journal on Processing and Energy in Agriculture, 2018, 22, 90-94.	0.4	10
147	Deciphering the properties of hemp seed oil bodies for food applications: Lipid composition, microstructure, surface properties and physical stability. Food Research International, 2021, 150, 110759.	6.2	11
149	Cannabis Chemistry: Cannabinoids in Cannabis, Humans, and Other Species. , 2016, , 229-252.		0

	CITATION RE	EPORT	
#	Article	IF	CITATIONS
150	Hemp Seed as a Source of Food Proteins. Sustainable Agriculture Reviews, 2020, , 265-294.	1.1	5
151	Functional properties of hemp protein concentrate obtained by alkaline extraction and successive ultrafiltration and sprayâ€drying. International Journal of Food Science and Technology, 2022, 57, 436-446.	2.7	9
152	Hempseed Protein: Processing and Functional Properties. Sustainable Agriculture Reviews, 2020, , 223-237.	1.1	6
153	Hemp (Cannabis sativa) seed oilcake as a promising by-product for developing protein-based films: Effect of transglutaminase-induced crosslinking. Food Packaging and Shelf Life, 2022, 31, 100779.	7.5	24
154	Key Cannabis Salt-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Varieties. Agronomy, 2021, 11, 2338.	3.0	7
155	Structural and Physicochemical Characteristics of Oil Bodies from Hemp Seeds (Cannabis sativa L.). Foods, 2021, 10, 2930.	4.3	18
156	Hemp globulin forms colloidal nanocomplexes with sodium caseinate during pH-cycling. Food Research International, 2021, 150, 110810.	6.2	6
157	Modification of hemp seed protein isolate (Cannabis sativa L.) by high-intensity ultrasound treatment. Part 1: Functional properties. Food Chemistry, 2022, 375, 131843.	8.2	36
158	Shear and dilatational rheological properties of vegetable proteins at the air/water interface. Food Hydrocolloids, 2022, 126, 107472.	10.7	13
159	One-step extraction of oat protein by choline chloride-alcohol deep eutectic solvents: Role of chain length of dihydric alcohol. Food Chemistry, 2022, 376, 131943.	8.2	17
160	ANTI-OBESITY EFFECT OF CANNABIS SATIVA SEED FLOUR FROM KHLALFA OF TAOUNATE REGION (NORTHERN) [–] Clinical Research, 0, , 139-144.	Гј ЕТQq0 (0.3	0 rgBT /Ove 1
161	Evaluation of Physicochemical and Functional Properties of Vicia villosa Seed Protein. Food Analytical Methods, 2022, 15, 1187-1202.	2.6	3
162	Physicochemical and Functional Properties of 2S, 7S, and 11S Enriched Hemp Seed Protein Fractions. Molecules, 2022, 27, 1059.	3.8	13
163	Unconventional food plants: Nutritional aspects and perspectives for industrial applications. Future Foods, 2022, 5, 100124.	5.4	21
164	Processing Technologies to Produce Plant Protein Concentrates and Isolates. , 2022, , 61-108.		7
166	Industrial Hemp and Hemp Byproducts as Sustainable Feedstuffs in Livestock Diets. , 2022, , 145-162.		1
167	Physicochemical and Functional Modifications of Hemp Protein Concentrate by the Application of Ultrasonication and pH Shifting Treatments. Foods, 2022, 11, 587.	4.3	19
168	A review on the technoâ€functional, biological, and healthâ€promoting properties of hempseedâ€derived proteins and peptides. Journal of Food Biochemistry, 2022, 46, e14127.	2.9	7

#	Article	IF	CITATIONS
169	Physicochemical, structural, and functional properties of protein fractions and protein isolate from jackfruit seeds. Journal of Food Science, 2022, 87, 1540-1551.	3.1	5
170	Protein for Human Consumption From Oilseed Cakes: A Review. Frontiers in Sustainable Food Systems, 2022, 6, .	3.9	18
171	Micronized cold-pressed hemp seed cake could potentially replace 50% of the phosphates in frankfurters. Meat Science, 2022, 189, 108823.	5.5	7
172	Multiobjective decision making strategy for selective albumin extraction from a rapeseed cold-pressed meal based on Rough Set approach. Food and Bioproducts Processing, 2022, 133, 34-44.	3.6	5
173	Fabrication and characterization of oil-in-water emulsions stabilized by whey protein isolate/phloridzin/sodium alginate ternary complex. Food Hydrocolloids, 2022, 129, 107625.	10.7	37
