Strengths and Advantages of Electrodeposition as a Sen for Applications in Macroelectronic Devices

Journal of the Electrochemical Society 153, G47 DOI: 10.1149/1.2128120

Citation Report

#	Article	IF	CITATIONS
1	Photovoltaics literature survey (no. 45). Progress in Photovoltaics: Research and Applications, 2006, 14, 281-287.	4.4	1
2	Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 2191-2200.	3.0	59
3	Optical absorption edge shifts in electrodeposited ZnO thin films. Thin Solid Films, 2007, 515, 7976-7983.	0.8	39
4	New insights in the electrodeposition mechanism of CuInSe2thin films for solar cell applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3445-3448.	0.8	26
5	Electrodeposition of photoactive 1D gallium selenide quantum dots. Electrochimica Acta, 2008, 54, 829-834.	2.6	18
6	Stability of TiO2 nanotube arrays in photoelectrochemical studies. International Journal of Hydrogen Energy, 2008, 33, 5369-5374.	3.8	62
7	Synthesis of Coupled Semiconductor by Filling 1D TiO ₂ Nanotubes with CdS. Chemistry of Materials, 2008, 20, 6784-6791.	3.2	323
8	Selective formation of Ohmic junctions and Schottky barriers with electrodeposited ZnO. Applied Physics Letters, 2008, 92, 012103.	1.5	26
9	Templated Fabrication of InSb Nanowires for Nanoelectronics. Journal of Nanomaterials, 2008, 2008, 1-5.	1.5	22
10	Electrochemical Fabrication of InSb Nanowires using Porous Alumina Membrane and their Characterization. Materials Research Society Symposia Proceedings, 2008, 1080, 1.	0.1	0
11	Porous Weblike Network of InSe on a Compact Layer by Electrodeposition. Journal of the Electrochemical Society, 2008, 155, E57.	1.3	3
12	Deposition of selenium thin layers on gold surfaces from sulphuric acid media: Studies using electrochemical quartz crystal microbalance, cyclic voltammetry and AFM. Electrochimica Acta, 2010, 55, 1184-1192.	2.6	38
13	Electrochemical deposition of CuInTe2 layers for applications in thin film solar cells. Journal of Materials Science: Materials in Electronics, 2010, 21, 373-379.	1.1	7
14	An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. Solar Energy Materials and Solar Cells, 2010, 94, 2-7.	3.0	118
15	Low-Cost Inorganic Solar Cells: From Ink To Printed Device. Chemical Reviews, 2010, 110, 6571-6594.	23.0	412
16	Growth of Triangular ZnO Nanorods by Electrodeposition. Journal of the Electrochemical Society, 2010, 157, K269.	1.3	3
17	Galvanic Deposition of Nanoporous Si onto 6061 Al Alloy from Aqueous HF. Journal of the Electrochemical Society, 2011, 158, D68.	1.3	14
18	AC impedance and cyclic voltammetry studies on PbS semiconducting film prepared by electrodeposition. Journal of Electroanalytical Chemistry, 2011, 661, 265-269.	1.9	30

