Calcium-Induced Voltage Gating in Single Conical Nanc

Nano Letters 6, 1729-1734 DOI: 10.1021/nl061114x

Citation Report

#	Article	IF	CITATIONS
1	Cation Vacancies and Divalent Mu Ions in NaCl Crystals at Low Temperature. Japanese Journal of Applied Physics, 1967, 6, 1021-1022.	0.8	1
2	Asymmetric properties of ion transport in a charged conical nanopore. Physical Review E, 2007, 75, 051201.	0.8	111
3	Inverse Problems Related to Ion Channel Selectivity. SIAM Journal on Applied Mathematics, 2007, 67, 960-989.	0.8	58
4	Poisson–Nernst–Planck Systems for Ion Channels with Permanent Charges. SIAM Journal on Mathematical Analysis, 2007, 38, 1932-1966.	0.9	104
5	Rectification of lonic Current in a Nanofluidic Diode. Nano Letters, 2007, 7, 547-551.	4.5	484
6	How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. Journal Physics D: Applied Physics, 2007, 40, 7077-7084.	1.3	65
7	Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Physical Review E, 2007, 76, 041202.	0.8	187
8	Developing synthetic conical nanopores for biosensing applications. Molecular BioSystems, 2007, 3, 667.	2.9	182
9	Asymmetric Selectivity of Synthetic Conical Nanopores Probed by Reversal Potential Measurements. Journal of Physical Chemistry C, 2007, 111, 12265-12273.	1.5	106
10	Nanoporous S-Layer Protein Lattices. A Biological Ion Gate with Calcium Selectivity. Journal of Physical Chemistry C, 2007, 111, 13232-13237.	1.5	11
11	Steric Selectivity in Na Channels Arising from Protein Polarization and Mobile Side Chains. Biophysical Journal, 2007, 93, 1960-1980.	0.2	111
12	Electrically tunable solid-state silicon nanopore ion filter. Nanoscale Research Letters, 2007, 2, 61-68.	3.1	30
13	Nanoprecipitation-assisted ion current oscillations. Nature Nanotechnology, 2008, 3, 51-57.	15.6	152
14	Synthetic Nanopores as a Test Case for Ion Channel Theories: The Anomalous Mole Fraction Effect without Single Filing. Biophysical Journal, 2008, 95, 609-619.	0.2	72
15	Biotemplated Nanostructured Materials. Chemistry of Materials, 2008, 20, 821-834.	3.2	293
16	Asymptotic Expansions of I-V Relations via a Poisson–Nernst–Planck System. SIAM Journal on Applied Dynamical Systems, 2008, 7, 1507-1526.	0.7	58
17	Noise and Bandwidth of Current Recordings from Submicrometer Pores and Nanopores. ACS Nano, 2008, 2, 857-872.	7.3	134
18	Biosensing and Supramolecular Bioconjugation in Single Conical Polymer Nanochannels. Facile Incorporation of Biorecognition Elements into Nanoconfined Geometries. Journal of the American Chemical Society. 2008. 130. 16351-16357.	6.6	270

#	Article	IF	CITATIONS
19	Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels. European Journal of Applied Mathematics, 2008, 19, 541-560.	1.4	89
20	Electric energy generation in single track-etched nanopores. Applied Physics Letters, 2008, 93, .	1.5	111
21	Modeling transport through synthetic nanopores. IEEE Nanotechnology Magazine, 2009, 3, 20-28.	0.9	43
22	Fabrication and investigation of single track-etched nanopore and its applications. Radiation Measurements, 2009, 44, 1093-1099.	0.7	15
23	Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores. Journal of Colloid and Interface Science, 2009, 329, 376-383.	5.0	46
24	Ionic Current Rectification through Silica Nanopores. Journal of Physical Chemistry C, 2009, 113, 1850-1862.	1.5	86
25	Molecular dynamics simulations on the ionic current through charged nanopores. Journal Physics D: Applied Physics, 2009, 42, 105308.	1.3	22
26	Two dimensional anisotropic etching in tracked glass. Journal of Materials Chemistry, 2009, 19, 8142.	6.7	10
27	Commensurability, jamming, and dynamics for vortices in funnel geometries. Physical Review B, 2010, 81, .	1.1	28
28	Electrical current pulsations through ion irradiated polymer foils in electrolytes. Radiation Effects and Defects in Solids, 2010, 165, 818-833.	0.4	4
29	Current oscillations generated by precipitate formation in the mixing zone between two solutions inside a nanopore. Journal of Physics Condensed Matter, 2010, 22, 454127.	0.7	8
30	Funnel-type etched ion tracks in polymers. Radiation Effects and Defects in Solids, 2010, 165, 343-361.	0.4	14
31	Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. Journal of the American Chemical Society, 2010, 132, 8338-8348.	6.6	265
32	Precipitation-Induced Voltage-Dependent Ion Current Fluctuations in Conical Nanopores. Journal of Physical Chemistry C, 2010, 114, 8126-8134.	1.5	36
33	Computational Microscopy of the Role of Protonable Surface Residues in Nanoprecipitation Oscillations. ACS Nano, 2010, 4, 4463-4474.	7.3	13
34	Mathematical modeling and simulation of nanopore blocking by precipitation. Journal of Physics Condensed Matter, 2010, 22, 454101.	0.7	12
35	Engineered voltage-responsive nanopores. Chemical Society Reviews, 2010, 39, 1115-1132.	18.7	436
36	Conducting swift heavy ion track networks. Radiation Effects and Defects in Solids, 2010, 165, 227-244.	0.4	11

