Design and Tailoring of the Nanotubular Arrayed Archit Generation Supercapacitors

Nano Letters 6, 2690-2695 DOI: 10.1021/nl061576a

Citation Report

#	Article	IF	CITATIONS
1	Inorganic Nanotubes and Fullerene-Like Structures (IF). Topics in Applied Physics, 2007, , 631-671.		47
2	Carbon/nanostructured Ru composites as electrodes for supercapacitors. New Carbon Materials, 2007, 22, 302-306.	2.9	15
3	Well-Aligned Ternary Cd ₁₋ <i>_x</i> Zn <i>_x</i> S Nanowire Arrays and Their Composition-Dependent Field Emission Properties. Journal of Physical Chemistry C, 2007, 111, 13418-13426.	1.5	45
4	Textural and Capacitive Characteristics of Hydrothermally Derived RuO2·xH2O Nanocrystallites:Â Independent Control of Crystal Size and Water Content. Chemistry of Materials, 2007, 19, 2112-2119.	3.2	166
5	Structures and Electrochemical Capacitive Properties of RuO2Vertical Nanorods Encased in Hydrous RuO2. Journal of Physical Chemistry C, 2007, 111, 9530-9537.	1.5	84
6	Controllable Fabrication and Electrical Performance of Single Crystalline Cu ₂ O Nanowires with High Aspect Ratios. Nano Letters, 2007, 7, 3723-3728.	4.5	225
7	Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design. Surface and Coatings Technology, 2007, 201, 7259-7265.	2.2	57
8	Two-step hydrothermal synthesis of Ru–Sn oxide composites for electrochemical supercapacitors. Electrochimica Acta, 2007, 52, 4411-4418.	2.6	54
9	H2V3O8 single-crystal nanobelts: Hydrothermal preparation and formation mechanism. Acta Materialia, 2007, 55, 6192-6197.	3.8	32
10	Modification of multi-walled carbon nanotubes for electric double-layer capacitors: Tube opening and surface functionalization. Journal of Physics and Chemistry of Solids, 2007, 68, 2353-2362.	1.9	61
11	Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors. Journal of Power Sources, 2007, 168, 546-552.	4.0	131
12	Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors. Electrochimica Acta, 2008, 53, 3296-3304.	2.6	91
13	Aligned Titania Nanotubes as an Intercalation Anode Material for Hybrid Electrochemical Energy Storage. Advanced Functional Materials, 2008, 18, 3787-3793.	7.8	97
14	Fabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodes. Journal of Power Sources, 2008, 184, 682-690.	4.0	85
15	GaN taper rods: Solid-phase synthesis, crystal defects, and optical properties. Journal of Solid State Chemistry, 2008, 181, 1634-1641.	1.4	9
16	Viologen-assisted manganese oxide electrode for improved electrochemical supercapacitors. Journal of Electroanalytical Chemistry, 2008, 624, 167-173.	1.9	19
17	Pulse deposition of large area, patterned manganese oxide nanowires in variable aspect ratios without templates. Electrochemistry Communications, 2008, 10, 1792-1796.	2.3	28
18	Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advances in Colloid and Interface Science, 2008, 136, 45-64.	7.0	331

TATION REDO

щ		15	CITATIONS
#	Novel method for the preparation of carbon supported pano-sized amorphous ruthenium oxides for	IF	CHATIONS
19	supercapacitors. Electrochemistry Communications, 2008, 10, 1035-1037.	2.3	18
20	Anodic deposition of hydrous ruthenium oxide for supercapaciors: Effects of the AcOâ^' concentration, plating temperature, and oxide loading. Electrochimica Acta, 2008, 53, 2679-2687.	2.6	22
21	Analyzing the electroactive surface of gold nanopillars by electrochemical methods for electrode miniaturization. Electrochimica Acta, 2008, 53, 6265-6272.	2.6	57
22	Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors. Microporous and Mesoporous Materials, 2008, 110, 590-594.	2.2	77
23	Synthesis of Ru/multiwalled carbon nanotubes by microemulsion for electrochemical supercapacitor. Materials Research Bulletin, 2008, 43, 2818-2824.	2.7	19
24	Pt–Ru nanowire arrayed electrodes for nitrite detection. Materials Letters, 2008, 62, 1663-1665.	1.3	6
25	Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chemical Communications, 2008, , 2373.	2.2	180
26	Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chemical Communications, 2008, , 6537.	2.2	533
28	Supercapacitive behavior of CVD carbon nanotubes grown on Ti coated Si wafer. Diamond and Related Materials, 2008, 17, 906-911.	1.8	23
29	Well-Aligned Cone-Shaped Nanostructure of Polypyrrole/RuO ₂ and Its Electrochemical Supercapacitor. Journal of Physical Chemistry C, 2008, 112, 14843-14847.	1.5	231
30	Effects of the Co content in the material characteristics and supercapacitive performance of binary Mn–Co oxide electrodes. Journal of Alloys and Compounds, 2008, 461, 667-674.	2.8	35
31	Electrochemical Deposition of Porous Co(OH)[sub 2] Nanoflake Films on Stainless Steel Mesh for Flexible Supercapacitors. Journal of the Electrochemical Society, 2008, 155, A926.	1.3	64
32	Honeycomb pattern array of vertically standing core-shell nanorods: Its application to Li energy electrodes. Applied Physics Letters, 2008, 93, .	1.5	18
33	Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology, 2008, 19, 215710.	1.3	196
34	Synthesis of Ruthenium Dioxide Nanoparticles by a Two-Phase Route and Their Electrochemical Properties. Journal of Physical Chemistry C, 2008, 112, 16219-16224.	1.5	26
35	Nanostructured Metal Oxide and Composite Electrodes for Use in Ultracapacitors. Materials Research Society Symposia Proceedings, 2008, 1113, 1.	0.1	0
36	Formation of Ru Nanotubes by Atomic Layer Deposition onto an Anodized Aluminum Oxide Template. Electrochemical and Solid-State Letters, 2008, 11, K61.	2.2	40
37	Pseudocapacitive Characteristics of Vanadium Oxide Deposits with a Three-Dimensional Porous Structure. Journal of the Electrochemical Society, 2009, 156, A667.	1.3	44

#	Article		CITATIONS
38	Synthesis of Polypyrrole-Intercalated Layered Manganese Oxide Nanocomposite by a Delaminationâ^•Reassembling Method and Its Electrochemical Capacitance Performance. Electrochemical and Solid-State Letters, 2009, 12, A95.		37
39	Anodic Deposition of Vanadium Oxides for Thermal-Induced Growth of Vanadium Oxide Nanowires. Journal of the Electrochemical Society, 2009, 156, D485.		18
40	Layer-By-Layer assembled thin films of inorganic nanomaterials: fabrication and photo-electrochemical properties. International Journal of Surface Science and Engineering, 2009, 3, 44.	0.4	10
41	Nanostructured SnS/carbon composite for supercapacitor. Materials Letters, 2009, 63, 1785-1787.	1.3	49
42	Blockâ€Copolymerâ€Templated Synthesis of Electroactive RuO ₂ â€Based Mesoporous Thin Films. Advanced Functional Materials, 2009, 19, 1922-1929.	7.8	76
43	Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. Journal of Power Sources, 2009, 194, 1202-1207.	4.0	358
44	Mesoporous RuO2 for the next generation supercapacitors with an ultrahigh power density. Electrochimica Acta, 2009, 54, 4574-4581.	2.6	106
45	Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide. Electrochimica Acta, 2009, 54, 7452-7457.	2.6	29
46	Supercapacitive properties of composite electrodes consisting of polyaniline, carbon nanotube, and RuO2. Journal of Applied Electrochemistry, 2009, 39, 1331-1337.		46
47	Improved performances of mechanical-activated LiMn2O4/MWNTs cathode for aqueous rechargeable lithium batteries. Journal of Applied Electrochemistry, 2009, 39, 1943-1948.	1.5	32
48	Template-free synthesis of ordered mesoporous NiO/poly(sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors. Nano Research, 2009, 2, 722-732.	5.8	57
49	Nanoelectrodes: energy conversion and storage. Materials Today, 2009, 12, 20-27.	8.3	61
50	Manganese oxide–carbon composite as supercapacitor electrode materials. Microporous and Mesoporous Materials, 2009, 123, 260-267.	2.2	150
51	Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochimica Acta, 2009, 54, 1240-1248.	2.6	108
52	Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochimica Acta, 2009, 54, 1153-1159.	2.6	155
53	Influence of the mesoporous structure on capacitance of the RuO2 electrode. Journal of Power Sources, 2009, 189, 1284-1291.	4.0	41
54	Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. Electrochemistry Communications, 2009, 11, 313-317.	2.3	111
55	One-dimensional MoO2 nanorods for supercapacitor applications. Electrochemistry Communications, 2009, 11, 572-575.	2.3	186

#	Article		CITATIONS
56	Anodic composite deposition of RuO2·xH2O–TiO2 for electrochemical supercapacitors. Electrochemistry Communications, 2009, 11, 1631-1634.	2.3	63
57	Textural and pseudocapacitive characteristics of sol–gel derived RuO2·xH2O: Hydrothermal annealing vs. annealing in air. Electrochimica Acta, 2009, 54, 978-983.	2.6	43
58	Nanostructural and Morphological Control of Ruthenium Compounds Templated by Surfactant Assemblies. Crystal Growth and Design, 2009, 9, 5092-5100.	1.4	5
59	RuO2/carbon nanotubes composites synthesized by microwave-assisted method for electrochemical supercapacitor. Synthetic Metals, 2009, 159, 158-161.	2.1	43
60	Capacitive properties of RuO2 and Ru–Co mixed oxide deposited on single-walled carbon nanotubes for high-performance supercapacitors. Synthetic Metals, 2009, 159, 1389-1392.	2.1	40
61	Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009, 38, 2520.	18.7	6,276
62	Electrochemical Synthesis and Supercapacitive Properties of ε-MnO[sub 2] with Porous/Nanoflaky Hierarchical Architectures. Journal of the Electrochemical Society, 2009, 156, A627.	1.3	62
63	Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Applied Physics Letters, 2009, 94, .	1.5	173
64	Shape-Controlled Synthesis of 3D Hierarchical MnO ₂ Nanostructures for Electrochemical Supercapacitors. Crystal Growth and Design, 2009, 9, 528-533.	1.4	253
65	Engineered Macroporosity in Single-Wall Carbon Nanotube Films. Nano Letters, 2009, 9, 677-683.	4.5	81
66	Enhancement in electrochemical catalytic activity of mesoporous RuOxHy and Pt/RuOxHy by gas treatment. Dalton Transactions, 2009, , 3395.	1.6	9
67	Synthesis of mesoporous carbon by using polymer blend as template for the high power supercapacitor. Diamond and Related Materials, 2009, 18, 448-451.	1.8	22
68	Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 5983.	6.7	1,338
69	Hydrothermal synthesis and electrochemical capacitance of RuO2·xH2O loaded on benzenesulfonic functionalized MWCNTs. Electrochimica Acta, 2010, 55, 3681-3686.	2.6	29
70	Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. Journal of Power Sources, 2010, 195, 3742-3747.	4.0	192
71	RuO2/Co3O4 thin films prepared by spray pyrolysis technique for supercapacitors. Journal of Solid State Electrochemistry, 2010, 14, 1205-1211.	1.2	33
72	Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Research, 2010, 3, 594-603.	5.8	397
73	Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research, 2010, 3, 643-652.	5.8	534

#	Article		CITATIONS
74	Ag nanowires and its application as electrode materials in electrochemical capacitor. Journal of Applied Electrochemistry, 2010, 40, 341-344.		36
75	Ruthenium oxide–niobium hydroxide composites for pseudocapacitor electrodes. Materials Chemistry and Physics, 2010, 124, 359-370.	2.0	15
76	Self-assembled manganese dioxide nanowires as electrode materials for electrochemical capacitors. Materials Letters, 2010, 64, 2670-2672.	1.3	36
77	Pseudocapacitive Properties of Nanoâ€structured Anhydrous Ruthenium Oxide Thin Film Prepared by Electrostatic Spray Deposition and Electrochemical Lithiation/Delithiation. Fuel Cells, 2010, 10, 865-872.	1.5	11
78	A Costâ€Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxideâ€Driven Sol–Gel Process. Advanced Materials, 2010, 22, 347-351.	11.1	1,108
79	Designed Smart System of the Sandwiched and Concentric Architecture of RuO ₂ /C/RuO ₂ for High Performance in Electrochemical Energy Storage. Chemistry - A European Journal, 2010, 16, 3598-3603.	1.7	58
80	Effect of temperature and atmosphere on the conductivity and electrochemical capacitance of single-unit-thick ruthenium dioxide. Journal of Electroanalytical Chemistry, 2010, 644, 155-163.	1.9	22
81	Facile synthesis and electrochemical properties of conducting SrRuO3–RuO2 composite nanofibre mats. Journal of Power Sources, 2010, 195, 1522-1528.	4.0	20
82	A doped activated carbon prepared from polyaniline for high performance supercapacitors. Journal of Power Sources, 2010, 195, 1516-1521.	4.0	194
83	Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources, 2010, 195, 3041-3045.	4.0	540
84	MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. Journal of Power Sources, 2010, 195, 4410-4413.	4.0	262
85	CoS spheres for high-rate electrochemical capacitive energy storage application. International Journal of Hydrogen Energy, 2010, 35, 9709-9715.	3.8	139
86	Capacitance properties of electrochemically deposited polyazulene films. Electrochimica Acta, 2010, 55, 970-978.	2.6	18
87	Improved capacitive behavior of electrochemically synthesized Mn oxide/PEDOT electrodes utilized as electrochemical capacitors. Electrochimica Acta, 2010, 55, 4014-4024.	2.6	98
88	Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide. Electrochimica Acta, 2010, 55, 8388-8396.	2.6	186
89	Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon, 2010, 48, 487-493.	5.4	999
90	Synthesis and Applications of Zirconia and Ruthenium Oxide Nanotubes. Topics in Applied Physics, 2010, , 117-133.	0.4	2
91	Facile Synthesis of Highly Conductive Platinum Nanofiber Mats as Conducting Core for High Rate Redox Supercapacitor, Electrochemical and Solid-State Letters, 2010, 13, A65,	2.2	20

#	Article		CITATIONS
92	Improved Specific Capacitance of Amorphous Vanadium Pentoxide in a Nanoporous Alumina Template. Electrochemical and Solid-State Letters, 2010, 13, A25.		12
93	Microwave-Assisted Hydrothermal Synthesis of RuO[sub 2]â‹xH[sub 2]O–TiO[sub 2] Nanocomposites for High Power Supercapacitors. Electrochemical and Solid-State Letters, 2010, 13, A173.		25
94	Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V ₂ O ₅ . Chemistry of Materials, 2010, 22, 914-921.		161
95	A unique strategy for preparing single-phase unitary/binary oxides–graphene composites. Chemical Communications, 2010, 46, 7957.		63
96	Redox Exchange Induced MnO ₂ Nanoparticle Enrichment in Poly(3,4-ethylenedioxythiophene) Nanowires for Electrochemical Energy Storage. ACS Nano, 2010, 4, 4299-4307.	7.3	239
97	Mesoporous MnO ₂ /Carbon Aerogel Composites as Promising Electrode Materials for High-Performance Supercapacitors. Langmuir, 2010, 26, 2209-2213.	1.6	228
98	Direct Access to Metal or Metal Oxide Nanocrystals Integrated with One-Dimensional Nanoporous Carbons for Electrochemical Energy Storage. Journal of the American Chemical Society, 2010, 132, 15030-15037.	6.6	150
99	Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. Journal of Materials Chemistry, 2010, 20, 3729.	6.7	228
100	Growth of Polyaniline on Hollow Carbon Spheres for Enhancing Electrocapacitance. Journal of Physical Chemistry C, 2010, 114, 19867-19874.		197
101	Impact of Accompanying Hydrogen Generation on Metal Nanotube Electrodeposition. Journal of the Electrochemical Society, 2010, 157, D357.	1.3	18
102	Template Synthesis of Tubular Ruthenium Oxides for Supercapacitor Applications. Journal of Physical Chemistry C, 2010, 114, 13608-13613.	1.5	144
103	Facile Coating of Manganese Oxide on Tin Oxide Nanowires with High-Performance Capacitive Behavior. ACS Nano, 2010, 4, 4247-4255.	7.3	518
104	Electrochemical Synthesis of Polyaniline Nanobelts with Predominant Electrochemical Performances. Macromolecules, 2010, 43, 2178-2183.	2.2	223
105	Nanostructured Ruthenium Oxide Electrodes via High-Temperature Molecular Templating for Use in Electrochemical Capacitors. ACS Applied Materials & amp; Interfaces, 2010, 2, 778-787.	4.0	28
106	Design and Synthesis of Hierarchical MnO ₂ Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano Letters, 2010, 10, 2727-2733.	4.5	898
107	Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chemical Communications, 2010, 46, 5021.	2.2	206
108	The Nickel Oxide/CNT Composites with High Capacitance for Supercapacitor. Journal of the Electrochemical Society, 2010, 157, A818.	1.3	101
109	Microstructure and Pseudocapacitive Properties of Electrodes Constructed of Oriented NiO-TiO ₂ Nanotube Arrays. Nano Letters, 2010, 10, 4099-4104.	4.5	417

#	Article	IF	CITATIONS
110	Highly Dispersed RuO ₂ Nanoparticles on Carbon Nanotubes: Facile Synthesis and Enhanced Supercapacitance Performance. Journal of Physical Chemistry C, 2010, 114, 2448-2451.	1.5	312
111	Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors. Chemical Communications, 2010, 46, 6968.	2.2	81
112	Heterogeneous films of ordered CeO ₂ /Ni concentric nanostructures for fuelcell applications. Physical Chemistry Chemical Physics, 2010, 12, 4295-4300.	1.3	11
113	Controllable growth of La(OH)3 nanorod and nanotube arrays. CrystEngComm, 2010, 12, 4066.	1.3	18
114	Facile synthesis and electrochemical properties of RuO2 nanofibers with ionically conducting hydrous layer. Journal of Materials Chemistry, 2010, 20, 9172.	6.7	57
115	Advanced energy research of College of Engineering at National Tsing Hua University. , 2010, , .		2
116	Hybrid MnO ₂ –disordered mesoporous carbon nanocomposites: synthesis and characterization as electrochemical pseudocapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 390-398.	6.7	78
117	Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors. Physical Chemistry Chemical Physics, 2010, 12, 4309.	1.3	122
118	Facile and mass production synthesis of β-NaYF4:Yb3+, Er3+/Tm3+ 1D microstructures with multicolor up-conversion luminescence. Chemical Communications, 2011, 47, 12143.	2.2	67
119	Porous nickel oxide nano-sheets for high performance pseudocapacitance materials. Journal of Materials Chemistry, 2011, 21, 16581.	6.7	175
120	Enhanced charge storage by the electrocatalytic effect of anodic TiO2 nanotubes. Nanoscale, 2011, 3, 4174.	2.8	34
121	MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage. Physical Chemistry Chemical Physics, 2011, 13, 15221.	1.3	50
122	High to ultra-high power electrical energy storage. Physical Chemistry Chemical Physics, 2011, 13, 20714.	1.3	134
123	Facile Synthesis of Highly Conductive RuO2-Mn3O4 Composite Nanofibers via Electrospinning and Their Electrochemical Properties. Journal of the Electrochemical Society, 2011, 158, A970.	1.3	36
124	Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis. Nanoscale, 2011, 3, 683-692.	2.8	280
126	Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chemical Communications, 2011, 47, 9651.	2.2	261
127	Interface Applications in Nanomaterials. Interface Science and Technology, 2011, 18, 333-429.	1.6	2
128	High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy and Environmental Science, 2011, 4, 1813.	15.6	315

#	Article		CITATIONS
129	Hierarchically structured carbon-based composites: Design, synthesis and their application in electrochemical capacitors. Nanoscale, 2011, 3, 529-545.		281
130	Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy and Environmental Science, 2011, 4, 4496.	15.6	386
131	Flexible Zn ₂ SnO ₄ /MnO ₂ Core/Shell Nanocableâ^'Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano Letters, 2011, 11, 1215-1220.	4.5	807
132	Electrochemical Formation Mechanism for the Controlled Synthesis of Heterogeneous MnO ₂ /Poly(3,4-ethylenedioxythiophene) Nanowires. ACS Nano, 2011, 5, 5608-5619.	7.3	84
133	Effect of Microwave on the Nanowire Morphology, Optical, Magnetic, and Pseudocapacitance Behavior of Co ₃ O ₄ . Journal of Physical Chemistry C, 2011, 115, 25543-25556.	1.5	240
134	Phase evolution of perovskite LaNiO ₃ nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl–NiO composite nanofibers. Journal of Materials Chemistry, 2011, 21, 1959-1965.	6.7	89
135	Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry, 2011, 21, 3422.	6.7	430
136	Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy and Environmental Science, 2011, 4, 2915.	15.6	479
137	ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry, 2011, 21, 4217.	6.7	178
138	A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia. Green Chemistry, 2011, 13, 3230.	4.6	35
139	Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. Journal of Materials Chemistry, 2011, 21, 18792.	6.7	305
140	Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Physical Chemistry Chemical Physics, 2011, 13, 14462.	1.3	215
141	One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage. Energy and Environmental Science, 2011, 4, 3502.	15.6	221
142	Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Advances, 2011, 1, 1171.	1.7	278
143	Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: Synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale, 2011, 3, 5034.	2.8	299
144	Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes. Nanoscale, 2011, 3, 5103.	2.8	287
145	Electrochemical performance of a graphene–polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology, 2011, 22, 295202.	1.3	146
146	Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chemical Communications, 2011, 47, 1384-1404.	2.2	451

#		IF	CITATIONS
147	ultrathin nickel hydroxidenitrate hanoflakes branched on hanowire arrays for high-rate pseudocapacitive energy storage. Chemical Communications, 2011, 47, 3436.	2.2	169
148	Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors. Chemical Communications, 2011, 47, 12122.	2.2	73
150	The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale, 2011, 3, 839.	2.8	778
151	Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances. Energy and Environmental Science, 2011, 4, 1288.	15.6	271
152	Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale, 2011, 3, 45-58.	2.8	328
153	Synthesis of nano-scale coated manganese oxide on graphite nanofibers and their high electrochemical performance. Synthetic Metals, 2011, 161, 1966-1971.	2.1	5
154	Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide. ACS Applied Materials & Interfaces, 2011, 3, 2063-2073.	4.0	416
155	Large-Scale Uniform α-Co(OH) ₂ Long Nanowire Arrays Grown on Graphite as Pseudocapacitor Electrodes. ACS Applied Materials & Interfaces, 2011, 3, 99-103.	4.0	160
156	High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made from Porous CuO Nanobelts and Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 2013-2019.	7.3	340
157	Well-Defined Coreâ^'Shell Carbon Black/Polypyrrole Nanocomposites for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2011, 3, 1109-1114.	4.0	71
158	Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized manganese oxide electrodes. Journal of Power Sources, 2011, 196, 10762-10774.	4.0	77
159	Preparation and electrochemical performance of alpha-nickel hydroxide nanowire. Materials Chemistry and Physics, 2011, 126, 580-583.	2.0	39
160	Behavior of NiO–MnO2/MWCNT composites for use in a supercapacitor. Materials Chemistry and Physics, 2011, 130, 507-512.	2.0	50
161	TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin, 2011, 46, 835-839.	2.7	75
162	Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte. Electrochimica Acta, 2011, 56, 8122-8128.	2.6	73
163	Ultralayered Co ₃ O ₄ for High-Performance Supercapacitor Applications. Journal of Physical Chemistry C, 2011, 115, 15646-15654.	1.5	902
164	Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach. Nanoscale, 2011, 3, 3185.	2.8	121
165	Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. Journal of Applied Electrochemistry, 2011, 41, 257-270.	1.5	188

#	Article	IF	CITATIONS
166	Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors. Journal of Solid State Electrochemistry, 2011, 15, 587-592.		46
167	Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Research, 2011, 4, 658-665.		165
168	Nanostructured manganese oxide thin films as electrode material for supercapacitors. Jom, 2011, 63, 54-59.	0.9	39
169	High Pseudocapacitance from Ultrathin V ₂ O ₅ Films Electrodeposited on Selfâ€Standing Carbonâ€Nanofiber Paper. Advanced Functional Materials, 2011, 21, 2541-2547.	7.8	205
170	Co ₃ O ₄ Nanowire@MnO ₂ Ultrathin Nanosheet Core/Shell Arrays: A New Class of Highâ€Performance Pseudocapacitive Materials. Advanced Materials, 2011, 23, 2076-2081.	11.1	1,250
171	Carbon Materials for Chemical Capacitive Energy Storage. Advanced Materials, 2011, 23, 4828-4850.	11.1	2,593
172	Subâ€Micrometerâ€Thick Allâ€Solidâ€State Supercapacitors with High Power and Energy Densities. Advanced Materials, 2011, 23, 4098-4102.	11.1	343
173	Manganese Oxide/Carbon Aerogel Composite: an Outstanding Supercapacitor Electrode Material. Advanced Energy Materials, 2011, 1, 901-907.	10.2	175
174	Electrosynthesised Metal (Ni, Fe, Co) Oxide Films on Singleâ€Walled Carbon Nanotube Platforms and Their Supercapacitance in Acidic and Neutral pH Media. Electroanalysis, 2011, 23, 971-979.	1.5	29
175	Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes. Current Applied Physics, 2011, 11, 462-466.		102
176	Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochemistry Communications, 2011, 13, 657-660.	2.3	286
177	Influence of multi-walled carbon nanotubes on the electrochemical performance of graphene nanocomposites for supercapacitor electrodes. Electrochimica Acta, 2011, 56, 1629-1635.	2.6	93
178	Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors. Electrochimica Acta, 2011, 56, 2140-2144.	2.6	59
179	Investigation of electrochemical behavior of Mn–Co doped oxide electrodes for electrochemical capacitors. Electrochimica Acta, 2011, 56, 4753-4762.	2.6	50
180	Electrochemical capacitance of nanoporous hydrous RuO2 templated by anionic surfactant. Electrochimica Acta, 2011, 56, 6459-6463.	2.6	32
181	Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochimica Acta, 2011, 56, 4849-4857.	2.6	287
182	Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochimica Acta, 2011, 56, 7124-7130.	2.6	224
183	A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors. Journal of Power Sources, 2011, 196, 847-850.	4.0	141

ARTICLE IF CITATIONS Improved pseudocapacitive performance and cycle life of cobalt hydroxide on an electrochemically 184 4.0 40 derived nano-porous Ni framework. Journal of Power Sources, 2011, 196, 7828-7834. Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor 1.4 application. Journal of Solid State Chemistry, 2011, 184, 578-583. Investigation of electrochemical properties of RuO2 thin films modified by e-beam irradiation. Thin 186 0.8 0 Solid Films, 2011, 519, 3086-3089. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO 2.8 nanoparticles for supercapacitors. Science and Technology of Advanced Materials, 2011, 12, 044602. Plasma Enhanced Atomic Layer Deposition of Ruthenium Thin Films Using Isopropylmethylbenzene-Cyclohexadiene-Ruthenium and NH[sub 3] Plasma. Journal of the 188 1.317 Electrochemical Society, 2011, 158, D42. Preparation and Capacitive Behavior of Dandelion-Like<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi></mml:math>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi></mml:math>-<mml:math carbon Microbeads Composite for the Application of Supercapacitor. International Journal of Solid-State Synthesis of Polyaniline/Single-Walled Carbon Nanotubes: A Comparative Study with 190 1.3 22 Polyaniline/Multi-Walled Carbon Nanotubes. Materials, 2012, 5, 1219-1231. Bulk and surface plasmon polariton excitation in RuO_2 for low-loss plasmonic applications in NIR. 1.7 Optics Express, 2012, 20, 8618. Ag Doped Co₃O₄ Nanowire Arrays as an Electrode Material for 192 0.2 1 Electrochemical Capacitors. Applied Mechanics and Materials, 2012, 268-270, 157-163. Spontaneous Synthesis and Electrochemical Characterization of NanostructuredMnO2on 2.4 Nitrogen-Incorporated Carbon Nanotubes. International Journal of Electrochemistry, 2012, 2012, 1-10. Microwave synthesis of graphene/magnetite composite electrode material for symmetric 194 125 1.7 supercapacitor with superior rate performance. RSC Advances, 2012, 2, 12322-12328. High-Energy Density Asymmetric Supercapacitor Based on Electrospun Vanadium Pentoxide and Polyaniline Nanofibers in Aqueous Electrolyte. Journal of the Electrochemical Society, 2012, 159, 1.3 79 A1481-A1488. Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and 196 6.7 188 coupling effects. Journal of Materials Chemistry, 2012, 22, 19161. Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene. Graphene, 2012, 01, 0.3 1-13. Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochimica 198 2.6 182 Acta, 2012, 84, 165-173. Porous nanocubic Mn3O4–Co3O4 composites and their application as electrochemical 199 supercapacitors. Dalton Transactions, 2012, 41, 10175. Preparation and electrochemical performances of doughnut-like Ni(OH)2–Co(OH)2 composites as 200 2.8 183 pseudocapacitor materials. Nanoscale, 2012, 4, 4498. Ultrathin Mesoporous NiCo₂O₄ Nanosheets Supported on Ni Foam as 1,545 Advanced Electrodes for Supercapacitors. Advanced Functional Materials, 2012, 22, 4592-4597.