174	Transformation of hempseed (Cannabis sativa L.) oil cake proteome, structure and functionality after extrusion. Food Chemistry, 2022, 384, 132499.	8.2	6
175	Physicochemical and functional properties of pigeon pea (Cajanus cajan) protein and non-starch polysaccharides. Bioactive Carbohydrates and Dietary Fibre, 2022, 28, 100317.	2.7	3
176	What You Extract Is What You Get: Different Methods of Protein Extraction from Hemp Seeds. Separations, 2021, 8, 231.	2.4	3
177	Fabrication and Characterization of Gel Beads of Whey Isolate Protein–Pectin Complex for Loading Quercetin and Their Digestion Release. Gels, 2022, 8, 18.	4.5	14
178	Protein extraction from coldâ€pressed hempseed press cake: From laboratory to pilot scale. Journal of Food Science, 2022, 87, 312-325.	3.1	10
179	Antimicrobial Effect of a Proteolytic Enzyme From the Fruits of Solanum granuloso-leprosum (Dunal) Against Helicobacter pylori. Frontiers in Nutrition, 2021, 8, 699955.	3.7	2
181	Effect of high-intensity ultrasonic treatment on the emulsion of hemp seed oil stabilized with hemp seed protein. Ultrasonics Sonochemistry, 2022, 86, 106021.	8.2	23
182	Effect of solvent composition on the extraction of proteins from hemp oil processing stream. Journal of the Science of Food and Agriculture, 2022, 102, 6293-6298.	3.5	7
183	Hemp (Cannabis sativa L.) protein concentrates from wet and dry industrial fractionation: Molecular properties, nutritional composition, and anisotropic structuring. Food Hydrocolloids, 2022, 131, 107755.	10.7	32
184	Phenolic Acid Composition and Antioxidant Activity of Whole and Defatted Seeds of Italian Hemp Cultivars: A Two-Year Case Study. Agriculture (Switzerland), 2022, 12, 759.	3.1	5
186	Industrial Hemp: Proteins. , 2023, , .		0
187	Industrial hemp foods and beverages and product properties. , 2022, , 219-246.		1
188	Nutritional and chemical composition of industrial hemp seeds. , 2022, , 73-93.		0

#	Article	IF	CITATIONS
190	Perspectives of industrial hemp cultivation. , 2022, , 1-36.		0
191	Industrial hemp proteins: Processing and properties. , 2022, , 125-146.		1
192	Physicochemical characteristics, protein analysis, and antioxidant properties of defatted Lagenaria siceraria (Molina) Standley and Cucumeropsis mannii (Naudin) seed kernel flours. , 2022, 29, 173-185.		0
193	Hemp Protein. , 2023, , 23-36.		2
194	Biochemical Characterization and In Vitro Digestibility of Protein Isolates from Hemp (Cannabis sativa) Tj ETQq0	0 Q rgBT /	Overlock 101

195	Industrial hemp seed: from the field to value-added food ingredients. Journal of Cannabis Research, 2022, 4, .	3.2	38
196	The effects of germination on the composition and functional properties of hemp seed protein isolate. Food Hydrocolloids, 2023, 134, 108085.	10.7	11
197	Asclepain cl, a proteolytic enzyme from Asclepias curassavica L., a south American plant, against Helicobacter pylori. Frontiers in Microbiology, 0, 13, .	3.5	0
198	Effect of salt concentration and drying temperature on functional properties of sesame (Sesamum) Tj ETQq0 0 0 4665-4674.	rgBT /Ove 3.2	erlock 10 Tf 6
199	Mixing plant-based proteins: Gel properties of hemp, pea, lentil proteins and their binary mixtures. Food Research International, 2022, 161, 111752.	6.2	15
200	Application of ultrasound treatment to improve the technofunctional properties of hemp protein isolate. Future Foods, 2022, 6, 100176.	5.4	23
201	Linking agronomical practices for Cannabis sativa L. production and its potential usages: fiber, seeds, essential oils and cannabinoids production. , 2023, , 49-75.		0
202	Gelatin and other proteins for microencapsulation. , 2023, , 293-308.		2
203	Reverse micelles extraction of hemp protein isolate: Impact of defatting process on protein structure, functionality, and aromatic profile. Food Hydrocolloids, 2023, 135, 108158.	10.7	21