#	Article	IF	CITATIONS
37	Sub-50nm nanopore membrane based on patterned self-assembly monolayer of nanospheres. , 2011, , .		0
38	Nanofluidic Pulser Based on Polymer Conical Nanopores. Journal of Physical Chemistry C, 2011, 115, 22736-22741.	1.5	7
39	Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 2011, 40, 2385.	18.7	632
40	pH-Reversed ionic current rectification displayed by conically shaped nanochannel without any modification. Nanoscale, 2011, 3, 3767.	2.8	31
41	Reversible Cation Response with a Protein-Modified Nanopipette. Analytical Chemistry, 2011, 83, 6121-6126.	3.2	69
42	Enantioselective Recognition in Biomimetic Single Artificial Nanochannels. Journal of the American Chemical Society, 2011, 133, 7644-7647.	6.6	239
43	Biosensing with Nanopores and Nanotubes. , 2011, , 165-207.		3
45	Nonlinear ionic pulses along microtubules. European Physical Journal E, 2011, 34, 49.	0.7	62
46	Bio-inspired smart gating nanochannels based on polymer films. Science China Chemistry, 2011, 54, 1537-1546.	4.2	13
47	Ionic Pulses along Cytoskeletal Protophilaments. Journal of Physics: Conference Series, 2011, 329, 012009.	0.3	6
48	A New Concept for Bioalcohol Production Control. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2012, 82, 71-77.	0.8	1
49	Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano, 2012, 6, 9247-9257.	7.3	106
50	Proton and Calcium-Gated Ionic Mesochannels: Phosphate-Bearing Polymer Brushes Hosted in Mesoporous Thin Films As Biomimetic Interfacial Architectures. Langmuir, 2012, 28, 3583-3592.	1.6	67
51	Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La ³⁺ Ions. Journal of Physical Chemistry C, 2012, 116, 6537-6542.	1.5	28
52	Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel. Talanta, 2012, 89, 253-257.	2.9	16
53	Tunable Negative Differential Electrolyte Resistance in a Conical Nanopore in Glass. ACS Nano, 2012, 6, 6507-6514.	7.3	41
54	Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. Physical Chemistry Chemical Physics, 2012, 14, 4027.	1.3	53
55	Bioinspired Ionâ€Transport Properties of Solidâ€State Single Nanochannels and Their Applications in Sensing. ChemPhysChem, 2012, 13, 2455-2470.	1.0	69