#	Article		CITATIONS
202	Facile and green synthesis of Co3O4 nanoplates/graphene nanosheets composite for supercapacitor. Journal of Solid State Electrochemistry, 2012, 16, 3593-3602.		82
203	A facile and cost-effective synthesis of mesoporous NiCo2O4 nanoparticles and their capacitive behavior in electrochemical capacitors. Journal of Solid State Electrochemistry, 2012, 16, 3621-3633.	1.2	81
204	Fabrication of manganese dioxide nanosheet-based thin-film electrode and its electrochemical capacitance performance. Electrochimica Acta, 2012, 78, 115-121.	2.6	30
205	Oxidation-Etching Preparation of MnO ₂ Tubular Nanostructures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2012, 4, 2769-2774.	4.0	139
206	Optimization of MnO <inf>2</inf> /CNW composite electrodes for energy storage application. , 2012, , .		0
207	Versatile double hydrophilic block copolymer: dual role as synthetic nanoreactor and ionic and electronic conduction layer for ruthenium oxide nanoparticle supercapacitors. Journal of Materials Chemistry, 2012, 22, 11598.	6.7	27
208	Facile Synthesis of Large-Area Hierarchical Bismuth Molybdate Nanowires for Supercapacitor Applications. Journal of the Electrochemical Society, 2012, 159, D582-D586.	1.3	47
209	MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. Journal of Materials Chemistry, 2012, 22, 14864.	6.7	101
210	Crystal Engineering of Nanomaterials To Widen the Lithium Ion Rocking "Express Way― A Case in LiCoO2. Crystal Growth and Design, 2012, 12, 5629-5634.	1.4	19
211	A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012, 41, 797-828.	18.7	7,829
212	Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale, 2012, 4, 5946.	2.8	118
213	One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors. Journal of Alloys and Compounds, 2012, 511, 251-256.	2.8	65
214	Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors. Journal of Power Sources, 2012, 215, 43-47.	4.0	129
215	Enhanced activity of microwave synthesized hierarchical MnO2 for high performance supercapacitor applications. Journal of Power Sources, 2012, 215, 317-328.	4.0	147
216	Hydrothermal-synthesized Co(OH)2 nanocone arrays for supercapacitor application. Journal of Power Sources, 2012, 216, 395-399.	4.0	104
217	Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances. Journal of Power Sources, 2012, 219, 140-146.	4.0	90
218	Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors. Journal of Power Sources, 2012, 220, 160-168.	4.0	140
219	Synthesis of microporous carbon nanotubes by templating method and their high electrochemical performance. Electrochimica Acta, 2012, 78, 147-153.	2.6	15

		CITATION REPORT		
#	ARTICLE Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electro	I odes for	IF	CITATIONS
220	flexible high frequency response electrochemical capacitors. Electrochimica Acta, 2012, 78, Facile growth of hexagonal NiO nanoplatelet arrays assembled by mesoporous nanosheets of towards high-performance electrochemical capacitors. Electrochimica Acta, 2012, 78, 532-5	122-132. n Ni foam	2.6	57
222	High-performance electrochemical capacitors using electrodeposited MnO2 on carbon nano array grown on carbon fabric. Electrochimica Acta, 2012, 78, 515-523.	tube :	2.6	54
223	Chemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications. Nanoscale Research Letters, 2012, 7, 651.		3.1	45
225	Hydrogenated TiO ₂ Nanotube Arrays for Supercapacitors. Nano Letters, 2012,	12, 1690-1696. 4	4.5	1,226
226	Electrochemical assembly of MnO2 on ionic liquid–graphene films into a hierarchical struc high rate capability and long cycle stability of pseudocapacitors. Nanoscale, 2012, 4, 5394.	ture for	2.8	46
227	High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale, 2012, 4, 3640.	:	2.8	144
228	Interfacial Synthesis and Supercapacitive Performance of Hierarchical Sulfonated Carbon Nanotubes/Polyaniline Nanocomposites. Industrial & Engineering Chemistry Research, 2012, 51, 3981-3987.		1.8	37
229	High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale, 2012, 4, 4983.		2.8	303
230	Hierarchical nanocomposite of polyanilinenanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode. Journal of Materials Chemistry, 2012, 22, 2774-2780.		6.7	156
231	Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive be high cycling stability for supercapacitors. International Journal of Hydrogen Energy, 2012, 37 11846-11852.	havior and ',	3.8	163
232	Supercapacitive behaviors of activated mesocarbon microbeads coated with polyaniline. Inte Journal of Hydrogen Energy, 2012, 37, 14365-14372.	rnational	3.8	36
233	Anodic composite deposition of hydrous RuO2–TiO2 nanocomposites for electrochemical Electrochimica Acta, 2012, 85, 90-98.	capacitors.	2.6	14
234	Porous nickel oxide microflowers synthesized by calcination of coordination microflowers ar their applications as glutathione electrochemical sensor and supercapacitors. Electrochimica 2012, 85, 256-262.	d Acta, :	2.6	65
235	Co2SnO4/activated carbon composite electrode for supercapacitor. Materials Chemistry and 2012, 137, 576-579.	l Physics,	2.0	21
236	Synthesis and electrochemical capacitance of long tungsten oxide nanorod arrays grown ver on substrate. Materials Research Bulletin, 2012, 47, 3612-3618.	tically	2.7	18
237	Liquid crystalline phase synthesis of nanoporous MnO2 thin film arrays as an electrode mate electrochemical capacitors. Materials Research Bulletin, 2012, 47, 3120-3123.	rial for g	2.7	8
238	Highly Efficient Removal of Organic Dyes from Waste Water Using Hierarchical NiO Spheres Surface Area. Journal of Physical Chemistry C, 2012, 116, 6873-6878.	with High	1.5	221

#	Δρτιςι ε	IF	CITATIONS
π	Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for		CHATIONS
239	High-Capacity Pseudocapacitors. Nano Letters, 2012, 12, 321-325.	4.5	500
240	Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy and Environmental Science, 2012, 5, 9747.	15.6	171
241	Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. Journal of Materials Chemistry, 2012, 22, 5656.	6.7	471
242	An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy and Environmental Science, 2012, 5, 6909.	15.6	228
243	Porous nickel oxide nanospindles with huge specific capacitance and long-life cycle. RSC Advances, 2012, 2, 2257.	1.7	90
244	Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RSC Advances, 2012, 2, 3190.	1.7	130
245	Three-dimensional tubular arrays of MnO ₂ –NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426.	6.7	408
246	Electrodeposition of pyrrole and 3-(4-tert-butylphenyl)thiophene copolymer for supercapacitor applications. Synthetic Metals, 2012, 162, 2216-2221.	2.1	36
247	Design and Synthesis of MnO ₂ /Mn/MnO ₂ Sandwich-Structured Nanotube Arrays with High Supercapacitive Performance for Electrochemical Energy Storage. Nano Letters, 2012, 12, 3803-3807.	4.5	410
248	Structure and compositional control of MoO3 hybrids assembled by nanoribbons for improved pseudocapacitor rate and cycle performance. Nanoscale, 2012, 4, 7855.	2.8	31
249	Printable thin film supercapacitors utilizing single crystal cobalt hydroxidenanosheets. RSC Advances, 2012, 2, 1508-1515.	1.7	48
250	Composite Electronic Materials Based on Poly(3,4-propylenedioxythiophene) and Highly Charged Poly(aryleneethynylene)-Wrapped Carbon Nanotubes for Supercapacitors. ACS Applied Materials & Interfaces, 2012, 4, 102-109.	4.0	51
251	Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. Journal of Materials Chemistry, 2012, 22, 11494.	6.7	261
252	Facile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Transactions, 2012, 41, 13284.	1.6	130
253	Ultrathin MnO ₂ Nanorods on Conducting Polymer Nanofibers as a New Class of Hierarchical Nanostructures for High-Performance Supercapacitors. Journal of Physical Chemistry C, 2012, 116, 15900-15907.	1.5	102
254	The Role of Nanotechnology in Automotive Industries. , 0, , .		17
255	Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy and Environmental Science, 2012, 5, 7883.	15.6	780
256	Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Research, 2012, 5, 369-378.	5.8	156

#	Article	IF	CITATIONS
257	Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances, 2012, 2, 4498.	1.7	696
258	High energy density supercapacitors using macroporous kitchen sponges. Journal of Materials Chemistry, 2012, 22, 14394.	6.7	83
259	Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews, 2012, 112, 3356-3426.	23.0	580
260	3D Hierarchical Co ₃ O ₄ Twinâ€Spheres with an Urchinâ€Like Structure: Largeâ€Scale Synthesis, Multistepâ€Splitting Growth, and Electrochemical Pseudocapacitors. Advanced Functional Materials, 2012, 22, 4052-4059.	7.8	289
261	Nanocomposites of Ni(OH) ₂ /Reduced Graphene Oxides with Controllable Composition, Size, and Morphology: Performance Variations as Pseudocapacitor Electrodes. ChemPlusChem, 2012, 77, 807-816.	1.3	39
262	Incorporation of Manganese Dioxide within Ultraporous Activated Graphene for High-Performance Electrochemical Capacitors. ACS Nano, 2012, 6, 5404-5412.	7.3	345
263	Mediating polymer crystal orientation using nanotemplates from block copolymer microdomains and anodic aluminium oxide nanochannels. Soft Matter, 2012, 8, 7306.	1.2	48
264	Synthesis of Fe3O4@SnO2 core–shell nanorod film and its application as a thin-film supercapacitor electrode. Chemical Communications, 2012, 48, 5010.	2.2	183
265	Application of a novel redox-active electrolyte in MnO2-based supercapacitors. Science China Chemistry, 2012, 55, 1319-1324.	4.2	56
266	A renewable bamboo carbon/polyaniline composite for a high-performance supercapacitor electrode material. Journal of Solid State Electrochemistry, 2012, 16, 877-882.	1.2	80
267	May 3D nickel foam electrode be the promising choice for supercapacitors?. Journal of Solid State Electrochemistry, 2012, 16, 829-834.	1.2	40
268	Synthesis and high electrochemical performance of polyaniline/MnO2-coated multi-walled carbon nanotube-based hybrid electrodes. Journal of Solid State Electrochemistry, 2012, 16, 2751-2758.	1.2	37
269	Electrodeposition of mesoporous ruthenium oxide using an aqueous mixture of CTAB and SDS as a templating agent. Current Applied Physics, 2012, 12, 36-39.	1.1	21
270	Fast and selective Cu2O nanorod growth into anodic alumina templates via electrodeposition. Current Applied Physics, 2012, 12, 60-64.	1.1	29
271	The effect of reduction time on the surface functional groups and supercapacitive performance of graphene nanosheets. Carbon, 2012, 50, 3724-3730.	5.4	66
272	Electrochemical quartz crystal microbalance study of amorphous MnO2 prepared by anodic deposition. Electrochimica Acta, 2012, 61, 124-131.	2.6	34
273	One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors. Electrochimica Acta, 2012, 62, 132-139.	2.6	36
274	Low temperature hydrothermal synthesis of nano-sized manganese oxide for supercapacitors. Electrochimica Acta, 2012, 66, 302-305.	2.6	53

ARTICLE IF CITATIONS # Structural and electrochemical properties of manganese substituted nickel cobaltite for 275 2.6 52 supercapacitor application. Electrochimica Acta, 2012, 67, 67-72. Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. 276 2.6 Electrochimica Acta, 2012, 75, 273-278. Influence of Ag doped CuO nanosheet arrays on electrochemical behaviors for supercapacitors. 277 2.6 72 Electrochimica Acta, 2012, 75, 208-212. MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Materials Letters, 2012, 66, 102-105. Synthesis of carbon nanowires as electrochemical electrode materials. Materials Letters, 2012, 69, 279 1.3 15 55-58. Pulsed laser deposition of cobalt-doped manganese oxide thin films for supercapacitor applications. Journal of Power Sources, 2012, 198, 416-422. 280 4.0 Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical 281 4.0 157 capacitors. Journal of Power Sources, 2012, 199, 413-417. A cost-effective way to maintain metal-doped carbon xerogels and their applications on electric 4.0 16 double-layer capacitors. Journal of Power Sources, 2012, 201, 340-346. Charge storage on nanostructured early transition metal nitrides and carbides. Journal of Power 283 4.0 83 Sources, 2012, 207, 212-215. Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors. Solid State 284 1.5 Sciences, 2012, 14, 789-793. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials 285 892 16.0for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57, 724-803. Coating single walled carbon nanotube with SnO2 and its electrochemical properties. Powder 2.1 Technology, 2012, 224, 306-310. WO_{3â€"x}@Au@MnO₂ Coreâ€"Shell Nanowires on Carbon Fabric for 287 11.1 641 Highâ€Performance Flexible Supercapacitors. Advanced Materials, 2012, 24, 938-944. Hexagonal nickel oxide nanoplate-based electrochemical supercapacitor. Journal of Materials Science, 2012, 47, 503-507. 1.7 Synthesis and electrochemical capacitive behaviors of Co3O4 nanostructures from a novel 289 1.2 15 biotemplating technique. Journal of Solid State Electrochemistry, 2012, 16, 297-304. Morphology-Dependent Enhancement of the Pseudocapacitance of Template-Guided Tunable 103 Polyaniline Nanostructures. Journal of Physical Chemistry C, 2013, 117, 15009-15019. High-Performance Pseudocapacitor Electrodes Based on α-Fe₂O₃/MnO₂ Core–Shell Nanowire Heterostructure Arrays. 291 200 1.5Journal of Physical Chemistry C, 2013, 117, 15523-15531. Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor 8.2 electrodes. Nano Energy, 2013, 2, 754-763.

#	Article	IF	CITATIONS
293	Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy, 2013, 2, 586-594.	8.2	278
294	Fabrication and supercapacitive properties of a thick electrode of carbon nanotube–RuO2 core–shell hybrid material with a high RuO2 loading. Nano Energy, 2013, 2, 1232-1241.	8.2	41
295	MWCNTs/metal (Ni, Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media. Journal of Solid State Electrochemistry, 2013, 17, 1311-1320.	1.2	21
296	Rapid microwave synthesis of δ-MnO2 microspheres and their electrochemical property. Journal of Materials Science: Materials in Electronics, 2013, 24, 2189-2196.	1.1	13
297	Large scale synthesized sulphonated reduced graphene oxide: a high performance material for electrochemical capacitors. RSC Advances, 2013, 3, 14954.	1.7	16
298	Graphene/vanadium oxide nanotubes composite as electrode material for electrochemical capacitors. Physica B: Condensed Matter, 2013, 421, 77-82.	1.3	26
299	Cathodic deposition of interlaced nanosheet-like cobalt sulfide films for high-performance supercapacitors. RSC Advances, 2013, 3, 2043-2048.	1.7	94
300	Facile fabrication of mesoporous manganese oxides as advanced electrode materials for supercapacitors. Journal of Solid State Electrochemistry, 2013, 17, 2579-2588.	1.2	17
301	Ni(OH) ₂ /CoO/reduced graphene oxide composites with excellent electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 478-481.	5.2	68
302	Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochimica Acta, 2013, 92, 197-204.	2.6	156
303	Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale, 2013, 5, 8879.	2.8	848
304	High-performance flexible supercapacitor electrodes based on Te nanowire arrays. Journal of Materials Chemistry A, 2013, 1, 10024.	5.2	39
305	A carbon modified MnO2 nanosheet array as a stable high-capacitance supercapacitor electrode. Journal of Materials Chemistry A, 2013, 1, 9809.	5.2	141
306	The rods-like manganese dioxide films grown on nickel foam for electrochemical capacitor applications. Russian Journal of Electrochemistry, 2013, 49, 975-982.	0.3	3
307	NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 9024.	5.2	185
308	Easy Synthesis of Hierarchical Carbon Spheres with Superior Capacitive Performance in Supercapacitors. Langmuir, 2013, 29, 12266-12274.	1.6	78
309	Nanosized MnO2 spines on Au stems for high-performance flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2013, 1, 13301.	5.2	36
310	Carbon nanomaterials supported Ni(OH)2/NiO hybrid flower structure for supercapacitor. Electrochimica Acta, 2013, 109, 370-380.	2.6	104

CITATION REPORT ARTICLE IF CITATIONS Synthesis and characterization of mesoporous Niâ€"Co oxy-hydroxides for pseudocapacitor 2.6 52 application. Electrochimica Acta, 2013, 94, 104-112. Electrochemical Activity of Electrodeposited V₂O₅Coatings. Journal of the 1.3 Electrochemical Society, 2013, 160, D6-D9. NiO-based nanostructures with efficient optical and electrochemical properties for 1.353 high-performance nanofluids. Nanotechnology, 2013, 24, 415705. Electrochemical capacitive studies of cadmium hydroxide nanowires grown on nickel foam. Journal 1.9 of Electroanalytical Chemistry, 2013, 696, 15-19. Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good 139 2.6 cycling life. Electrochimica Acta, 2013, 114, 674-680. Criteria appointing the highest acceptable cell voltage of asymmetric supercapacitors. Electrochemistry Communications, 2013, 27, 81-84. 2.3 Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion 4.0 144 for asymmetric supercapacitors. Journal of Power Sources, 2013, 242, 662-671. Morphology-controlled fabrication of hierarchical mesoporous NiCo2O4 micro-/nanostructures and 1.7 19 their intriguing application in electrochemical capacitors. RSC Advances, 2013, 3, 23709. Mesoporous NiO nanoarchitectures for electrochemical energy storage: influence of size, porosity, 1.7 111 and morphology. RSC Advances, 2013, 3, 23801. Facile synthesis of mesoporous MnO2 microspheres for high performance AC//MnO2 aqueous hybrid 2.6 79 supercapacitors. Electrochimica Acta, 2013, 108, 497-505 KCu7S4 nanowires and the Mn/KCu7S4 nanostructure for solid-state supercapacitors. Journal of 5.2 43 Materials Chemistry A, 2013, 1, 15530. Highly dispersed carbon nanotube/polypyrrole core/shell composites with improved electrochemical 5.2 capacitive performance. Journal of Materials Chemistry A, 2013, 1, 15230. Poly(thieno[3,4-b][1,4]dioxine) and poly([1,4]dioxino[2,3-c]pyrrole) derivatives: p- and n-dopable redox-active electrode materials for solid state supercapacitor applications. Organic Electronics, 1.4 22 2013, 14, 3249-3259. Nanostructured TiO2 for energy conversion and storage. RSC Advances, 2013, 3, 24758. 1.7 Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. Journal of Power Sources, 250 4.0 2013, 227, 101-105. Design and synthesis of NiO nanoflakes/graphene nanocomposite as high performance electrodes of 58 pseudocapacitor. RSC Advances, 2013, 3, 19409.

327	Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Progress in Natural Science: Materials International, 2013, 23, 351-366.	1.8	176
328	Flexible hierarchical nanocomposites based on MnO ₂ nanowires/CoAl hydrotalcite/carbon fibers for high-performance supercapacitors. RSC Advances, 2013, 3, 1045-1049.	1.7	75

#

311

313

314

315

317

318

319

321

323

324

#	Article	IF	CITATIONS
329	Preparation and electrochemical performances of nanostructured CoxNi1â^'x(OH)2 composites for supercapacitors. Journal of Power Sources, 2013, 240, 338-343.	4.0	52
330	The effect of calcination temperature on the capacitive properties of WO3-based electrochemical capacitors synthesized via a sol-gel method. Frontiers of Materials Science, 2013, 7, 370-378.	1.1	13
331	Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis. Journal of Materials Chemistry A, 2013, 1, 13949.	5.2	238
332	Hierarchical TiO2 nanobelts@MnO2 ultrathin nanoflakes core–shell array electrode materials for supercapacitors. RSC Advances, 2013, 3, 14413.	1.7	98
333	Hybrid ternary rice paper–manganese oxide–carbon nanotube nanocomposites for flexible supercapacitors. Nanoscale, 2013, 5, 11108.	2.8	33
334	A perspective: carbon nanotube macro-films for energy storage. Energy and Environmental Science, 2013, 6, 3183-3201.	15.6	168
335	Well-defined flake-like polypyrrole grafted graphene nanosheets composites as electrode materials for supercapacitors with enhanced cycling stability. Applied Surface Science, 2013, 287, 242-251.	3.1	39
336	Synthesis and electrochemical performance of a single walled carbon nanohorn–Fe3O4nanocomposite supercapacitor electrode. RSC Advances, 2013, 3, 21390-21393.	1.7	35
337	Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates. Nanoscale, 2013, 5, 7613.	2.8	28
338	Template synthesis of hollow fusiform RuO ₂ ·xH ₂ O nanostructure and its supercapacitor performance. Journal of Materials Chemistry A, 2013, 1, 469-472.	5.2	131
339	Amorphous V–O–C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. Nanoscale, 2013, 5, 12589.	2.8	55
340	Carbon-coated mesoporous NiO nanoparticles as an electrode material for high performance electrochemical capacitors. New Journal of Chemistry, 2013, 37, 4031.	1.4	44
341	Comparative Studies of NiO Nanoparticles Prepared From Different Precursors for Electrochemical Capacitor. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 296-304.	0.6	2
342	Crumpled nitrogen-doped graphene–ultrafine Mn3O4 nanohybrids and their application in supercapacitors. Journal of Materials Chemistry A, 2013, 1, 14162.	5.2	72
343	Fabrication of Mn/Mn oxide core–shell electrodes with three-dimensionally ordered macroporous structures for high-capacitance supercapacitors. Energy and Environmental Science, 2013, 6, 2178.	15.6	79
344	Fabrication of reduced graphene oxide/TiO2 nanorod/reduced graphene oxide hybrid nanostructures as electrode materials for supercapacitor applications. CrystEngComm, 2013, 15, 10222.	1.3	103
345	Fabrication and electrochemical performance of 3D hierarchical Î ² -Ni(OH)2 hollow microspheres wrapped in reduced graphene oxide. Journal of Materials Chemistry A, 2013, 1, 9083.	5.2	84
346	Synthesis of large surface area carbon xerogels for electrochemical double layer capacitors. Journal of Power Sources, 2013, 223, 147-154.	4.0	37

#	Article	IF	CITATIONS
347	A high-capacity carbon prepared from renewable chicken feather biopolymer forÂsupercapacitors. Journal of Power Sources, 2013, 225, 101-107.	4.0	187
348	Pulsed laser deposition of vanadium-doped manganese oxide thin films for supercapacitor applications. Journal of Power Sources, 2013, 228, 89-96.	4.0	39
349	Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale, 2013, 5, 503-507.	2.8	85
350	Roughness evolution of highly ordered nanoporous anodic aluminum oxide films. Ionics, 2013, 19, 535-542.	1.2	14
351	Facile approach to prepare hollow core–shell NiO microspherers for supercapacitor electrodes. Journal of Solid State Chemistry, 2013, 203, 60-67.	1.4	45
352	Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes. Electrochimica Acta, 2013, 109, 720-731.	2.6	156
353	Trisodium citrate assisted synthesis of hierarchical NiO nanospheres with improved supercapacitor performance. Journal of Power Sources, 2013, 235, 45-53.	4.0	133
354	3D flowerlike poly(3,4-ethylenedioxythiophene) for high electrochemical capacitive energy storage. Electrochimica Acta, 2013, 106, 219-225.	2.6	21
355	A facile approach to synthesis coral-like nanoporous β-Ni(OH) 2 andÂitsÂsupercapacitor application. Journal of Power Sources, 2013, 243, 721-727.	4.0	59
356	Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor. Electrochimica Acta, 2013, 113, 17-22.	2.6	49
357	Influence of morphologies and pseudocapacitive contributions for charge storage in V2O5 micro/nano-structures. Electrochimica Acta, 2013, 111, 762-770.	2.6	96
358	The AMWCNTs supported porous nanocarbon composites for high-performance supercapacitor. Materials Research Bulletin, 2013, 48, 4491-4498.	2.7	5
359	Synthesis and Characterization of Porous Flowerlike Â-Fe2O3 Nanostructures for Supercapacitor Application. ECS Electrochemistry Letters, 2013, 2, A60-A62.	1.9	120
360	Superior Performance Asymmetric Supercapacitors Based on a Directly Grown Commercial Mass 3D Co ₃ O ₄ @Ni(OH) ₂ Core–Shell Electrode. ACS Applied Materials & Interfaces, 2013, 5, 10574-10582.	4.0	203
361	Ultrathin Co3O4 nanosheet arrays with high supercapacitive performance. Scientific Reports, 2013, 3, 3537.	1.6	177
362	Comparison of the Electrochemical Performance of NiMoO ₄ Nanorods and Hierarchical Nanospheres for Supercapacitor Applications. ACS Applied Materials & Interfaces, 2013, 5, 12905-12910.	4.0	267
363	Polyaniline binder for functionalized acetylene black: A hybrid material for supercapacitor. Synthetic Metals, 2013, 180, 43-48.	2.1	15
364	Fabrication of Ni(OH)2 coated ZnO array for high-rate pseudocapacitive energy storage. Electrochimica Acta, 2013, 109, 252-255.	2.6	43

#	Article	IF	CITATIONS
365	Cathodic Deposition of Flaky Nickel Sulfide Nanostructure as an Electroactive Material for High-Performance Supercapacitors. Journal of the Electrochemical Society, 2013, 160, D178-D182.	1.3	198
366	Mesoporous materials and electrochemistry. Chemical Society Reviews, 2013, 42, 4098.	18.7	541
367	Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. Journal of Materials Chemistry A, 2013, 1, 3315.	5.2	182
368	Blockâ€Copolymerâ€Assisted Oneâ€Pot Synthesis of Ordered Mesoporous WO _{3â^'<i>x</i>} /Carbon Nanocomposites as Highâ€Rateâ€Performance Electrodes for Pseudocapacitors. Advanced Functional Materials, 2013, 23, 3747-3754.	7.8	145
369	Magnetic Fe3O4@NiO hierarchical structures: preparation and their excellent As(v) and Cr(vi) removal capabilities. RSC Advances, 2013, 3, 2754.	1.7	69
370	Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route. ACS Applied Materials & Interfaces, 2013, 5, 2188-2196.	4.0	542
372	The cobalt oxide/hydroxide nanowall array film prepared by pulsed laser deposition for supercapacitors with superb-rate capability. Electrochimica Acta, 2013, 92, 298-303.	2.6	43
373	Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano, 2013, 7, 2617-2626.	7.3	781
374	Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochimica Acta, 2013, 88, 347-357.	2.6	355
375	Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2, 213-234.	8.2	976
376	Co(OH)2/graphene sheet-on-sheet hybrid as high-performance electrochemical pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 2013, 17, 1159-1165.	1.2	21
377	Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 293-298.	1.7	104
378	Synthesis of Ultrathin Nitrogen-Doped Graphitic Carbon Nanocages as Advanced Electrode Materials for Supercapacitor. ACS Applied Materials & Interfaces, 2013, 5, 2241-2248.	4.0	320
379	Nanohybridization of Low-Dimensional Nanomaterials: Synthesis, Classification, and Application. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 1-56.	6.8	20
380	Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. RSC Advances, 2013, 3, 5851.	1.7	127
381	Polyaniline–polypyrrole nanograined composite via electrostatic adsorption for high performance electrochemical supercapacitors. Journal of Alloys and Compounds, 2013, 552, 240-247.	2.8	63
382	A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochimica Acta, 2013, 90, 210-218.	2.6	193
383	Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. Journal of Materials Chemistry A, 2013, 1, 1963-1968.	5.2	193

#	Article	IF	CITATIONS
385	Scalable High-Power Redox Capacitors with Aligned Nanoforests of Crystalline MnO ₂ Nanorods by High Voltage Electrophoretic Deposition. ACS Nano, 2013, 7, 2114-2125.	7.3	83
386	Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale, 2013, 5, 3793.	2.8	280
387	Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale, 2013, 5, 4056.	2.8	97
388	Controlled Synthesis of Manganese Oxyhydroxide Nanotubes: Implications for Highâ€Efficiency Supercapacitors. ChemPlusChem, 2013, 78, 554-560.	1.3	10
389	Toward the Theoretical Capacitance of RuO ₂ Reinforced by Highly Conductive Nanoporous Gold. Advanced Energy Materials, 2013, 3, 851-856.	10.2	184
390	Microwave synthesized magnetic tubular carbon nanocomposite fabrics toward electrochemical energy storage. Nanoscale, 2013, 5, 1825.	2.8	30
391	Intertwined Nanocarbon and Manganese Oxide Hybrid Foam for Highâ€Energy Supercapacitors. Small, 2013, 9, 3714-3721.	5.2	52
392	Three-dimensionally ordered macroporous Cu2O/Ni inverse opal electrodes for electrochemical supercapacitors. Physical Chemistry Chemical Physics, 2013, 15, 7479.	1.3	36
393	Highly Ordered MnO ₂ Nanopillars for Enhanced Supercapacitor Performance. Advanced Materials, 2013, 25, 3302-3306.	11.1	455
394	Design, hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors. Journal of Power Sources, 2013, 242, 78-85.	4.0	99
395	Facile Fabrication of Hierarchically Porous CuFe ₂ O ₄ Nanospheres with Enhanced Capacitance Property. ACS Applied Materials & Interfaces, 2013, 5, 6030-6037.	4.0	206
396	Addition of multiwalled carbon nanotube and graphene nanosheet in cobalt oxide film for enhancement of capacitance in electrochemical capacitors. Current Applied Physics, 2013, 13, 196-204.	1.1	41
397	Nano α-NiMoO ₄ as a new electrode for electrochemical supercapacitors. RSC Advances, 2013, 3, 352-357.	1.7	186
398	Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. Journal of Power Sources, 2013, 241, 231-238.	4.0	118
399	Templateâ€free electrochemical synthesis and electrochemical supercapacitors application of polyaniline nanobuds. Journal of Applied Polymer Science, 2013, 128, 3660-3664.	1.3	15
400	Copper chlorideâ€doped polyaniline/multiwalled carbon nanotubes nanocomposites: Superior electrode material for supercapacitor applications. Polymer Composites, 2013, 34, 517-525.	2.3	23
401	Ruthenia-Based Electrochemical Supercapacitors: Insights from First-Principles Calculations. Accounts of Chemical Research, 2013, 46, 1084-1093.	7.6	67
402	A facile preparation of NiO/Ni composites as high-performance pseudocapacitor materials. RSC Advances, 2013, 3, 8003.	1.7	69

#	Article	IF	CITATIONS
403	On the properties of binary rutile MO2 compounds, M = Ir, Ru, Sn, and Ti: A DFT study. Journal of Chemical Physics, 2013, 138, 194706.	1.2	50
404	Unveiling the Origin of Unusual Pseudocapacitance of RuO ₂ · <i>n</i> H ₂ O from Its Hierarchical Nanostructure by Small-Angle X-ray Scattering. Journal of Physical Chemistry C, 2013, 117, 12003-12009.	1.5	60
405	Supercapacitive behaviors of the nitrogen-enriched activated mesocarbon microbead in aqueous electrolytes. Journal of Solid State Electrochemistry, 2013, 17, 1693-1700.	1.2	17
406	Hierarchical Ni0.25Co0.75(OH)2 nanoarrays for a high-performance supercapacitor electrode prepared by an in situ conversion process. Journal of Materials Chemistry A, 2013, 1, 8327.	5.2	74
407	Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russian Journal of Electrochemistry, 2013, 49, 359-364.	0.3	60
408	Solution-based binder-free synthetic approach of RuO2 thin films for all solid state supercapacitors. Electrochimica Acta, 2013, 103, 103-109.	2.6	85
409	Self-assembling hybrid NiO/Co3O4 ultrathin and mesoporous nanosheets into flower-like architectures for pseudocapacitance. Journal of Materials Chemistry A, 2013, 1, 9107.	5.2	101
410	Electrode materials for aqueous asymmetric supercapacitors. RSC Advances, 2013, 3, 13059.	1.7	469
411	Facile preparation of three-dimensional porous hydrous ruthenium oxide electrode for supercapacitors. Journal of Power Sources, 2013, 244, 806-811.	4.0	59
412	Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Letters, 2013, 13, 2078-2085.	4.5	1,250
413	Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor. Journal of Solid State Electrochemistry, 2013, 17, 1383-1391.	1.2	60
414	Evaporationâ€Induced Coating of Hydrous Ruthenium Oxide on Mesoporous Silica Nanoparticles to Develop Highâ€Performance Supercapacitors. Small, 2013, 9, 2520-2526.	5.2	142
415	Hierarchical NiCo ₂ O ₄ @MnO ₂ core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49, 137-139.	2.2	622
416	Enhanced Pseudocapacitance of Ionic Liquid/Cobalt Hydroxide Nanohybrids. ACS Nano, 2013, 7, 2453-2460.	7.3	99
417	Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system. Journal of Power Sources, 2013, 238, 150-156.	4.0	175
418	Effect of Al-doped Î ² -Ni(OH)2 nanosheets on electrochemical behaviors for high performance supercapacitor application. Journal of Power Sources, 2013, 232, 370-375.	4.0	162
419	One-step synthesis of Ni ₃ S ₂ nanorod@Ni(OH) ₂ nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy and Environmental Science, 2013, 6, 2216-2221.	15.6	554
420	Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors. Electrochimica Acta, 2013, 106, 500-505.	2.6	198

#	Article	IF	CITATIONS
421	Nanoporous Ni(OH) ₂ Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor. ACS Nano, 2013, 7, 6237-6243.	7.3	1,019
422	Porous NiO/C Nanocomposites as Electrode Material for Electrochemical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2013, 1, 1110-1118.	3.2	119
423	CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Materials Research Bulletin, 2013, 48, 923-928.	2.7	221
424	Polyaniline nanowire electrodes with high capacitance synthesized by a simple approach. Materials Science and Engineering C, 2013, 33, 209-212.	3.8	21
425	A Simple Low Temperature Synthesis of Nanostructured Vanadium Nitride for Supercapacitor Applications. Journal of the Electrochemical Society, 2013, 160, A2195-A2206.	1.3	55
426	Sponge-like Ni(OH) ₂ –NiF ₂ composite film with excellent electrochemical performance. Physical Chemistry Chemical Physics, 2013, 15, 1601-1605.	1.3	57
427	Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors. Journal of Materials Chemistry A, 2013, 1, 12759.	5.2	111
428	Polyol-Mediated Synthesis of Mesoporous α-Ni(OH) ₂ with Enhanced Supercapacitance. ACS Applied Materials & Interfaces, 2013, 5, 6643-6648.	4.0	135
429	Hierarchically Structured Ni ₃ S ₂ /Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 12168-12174.	4.0	411
430	CVD Derived Vanadium Oxide Nano-Sphere-Carbon Nanotube (CNT) Nano-Composite Hetero-Structures: High Energy Supercapacitors. Journal of the Electrochemical Society, 2013, 160, A1118-A1127.	1.3	22
431	High-Quality Epitaxy of Ruthenium Dioxide, RuO2, on Rutile Titanium Dioxide, TiO2, by Pulsed Chemical Vapor Deposition. Crystal Growth and Design, 2013, 13, 1316-1321.	1.4	19
432	Flexible CoAl LDH@PEDOT Core/Shell Nanoplatelet Array for Highâ€Performance Energy Storage. Small, 2013, 9, 98-106.	5.2	224
433	Nanostructured electrode materials for electrochemical energy storage and conversion. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 14-30.	1.9	46
434	Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples. Journal of Power Sources, 2013, 221, 128-133.	4.0	205
435	Ultra high capacitance values of Pt@RuO2 core–shell nanotubular electrodes for microsupercapacitor applications. Journal of Power Sources, 2013, 221, 228-231.	4.0	36
436	Super capacitance properties of SnO ₂ coated nickel/silicon microchannel plates. Proceedings of SPIE, 2013, , .	0.8	1
437	Mesoporous Carbon Incorporated with In ₂ O ₃ Nanoparticles as Highâ€Performance Supercapacitors. European Journal of Inorganic Chemistry, 2013, 2013, 1109-1112.	1.0	92
438	Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor. Scientific Reports, 2013, 3, .	1.6	182

