Accumulation of Amyloid Precursor Protein in the Mito Human Alzheimer's Disease Brain Is Associated with Mi

Journal of Neuroscience 26, 9057-9068

DOI: 10.1523/jneurosci.1469-06.2006

Citation Report

#	Article	IF	CITATIONS
1	Alzheimer's APP mangles mitochondria. Nature Medicine, 2006, 12, 1241-1243.	15.2	123
2	Feeling pain? Who's your daddy Nature Medicine, 2006, 12, 1243-1244.	15.2	7
3	Quantitative Cytochrome Oxidase Histochemistry: Applications in Human Alzheimer's Disease and Animal Models. Journal of Histotechnology, 2007, 30, 235-247.	0.2	11
4	Pathogenic role of mitochondrial amyloid-β peptide. Expert Review of Neurotherapeutics, 2007, 7, 1517-1525.	1.4	28
5	The Function of TIM22 in the Insertion of Inner Membrane Proteins in Mitochondria. The Enzymes, 2007, , 367-385.	0.7	0
6	Mitochondrial Translocation of Amyloid Precursor Protein and its Cleaved Products: Relevance to Mitochondrial Dysfunction in Alzheimer's Disease. Reviews in the Neurosciences, 2007, 18, 343-54.	1.4	19
7	Molecular determinants of Alzheimer's disease Aβ peptide neurotoxicity. Future Neurology, 2007, 2, 397-409.	0.9	9
8	Structure and functions of the human amyloid precursor protein: The whole is more than the sum of its parts. Progress in Neurobiology, 2007, 82, 11-32.	2.8	155
9	Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer's disease. Mitochondrion, 2007, 7, 297-310.	1.6	239
10	Mitochondrial Cascade Hypothesis of Alzheimer's Disease: Myth or Reality?. Antioxidants and Redox Signaling, 2007, 9, 1631-1646.	2.5	48
11	Mitochondrial Dysfunction in Aging and Alzheimer's Disease: Strategies to Protect Neurons. Antioxidants and Redox Signaling, 2007, 9, 1647-1658.	2.5	169
12	Chronic exposure to sub-lethal beta-amyloid ($\hat{Al^2}$) inhibits the import of nuclear-encoded proteins to mitochondria in differentiated PC12 cells [*] . Journal of Neurochemistry, 2007, 103, 1989-2003.	2.1	65
13	Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1701-1720.	1.9	230
14	Role of increased expression of the proteasome in the protective effects of sulforaphane against hydrogen peroxide-mediated cytotoxicity in murine neuroblastoma cells. Free Radical Biology and Medicine, 2007, 43, 809-817.	1.3	125
15	Insights into amyloid-β-induced mitochondrial dysfunction in Alzheimer disease. Free Radical Biology and Medicine, 2007, 43, 1569-1573.	1.3	93
16	Amyloid Precursor Protein and Mitochondrial Dysfunction in Alzheimer's Disease. Neuroscientist, 2007, 13, 626-638.	2.6	82
17	Causes of oxidative stress in Alzheimer disease. Cellular and Molecular Life Sciences, 2007, 64, 2202-2210.	2.4	312
18 _	Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filoments. Brain Structure and Eurotion, 2007, 212, 195-207	1.2	53 _

ATION REDOD

#	Article	IF	Citations
19	Mechanisms of amyloid plaque pathogenesis. Acta Neuropathologica, 2007, 114, 551-571.	3.9	85
20	Molecular Genetics of a Patient with Mohr–Tranebjaerg Syndrome due to a New Mutation in the DDP1 Gene. NeuroMolecular Medicine, 2007, 9, 285-291.	1.8	26
21	Delineating the Mechanism of Alzheimer's Disease Aβ Peptide Neurotoxicity. Neurochemical Research, 2008, 33, 526-532.	1.6	105
22	Mitochondrial Medicine for Aging and Neurodegenerative Diseases. NeuroMolecular Medicine, 2008, 10, 291-315.	1.8	197
23	From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology, 2008, 9, 391-403.	2.0	43
25	Mitochondrial Disorders in the Nervous System. Annual Review of Neuroscience, 2008, 31, 91-123.	5.0	488
26	Age related mitochondrial degenerative disorders in humans. Biotechnology Journal, 2008, 3, 750-756.	1.8	59
27	Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nature Medicine, 2008, 14, 1097-1105.	15.2	833
28	Intra-mitochondrial degradation of Tim23 curtails the survival of cells rescued from apoptosis by caspase inhibitors. Cell Death and Differentiation, 2008, 15, 545-554.	5.0	21
29	Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1092-1097.	0.5	556
30	Non-tau based neuronal degeneration in Alzheimer's disease — an immunocytochemical and quantitative study in the supragranular layers of the middle temporal neocortex. Brain Research, 2008, 1213, 152-165.	1.1	39
31	Mitochondrial Import and Accumulation of α-Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain. Journal of Biological Chemistry, 2008, 283, 9089-9100.	1.6	870
32	Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends in Molecular Medicine, 2008, 14, 45-53.	3.5	799
33	The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis?. Trends in Neurosciences, 2008, 31, 251-256.	4.2	220
34	Mechanisms of Aβ mediated neurodegeneration in Alzheimer's disease. International Journal of Biochemistry and Cell Biology, 2008, 40, 181-198.	1.2	220
35	Dynamin-Like Protein 1 Reduction Underlies Mitochondrial Morphology and Distribution Abnormalities in Fibroblasts from Sporadic Alzheimer's Disease Patients. American Journal of Pathology, 2008, 173, 470-482.	1.9	308
36	Multi-target-Directed Ligands To Combat Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2008, 51, 347-372.	2.9	961
37	Amyloid-Î ² overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19318-19323.	3.3	734