#	Article	IF	CITATIONS
56	Biomimetic Ion Nanochannels as a Highly Selective Sequential Sensor for Zinc Ions Followed by Phosphate Anions. Chemistry - A European Journal, 2013, 19, 9388-9395.	1.7	42
57	Bio-inspired Asymmetric Design and Building of Biomimetic Smart Single Nanochannels. Springer Theses, 2013, , .	0.0	10
58	Effects of ion concentration on thermally-chargeable double-layer supercapacitors. Nanotechnology, 2013, 24, 465401.	1.3	29
59	Label-Free Specific Detection of Femtomolar Cardiac Troponin Using an Integrated Nanoslit Array Fluidic Diode. Nano Letters, 2014, 14, 6983-6990.	4.5	17
60	Lightâ€Gating Titania/Alumina Heterogeneous Nanochannels with Regulatable Ion Rectification Characteristic. Advanced Functional Materials, 2014, 24, 424-431.	7.8	60
61	Construction of biomimetic smart nanochannels for confined water. National Science Review, 2014, 1, 144-156.	4.6	58
62	Design and Fabrication of a Biomimetic Nanochannel for Highly Sensitive Arginine Response in Serum Samples. Chemistry - A European Journal, 2014, 20, 7987-7993.	1.7	31
63	Biomimetic nanopore for sensitive and selective detection of Hg(<scp>ii</scp>) in conjunction with single-walled carbon nanotubes. Journal of Materials Chemistry B, 2014, 2, 6371-6377.	2.9	25
64	Calcein-Modified Multinanochannels on PET Films for Calcium-Responsive Nanogating. ACS Applied Materials & Interfaces, 2014, 6, 3794-3798.	4.0	26
65	Accurate characterization of single track-etched, conical nanopores. Physical Chemistry Chemical Physics, 2014, 16, 15214-15223.	1.3	45
66	Negative Differential Electrolyte Resistance in a Solid-State Nanopore Resulting from Electroosmotic Flow Bistability. ACS Nano, 2014, 8, 3023-3030.	7.3	34
68	A Bioinspired Switchable and Tunable Carbonateâ€Activated Nanofluidic Diode Based on a Single Nanochannel. Angewandte Chemie - International Edition, 2015, 54, 13664-13668.	7.2	85
69	Dual-response for Hg ²⁺ and Ag ⁺ ions based on biomimetic funnel-shaped alumina nanochannels. Journal of Materials Chemistry B, 2015, 3, 1699-1705.	2.9	37
70	Cation dependent transport in a field effect nanofluidic device. , 2015, , .		1
71	Organic/Inorganic Hybrid Nanochannels Based on Polypyrroleâ€Embedded Alumina Nanopore Arrays: pH― and Lightâ€Modulated Ion Transport. Advanced Functional Materials, 2015, 25, 2091-2098.	7.8	80
72	Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane. Talanta, 2015, 144, 268-274.	2.9	21
73	Bare conical nanopore embedded in polymer membrane for Cr(III) sensing. Talanta, 2015, 140, 219-225.	2.9	18
74	Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale. Journal of Physical Chemistry Letters, 2015, 6, 1800-1806.	2.1	16

#	Article	IF	CITATIONS
75	DNAzyme tunable lead(<scp>ii</scp>) gating based on ion-track etched conical nanochannels. Chemical Communications, 2015, 51, 5979-5981.	2.2	50
76	Engineered Ionic Gates for Ion Conduction Based on Sodium and Potassium Activated Nanochannels. Journal of the American Chemical Society, 2015, 137, 11976-11983.	6.6	184
77	Computer modeling of ion current pulsations in track-containing foils. Journal of Computational Science, 2015, 6, 34-39.	1.5	3
78	A Bioâ€inspired, Sensitive, and Selective Ionic Gate Driven by Silver (I) Ions. Small, 2015, 11, 543-547.	5.2	58
79	The Influence of Divalent Anions on the Rectification Properties of Nanofluidic Diodes: Insights from Experiments and Theoretical Simulations. ChemPhysChem, 2016, 17, 2718-2725.	1.0	37
80	Biomimetic Solid-State Nanochannels: From Fundamental Research to Practical Applications. Small, 2016, 12, 2810-2831.	5.2	150
81	Fabrication of a mercaptoacetic acid pillar[5]arene assembled nanochannel: a biomimetic gate for mercury poisoning. Chemical Science, 2016, 7, 3227-3233.	3.7	101
82	Supramolecular Self-Assembly Induced Adjustable Multiple Gating States of Nanofluidic Diodes. Journal of the American Chemical Society, 2016, 138, 16372-16379.	6.6	82
83	Shedding light on the mechanism of asymmetric track etching: an interplay between latent track structure, etchant diffusion and osmotic flow. Physical Chemistry Chemical Physics, 2016, 18, 25421-25433.	1.3	29
84	Electrokinetic transport of monovalent and divalent cations in silica nanochannels. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	27
85	Design of Multifunctional Nanogate in Response to Multiple External Stimuli Using Amphiphilic Diblock Copolymer. Journal of the American Chemical Society, 2017, 139, 6422-6430.	6.6	64
86	Conical Nanopores for Efficient Ion Pumping and Desalination. Journal of Physical Chemistry Letters, 2017, 8, 2842-2848.	2.1	39
87	Advantages of Conical Pores for Ion Pumps. Journal of Physical Chemistry C, 2017, 121, 161-168.	1.5	23
88	Functionalization of single solid state nanopores to mimic biological ion channels: A review. Advances in Colloid and Interface Science, 2017, 250, 195-213.	7.0	125
89	Nanopore extended field-effect transistor for selective single-molecule biosensing. Nature Communications, 2017, 8, 586.	5.8	111
90	Confined Crystallization of Organic Materials in Nanopipettes: Tracking the Early Stages of Crystal Growth and Making Seeds for Unusual Polymorphs. Crystal Growth and Design, 2017, 17, 6565-6571.	1.4	12
91	Bioinspired integrated nanosystems based on solid-state nanopores: "iontronic―transduction of biological, chemical and physical stimuli. Chemical Science, 2017, 8, 890-913.	3.7	136
92	Biomimetic Smart Nanopores and Nanochannels. , 2017, , 85-102.		4