#	Article	IF	CITATIONS
19	Non-aqueous synthesis of silver nanoparticles using tin acetate as a reducing agent for the conductive ink formulation in printed electronics. Journal of Materials Chemistry, 2011, 21, 10871.	6.7	76
20	CdS thin films growth by fast evaporation with substrate rotation. Applied Surface Science, 2011, 257, 9480-9484.	3.1	16
21	Nanoscale Digital Devices Based on the Photoelectrochemical Photocurrent Switching Effect: Preparation, Properties and Applications. Israel Journal of Chemistry, 2011, 51, 36-55.	1.0	36
23	Effects of heat treatment of vacuum evaporated CdCl2 layer on the properties of CdS/CdTe solar cells. Current Applied Physics, 2011, 11, S103-S108.	1.1	32
24	Photoelectrochemical study of ZnSe electrodeposition on Cu electrode. Journal of Electroanalytical Chemistry, 2012, 674, 108-112.	1.9	21
25	Role of deposition time on structural, optical and electrical properties of In-rich Cu–In–S spinel films grown by electrodeposition technique. Superlattices and Microstructures, 2013, 61, 22-32.	1.4	18
26	Influence of Electrodeposition Potential on the Properties of CuIn5S8Spinel Thin Films. Journal of the Electrochemical Society, 2013, 160, H446-H451.	1.3	14
27	Electrochemical growth of Cu–Zn sulfides. Journal of Electroanalytical Chemistry, 2013, 710, 17-21.	1.9	24
29	Development of ZnTe layers using an electrochemical technique for applications in thin-film solar cells. Semiconductor Science and Technology, 2013, 28, 045005.	1.0	27
30	Electrodeposition of Solar Cell Grade Silicon in High Temperature Molten Salts. High Temperature Materials and Processes, 2013, 32, 97-105.	0.6	28
31	Electrochemical Growth of Cu-Zn Sulfides of Various Stoichiometries. Journal of the Electrochemical Society, 2014, 161, D14-D17.	1.3	12
32	Electrodeposition of High-Purity Indium Thin Films and Its Application to Indium Phosphide Solar Cells. Journal of the Electrochemical Society, 2014, 161, D794-D800.	1.3	16
33	Preparation of indium selenide thin film by electrochemical technique. Journal of Materials Science: Materials in Electronics, 2014, 25, 3977-3983.	1.1	12
34	SnO2: A comprehensive review on structures and gas sensors. Progress in Materials Science, 2014, 66, 112-255.	16.0	933
35	Additive-Free Shape-Invariant Nano-to-Micron Size-Tuning of Cu ₂ O Cubic Crystals by Square-Wave Voltammetry. Journal of Physical Chemistry C, 2014, 118, 11062-11077.	1.5	18
36	Electro-Plating and Characterisation of CdTe Thin Films Using CdCl2 as the Cadmium Source. Energies, 2015, 8, 10883-10903.	1.6	37
37	Voltammetric Study of Selenium and Two-Stage Electrodeposition of Photoelectrochemically Active Zinc Selenide Semiconductor Films in Ionic Liquid Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride. Journal of the Electrochemical Society, 2015, 162, D243-D249.	1.3	5
38	Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells. Journal of Materials Science: Materials in Electronics, 2015, 26, 3119-3128.	1.1	57

#	Article	IF	Citations
39	Effect of conductive substrate (working electrode) on the morphology of electrodeposited Cu ₂ O. Journal Physics D: Applied Physics, 2015, 48, 175502.	1.3	25
40	Low temperature electrochemical deposition of highly active elements. Current Opinion in Solid State and Materials Science, 2015, 19, 77-84.	5.6	37
41	The Effect of Sulfurization Temperature on CuIn(Se,S) ₂ Solar Cells Synthesized by Electrodeposition. Journal of the Electrochemical Society, 2015, 162, D36-D41.	1.3	4
42	Development of CdSe thin films for application in electronic devices. Journal of Materials Science: Materials in Electronics, 2015, 26, 1066-1076.	1.1	51
43	Experimental investigation of the effect of indium content on the Culn5S8 electrodes using electrochemical impedance spectroscopy. Materials Research Bulletin, 2015, 61, 519-527.	2.7	28
44	Influence Applied Potential on the Formation of Self-Organized ZnO Nanorod Film and Its Photoelectrochemical Response. International Journal of Photoenergy, 2016, 2016, 1-8.	1.4	7
45	One-sided rectifying p–n junction diodes fabricated from n-CdS and p-ZnTe:Te semiconductors. Materials Research Express, 2016, 3, 095904.	0.8	9
46	Optimisation of CdTe electrodeposition voltage for development of CdS/CdTe solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 12464-12472.	1.1	41
47	Single step electrosynthesis of NiMnGa alloys. Electrochimica Acta, 2016, 204, 199-205.	2.6	3
48	Optical and structural study of electrodeposited zinc selenide thin films. Journal of Electroanalytical Chemistry, 2016, 780, 360-366.	1.9	12
49	First row transition metal catalysts for solar-driven water oxidation produced by electrodeposition. Journal of Materials Chemistry A, 2016, 4, 6724-6741.	5.2	80
50	Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy, 2016, 22, 361-395.	8.2	248
51	Effect of stirring rate of electrolyte on properties of electrodeposited CdS layers. Journal of Materials Science: Materials in Electronics, 2016, 27, 5415-5421.	1.1	15
52	Electrodeposition and characterisation of CdS thin films using thiourea precursor for application in solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 6786-6799.	1.1	25
53	Progress in development of graded bandgap thin film solar cells with electroplated materials. Journal of Materials Science: Materials in Electronics, 2017, 28, 6359-6365.	1.1	6
54	Biocompatibility and Degradation of a Low Elastic Modulus Ti-35Nb-3Zr Alloy: Nanosurface Engineering for Enhanced Degradation Resistance. ACS Biomaterials Science and Engineering, 2017, 3, 509-517.	2.6	17
56	Investigating the effect of GaCl 3 incorporation into the usual CdCl 2 treatment on CdTe-based solar cell device structures. Current Applied Physics, 2017, 17, 279-289.	1.1	14
57	Stoichiometric Control of Electrocatalytic Amorphous Nickel Phosphide to Increase Hydrogen Evolution Reaction Activity and Stability in Acidic Medium. ChemistrySelect, 2017, 2, 8020-8 <u>0</u> 27.	0.7	14