#	Article	IF	CITATIONS
38	Isoflavones Promote Mitochondrial Biogenesis. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 536-543.	1.3	180
39	Candidate Single-Nucleotide Polymorphisms From a Genomewide Association Study of Alzheimer Disease. Archives of Neurology, 2008, 65, 45-53.	4.9	443
40	ANOTHER â€~NEW DRUG IN THE AD PIPELINE?'. Neurology Today: an Official Publication of the American Academy of Neurology, 2008, 8, 5-6.	0.0	0
41	Oxidative Stress Signaling in Alzheimers Disease. Current Alzheimer Research, 2008, 5, 525-532.	0.7	250
42	Mitochondria, Mitochondrial DNA and Alzheimers Disease. What Comes First?. Current Alzheimer Research, 2008, 5, 457-468.	0.7	54
43	The concept of translocational regulation. Journal of Cell Biology, 2008, 182, 225-232.	2.3	112
44	The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13145-13150.	3.3	598
45	Oxidative Stress in Vascular Dementia and Alzheimer's Disease: A Common Pathology. Journal of Alzheimer's Disease, 2008, 17, 245-257.	1.2	195
46	An update on the toxicity of Aβ in Alzheimer's disease. Neuropsychiatric Disease and Treatment, 2008, 4, 1033.	1.0	32
47	Multiple SNPs Within and Surrounding the Apolipoprotein E Gene Influence Cerebrospinal Fluid Apolipoprotein E Protein Levels. Journal of Alzheimer's Disease, 2008, 13, 255-266.	1.2	75
48	Mitochondria, Cognitive Impairment, and Alzheimer's Disease. International Journal of Alzheimer's Disease, 2009, 2009, 1-8.	1.1	44
49	A New Function of Human HtrA2 as an Amyloid-β Oligomerization Inhibitor. Journal of Alzheimer's Disease, 2009, 17, 281-294.	1.2	40
50	Mitochondrial Medicine and the Neurodegenerative Mitochondriopathies. Pharmaceuticals, 2009, 2, 150-167.	1.7	43
51	Dimebon as a Potential Therapy for Alzheimer's Disease. CNS Spectrums, 2009, 14, 14-18.	0.7	11
52	Mitochondrial Cholesterol Loading Exacerbates Amyloid Î ² Peptide-Induced Inflammation and Neurotoxicity. Journal of Neuroscience, 2009, 29, 6394-6405.	1.7	134
53	Neutralization of granulocyte macrophage colony-stimulating factor decreases amyloid beta 1-42 and suppresses microglial activity in a transgenic mouse model of Alzheimer's disease. Human Molecular Genetics, 2009, 18, 3876-3893.	1.4	48
54	Nitric Oxide Biochemistry: Pathophysiology of Nitric Oxide-Mediated Protein Modifications. , 2009, , 29-44.		2
55	Cytoplasmic gelsolin increases mitochondrial activity and reduces AÎ ² burden in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2009, 36, 42-50.	2.1	64