#	Article	IF	CITATIONS
439	Nanowire modified carbon fibers for enhanced electrical energy storage. Journal of Applied Physics, 2013, 114, 104306.	1.1	14
440	Low temperature synthesis of high electrochemical performance Co3O4 nanoparticles for application in supercapacitor. Functional Materials Letters, 2014, 07, 1450002.	0.7	10
441	Opportunities and challenges of nanotechnology in the green economy. Environmental Health, 2014, 13, 78.	1.7	112
442	Preparation Method of Co ₃ O ₄ Nanoparticles Using Degreasing Cotton and Their Electrochemical Performances in Supercapacitors. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	13
443	Synthesis of Polythiophene and its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors. Advanced Materials Research, 2014, 938, 151-157.	0.3	36
444	A novel planar integration of all-solid-state capacitor and photodetector by an ultra-thin transparent sulfated TiO 2 film. Nano Energy, 2014, 9, 252-263.	8.2	20
445	Construction of bicontinuously porous Ni architecture as a deposition scaffold for high performance electrochemical supercapacitors. Nano Energy, 2014, 10, 329-336.	8.2	15
446	Compositionâ€Tailored 2 D Mn _{1â^'<i>x</i>} Ru _{<i>x</i>} O ₂ Nanosheets and Their Reassembled Nanocomposites: Improvement of Electrode Performance upon Ru Substitution. Chemistry - A European Journal, 2014, 20, 5132-5140.	1.7	26
447	One-pot synthesis of a Mn(MnO)/Mn ₅ C ₂ /carbon nanotube nanocomposite for supercapacitors. RSC Advances, 2014, 4, 64162-64168.	1.7	9
448	Excellent Capacitive Performance of a Threeâ€Dimensional Hierarchical Porous Graphene/Carbon Composite with a Superhigh Surface Area. Chemistry - A European Journal, 2014, 20, 13314-13320.	1.7	56
449	Hierarchical αâ€MnO ₂ Nanowires@Ni _{1â€x} Mn _x O _y Nanoflakes Core–Shell Nanostructures for Supercapacitors. Small, 2014, 10, 3181-3186.	5.2	118
450	Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes. Energy, 2014, 78, 298-303.	4.5	80
451	Phase and shape dependent electrochemical properties of BiPO ₄ by PVP assisted hydrothermal method for pseudocapacitors. RSC Advances, 2014, 4, 65184-65194.	1.7	35
452	Hierarchically Porous Carbon with Manganese Oxides as Highly Efficient Electrode for Asymmetric Supercapacitors. ChemSusChem, 2014, 7, 841-847.	3.6	65
453	Multifunctional composites for energy storage. , 2014, , .		1
454	Macroporous silicon for high-capacitance devices using metal electrodes. Nanoscale Research Letters, 2014, 9, 473.	3.1	6
455	Carbon nanotube–polyaniline composites. Progress in Polymer Science, 2014, 39, 707-748.	11.8	266
456	Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. Journal of Power Sources, 2014, 248, 28-36.	4.0	248

#	Article	IF	CITATIONS
457	Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors. Electrochimica Acta, 2014, 123, 183-189.	2.6	143
458	Formation of ultrafine three-dimensional hierarchical birnessite-type MnO2 nanoflowers for supercapacitor. Journal of Alloys and Compounds, 2014, 607, 245-250.	2.8	98
459	Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes. Electrochimica Acta, 2014, 136, 105-111.	2.6	40
460	Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition. Journal of Power Sources, 2014, 253, 205-213.	4.0	110
461	Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. Journal of Power Sources, 2014, 251, 202-207.	4.0	127
462	Synthesis of porous Co3O4 nanoflake array and its temperature behavior as pseudo-capacitor electrode. Journal of Power Sources, 2014, 256, 200-205.	4.0	108
463	Free-standing Pt@RuO2·xH2O nanorod arrays on Si wafers as electrodes for methanol electro-oxidation. Journal of Power Sources, 2014, 245, 892-897.	4.0	5
464	Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. Journal of Power Sources, 2014, 264, 161-167.	4.0	170
465	Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous scaffold for high performance electrochemical capacitors. Journal of Power Sources, 2014, 245, 1027-1034.	4.0	59
466	Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. Journal of Solid State Electrochemistry, 2014, 18, 1057-1066.	1.2	84
467	Graphene and Grapheneâ€like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10, 2165-2181.	5.2	535
468	Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. Journal of Power Sources, 2014, 256, 37-42.	4.0	29
469	Facile fabrication and perfect cycle stability of 3D NiO@CoMoO4 nanocomposite on Ni foam for supercapacitors. RSC Advances, 2014, 4, 17884.	1.7	51
470	Influence of the Nickel Oxide Nanostructure Morphology on the Effectiveness of Reduced Graphene Oxide Coating in Supercapacitor Electrodes. Journal of Physical Chemistry C, 2014, 118, 2281-2286.	1.5	66
471	Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets andÂactivated carbon with high energy density. Journal of Power Sources, 2014, 246, 371-376.	4.0	268
472	Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor. lonics, 2014, 20, 551-561.	1.2	79
473	Quasi-solid-state pseudocapacitors using proton-conducting gel polymer electrolyte and poly(3-methyl thiophene)–ruthenium oxide composite electrodes. Journal of Solid State Electrochemistry, 2014, 18, 465-475.	1.2	20
474	Nanomaterials for electrochemical energy storage. Frontiers of Physics, 2014, 9, 323-350.	2.4	86

#	Article	IF	CITATIONS
475	Enhanced capacitance of a NiO electrode prepared in the magnetic field. Journal of Applied Electrochemistry, 2014, 44, 391-398.	1.5	11
476	Liquid precipitation synthesis of Co3O4 for high-performance electrochemical capacitors. Ionics, 2014, 20, 489-494.	1.2	14
477	Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochimica Acta, 2014, 125, 294-301.	2.6	116
478	NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. Journal of Power Sources, 2014, 259, 98-105.	4.0	106
479	Presenting highest supercapacitance for TiO2/MWNTs nanocomposites: Novel method. Chemical Engineering Journal, 2014, 247, 103-110.	6.6	62
480	Amorphous RuO2 coated on carbon spheres as excellent electrode materials for supercapacitors. RSC Advances, 2014, 4, 6927.	1.7	59
481	Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials, 2014, 4, 1300816.	10.2	1,727
482	The specific capacitance of sol–gel synthesised spinel MnCo2O4 in an alkaline electrolyte. Electrochimica Acta, 2014, 115, 22-27.	2.6	128
483	Direct Growth of Cobalt Hydroxide Rods on Nickel Foam and Its Application for Energy Storage. Chemistry - A European Journal, 2014, 20, 3084-3088.	1.7	127
484	In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. Journal of Power Sources, 2014, 254, 249-257.	4.0	518
485	Single-step functionalization of vertically aligned MWCNTs with Cu and Ni by chemical reduction of copper and nickel acetyl acetonate in benzyl alcohol. Carbon, 2014, 73, 146-154.	5.4	8
486	Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 2014, 43, 3303.	18.7	978
487	Supercapacitors Based on Flexible Substrates: An Overview. Energy Technology, 2014, 2, 325-341.	1.8	172
488	Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: A prospective material for energy storage. International Journal of Hydrogen Energy, 2014, 39, 7842-7851.	3.8	55
489	Effect of Zn-substitution on cycling performance of α-Co(OH)2 nanosheet electrode for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 2585.	5.2	53
490	Production and Storage of Energy with One-Dimensional Semiconductor Nanostructures. Critical Reviews in Solid State and Materials Sciences, 2014, 39, 109-153.	6.8	9
491	3D mesoporous hybrid NiCo ₂ O ₄ @graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances. Journal of Materials Chemistry A, 2014, 2, 8103-8109.	5.2	94
492	MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy, 2014, 7, 72-79.	8.2	150

#	Article	IF	CITATIONS
493	Rapid Microwave-Assisted Green Synthesis of 3D Hierarchical Flower-Shaped NiCo ₂ O ₄ Microsphere for High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2014, 6, 1773-1780.	4.0	477
494	Kirkendall Effect Induced One-Step Fabrication of Tubular Ag/MnO _{<i>x</i>} Nanocomposites for Supercapacitor Application. Journal of Physical Chemistry C, 2014, 118, 6604-6611.	1.5	55
495	Electrochemical Kinetics of Nanostructured Nb ₂ O ₅ Electrodes. Journal of the Electrochemical Society, 2014, 161, A718-A725.	1.3	235
496	Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10889.	5.2	214
497	Hierarchical TiN@Ni(OH)2 core/shell nanowire arrays for supercapacitor application. Electrochimica Acta, 2014, 116, 372-378.	2.6	23
498	One-step strategy to three-dimensional graphene/VO ₂ nanobelt composite hydrogels for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 1165-1173.	5.2	214
499	A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors. Journal of Power Sources, 2014, 246, 402-408.	4.0	85
500	Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy, 2014, 3, 36-45.	8.2	265
501	Approaching high temperature performance for proton exchange membrane fuel cells with 3D ordered silica/Cs2.5H0.5PW electrolytes. Journal of Materials Chemistry A, 2014, 2, 753-760.	5.2	28
502	A comparative study of supercapacitive performances of nickel cobalt layered double hydroxides coated on ZnO nanostructured arrays on textile fibre as electrodes for wearable energy storage devices. Nanoscale, 2014, 6, 2434.	2.8	49
503	3D core/shell hierarchies of MnOOH ultrathin nanosheets grown on NiO nanosheet arrays for high-performance supercapacitors. Nano Energy, 2014, 4, 56-64.	8.2	83
504	Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 183, 54-60.	1.7	63
505	Preparation of Novel Three-Dimensional NiO/Ultrathin Derived Graphene Hybrid for Supercapacitor Applications. ACS Applied Materials & Interfaces, 2014, 6, 1106-1112.	4.0	185
506	A one-step practical strategy to enhance overall supercapacitor performance. RSC Advances, 2014, 4, 59310-59314.	1.7	12
507	Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electrochimica Acta, 2014, 149, 341-348.	2.6	84
508	Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochimica Acta, 2014, 150, 23-34.	2.6	120
509	Pseudo-capacitive performance of titanate nanotubes as a supercapacitor electrode. Chemical Communications, 2014, 50, 5973.	2.2	38
510	Construction of unique NiCo2O4 nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 4954.	5.2	134

#	Article	IF	CITATIONS
511	Poly(3,4-ethylenedioxythiophene)/MoS ₂ nanocomposites with enhanced electrochemical capacitance performance. RSC Advances, 2014, 4, 56926-56932.	1.7	52
512	Nanosheet-assembled 3D nanoflowers of ruthenium oxide with superior rate performance for supercapacitor applications. RSC Advances, 2014, 4, 16115-16120.	1.7	23
513	Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 8833.	5.2	76
514	Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application. Physical Chemistry Chemical Physics, 2014, 16, 12909.	1.3	39
516	A Novel double-shelled C@NiO hollow microsphere: Synthesis and application for electrochemical capacitor. Electrochimica Acta, 2014, 148, 211-219.	2.6	54
517	Design of Polypyrrole/Polyaniline Double-Walled Nanotube Arrays for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2014, 6, 642-647.	4.0	100
518	Nitrogenâ€Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose. Advanced Functional Materials, 2014, 24, 3953-3961.	7.8	336
519	Transparent and Flexible Supercapacitors with Single Walled Carbon Nanotube Thin Film Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 15434-15439.	4.0	131
520	Soft-template synthesis of vanadium oxynitride-carbon nanomaterials for supercapacitors. International Journal of Hydrogen Energy, 2014, 39, 16139-16150.	3.8	35
521	Sponge-like NiCo ₂ O ₄ /MnO ₂ ultrathin nanoflakes for supercapacitor with high-rate performance and ultra-long cycle life. Journal of Materials Chemistry A, 2014, 2, 7738-7741.	5.2	69
522	PPy film/TiO ₂ nanotubes composite with enhanced supercapacitive properties. RSC Advances, 2014, 4, 27130-27134.	1.7	20
523	Effect of temperature on the performance of ultrafine MnO ₂ nanobelt supercapacitors. Journal of Materials Chemistry A, 2014, 2, 1443-1447.	5.2	108
524	A new synthetic route to hollow Co ₃ O ₄ octahedra for supercapacitor applications. CrystEngComm, 2014, 16, 826-833.	1.3	91
525	Enhanced electrochemical performance of ball milled CoO for supercapacitor applications. Journal of Materials Chemistry A, 2014, 2, 16467-16473.	5.2	112
526	Supercapacitor characteristics of pressurized RuO ₂ /carbon powder as binder-free electrodes. RSC Advances, 2014, 4, 48276-48284.	1.7	26
527	Paramecium-like α-MnO ₂ hierarchical hollow structures with enhanced electrochemical capacitance prepared by a facile dopamine carbon-source assisted shell-swelling etching method. Journal of Materials Chemistry A, 2014, 2, 20729-20738.	5.2	33
528	Highly conductive carbon–CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 11776-11783.	5.2	147
529	Facile electrochemical synthesis of 3D nano-architectured CuO electrodes for high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12857-12865.	5.2	68

	CITATION I	KEPORT	
#	Article	IF	CITATIONS
530	Metal oxide/hydroxide-based materials for supercapacitors. RSC Advances, 2014, 4, 41910-41921.	1.7	304
531	Urchin and sheaf-like NiCo 2 O 4 nanostructures: Synthesis and electrochemical energy storage application. International Journal of Hydrogen Energy, 2014, 39, 15627-15638.	3.8	153
532	Controllable synthesis of mesoporous Co 3 O 4 nanoflake array and its application for supercapacitor. Materials Research Bulletin, 2014, 60, 674-678.	2.7	25
533	Nanoarchitectured Grapheneâ€Based Supercapacitors for Nextâ€Generation Energyâ€Storage Applications. Chemistry - A European Journal, 2014, 20, 13838-13852.	1.7	274
534	Nanowire Electrodes for Electrochemical Energy Storage Devices. Chemical Reviews, 2014, 114, 11828-11862.	23.0	617
535	Flexible Cellulose Paperâ€based Asymmetrical Thin Film Supercapacitors with Highâ€Performance for Electrochemical Energy Storage. Advanced Functional Materials, 2014, 24, 7093-7101.	7.8	38
536	Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM). Journal of Physical Chemistry C, 2014, 118, 19505-19523.	1.5	19
537	How the electrochemical reversibility of a battery-type material affects the charge balance and performances of asymmetric supercapacitors. Electrochimica Acta, 2014, 146, 759-768.	2.6	47
538	C-axis preferentially oriented and fully activated TiO ₂ nanotube arrays for lithium ion batteries and supercapacitors. Journal of Materials Chemistry A, 2014, 2, 11454-11464.	5.2	75
539	Facile one-step hydrothermal syntheses and supercapacitive performances of reduced graphene oxide/MnO2 composites. Composites Science and Technology, 2014, 103, 113-118.	3.8	18
540	Carbon coated nickel sulfide/reduced graphene oxide nanocomposites: facile synthesis and excellent supercapacitor performance. Electrochimica Acta, 2014, 146, 525-532.	2.6	50
541	Advances and challenges for flexible energy storage and conversion devices and systems. Energy and Environmental Science, 2014, 7, 2101.	15.6	767
542	Supercapacitance of MnO2 films prepared by pneumatic spray method. Materials Science in Semiconductor Processing, 2014, 27, 233-239.	1.9	21
543	Facile synthesis of cobalt manganese oxides nanowires on nickel foam with superior electrochemical performance. Journal of Power Sources, 2014, 268, 204-211.	4.0	73
544	Oxidative precipitation of ruthenium oxide for supercapacitors: Enhanced capacitive performances by adding cetyltrimethylammonium bromide. Journal of Power Sources, 2014, 268, 430-438.	4.0	23
545	High Performance Supercapacitors Based on the Electrodeposited Co3O4 Nanoflakes on Electro-etched Carbon Fibers. Electrochimica Acta, 2014, 138, 9-14.	2.6	41
546	A Facile One-Pot Preparation of Dialdehyde Starch Reduced Graphene Oxide/Polyaniline Composite for Supercapacitors. Electrochimica Acta, 2014, 139, 117-126.	2.6	64
547	Coaxial RuO ₂ –ITO Nanopillars for Transparent Supercapacitor Application. Langmuir, 2014, 30, 1704-1709.	1.6	94

#	Article	IF	CITATIONS
548	Synthesis of RuO2 decorated quasi graphene nanosheets and their application in supercapacitors. RSC Advances, 2014, 4, 11197.	1.7	47
549	Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium–air battery cathode catalyst. Journal of Power Sources, 2014, 270, 386-390.	4.0	49
550	3D network mesoporous beta -manganese dioxide: Template-free synthesis and supercapacitive performance. Journal of Power Sources, 2014, 270, 411-417.	4.0	33
551	Hierarchical Core–Shell Structure of ZnO Nanorod@NiO/MoO ₂ Composite Nanosheet Arrays for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 13564-13570.	4.0	77
552	Conformal coating of ultrathin Ni(OH)2 on ZnO nanowires grown on textile fiber for efficient flexible energy storage devices. RSC Advances, 2014, 4, 6324.	1.7	38
553	Ultrathin Nanoflakes Assembled 3D Hierarchical Mesoporous Co ₃ O ₄ Nanoparticles for Highâ€Rate Pseudocapacitors. Particle and Particle Systems Characterization, 2014, 31, 1079-1083.	1.2	32
554	Hierarchical Composite Electrodes of Nickel Oxide Nanoflake 3D Graphene for Highâ€Performance Pseudocapacitors. Advanced Functional Materials, 2014, 24, 6372-6380.	7.8	210
555	A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO 2. Nano Energy, 2014, 10, 63-70.	8.2	99
556	Scalable fabrication of MnO ₂ nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy and Environmental Science, 2014, 7, 2652-2659.	15.6	247
557	Facile synthesis of Co ₃ O ₄ porous nanosheets/reduced graphene oxide composites and their excellent supercapacitor performance. RSC Advances, 2014, 4, 53180-53187.	1.7	68
558	One-step synthesis of TiO ₂ nanorod arrays on Ti foil for supercapacitor application. Nanotechnology, 2014, 25, 435406.	1.3	26
559	NiCo ₂ O ₄ nanostructure materials: morphology control and electrochemical energy storage. Dalton Transactions, 2014, 43, 15887-15897.	1.6	63
560	Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon. Langmuir, 2014, 30, 900-910.	1.6	342
561	High-Performance Supercapacitor Electrode Based on the Unique ZnO@Co ₃ O ₄ Core/Shell Heterostructures on Nickel Foam. ACS Applied Materials & Interfaces, 2014, 6, 15905-15912.	4.0	212
562	Flexible, sandwich-like Ag-nanowire/PEDOT:PSS-nanopillar/MnO ₂ high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10923-10929.	5.2	123
563	High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy, 2014, 8, 174-182.	8.2	301
564	High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnO _x nanocomposite electrodes. Nanoscale, 2014, 6, 9655-9664.	2.8	71
565	Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage. Journal of Materials Chemistry A, 2014, 2, 13136-13142.	5.2	78

#	Article	IF	CITATIONS
566	Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor. Journal of Power Sources, 2014, 271, 269-277.	4.0	150
567	Evaluation of Electrochemical Charge Storage Mechanism and Structural Changes in Intertwined MoO3–MWCNTs Composites for Supercapacitor Applications. Electrochimica Acta, 2014, 147, 380-384.	2.6	20
568	Hydrothermal synthesis of Ni ₃ S ₂ /graphene electrode and its application in a supercapacitor. RSC Advances, 2014, 4, 37278-37283.	1.7	71
569	Synthesis and electrochemical performances of a novel two-dimensional nanocomposite: polyaniline-coated laponite nanosheets. Journal of Materials Science, 2014, 49, 6830-6837.	1.7	14
570	Reduced graphene oxide/Ni _{1â^'x} Co _x Al-layered double hydroxide composites: preparation and high supercapacitor performance. Dalton Transactions, 2014, 43, 11667-11675.	1.6	121
571	Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochimica Acta, 2014, 132, 127-135.	2.6	183
572	Enhanced Performance of Layered Titanate Nanowire-Based Supercapacitor Electrodes by Nickel Ion Exchange. ACS Applied Materials & Interfaces, 2014, 6, 4578-4586.	4.0	92
573	Facile hydrothermal fabrication of nitrogen-doped graphene/Fe2O3 composites as high performance electrode materials for supercapacitor. Journal of Alloys and Compounds, 2014, 604, 87-93.	2.8	119
574	Beta-manganese dioxide nanoflowers self-assembled by ultrathin nanoplates with enhanced supercapacitive performance. Journal of Materials Chemistry A, 2014, 2, 9353.	5.2	36
575	All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte. Journal of Power Sources, 2014, 245, 857-865.	4.0	148
576	Capacitance performance of nanostructured β-Ni(OH)2 with different morphologies grown on nickel foam. Journal of Electroanalytical Chemistry, 2014, 720-721, 115-120.	1.9	14
577	A Review of Grapheneâ€Based Electrochemical Microsupercapacitors. Electroanalysis, 2014, 26, 30-51.	1.5	317
578	Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 12323-12329.	5.2	122
579	Hydrogenation of nanostructured semiconductors for energy conversion and storage. Science Bulletin, 2014, 59, 2144-2161.	1.7	15
580	The effect of acid treatment on thermally exfoliated graphite oxide as electrode for supercapacitors. Electrochimica Acta, 2014, 138, 311-317.	2.6	9
581	Hybrid nanonet/nanoflake NiCo2O4 electrodes with an ultrahigh surface area for supercapacitors. Journal of Solid State Electrochemistry, 2014, 18, 3143-3152.	1.2	21
582	Hydrogenated NiO Nanoblock Architecture for High Performance Pseudocapacitor. ACS Applied Materials & Interfaces, 2014, 6, 4684-4692.	4.0	106
583	Preparation and performance of Co ₃ O ₄ –NiO composite electrode material for supercapacitors. RSC Advances, 2014, 4, 15511-15517.	1.7	21

	CITATION RE	PORT	
Article		IF	CITATIONS
Facile synthesis of hierarchical MnO2 sub-microspheres composed of nanosheets and application for supercapacitors. RSC Advances, 2014, 4, 40753-40757.	their	1.7	35
High-Density, Stretchable, All-Solid-State Microsupercapacitor Arrays. ACS Nano, 2014	-, 8, 8844-8855.	7.3	96
Nanosheet-Based Hierarchical Ni ₂ (CO ₃)(OH) ₂ Weak Crystallinity for High-Performance Supercapacitor. ACS Applied Materials & amp 6, 17208-17214.	Microspheres with ; Interfaces, 2014,	4.0	126
In Situ Preparation of 1D Co@C Composite Nanorods as Negative Materials for Alkalir Batteries. ACS Applied Materials & amp; Interfaces, 2014, 6, 3863-3869.	e Secondary	4.0	35
Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon mice for electrochemical microcapacitors. Journal of Power Sources, 2014, 262, 494-500.	roelectrodes	4.0	22
NiO/MnO2 core/shell nanocomposites for high-performance pseudocapacitors. Materi 114, 40-43.	als Letters, 2014,	1.3	27
Three-Dimensional Co ₃ O ₄ @NiMoO ₄ Core/She on Ni Foam for Electrochemical Energy Storage. ACS Applied Materials & amp; Interface 5050-5055.	ll Nanowire Arrays es, 2014, 6,	4.0	198
Needle-like Co ₃ O ₄ Anchored on the Graphene with Enhance Performance for Aqueous Supercapacitors. ACS Applied Materials & Interfaces, 20	ed Electrochemical 014, 6, 7626-7632.	4.0	316
Redox-exchange induced heterogeneous RuO2-conductive polymer nanowires. Physica	al Chemistry	1.3	20

588	Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors. Journal of Power Sources, 2014, 262, 494-500.	4.0	22
589	NiO/MnO2 core/shell nanocomposites for high-performance pseudocapacitors. Materials Letters, 2014, 114, 40-43.	1.3	27
590	Three-Dimensional Co ₃ O ₄ @NiMoO ₄ Core/Shell Nanowire Arrays on Ni Foam for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2014, 6, 5050-5055.	4.0	198
591	Needle-like Co ₃ O ₄ Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 7626-7632.	4.0	316
592	Redox-exchange induced heterogeneous RuO2-conductive polymer nanowires. Physical Chemistry Chemical Physics, 2014, 16, 12332.	1.3	20
593	Facile synthesis of cerium oxide nanostructures for rechargeable lithium battery electrode materials. RSC Advances, 2014, 4, 14872-14878.	1.7	35
594	Investigation of a Branchlike MoO ₃ /Polypyrrole Hybrid with Enhanced Electrochemical Performance Used as an Electrode in Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 1125-1130.	4.0	167
595	1-D Structured Flexible Supercapacitor Electrodes with Prominent Electronic/Ionic Transport Capabilities. ACS Applied Materials & Interfaces, 2014, 6, 268-274.	4.0	34
596	Effects of the graphene content and the treatment temperature on the supercapacitive properties of VOx/graphene nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 449, 148-156.	2.3	21
597	Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures. Journal of Power Sources, 2014, 252, 64-72.	4.0	67
598	Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors. Journal of Electroanalytical Chemistry, 2014, 713, 98-102.	1.9	49
599	Hydrous ruthenium oxide prepared by steam-assisted thermolysis: Capacitance and stability. Solid State Ionics, 2014, 268, 312-315.	1.3	5
600	Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors. Journal of Alloys and Compounds, 2014, 586, 745-753.	2.8	103
601	Electrospun nanofiber of hybrid manganese oxides for supercapacitor: Relevance to mixed inorganic interfaces. Journal of Power Sources, 2014, 255, 335-340.	4.0	60

#

584

#	Article	IF	CITATIONS
602	Self-assembly of NiO/graphene with three-dimension hierarchical structure as high performance electrode material for supercapacitors. Journal of Alloys and Compounds, 2014, 597, 291-298.	2.8	76
603	Controllable Growth of Hierarchical NiCo2O4 Nanowires and Nanosheets on Carbon Fiber Paper and their Morphology-Dependent Pseudocapacitive Performances. Electrochimica Acta, 2014, 133, 382-390.	2.6	62
604	Hierarchical construction of core–shell metal oxide nanoarrays with ultrahigh areal capacitance. Nano Energy, 2014, 7, 170-178.	8.2	111
605	Synthesis of long chain-like nickel cobalt oxide nanoneedles–reduced graphene oxide composite material for high-performance supercapacitors. Ceramics International, 2014, 40, 12751-12758.	2.3	24
606	Three-dimensional enoki mushroom-like Co3O4 hierarchitectures constructed by one-dimension nanowires for high-performance supercapacitors. Electrochimica Acta, 2014, 135, 495-502.	2.6	46
607	Nitrogen- and oxygen-containing hierarchical porous carbon frameworks for high-performance supercapacitors. Electrochimica Acta, 2014, 134, 471-477.	2.6	48
608	Highâ€Power Lithiumâ€lon Capacitor using LiMnBO ₃ â€Nanobead Anode and Polyanilineâ€Nanofiber Cathode with Excellent Cycle Life. ChemSusChem, 2014, 7, 2310-2316.	3.6	29
609	Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors. Nanotechnology, 2014, 25, 235401.	1.3	69
610	Three-Dimensional Thin Film for Lithium-Ion Batteries and Supercapacitors. ACS Nano, 2014, 8, 7279-7287.	7.3	50
611	Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A, 2014, 2, 10756.	5.2	402
612	Novel Iron Oxyhydroxide Lepidocrocite Nanosheet as Ultrahigh Power Density Anode Material for Asymmetric Supercapacitors. Small, 2014, 10, 3803-3810.	5.2	143
613	MnO ₂ /carbon nanowall electrode for future energy storage application: effect of carbon nanowall growth period and MnO ₂ mass loading. RSC Advances, 2014, 4, 20479-20488.	1.7	48
614	NiCo ₂ O ₄ -based materials for electrochemical supercapacitors. Journal of Materials Chemistry A, 2014, 2, 14759-14772.	5.2	420
615	Electrochemical supercapacitor behaviour of α-Ni(OH)2 nanoparticles synthesized via green chemistry route. Journal of Electroanalytical Chemistry, 2014, 727, 53-58.	1.9	33
616	Raman and Infrared Spectroscopic Characterization of Graphene. , 2014, , 165-194.		0
617	Nanostructured Metal Oxides forÂSupercapacitor Applications. , 2014, , 119-152.		2
618	Advanced Materials for Supercapacitors. Electrochemical Energy Storage and Conversion, 2015, , 423-449.	0.0	0
619	A Highâ€Power Symmetric Na″on Pseudocapacitor. Advanced Functional Materials, 2015, 25, 5778-5785.	7.8	105

ARTICLE IF CITATIONS Shapeâ€Controlled Synthesis of NiCo₂O₄ Microstructures and Their 620 1.7 24 Application in Supercapacitors. Chemistry - an Asian Journal, 2015, 10, 1972-1978. Synthesis of novel Ni(OH)2/graphene nanocomposite and its application as a supercapacitor. Materials 1.0 Research Innovations, 2015, 19, 375-379. Synthesis of Metal Oxide Decorated Polycarboxyphenyl Polymer-Grafted Multiwalled Carbon 622 Nanotube Composites by a Chemical Grafting Approach for Supercapacitor Application. Journal of 1.5 4 Nanomaterials, 2015, 2015, 1-11. Hierarchical three-dimensional NiCo₂O₄ nanoneedle arrays supported on Ni 624 foam for high-performance supercapacitors. RSC Advances, 2015, 5, 25304-25311. Flexible Hybrid Membranes of NiCo₂O₄-Doped Carbon Nanofiber@MnO₂ Core–Sheath Nanostructures for High-Performance Supercapacitors. Journal of Physical Chemistry C, 2015, 119, 13442-13450. 625 1.5 63 Electrospun Carbon Nanofibers with in Situ Encapsulated Co₃O₄ Nanoparticles as Electrodes for High-Performance Supercapacitors. ACS Applied Materials & amp; 4.0 199 Interfaces, 2015, 7, <u>13503-13511</u> Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Progress in 627 16.0 449 Materials Science, 2015, 74, 51-124. Electrochemical Hierarchical Composites., 2015, , 239-286. NiCo₂O₄@NiO hybrid arrays with improved electrochemical performance for 629 5.2 147 pseudocapacitors. Journal of Materials Chemistry A, 2015, 3, 13900-13905. Facile synthesis of 3D flower-like porous NiO architectures with an excellent capacitance 1.7 performance. RSC Advances, 2015, 5, 47506-47510. Supercapacitor electrode with a homogeneously Co3O4-coated multiwalled carbon nanotube for a 631 3.1 57 high capacitance. Nanoscale Research Letters, 2015, 10, 208. Microstructural design of hybrid CoO@NiO and graphene nano-architectures for flexible high 5.2 performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14833-14844. High Energy Density Asymmetric Supercapacitors From Mesoporous NiCo2S4 Nanosheets. 633 2.6 247 Electrochimica Acta, 2015, 174, 238-245. Facile synthesis of amorphous Co/Ni hydroxide hierarchical films and the study of their morphology 1.7 and electrochemical properties. RSC Advances, 2015, 5, 25676-25683. LiFePO4â[~]'xNy thin-film electrodes coated on carbon fiber-modified current collectors for 636 0.8 5 pseudocapacitors. Thin Solid Films, 2015, 596, 34-38. On-chip supercapacitors with ultrahigh volumetric performance based on electrochemically 30 co-deposited CuO/polypyrrole nanosheet arrays. Nanotechnology, 2015, 26, 425402. Synthesis of Amorphous Hydrous Ruthenium Dioxide for Electrochemical Capacitors. Rare Metal 638 0.8 8 Materials and Engineering, 2015, 44, 1866-1872. Poly(3,4-ethylenedioxythiophene)/nickel disulfide microspheres hybrid in energy storage and 639 conversion cells. RSC Advances, 2015, 5, 99164-99178.
#	Article	IF	CITATIONS
640	Assessment of supercapacitor based on carbon material synthesized from neem tree leaves. , 2015, , .		1
641	Anodic Oxide Nanostructures and Their Applications in Energy Generation and Storage. ACS Symposium Series, 2015, , 19-39.	0.5	1
642	Hierarchical porous CuO nanostructures with tunable properties for high performance supercapacitors. RSC Advances, 2015, 5, 10773-10781.	1.7	53
643	Sulphur-functionalized graphene towards high performance supercapacitor. Nano Energy, 2015, 12, 250-257.	8.2	104
644	Two-dimensional NiCo ₂ O ₄ nanosheet-coated three-dimensional graphene networks for high-rate, long-cycle-life supercapacitors. Nanoscale, 2015, 7, 7035-7039.	2.8	134
645	High Energy Density Asymmetric Supercapacitor Based on NiOOH/Ni3S2/3D Graphene and Fe3O4/Graphene Composite Electrodes. Scientific Reports, 2014, 4, 7274.	1.6	174
646	Synthesis of Ni(OH) ₂ /RGO pseudocomposite on nickel foam for supercapacitors with superior performance. Journal of Materials Chemistry A, 2015, 3, 3641-3650.	5.2	149
647	Development of pseudocapacitive molybdenum oxide–nitride for electrochemical capacitors. Materials Chemistry and Physics, 2015, 154, 118-124.	2.0	24
648	Facile synthesis of single crystalline mesoporous hematite nanorods with enhanced supercapacitive performance. Electrochimica Acta, 2015, 155, 257-262.	2.6	28
649	Double Metal Ions Synergistic Effect in Hierarchical Multiple Sulfide Microflowers for Enhanced Supercapacitor Performance. ACS Applied Materials & amp; Interfaces, 2015, 7, 4311-4319.	4.0	202
650	Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance. Journal of Alloys and Compounds, 2015, 632, 376-385.	2.8	45
651	Ni@NiO core–shell nanoparticle tube arrays with enhanced supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 6432-6439.	5.2	73
652	Titanium Dioxide Nanotube Films for Electrochemical Supercapacitors: Biocompatibility and Operation in an Electrolyte Based on a Physiological Fluid. Journal of the Electrochemical Society, 2015, 162, A5065-A5069.	1.3	37
653	The preparation and electrochemical characterization of urchin-like NiCo2O4 nanostructures. Applied Surface Science, 2015, 332, 247-252.	3.1	24
654	Reduction Mechanism and Capacitive Properties of Highly Electrochemically Reduced TiO2 Nanotube Arrays. Electrochimica Acta, 2015, 161, 40-47.	2.6	90
655	In Situ Preparation of Sandwich MoO ₃ /C Hybrid Nanostructures for Highâ€Rate and Ultralongâ€Life Supercapacitors. Advanced Functional Materials, 2015, 25, 1886-1894.	7.8	116
656	High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. Journal of Power Sources, 2015, 282, 179-186.	4.0	269
657	Ni(OH)2–NiO–NiF Compound Film on Nickel with Superior Pseudocapacitive Performance Prepared by Anodization and Post-hydrothermal Treatment Methods. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 739-746.	1.9	5