		CITATION REPORT		
#	Article		IF	CITATIONS
58	Ill–V Semiconductor Photoelectrodes. Semiconductors and Semimetals, 2017, 97, 8	1-138.	0.4	10
59	Effect of Electrochemically Deposited MgO Coating on Printable Perovskite Solar Cell F Coatings, 2017, 7, 36.	erformance.	1.2	11
60	Electrodeposited ZnO morphology transformations under the influence of SeO2 additi nanosheets network. Thin Solid Films, 2018, 652, 10-15.	ve: Rods, disks,	0.8	7
61	Electrodeposition of CdTe from BmimCl: Influence of substrate and electrolytic bath. Jc Electroanalytical Chemistry, 2018, 814, 59-65.	urnal of	1.9	8
62	Effect of different combinations of precursors of zirconium and selenium in the electro ZrSe2 thin films. Ionics, 2018, 24, 1243-1252.	deposited	1.2	6
63	The effect of the deposition conditions on the structure, composition and morphology electrodeposited cobalt materials. Thin Solid Films, 2018, 667, 11-20.	of	0.8	12
64	Influence of the type of conducting glass substrate on the properties of electrodeposit CdTe thin films. Journal of Materials Science: Materials in Electronics, 2018, 29, 12419	ed CdS and 12428.	1.1	10
65	Electrodeposition of CdTe thin film from acetate-based ionic liquid bath. AIP Conferenc 2018, , .	e Proceedings,	0.3	5
66	Speciation Model of the Mo(VI)-Ni(II)-Citrate-S(VI)-N(III) Aqueous System for the Study Electrodeposition of Molybdenum and Nickel Oxides Films. Journal of the Electrochemi 2018, 165, D344-D353.	of the cal Society,	1.3	1
67	Thick Film Ni0.5Mn0.5â^'xSnx Heusler Alloys by Multi-layer Electrochemical Deposition. Reports, 2018, 8, 11931.	Scientific	1.6	5
68	Techniques Utilised in Materials Growth and Materials and Device Characterisation. , 20)19, , 41-73.		0
69	Insights into the interfacial nanostructuring of NiCo2S4 and their electrochemical activultra-high capacity all-solid-state flexible asymmetric supercapacitors. Journal of Colloid Interface Science, 2019, 557, 423-437.	ity for and	5.0	29
70	Electrodeposition of CdS thin-films from cadmium acetate and ammonium thiosulphat Journal of Materials Science: Materials in Electronics, 2019, 30, 4580-4589.	e precursors.	1.1	21
71	Raman study of galvanostatically deposited CdTe thin films from BmimCl. Physica B: Co Matter, 2019, 568, 36-41.	ondensed	1.3	2
72	Oxygen-Vacancy-Tunable Electrochemical Properties of Electrodeposited Molybdenum ACS Applied Materials & amp; Interfaces, 2019, 11, 20378-20385.	Oxide Films.	4.0	82
73	Electrodeposition of indium from the ionic liquid trihexyl(tetradecyl)phosphonium chlo Chemistry, 2019, 21, 1517-1530.	ride. Green	4.6	26
74	Optical and Morphological Studies of Electrodeposited CdS Thin Film Grown at Differer Times from Acetate Precursor. ECS Journal of Solid State Science and Technology, 201	nt Deposition 9, 8, P112-P118.	0.9	4
75	A methodological review on material growth and synthesis of solar-driven water splittir photoelectrochemical cells. RSC Advances, 2019, 9, 30112-30124.	g	1.7	24