#	Article	IF	CITATIONS
56	Amyloid precursor protein, heat-shock proteins, and Bcl-2 form a complex in mitochondria and modulate mitochondria function and apoptosis in N2a cells. Mechanisms of Ageing and Development, 2009, 130, 592-601.	2.2	16
57	Mitochondrial accumulation of APP and Aβ: significance for Alzheimer disease pathogenesis. Journal of Cellular and Molecular Medicine, 2009, 13, 4137-4145.	1.6	66
58	Mitochondria, cholesterol and amyloid \hat{l}^2 peptide: a dangerous trio in Alzheimer disease. Journal of Bioenergetics and Biomembranes, 2009, 41, 417-423.	1.0	50
59	Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer's disease. Journal of Bioenergetics and Biomembranes, 2009, 41, 425-431.	1.0	159
60	Mitochondria and Alzheimer's disease: amyloid-β peptide uptake and degradation by the presequence protease, hPreP. Journal of Bioenergetics and Biomembranes, 2009, 41, 447-451.	1.0	44
61	The role of cytochrome c oxidase deficiency in ROS and amyloid plaque formation. Journal of Bioenergetics and Biomembranes, 2009, 41, 453-456.	1.0	40
62	Amino acids variations in Amyloid-β peptides, mitochondrial dysfunction, and new therapies for Alzheimer's disease. Journal of Bioenergetics and Biomembranes, 2009, 41, 457-464.	1.0	30
63	The mitochondrial function was impaired in APP knockout mouse embryo fibroblast cells. Science Bulletin, 2009, 54, 1725-1731.	4.3	13
64	Protection against amyloid beta cytotoxicity by sulforaphane: Role of the proteasome. Archives of Pharmacal Research, 2009, 32, 109-115.	2.7	71
65	Amyloid-β-Induced Ion Flux in Artificial Lipid Bilayers and Neuronal Cells: Resolving a Controversy. Neurotoxicity Research, 2009, 16, 1-13.	1.3	99
67	Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: Therapeutic implicationsâ~†. Advanced Drug Delivery Reviews, 2009, 61, 1299-1315.	6.6	93
68	Neuroprotective Secreted Amyloid Precursor Protein Acts by Disrupting Amyloid Precursor Protein Dimers. Journal of Biological Chemistry, 2009, 284, 15016-15025.	1.6	118
69	The Alzheimer's disease mitochondrial cascade hypothesis: An update. Experimental Neurology, 2009, 218, 308-315.	2.0	181
70	Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease. Experimental Neurology, 2009, 218, 286-292.	2.0	237
71	Heterogeneity of nervous system mitochondria: Location, location, location!. Experimental Neurology, 2009, 218, 293-307.	2.0	59
72	Genetic association study on in and around the APOE in late-onset Alzheimer disease in Japanese. Genomics, 2009, 93, 441-448.	1.3	123
73	Regional brain metabolism with cytochrome c oxidase histochemistry in a PS1/A246E mouse model of autosomal dominant Alzheimer's disease: Correlations with behavior and oxidative stress. Neurochemistry International, 2009, 55, 806-814.	1.9	36
74	Down-regulation of aminolevulinate synthase, the rate-limiting enzyme for heme biosynthesis in Alzheimer's disease. Neuroscience Letters, 2009, 460, 180-184.	1.0	18