#	Article	IF	CITATIONS
658	Investigating Mechanisms Underlying Elevated-Temperature-Induced Capacity Fading of Aqueous MnO ₂ Polymorph Supercapacitors: Cryptomelane and Birnessite. Journal of the Electrochemical Society, 2015, 162, A5106-A5114.	1.3	21
659	Porous nickel oxide nanotube arrays supported on carbon fiber paper: synergistic effect on pseudocapacitive behavior. New Journal of Chemistry, 2015, 39, 1996-2003.	1.4	19
660	Ultrathin mesoporous Co3O4 nanosheets on Ni foam for high-performance supercapacitors. Electrochimica Acta, 2015, 157, 62-68.	2.6	85
661	A novel fabrication of nitrogen-containing carbon nanospheres with high rate capability as electrode materials for supercapacitors. RSC Advances, 2015, 5, 12034-12042.	1.7	61
662	Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites. Nanotechnology, 2015, 26, 075402.	1.3	37
663	A new approach for the improved interpretation of capacitance measurements for materials utilised in energy storage. RSC Advances, 2015, 5, 12782-12791.	1.7	79
664	One-pot tertbutanol assisted solvothermal synthesis of CoNi2S4/reduced graphene oxide nanocomposite for high-performance supercapacitors. Ceramics International, 2015, 41, 6203-6211.	2.3	36
665	Enhanced electrochemical performance of hybrid SnO ₂ @MO _x (M = Ni, Co,) Tj ETQq1 materials. Journal of Materials Chemistry A, 2015, 3, 3676-3682.	0.784314 5.2	ł rgBT /Overl 85
666	NiMoO ₄ nanowire @ MnO ₂ nanoflake core/shell hybrid structure aligned on carbon cloth for high-performance supercapacitors. RSC Advances, 2015, 5, 10681-10687.	1.7	37
668	Fiber-Shaped Supercapacitor. Nanostructure Science and Technology, 2015, , 117-145.	0.1	2
669	Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. Journal of the American Chemical Society, 2015, 137, 1572-1580.	6.6	1,307
671	A facile low-temperature synthesis of highly distributed and size-tunable cobalt oxide nanoparticles anchored on activated carbon for supercapacitors. Journal of Power Sources, 2015, 273, 945-953.	4.0	53
672	Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. Journal of Colloid and Interface Science, 2015, 447, 282-301.	5.0	43
673	Co ₃ O ₄ @MWCNT Nanocable as Cathode with Superior Electrochemical Performance for Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 2280-2285.	4.0	162
674	Hydrothermal Synthesis of Akaganeite Nanorods and Their Supercapacitance Property. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 982-985.	1.9	3
675	Ultralight and flexible supercapacitor electrodes made from Ni(OH)2 nanosheets doped with Ag nanoparticle/3D graphene composite. RSC Advances, 2015, 5, 20878-20883.	1.7	24
676	Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage. RSC Advances, 2015, 5, 23942-23951.	1.7	73
677	High voltage supercapacitors based on carbon-grafted NiO nanowires interfaced with an aprotic ionic liquid. Chemical Communications, 2015, 51, 6092-6095.	2.2	19

#	Article	IF	CITATIONS
678	Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors. Electrochimica Acta, 2015, 174, 456-463.	2.6	107
679	Synergistic enhancement of electrochemical performance of electrospun TiC/C hybrid nanofibers for supercapacitor application. Electrochimica Acta, 2015, 176, 402-409.	2.6	30
680	Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochimica Acta, 2015, 180, 998-1006.	2.6	132
681	High-performance supercapacitors based on MnO ₂ tube-in-tube arrays. Journal of Materials Chemistry A, 2015, 3, 16560-16566.	5.2	67
682	Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions. Ceramics International, 2015, 41, 12626-12632.	2.3	83
683	A facile approach to prepare Bi(OH) ₃ nanoflakes as high-performance pseudocapacitor materials. New Journal of Chemistry, 2015, 39, 5927-5930.	1.4	15
684	High-rate supercapacitor utilizing hydrous ruthenium dioxide nanotubes. Journal of Power Sources, 2015, 294, 88-93.	4.0	44
685	Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor. Applied Surface Science, 2015, 351, 862-868.	3.1	69
686	Anodic composite deposition of RuO ₂ /reduced graphene oxide/carbon nanotube for advanced supercapacitors. Nanotechnology, 2015, 26, 274004.	1.3	26
687	Vertically oriented Ni ₃ S ₂ /RGO/Ni ₃ S ₂ nanosheets on Ni foam for superior supercapacitors. RSC Advances, 2015, 5, 63528-63536.	1.7	41
688	Hierarchical Cu _{0.27} Co _{2.73} O ₄ /MnO ₂ nanorod arrays grown on 3D nickel foam as promising electrode materials for electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 17359-17368.	5.2	25
689	Orientated Co ₃ O ₄ Nanocrystals on MWCNTs as Superior Battery-Type Positive Electrode Material for a Hybrid Capacitor. Journal of the Electrochemical Society, 2015, 162, A1966-A1971.	1.3	52
690	Enhancement of electrochemical capacitance by tailoring the geometry of TiO2 nanotube electrodes. Electrochimica Acta, 2015, 176, 1214-1220.	2.6	24
691	The hybrid nanostructure of MnCo ₂ O _{4.5} nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density. Nanoscale, 2015, 7, 14401-14412.	2.8	99
692	Template-Free Synthesis of Ruthenium Oxide Nanotubes for High-Performance Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2015, 7, 16686-16693.	4.0	22
693	Designed synthesis of a unique single-crystal Fe-doped LiNiPO4 nanomesh as an enhanced cathode for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 15969-15976.	5.2	29
694	Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion electrolyte. Journal of Power Sources, 2015, 293, 649-656.	4.0	32
695	A facile one-pot hydrothermal synthesis of branched α-MnO ₂ nanorods for supercapacitor application. CrystEngComm, 2015, 17, 5970-5977.	1.3	40

#	Article	IF	CITATIONS
696	Phase dependent thermal and spectroscopic responses of Al ₂ O ₃ nanostructures with different morphogenesis. Nanoscale, 2015, 7, 13313-13344.	2.8	180
697	An assembled-nanosheets discus-like Ni(OH)2 hierarchical structure as a high performance electrode material for supercapacitors. RSC Advances, 2015, 5, 59659-59664.	1.7	6
698	Microwave-assisted anchoring of flowerlike Co(OH)2 nanosheets on activated carbon to prepare hybrid electrodes for high-rate electrochemical capacitors. Electrochimica Acta, 2015, 170, 328-336.	2.6	33
699	Low Cost Facile Synthesis of Large-Area Cobalt Hydroxide Nanorods with Remarkable Pseudocapacitance. ACS Applied Materials & Interfaces, 2015, 7, 9147-9156.	4.0	38
700	Hollow spiny shell of porous Ni–Mn oxides: A facile synthesis route and their application as electrode in supercapacitors. Journal of Power Sources, 2015, 286, 66-72.	4.0	28
701	Ultrafine Ag/MnO nanowire-constructed hair-like nanoarchitecture: In situ synthesis, formation mechanism and its supercapacitive property. Journal of Alloys and Compounds, 2015, 644, 47-53.	2.8	11
702	Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochimica Acta, 2015, 169, 202-209.	2.6	149
703	Needle-like CoO nanowires grown on carbon cloth for enhanced electrochemical properties in supercapacitors. RSC Advances, 2015, 5, 41627-41630.	1.7	21
704	Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44, 3639-3665.	18.7	1,015
705	The Effect of Thermal Exfoliation Temperature on the Structure and Supercapacitive Performance of Graphene Nanosheets. Nano-Micro Letters, 2015, 7, 17-26.	14.4	32
706	Synthesis and Capacitive Properties of Manganese Oxide Nanoparticles Dispersed on Hierarchical Porous Carbons. Electrochimica Acta, 2015, 166, 107-116.	2.6	34
707	One-pot synthesis of sandwich-like reduced graphene oxide@CoNiAl layered double hydroxide with excellent pseudocapacitive properties. Journal of Materials Chemistry A, 2015, 3, 10858-10863.	5.2	64
708	Construction of unique Co ₃ O ₄ @CoMoO ₄ core/shell nanowire arrays on Ni foam by the action exchange method for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14578-14584.	5.2	84
709	Glucose-Assisted Synthesis of Nickel-Cobalt Sulfide/Carbon Nanotube Composites as Efficient Cathode Materials for Hybrid Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A1493-A1499.	1.3	42
710	Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS Nano, 2015, 9, 6288-6296.	7.3	890
711	Rational design of coaxial structured carbon nanotube–manganese oxide (CNT–MnO ₂) for energy storage application. Nanotechnology, 2015, 26, 204004.	1.3	55
712	Hierarchical 3-dimensional CoMoO ₄ nanoflakes on a macroporous electrically conductive network with superior electrochemical performance. Journal of Materials Chemistry A, 2015, 3, 13776-13785.	5.2	61
713	One dimensional nickel oxide-decorated cobalt oxide (Co3O4) composites for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2015, 749, 89-95.	1.9	19

	CHATON K	EPORT	
#	Article	IF	CITATIONS
714	A Review for Aqueous Electrochemical Supercapacitors. Frontiers in Energy Research, 2015, 3, .	1.2	174
715	Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochimica Acta, 2015, 167, 97-104.	2.6	41
716	Hierarchical micro-architectures of electrodes for energy storage. Journal of Power Sources, 2015, 284, 435-445.	4.0	70
717	Redoxâ€Mediated Synthesis of a Fe ₃ O ₄ –MnO ₂ Nanocomposite for Dye Adsorption and Pseudocapacitance. Chemistry - an Asian Journal, 2015, 10, 1571-1580.	1.7	27
718	One-step synthesis of copper compounds on copper foil and their supercapacitive performance. RSC Advances, 2015, 5, 36656-36664.	1.7	91
719	Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn ₃ O ₄ Negative Electrode and Ni(OH) ₂ Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Applied Materials & Interfaces, 2015, 7, 11444-11451.	4.0	198
720	Enhanced supercapacitive performance on TiO2@C coaxial nano-rod array through a bio-inspired approach. Nano Energy, 2015, 15, 75-82.	8.2	64
721	High supercapacitive performance of Ni(OH) ₂ /XC-72 composite prepared by microwave-assisted method. RSC Advances, 2015, 5, 43164-43171.	1.7	23
722	Highly ordered mesoporous NiCo ₂ O ₄ with superior pseudocapacitance performance for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 11503-11510.	5.2	36
723	Three-dimensional NiCo ₂ O ₄ @NiMoO ₄ core/shell nanowires for electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 12069-12075.	5.2	51
724	Preparation of stereoscopic snowflake-like CoO material and its supercapacitor applications. lonics, 2015, 21, 2303-2307.	1.2	13
725	Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy, 2015, 13, 306-317.	8.2	303
726	Preparation of graphene nanosheets from microcrystalline graphite by low-temperature exfoliated method and their supercapacitive behavior. Journal of Materials Science, 2015, 50, 4025-4033.	1.7	26
727	Facile preparation of NiCo2O4 nanobelt/graphene composite for electrochemical capacitor application. Electrochimica Acta, 2015, 166, 206-214.	2.6	58
728	High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co ₃ O ₄ /MnO ₂ hybrid electrodes. RSC Advances, 2015, 5, 18952-18959.	1.7	44
729	Cobalt sulfide nanosheets coated on NiCo ₂ S ₄ nanotube arrays as electrode materials for high-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 10492-10497.	5.2	161
730	A facile synthesis of mesoporous Co ₃ O ₄ /CeO ₂ hybrid nanowire arrays for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 10425-10431.	5.2	108
731	Cobalt-Doped MnO ₂ Hierarchical Yolk–Shell Spheres with Improved Supercapacitive Performance. Journal of Physical Chemistry C, 2015, 119, 8465-8471.	1.5	96

#	Article	IF	CITATIONS
732	Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO ₂ @MnO ₂ core/shell nanostructures for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 6168-6176.	5.2	138
734	Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Nanoscale, 2015, 7, 8485-8494.	2.8	38
735	High-performance supercapacitor based on metal oxide coated fibrous electrode. , 2015, , .		2
736	Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors. Applied Surface Science, 2015, 357, 1024-1030.	3.1	57
737	Direct preparation and processing of graphene/RuO 2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy, 2015, 18, 57-70.	8.2	181
738	Supercapacitive behavior of an asymmetric supercapacitor based on a Ni(OH) ₂ /XC-72 composite. New Journal of Chemistry, 2015, 39, 9363-9371.	1.4	38
739	Shape-controlled synthesis of MnCO ₃ nanostructures and their applications in supercapacitors. RSC Advances, 2015, 5, 81981-81985.	1.7	33
740	Exploration and progress of high-energy supercapacitors and related electrode materials. Science China Technological Sciences, 2015, 58, 1851-1863.	2.0	15
741	A high performance redox-mediated electrolyte for improving properties of metal oxides based pseudocapacitive materials. Electrochimica Acta, 2015, 186, 478-485.	2.6	17
742	Template Synthesis of Shape-Tailorable NiS ₂ Hollow Prisms as High-Performance Supercapacitor Materials. ACS Applied Materials & Interfaces, 2015, 7, 25396-25401.	4.0	116
743	Curly graphene nanosheets modified by nanoneedle-like manganese oxide for electrochemical capacitors. RSC Advances, 2015, 5, 88950-88957.	1.7	5
744	SnO2-Decorated Graphene/Polyaniline Nanocomposite for a High-Performance Supercapacitor Electrode. Journal of Materials Science and Technology, 2015, 31, 1101-1107.	5.6	32
745	A facile synthesis of α-MnO2 used as a supercapacitor electrode material: The influence of the Mn-based precursor solutions on the electrochemical performance. Applied Surface Science, 2015, 357, 1747-1752.	3.1	22
746	Controlled synthesis of hierarchical birnessite-type MnO 2 nanoflowers for supercapacitor applications. Applied Surface Science, 2015, 356, 259-265.	3.1	114
747	Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors. Journal of Power Sources, 2015, 297, 195-201.	4.0	51
748	Novel red blood cell shaped α-Fe ₂ O ₃ microstructures and FeO(OH) nanorods as high capacity supercapacitors. RSC Advances, 2015, 5, 91127-91133.	1.7	23
749	Structure, electrochemical properties and capacitance performance of polypyrrole electrodeposited onto 1-D crystals of iridium complex. Journal of Power Sources, 2015, 300, 472-482.	4.0	4
750	Local structure distortion induced by Ti dopants boosting the pseudocapacitance of RuO ₂ -based supercapacitors. Nanoscale, 2015, 7, 15450-15461.	2.8	22

#	Article	IF	CITATIONS
751	Flexible all-solid-state asymmetric supercapacitor assembled using coaxial NiMoO 4 nanowire arrays with chemically integrated conductive coatingâ€. Electrochimica Acta, 2015, 178, 429-438.	2.6	66
752	Seed-assisted synthesis of hierarchical manganese dioxide/carbonaceous sphere composites with enhanced supercapacitor performance. Electrochimica Acta, 2015, 180, 1033-1040.	2.6	18
753	One-pot construction of three dimensional CoMoO ₄ /Co ₃ O ₄ hybrid nanostructures and their application in supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21201-21210.	5.2	114
754	Effect of temperature on pseudocapacitance performance of carbon fiber@NiCo 2 O 4 @Ni(OH) 2 core–shell nanowire array composite electrodes. Applied Surface Science, 2015, 356, 167-172.	3.1	29
755	Pseudocapacitive performance of Co(OH)2 enhanced by Ni(OH)2 formation on porous Ni/Cu electrode. Electrochimica Acta, 2015, 182, 47-60.	2.6	12
756	Synthesis of ternary graphene/molybdenum oxide/poly(p-phenylenediamine) nanocomposites for symmetric supercapacitors. RSC Advances, 2015, 5, 98278-98287.	1.7	23
757	MnO2/ZnO porous film: Electrochemical synthesis and enhanced supercapacitor performances. Thin Solid Films, 2015, 597, 44-49.	0.8	22
758	NiO hierarchical hollow nanofibers as high-performance supercapacitor electrodes. RSC Advances, 2015, 5, 96205-96212.	1.7	47
759	Graphene Supported Ni-based Nanocomposites as Electrode Materials with High Capacitance. Electrochimica Acta, 2015, 155, 69-77.	2.6	13
760	Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy and Environmental Science, 2015, 8, 702-730.	15.6	2,096
761	Facile synthesis of mesoporous cobalt oxide rugby balls for electrochemical energy storage. New Journal of Chemistry, 2015, 39, 68-71.	1.4	12
762	Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance. Scientific Reports, 2014, 4, 7426.	1.6	32
763	3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance. Nanoscale, 2015, 7, 6957-6990.	2.8	168
764	N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte. Journal of Power Sources, 2015, 278, 218-229.	4.0	126
765	Nickel hydroxide–nickel nanohybrids indirectly from coordination microfibers for high-performance supercapacitor electrodes. Inorganic Chemistry Frontiers, 2015, 2, 129-135.	3.0	23
766	Smart design of free-standing ultrathin Co–Co(OH) ₂ composite nanoflakes on 3D nickel foam for high-performance electrochemical capacitors. Chemical Communications, 2015, 51, 1689-1692.	2.2	38
767	Hydrothermal synthesis of a uniformly dispersed hybrid graphene–TiO ₂ nanostructure for optical and enhanced electrochemical applications. RSC Advances, 2015, 5, 7112-7120.	1.7	60
768	In situ preparation of flower-like α-Ni(OH)2 and NiO from nickel formate with excellent capacitive properties as electrode materials for supercapacitors. Materials Chemistry and Physics, 2015, 151, 160-166.	2.0	33

#	Article	IF	CITATIONS
769	Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2015, 277, 36-43.	4.0	154
770	Electrochemical behavior of manganese oxides on flexible substrates for thin film supercapacitors. Electrochimica Acta, 2015, 153, 184-189.	2.6	22
771	Synthesis of vertical aligned TiO2@polyaniline core–shell nanorods for high-performance supercapacitors. RSC Advances, 2015, 5, 1680-1683.	1.7	18
772	Quaternary ammonium functionalized poly(aryl ether sulfone)s as separators for supercapacitors based on activated carbon electrodes. Journal of Membrane Science, 2015, 475, 562-570.	4.1	30
773	Enhancing the supercapacitor behaviour of novel Fe3O4/FeOOH nanowire hybrid electrodes in aqueous electrolytes. Journal of Power Sources, 2015, 274, 907-915.	4.0	86
774	Low-temperature performance of aqueous electrochemical capacitors based on manganese oxides. Electrochimica Acta, 2015, 157, 333-344.	2.6	16
775	Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy, 2015, 11, 377-399.	8.2	437
776	Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors. Scientific Reports, 2014, 4, 4452.	1.6	424
777	The Specific Capacitive Performances of the Manganese Oxyhydroxide/Carbon microcoil Electrodes for Supercapacitors. Electrochimica Acta, 2015, 151, 134-139.	2.6	16
778	Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11, 154-161.	8.2	379
779	Hierarchical heterostructures of Ag nanoparticles decorated MnO ₂ nanowires as promising electrodes for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 1216-1221.	5.2	179
780	Effects of surface oxygen on charge storage in high surface area early transition-metal carbides and nitrides. Journal of Power Sources, 2015, 275, 159-166.	4.0	34
781	High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chemical Engineering Journal, 2015, 262, 980-988.	6.6	143
782	A high-performance three-dimensional micro supercapacitor based on ripple-like ruthenium oxide–carbon nanotube composite films. Carbon, 2015, 82, 436-445.	5.4	58
783	Pre-stabilized reduced graphene oxide by ammonia as carrier for Ni(OH)2 with excellent electrochemical property. Journal of Solid State Electrochemistry, 2015, 19, 229-239.	1.2	18
784	Synthesis and characterization of nanostructured ternary zinc manganese oxide as novel supercapacitor material. Materials Chemistry and Physics, 2015, 149-150, 721-727.	2.0	69
785	Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Advances, 2015, 5, 4443-4447.	1.7	175
786	Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnO electrodes and its application. Carbon, 2015, 81, 29-37.	5.4	79

#	Article	IF	CITATIONS
787	Facile Synthesis of Graphene@NiO/MoO3 Composite Nanosheet Arrays for High-performance Supercapacitors. Electrochimica Acta, 2015, 151, 510-516.	2.6	47
788	Exfoliation-restacking synthesis of coal-layered double hydroxide nanosheets/reduced graphene oxide composite for high performance supercapacitors. Electrochimica Acta, 2015, 152, 117-125.	2.6	78
789	Hierarchical nanosheet-based NiMoO ₄ nanotubes: synthesis and high supercapacitor performance. Journal of Materials Chemistry A, 2015, 3, 739-745.	5.2	151
790	Facile synthesis of vanadium pentoxide@carbon core–shell nanowires for high-performance supercapacitors. Journal of Power Sources, 2015, 273, 804-809.	4.0	47
791	MnO2@KCu7S4 NWs hybrid compositions for high-power all-solid-state supercapacitor. Journal of Power Sources, 2015, 274, 477-482.	4.0	38
792	Facile synthesis of ultrathin nickel hydroxides nanoflakes on nickel foam for high-performance supercapacitors. Materials Letters, 2015, 138, 5-8.	1.3	14
793	Design and synthesis of hierarchically porous MnO2/carbon hybrids for high performance electrochemical capacitors. Journal of Colloid and Interface Science, 2015, 438, 61-67.	5.0	27
794	Structure and Physical Properties of NiO/Co3O4 Nanoparticles. Metals, 2016, 6, 181.	1.0	23
795	Grapheneâ€Based Nanocomposites for Energy Storage. Advanced Energy Materials, 2016, 6, 1502159.	10.2	306
796	3D Interdigital Au/MnO ₂ /Au Stacked Hybrid Electrodes for Onâ€Chip Microsupercapacitors. Small, 2016, 12, 3059-3069.	5.2	119
797	3D Freeâ€&tanding NiCo ₂ O ₄ @graphene Foam for Highâ€Performance Supercapacitors. Energy Technology, 2016, 4, 737-743.	1.8	18
799	Construction of Hierarchical Ni(OH) ₂ @CoMoO ₄ Nanoflake Composite for High-Performance Supercapacitors. Nano, 2016, 11, 1650050.	0.5	9
800	Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide. ACS Applied Materials & Interfaces, 2016, 8, 9872-9880.	4.0	78
801	Temperature-dependent textural and electrochemical properties of a ruthenium oxide capacitor prepared by exchange membrane controlled ion diffusion. Ceramics International, 2016, 42, 9170-9177.	2.3	7
802	Co ₃ O ₄ /ZnO nanoheterostructure derived from core–shell ZIF-8@ZIF-67 for supercapacitors. RSC Advances, 2016, 6, 52137-52142.	1.7	95
803	A promising supercapacitor electrode material of CuBi2O4 hierarchical microspheres synthesized via a coprecipitation route. Journal of Alloys and Compounds, 2016, 684, 707-713.	2.8	44
804	Graphene and its nanocomposites used as an active materials for supercapacitors. Journal of Solid State Electrochemistry, 2016, 20, 1509-1526.	1.2	23
805	Highâ€Performance Solid‣tate Supercapacitors Based on V ₂ O ₅ /Carbon Nanotube Composites. ChemElectroChem, 2016, 3, 158-164.	1.7	62

			2
#		IF	CITATIONS
806	self-limited redox deposition on microwave-expanded graphite oxide. RSC Advances, 2016, 6, 8330-8335.	1.7	2
807	Extremely facile synthesis of manganese dioxide-polyaniline nano-reticulation with enhanced electrochemical properties. Journal of Alloys and Compounds, 2016, 677, 281-287.	2.8	31
808	Carbon quantum dots/Ni–Al layered double hydroxide composite for high-performance supercapacitors. RSC Advances, 2016, 6, 39317-39322.	1.7	55
809	Vanadium nitride supercapacitors: Effect of Processing Parameters on electrochemical charge storage behavior. Electrochimica Acta, 2016, 207, 37-47.	2.6	62
810	Interfacial generation of plates assembled with α-Fe2O3 nano-flakes for electrochemical capacitors. Journal of Electroanalytical Chemistry, 2016, 770, 44-49.	1.9	9
811	Carbon encapsulated RuO ₂ nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2016, 4, 8180-8189.	5.2	59
812	RuO ₂ @Co ₃ O ₄ heterogeneous nanofibers: a high-performance electrode material for supercapacitors. RSC Advances, 2016, 6, 49173-49178.	1.7	16
813	Three-dimensional hierarchical NiCo ₂ O ₄ nanowire@Ni ₃ S ₂ nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale, 2016, 8, 10686-10694.	2.8	97
814	Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy and Environmental Science, 2016, 9, 1891-1930.	15.6	205
815	In situ growth of binder-free CNTs@Ni–Co–S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 8888-8897.	5.2	118
816	Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor. Nano Energy, 2016, 30, 831-839.	8.2	183
817	Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology, 2016, 27, 442001.	1.3	112
818	In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal–Organic Framework (Ni–MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudocapacitor Materials. ACS Applied Materials & Interfaces, 2016, 8, 28904-28916.	4.0	175
819	One Pot Solvothermal Synthesis of Sandwich-like Mg Al Layered Double Hydroxide anchored Reduced Graphene Oxide: An excellent electrode material for Supercapacitor. Electrochimica Acta, 2016, 219, 214-226.	2.6	40
820	Preparation and performance of novel enhanced electrochemical capacitors based on graphene constructed self-assembled Co ₃ O ₄ microspheres. RSC Advances, 2016, 6, 91904-91909.	1.7	4
821	Environmentally Friendly Supercapacitors. , 2016, , 351-492.		7
822	Morphology-controllable synthesis of 3D CoNiO2 nano-networks as a high-performance positive electrode material for supercapacitors. Energy, 2016, 113, 943-948.	4.5	29
823	1D Ni–Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability. Nanoscale, 2016, 8, 16292-16301.	2.8	101

#	Article	IF	CITATIONS
824	Nickel-shell assisted growth of nickel-cobalt hydroxide nanofibres and their symmetric/asymmetric supercapacitive characteristics. Journal of Power Sources, 2016, 325, 762-771.	4.0	49
825	A Facile Method to Prepare Threeâ€Dimensional Fe ₂ O ₃ /Graphene Composites as the Electrode Materials for Supercapacitors. Chinese Journal of Chemistry, 2016, 34, 67-72.	2.6	35
826	In situ fabrication of a thermally stable and highly porous conductive solar light-driven ZnO–CNT fiber photocatalyst. RSC Advances, 2016, 6, 71450-71460.	1.7	13
827	High rate capability of mesoporous NiWO4–CoWO4 nanocomposite as a positive material for hybrid supercapacitor. Materials Chemistry and Physics, 2016, 182, 394-401.	2.0	45
828	Construction of hierarchical NiMoO4@MnO2 nanosheet arrays on titanium mesh for supercapacitor electrodes. Ceramics International, 2016, 42, 18058-18063.	2.3	36
829	Hierarchically porous Ni monolith@branch-structured NiCo2O4 for high energy density supercapacitors. Progress in Natural Science: Materials International, 2016, 26, 276-282.	1.8	12
830	2D materials for renewable energy storage devices: Outlook and challenges. Chemical Communications, 2016, 52, 13528-13542.	2.2	96
831	Atomic Layer Deposition of Amorphous TiO ₂ on Carbon Nanotube Networks and Their Superior Li and Na Ion Storage Properties. Advanced Materials Interfaces, 2016, 3, 1600375.	1.9	75
832	Controllable synthesis of Ni-Co nanosheets covered hollow box via altering the concentration of nitrate for high performance supercapacitor. Electrochimica Acta, 2016, 215, 500-505.	2.6	63
833	Cobalt Oxide Nanoflakes on Single Walled Carbon Nanotube Thin Films for Supercapacitor Electrodes. Electrochimica Acta, 2016, 222, 1475-1482.	2.6	28
834	In situ removal of template to synthesize mesoporous NiCo 2 O 4 for high performance battery–type electrode. Journal of Electroanalytical Chemistry, 2016, 782, 133-137.	1.9	10
835	Sputtered Synthesis of MnO2 Nanorods as Binder Free Electrode for High Performance Symmetric Supercapacitors. Electrochimica Acta, 2016, 222, 1761-1769.	2.6	52
836	Hierarchical Fe 2 O 3 nanotube/nickel foam electrodes for electrochemical energy storage. Electrochimica Acta, 2016, 216, 287-294.	2.6	25
837	Vertically aligned carbon nanotube-ruthenium dioxide core-shell cathode for non-aqueous lithium-oxygen batteries. Journal of Power Sources, 2016, 331, 82-90.	4.0	47
838	Nanostructured core-shell electrode materials for electrochemical capacitors. Journal of Power Sources, 2016, 331, 408-425.	4.0	102
839	Superior Cycle Stability Performance of Quasi-Cuboidal CoV ₂ O ₆ Microstructures as Electrode Material for Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 27291-27297.	4.0	79
840	Review on \hat{l}_{\pm} -Fe2O3 based negative electrode for high performance supercapacitors. Journal of Power Sources, 2016, 327, 297-318.	4.0	293
841	Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology, 2016, , .	0.1	34