#	Article	IF	CITATIONS
76	High-Resolution Nanoprinting Approach through Self-Driven Electrodeposition. Journal of the Electrochemical Society, 2019, 166, D3200-D3204.	1.3	2
77	A scalable approach for functionalization of TiO2 nanotube arrays with g-C3N4 for enhanced photo-electrochemical performance. Journal of Alloys and Compounds, 2020, 846, 155881.	2.8	22
78	Electrochemical Deposition of Ni, NiCo Alloy and NiCo–Ceramic Composite Coatings—A Critical Review. Materials, 2020, 13, 3475.	1.3	41
79	Oxygen-functionalized g-C3N4 layers anchored with Ni(OH)2 nanoparticles assembled onto Ni foam as binder-free outstanding electrode for supercapacitors. Synthetic Metals, 2020, 270, 116601.	2.1	10
80	On the growth and mechanical properties of nanostructured cobalt foams by dynamic hydrogen bubble template electrodeposition. Materials Characterization, 2020, 169, 110598.	1.9	9
81	Indium electrodeposition from indium(<scp>iii</scp>) methanesulfonate in DMSO. Physical Chemistry Chemical Physics, 2020, 22, 24526-24534.	1.3	8
82	Photo-electrochemical degradation of wastewaters containing organics catalysed by phosphate-based materials: a review. Reviews in Environmental Science and Biotechnology, 2020, 19, 843-872.	3.9	31
83	Interfacial Electrofabrication of Freestanding Biopolymer Membranes with Distal Electrodes. Langmuir, 2020, 36, 11034-11043.	1.6	9
84	Electrodeposition of ternary compounds for novel PV application and optimisation of electrodeposited CdMnTe thin-films. Scientific Reports, 2020, 10, 21445.	1.6	3
85	Effect of Heat Treatment on Electrodeposited ZnSe on Vertically Aligned ZnO Nanorods for Photoelectrochemical Cell. Solid State Phenomena, 0, 307, 179-184.	0.3	0
86	Electrodeposition of MoSx: Tunable Fabrication of Sulfur Equivalent Electrodes for High Capacity or High Power. Journal of the Electrochemical Society, 2020, 167, 050513.	1.3	5
87	A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nano-Micro Letters, 2020, 12, 118.	14.4	146
88	Fabrication of Platinum Villus Overlaid Porous Carbon Nanoweb Layers for Hydrogen Gas Sensor Application. Advanced Materials Interfaces, 2020, 7, 1902006.	1.9	3
89	Synthesis of Core-Shell Al/tiO ₂ Nanotube Composites by Electrochemical Methods. Journal of the Electrochemical Society, 2020, 167, 112503.	1.3	1
90	Solution-method processed Bi-type nanoelectrode materials for supercapacitor applications: A review. Renewable and Sustainable Energy Reviews, 2021, 135, 110084.	8.2	30
91	Photoelectrochemical oxidation of glycerol on hematite: thermal effects, in situ FTIR and long-term HPLC product analysis. Journal of Solid State Electrochemistry, 2021, 25, 1101-1110.	1.2	27
92	Anti-Bacterial and Anti-Viral Polymeric Coatings. , 2022, , 776-785.		1
93	Feasible study on poly(Pyrrole-co-Pyrrole-3-Carboxylic Acid)-modified electrode for detection of 17î²-Estradiol. Chemical Papers, 2021, 75, 3493-3503.	1.0	3