#	Article	IF	CITATIONS
75	Human and rodent amyloid-β peptides differentially bind heme: Relevance to the human susceptibility to Alzheimer's disease. Archives of Biochemistry and Biophysics, 2009, 487, 59-65.	1.4	82
76	Prospective and retrospective memory in Alzheimer's disease and vascular dementia: Similar patterns of impairment. Journal of the Neurological Sciences, 2009, 283, 235-239.	0.3	22
78	Anatomically-distinct genetic associations of APOE ɛ4 allele load with regional cortical atrophy in Alzheimer's disease. Neurolmage, 2009, 44, 724-728.	2.1	144
79	Amyloid precursor protein transgenic mouse models and Alzheimer's disease: Understanding the paradigms, limitations, and contributions. Alzheimer's and Dementia, 2009, 5, 340-347.	0.4	96
80	The Neurodegenerative Mitochondriopathies. Journal of Alzheimer's Disease, 2009, 17, 737-751.	1.2	102
81	Role of Mitochondria in Neurodegenerative Diseases: <i>Mitochondria as a Therapeutic Target in Alzheimer's Disease</i> . CNS Spectrums, 2009, 14, 8-13.	0.7	155
82	Chapter 14. Ketone Bodies as a Therapeutic for Alzheimer's Disease. RSC Drug Discovery Series, 2010, , 275-306.	0.2	0
83	Alzheimer's disease: diagnostics, prognostics and the road to prevention. EPMA Journal, 2010, 1, 293-303.	3.3	36
84	Membrane Biophysics and Mechanics in Alzheimer's Disease. Molecular Neurobiology, 2010, 41, 138-148.	1.9	43
85	Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer's Disease—Therapeutic Aspects. Molecular Neurobiology, 2010, 41, 159-171.	1.9	222
85 86	Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer's Disease—Therapeutic Aspects. Molecular Neurobiology, 2010, 41, 159-171. The organellar peptidasome, PreP: A journey from Arabidopsis to Alzheimer's disease. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1076-1080.	1.9 0.5	222 22
85 86 87	 Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer's Diseaseâ€"Therapeutic Aspects. Molecular Neurobiology, 2010, 41, 159-171. The organellar peptidasome, PreP: A journey from Arabidopsis to Alzheimer's disease. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1076-1080. Kynurenines, neurodegeneration and Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2010, 14, 2045-2054. 	1.9 0.5 1.6	222 22 57
85 86 87 88	Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer's Diseaseâ€"Therapeutic Aspects. Molecular Neurobiology, 2010, 41, 159-171. The organellar peptidasome, PreP: A journey from Arabidopsis to Alzheimer's disease. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1076-1080. Kynurenines, neurodegeneration and Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2010, 14, 2045-2054. <i>APOE</i> mRNA and protein expression in postmortem brain are modulated by an extended haplotype structure. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 409-417.	1.9 0.5 1.6 1.1	222 22 57 62
85 86 87 88 88	Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer's Diseaseâ€"Therapeutic Aspects. Molecular Neurobiology, 2010, 41, 159-171. The organellar peptidasome, PreP: A journey from Arabidopsis to Alzheimer's disease. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1076-1080. Kynurenines, neurodegeneration and Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2010, 14, 2045-2054. <i>>APOE</i> mRNA and protein expression in postmortem brain are modulated by an extended haplotype structure. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 409-417. The H63D HFE gene variant promotes activation of the intrinsic apoptotic pathway via mitochondria dysfunction following βâ€emyloid peptide exposure. Journal of Neuroscience Research, 2010, 88, 3079-3089.	1.9 0.5 1.6 1.1	222 22 57 62 12
85 86 87 88 88 89 90	 Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer's Diseaseâ€"Therapeutic Aspects. Molecular Neurobiology, 2010, 41, 159-171. The organellar peptidasome, PreP: A journey from Arabidopsis to Alzheimer's disease. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1076-1080. Kynurenines, neurodegeneration and Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2010, 14, 2045-2054. https://www.anerican.journal.org/licenses/background-commons.com Kynurenines, neurodegeneration and Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2010, 14, 2045-2054. https://www.anerican.journal.org/licenses/ korenses/ koren	1.9 0.5 1.6 1.1 1.3 2.1	222 22 57 62 12 177
85 86 87 88 89 90 91	Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer's DiseaseaêC"Therapeutic Aspects. Molecular Neurobiology, 2010, 41, 159-171. The organellar peptidasome, PreP: A journey from Arabidopsis to Alzheimer's disease. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1076-1080. Kynurenines, neurodegeneration and Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2010, 14, 2045-2054. <hr/> <hr/> <hr/> <hr/> <hr/> (1>APOE >hmRNA and protein expression in postmortem brain are modulated by an extended haplotype structure. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 409-417. The H63D HFE gene variant promotes activation of the intrinsic apoptotic pathway via mitochondria dysfunction following 12â€emyloid peptide exposure. Journal of Neuroscience Research, 2010, 88, 3079-3089. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum. Journal of Neurochemistry, 2010, 114, 1-12. Mitochondrial biology in Alzheimer's disease pathogenesis. Journal of Neurochemistry, 2010, 114, 933-945.	1.9 0.5 1.6 1.1 1.3 2.1 2.1	222 22 57 62 12 177 66
 85 86 87 88 89 90 91 92 	Mitochondrial Dysfunction: Common Final Pathway in Brain Aging and Alzheimer〙s Diseaseã€"Therapeutic Aspects. Molecular Neurobiology, 2010, 41, 159-171. The organellar peptidasome, PreP: A journey from Arabidopsis to Alzheimer's disease. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1076-1080. Kynurenines, neurodegeneration and Alzheimer〙s disease. Journal of Cellular and Molecular Medicine, 2010, 14, 2045-2054. <i>APOE</i> mRNA and protein expression in postmortem brain are modulated by an extended haplotype structure. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 409-417. The H63D HFE gene variant promotes activation of the intrinsic apoptotic pathway via mitochondria dysfunction following I²ã€emyloid peptide exposure. Journal of Neuroscience Research, 2010, 88, 3079-3089. Nature and cause of mitochondrial dysfunction in Huntington〙s disease: focusing on huntingtin and the striatum. Journal of Neurochemistry, 2010, 114, 1-12. Mitochondrial biology in Alzheimer〙s disease pathogenesis. Journal of Neurochemistry, 2010, 114, 933-945. ATOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer's disease. Pharmacogenomics Journal, 2010, 10, 375-384.	1.9 0.5 1.6 1.1 2.1 2.1 0.9	222 22 57 62 12 177 66 351

#	Article	IF	CITATIONS
94	Mitochondrial preconditioning: a potential neuroprotective strategy. Frontiers in Aging Neuroscience, 2010, 2, .	1.7	29
95	A Synergistic Dysfunction of Mitochondrial Fission/Fusion Dynamics and Mitophagy in Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, S401-S412.	1.2	141
96	Inhibitors of Catalase-Amyloid Interactions Protect Cells from β-Amyloid-Induced Oxidative Stress and Toxicity. Journal of Biological Chemistry, 2010, 285, 38933-38943.	1.6	92
97	Substrate specificity of the TIM22 mitochondrial import pathway revealed with small molecule inhibitor of protein translocation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9578-9583.	3.3	40
98	Is Alzheimer's Disease a Disorder of Mitochondria-Associated Membranes?. Journal of Alzheimer's Disease, 2010, 20, S281-S292.	1.2	80
99	Gelsolin as therapeutic target in Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2010, 14, 585-592.	1.5	23
100	ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21146-21151.	3.3	155
101	An Inherited Variable Poly-T Repeat Genotype in TOMM40 in Alzheimer Disease. Archives of Neurology, 2010, 67, 536-41.	4.9	113
102	Monoamine Oxidase Inhibitors as Neuroprotective Agents in Age-Dependent Neurodegenerative Disorders. Current Pharmaceutical Design, 2010, 16, 2799-2817.	0.9	103
103	Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer's disease. Brain, 2010, 133, 3699-3723.	3.7	203
104	The Alzheimer's Disease Mitochondrial Cascade Hypothesis. Journal of Alzheimer's Disease, 2010, 20, S265-S279.	1.2	435
105	Role of Mitochondrial Amyloid-β in Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, S569-S578.	1.2	162
106	The consequences of mitochondrial amyloid β-peptide in Alzheimer's disease. Biochemical Journal, 2010, 426, 255-270.	1.7	67
107	Potential Therapeutic Benefits of Strategies Directed to Mitochondria. Antioxidants and Redox Signaling, 2010, 13, 279-347.	2.5	162
108	A NH2 Tau Fragment Targets Neuronal Mitochondria at AD Synapses: Possible Implications for Neurodegeneration. Journal of Alzheimer's Disease, 2010, 21, 445-470.	1.2	92
109	The Mitochondrial Secret(ase) of Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, S381-S400.	1.2	28
110	Protective Role of Methylene Blue in Alzheimer's Disease via Mitochondria and Cytochrome c Oxidase. Journal of Alzheimer's Disease, 2010, 20, S439-S452.	1.2	112
111	Mitochondrial dysfunction: A potential link between neuroinflammation and neurodegeneration?. Mitochondrion, 2010, 10, 411-418.	1.6	201