204	Physicochemical, Structural, and Functional Properties of Hemp Protein vs Several Commercially Available Plant and Animal Proteins: A Comparative Study. ACS Food Science & Technology, 2022, 2, 1672-1680.	2.7	8
205	The Effect of Yogurt and Kefir Starter Cultures on Bioactivity of Fermented Industrial By-Product from Cannabis sativa Production—Hemp Press Cake. Fermentation, 2022, 8, 490.	3.0	7
206	Potential applications of hemp (<i>Cannabis sativa</i> L.) extracts and their phytochemicals as functional ingredients in food and medicinal supplements: a narrative review. International Journal of Food Science and Technology, 2022, 57, 7542-7555.	2.7	5
207	Characterization of the Volatile Profiles of Six Industrial Hemp (Cannabis sativa L.) Cultivars. Agronomy, 2022, 12, 2651.	3.0	5

#	Article	IF	CITATIONS
208	Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants, 2022, 11, 2825.	3.5	6
209	Effect of Extrusion on the Functional, Textural and Colour Characteristics of Texturized Hempseed Protein. Food and Bioprocess Technology, 2023, 16, 98-110.	4.7	8
210	Physicochemical and Antioxidant Properties of Industrial Hemp Seed Protein Isolate Treated by High-Intensity Ultrasound. Plant Foods for Human Nutrition, 2022, 77, 577-583.	3.2	13
211	Hemp protein isolate – gum Arabic complex coacervates as a means for oregano essential oil encapsulation. Comparison with whey protein isolate – gum Arabic system. Food Hydrocolloids, 2023, 136, 108284.	10.7	13
213	Antioxidant Properties of Hemp Proteins: From Functional Food to Phytotherapy and Beyond. Molecules, 2022, 27, 7924.	3.8	5
214	Formation and characterization of plant-based amyloid fibrils from hemp seed protein. Food Hydrocolloids, 2023, 137, 108307.	10.7	11
215	Regional differentiation based on volatile compounds via HS-SPME/GC–MS and chemical compositions comparison of hemp (Cannabis sativa L.) seeds. Food Research International, 2022, 162, 112151.	6.2	2
216	Emerging natural hemp seed proteins and their functions for nutraceutical applications. Food Science and Human Wellness, 2023, 12, 929-941.	4.9	20
217	Interfacial behavior of vegetable protein isolates at sunflower oil/water interface. Colloids and Surfaces B: Biointerfaces, 2023, 221, 113035.	5.0	3
218	Interfacial adsorption properties, rheological properties and oxidation kinetics of oleogel-in-water emulsion stabilized by hemp seed protein. Food Hydrocolloids, 2023, 137, 108402.	10.7	18
219	Hemp protein isolate-polysaccharide complex coacervates and their application as emulsifiers in oil-in-water emulsions. Food Hydrocolloids, 2023, 137, 108352.	10.7	12
220	Hemp Seed Oil Extraction and Stable Emulsion Formulation with Hemp Protein Isolates. Applied Sciences (Switzerland), 2022, 12, 11921.	2.5	7
221	Uncovering the secrets of industrial hemp in food and nutrition: The trends, challenges, and new-age perspectives. Critical Reviews in Food Science and Nutrition, 0, , 1-20.	10.3	14
222	Bioactive polyphenols separated from hemp seed shells ameliorate H ₂ O ₂ Aitinduced oxidative stress injury in human umbilical vein endothelial cells. Journal of Food Science, 2023, 88, 537-551.	3.1	4
223	Plant Protein versus Dairy Proteins: A pH-Dependency Investigation on Their Structure and Functional Properties. Foods, 2023, 12, 368.	4.3	13
224	The Impact of High-Intensity Ultrasound-Assisted Extraction on the Structural and Functional Properties of Hempseed Protein Isolate (HPI). Foods, 2023, 12, 348.	4.3	12
225	Hemp seeds: Nutritional value, associated bioactivities and the potential food applications in the Colombian context. Frontiers in Nutrition, 0, 9, .	3.7	11
226	Extraction techniques for bioactive compounds of cannabis. Natural Product Reports, 2023, 40, 676-717.	10.3	6

#	Article	IF	CITATIONS
227	In Vitro Digestibility, Biological Activity, and Physicochemical Characterization of Proteins Extracted from Conventionally and Organically Cultivated Hempseed (Cannabis sativa L.). Molecules, 2023, 28, 915.	3.8	0