#	Article	IF	CITATIONS
842	Nanostructured Oxides as Cathode Materials for Supercapacitors. Nanostructure Science and Technology, 2016, , 205-269.	0.1	3
843	Transition Metal Oxides as Supercapacitor Materials. Nanostructure Science and Technology, 2016, , 317-344.	0.1	29
844	Hierarchical copper/nickel-based manganese dioxide core-shell nanostructure for supercapacitor electrodes. Electrochimica Acta, 2016, 212, 671-677.	2.6	33
845	Electrospun ZnFe2O4-based nanofiber composites with enhanced supercapacitive properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 211, 141-148.	1.7	44
846	High-Performance Asymmetric Supercapacitors of MnCo ₂ O ₄ Nanofibers and N-Doped Reduced Graphene Oxide Aerogel. ACS Applied Materials & Interfaces, 2016, 8, 34045-34053.	4.0	193
847	Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam. Scientific Reports, 2016, 6, 20264.	1.6	56
848	Facile hydrothermal reduction synthesis of porous Co3O4 nanosheets@RGO nanocomposite and applied as a supercapacitor electrode with enhanced specific capacitance and excellent cycle stability. Electrochimica Acta, 2016, 222, 976-982.	2.6	40
849	Cost-Effective Fabrication of Biomorphic Mesoporous Ni-NiO Microtube for Pseudocapacitors. Nano, 2016, 11, 1650119.	0.5	1
850	Advanced Materials for Supercapacitors. , 2016, , 99-128.		0
851	Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni-Co-O/Ni(OH)2 core/shell electrodes. Scientific Reports, 2016, 6, 21566.	1.6	24
852	Facile synthesis of Fe ₃ O ₄ nanorod decorated reduced graphene oxide (RGO) for supercapacitor application. RSC Advances, 2016, 6, 107057-107064.	1.7	75
853	Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nature Communications, 2016, 7, 11586.	5.8	282
854	Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces. Advanced Materials, 2016, 28, 1940-1949.	11.1	71
855	Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chemistry, 2016, 18, 4824-4854.	4.6	735
856	Porous Fe-Mn-O nanocomposites: Synthesis and supercapacitor electrode application. Progress in Natural Science: Materials International, 2016, 26, 264-270.	1.8	23
857	Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes. Nanoscale, 2016, 8, 13273-13279.	2.8	144
858	Progress and development of Fe ₃ O ₄ electrodes for supercapacitors. Journal of Materials Chemistry A, 2016, 4, 10767-10778.	5.2	226
859	Facile Route to NiO Nanostructured Electrode Grown by Oblique Angle Deposition Technique for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 17220-17225.	4.0	60

#	Article	IF	CITATIONS
860	Polyfurfuryl alcohol spheres template synthesis of 3D porous graphene for high-performance supercapacitor application. Synthetic Metals, 2016, 220, 227-235.	2.1	25
861	Phase-dependent electrochemistry of TiO2 nanocrystals for supercapacitor applications. Journal of Electroanalytical Chemistry, 2016, 775, 356-363.	1.9	27
862	Supercapacitor of TiO 2 nanofibers by electrospinning and KOH treatment. Materials and Design, 2016, 106, 74-80.	3.3	68
863	Hydrothermal synthesis of CuCo ₂ O ₄ /CuO nanowire arrays and RGO/Fe ₂ O ₃ composites for high-performance aqueous asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9977-9985.	5.2	196
864	Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy, 2016, 26, 425-437.	8.2	160
865	Carbon-coated Hierarchical Ni–Mn Layered Double Hydroxide Nanoarrays on Ni Foam for Flexible High-capacitance Supercapacitors. Electrochimica Acta, 2016, 213, 55-65.	2.6	90
866	Relationship Between Electronic Structures and Capacitive Performance of the Electrode Material IrO ₂ –ZrO ₂ . Journal of the American Ceramic Society, 2016, 99, 2504-2511.	1.9	15
867	Recent advances and challenges of stretchable supercapacitors based on carbon materials. Science China Materials, 2016, 59, 475-494.	3.5	83
868	Ni Self-Organized Balls as a Promising Energy Storage Material. Journal of Physical Chemistry C, 2016, 120, 16453-16458.	1.5	3
869	Reduced Grapheneâ€Wrapped MnO ₂ Nanowires Selfâ€Inserted with Co ₃ O ₄ Nanocages: Remarkable Enhanced Performances for Lithiumâ€Ion Anode Applications. Chemistry - A European Journal, 2016, 22, 6876-6880.	1.7	18
870	Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors. Journal of Power Sources, 2016, 308, 29-36.	4.0	71
871	Shape-Controlled Synthesis of Co ₂ P Nanostructures and Their Application in Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 3892-3900.	4.0	319
872	Design of three dimensional hybrid Co3O4@NiMoO4 core/shell arrays grown on carbon cloth as high-performance supercapacitors. RSC Advances, 2016, 6, 13957-13963.	1.7	27
873	Green microwave-assisted synthesis of hierarchical NiO architectures displaying a fast and high adsorption behavior for Congo red. Materials Letters, 2016, 170, 139-141.	1.3	23
874	A facile enhancement in battery-type of capacitive performance of spinel NiCo2O4 nanostructure via directly tuning thermal decomposition temperature. Electrochimica Acta, 2016, 191, 364-374.	2.6	27
875	Unprotected and interconnected Ru ⁰ nano-chain networks: advantages of unprotected surfaces in catalysis and electrocatalysis. Chemical Science, 2016, 7, 3188-3205.	3.7	102
876	Electrochemical assembly of reduced graphene oxide/manganese dioxide nanocomposites into hierarchical sea urchin-like structures for supercapacitive electrodes. Journal of Alloys and Compounds, 2016, 668, 146-151.	2.8	26
877	Hierarchically MnO ₂ –Nanosheet Covered Submicrometer-FeCo ₂ O ₄ -Tube Forest as Binder-Free Electrodes for High Energy Density All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4762-4770	4.0	104

#	Article	IF	CITATIONS
878	Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206.	8.2	2,197
879	Ultrafast high energy supercapacitors based on pillared graphene nanostructures. Journal of Materials Chemistry A, 2016, 4, 3356-3361.	5.2	22
880	Rational synthesis of Cu-doped porous δ-MnO2 microsphere for high performance supercapacitor applications. Electrochimica Acta, 2016, 191, 716-723.	2.6	52
881	Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 3265-3270.	1.1	20
882	Hierarchical MnO ₂ Spheres Decorated by Carbon-Coated Cobalt Nanobeads: Low-Cost and High-Performance Electrode Materials for Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 8452-8459.	4.0	78
883	RuO ₂ ·nH ₂ O Nanoparticles Anchored on Carbon Nano-onions: An Efficient Electrode for Solid State Flexible Electrochemical Supercapacitor. ACS Sustainable Chemistry and Engineering, 2016, 4, 2528-2534.	3.2	104
884	One-pot synthesis of pearl-chain-like manganese dioxide-decorated titanium grids as advanced binder-free supercapacitors electrodes. Ceramics International, 2016, 42, 9227-9233.	2.3	21
885	Nanostructured nickel-cobalt sulfide grown on nickel foam directly as supercapacitor electrodes with high specific capacitance. Materials Chemistry and Physics, 2016, 173, 317-324.	2.0	48
886	Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics, 2016, 2, 37-54.	2.8	620
887	Monodispersed plum candy-like MnO 2 nanosheets-decorated NiO nanostructures for supercapacitors. Ceramics International, 2016, 42, 7787-7792.	2.3	29
888	Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4, 4659-4685.	5.2	493
889	Layered-MnO ₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2016, 8, 5251-5260.	4.0	199
890	Poypyrrole/molybdenum trioxide/graphene nanoribbon ternary nanocomposite with enhanced capacitive performance as an electrode for supercapacitor. Journal of Solid State Electrochemistry, 2016, 20, 691-698.	1.2	14
891	Graphene-constructed flower-like porous Co(OH) ₂ with tunable hierarchical morphologies for supercapacitors. RSC Advances, 2016, 6, 16745-16750.	1.7	31
892	Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 5025-5039.	4.0	165
893	Hierarchical mesoporous NiCo ₂ O ₄ hollow nanocubes for supercapacitors. Physical Chemistry Chemical Physics, 2016, 18, 6268-6274.	1.3	51
894	Outstanding capacitive performance of reticular porous carbon/graphene sheets with superhigh surface area. Electrochimica Acta, 2016, 190, 923-931.	2.6	32
895	Highly mesoporous structure nickel cobalt oxides with an ultra-high specific surface area for supercapacitor electrode materials. Journal of Solid State Electrochemistry, 2016, 20, 1429-1434.	1.2	17

#	Article	IF	CITATIONS
896	Different-layered Ni(OH)2 nanoflakes/3D graphene composites for flexible supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2016, 27, 2741-2747.	1.1	7
897	Frequency-dependence of electric double layer capacitance of TiO 2 -based composite nanotube arrays. Journal of Electroanalytical Chemistry, 2016, 779, 199-206.	1.9	5
898	Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries. Journal of Power Sources, 2016, 312, 101-108.	4.0	34
899	Hydrothermal synthesis of graphene-MnO2-polyaniline composite and its electrochemical performance. Journal of Materials Science: Materials in Electronics, 2016, 27, 6816-6822.	1.1	30
900	Morphological tuning of CuO nanostructures by simple preparative parameters in SILAR method and their consequent effect on supercapacitors. Nano Structures Nano Objects, 2016, 6, 5-13.	1.9	40
901	Facile synthesis and capacitive properties of nickel–cobalt binary metal oxide nanoaggregates via oxalate route. Journal of Alloys and Compounds, 2016, 674, 376-383.	2.8	25
902	Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors. Materials and Design, 2016, 97, 512-518.	3.3	66
903	PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology, 2016, 27, 042001.	1.3	113
904	High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes. Nano Research, 2016, 9, 633-643.	5.8	47
905	Binder-free NiO@MnO 2 core-shell electrode: Rod-like NiO core prepared through corrosion by oxalic acid and enhanced pseudocapacitance with sphere-like MnO 2 shell. Electrochimica Acta, 2016, 189, 83-92.	2.6	47
906	Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. Journal of Power Sources, 2016, 306, 378-386.	4.0	183
907	Integrated copper–nickel oxide mesoporous nanowire arrays for high energy density aqueous asymmetric supercapacitors. Nanoscale Horizons, 2016, 1, 150-155.	4.1	93
908	Enhanced electrochemical performance of lamellar structured Co–Ni(OH) ₂ /reduced graphene oxide (rGO) via hydrothermal synthesis. RSC Advances, 2016, 6, 4764-4769.	1.7	14
909	Synthesis of Fe2O3–Ni(OH)2/graphene nanocomposite by one-step hydrothermal method for high-performance supercapacitor. Journal of Materials Science, 2016, 51, 2877-2885.	1.7	18
910	High areal capacitance three-dimensional Ni@Ni(OH)2 foams via in situ oxidizing Ni foams in mild aqueous solution. Applied Surface Science, 2016, 365, 125-130.	3.1	24
911	Synthesis of poly(aniline-co-m-aminophenol)/graphene/NiO nanocomposite and its application in supercapacitors. Synthetic Metals, 2016, 211, 14-18.	2.1	20
912	Simple synthesis process for ZnO sphere-decorated CNT fiber and its electrical, optical, thermal, and mechanical properties. RSC Advances, 2016, 6, 4683-4694.	1.7	14
913	Synthesis and characterization of DNA fenced, self-assembled SnO ₂ nano-assemblies for supercapacitor applications. Dalton Transactions, 2016, 45, 3506-3521.	1.6	37

#	ARTICLE	IF	CITATIONS
914	NiO nanoarrays of a few atoms thickness on 3D nickel network for enhanced pseudocapacitive electrode applications. Journal of Power Sources, 2016, 303, 363-371.	4.0	68
915	Literature Review and Research Background. Springer Theses, 2016, , 1-49.	0.0	2
916	High-performance supercapacitors based on amorphous C-modified anodic TiO2 nanotubes. Applied Surface Science, 2016, 362, 399-405.	3.1	31
917	Ternary nanocomposite SWNT/WO 3 /PANI thin film electrodes for supercapacitors. Journal of Alloys and Compounds, 2016, 658, 183-189.	2.8	63
918	Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors. Journal of Materials Science, 2016, 51, 1572-1580.	1.7	90
919	High-performance supercapacitor based on actived carbon–MnO2–polyaniline composite. Journal of Materials Science: Materials in Electronics, 2016, 27, 1357-1362.	1.1	29
920	Ni(OH)2/RGO nanosheets constituted 3D structure for high-performance supercapacitors. Journal of Sol-Gel Science and Technology, 2016, 77, 463-469.	1.1	16
921	Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1602300.	11.1	615
922	Carbonâ€Based Functional Materials Derived from Waste for Water Remediation and Energy Storage. Advanced Materials, 2017, 29, 1605361.	11.1	293
923	Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. Journal of Alloys and Compounds, 2017, 700, 67-74.	2.8	40
924	NiO@CuO@Cu bilayered electrode: two-step electrochemical synthesis supercapacitor properties. Journal of Solid State Electrochemistry, 2017, 21, 2609-2614.	1.2	14
925	Heterogeneous, mesoporous NiCo ₂ O ₄ –MnO ₂ /graphene foam for asymmetric supercapacitors with ultrahigh specific energies. Journal of Materials Chemistry A, 2017, 5, 3547-3557.	5.2	106
926	Biosorption-Directed Integration of Hierarchical CoO/C Composite with Nickel Foam for High-performance Supercapacitor. Electrochimica Acta, 2017, 226, 132-139.	2.6	45
927	Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. Journal of Materials Chemistry A, 2017, 5, 4103-4113.	5.2	48
928	Effect of oxidative surface treatments on charge storage at titanium nitride surfaces for supercapacitor applications. Journal of Materials Chemistry A, 2017, 5, 4550-4559.	5.2	70
929	Novel NiCo2S4/graphene composites synthesized via a one-step in-situ hydrothermal route for energy storage. Journal of Alloys and Compounds, 2017, 704, 70-78.	2.8	34
930	Synthesis of CoMoO 4 @RGO nanocomposites as high-performance supercapacitor electrodes. Microporous and Mesoporous Materials, 2017, 242, 264-270.	2.2	40
931	Fabrication and Super Capacitive Performance of Nanoporous Nickel Oxide Film. ChemistrySelect, 2017, 2, 246-251.	0.7	2

ARTICLE IF CITATIONS Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline 932 4.0 74 supercapacitors. Journal of Power Sources, 2017, 343, 76-82. Amorphous molybdenum sulfide on graphene–carbon nanotube hybrids as supercapacitor electrode 1.7 materials. RSC Ádvances, 2017, 7, 6856-6864. Preparation of Three-Dimensional Co₃O₄/graphene Composite for 934 1.5 10 High-Performance Supercapacitors. Chemical Engineering Communications, 2017, 204, 723-728. A Sol–Gel Ruthenium–Niobium–Silicon Mixedâ€Oxide Bifunctional Catalyst for the Hydrogenation of 1.8 Levulinic Acid in the Aqueous Phase. ChemCatChem, 2017, 9, 1476-1486. Batteryâ€Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science, 2017, 936 5.6 1,223 4, 1600539. Hydrous RuO 2 nanoparticles as highly active electrocatalysts for hydrogen evolution reaction. Chemical Physics Letters, 2017, 673, 89-92. 1.2 Construction of reduced graphene oxide nanofibers and cobalt sulfide nanocomposite for 938 2.8 55 pseudocapacitors with enhanced performance. Journal of Alloys and Compounds, 2017, 706, 126-132. Nanotechnology in Electrochemical Capacitors., 2017, , 131-169. Structural and electrochemical properties of spray deposited molybdenum trioxide (α-MoO3) thin 940 1.2 48 films. Journal of Solid State Electrochemistry, 2017, 21, 2737-2746. Effects of temperature on the capacitive performance of Ti/40%RuO 2 -60%ZrO 2 electrodes prepared 941 by thermal decomposition method. Journal of Electroanalytical Chemistry, 2017, 789, 133-139 Urchin-like α-FeOOH@MnO2 core–shell hollow microspheres for high-performance supercapacitor 942 22 1.5 electrode. Journal of Applied Electrochemistry, 2017, 47, 433-444. A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for 943 2.6 84 supercapacitor applications. Electrochimica Acta, 2017, 235, 348-355 Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 2017, 29, 1605336. 944 11.1 1,021 Peptide-templated synthesis of branched MnO₂nanowires with improved electrochemical performances. RSC Advances, 2017, 7, 12711-12718. 945 1.7 24 One-step hydrothermal synthesis of nitrogen doping graphene based cobalt oxide and its 946 2.8 28 supercapacitive properties. Journal of Alloys and Compounds, 2017, 705, 801-805. Pseudocapacitive performance of a solution-processed \hat{l}^2 -Co(OH)₂ electrode monitored 947 through it's surface morphology and area. Dalton Transactions, 2017, 46, 3393-3399. Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric 948 278 5.2supercapacitors. Journal of Materials Chemistry A, 2017, 5, 9443-9464. Homogeneous deposition of Ni(OH)2 onto cellulose-derived carbon aerogels for low-cost energy storage electrodes. RSC Advances, 2017, 7, 10583-10591.

ARTICLE IF CITATIONS Enhanced performance for early transition metal nitrides via pseudocapacitance in protic ionic liquid 950 2.3 19 electrolytes. Electrochemistry Communications, 2017, 77, 19-23. A high-performance supercapacitor based on fullerene C 60 whisker and polyaniline emeraldine base 2.6 composite. Electrochimica Acta, 2017, 231, 264-271. Supercapacitive Properties of 3D-Arrayed Polyaniline Hollow Nanospheres Encaging RuO₂ 952 4.0 46 Nanoparticles. ACS Applied Materials & amp; Interfaces, 2017, 9, 7412-7423. Low temperature reduction of graphene oxide film by ammonia solution and its application for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, <u>10098-10105</u>. Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: 954 3.8 110 Facile synthetic strategy. International Journal of Hydrogen Energy, 2017, 42, 12384-12395. Rational design of microsphere and microcube MnCO 3 @MnO 2 heterostructures for supercapacitor 4.0 electrodes. Journal of Power Sources, 2017, 353, 202-209. Synthesis of RuO2 Nanowires by Alkali-Assisted Oxidation of Ruthenium in Plasma Afterglow at 956 1.1 2 Atmospheric Pressure. IEEE Nanotechnology Magazine, 2017, 16, 624-633. Pure and Co doped CeO2 nanostructure electrodes with enhanced electrochemical performance for 957 2.3 39 energy storage applications. Ceramics International, 2017, 43, 10494-10501. Fabrication of porous Mn2O3 microsheet arrays on nickel foam as highâ€"rate electrodes for 958 2.8 49 supercapacitors. Journal of Alloys and Compounds, 2017, 717, 108-115. A facile sonochemical assisted synthesis of î±-MnMoO 4 /PANI nanocomposite electrode for supercapacitor applications. Journal of Electroanalytical Chemistry, 2017, 797, 78-88. Recent progress of fiber-shaped asymmetric supercapacitors. Materials Today Energy, 2017, 5, 1-14. 960 2.5 80 Synergistic interaction between embedded Co₃O₄ nanowires and graphene papers for high performance capacitor electrodes. RSC Advances, 2017, 7, 23793-23801. Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance 962 5.0 37 supercapacitor applications. Journal of Colloid and Interface Science, 2017, 503, 17-27. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 2017, 8, 14949. 5.8 Facile synthesis of a 1±-MoO₃ nanoplate/TiO₂ nanotube composite for high 964 17 1.7 electrochemical performance. RSC Advances, 2017, 7, 22983-22989. Multi-porous Co₃O₄ nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. Journal of Matérials Chemistry A, 2017, 5, 12569-12577. 96 Ultrathin and Highly Crystalline Co₃O₄ Nanosheets In Situ Grown on 966 Graphene toward Enhanced Supercapacitor Performance. Advanced Materials Interfaces, 2017, 4, 1.9 33 1600884. Microwave assisted synthesis of 3D network of Mn/Zn bimetallic oxide-high performance electrodes 2.8 38 for supercapacitors. Journal of Alloys and Compounds, 2017, 695, 2835-2843.

#	Article	IF	CITATIONS
968	General Controlled Sulfidation toward Achieving Novel Nanosheetâ€Built Porous Squareâ€FeCo ₂ S ₄ â€Tube Arrays for Highâ€Performance Asymmetric Allâ€Solidâ€State Pseudocapacitors. Advanced Energy Materials, 2017, 7, 1601985.	10.2	226
970	Enhanced performance of NiMoO4 nanoparticles and quantum dots and reduced nanohole graphene oxide hybrid for supercapacitor applications. Applied Surface Science, 2017, 419, 624-630.	3.1	18
971	Time-dependent evolution of the dichloromethane-mediated Bi2MoO6/BiOCl heterojunction for enhanced electrochemical performance. Journal of Solid State Electrochemistry, 2017, 21, 2955-2964.	1.2	8
972	Electrochemical performance of 3D porous Ni-Co oxide with electrochemically exfoliated graphene for asymmetric supercapacitor applications. Electrochimica Acta, 2017, 246, 680-688.	2.6	31
973	Facile electrodepositing processed of RuO2-graphene nanosheets-CNT composites as a binder-free electrode for electrochemical supercapacitors. Electrochimica Acta, 2017, 246, 433-442.	2.6	72
974	Charge Storage Mechanism of RuO ₂ /Water Interfaces. Journal of Physical Chemistry C, 2017, 121, 18975-18981.	1.5	15
975	Interconnected Ni-Co sulfide nanosheet arrays grown on nickel foam as binder-free electrodes for supercapacitors with high areal capacitance. Journal of Alloys and Compounds, 2017, 721, 205-212.	2.8	20
976	Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film. ACS Applied Materials & Interfaces, 2017, 9, 19831-19842.	4.0	108
977	Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano, 2017, 11, 5293-5308.	7.3	988
978	Low-cost synthesis and electrochemical characteristics of ternary Cu-Co sulfides for high performance full-cell asymmetric supercapacitors. Materials Research Bulletin, 2017, 91, 68-76.	2.7	27
979	Electrochemical performance of CuBi2O4 nanoparticles synthesized via a polyacrylamide gel route. International Journal of Materials Research, 2017, 108, 298-307.	0.1	6
980	Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires. Nanotechnology, 2017, 28, 245402.	1.3	64
981	Electrochemical synthesis of MnO ₂ porous nanowires for flexible all-solid-state supercapacitor. New Journal of Chemistry, 2017, 41, 3750-3757.	1.4	25
982	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
983	Facile Synthesis of Free-Standing NiO/MnO2 Core-Shell Nanoflakes on Carbon Cloth for Flexible Supercapacitors. Nanoscale Research Letters, 2017, 12, 171.	3.1	45
984	Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance. Journal of Power Sources, 2017, 341, 27-35.	4.0	124
985	Threeâ€Dimensional Fibrous Network of Na _{0.21} MnO ₂ for Aqueous Sodiumâ€lon Hybrid Supercapacitors. Chemistry - A European Journal, 2017, 23, 2379-2386.	1.7	58
986	Simple synthesis of bimetal oxide@graphitized carbon nanocomposites via in-situ thermal decomposition of coordination polymers and their enhanced electrochemical performance for electrochemical energy storage. Electrochimica Acta, 2017, 224, 80-89.	2.6	16

#	Article	IF	CITATIONS
987	Hierarchical three-dimensional FeCo2O4@MnO2 core-shell nanosheet arrays on nickel foam for high-performance supercapacitor. Electrochimica Acta, 2017, 228, 175-182.	2.6	81
988	Large Areal Mass, Mechanically Tough and Freestanding Electrode Based on Heteroatomâ€doped Carbon Nanofibers for Flexible Supercapacitors. Chemistry - A European Journal, 2017, 23, 2610-2618.	1.7	35
989	Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitors. Electrochimica Acta, 2017, 224, 260-268.	2.6	89
990	Spaced TiO ₂ nanotube arrays allow for a high performance hierarchical supercapacitor structure. Journal of Materials Chemistry A, 2017, 5, 1895-1901.	5.2	62
991	Facile preparation of nanoflake-structured nickel oxide/carbon nanotube composite films by electrophoretic deposition as binder-free electrodes for high-performance pseudocapacitors. Current Applied Physics, 2017, 17, 240-248.	1.1	18
992	A facile drop-casting approach to nanostructured copper oxide-painted conductive woven textile as binder-free electrode for improved energy storage performance in redox-additive electrolyte. Journal of Materials Chemistry A, 2017, 5, 2224-2234.	5.2	55
993	Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis. Journal of Materials Chemistry A, 2017, 5, 2195-2203.	5.2	21
994	Design and Tailoring of the 3D Macroporous Hydrous RuO ₂ Hierarchical Architectures with a Hard-Template Method for High-Performance Supercapacitors. ACS Applied Materials & () Interfaces, 2017, 9, 4577-4586.	4.0	84
995	Carbon Quantum Dot-Induced MnO ₂ Nanowire Formation and Construction of a Binder-Free Flexible Membrane with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. ACS Applied Materials & Interfaces, 2017, 9, 40394-40403.	4.0	81
996	Morphological Evolution of Te and Bi2Te3 Microstructures during Galvanic Displacement of Electrodeposited Co Thin Films. Electrochimica Acta, 2017, 255, 1-8.	2.6	4
997	3D nitrogen-doped graphene decorated CoNi2S4@polypyrrole electrode for pseudocapacitor with ultrahigh electrochemical performance. FlatChem, 2017, 6, 1-10.	2.8	9
998	Three-dimensional CoMoO 4 nanorods/nanographene composites on a Ni coated macroporous electrically conductive network with excellent electrochemical performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 226, 177-187.	1.7	7
999	Nitrogenâ€Doped Hierarchical Porous Carbon Framework Derived from Waste Pig Nails for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 3181-3187.	1.7	41
1000	"Design and Synthesis of 3Dâ€Ordered Mesoporous Co ₃ O ₄ Nanostructures for Their Improved Supercapacitance and Photocatalytic Activity― ChemistrySelect, 2017, 2, 9726-9735.	0.7	3
1001	A pinecone-inspired hierarchical vertically aligned nanosheet array electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 23349-23360.	5.2	41
1002	Ultralight and Binderâ€Free Allâ€Solidâ€State Flexible Supercapacitors for Powering Wearable Strain Sensors. Advanced Functional Materials, 2017, 27, 1702738.	7.8	75
1003	Assembling Hollow Cobalt Sulfide Nanocages Array on Graphene-like Manganese Dioxide Nanosheets for Superior Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2017, 9, 35040-35047.	4.0	107
1004	Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry A, 2017, 5, 22040-22094.	5.2	341

#	Article	IF	CITATIONS
1005	High Performance Solid-State Asymmetric Supercapacitor using Green Synthesized Graphene–WO ₃ Nanowires Nanocomposite. ACS Sustainable Chemistry and Engineering, 2017, 5, 10128-10138.	3.2	136
1006	Semimetallic core-shell TiO 2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO 2 supercapacitors. Materials Today Energy, 2017, 6, 46-52.	2.5	39
1007	Recent Advances in Designing and Fabricating Self‣upported Nanoelectrodes for Supercapacitors. Advanced Science, 2017, 4, 1700188.	5.6	168
1008	High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media. Journal of the American Chemical Society, 2017, 139, 12076-12083.	6.6	331
1009	Construction of porous CuCo2S4 nanorod arrays via anion exchange for high-performance asymmetric supercapacitor. Scientific Reports, 2017, 7, 6681.	1.6	95
1010	High Energy/Power Supercapacitor Performances of Intrinsically Ordered Ruthenium Oxide Prepared through Fast Hydrothermal Synthesis. ChemElectroChem, 2017, 4, 2535-2541.	1.7	6
1011	Mn3O4/Ni(OH)2 nanocomposite as an applicable electrode material for pseudocapacitors. Electrochimica Acta, 2017, 249, 155-165.	2.6	38
1012	Effect of iron oxide impregnated in hollow carbon sphere as symmetric supercapacitors. Journal of Alloys and Compounds, 2017, 726, 466-473.	2.8	23
1013	Simple and low cost electrode material based on Ca2V2O7/PANI nanoplatelets for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 17354-17362.	1.1	21
1014	Preparation of carbon nanospheres/Fe3O4 composites and their supercapacitor performances. Journal of Materials Science: Materials in Electronics, 2017, 28, 17388-17396.	1.1	12
1015	Electrodeposition and Capacitance Measurements of WS ₂ Thin Films. Journal of the Electrochemical Society, 2017, 164, D681-D686.	1.3	11
1016	Co ₃ O ₄ Nanowires on Flexible Carbon Fabric as a Binder-Free Electrode for All Solid-State Symmetric Supercapacitor. ACS Omega, 2017, 2, 4216-4226.	1.6	76
1017	Electrodeposition of Cu-Doped MoS ₂ for Charge Storage in Electrochemical Supercapacitors. Journal of the Electrochemical Society, 2017, 164, D674-D679.	1.3	24
1018	Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–xRuxO2 by the microemulsion method. Frontiers of Materials Science, 2017, 11, 385-394.	1.1	2
1019	New nanocomposite material as supercapacitor electrode prepared via restacking of Ni-Mn LDH and MnO2 nanosheets. Electrochimica Acta, 2017, 247, 1072-1079.	2.6	75
1020	Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2017, 2, .	19.8	1,626
1021	The Pseudocapacitive Nature of CoFe2O4 Thin Films. Electrochimica Acta, 2017, 246, 870-878.	2.6	96
1022	Design and synthesis of porous TiO2@C nanotube bundles with enhanced supercapacitive performance. Ceramics International, 2017, 43, 2876-2880.	2.3	14

#	Article	IF	CITATIONS
1023	Designing Sandwiched and Crystallized NiMn ₂ O ₄ /C Arrays for Enhanced Sustainable Electrochemical Energy Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 196-205.	3.2	31
1024	Bacterial cellulose membranes coated by polypyrrole/copper oxide as flexible supercapacitor electrodes. Journal of Materials Science, 2017, 52, 1930-1942.	1.7	67
1025	Fabrication of 3D vertically aligned silver nanoplates on nickel foam-graphene substrate by a novel electrodeposition with sonication for efficient supercapacitors. Chemical Engineering Journal, 2017, 311, 359-366.	6.6	39
1026	N-Substituted poly(3,6-dithienylcarbazole) derivatives: a new class of redox-active electrode materials for high-performance flexible solid-state pseudocapacitors. Journal of Materials Chemistry A, 2017, 5, 609-618.	5.2	20
1027	A facile one-step synthesis of Mn3O4 nanoparticles-decorated TiO2 nanotube arrays as high performance electrode for supercapacitors. Journal of Solid State Chemistry, 2017, 246, 269-277.	1.4	25
1028	Synthesis and performance evaluation of novel cobalt hydroxychlorides for electrochemical supercapacitors. Journal of Solid State Electrochemistry, 2017, 21, 939-946.	1.2	12
1029	3D hierarchical dandelion-like NiCo2O4/N-doped carbon/Ni foam for an effective binder-free supercapacitor electrode. Materials Chemistry and Physics, 2017, 186, 280-285.	2.0	17
1030	Co2(OH)3Cl xerogels with 3D interconnected mesoporous structures as a novel high-performance supercapacitor material. Journal of Solid State Electrochemistry, 2017, 21, 133-143.	1.2	28
1031	Supercapacitive performance of homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies. Journal of Solid State Electrochemistry, 2017, 21, 1069-1078.	1.2	17
1032	Electrochemical Performance of Morphologically Different Bi2WO6 Nanostructures Synthesized via a Hydrothermal Route. Journal of Electronic Materials, 2017, 46, 182-187.	1.0	19
1033	Carbon nanofiber/poly(tetrahydro[1,4]dioxino[2,3-b]thieno[3,4-e][1,4]dioxine) binder-free composite redox-active electrode for electrochemical energy storage applications. RSC Advances, 2017, 7, 41419-41428.	1.7	5
1034	Electrodeposition of Hierarchical Nanosheet Arrays of NiCo ₂ S ₄ onto a Polymer Substrate: A New High Power Flexible Battery Electrode. Journal of the Electrochemical Society, 2017, 164, A3793-A3803.	1.3	8
1035	Three-Dimensional Bi-Continuous Nanoporous Gold/Nickel Foam Supported MnO2 for High Performance Supercapacitors. Scientific Reports, 2017, 7, 17857.	1.6	12
1037	Preparation of Poly(7-formylindole)/carbon Fibers Nanocomposites and Their High Capacitance Behaviors. International Journal of Electrochemical Science, 2017, 12, 8467-8476.	0.5	3
1038	NiCo2O4-Based Supercapacitor Nanomaterials. Nanomaterials, 2017, 7, 41.	1.9	129
1039	Integration of Ruthenium oxide-Carbon Nanotube Composites with Three-Dimensional Interdigitated Microelectrodes for the Creation of On-Chip Supercapacitors. International Journal of Electrochemical Science, 2017, 12, 3883-3906.	0.5	11
1040	Pseudocapacitive Behavior of Ag ₃ PO ₄ Nanospheres Prepared by a Sonochemical Process. Materials Transactions, 2017, 58, 298-301.	0.4	5
1041	Enhanced Energy Density of Supercapacitors Using Hybrid Electrodes Based on Fe2O3 and MnO2 Nanoparticles. International Journal of Electrochemical Science, 2017, 12, 10015-10022.	0.5	15