ARTICLE IF CITATIONS Association of Omi/HtrA2 with \hat{I}^3 -secretase in mitochondria. Neurochemistry International, 2010, 57, 1.9 33 112 668-675. Mitochondrial trafficking of APP and alpha synuclein: Relevance to mitochondrial dysfunction in Alzheimer's and Parkinson's diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1.8 1802, 11-19. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochimica Et Biophysica Acta -114 1.8 229 Molecular Basis of Disease, 2010, 1802, 135-142. Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochimica Et 1.8 Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 2-10. Al² accumulation in choroid plexus is associated with mitochondrial-induced apoptosis. Neurobiology 116 1.5 63 of Aging, 2010, 31, 1569-1581. Association between mitochondrial DNA variations and Alzheimer's disease in the ADNI cohort. 1.5 Neurobiology of Aging, 2010, 31, 1355-1363. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases. Pharmaceuticals, 2010, 3, 118 1.7 179 839-915. Genetic variation at a single locus and age of onset for Alzheimer's disease. Alzheimer's and Dementia, 0.4 90 2010, 6, 125-131. 120 Oxidative stress in Niemannâ€"Pick disease, type C. Molecular Genetics and Metabolism, 2010, 101, 214-218. 0.5 113 Review Article: Genetics of Alzheimer Disease. Journal of Geriatric Psychiatry and Neurology, 2010, 23, 121 1.2 748 213-227. Amyloid-Î² and Mitochondria in Aging and Alzheimer's Disease: Implications for Synaptic Damage and 122 203 1.2 Cognitive Decline. Journal of Alzheimer's Disease, 2010, 20, S499-S512. Mitochondria-Targeted Antioxidants Protect Against Amyloid-Î² Toxicity in Alzheimer's Disease Neurons. 1.2 404 Journal of Alzheimer's Disease, 2010, 20, S609-S631. Clinical Features and Pathogenesis of Alzheimer's Disease: Involvement of Mitochondria and 124 0.8 59 Mitochondrial DNA. Advances in Experimental Medicine and Biology, 2010, 685, 34-44. Diseases of DNA Repair. Advances in Experimental Medicine and Biology, 2010, , . 0.8 Mitochondrial Amyloid-Î² Levels are Associated with the Extent of Mitochondrial Dysfunction in 126 Different Brain Regions and the Degree of Cognitive Impairment in Alzheimer's Transgenic Mice. 1.2 178 Journal of Alzheimer's Disease, 2010, 20, S535-S550. Mitochondrial dysfunction - the beginning of the end in Alzheimer's disease? Separate and synergistic 127 136 modes of tau and amyloid-l² toxicity. Alzheimer's Research and Therapy, 2011, 3, 15. Mitochondrial therapeutics in Alzheimer's disease and Parkinson's disease. Alzheimer's Research and 128 3.017 Therapy, 2011, 3, 21. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal

CITATION REPORT

129 mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Human 1.4 Molecular Genetics, 2011, 20, 4515-4529.