228	Beneficial metabolic transformations and prebiotic potential of hemp bran and its alcalase hydrolysate, after colonic fermentation in a gut model. Scientific Reports, 2023, 13, .	3.3	4
229	Composition and functional properties of hemp seed protein isolates from various hemp cultivars. Journal of Food Science, 2023, 88, 942-951.	3.1	9
230	Fructus cannabis protein extract powder as a green and high effective corrosion inhibitor for Q235 carbon steel in 1AM HCl solution. International Journal of Biological Macromolecules, 2023, 239, 124358.	7.5	27
231	Effect of enzymatic hydrolysis on solubility and surface properties of pea, rice, hemp, and oat proteins: Implication on high protein concentrations. Food Bioscience, 2023, 53, 102515.	4.4	3
233	Total Phenolic Content and Antioxidant Activity of In Vitro Digested Hemp-Based Products. Foods, 2023, 12, 601.	4.3	8
234	Synergistic effects of pH shift and heat treatment on solubility, physicochemical and structural properties, and lysinoalanine formation in silkworm pupa protein isolates. Food Research International, 2023, 165, 112554.	6.2	14
235	Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods, 2023, 12, 651.	4.3	15
236	Bioactive Properties and Food Applications of Cannabis sativa and Applications of Its Molecular Modeling. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 101-114.	0.1	0
237	Structural and Functional Characteristics of Hemp Protein Isolate–Pullulan Polysaccharide Glycosylation Conjugate in an Aqueous Model System. Foods, 2023, 12, 1416.	4.3	2
238	Hempseed protein (Cannabis sativa L.): Influence of extraction pH and ball milling on physicochemical and functional properties. Food Hydrocolloids, 2023, 143, 108835.	10.7	6
239	Hempseed polysaccharide (Cannabis sativa L.): Physicochemical characterization and comparison with flaxseed polysaccharide. Food Hydrocolloids, 2023, 143, 108900.	10.7	4
240	Effects of enzyme treatments on the functionality of commercial pea and pea blended protein ingredients. Food Bioscience, 2023, 53, 102838.	4.4	1
241	Optimization of Hempseed-Added Kombucha for Increasing the Antioxidant Capacity, Protein Concentration, and Total Phenolic Content. Beverages, 2023, 9, 50.	2.8	0
242	Bromelain Hydrolysis Modified the Functionality, Antioxidant, and Anti-Inflammatory Properties of Hempseed (<i>Cannabis sativa</i> L.) Protein Isolated at pH 12. ACS Food Science & Technology, 2023, 3, 1049-1056.	2.7	0
243	Extrusion of high-moisture meat analogues from hempseed protein concentrate and oat fibre residue. Journal of Food Engineering, 2023, 354, 111567.	5.2	3
244	Determining the impact of genotype × environment on oat protein isolate structural and functional characteristics. Cereal Chemistry, 2023, 100, 986-1000.	2.2	1
245	Production of Nattokinase from Hemp Seed Meal by Solid-State Fermentation and Improvement of Its Nutritional Quality. Fermentation, 2023, 9, 469.	3.0	Ο

#	Article	IF	CITATIONS
246	Germination and ultrafiltration modify the composition and functional properties of hemp seed protein isolates. Food Bioscience, 2023, 53, 102761.	4.4	0
247	An Investigation into the Mechanism of Alkaline Extraction-Isoelectric Point Precipitation (AE-IEP) of High-Thiol Plant Proteins. Applied Sciences (Switzerland), 2023, 13, 6469.	2.5	3
249	Multifunctional Properties of PBAT with Hemp (Cannabis sativa) Micronised Fibres for Food Packaging: Cast Films and Coated Paper. Coatings, 2023, 13, 1195.	2.6	2
250	Faba Bean Processing: Thermal and Non-Thermal Processing on Chemical, Antinutritional Factors, and Pharmacological Properties. Molecules, 2023, 28, 5431.	3.8	4
251	Dynamic high-pressure microfluidization assist in stabilizing hemp seed protein-gum Arabic bilayer emulsions: Rheological properties and oxidation kinetic model. Industrial Crops and Products, 2023, 203, 117201.	5.2	1
252	Functional End-Use of Hemp Seed Waste: Technological, Qualitative, Nutritional, and Sensorial Characterization of Fortified Bread. Sustainability, 2023, 15, 12899.	3.2	0