~			-	
C	ΙΤΑΤΙ	ION	RED	ORT

#	Article	IF	CITATIONS
93	Smart DNA Hydrogel Integrated Nanochannels with High Ion Flux and Adjustable Selective Ionic Transport. Angewandte Chemie, 2018, 130, 7916-7920.	1.6	21
94	Smart DNA Hydrogel Integrated Nanochannels with High Ion Flux and Adjustable Selective Ionic Transport. Angewandte Chemie - International Edition, 2018, 57, 7790-7794.	7.2	97
95	Ion‣elective Electrodes Based on Hydrophilic Ionophoreâ€Modified Nanopores. Angewandte Chemie, 2018, 130, 4842-4845.	1.6	16
96	Ionâ€Selective Electrodes Based on Hydrophilic Ionophoreâ€Modified Nanopores. Angewandte Chemie - International Edition, 2018, 57, 4752-4755.	7.2	41
97	Calcium–axonemal microtubuli interactions underlie mechanism(s) of primary cilia morphological changes. Journal of Biological Physics, 2018, 44, 53-80.	0.7	3
98	Effect of Trivalent "Calcium-like―Cations on Ionic Transport Behaviors of Artificial Calcium-Responsive Nanochannels. Journal of Physical Chemistry C, 2018, 122, 24863-24870.	1.5	18
99	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie, 2019, 131, 12776-12784.	1.6	20
100	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie - International Edition, 2019, 58, 12646-12654.	7.2	47
101	Redox-Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Interfaces, 2019, 11, 30001-30009.	4.0	49
102	Amine-Phosphate Specific Interactions within Nanochannels: Binding Behavior and Nanoconfinement Effects. Journal of Physical Chemistry C, 2019, 123, 28997-29007.	1.5	39
103	Smart polymer-based calcium-ion self-regulated nanochannels by mimicking the biological Ca2+-induced Ca2+ release process. NPG Asia Materials, 2019, 11, .	3.8	16
104	Solid-state nanopores for ion and small molecule analysis. Chinese Chemical Letters, 2019, 30, 1607-1617.	4.8	16
105	Computational modeling of ionic currents through difform graphene nanopores with consistent cross-sectional areas. Physical Chemistry Chemical Physics, 2019, 21, 26166-26174.	1.3	5
106	Bioinspired Selfâ€Gating Nanofluidic Devices for Autonomous and Periodic Ion Transport and Cargo Release. Advanced Functional Materials, 2019, 29, 1806416.	7.8	26
107	Electrodiffusioosmosis-Induced Negative Differential Resistance in pH-Regulated Mesopores Containing Purely Monovalent Solutions. ACS Applied Materials & Interfaces, 2020, 12, 3198-3204.	4.0	27
108	Gas-Induced Drying of Nanopores. Journal of Physical Chemistry Letters, 2020, 11, 9171-9177.	2.1	18
109	Nonlinear Ion Transport through Ultrathin Metal–Organic Framework Nanosheet. Advanced Functional Materials, 2020, 30, 2004854.	7.8	22
110	Ionotronics Based on Horizontally Aligned Carbon Nanotubes. Advanced Functional Materials, 2020, 30, 2003177.	7.8	33