#

#	Article	IF	CITATIONS
130	Decreased Proteolytic Activity of the Mitochondrial Amyloid-β Degrading Enzyme, PreP Peptidasome, in Alzheimer's Disease Brain Mitochondria. Journal of Alzheimer's Disease, 2011, 27, 75-87.	1.2	104
131	Metal attenuating therapies in neurodegenerative disease. Expert Review of Neurotherapeutics, 2011, 11, 1717-1745.	1.4	22
132	Inhibition of Amyloid-β (Aβ) Peptide-Binding Alcohol Dehydrogenase-Aβ Interaction Reduces Aβ Accumulation and Improves Mitochondrial Function in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2011, 31, 2313-2320.	1.7	170
133	Aging Promotes Amyloid-β Peptide Induced Mitochondrial Dysfunctions in Rat Brain: A Molecular Link Between Aging and Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 753-765.	1.2	8
134	The Interplay Between Mitochondrial Dynamics and Mitophagy. Antioxidants and Redox Signaling, 2011, 14, 1939-1951.	2.5	632
135	Mitochondrial γâ€secretase participates in the metabolism of mitochondriaâ€ssociated amyloid precursor protein. FASEB Journal, 2011, 25, 78-88.	0.2	104
136	Ubiquitin-dependent mitochondrial protein degradation. International Journal of Biochemistry and Cell Biology, 2011, 43, 1422-1426.	1.2	63
137	Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 507-513.	1.8	202
138	Assessment of newly synthesized mitochondrial DNA using BrdU labeling in primary neurons from Alzheimer's disease mice: Implications for impaired mitochondrial biogenesis and synaptic damage. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1182-1189.	1.8	47
139	Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: Implications for early intervention and therapeutics. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1359-1370.	1.8	252
140	Mitochondrial dysfunction and Alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 320-330.	2.5	94
141	Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer's transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit?. Neuroscience, 2011, 185, 135-149.	1.1	83
142	Redox Control of the Survival of Healthy and Diseased Cells. Antioxidants and Redox Signaling, 2011, 15, 2867-2908.	2.5	145
143	Amyloid-Beta Interaction with Mitochondria. International Journal of Alzheimer's Disease, 2011, 2011, 1-12.	1.1	219
144	Enhanced Expression of the Voltage-Dependent Anion Channel 1 (VDAC1) in Alzheimer's Disease Transgenic Mice: An Insight into the Pathogenic Effects of Amyloid-β. Journal of Alzheimer's Disease, 2011, 23, 195-206.	1.2	105
145	Mitophagy in Neurodegeneration: An Opportunity for Therapy?. Current Drug Targets, 2011, 12, 790-799.	1.0	26
147	Mitochondrial β-amyloid in Alzheimer's disease. Biochemical Society Transactions, 2011, 39, 868-873.	1.6	32
148	Association of N-Acetylaspartate and Cerebrospinal Fluid Aβ42 in Dementia. Journal of Alzheimer's Disease, 2011, 27, 393-399.	1.2	10

#	Article	IF	CITATIONS
149	Melatonin treatment restores mitochondrial function in Alzheimer's mice: a mitochondrial protective role of melatonin membrane receptor signaling. Journal of Pineal Research, 2011, 51, 75-86.	3.4	147
150	Protein Degradation: BAGging Up the Trash. Current Biology, 2011, 21, R692-R695.	1.8	5
151	Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/BclXL-regulated mitochondrial apoptotic pathway. European Journal of Pharmacology, 2011, 672, 45-55.	1.7	125
152	Mitochondrial bioenergetics is defective in presymptomatic Tg2576 AD Mice. Translational Neuroscience, 2011, 2, 1-5.	0.7	20
153	Modes of Al̂² toxicity in Alzheimer's disease. Cellular and Molecular Life Sciences, 2011, 68, 3359-3375.	2.4	78
154	Construction and analysis of the protein-protein interaction networks for schizophrenia, bipolar disorder, and major depression. BMC Bioinformatics, 2011, 12, S20.	1.2	46
155	Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer's disease. Journal of Proteomics, 2011, 74, 466-479.	1.2	113
156	Mitochondrial Mutations. Neuroscientist, 2011, 17, 645-658.	2.6	28
157	Mitochondria as a Therapeutic Target for Aging and Neurodegenerative Diseases. Current Alzheimer Research, 2011, 8, 393-409.	0.7	189
158	Therapeutic Approaches to Delay the Onset of Alzheimer's Disease. Journal of Aging Research, 2011, 2011, 1-11.	0.4	8
159	The Importance of Being Connected. Journal of Alzheimer's Disease, 2011, 24, 247-251.	1.2	6
160	Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Human Molecular Genetics, 2011, 20, 2495-2509.	1.4	644
161	Apolipoprotein E4 Domain Interaction Mediates Detrimental Effects on Mitochondria and Is a Potential Therapeutic Target for Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 5215-5221.	1.6	155
162	Large-scale De Novo Prediction of Physical Protein-Protein Association. Molecular and Cellular Proteomics, 2011, 10, M111.010629.	2.5	44
163	Mitochondria: The Common Upstream Driver of Amyloid-β and Tau Pathology in Alzheimers Disease. Current Alzheimer Research, 2011, 8, 563-572.	0.7	69
164	Green Tea Epigallocatechin-3-Gallate (EGCG) and Other Flavonoids Reduce Alzheimer's Amyloid-Induced Mitochondrial Dysfunction. Journal of Alzheimer's Disease, 2011, 26, 507-521.	1.2	156
165	Mitochondria-targeted catalase reduces abnormal APP processing, amyloid production and BACE1 in a mouse model of Alzheimer's disease: implications for neuroprotection and lifespan extension. Human Molecular Genetics, 2012, 21, 2973-2990.	1.4	156
166	No consistent evidence for association between mtDNA variants and Alzheimer disease. Neurology, 2012, 78, 1038-1042.	1.5	52