#	Article	IF	CITATIONS
1042	Studies on Metal Doped Polyaniline-Carbon Nanotubes Composites for High Performance Supercapacitor. Current Analytical Chemistry, 2017, 13, .	0.6	20
1043	Fabrication of NiCo2S4 nanoball embedded nitrogen doped mesoporous carbon on nickel foam as an advanced charge storage material. Electrochimica Acta, 2018, 268, 139-149.	2.6	58
1044	B-Site Cation-Ordered Double-Perovskite Oxide as an Outstanding Electrode Material for Supercapacitive Energy Storage Based on the Anion Intercalation Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 9415-9423.	4.0	69
1045	In-situ growth of Se-doped NiTe on nickel foam as positive electrode material for high-performance asymmetric supercapacitor. Materials Chemistry and Physics, 2018, 211, 389-398.	2.0	38
1046	Impact of the crystal phase and 3d-valence conversion on the capacitive performance of one-dimensional MoO2, MoO3, and Magnéli-phase Mo4O11 nanorod-based pseudocapacitors. Nano Energy, 2018, 47, 105-114.	8.2	58
1047	Hollow Structural Transition Metal Oxide for AdvancedÂSupercapacitors. Advanced Materials Interfaces, 2018, 5, 1701509.	1.9	93
1048	Hierarchical NiO@NiCo ₂ O ₄ Core–shell Nanosheet Arrays on Ni Foam for High-Performance Electrochemical Supercapacitors. Industrial & Engineering Chemistry Research, 2018, 57, 6246-6256.	1.8	76
1049	3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chemical Engineering Journal, 2018, 347, 291-300.	6.6	181
1050	Enhanced electrochemical stability of carbon quantum dots-incorporated and ferrous-coordinated polypyrrole for supercapacitor. Journal of Solid State Electrochemistry, 2018, 22, 2515-2529.	1.2	34
1051	NiMoO ₄ nanorod deposited carbon sponges with ant-nest-like interior channels for high-performance pseudocapacitors. Inorganic Chemistry Frontiers, 2018, 5, 1594-1601.	3.0	31
1052	Controlled growth of ultrathin NiMoO4 nanosheets on carbon nanofiber membrane as advanced electrodes for asymmetric supercapacitors. Journal of Alloys and Compounds, 2018, 753, 176-185.	2.8	40
1053	Understanding the structural, electrical, and optical properties of monolayer h-phase RuO2 nanosheets: a combined experimental and computational study. NPG Asia Materials, 2018, 10, 266-276.	3.8	34
1054	Bulk to nanostructured vanadium pentaoxide-nanowires (V2O5-NWs) for high energy density supercapacitors. AIP Conference Proceedings, 2018, , .	0.3	5
1055	A rationally designed self-standing V ₂ O ₅ electrode for high voltage non-aqueous all-solid-state symmetric (2.0 V) and asymmetric (2.8 V) supercapacitors. Nanoscale, 2018, 10, 8741-8751.	2.8	30
1056	Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides. Nature Communications, 2018, 9, 1375.	5.8	98
1057	Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries. Advanced Materials, 2018, 30, e1705851.	11.1	64
1058	One-pot hydrothermal preparation of Cu2O-CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications. Applied Surface Science, 2018, 449, 474-484.	3.1	75
1059	Construction of 3D polypyrrole/CoS/graphene composite electrode with enhanced pseudocapacitive performance. lonics, 2018, 24, 2689-2696.	1.2	1

#	Article	IF	CITATIONS
1060	Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition. Science China Materials, 2018, 61, 243-253.	3.5	47
1061	Assessing the electrochemical performance of a supercapacitor electrode made of copper oxide and activated carbon using liquid phase plasma. Applied Surface Science, 2018, 446, 243-249.	3.1	21
1062	Inhibition of Redox Behaviors in Hierarchically Structured Manganese Cobalt Phosphate Supercapacitor Performance by Surface Trivalent Cations. ACS Omega, 2018, 3, 1718-1725.	1.6	30
1063	All Pseudocapacitive MXeneâ€RuO ₂ Asymmetric Supercapacitors. Advanced Energy Materials, 2018, 8, 1703043.	10.2	757
1064	Enhanced supercapacitive performance of binary cooperative complementary Co(OH)2/Mn3O4 nanomaterials directly synthesized through ion diffusion method controlled by ion exchange membrane. Electrochimica Acta, 2018, 260, 330-337.	2.6	15
1065	One-pot synthesis of ÎFe2O3 nanospheres/diatomite composites for electrochemical capacitor electrodes. Materials Letters, 2018, 215, 23-26.	1.3	24
1066	Comparative study of metal-doped carbon aerogel: Physical properties and electrochemical performance. Journal of Electroanalytical Chemistry, 2018, 809, 111-116.	1.9	16
1067	Polypyrrole/titania-coated cotton fabrics for flexible supercapacitor electrodes. Applied Surface Science, 2018, 460, 84-91.	3.1	41
1068	Electrosprayed graphene decorated with ZnO nanoparticles for supercapacitors. Journal of Alloys and Compounds, 2018, 741, 781-791.	2.8	24
1069	One-pot synthesis of biochar wrapped Ni/NiO nanobrick composites for supercapacitor applications. Journal of Electroanalytical Chemistry, 2018, 823, 656-662.	1.9	10
1070	Exceptional supercapacitive performance of bicontinuous carbon/MnO2 composite electrodes. Ceramics International, 2018, 44, 13858-13866.	2.3	8
1072	Surface Functional Groups and Interlayer Water Determine the Electrochemical Capacitance of Ti ₃ C ₂ <i>T</i> _{<i>x</i>} MXene. ACS Nano, 2018, 12, 3578-3586.	7.3	353
1073	Nano-wastes and the Environment: Potential Challenges and Opportunities of Nano-waste Management Paradigm for Greener Nanotechnologies. , 2018, , 1-72.		7
1074	Rapid synthesis of novel Cr-doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. Journal of the Iranian Chemical Society, 2018, 15, 1419-1430.	1.2	58
1075	Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors. Scientific Reports, 2018, 8, 4412.	1.6	24
1076	Carbon nanotube@manganese oxide nanosheet core-shell structure encapsulated within reduced graphene oxide film for flexible all-solid-state asymmetric supercapacitors. Carbon, 2018, 132, 776-784.	5.4	66
1077	RuO ₂ Thin Films Electrodeposited on Polystyrene Nanosphere Arrays: Growth Mechanism and Application to Supercapacitor Electrodes. Langmuir, 2018, 34, 4249-4254.	1.6	19
1078	Facile synthesis of hierarchical porous manganese nickel cobalt sulfide nanotube arrays with enhanced electrochemical performance for ultrahigh energy density fiber-shaped asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, <u>6, 8030-8038</u> .	5.2	62

#	Article	IF	CITATIONS
1079	EQCM study of redox properties of PEDOT/MnO2 composite films in aqueous electrolytes. Journal of Solid State Electrochemistry, 2018, 22, 2357-2366.	1.2	6
1080	Template-free and room-temperature synthesis of 3D sponge-like mesoporous Mn3O4 with high capacitive performance. Energy Storage Materials, 2018, 11, 176-183.	9.5	31
1081	Diversified electrical properties of (1â^'x)Ba0.90Ca0.10Ti0.95Zr0.05O3–(x)RuO2 ceramics with defect electron complexes. Materials Chemistry and Physics, 2018, 204, 163-170.	2.0	5
1082	Three-dimensional N-doped graphene/polyaniline composite foam for high performance supercapacitors. Applied Surface Science, 2018, 428, 348-355.	3.1	39
1083	Hybrid system of nickel–cobalt hydroxide on carbonised natural cellulose materials for supercapacitors. Journal of Solid State Electrochemistry, 2018, 22, 387-393.	1.2	10
1084	One-step synthesis of graphitic-C 3 N 4 /ZnS composites for enhanced supercapacitor performance. Journal of Energy Chemistry, 2018, 27, 472-477.	7.1	86
1085	Materials Development for Active/Passive Components of a Supercapacitor. SpringerBriefs in Materials, 2018, , .	0.1	22
1086	Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors. Advanced Materials, 2018, 30, 1704754.	11.1	92
1087	Electrospun carbon nanofiber-carbon nanotubes composites coated with polyaniline with improved electrochemical properties for supercapacitors. Electrochimica Acta, 2018, 259, 1110-1119.	2.6	57
1088	Construction of novel nanocomposite ZnO@CoFe ₂ O ₄ microspheres grown on nickel foam for high performance electrochemical supercapacitors. Analytical Methods, 2018, 10, 223-229.	1.3	23
1089	Mesoporous layered hexagonal platelets of Co ₃ O ₄ nanoparticles with (111) facets for battery applications: high performance and ultra-high rate capability. Nanoscale, 2018, 10, 1779-1787.	2.8	47
1090	Investigation on microstructure and improved supercapacitive performance of Mn doped CuO thin films prepared by reactive radio frequency magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2018, 29, 2051-2058.	1.1	26
1091	Three-dimensional nanoporous N-doped graphene/iron oxides as anode materials for high-density energy storage in asymmetric supercapacitors. Chemical Engineering Journal, 2018, 335, 467-474.	6.6	28
1092	Electrochemical characterization of nanocrystalline RuO2 with aqueous multivalent (Be2+ and Al3+) sulfate electrolytes for asymmetric supercapacitors. Journal of Alloys and Compounds, 2018, 735, 735-740.	2.8	4
1093	Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors. Physical Chemistry Chemical Physics, 2018, 20, 719-727.	1.3	31
1094	Synthesis of Cu2O by oxidation-assisted dealloying method for flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2080-2090.	1.1	19
1095	Hydrothermal encapsulation of VO ₂ (A) nanorods in amorphous carbon by carbonization of glucose for energy storage devices. Dalton Transactions, 2018, 47, 452-464.	1.6	171
1096	Fabrication of β-Ni(OH)2Ââ^¥Âγ-Fe2O3 nanostructures for high-performance asymmetric supercapacitors. Journal of Solid State Electrochemistry, 2018, 22, 293-302.	1.2	8

ARTICLE IF CITATIONS Correlation between the mesoporous carbon sphere with Ni(OH)2 nanoparticle contents for 1097 1.2 6 high-performance supercapacitor electrode. Ionics, 2018, 24, 815-825. Contemporary applications of carbon black-filled polymer composites: An overview of essential 1098 1.3 28 aspects. Journal of Plastic Film and Sheeting, 2018, 34, 256-299. EFFECT OF COATING TIME ON ELECTROCHEMICAL DEPOSITION OF MOLYBDENUM OXIDES THIN FILM ON THE SURFACE OF ANODIZED ALUMINUM PLATE FOR ULTRACAPACITOR ELECTRODE MATERIAL. Surface Review 1099 0 0.5and Letters, 2018, 25, 1840007. Facile synthesis of flower-like morphology Cu_{0.27}Co_{2.73}O₄ for a high-performance supercapattery with extraordinary cycling stability. Chemical Communications, 2018, 54, 12400-12403. Hydrothermal synthesis of flower-like molybdenum disulfide microspheres and their application in 1101 1.7 65 electrochemical supercapacitors. RSC Advances, 2018, 8, 38945-38954. Development of supercapacitor systems based on binary and ternary nanocomposites using chitosan, graphene and polyaniline. Chemical Data Collections, 2018, 17-18, 459-471. 1.1 Faster Ion Switching NiCo₂O₄ Nanoparticle Electrode-Based Supercapacitor 1103 Device with High Performances and Long Cycling Stability. ACS Applied Energy Materials, 2018, 1, 2.5 66 6999-7006. Structure–Activity/Stability Correlations from the Electrochemical Dynamic Responses of Titanium Anode Coatings Formed of Órdered TiO2@RuO2Microspheres. Journal of the Electrochemical Society, 1104 1.3 2018, 165, J3363-J3370. High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated 1105 1.3 31 Carbon Electrode of Supercapacitors. Materials, 2018, 11, 2455. Richâ€Mixedâ€Valence Ni<i>_x</i>Co<i>_{3â[^]x}</i>P<i>_y</i>Porous Nanowires Interwelded Junctionâ€Free 3D Network Architectures for Ultrahigh Areal Energy Density 122 Supercapacitors. Advanced Functional Materials, 2018, 28, 1804620. Macroporous defective tungsten oxide nanostructure electrodes deliver ultrahigh capacitance and 1107 4 2.3remarkable long cyclic durability in LiCl electrolyte. Ceramics International, 2018, 44, 22718-22724. Nanostructured Manganese oxide Films for High performance Supercapacitors. International Journal 1108 0.5 of Electrochemical Science, 2018, , 8736-8744 1109 Metal oxides in supercapacitors., 2018, , 169-203. 38 Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation 1110 164 pseudocapacitance. Science Advances, 2018, 4, eaau6261. Activation Energy Distribution of Dynamical Structural Defects in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" 1111 overflow="scroll"><mml:mi>Ru</mml:mi><mml:msub><mml:mrow><mml:mrow><mml:mi 4 1.5mathvariant="normal">O</mml:mi></mml:mrow></mml:mrow></mml:mn>2</mml:mn></mml:msub></mml:math> Films. Physical Review Applied, 2018, 10, Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280. 2,379 A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible 1113 2.6 146 supercapacitors. Electrochimica Acta, 2018, 290, 695-703. 4.2ÂV wearable asymmetric supercapacitor devices based on a VO_x//MnO_x paper 1114 electrode and an eco-friendly deep eutectic solvent-based gel electrolyte. Journal of Materials Chemistry A, 2018, 6, 20686-20694.

#	Article	IF	CITATIONS
1115	Quantumâ€Dotâ€Mediated Controlled Synthesis of Dual Oxides of Molybdenum from MoS ₂ : Quantification of Supercapacitor Efficacy. Chemistry - an Asian Journal, 2018, 13, 3871-3884.	1.7	16
1116	Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today, 2018, 22, 100-131.	6.2	86
1117	Synthesis of Au-V ₂ O ₅ composite nanowires through the shape transformation of a vanadium(<scp>iii</scp>) metal complex for high-performance solid-state supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 1836-1843.	3.0	27
1118	Self-Assembled Nanorod Structures on Nanofibers for Textile Electrochemical Capacitor Electrodes with Intrinsic Tactile Sensing Capabilities. ACS Applied Materials & Interfaces, 2018, 10, 19037-19046.	4.0	22
1119	Template-free synthesis of porous V2O5 flakes as a battery-type electrode material with high capacity for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 317-326.	2.3	21
1120	Facile Synthesis of Flowerlike Bi ₂ MoO ₆ Hollow Microspheres for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 7355-7361.	3.2	55
1121	Iron oxide/lignin-based hollow carbon nanofibers nanocomposite as an application electrode materials for supercapacitors. International Journal of Biological Macromolecules, 2018, 118, 478-484.	3.6	48
1122	Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4 for enhanced supercapacitor performance. International Journal of Hydrogen Energy, 2018, 43, 14569-14577.	3.8	71
1123	Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. Chemical Reviews, 2018, 118, 6457-6498.	23.0	741
1124	Preparation of three-dimensional porous graphene/ruthenium oxide nano-composite for high performance supercapacitors by electrochemical method. Integrated Ferroelectrics, 2018, 189, 147-157.	0.3	1
1125	Carbon and Metal Oxides Based Nanomaterials for Flexible High Performance Asymmetric Supercapacitors. Springer Theses, 2018, , .	0.0	5
1126	General ion-exchanged method synthesized 3D heterostructured MCo2O4/Co3O4 nanocomposites (M=) Tj ETQo	1_1_0.784 2.8	l3]4 rgBT /○ 11
1127	A high-performance TiO2 nanotube supercapacitor by tuning heating rate during H2 thermal annealing. Journal of Materials Science: Materials in Electronics, 2018, 29, 15130-15137.	1.1	3
1128	Ni counterpart-assisted synthesis of nanoarchitectured Co3O4/CoS/Ni(OH)2@Co electrode for supercapacitor. Electrochimica Acta, 2018, 284, 444-453.	2.6	38
1129	Sol–Gel Synthesis of Mesoporous α-Co(OH) ₂ and Its Electrochemical Performance Evaluation. ACS Omega, 2018, 3, 7955-7961.	1.6	26
1130	Synthesis and characterization of copper particles decorated reduced graphene oxide nano composites for the application of supercapacitors. AIP Conference Proceedings, 2018, , .	0.3	6
1131	Ni@NiO Nanowires on Nickel Foam Prepared via "Acid Hungry―Strategy: High Supercapacitor Performance and Robust Electrocatalysts for Water Splitting Reaction. Small, 2018, 14, e1800294.	5.2	130
1132	Enhanced performance for a high electrical conductive Mo ₂ C electrode based proton ionic liquid electrolytes in supercapacitors. Materials Research Express, 2018, 5, 075508.	0.8	12

#	Article	IF	CITATIONS
1133	Effect of NiO/Ni(OH)2 nanostructures in graphene/CNT nanocomposites on their interfacial charge transport kinetics for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2018, 22, 3273-3287.	1.2	24
1134	Synthesis and enhanced electrochemical performance of PANI/Fe3O4 nanocomposite as supercapacitor electrode. Journal of Alloys and Compounds, 2018, 757, 466-475.	2.8	80
1135	Composition, microstructure and performance of cobalt nickel phosphate as advanced battery-type capacitive material. Journal of Alloys and Compounds, 2018, 767, 789-796.	2.8	29
1136	Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper. Journal of Power Sources, 2018, 400, 277-283.	4.0	46
1137	Single pot fabrication of N doped reduced GO (N-rGO) /ZnO-CuO nanocomposite as an efficient electrode material for supercapacitor application. Vacuum, 2018, 157, 145-154.	1.6	39
1138	Effect of phosphorus on controlling and enhancing electrocatalytic performance of Ni–P–TiO2–MnO2 coatings. Journal of Electroanalytical Chemistry, 2018, 826, 104-116.	1.9	19
1139	Titania nanotubes dispersed graphitic carbon nitride nanosheets as efficient electrode materials for supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 16598-16608.	1.1	14
1140	Hierarchical heterostructure NiCo ₂ O ₄ @CoMoO ₄ /NF as an efficient bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 16950-16958.	5.2	181
1141	Polymer-based nanocomposites for energy and environmental applications. , 2018, , 185-203.		7
1142	Excellent cycle life of electrode materials based on hierarchical mesoporous CoGa2O4 microspheres. Chemical Engineering Journal, 2018, 354, 932-940.	6.6	35
1143	High areal capacitance and rate capability using filled Ni foam current collector. Electrochimica Acta, 2018, 281, 761-768.	2.6	10
1144	High-performance flexible-film supercapacitors of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration. Electrochimica Acta, 2018, 283, 744-754.	2.6	30
1145	Reduced graphene oxide–poly(methyl methacrylate) nanocomposite as a supercapacitor. Journal of Applied Polymer Science, 2018, 135, 46685.	1.3	5
1146	Structural and electrochemical studies of Scheelite type BiVO4 nanoparticles: synthesis by simple hydrothermal method. Journal of Materials Science: Materials in Electronics, 2018, 29, 13265-13276.	1.1	40
1147	Facile Synthesis of Mixed Metal–Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability. ACS Applied Materials & Interfaces, 2018, 10, 23063-23073.	4.0	199
1148	TiO ₂ Nanoparticles Modified MoO ₃ Nanobelts as Electrode Materials with Superior Performances for Supercapacitors. Energy Technology, 2018, 6, 2367-2373.	1.8	25
1149	Microwave energy-based manufacturing of hollow carbon nanospheres decorated with carbon nanotubes or metal oxide nanowires. Journal of Materials Science, 2018, 53, 12178-12189.	1.7	7
1150	Facile Synthesis of Amorphous CuO Nanosheets on Nickel Foam by Utilizing ZnO Nanowires for High-Performance Supercapacitors. Journal of Electronic Materials, 2018, 47, 5468-5476.	1.0	10

#	Article	IF	CITATIONS
1151	Tuning the Surface Morphology and Pseudocapacitance of MnO ₂ by a Facile Green Method Employing Organic Reducing Sugars. ACS Applied Energy Materials, 2018, 1, 3654-3664.	2.5	21
1152	Graphene-supported 2D transition metal oxide heterostructures. Journal of Materials Chemistry A, 2018, 6, 13509-13537.	5.2	103
1153	Mesoporous NiCo2O4 nanoneedles@MnO2 nanoparticles grown on nickel foam for electrode used in high-performance supercapacitors. Journal of Energy Chemistry, 2019, 31, 167-177.	7.1	34
1154	Ruthenium oxide–carbon-based nanofiller-reinforced conducting polymer nanocomposites and their supercapacitor applications. Polymer Bulletin, 2019, 76, 2601-2619.	1.7	20
1155	Rational design of a Si–Sn–C ternary anode having exceptional rate performance. Energy Storage Materials, 2019, 17, 62-69.	9.5	20
1156	Hierarchical NiCo LDH–rGO/Ni Foam Composite as Electrode Material for High-Performance Supercapacitors. Transactions of Tianjin University, 2019, 25, 266-275.	3.3	17
1157	Ni(OH)2/CNTs/graphene composite with 3D hierarchical structure for supercapacitors with high performance. Ionics, 2019, 25, 287-295.	1.2	1
1158	Indium tin oxide nanowires as voltage self-stabilizing supercapacitor electrodes. Journal of Materials Research, 2019, 34, 3195-3203.	1.2	5
1159	A New View of Supercapacitors: Integrated Supercapacitors. Advanced Energy Materials, 2019, 9, 1901081.	10.2	315
1160	Understanding the phase dependent energy storage performance of MnO2 nanostructures. Journal of Applied Physics, 2019, 126, .	1.1	13
1160	Understanding the phase dependent energy storage performance of MnO2 nanostructures. Journal of Applied Physics, 2019, 126, . Mesoporous Materials for High-Performance Electrochemical Supercapacitors. , 2019, , .	1.1	13 4
1160 1161 1162	Understanding the phase dependent energy storage performance of MnO2 nanostructures. Journal of Applied Physics, 2019, 126, . Mesoporous Materials for High-Performance Electrochemical Supercapacitors. , 2019, , . Axial heterostructure nanoarray as allâ€solidâ€state microâ€supercapacitors. International Journal of Energy Research, 2019, 43, 6013-6025.	2.2	13 4 1
1160 1161 1162 1163	Understanding the phase dependent energy storage performance of MnO2 nanostructures. Journal of Applied Physics, 2019, 126, . Mesoporous Materials for High-Performance Electrochemical Supercapacitors. , 2019, , . Axial heterostructure nanoarray as allâ€solidâ€state microâ€supercapacitors. International Journal of Energy Research, 2019, 43, 6013-6025. Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals. Electronic Materials Letters, 2019, 15, 645-653.	1.1 2.2 1.0	13 4 1 5
1160 1161 1162 1163 1164	Understanding the phase dependent energy storage performance of MnO2 nanostructures. Journal of Applied Physics, 2019, 126, . Mesoporous Materials for High-Performance Electrochemical Supercapacitors. , 2019, , . Axial heterostructure nanoarray as allâ€solidâ€state microâ€supercapacitors. International Journal of Energy Research, 2019, 43, 6013-6025. Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals. Electronic Materials Letters, 2019, 15, 645-653. Homogeneous Core/Shell NiMoO4@NiMoO4 and Activated Carbon for High Performance Asymmetric Supercapacitor. Nanomaterials, 2019, 9, 1033.	1.1 2.2 1.0 1.9	13 4 1 5 12
1160 1161 1162 1163 1164 1165	Understanding the phase dependent energy storage performance of MnO2 nanostructures. Journal of Applied Physics, 2019, 126, . Mesoporous Materials for High-Performance Electrochemical Supercapacitors. , 2019, , . Axial heterostructure nanoarray as allâ€solidâ€state microâ€supercapacitors. International Journal of Energy Research, 2019, 43, 6013-6025. Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals. Electronic Materials Letters, 2019, 15, 645-653. Homogeneous Core/Shell NiMoO4@NiMoO4 and Activated Carbon for High Performance Asymmetric Supercapacitor. Nanomaterials, 2019, 9, 1033. Li2TiO3/Ni foam composite as high-performance electrode for energy storage and conversion. Heliyon, 2019, 5, e02060.	1.1 2.2 1.0 1.9 1.4	13 4 1 5 12 16
1160 1161 1162 1163 1164 1165 1166	Understanding the phase dependent energy storage performance of MnO2 nanostructures. Journal of Applied Physics, 2019, 126, . Mesoporous Materials for High-Performance Electrochemical Supercapacitors. , 2019, , . Axial heterostructure nanoarray as allâ€solidâ€state microâ€supercapacitors. International Journal of Energy Research, 2019, 43, 6013-6025. Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals. Electronic Materials Letters, 2019, 15, 645-653. Homogeneous Core/Shell NiMoO4@NiMoO4 and Activated Carbon for High Performance Asymmetric Supercapacitor. Nanomaterials, 2019, 9, 1033. Li2TiO3/Ni foam composite as high-performance electrode for energy storage and conversion. Heliyon, 2019, 5, e02060. Constructing Bifunctional 3D Holey and Ultrathin CoP Nanosheets for Efficient Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2019, 11, 29879-29887.	1.1 2.2 1.0 1.9 1.4 4.0	13 4 1 5 12 16 50
1160 1161 1162 1163 1164 1165 1166 1167	Understanding the phase dependent energy storage performance of MnO2 nanostructures. Journal of Applied Physics, 2019, 126, . Mesoporous Materials for High-Performance Electrochemical Supercapacitors. , 2019, , . Axial heterostructure nanoarray as allâ€solidâ€state microâ€supercapacitors. International Journal of Energy Research, 2019, 43, 6013-6025. Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals. Electronic Materials Letters, 2019, 15, 645-653. Homogeneous Core/Shell NiMoO4@NiMoO4 and Activated Carbon for High Performance Asymmetric Supercapacitor. Nanomaterials, 2019, 9, 1033. Li2TiO3/Ni foam composite as high-performance electrode for energy storage and conversion. Heliyon, 2019, 5, e02060. Constructing Bifunctional 3D Holey and Ultrathin CoP Nanosheets for Efficient Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2019, 11, 29879-29887. A pHâ€Failored Anodic Deposition of Hydrous RuO 2 for Supercapacitors. ChemistrySelect, 2019, 4, 8122-8128.	1.1 2.2 1.0 1.9 1.4 4.0 0.7	13 4 1 5 12 16 50 7

#	Article	IF	CITATIONS
1169	Intercalation pseudocapacitance in a NASICON-structured Na ₂ CrTi(PO ₄) ₃ @carbon nanocomposite: towards high-rate and long-lifespan sodium-ion-based energy storage. Journal of Materials Chemistry A, 2019, 7, 20604-20613.	5.2	18
1170	A facile route to well-dispersed Ru nanoparticles embedded in self-templated mesoporous carbons for high-performance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 20208-20222.	5.2	28
1171	Synthesis, Properties, and Applications of Graphene. , 2019, , 25-90.		10
1172	Reversible solid oxide systems for energy and chemical applications – Review & perspectives. Journal of Energy Storage, 2019, 24, 100782.	3.9	79
1173	Improved electrochemical performance of rGO-wrapped MoO3 nanocomposite for supercapacitors. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	31
1174	Surface Oxygen Vacancy Formulated Energy Storage Application: Pseudocapacitor-Battery Trait of W ₁₈ O ₄₉ ÂNanorods. Journal of the Electrochemical Society, 2019, 166, A3496-A3503.	1.3	35
1175	Nano-architectured porous Mn2O3 spheres/cubes vs rGO for asymmetric supercapacitors applications in novel solid-state electrolyte. Journal of Power Sources, 2019, 441, 227181.	4.0	29
1176	NiFe ₂ O ₄ nanoparticles on reduced graphene oxide for supercapacitor electrodes with improved capacitance. Materials Research Express, 2019, 6, 105535.	0.8	17
1177	Nano-dimensional iron tungstate for super high energy density symmetric supercapacitor with redox electrolyte. Journal of Solid State Electrochemistry, 2019, 23, 3459-3465.	1.2	11
1178	Anodic TiO2 nanotube supercapacitors enhanced by a facile in situ doping method. Journal of Materials Science: Materials in Electronics, 2019, 30, 20892-20898.	1.1	1
1179	Vanadium Nitride/Porous Carbon Composites on Ni Foam for Highâ€₽erformance Supercapacitance. ChemistrySelect, 2019, 4, 11189-11195.	0.7	1
1180	NaCa _{0.6} V ₆ O ₁₆ ·3H ₂ O as an Ultraâ€6table Cathode for Zn″on Batteries: The Roles of Pre″nserted Dualâ€Cations and Structural Water in V ₃ O ₈ Layer. Advanced Energy Materials, 2019, 9, 1901968.	10.2	196
1181	In situ self-assembly of SiO2 coating Co3O4/graphene aerogel and its enhanced electrochemical performance for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 17218-17226.	1.1	6
1182	Deposition of Ni(OH)2 on nickel substrate using vacuum kinetic spray and its application to high-performance supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 17481-17490.	1.1	4
1183	Electrochemical properties of TiO _x /rGO composite as an electrode for supercapacitors. RSC Advances, 2019, 9, 27896-27903.	1.7	19
1184	Review of V2O5-based nanomaterials as electrode for supercapacitor. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	25
1185	The Role of Ru in Improving the Activity of Pd toward Hydrogen Evolution and Oxidation Reactions in Alkaline Solutions. ACS Catalysis, 2019, 9, 9614-9621.	5.5	112
1186	Structure and spectroscopy of the supercapacitor material hydrous ruthenium oxide, RuO ₂ Â- <i>x</i> H ₂ o, by neutron scattering*. Molecular Physics, 2019, 117, 3417-3423.	0.8	9

0			D -		
(17	ГΔТ	10N	121	- PC	DDT.
\sim			1.01	_	

#	Article	IF	CITATIONS
1187	Binary tungsten-molybdenum oxides nanoneedle arrays as an advanced negative electrode material for high performance asymmetric supercapacitor. Electrochimica Acta, 2019, 322, 134759.	2.6	27
1188	Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 811, 152011.	2.8	77
1189	Supercapacitor application of 3-(3′-hydroxypropyl)-1,2-dimethylimidazolium chloride electrolyte using copper oxide synthesized by chemical bath deposition method. Materials Today: Proceedings, 2019, 9, 184-192.	0.9	1
1190	Review of supercapacitors: Materials and devices. Journal of Energy Storage, 2019, 21, 801-825.	3.9	1,268
1191	Electroless deposition of RuO2-based nanoparticles for energy conversion applications. RSC Advances, 2019, 9, 4239-4245.	1.7	8
1192	Facile synthesis of porous Mn-doped Co3O4 oblique prisms as an electrode material with remarkable pseudocapacitance. Ceramics International, 2019, 45, 8008-8016.	2.3	51
1193	Electrochemical Deposition of MnO2/RGO Nanocomposite Thin Film: Enhanced Supercapacitor Behavior. Journal of Electronic Materials, 2019, 48, 5813-5820.	1.0	22
1194	Recent Progress in Ruthenium Oxideâ€Based Composites for Supercapacitor Applications. ChemElectroChem, 2019, 6, 4343-4372.	1.7	198
1195	A honeycomb-like ZnO/SnO ₂ nanocomposite on nickel foam for high-performance asymmetric supercapacitors. New Journal of Chemistry, 2019, 43, 10583-10589.	1.4	29
1196	Hierarchical CoP3/NiMoO4 heterostructures on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Ceramics International, 2019, 45, 17128-17136.	2.3	40
1197	State-of-the-art materials for high power and high energy supercapacitors: Performance metrics and obstacles for the transition from lab to industrial scale – A critical approach. Chemical Engineering Journal, 2019, 374, 1153-1179.	6.6	76
1198	Molybdenum Nitride Nanocrystals Anchored on Phosphorus-Incorporated Carbon Fabric as a Negative Electrode for High-Performance Asymmetric Pseudocapacitor. IScience, 2019, 16, 50-62.	1.9	43
1199	One-pot synthesize Al-doped α-Ni(OH)2/reduced graphene oxide composite for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 799, 529-537.	2.8	18
1200	Tuning Ni/Al Ratio to Enhance Pseudocapacitive Charge Storage Properties of Nickel–Aluminum Layered Double Hydroxide. Advanced Electronic Materials, 2019, 5, 1900215.	2.6	39
1201	One-step fabrication of NiOx-decorated carbon nanotubes-NiCo2O4 as an advanced electroactive composite for supercapacitors. Electrochimica Acta, 2019, 318, 51-60.	2.6	15
1202	Pseudocapacitive Storage in Nanolayered Ti ₂ NT _{<i>x</i>} MXene Using Mg-Ion Electrolyte. ACS Applied Nano Materials, 2019, 2, 2785-2795.	2.4	92
1203	Graphene-MnFe2O4-polypyrrole ternary hybrids with synergistic effect for supercapacitor electrode. Electrochimica Acta, 2019, 314, 151-160.	2.6	58
1204	Effects of annealing holding time on capacitance performance of RuO2–IrO2–graphene/Ti electrodes. Current Applied Physics, 2019, 19, 835-841.	1.1	6