#	Article	IF	CITATIONS
111	Ionic current conduction at low voltage of track-etched double conical nanopores modified by surfactant CTAB. Journal of Polymer Research, 2020, 27, 1.	1.2	1
112	Gated thermoelectric sensation by nanochannels grafted with thermally responsive polymers. Chemical Communications, 2020, 56, 14291-14294.	2.2	3
113	Solid-state nanopore sensors. Nature Reviews Materials, 2020, 5, 931-951.	23.3	335
114	Calcium signaling modulates the dynamics of cilia and flagella. European Biophysics Journal, 2020, 49, 619-631.	1.2	4
115	The mixture effect on ionic selectivity and permeability of nanotubes. Nanoscale Advances, 2020, 2, 3834-3840.	2.2	1
116	Calcium ions tune the beats of cilia and flagella. BioSystems, 2020, 196, 104172.	0.9	5
117	Transport in nanopores and nanochannels: some fundamental challenges and nature-inspired solutions. Materials Today Advances, 2020, 5, 100047.	2.5	34
118	Realization of robust mesoscale ionic diodes for ultrahigh osmotic energy generation at mild neutral pH. Journal of Materials Chemistry A, 2021, 9, 20502-20509.	5.2	21
119	Borate-driven ionic rectifiers based on sugar-bearing single nanochannels. Nanoscale, 2021, 13, 11232-11241.	2.8	11
120	The Advance of Plasmonic-Electric Nanopipette Sensing in Single Cells. Current Pharmacology Reports, 2021, 7, 55-66.	1.5	1
121	Nanopore Surface Charge Sensing with Ion-Step Method. , 2021, , .		0
122	Ionic Diode Based on an Asymmetricâ€Shaped Carbon Black Nanoparticle Membrane. Advanced Functional Materials, 2021, 31, 2104341.	7.8	15
123	Calcium signal transmission by axonemal microtubules as an optimized information pathway in cilia and flagella. Journal of Bioenergetics and Biomembranes, 2021, 53, 633-641.	1.0	1
124	Nanoscale Components of Neurons: From Biomolecules to Nanodevices. Biological and Medical Physics Series, 2009, , 35-84.	0.3	0
125	Nonlinear conformation response in the finite channel: Existence of a unique solution for the dynamic PNP model. Discrete and Continuous Dynamical Systems - Series B, 2012, 17, 2465-2482.	0.5	0
127	Transportation of calcium ions through chemically modified nanochannels in a polymeric membrane. Ionics, 2022, 28, 1219.	1.2	2
128	Fabrication of molecularly imprinted nanochannel membrane for ultrasensitive electrochemical detection of triphenyl phosphate. Analytica Chimica Acta, 2022, 1192, 339374.	2.6	5
129	Optical Nanopore Sensors for Quantitative Analysis. Nano Letters, 2022, 22, 869-880.	4.5	19

#	Article	IF	CITATIONS
130	Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. Small Methods, 2022, 6, e2101255.	4.6	18
131	Fabrication of solid-state nanopores. Nanotechnology, 2022, 33, 272003.	1.3	4
132	Mechanisms of Enzymatic Transduction in Nanochannel Biosensors. Chemistry - an Asian Journal, O, , .	1.7	1
133	Solvent-evolution-coupled single ion diffusion into charged nanopores. Journal of Molecular Liquids, 2022, 362, 119776.	2.3	0
134	Mechanism and performance of ionic diodes fabricated from 2D trapezoidal-shaped nanochannels. Physical Chemistry Chemical Physics, 2022, 24, 19927-19937.	1.3	1
135	Electrodiffusioosmosis induced negative differential resistance in micro-to-millimeter size pores through a graphene/copper membrane. Nanoscale Advances, 2022, 4, 5123-5131.	2.2	1
136	Biphasic concentration patterns in ionic transport under nanoconfinement revealed in steady-state and time-dependent properties. Journal of Chemical Physics, 2023, 158, .	1.2	1
137	Highlyâ€Efficient Ion Gating through Selfâ€Assembled Twoâ€Dimensional Photothermal Metalâ€Organic Framework Membrane. Angewandte Chemie, 0, , .	1.6	3
138	Highlyâ€Efficient Ion Gating through Selfâ€Assembled Twoâ€Dimensional Photothermal Metalâ€Organic Framework Membrane. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
139	Nanoelectrochemistry in electrochemical phase transition reactions. Chemical Science, 2023, 14, 7611-7619.	3.7	1