#	Article	IF	CITATIONS
168	Mitochondrial Dysfunction in Neurodegenerative Disease: Protein Aggregation, Autophagy, and Oxidative Stress. , 2012, , 95-111.		4
169	Are Retinoids a Promise for Alzheimer's Disease Management?. Current Medicinal Chemistry, 2012, 19, 6119-6125.	1.2	6
170	METABOLISM, AUTOPHAGY AND NEURODEGENERATION. , 2012, , 285-303.		0
171	Mitochondrial Disturbances, Tryptophan Metabolites and Neurodegeneration: Medicinal Chemistry Aspects. Current Medicinal Chemistry, 2012, 19, 1899-1920.	1.2	53
172	Mitochondrial Oxidative Phosphorylation. Advances in Experimental Medicine and Biology, 2012, , .	0.8	10
173	New Insights in the Amyloid-Beta Interaction with Mitochondria. Journal of Aging Research, 2012, 2012, 1-9.	0.4	86
174	Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease. Human Molecular Genetics, 2012, 21, 5131-5146.	1.4	253
175	Pyruvate Dehydrogenase Kinases in the Nervous System: Their Principal Functions in Neuronal-glial Metabolic Interaction and Neuro-metabolic Disorders. Current Neuropharmacology, 2012, 10, 393-403.	1.4	56
176	Antibodies Against the Tom40 Subunit of the Translocase of the Outer Mitochondrial Membrane Complex and Cognitive Impairment in Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 29, 373-377.	1.2	6
177	Transcranial Electromagnetic Treatment Against Alzheimer's Disease: Why it has the Potential to Trump Alzheimer's Disease Drug Development. Journal of Alzheimer's Disease, 2012, 32, 243-266.	1.2	36
178	Decreased Accumulation of Subcellular Amyloid-β with Improved Mitochondrial Function Mediates the Neuroprotective Effect of Huperzine A. Journal of Alzheimer's Disease, 2012, 31, 131-142.	1.2	45
179	Appoptosin is a Novel Pro-Apoptotic Protein and Mediates Cell Death in Neurodegeneration. Journal of Neuroscience, 2012, 32, 15565-15576.	1.7	58
180	Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer's Disease. Pharmaceuticals, 2012, 5, 1103-1119.	1.7	62
181	Longitudinal modeling of cognitive aging and the <i>TOMM40</i> effect. Alzheimer's and Dementia, 2012, 8, 490-495.	0.4	61
182	PI3K–ERK1/2 activation contributes to extracellular H2O2 generation in amyloid β toxicity. Neuroscience Letters, 2012, 526, 112-117.	1.0	15
183	Alzheimer disease as a vascular disorder: Where do mitochondria fit?. Experimental Gerontology, 2012, 47, 878-886.	1.2	30
184	Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases?. Free Radical Research, 2012, 46, 1327-1338.	1.5	97
185	TOMM40 rs10524523 Polymorphism's Role in Late-Onset Alzheimer's Disease and in Longevity. Journal of Alzheimer's Disease, 2012, 28, 309-322.	1.2	41

#	Article	IF	CITATIONS
186	Characterizing the Preclinical Stages of Alzheimer's Disease and the Prospect of Presymptomatic Intervention. Journal of Alzheimer's Disease, 2012, 33, S405-S416.	1.2	73
187	Interaction between NH2-tau fragment and Aβ in Alzheimer's disease mitochondria contributes to the synaptic deterioration. Neurobiology of Aging, 2012, 33, 833.e1-833.e25.	1.5	78
188	Combined age- and trauma-related proteomic changes in rat neocortex: a basis for brain vulnerability. Neurobiology of Aging, 2012, 33, 1857-1873.	1.5	15
189	The early events of Alzheimer's disease pathology: from mitochondrial dysfunction to BDNF axonal transport deficits. Neurobiology of Aging, 2012, 33, 1122.e1-1122.e10.	1.5	71
190	Relationship between genetic risk factors and markers for Alzheimer's disease pathology. Biomarkers in Medicine, 2012, 6, 477-495.	0.6	25
191	Swedish Alzheimer Mutation Induces Mitochondrial Dysfunction Mediated by HSP60 Mislocalization of Amyloid Precursor Protein (APP) and Beta-Amyloid. Journal of Biological Chemistry, 2012, 287, 30317-30327.	1.6	78
192	The therapeutic potential of mitochondrial channels in cancer, ischemia–reperfusion injury, and neurodegeneration. Mitochondrion, 2012, 12, 14-23.	1.6	28
193	Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion, 2012, 12, 190-201.	1.6	67
194	Plasticity of TOM complex assembly in skeletal muscle mitochondria in response to chronic contractile activity. Mitochondrion, 2012, 12, 305-312.	1.6	14
195	Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: Implications to mitochondria-targeted antioxidant therapeutics. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 639-649.	1.8	317
196	Mitochondrial respiratory chain dysfunction: Implications in neurodegeneration. Free Radical Biology and Medicine, 2012, 53, 595-609.	1.3	132
197	Mitochondria and Cell Bioenergetics: Increasingly Recognized Components and a Possible Etiologic Cause of Alzheimer's Disease. Antioxidants and Redox Signaling, 2012, 16, 1434-1455.	2.5	169
198	Mitochondria-Specific Accumulation of Amyloid \hat{I}^2 Induces Mitochondrial Dysfunction Leading to Apoptotic Cell Death. PLoS ONE, 2012, 7, e34929.	1.1	197
199	Mitochondrial Membrane Potential and Dynamics. , 2012, , 127-139.		1
200	Mitochondrion-Derived Reactive Oxygen Species Lead to Enhanced Amyloid Beta Formation. Antioxidants and Redox Signaling, 2012, 16, 1421-1433.	2.5	273
201	Cognitive and non-cognitive behaviors in the triple transgenic mouse model of Alzheimer's disease expressing mutated APP, PS1, and Mapt (3xTg-AD). Behavioural Brain Research, 2012, 234, 334-342.	1.2	118
202	Mitochondria and Alzheimer's disease. Journal of the Neurological Sciences, 2012, 322, 31-34.	0.3	35
203	Biology of Mitochondria in Neurodegenerative Diseases. Progress in Molecular Biology and Translational Science, 2012, 107, 355-415.	0.9	141