253	The physicochemical properties, functionality, and digestibility of hempseed protein isolate as impacted by spray drying and freeze drying. Food Chemistry, 2024, 433, 137310.	8.2	1
254	Recovery of Protein from Industrial Hemp Waste (Cannabis sativa, L.) Using High-Pressure Processing and Ultrasound Technologies. Foods, 2023, 12, 2883.	4.3	0
255	The Role of Hemp (Cannabis sativa L.) as a Functional Food in Vegetarian Nutrition. Foods, 2023, 12, 3505.	4.3	1
256	High moisture extrusion of plant proteins: advances, challenges, and opportunities. Critical Reviews in Food Science and Nutrition, 0, , 1-22.	10.3	0
257	Physicochemical and functional properties of Pleurotus eryngii proteins with different molecular weight. LWT - Food Science and Technology, 2023, 184, 115102.	5.2	0
258	Surface activity of protein extracts from seed oil by-products and wettability of developed bioplastics. Food Hydrocolloids, 2023, 145, 109091.	10.7	2
259	PLANT-BASED MILK ANALOGUES. Gıda, 2023, 48, 784-805.	0.4	0
260	Elucidation of synergistic interactions between anionic polysaccharides and hemp seed protein isolate and their functionalities in stabilizing the hemp seed oil-based nanoemulsion. Food Hydrocolloids, 2024, 146, 109181.	10.7	2
261	Modification of sunnhemp (Crotalaria juncea) protein isolate by high intensity ultrasound: Impact on the molecular structure, amino acid composition and nutritional profiling. Food Bioscience, 2023, 56, 103100.	4.4	1
262	The in vivo and in vitro protein quality of three hemp protein sources. Food Science and Nutrition, 2023, 11, 7264-7270.	3.4	0
263	Commercial Hemp (Cannabis sativa Subsp. sativa) Proteins and Flours: Nutritional and Techno-Functional Properties. Applied Sciences (Switzerland), 2023, 13, 10130.	2.5	0
264	A comprehensive review on hempseed protein: Production, functional and nutritional properties, novel modification methods, applications, and limitations. International Journal of Biological Macromolecules, 2023, , 127240.	7.5	0

#	Article	IF	CITATIONS
265	Proteins from Blackberry Seeds: Extraction, Osborne Isolate, Characteristics, Functional Properties, and Bioactivities. International Journal of Molecular Sciences, 2023, 24, 15371.	4.1	1
266	Covalent modification using hemp seed polyphenols improves the structural and functional properties of the hemp seed globulin. Food Bioscience, 2023, 56, 103293.	4.4	1
267	The structural and functional properties of hemp protein isolateâ€epigallocatechinâ€3â€gallate biopolymer covalent complex during heating. Journal of the Science of Food and Agriculture, 2024, 104, 2484-2492.	3.5	0
268	High moisture meat analogues from hemp – The effect of co-extrusion with wheat gluten and chickpea proteins on the textural properties and sensorial attributes. LWT - Food Science and Technology, 2023, 189, 115494.	5.2	1
269	Hemp seed globulin-alginate nanoparticles for encapsulation of Cannabisin A with enhanced colloidal stability and antioxidant activity. International Journal of Biological Macromolecules, 2024, 256, 128380.	7.5	0
270	Protein from rapeseed for food applications: Extraction, sensory quality, functional and nutritional properties. Food Chemistry, 2024, 439, 138109.	8.2	0
271	Study of the Physiochemical and Functional Properties of Fenugreek Protein Isolate. IOP Conference Series: Earth and Environmental Science, 2023, 1262, 062014.	0.3	0
272	Manothermosonication, high-pressure homogenization, and their combinations with pH-shifting improve the techno-functionality and digestibility of hemp protein. Food Hydrocolloids, 2024, 150, 109661.	10.7	0
273	Chemical Characterization of 29 Industrial Hempseed (Cannabis sativa L.) Varieties. Foods, 2024, 13, 210.	4.3	0
274	Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp (Cannabis) Tj ETQq1 1 0.78	34314 rgB	T /Overlock
		84314 rgB 8.2	T /Overlock