#	Article	IF	CITATIONS
94	Preparation and properties of electrodeposited Ni-B-V2O5 composite coatings. Surface and Coatings Technology, 2021, 409, 126888.	2.2	9
95	Electrocatalysts by Electrodeposition: Recent Advances, Synthesis Methods, and Applications in Energy Conversion. Advanced Functional Materials, 2021, 31, 2101313.	7.8	86
96	Electrodeposited Co0.85Se thin films as free-standing cathode materials for high-performance hybrid supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 205-216.	2.7	10
97	Electrodeposition of Fe-Complexes on Oxide Surfaces for Efficient OER Catalysis. Catalysts, 2021, 11, 577.	1.6	10
98	Influence of Applied Potential on Electrodeposited ZnSe/ZnO Nanostructured Films for Photoelectrochemical Cell. Solid State Phenomena, 0, 317, 463-470.	0.3	1
99	Photoelectrochemical Hydrogen Production by Screen-Printed Copper Oxide Electrodes. Energies, 2021, 14, 2942.	1.6	6
100	Photoelectrochemical solar cell study of electrochemically synthesized Cd1-xZnxTe thin films. Solar Energy, 2021, 224, 923-929.	2.9	4
101	The preparation, characterization, and electrooxidation of colloidal palladium modified poly (methacrylic acid) hydrogel as formic acid fuel cell anode catalyst. Energy Storage, 0, , e286.	2.3	2
102	Synthesis and characterization of cadmium sulfide (CdS) thin films by cyclic voltammetry technique. Materials Today: Proceedings, 2021, 47, 2351-2357.	0.9	3
103	Semiconductors Groups II-IV and III-V, Electrochemical Deposition. , 2014, , 1927-1947.		3
104	Electrodeposition of Electronic Materials for Applications in Macroelectronic- and Nanotechnology-Based Devices. , 2014, , 680-691.		3
105	Electrochemical Growth and Studies of Indium-Rich CuInTe2 Thin Films. International Journal of Materials Science and Applications, 2014, 3, 1.	0.1	1
107	CdTe Deposition and Characterisation. , 2019, , 123-183.		2
108	Crafting a Next-Generation Device Using Iron Oxide Thin Film: A Review. Crystal Growth and Design, 2021, 21, 7326-7352.	1.4	11
109	Plug and Play Electrodeposition Cell: A Case Study of Bismuth Ferrite Thin Films for Photoelectrochemical Water Splitting. ECS Journal of Solid State Science and Technology, 2022, 11, 013006.	0.9	2
110	Tin oxide based nanostructured materials: synthesis and potential applications. Nanoscale, 2022, 14, 1566-1605.	2.8	67
111	Influence of heat treatment on the optoelectronic performance of electrodeposited CdSe thin films. Journal of Materials Science: Materials in Electronics, 2022, 33, 10814-10827.	1.1	4
112	Electrodeposition of Simonkolleite as a Low-Temperature Route to Crystalline ZnO Films for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2022, 169, 042504.	1.3	0

#	Article	IF	CITATIONS
113	Electrodeposition of Indium from an Ionic Liquid Investigated by In Situ Electrochemical XPS. Metals, 2022, 12, 59.	1.0	11
114	Influence of Zinc Oxide Nanostructure Morphology on its Photocatalytic Properties. Current Nanoscience, 2022, 18, .	0.7	Ο
115	Electrodeposition of CoxNiVyOz Ternary Nanopetals on Bare and rGO-Coated Nickel Foam for High-Performance Supercapacitor Application. Nanomaterials, 2022, 12, 1894.	1.9	5
116	Construction of PdCo catalysts on Ni bowl-like micro/nano array films for efficient methanol and ethanol electrooxidation. Journal of Alloys and Compounds, 2022, 924, 166483.	2.8	7
117	Synthesis of metal chalcogenide semiconductors by thermal decomposition of organosulfur and organoselenium compounds. Chemistry - A European Journal, 0, , .	1.7	1
118	Current state of copper-based bimetallic materials for electrochemical CO ₂ reduction: a review. RSC Advances, 2022, 12, 30056-30075.	1.7	6
119	Performance evaluation and comparison of machine learning algorithms for prediction of electrodeposited copper ions. Advances in Materials and Processing Technologies, 0, , 1-11.	0.8	2
120	Electrochemical Deposition of Multicomponent Mixed Metal Oxides on rGO/Ni Foam for All-Solid-State Asymmetric Supercapacitor Device: Mn, Co, and Ni Oxides with Ag Doping. Energies, 2022, 15, 8559.	1.6	4
121	Effect of Deposition Parameters on Morphological and Compositional Characteristics of Electrodeposited CuFeO2 Film. Coatings, 2022, 12, 1820.	1.2	2
122	Correlation Between Texture, Grain Boundary Constitution and Corrosion Behaviour of Copper–Chromium Coatings Containing Graphene Oxide. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2023, 54, 634-645.	1.1	2
123	Structural, morphological and optical characterization of CuO/ZnO nanocomposite films. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	5
124	Electrodeposition of SnO ₂ nanostructures onto copper substrates and their electrochemical properties. Materials Science and Technology, 2023, 39, 1414-1424.	0.8	1
125	Charge transfer in copper oxide thin films deposited at different electrodeposition potential. Physica B: Condensed Matter, 2023, 659, 414881.	1.3	0
126	Understanding the Polymorphism of Cobalt Nanoparticles Formed in Electrodeposition─An In Situ XRD Study. , 2023, 5, 979-984.		3
128	Film growth and epitaxy methods. , 2024, , 248-260.		0
131	Performance Evaluation and Comparison of Machine Learning Algorithms for Prediction of Electrodeposited Copper Ions. Lecture Notes in Mechanical Engineering, 2023, , 203-210.	0.3	0
136	CdZnTe thin films as proficient absorber layer candidates in solar cell devices: a review. Energy Advances, 2023, 2, 1980-2005.	1.4	1