#	Article	IF	CITATIONS
1205	Recent development of Supercapacitor Electrode Based on Carbon Materials. Nanotechnology Reviews, 2019, 8, 35-49.	2.6	88
1206	Formation of ultra-small Mn3O4 nanoparticles trapped in nanochannels of hollow carbon spheres by nanoconfinement with excellent supercapacitor performance. International Journal of Hydrogen Energy, 2019, 44, 13675-13683.	3.8	17
1207	Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Materials, 2019, 20, 299-306.	9.5	108
1208	Binder-free electrodes based on Mn3O4/γ-MnOOH composites on carbon cloth for supercapacitor application. Journal of Solid State Chemistry, 2019, 274, 134-141.	1.4	22
1209	Efficient supercapattery behavior of mesoporous hydrous and anhydrous cobalt molybdate nanostructures. Journal of Alloys and Compounds, 2019, 789, 256-265.	2.8	41
1210	Nanocrystalline tin oxide electrodeposited on carbon nanotube for high performance electrochemical capacitive energy storage. Materials Research Express, 2019, 6, 065022.	0.8	0
1211	Recent Developments and Perspectives for Memristive Devices Based on Metal Oxide Nanowires. Advanced Electronic Materials, 2019, 5, 1800909.	2.6	94
1212	Synthesis of Graphite Oxide/Cobalt Molybdenum Oxide Hybrid Nanosheets for Enhanced Electrochemical Performance in Supercapacitors and the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2524-2530.	1.7	42
1213	Designing chain-like nickel pyro-vanadate porous spheres as an advanced electrode material for supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 1087-1096.	3.0	14
1214	Simple and Cost-Effective Approach To Dramatically Enhance the Durability and Capability of a Layered δ-MnO ₂ Based Electrode for Pseudocapacitors: A Practical Electrochemical Test and Mechanistic Revealing. ACS Applied Energy Materials, 2019, 2, 2743-2750.	2.5	17
1215	Functional graphene film macroscopic assemblies for flexible supercapacitor application. Journal of Physics: Conference Series, 2019, 1168, 022071.	0.3	1
1216	Preparation of silicon oxide–carbon composite from benzene and trimethoxyphenylsilane by a liquid phase plasma method for supercapacitor applications. Applied Surface Science, 2019, 481, 625-631.	3.1	9
1217	Piezoelectric and thermophysical performances of La3+ and Ir4+ co-doped Ba0.95Ca0.05Ti0.94Zr0.06O3 ceramics. Ceramics International, 2019, 45, 12825-12831.	2.3	11
1218	Boron Nitride based Ternary Nanocomposites with Different Carbonaceous Materials Decorated by Polyaniline for Supercapacitor Application. ChemistrySelect, 2019, 4, 3672-3680.	0.7	29
1219	Self-supported core/shell Co3O4@Ni3S2 nanowires for high-performance supercapacitors. Electrochimica Acta, 2019, 311, 221-229.	2.6	49
1220	Fabrication and electrochemical characteristics of nanowire-net structured cobalt hydroxide. Materials Letters, 2019, 246, 195-198.	1.3	4
1221	Electrochemical, bonding network and electrical properties of reduced graphene oxide-Fe2O3 nanocomposite for supercapacitor electrodes applications. Journal of Alloys and Compounds, 2019, 792, 250-259.	2.8	59
1222	One-dimensional MoO3 coated by carbon for supercapacitor with enhanced electrochemical performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 6643-6649.	1.1	10

#	Article	IF	Citations
1223	Noble Metal–Manganese Oxide Nanohybrids Based Supercapacitors. , 2019, , 549-564.		2
1224	Emerging Vertical Nanostructures for High-Performance Supercapacitor Applications. Environmental Chemistry for A Sustainable World, 2019, , 163-187.	0.3	2
1225	Nanostructured Metal Oxides for Supercapacitor Applications. Environmental Chemistry for A Sustainable World, 2019, , 247-303.	0.3	5
1226	Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.3	5
1227	Laser printer patterned sacrificed layer for arbitrary design and scalable fabrication of the all-solid-state interdigitated in-planar hydrous ruthenium oxide flexible micro supercapacitors. Journal of Power Sources, 2019, 417, 108-116.	4.0	16
1228	Rational design of asymmetric supercapacitors <i>via</i> a hierarchical core–shell nanocomposite cathode and biochar anode. RSC Advances, 2019, 9, 42543-42553.	1.7	6
1229	Environmentally friendly room temperature synthesis of hierarchical porous α-Ni(OH) ₂ nanosheets for supercapacitor and catalysis applications. Green Chemistry, 2019, 21, 5960-5968.	4.6	34
1230	Hollow CeO2 spheres conformally coated with graphitic carbon for high-performance supercapacitor electrodes. Applied Surface Science, 2019, 463, 244-252.	3.1	63
1231	Annealing temperature dependent ZnCo2O4 nanosheet arrays supported on Ni foam for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 773, 367-375.	2.8	35
1232	Waste tissue papers templated highly porous Mn3O4 hollow microtubes prepared via biomorphic method for pseudocapacitor applications. Journal of Alloys and Compounds, 2019, 772, 925-932.	2.8	25
1233	Mixed RuO2/TiO2 uniform microspheres synthesized by low-temperature ultrasonic spray pyrolysis and their advanced electrochemical performances. Applied Surface Science, 2019, 464, 1-9.	3.1	15
1234	High rate capability electrode constructed by anchoring CuCo2S4 on graphene aerogel skeleton toward quasi-solid-state supercapacitor. Electrochimica Acta, 2019, 298, 321-329.	2.6	68
1235	Impact of process conditions on the electrochemical performances of NiMoO4 nanorods and activated carbon based asymmetric supercapacitor. Applied Surface Science, 2019, 473, 807-819.	3.1	78
1236	MnCo2O4@nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitors. Journal of Alloys and Compounds, 2019, 782, 251-262.	2.8	68
1237	Template-free synthesis of NiO skeleton crystal octahedron and effect of surface depression on electrochemical performance. Journal of Sol-Gel Science and Technology, 2019, 89, 511-520.	1.1	7
1238	α-Fe2O3 thin film on stainless steel mesh: A flexible electrode for supercapacitor. Materials Chemistry and Physics, 2019, 225, 284-291.	2.0	31
1239	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
1240	Nanoporous ruthenium and manganese oxide nanoparticles/reduced graphene oxide for high-energy symmetric supercapacitors. Carbon, 2019, 144, 185-192.	5.4	50

#	Article	IF	CITATIONS
1241	N-Doped porous carbon nanosheets decorated with graphitized carbon layer encapsulated Co ₉ S ₈ nanoparticles: an efficient bifunctional electrocatalyst for the OER and ORR. Nanoscale, 2019, 11, 901-907.	2.8	90
1242	Porous manganese dioxide film built from arborization-like nanoclusters and its superior electrochemical supercapacitance with attractive cyclic stability. Electrochimica Acta, 2019, 296, 94-101.	2.6	12
1243	Iron-doping as an effective strategy to enhance supercapacitive properties of nickel molybdate. Electrochimica Acta, 2019, 296, 608-616.	2.6	11
1244	Construction of Longan–like hybrid structures by anchoring nickel hydroxide on yolk–shell polypyrrole for asymmetric supercapacitors. Nano Energy, 2019, 56, 207-215.	8.2	132
1245	Oxygen-enriched crumpled graphene-based symmetric supercapacitor with high gravimetric and volumetric performances. Journal of Electroanalytical Chemistry, 2019, 833, 119-125.	1.9	21
1246	Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chinese Chemical Letters, 2019, 30, 1115-1120.	4.8	33
1247	Low-cost nitrogen-doped activated carbon prepared by polyethylenimine (PEI) with a convenient method for supercapacitor application. Electrochimica Acta, 2019, 294, 183-191.	2.6	78
1248	Synthesis of hollow NiO nanostructures and their application for supercapacitor electrode. Ionics, 2019, 25, 697-705.	1.2	19
1249	Enhanced desalination performance via mixed capacitive-Faradaic ion storage using RuO2-activated carbon composite electrodes. Electrochimica Acta, 2019, 295, 769-777.	2.6	54
1250	Atomically Thin 2D Transition Metal Oxides: Structural Reconstruction, Interaction with Substrates, and Potential Applications. Advanced Materials Interfaces, 2019, 6, 1801160.	1.9	100
1251	Ionic Liquids as Environmentally Benign Electrolytes for Highâ€Performance Supercapacitors. Global Challenges, 2019, 3, 1800023.	1.8	50
1252	Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion. Nano Energy, 2019, 55, 234-259.	8.2	71
1253	Highâ€Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2019, 6, 976-988.	1.7	133
1254	Uniform P doped Co–Ni–S nanostructures for asymmetric supercapacitors with ultra-high energy densities. Nanoscale, 2019, 11, 688-697.	2.8	63
1255	Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives. Nano Energy, 2019, 57, 459-472.	8.2	232
1256	Redox-Mediated Shape Transformation of Fe ₃ O ₄ Nanoflakes to Chemically Stable Auâ^'Fe ₂ O ₃ Composite Nanorods for a High-Performance Asymmetric Solid-State Supercapacitor Device. ACS Sustainable Chemistry and Engineering, 2019, 7, 724-733.	3.2	35
1257	Solar-charged pseudocapacitors: Simultaneous conversion and storage of solar energy in ZnO@NiO nanorod arrays. Journal of Alloys and Compounds, 2019, 781, 351-356.	2.8	20
1258	Metal Oxynitrides as Promising Electrode Materials for Supercapacitor Applications. ChemElectroChem, 2019, 6, 1255-1272.	1.7	34

#	Article	IF	CITATIONS
1259	Flexible iron-doped Sr(OH)2 fibre wrapped tuberose for high-performance supercapacitor electrode. Journal of Alloys and Compounds, 2019, 781, 831-841.	2.8	22
1260	A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews, 2019, 101, 123-145.	8.2	1,049
1261	Designing a Copper―and Silverâ€5ulfide Composite with Co ₃ O ₄ for Highâ€Performance Electrochemical Supercapacitors. ChemElectroChem, 2019, 6, 522-534.	1.7	13
1262	Ru and Os based new electrode for electrochemical flow supercapacitors. Chemical Engineering Journal, 2019, 377, 120050.	6.6	8
1263	Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Materials and Design, 2020, 186, 108199.	3.3	424
1264	Multifunctional pompon flower-like nickel ferrites as novel pseudocapacitive electrode materials and advanced absorbing materials. Ceramics International, 2020, 46, 850-856.	2.3	46
1265	Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 2020, 5, 5-19.	23.3	1,138
1266	Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. Materials Science and Engineering Reports, 2020, 139, 100520.	14.8	145
1267	Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Advanced Functional Materials, 2020, 30, 1902564.	7.8	252
1268	Synthesis of a novel hybrid anode nanoarchitecture of Bi2O3/porous-RGO nanosheets for high-performance asymmetric supercapacitor. Journal of Electroanalytical Chemistry, 2020, 856, 113489.	1.9	20
1269	Au-incorporated NiO nanocomposite thin films as electrochromic electrodes for supercapacitors. Electrochimica Acta, 2020, 330, 135203.	2.6	51
1270	A Facile Synthesis of Three Dimensional β-Ni(OH)2 Composed of Ultrathin Nanosheets for High Performance Pseudocapacitor. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2089-2097.	1.9	7
1271	Well-designed nanosheet-constructed porous CoMoS4 arrays for ultrahigh-performance supercapacitors. Ceramics International, 2020, 46, 4878-4888.	2.3	36
1272	A new generation of energy storage electrode materials constructed from carbon dots. Materials Chemistry Frontiers, 2020, 4, 729-749.	3.2	70
1273	An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small, 2020, 16, e1906851.	5.2	186
1274	Hierarchical Cu(OH)2@MnO2 core-shell nanorods array in situ generated on three-dimensional copper foam for high-performance supercapacitors. Journal of Colloid and Interface Science, 2020, 563, 394-404.	5.0	61
1275	Carbon Quantum Dots/Polyaniline Nanocomposite (S-CQD/PANI) for High Capacitive Asymmetric Supercapacitor Device. Journal of Nanoscience and Nanotechnology, 2020, 20, 3785-3794.	0.9	13
1276	Facile synthesis of 3D gem shape Co3O4 with mesoporous structure as electrode for high-performance supercapacitors. Journal of Alloys and Compounds, 2020, 819, 152939.	2.8	30

#	Article	IF	CITATIONS
1277	Scalable syntheses of three-dimensional graphene nanoribbon aerogels from bacterial cellulose for supercapacitors. Nanotechnology, 2020, 31, 095403.	1.3	6
1278	Highly reversible crystal transformation of anodized porous V2O5 nanostructures for wide potential window high-performance supercapacitors. Electrochimica Acta, 2020, 334, 135618.	2.6	22
1279	Facile Preparation of Ni-Co Bimetallic Oxide/Activated Carbon Composites Using the Plasma in Liquid Process for Supercapacitor Electrode Applications. Nanomaterials, 2020, 10, 61.	1.9	8
1280	Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochemical Energy Reviews, 2020, 3, 155-186.	13.1	163
1281	In situ growth of novel nickel diselenide nanoarrays with high specific capacity as the electrode material of flexible hybrid supercapacitors. Applied Nanoscience (Switzerland), 2020, 10, 1591-1601.	1.6	17
1282	Symmetric electric doubleâ€layer capacitor containing imidazolium ionic liquidâ€based solid polymer electrolyte: Effect of TiO 2 and ZnO nanoparticles on electrochemical behavior. Journal of Applied Polymer Science, 2020, 137, 48757.	1.3	27
1283	Nanotechnology in energy storage: the supercapacitors. Studies in Surface Science and Catalysis, 2020, 179, 431-458.	1.5	28
1284	Nanoscale Phenomena in Lithium-Ion Batteries. Chemical Reviews, 2020, 120, 6684-6737.	23.0	142
1285	Proteic sol-gel synthesis, structure and battery-type behavior of Fe-based spinels (MFe2O4, MÂ=ÂCu, Co,) Tj ETQo	0.0.0 rgB ⁻ 2.0	T /Qverlock 1
1286	Electrochemically grown MnO ₂ nanowires for supercapacitor and electrocatalysis applications. New Journal of Chemistry, 2020, 44, 17864-17870.	1.4	33
1287	Simultaneous stirring and microwave assisted synthesis of nanoflakes MnO2/rGO composite electrode material for symmetric supercapacitor with enhanced electrochemical performance. Diamond and Related Materials, 2020, 110, 108129.	1.8	55
1288	Fabrication and characterization of supercapacitor electrodes using chemically synthesized CuO nanostructure and activated charcoal (AC) based nanocomposite. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	12
1289	Hierarchical nanostructured Au–SnO2 for enhanced energy storage performance. International Journal of Hydrogen Energy, 2020, 45, 29395-29406.	3.8	12
1290	Porous Fe-Doped β-Ni(OH) ₂ Nanopyramid Array Electrodes for Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 36208-36219.	4.0	56
1291	Hydrous ruthenium oxide-tantalum pentoxide thin film electrodes prepared by thermal decomposition for electrochemical capacitors. Ceramics International, 2020, 46, 16636-16643.	2.3	4
1292	An intuitive review of supercapacitors with recent progress and novel device applications. Journal of Energy Storage, 2020, 31, 101652.	3.9	160

1293	Low-Cost MnO ₂ Nanoflowers and La ₂ O ₃ Nanospheres as Efficient Electrodes for Asymmetric Supercapacitors. Energy & Fuels, 2020, 34, 14882-14892.	2.5	12
1294	Alloying Enhanced Supercapacitor Performance Based on Oxygen-Deficient Tin Oxide Nanorod Array Electrodes. ACS Applied Energy Materials, 2020, 3, 11333-11342.	2.5	14
#	Article	IF	CITATIONS
------	---	-----	-----------
1295	Iron oxide loaded biochar/polyaniline nanocomposite: Synthesis, characterization and electrochemical analysis. Inorganic Chemistry Communication, 2020, 119, 108097.	1.8	20
1296	Significant Improvement of the Electrochemical Performance of CoO Nanoparticles Through Activating Synergistic Effects by Doping with Nickel. European Journal of Inorganic Chemistry, 2020, 2020, 2889-2895.	1.0	4
1297	Synthesis of CoO-Decorated Graphene Hollow Nanoballs for High-Performance Flexible Supercapacitors. ACS Applied Materials & amp; Interfaces, 2020, 12, 40426-40432.	4.0	32
1298	High-power lithium-ion capacitor using orthorhombic Nb2O5 nanotubes enabled by cellulose-based electrospun scaffolds. Cellulose, 2020, 27, 9991-10006.	2.4	3
1299	A facile route to synthesize CuO sphere-like nanostructures for supercapacitor electrode application. Journal of Materials Science: Materials in Electronics, 2020, 31, 21528-21539.	1.1	11
1300	Electrodeposited Films of Graphene, Carbon Nanotubes, and Their Mixtures for Supercapacitor Applications. ACS Applied Nano Materials, 2020, 3, 10003-10013.	2.4	17
1301	High performance <i>in situ</i> annealed partially pressurized pulsed laser deposited WO ₃ & V ₂ O ₅ thin film electrodes for use as flexible all solid state supercapbatteries. Journal of Materials Chemistry A, 2020, 8, 24148-24165.	5.2	21
1302	Sol–Gel synthesis of Co3O4 nanoparticles as an electrode material for supercapacitor applications. Journal of Sol-Gel Science and Technology, 2020, 96, 416-422.	1.1	53
1303	Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts, 2020, 10, 969.	1.6	269
1304	How to measure and report the capacity of electrochemical double layers, supercapacitors, and their electrode materials. Journal of Solid State Electrochemistry, 2020, 24, 3215-3230.	1.2	61
1305	Neuron-like hierarchical manganese sulfide@Cu ₂ S core/shell arrays on Ni foam as an advanced electrode for an asymmetric supercapacitor. CrystEngComm, 2020, 22, 6047-6056.	1.3	15
1306	Vertically Aligned and Ordered Arrays of 2D MCo ₂ S ₄ @Metal with Ultrafast Ion/Electron Transport for Thickness-Independent Pseudocapacitive Energy Storage. ACS Nano, 2020, 14, 12719-12731.	7.3	52
1307	2D Nanostructured Materials for High Performance Electrochemical Supercapacitors. ACS Symposium Series, 2020, , 79-92.	0.5	3
1308	Binder-Free Electrode Based on ZnO Nanorods Directly Grown on Aluminum Substrate for High Performance Supercapacitors. Nanomaterials, 2020, 10, 1979.	1.9	24
1309	Facile Cetyl Trimethyl Ammonium Bromide-assisted Hydrothermal Synthesis of Spinel NiCo2O4 Nanoplates as an Electrode Material for Supercapacitor Application. Journal of Materials Engineering and Performance, 2020, 29, 8395-8405.	1.2	1
1310	Rolled Supercapacitor Device Model Using Carbon-Sheet as Electrodes in KCl Electrolyte System. Key Engineering Materials, 2020, 860, 53-58.	0.4	2
1311	Electrodeposition of Ni-doped MoS ₂ Thin Films. Journal of the Electrochemical Society, 2020, 167, 082512.	1.3	7
1312	Polymer Entrapment Flash Pyrolysis for the Preparation of Nanoscale Iridiumâ€Free Oxygen Evolution Electrocatalysts. ChemNanoMat, 2020, 6, 930-936.	1.5	3

#	Article	IF	CITATIONS
1313	Influence of temperature on the preparation of CoFe2O4 by the sol-gel method and its application in electrochemical energy storage. Journal of Solid State Electrochemistry, 2020, 24, 1961-1968.	1.2	5
1314	MXeneâ€Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000739.	7.8	168
1315	Bismuth-Ferrite-Based Electrochemical Supercapacitors. SpringerBriefs in Materials, 2020, , .	0.1	7
1316	Controllable Synthesis of Nanostructured MnO ₂ as Electrode Material of Supercapacitors. Journal of Nanoscience and Nanotechnology, 2020, 20, 4815-4823.	0.9	5
1317	Two-dimensional β-MoO ₃ @C nanosheets as high-performance negative materials for supercapacitors with excellent cycling stability. RSC Advances, 2020, 10, 17497-17505.	1.7	21
1318	Engineering 3D electron and ion transport channels by constructing sandwiched holey quaternary metal oxide nanosheets for high-performance flexible energy storage. Science China Materials, 2020, 63, 1719-1730.	3.5	7
1319	Nanostructured Polyaniline/Graphene/Fe ₂ O ₃ Composites Hydrogel as a High-Performance Flexible Supercapacitor Electrode Material. ACS Applied Energy Materials, 2020, 3, 6434-6446.	2.5	113
1320	Conductive and flexible PEDOT-decorated paper as high performance electrode fabricated by vapor phase polymerization for supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125173.	2.3	11
1321	Enabling Extraordinary Rate Performance for Poorly Conductive Oxide Pseudocapacitors. Energy and Environmental Materials, 2020, 3, 405-413.	7.3	16
1322	Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. Journal of Energy Storage, 2020, 31, 101530.	3.9	73
1323	Electrode materials for supercapacitors. , 2020, , 35-204.		8
1324	The Design of ZnO Nanorod Arrays Coated with MnOx for High Electrochemical Stability of a Pseudocapacitor Electrode. Nanomaterials, 2020, 10, 475.	1.9	18
1325	3D hierarchical porous nitrogen-doped carbon/Ni@NiO nanocomposites self-templated by cross-linked polyacrylamide gel for high performance supercapacitor electrode. Journal of Colloid and Interface Science, 2020, 570, 286-299.	5.0	36
1326	Effect of grain size on electrochemical performance and kinetics of Co ₃ O ₄ electrode materials. Journal of Materials Chemistry A, 2020, 8, 7192-7196.	5.2	47
1327	RuO ₂ Nanorods on Electrospun Carbon Nanofibers for Supercapacitors. ACS Applied Nano Materials, 2020, 3, 3847-3858.	2.4	104
1328	TMDs beyond MoS ₂ for Electrochemical Energy Storage. Chemistry - A European Journal, 2020, 26, 6320-6341.	1.7	52
1329	One-dimensional materials for photoelectroactive memories and synaptic devices. , 2020, , 179-200.		1
1330	Temperature driven high-performance pseudocapacitor of carbon nano-onions supported urchin like structures of α-MnO2 nanorods. Electrochimica Acta, 2020, 354, 136626.	2.6	30

#	Article	IF	CITATIONS
1331	Spatially resolved X-ray absorption spectroscopy investigation of individual cation-intercalated multi-layered Ti3C2Tx MXene particles. Applied Surface Science, 2020, 530, 147157.	3.1	10
1332	<i>In situ</i> carbon-supported titanium dioxide (ICS-TiO ₂) as an electrode material for high performance supercapacitors. Nanoscale Advances, 2020, 2, 2376-2386.	2.2	50
1333	Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors. Electrochimica Acta, 2020, 354, 136744.	2.6	40
1334	Enhancing the energy density and discharge times of flexible graphene supercapacitors by introducing porous oxides on their anodes. Synthetic Metals, 2020, 268, 116500.	2.1	11
1335	Thickness Effects on Crystal Growth and Metal–Insulator Transition in Rutileâ€Type RuO ₂ (100) Thin Films. Physica Status Solidi (B): Basic Research, 2020, 257, 2000188.	0.7	3
1336	Ambient Temperature Synthesis of Iron-Doped Porous Nickel Pyrophosphate Nanoparticles with Long-Term Chemical Stability for High-Performance Oxygen Evolution Reaction Catalysis and Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 2843-2853.	3.2	46
1337	Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review. Polymers, 2020, 12, 238.	2.0	35
1338	The recent development of polysaccharides biomaterials and their performance for supercapacitor applications. Materials Research Bulletin, 2020, 126, 110839.	2.7	51
1339	Approaching Highâ€Performance Supercapacitors via Enhancing Pseudocapacitive Nickel Oxideâ€Based Materials. Advanced Sustainable Systems, 2020, 4, 1900137.	2.7	49
1340	Ethylenediamine-assisted growth of multi-dimensional ZnS nanostructures and study of its charge transfer mechanism on supercapacitor electrode and photocatalytic performance. Nanotechnology, 2020, 31, 235602.	1.3	33
1341	Nickel Hydroxide Nanoflakes Grown on Carbonized Melamine Foam via Chemical Bath Deposition for Supercapacitor Electrodes. International Journal of Electrochemical Science, 2020, 15, 1310-1328.	0.5	10
1342	Self-supported core-shell heterostructure MnO2/NiCo-LDH composite for flexible high-performance supercapacitor. Journal of Alloys and Compounds, 2020, 824, 153929.	2.8	45
1343	Facile and fast synthesis of SnO2 quantum dots for high performance solid-state asymmetric supercapacitor. Journal of Alloys and Compounds, 2020, 825, 153850.	2.8	46
1344	Comparative study of the electrochemical properties of mesoporous 1-D and 3-D nano- structured rhombohedral nickel sulfide in alkaline electrolytes. Journal of Physics and Chemistry of Solids, 2020, 144, 109503.	1.9	20
1345	Cavity-like hierarchical architecture of WS2/α-NiMoO4 electrodes for supercapacitor application. Ceramics International, 2020, 46, 19022-19027.	2.3	40
1346	Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. Nano-Micro Letters, 2020, 12, 85.	14.4	164
1347	High-Performance Pseudocapacitive Electrode Based on Electrophoretically Deposited NiCo2O4/MWCNTs Nanocomposite on 316L Stainless Steel. Jom, 2020, 72, 2235-2244.	0.9	6
1348	Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO2 composites for supercapacitor applications. Carbon, 2020, 164, 296-304.	5.4	54

#	ARTICLE 3D porous nickel nanosheet arrays as an advanced electrode material for high energy hybrid	IF	CITATIONS
1349 1350	supercapacitors. Journal of Electroanalytical Chemistry, 2020, 864, 114118. Spectroscopic analysis of the interaction between Co3O4 nanoparticles and acid phosphatase.	0.9	5
1351	A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coordination Chemistry Reviews, 2020, 416, 213341.	9.5	159
1352	MOF-reinforced Co9S8 self-supported nanowire arrays for highly durable and flexible supercapacitor. Electrochimica Acta, 2020, 346, 136201.	2.6	41
1353	Room-temperature chemical synthesis of 3â€Ð dandelionâ€ŧype nickel chloride (NiCl2@NiF) supercapattery nanostructured materials. Journal of Colloid and Interface Science, 2020, 578, 547-554.	5.0	13
1354	Electrochemical analysis of CuO-AC based nanocomposite for supercapacitor electrode application. Materials Today: Proceedings, 2020, 28, 366-374.	0.9	9
1355	Effects of Ce Doping on the Photocatalytic and Electrochemical Performance of Nickel Hydroxide Nanostructures. Topics in Catalysis, 2021, 64, 73-83.	1.3	10
1356	Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy and Environmental Science, 2021, 14, 576-601.	15.6	166
1357	A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors. Journal of Materiomics, 2021, 7, 98-126.	2.8	115
1358	Recent advances in off-grid electrochemical capacitors. Energy Storage Materials, 2021, 34, 53-75.	9.5	26
1359	Ni2P nanosheets modified N-doped hollow carbon spheres towards enhanced supercapacitor performance. Journal of Alloys and Compounds, 2021, 854, 157111.	2.8	29
1360	Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction. Journal of Materials Science, 2021, 56, 2385-2398.	1.7	31
1361	Ultrathin holey reduced graphene oxide/Ni(picolinic acid)2 papers for flexible battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2021, 408, 127302.	6.6	17
1362	Construction of multi-structures based on Cu NWs-supported MOF-derived Co oxides for asymmetric pseudocapacitors. Journal of Materials Science and Technology, 2021, 65, 182-189.	5.6	25
1363	Recent Advances of Asymmetric Supercapacitors. Advanced Materials Interfaces, 2021, 8, .	1.9	167
1364	Ag+ preintercalation enabling high performance AgxMnO2 cathode for aqueous Li-ion and Na-ion hybrid supercapacitors. Journal of Power Sources, 2021, 484, 229316.	4.0	8
1365	Vacuum annealed MnO2 ultra-thin nanosheets with oxygen defects for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 2021, 150, 109856.	1.9	16
1366	Electrochemical performance of hydrothermally synthesized NiO/Co3O4 nanocomposites with different mass ratio. Materials Letters, 2021, 283, 128849.	1.3	9

#	Article	IF	CITATIONS
1367	Perovskite oxides as supercapacitive electrode: Properties, design and recent advances. Coordination Chemistry Reviews, 2021, 431, 213680.	9.5	42
1368	Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors. Journal of Alloys and Compounds, 2021, 862, 158006.	2.8	40
1369	Investigation of template-assisted (MCM-41) mesoporous Co3O4 nanostructures and its superior supercapacitive retention. Vacuum, 2021, 185, 109998.	1.6	8
1370	Creating electronic and ionic conductivity gradients for improving energy storage performance of ruthenium oxide electrodes. Journal of Alloys and Compounds, 2021, 862, 158013.	2.8	0
1371	Unveiling the structural, charge density distribution and supercapacitor performance of NiCo2O4 nano flowers for asymmetric device fabrication. Journal of Energy Storage, 2021, 34, 102029.	3.9	41
1372	Metal/metal oxide thin film electrodes for supercapatteries. , 2021, , 175-198.		0
1373	Morphology controlled synthesis of one-dimensional CoMn2O4 nanorods for high-performance supercapacitor electrode application. Chemical Papers, 2021, 75, 2295-2304.	1.0	10
1374	Electrochemical study of copper oxide and activated charcoal based nanocomposite electrode for supercapacitor. Materials Today: Proceedings, 2021, 46, 5722-5729.	0.9	4
1375	Synthesis of mesoporous carbon platelets of high surface area and large porosity from polymer blendsâ€calcium phosphate nanocomposites for highâ€power supercapacitor. Journal of the Chinese Chemical Society, 2021, 68, 462-468.	0.8	3
1376	Electrochemical performance and complex impedance properties of reduced-graphene oxide/polypyrrole nanofiber nanocomposite. Ionics, 2021, 27, 1279-1290.	1.2	13
1377	Electrochemical study of Mo-doped Co3O4 nanostructures synthesized by sol–gel method. Journal of Materials Science: Materials in Electronics, 2021, 32, 3512-3521.	1.1	10
1378	Activated carbons from coconut shell and NiO-based composites for energy storage systems. Journal of Materials Science: Materials in Electronics, 2021, 32, 4872-4884.	1.1	10
1379	Versatile materials for energy devices and systems. , 2021, , 265-291.		0
1380	Low-Temperature Processed Metal Oxides and Ion-Exchanging Surfaces as pH Sensor. , 2021, , 821-861.		3
1381	Carbon coated cobalt oxide (CC-CO ₃ O ₄) as electrode material for supercapacitor applications. Materials Advances, 2021, 2, 2918-2923.	2.6	36
1382	Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device. Journal of Materials Chemistry A, 2021, 9, 24094-24147.	5.2	141
1383	Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of Materials Chemistry C, 2021, 9, 8395-8465.	2.7	30
1384	Basic concepts and processing of nanostructures materials. , 2021, , 1-32.		1