274	Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp (Cannabis) Tj ETQq1 1 0.78 Enhancing techno-functional attributes of plant protein and curcumin complexation: A comparative examination of Maillard conjugation induced by manothermosonication and ultrasonication. Food	0.0	
274 275	Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp (Cannabis) Tj ETQq1 1 0.78 Enhancing techno-functional attributes of plant protein and curcumin complexation: A comparative examination of Maillard conjugation induced by manothermosonication and ultrasonication. Food Chemistry, 2024, 442, 138488. Hempseed (Cannabis sativa L.) Proteins: Composition, Structure, Enzymatic Modification, and	0.0	0
274 275 276	 Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp (Cannabis) Tj ETQq1 1 0.78 Enhancing techno-functional attributes of plant protein and curcumin complexation: A comparative examination of Maillard conjugation induced by manothermosonication and ultrasonication. Food Chemistry, 2024, 442, 138488. Hempseed (Cannabis sativa L) Proteins: Composition, Structure, Enzymatic Modification, and Functional or Bioactive Properties. , 2024, , 323-338. Structural and physicochemical properties of sesame cake protein isolates obtained by different 	8.2	0
274 275 276 277	 Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp (Cannabis) Tj ETQq1 1 0.78 Enhancing techno-functional attributes of plant protein and curcumin complexation: A comparative examination of Maillard conjugation induced by manothermosonication and ultrasonication. Food Chemistry, 2024, 442, 138488. Hempseed (Cannabis sativa L.) Proteins: Composition, Structure, Enzymatic Modification, and Functional or Bioactive Properties. , 2024, , 323-338. Structural and physicochemical properties of sesame cake protein isolates obtained by different extraction methods. Food Hydrocolloids, 2024, 151, 109757. Physicochemical Characterisation of Seeds, Oil and Defatted Cake of Three Hempseed Varieties 	8.2	0 0 0
274 275 276 277 278	 Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp (Cannabis) Tj ETQq1 1 0.78 Enhancing techno-functional attributes of plant protein and curcumin complexation: A comparative examination of Maillard conjugation induced by manothermosonication and ultrasonication. Food Chemistry, 2024, 442, 138488. Hempseed (Cannabis sativa L.) Proteins: Composition, Structure, Enzymatic Modification, and Functional or Bioactive Properties. , 2024, , 323-338. Structural and physicochemical properties of sesame cake protein isolates obtained by different extraction methods. Food Hydrocolloids, 2024, 151, 109757. Physicochemical Characterisation of Seeds, Oil and Defatted Cake of Three Hempseed Varieties Cultivated in Spain. Foods, 2024, 13, 531. 	8.2	0 0 0 0
274 275 276 277 278 279	 Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp (Cannabis) Tj ETQq1 1 0.78 Enhancing techno-functional attributes of plant protein and curcumin complexation: A comparative examination of Maillard conjugation induced by manothermosonication and ultrasonication. Food Chemistry, 2024, 442, 138488. Hempseed (Cannabis sativa L.) Proteins: Composition, Structure, Enzymatic Modification, and Functional or Bioactive Properties. , 2024, , 323-338. Structural and physicochemical properties of sesame cake protein isolates obtained by different extraction methods. Food Hydrocolloids, 2024, 151, 109757. Physicochemical Characterisation of Seeds, Oil and Defatted Cake of Three Hempseed Varieties Cultivated in Spain. Foods, 2024, 13, 531. Oilseed Meal as a Source of Protein: Introductory Remarks. , 2024, , 1-29. Nutraceutical potential, phytochemistry of hemp seed (Cannabis sativa L.) and its application in food 	8.2	

#	Article	IF	CITATIONS
284	Optimization of extraction parameters of protein isolate from milk thistle seed: Physicochemical and functional characteristics. Food Science and Nutrition, 0, , .	3.4	0
285	Hemp cultivation opportunities for marginal lands development. PLoS ONE, 2024, 19, e0299981.	2.5	0