	Сітат	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
1385	Hybrid Nanocomposite Metal Oxide Materials for Supercapacitor Application. , 2021, , 673-724.		0
1386	Binder-Free and Flexible Carbon-Encapsulated Oxygen-Vacancy Cerium Dioxide Electrode for High-Performance Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 010536.	1.3	11
1387	Transformation of Battery to High Performance Pseudocapacitor by the Hybridization of W ₁₈ O ₄₉ with RuO ₂ Nanostructures. Langmuir, 2021, 37, 1141-1	151. ^{1.6}	26
1388	Hierarchical copper cobalt sulfide nanobelt arrays for high performance asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2021, 8, 3025-3036.	3.0	30
1389	Ultrasonic assisted exfoliation for efficient production of RuO2 monolayer nanosheets. Inorganic Chemistry Frontiers, 0, , .	3.0	5
1390	Determination of rutile transition metal oxide (110) surface terminations by scanning tunneling microscopy contrast reversal. Physical Review B, 2021, 103, .	1.1	0
1391	Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage. Materials Horizons, 2021, 8, 1130-1152.	6.4	51
1392	Supercapacitors based on two-dimensional metal oxides, hydroxides, and its graphene-based hybrids. , 2021, , 193-215.		1
1393	Synthesis of the Novel ZSM-5/NiO/MIL-101(Cr) Zeolite Catalyst Nanocomposite and Its Performance for the Sonodegradation of Organic Dyes in Aqueous Solutions. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 960-977.	1.9	2
1394	Cobalt-Doped Manganese Dioxide Hierarchical Nanostructures for Enhancing Pseudocapacitive Properties. ACS Omega, 2021, 6, 5717-5729.	1.6	40
1395	Formation of RuO2 thin film using dopamine as a reducing, chelating, and adhesive agent simultaneously. Journal of the Taiwan Institute of Chemical Engineers, 2021, 119, 196-203.	2.7	9
1396	Enhanced electrochemical performance of hierarchical porous carbon/polyaniline composite for supercapacitor applications. Nano Express, 2021, 2, 010013.	1.2	1
1397	Redox-active electrolyte-based MnWO4//AC asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 8054-8063.	1.1	8
1398	Effects of water content on electrochemical capacitive behavior of nanostructured Cu3(BTC)2 MOF prepared in aqueous solution. Electrochimica Acta, 2021, 368, 137616.	2.6	17
1399	Au/TiN nanostructure materials for energy storage applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 5810-5820.	1.1	0
1400	Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors. Scientific Reports, 2021, 11, 3916.	1.6	76
1401	A novel flexible wire-shaped supercapacitor with enhanced electrochemical performance based on hierarchical Co(OH)2@Ni(OH)2 decorated porous dendritic Ni film/Ni wire. Journal of Alloys and Compounds, 2021, 856, 158101.	2.8	21
1402	The prospects and challenges of solar electrochemical capacitors. Journal of Energy Storage, 2021, 35, 102294.	3.9	10

#	Article	IF	CITATIONS
1403	Effect of growth-time on electrochemical performance of birnessite manganese oxide (δ-MnO2) as electrodes for supercapacitors: An insight into neutral aqueous electrolytes. Journal of Energy Storage, 2021, 36, 102419.	3.9	16
1404	Synthesis of CuMnO2/graphene quantum dot nanocomposites as novel electrode materials for high performance supercapacitors. Journal of Energy Storage, 2021, 36, 102449.	3.9	49
1405	Surface characteristics of porous carbon derived from genetically designed transgenic hybrid poplar for electric double-layer capacitors. Applied Surface Science, 2021, 545, 148978.	3.1	19
1406	Investigation on the structural, morphological and electrochemical properties of nickel tungstate for energy storage application. Inorganic Chemistry Communication, 2021, 126, 108490.	1.8	11
1407	Binary MnO ₂ /Co ₃ O ₄ Metal Oxides Wrapped on Superaligned Electrospun Carbon Nanofibers as Binder Free Supercapacitor Electrodes. Energy & Fuels, 2021, 35, 8396-8405.	2.5	39
1408	Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chemical Engineering Journal, 2021, 412, 128611.	6.6	221
1410	Plasma engraved Bi2MoO6 nanosheet arrays towards high performance supercapacitor and oxygen evolution reaction. Applied Surface Science, 2021, 548, 149244.	3.1	16
1412	One-Dimensional (1D) Nanostructured Materials for Energy Applications. Materials, 2021, 14, 2609.	1.3	47
1413	Transparent and Flexible Mn _{1â^'} <i>_x</i> _{â^'} <i>_y</i> (Ce <i>_x</i> La <i><sub Ultrathinâ€Film Device for Highlyâ€Stable Pseudocapacitance Application. Advanced Functional Materials, 2021, 31, 2100880.</sub </i>	>y,{/sub>∢	j)O
1414	Pulse Electrodeposition of Polyaniline/Mn-Fe Binary Metal Hydroxide Composite Cathode Material for a Zn-Ion Hybrid Supercapacitor. Journal of Electronic Materials, 2021, 50, 4407-4414.	1.0	12
1416	Synthesis, microstructure and electrochemical characterization of NiMn ₂ O ₄ nanoparticles via a simple citric acid method. Journal of the Ceramic Society of Japan, 2021, 129, 332-336.	0.5	0
1417	Systematic Application of Extremely Large Strain to Rutile-Type RuO ₂ (100) Epitaxial Thin Films on Substrates with Large Lattice Mismatches. Crystal Growth and Design, 2021, 21, 4083-4089.	1.4	3
1418	Comprehensive study to ascertain the effect of MnO ₂ loading on supercapacitive properties of conducting polymers. International Journal of Polymer Analysis and Characterization, 2021, 26, 593-603.	0.9	2
1419	Synergistic Effects of Fe2O3 Nanotube/Polyaniline Composites for an Electrochemical Supercapacitor with Enhanced Capacitance. Nanomaterials, 2021, 11, 1557.	1.9	14
1420	Three-dimensional flower-like nickel doped cobalt phosphate hydrate microarchitectures for asymmetric supercapacitors. Journal of Colloid and Interface Science, 2021, 592, 145-155.	5.0	22
1421	A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy, 2021, 85, 105955.	8.2	171
1422	N-Dopant-Mediated Growth of Metal Oxide Nanoparticles on Carbon Nanotubes. Nanomaterials, 2021, 11, 1882.	1.9	1
1423	Microstructural and electrochemical supercapacitive properties of Crâ€doped <scp>CuO</scp> thin films: Effect of substrate temperature. International Journal of Energy Research, 2021, 45, 20001-20015.	2.2	13

		15	0
# 1424	ARTICLE Effect of ruthenium oxide on the capacitance and gasâ€sensing performances of cobalt oxide @nitrogenâ€doped graphene oxide composites. International Journal of Energy Research, 2021, 45, 19547-19559.	IF 2.2	17
1425	Conversion of carbon nanotubes into curved graphene with improved capacitance. New Carbon Materials, 2021, 36, 835-842.	2.9	5
1426	Novel synthesis approach for "stubborn―metals and metal oxides. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
1427	Comparative study of electrocatalytic activity of single phase rhombohedral β-NiS nanoparticles in alkaline electrolytes. Materials Science in Semiconductor Processing, 2021, 130, 105827.	1.9	17
1428	Pseudocapacitors. , 0, , .		1
1429	Aerogels Utilization in Electrochemical Capacitors. , 0, , .		0
1430	Mixed phase FeTe: Fe2TeO5 nanopebbles through solution chemistry: Electrochemical supercapacitor application. Ceramics International, 2022, 48, 137-147.	2.3	15
1431	Construction of hierarchical ZnCo2O4@CoSe core–shell nanosheets on Ni foam for high-performance supercapacitor. Ionics, 2021, 27, 5251-5261.	1.2	9
1432	Performance enhancement of graphene/GO/rGO based supercapacitors: A comparative review. Materials Today Communications, 2021, 28, 102685.	0.9	19
1433	Influence of Temperature on ZnO/Co ₃ O ₄ Nanocomposites for High Energy Storage Supercapacitors. ACS Omega, 2021, 6, 23750-23763.	1.6	26
1434	Modulation of Conductivity and Contact Resistance of RuO2 Nanosheets via Metal Nano-Particles Surface Decoration. Nanomaterials, 2021, 11, 2444.	1.9	3
1435	Progress in one-dimensional nanostructures. Materials Characterization, 2021, 179, 111373.	1.9	19
1436	Solid-source metal–organic molecular beam epitaxy of epitaxial RuO2. APL Materials, 2021, 9, .	2.2	6
1437	Design principles of high-voltage aqueous supercapacitors. Materials Today Energy, 2021, 21, 100739.	2.5	17
1438	A supercapacitor electrode formed from amorphous Co3(PO4)2 and the normal spinel CoIICoIII2O4. Journal of Solid State Chemistry, 2021, 302, 122422.	1.4	4
1439	High capacitance for asymmetric supercapacitors based on one-step synthetic nanoflowers/nanocones arrays as cathode and pomelo peel as anode. Journal of Solid State Chemistry, 2021, 302, 122428.	1.4	2
1440	Hierarchically-formed nickel sulfide heterostructure via SILAR on hydrothermally grown cobalt oxide scaffolds: Role of number of over-coating and evolution of electrochemical performance in supercapacitor electrodes. Applied Surface Science, 2021, 564, 150436.	3.1	5
1441	Optimizing the sulfur precursor for the synthesis of NiCo2S4 nanoparticles as high performance supercapacitor electrodes. Vacuum, 2021, 192, 110499.	1.6	7

#	Article	IF	CITATIONS
1442	Pseudocapacitive and battery-type organic polymer electrodes for a 1.9ÂV hybrid supercapacitor with a record concentration of ammonium acetate. Journal of Power Sources, 2021, 511, 230434.	4.0	34
1443	Battery-type MnCo2O4@carbon nanofibers composites with mesoporous structure for high performance asymmetric supercapacitor. Diamond and Related Materials, 2021, 119, 108586.	1.8	20
1444	Nickel-rich NiCo LDHs supported on hollow carbon shells for hybrid supercapacitors. Electrochimica Acta, 2021, 395, 139167.	2.6	50
1445	High performance alkaline battery-supercapacitor hybrid device based on diffusion driven double shelled CoSn(OH)6 nanocube@â^•Ni(OH)2 core-shell nanoflower. Journal of Energy Storage, 2021, 43, 103206.	3.9	5
1446	Electrodeposited partially oxidized Bi & NiCo alloy based thin films for aqueous hybrid high energy microcapacitor. Journal of Alloys and Compounds, 2021, 888, 161453.	2.8	7
1447	Unveiling a binary metal selenide composite of CuSe polyhedrons/CoSe2 nanorods decorated graphene oxide as an active electrode material for high-performance hybrid supercapacitors. Chemical Engineering Journal, 2022, 427, 131535.	6.6	63
1448	MnO ₂ -based nanostructured materials for various energy applications. Materials Chemistry Frontiers, 2021, 5, 3549-3575.	3.2	32
1449	Supercapacitive behaviour of a novel nanocomposite of 3,4,9,10-perylenetetracarboxylic acid incorporated captopril-Ag nanocluster decorated on graphene nanosheets. Materials Advances, 2021, 2, 1358-1368.	2.6	6
1450	Glycerol-assisted tuning of the phase and morphology of iron oxide nanostructures for supercapacitor electrode materials. Materials Chemistry Frontiers, 2021, 5, 2758-2770.	3.2	17
1451	Electrochemical Supercapacitors: History, Types, Designing Processes, Operation Mechanisms, and Advantages and Disadvantages. SpringerBriefs in Materials, 2020, , 11-36.	0.1	6
1452	Graphene/Reduced Graphene Oxide as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 271-296.	0.4	14
1453	Transition Metal Oxide/Graphene/Reduced Graphene Oxide Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 297-331.	0.4	15
1454	Transition Metal Oxide/Electronically Conducting Polymer Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 353-385.	0.4	13
1455	Transition Metal Oxides as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 89-111.	0.4	23
1456	Transition Metal Oxide/Carbon Nanofiber Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 201-227.	0.4	14
1457	Components of Supercapacitor. SpringerBriefs in Materials, 2018, , 11-39.	0.1	11
1458	Synthesis of Metal/Metal Oxide Supported Reduced Graphene Oxide (RGO) for the Applications of Electrocatalysis and Supercapacitors. Carbon Nanostructures, 2019, , 1-48.	0.1	4
1459	Chapter 4. Ionic Liquid Electrolytes for Graphene-based Supercapacitors with an Ultrahigh Energy Density. RSC Smart Materials, 2019, , 95-128.	0.1	2

ARTICLE IF CITATIONS Metal Oxide Nanomaterials., 2014, , 1-98. 1 1460 An Overview on Ruthenium Oxide Composites â€" Challenging Material for Energy Storage Applications. 1461 23 Material Science Research India, 2018, 15, 30-40. Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode 1462 Synthesized by Electrochemical Deposition Method. Applied Chemistry for Engineering, 2016, 27, 0.2 1 421-426. PENGARUH STRUKTUR PORI TERHADAP KAPASITANSI ELEKTRODA SUPERKAPASITOR YANG DIBUAT DARI 1463 0.2 KARBON NANOPORI. Reaktor, 2012, 14, . Synthesis of Mesoporous NiFe2O4 Nanoparticles for Enhanced Supercapacitive Performance. Journal 1464 0.1 26 of Clean Energy Technologies, 2018, 6, 51-55. Supercapacitive Properties of Co-Ni Mixed Oxide Electrode Adopting the Nickel Foam as a Current Collector. Bulletin of the Korean Chemical Society, 2012, 33, 3993-3997. 1.0 Template-Assisted Electrochemical Growth of Hydrous Ruthenium Oxide Nanotubes. Bulletin of the 1466 1.0 3 Korean Chemical Society, 2013, 34, 1462-1466. Facile Synthesis of Co3O4/Mildly Oxidized Multiwalled Carbon Nanotubes/Reduced Mildly Oxidized Graphene Oxide Ternary Composite as the Material for Supercapacitors. Bulletin of the Korean Chemical Society, 2014, 35, 1349-1355. 1467 1.0 Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide 1468 0.9 7 Nanocomposites. Journal of Electrochemical Science and Technology, 2011, 2, 1-7. Experimental study on synthesis of Co/CeO₂-doped carbon nanofibers and its performance 1469 3.3 in supercapacitors. Carbon Letters, 2015, 16, 270-274. Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced 1470 7.8 90 Functional Materials, 2022, 32, 2108107. Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a 1471 1.2 review. lónics, 2022, 28, 27-52. Facile microwave synthesis of Sn-doped WO3 for pseudocapacitor applications. Journal of Materials 1472 1.1 5 Science: Materials in Electronics, 2022, 33, 9246-9255. Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and 1473 74 composites as supercapacitor electrode materials. Journal of Energy Storage, 2021, 44, 103295. Three dimensional NiO nanonetwork electrode for efficient electrochemical energy storage 1474 9 2.6 application. Electrochimica Acta, 2021, 399, 139392. Evolution and recent developments of high performance electrode material for supercapacitors: A 1475 3.9 review. Journal of Energy Storage, 2021, 44, 103366. Synthesis of cross-linked Ni-Co oxide nanowires on graphene hydrogel with high capacitive 1476 3.9 7 performance for hybrid supercapacitors. Journal of Energy Storage, 2021, 44, 103254. Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2Composite. Korean Journal of 1477 0.1 Materials Research, 2012, 22, 118-122.

#	Article	IF	CITATIONS
1478	Development of Cobalt Sulfide-graphene Composite for Supercapacitor Applications. Composites Research, 2016, 29, 167-172.	0.1	0
1479	In Situ Solution Process for Fabricating Thermally and Mechanically Stable Highly Conductive ZnO-CNT Fiber Composites. Acta Physica Polonica A, 2017, 131, 124-132.	0.2	0
1480	Advanced Materials for Supercapacitors. , 2017, , 99-128.		1
1481	Historical Background and Present Status of the Supercapacitors. SpringerBriefs in Materials, 2018, , 9-10.	0.1	4
1483	Nano-wastes and the Environment: Potential Challenges and Opportunities of Nano-waste Management Paradigm for Greener Nanotechnologies. , 2019, , 2063-2134.		1
1484	Synthesis and Characterization of Rise Husk Nanopores Carbon Through Ultrasonic Irradiation With H3PO4 Activators as Electrochemical Energy Storage Materials. Jurnal Akta Kimia Indonesia (Indonesia) Tj ETQq1	1 0. 78431	4ogBT /Ov
1485	Printable electrode materials for supercapacitors. ChemPhysMater, 2022, 1, 17-38.	1.4	10
1486	In-situ electrodeposition of bimetal Ni-Co selenides for high performance asymmetric supercapacitor. Journal of Physics: Conference Series, 2021, 2044, 012049.	0.3	2
1487	Organic-inorganic hybrid electrode engineering for high-performance asymmetric supercapacitor based on WO3-CeO2 nanowires with oxygen vacancies. Applied Surface Science, 2022, 573, 151624.	3.1	23
1488	Zinc Oxide Nanomaterials-Based Supercapacitors. , 2020, , .		1
1489	Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochemical Science Advances, 2022, 2, .	1.2	23
1490	Inverse Opaline Metallic Membrane Addresses the Tradeoff Between Volumetric Capacitance and Areal Capacitance of Supercapacitor. Advanced Energy Materials, 2022, 12, 2102802.	10.2	13
1491	An approach for quantum capacitance of graphene, carbon nanotube, silicene and hexagonal boron nitride nanoscale supercapacitors by non-equilibrium Green's function method. FlatChem, 2022, 31, 100313.	2.8	1
1492	Freestanding XMoO4 nanosheet arrays@hollow porous carbon submicrofiber composites for flexible all-solid-state symmetric supercapacitors. Journal of Alloys and Compounds, 2022, 898, 162834.	2.8	12
1493	Hydrothermal Synthesis of Co ₃ O ₄ /ZnCo ₂ O ₄ Core-Shell Nanostructures for High-Performance Supercapacitors. Journal of the Electrochemical Society, 2021, 168, 123502.	1.3	5
1494	Nano-dendrite structured cobalt phosphide based hybrid supercapacitor with high energy storage and cycling stability. Nanotechnology, 2022, 33, 085403.	1.3	10
1495	Reversible surface reconstruction of Na3NiCO3PO4: A battery type electrode for pseudocapacitor applications. Journal of Power Sources, 2022, 520, 230903.	4.0	8
1497	Preparation of self-assembled porous flower-like nanostructured magnetite (Fe3O4) electrode material for supercapacitor application. Journal of Solid State Electrochemistry, 2022, 26, 887-895.	1.2	5

#	Article	IF	CITATIONS
1498	Double hydrophilic copolymers – synthetic approaches, architectural variety, and current application fields. Chemical Society Reviews, 2022, 51, 995-1044.	18.7	20
1499	Morphology evolution and electrochemical behavior of NixMn1-x(OH)2 mixed hydroxides as high-performance electrode for supercapacitor. Electrochimica Acta, 2022, 403, 139692.	2.6	5
1500	Functionalized dodecyl sulfate ions on Co/Ni hydroxides: synergistic effect on supercapacitor electrode performance. Bulletin of Materials Science, 2022, 45, 1.	0.8	4
1501	Symmetric Supercapacitors of PANI Coated RuO ₂ /TiO ₂ Macroporous Structures Prepared by Electrostatic Spray Deposition. Journal of the Electrochemical Society, 2022, 169, 020564.	1.3	15
1502	Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials. Journal of Energy Storage, 2022, 49, 104120.	3.9	49
1505	Theory Abide Experimental Investigations on Morphology Driven Enhancement of Electrochemical Energy Storage Performance for Manganese Titanate Perovskites Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
1507	Electrochemical capacitance performance of high surface area, porous hematite (α-Fe2O3) nanorods. Journal of Materials Science: Materials in Electronics, 2022, 33, 7109-7118.	1.1	2
1508	Advances in microâ€supercapacitors (MSCs) with high energy density and fast chargeâ€discharge capabilities for flexible bioelectronic devices—A review. Electrochemical Science Advances, 2023, 3, .	1.2	15
1509	Fullerene Reinforced Polymeric Nanocomposites for Energy Storage—Status and Prognoses. Frontiers in Materials, 2022, 9, .	1.2	10
1510	Rational design of a BiFeWO6 nanostructure for supercapacitor applications. Journal of Solid State Electrochemistry, 2022, 26, 1251-1258.	1.2	3
1511	Suppressed Dissolution and Enhanced Desolvation in Core–Shell MoO ₃ @TiO ₂ Nanorods as a Highâ€Rate and Longâ€Life Anode Material for Proton Batteries. Advanced Energy Materials, 2022, 12, .	10.2	44
1512	Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review. Polymer Engineering and Science, 2022, 62, 269-303.	1.5	67
1513	Role of Oxygen Vacancy Ordering and Channel Formation in Tuning Intercalation Pseudocapacitance in Mo Single-Ion-Implanted CeO _{2–<i>x</i>} Nanoflakes. ACS Applied Materials & Interfaces, 2021, 13, 59820-59833.	4.0	11
1514	Highâ€performance <scp>MoO₃</scp> supercapacitor electrodes: Influence of reaction parameters on phase, microstructure, and electrochemical properties. International Journal of Energy Research, 2022, 46, 5973-5987.	2.2	4
1515	Industrially scalable exfoliated graphene nanoplatelets by high-pressure airless spray technique for high-performance supercapacitors. FlatChem, 2022, 33, 100373.	2.8	18
1516	Ionic liquid-assisted synthesis of tri-functional ruthenium oxide nanoplatelets for electrochemical energy applications. Journal of Materials Science, 2022, 57, 7680-7693.	1.7	5
1517	MOFs-carbon nanocomposites for supercapacitors. , 2022, , 413-437.		0
1518	Crystal structure controlled synthesis of tin oxide nanoparticles for enhanced energy storage activity under neutral electrolyte. Journal of Materials Science: Materials in Electronics, 2022, 33,	1.1	5

#	Article	IF	CITATIONS
1519	Synthesis and electrochemical performance of V2O5 nanosheets for supercapacitor. AIP Advances, 2022, 12, .	0.6	10
1520	RuO ₂ Supercapacitor Enables Flexible, Safe, and Efficient Optoelectronic Neural Interface. Advanced Functional Materials, 2022, 32, .	7.8	15
1521	Theory abide experimental investigations on morphology driven enhancement of electrochemical energy storage performance for manganese titanate perovskites electrodes. Journal of Power Sources, 2022, 538, 231525.	4.0	20
1522	Transition Metal Oxides for Supercapacitors. Advances in Material Research and Technology, 2022, , 267-292.	0.3	3
1523	Fundamentals, Mechanism, and Materials for Hybrid Supercapacitors. Advances in Material Research and Technology, 2022, , 71-100.	0.3	1
1524	Nanocomposites of Carbon Nanotubes for Electrochemical Energy Storage Applications. Advances in Material Research and Technology, 2022, , 245-265.	0.3	1
1525	Engineering of Transition Metal Sulfide Nanostructures as Efficient Electrodes for High-Performance Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6481-6498.	2.5	68
1526	Preparation of bulk doped NiCo ₂ O ₄ bimetallic oxide supercapacitor materials by <i>in situ</i> growth method. Inorganic and Nano-Metal Chemistry, 0, , 1-10.	0.9	0
1527	An EGFET Based Common Source Amplifier as a Low-Frequency Instrumentation Amplifier for Sensitivity Measurement on RuO ₂ Lactic Acid Biosensor. IEEE Access, 2022, 10, 67605-67614.	2.6	1
1528	Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. Journal of Materials Chemistry A, 2022, 10, 13190-13240.	5.2	137
1529	On-chip high-energy interdigital micro-supercapacitors with 3D nanotubular array electrodes. Journal of Materials Chemistry A, 2022, 10, 14051-14059.	5.2	13
1530	Electrochemical Behavior of Nanoporous Gold/Polypyrrole Supercapacitor under Deformation. Nanomaterials, 2022, 12, 2149.	1.9	2
1531	Conjugated polymer-based electrodes for flexible all-solid-state supercapacitors. , 2022, , 243-281.		0
1532	Phytosynthesis of Co ₃ O ₄ Nanoparticles as the High Energy Storage Material of an Activated Carbon/Co ₃ O ₄ Symmetric Supercapacitor Device with Excellent Cyclic Stability Based on a Na ₂ SO ₄ Aqueous Electrolyte. ACS Omega, 2022, 7, 23673-23684.	1.6	43
1533	Two-Dimensional Hybrid Nanosheet-Based Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. ACS Nano, 2022, 16, 10130-10155.	7.3	47
1534	3D hierarchical flower-like MnCo2O4@NiO nanosheet arrays for enhanced-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 922, 166286.	2.8	17
1535	Transition Metal Dichalcogenides (TMDs) for Photo/Electro Chemical Energy Based Applications. Energy Technology, 0, , .	1.8	1
1536	Magnetite Nanoparticles In-Situ Grown and Clustered on Reduced Graphene Oxide for Supercapacitor Electrodes. Materials, 2022, 15, 5371.	1.3	6

#	Article	IF	CITATIONS
1537	Electrochemical energy storage behavior of hydrothermally synthesized Y2ZnCoO6/rGO nanocomposite. Materials Science in Semiconductor Processing, 2022, 151, 106980.	1.9	5
1538	Rational design of metal oxide based electrode materials for high performance supercapacitors – A review. Journal of Energy Storage, 2022, 55, 105419.	3.9	49
1539	Synthesis of polydiphenylamine nanostructures via microwave and ultra-sonication method for supercapacitor performance. Journal of Materials Science: Materials in Electronics, 2022, 33, 23236-23249.	1.1	1
1540	Nanocarbon-based electrode materials applied for supercapacitors. Rare Metals, 2022, 41, 3957-3975.	3.6	31
1541	A review on synergy of transition metal oxide nanostructured materials: Effective and coherent choice for supercapacitor electrodes. Journal of Energy Storage, 2022, 55, 105692.	3.9	45
1542	MnCo2O4 nanomaterials based electrodes for supercapacitors. Inorganic Chemistry Communication, 2022, 145, 109945.	1.8	11
1543	Nitrogen-rich three-dimensional metal-organic framework microrods as an efficient electrocatalyst for oxygen evolution reaction and supercapacitor applications. Fuel, 2023, 331, 125746.	3.4	5
1544	Performance comparison of distinct bismuth molybdate single phases for asymmetric supercapacitor applications. Dalton Transactions, 2022, 51, 15579-15592.	1.6	11
1545	Two-dimensional MXenes: recent emerging applications. RSC Advances, 2022, 12, 25172-25193.	1.7	9
1546	Carbon Based Composites for Supercapacitor Applications. Engergy Systems in Electrical Engineering, 2022, , 259-284.	0.5	0
1547	Engineering heterostructured nickel–cobalt sulfide@hydroxide nanoarrays with spontaneous and fast interfacial charge transfer for high-energy-density supercapacitors. Energy Advances, 2022, 1, 704-714.	1.4	1
1548	A three-dimensional directly grown hierarchical graces-like Nickel Manganese Selenide for high-performance Li-ion battery and supercapacitor electrodes. Materials Today Chemistry, 2022, 26, 101187.	1.7	3
1549	Hierarchical layered nickel–iron double hydroxide/carbon nanotube fiber electrode for constructing asymmetric fiber supercapacitor. Sustainable Energy and Fuels, 0, , .	2.5	0
1550	Promising electrode material of Fe3O4 nanoparticles decorated on V2O5 nanobelts for high-performance symmetric supercapacitors. Ceramics International, 2023, 49, 6280-6288.	2.3	15
1551	Binder-free Polymer Material Embedded in Chitosan Matrix for Electrochemical Energy Storage Devices. Chemical Physics Letters, 2022, , 140172.	1.2	0
1552	Role of different aliphatic diols on the structural and morphological aspects of Ni(OH)2 synthesized by thermal decomposition via refluxing method and their effect on charge storage properties. Journal of Alloys and Compounds, 2023, 934, 167959.	2.8	2
1553	Firstâ€principles study of the magnetic exchange forces between the RuO2(110) surface and a Fe tip. ChemPhysChem, 0, , .	1.0	0
1554	Constructing 2D/2D heterojunction of MnO2 nanolamellas grown on MXene nanosheets for boosted supercapacitor performance. Journal of Energy Storage, 2022, 56, 106105.	3.9	9

#	Article	IF	CITATIONS
1555	A Review on the Application of Cobalt-Based Nanomaterials in Supercapacitors. Nanomaterials, 2022, 12, 4065.	1.9	10
1556	Status on electrodeposited manganese dioxide and biowaste carbon for hybrid capacitors: The case of high-quality oxide composites, mechanisms, and prospects. Journal of Energy Storage, 2022, 56, 106099.	3.9	25
1557	Construction of CoMoO4 nanosheets arrays modified by Ti3C2Tx MXene and their enhanced charge storage performance for hybrid supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130637.	2.3	5
1558	Recent trends in noble-metals based composite materials for supercapacitors: A comprehensive and development review. Journal of the Indian Chemical Society, 2023, 100, 100817.	1.3	3
1559	Hierarchical Multiscale Engineered Fe ₃ O ₄ /Ni Electrodes with Ultrafast Supercapacitive Energy Storage for Alternate Current Lineâ€Filtering. Small Science, 0, , 2200074.	5.8	0
1560	Dynamic Modeling and Analysis of a Virtual Synchronous Generator with Supercapacitor. Sustainability, 2023, 15, 1248.	1.6	3
1561	Inserted hydrogen promotes oxidation catalysis of mixed Ru _{0.3} Ti _{0.7} O ₂ as exemplified with total propane oxidation and the HCl oxidation reaction. Catalysis Science and Technology, 2023, 13, 1395-1408.	2.1	4
1562	Cobalt hydroxide nanoflakes intercalated into nitrogen-doped reduced graphene oxide'sÂnanosheets for supercapattery application. Journal of Materials Research, 0, , .	1.2	5
1563	Characterization of defect structures in nanoscaled W-doped \$\${ext {TiO}_2}\$\$ tested as supercapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	6
1564	Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review. Journal of Power Sources, 2023, 557, 232558.	4.0	32
1565	Solution Processed NiO/MoS2 Heterostructure Nanocomposite for Supercapacitor Electrode Application. Energies, 2023, 16, 335.	1.6	6
1566	Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Advanced Functional Materials, 2023, 33, .	7.8	66
1567	Fullerene: Fundamentals and state-of-the-art. , 2023, , 1-19.		0
1568	Facile preparation of polyaniline/graphene oxide composite towards electrode materials. Energy and Environment, 0, , 0958305X2211504.	2.7	1
1569	Fundamentals of supercapacitors. , 2023, , 83-100.		1
1570	A Comprehensive Compilation of Graphene/Fullerene Polymer Nanocomposites for Electrochemical Energy Storage. Polymers, 2023, 15, 701.	2.0	15
1571	Comparison between supercapacitors and other energy storing electrochemical devices. , 2023, , 673-712.		1
1572	Self-template activated carbons for aqueous supercapacitors. Sustainable Materials and Technologies, 2023, 36, e00582.	1.7	6

#	Article	IF	CITATIONS
1573	Electrodepositing NiCo-double hydroxides with high electrochemical performance by adjusting the rheological behavior of electrolyte. Journal of Energy Storage, 2023, 63, 106946.	3.9	2
1574	Role of oxygen vacancies and porosity in enhancing the electrochemical properties of Microwave synthesized hematite (α-Fe2O3) nanostructures for supercapacitor application. Vacuum, 2023, 210, 111903.	1.6	8
1575	Comparative Study of Morphological Variation in Bi-functional ZnCo2O4 Nanostructures for Supercapacitor and OER Applications. Journal of Electronic Materials, 2023, 52, 3188-3204.	1.0	1
1576	High aspect ratio TiO ₂ –Mn ₃ O ₄ heterostructure: proficient nanorods for pathogen inhibition and supercapacitor application. Materials Science and Technology, 2023, 39, 1687-1696.	0.8	3
1577	Evaluation of nanostructured electrode materials for high-performance supercapacitors using multiple-criteria decision-making approach. Electronic Research Archive, 2023, 31, 2286-2314.	0.4	0
1578	Marine predators optimization and ANFIS as an effective tools for maximization of specific capacity of G-NiO electrode for electrochemical energy storage. Ain Shams Engineering Journal, 2023, 14, 102210.	3.5	1
1579	High power aqueous hybrid asymmetric supercapacitor based on zero-dimensional ZnS nanoparticles with two-dimensional nanoflakes CuSe2 nanostructures. Ceramics International, 2023, 49, 20007-20016.	2.3	13
1580	Carbon Materials as a Conductive Skeleton for Supercapacitor Electrode Applications: A Review. Nanomaterials, 2023, 13, 1049.	1.9	24
1581	Recycling of Supercapacitor Materials. Springer Series in Materials Science, 2023, , 393-411.	0.4	0
1582	Traditional Electrode Materials for Supercapacitor Applications. Springer Series in Materials Science, 2023, , 19-64.	0.4	0
1583	Metal oxide nanomaterials for supercapacitor applications. , 2023, , 343-364.		0
1584	Theoretical investigation of some transition metal sulfides nanomaterials: CDFT approach. Theoretical Chemistry Accounts, 2023, 142, .	0.5	0
1585	Recent advances in electrospun fibers based on transition metal oxides for supercapacitor applications: a review. Energy Advances, 2023, 2, 922-947.	1.4	4
1626	Transition Metal Dichalcogenides, Conducting Polymers, and Their Nanocomposites as Supercapacitor Electrode Materials. Polymer Science - Series A, 2023, 65, 447-471.	0.4	1
1627	Graphene and Graphene-Based Nanocomposites: From Synthesis to Applications. Indian Institute of Metals Series, 2024, , 517-543.	0.2	0
1638	Advanced electrode materials of supercapacitors. , 2024, , 321-365.		0
1643	Materials for energy-efficient systems and environmental remediation. , 2024, , 741-777.		0