#	Article	IF	CITATIONS
204	Mitochondria in Neurodegeneration. Advances in Experimental Medicine and Biology, 2012, 942, 269-286.	0.8	156
205	Altering Mitochondrial Dysfunction as an Approach to Treating Alzheimer's Disease. Advances in Pharmacology, 2012, 64, 155-176.	1.2	12
206	Synaptic Mitochondrial Pathology in Alzheimer's Disease. Antioxidants and Redox Signaling, 2012, 16, 1467-1475.	2.5	124
208	Advances in Mitochondrial Medicine. Advances in Experimental Medicine and Biology, 2012, , .	0.8	17
209	Mitochondrial Genomic Analysis of Late Onset Alzheimer's Disease Reveals Protective Haplogroups H6A1A/H6A1B: The Cache County Study on Memory in Aging. PLoS ONE, 2012, 7, e45134.	1.1	44
210	HtrA Protease Family as Therapeutic Targets. Current Pharmaceutical Design, 2012, 19, 977-1009.	0.9	116
211	Overexpression of Human Wild-Type Amyloid-β Protein Precursor Decreases the Iron Content and Increases the Oxidative Stress of Neuroblastoma SH-SY5Y Cells. Journal of Alzheimer's Disease, 2012, 30, 523-530.	1.2	29
212	Promising Genetic Biomarkers of Preclinical Alzheimer's Disease: The Influence of <i>APOE</i> and <i>TOMM40</i> on Brain Integrity. International Journal of Alzheimer's Disease, 2012, 2012, 1-15.	1.1	25
213	The Emerging Role of Proteolysis in Mitochondrial Quality Control and the Etiology of Parkinson's Disease. Parkinson's Disease, 2012, 2012, 1-16.	0.6	27
214	Mitochondrial diseases. Lancet, The, 2012, 379, 1825-1834.	6.3	411
215	Mitochondrial Importance in Alzheimer's, Huntington's and Parkinson's Diseases. Advances in Experimental Medicine and Biology, 2012, 724, 205-221.	0.8	57
216	Cytochrome c Oxidase and Its Role in Neurodegeneration and Neuroprotection. Advances in Experimental Medicine and Biology, 2012, 748, 305-339.	0.8	54
217	Towards Alzheimer's root cause: ECSIT as an integrating hub between oxidative stress, inflammation and mitochondrial dysfunction. BioEssays, 2012, 34, 532-541.	1.2	43
218	Protective Effect of Isorhynchophylline Against β-Amyloid-Induced Neurotoxicity in PC12 Cells. Cellular and Molecular Neurobiology, 2012, 32, 353-360.	1.7	86
219	Insulin signaling, glucose metabolism and mitochondria: Major players in Alzheimer's disease and diabetes interrelation. Brain Research, 2012, 1441, 64-78.	1.1	164
220	Mitochondrial dysfunction and accumulation of the β-secretase-cleaved C-terminal fragment of APP in Alzheimer's disease transgenic mice. Neurobiology of Disease, 2012, 45, 417-424.	2.1	118
221	Multifunctional roles of gelsolin in health and diseases. Medicinal Research Reviews, 2012, 32, 999-1025.	5.0	206
222	Mitochondrial DNA and inflammatory diseases. Human Genetics, 2012, 131, 161-173.	1.8	86

#	Article	IF	CITATIONS
223	Protective Effects of Hesperidin Against Amyloid-β (Aβ) Induced Neurotoxicity Through the Voltage Dependent Anion Channel 1 (VDAC1)-Mediated Mitochondrial Apoptotic Pathway in PC12 Cells. Neurochemical Research, 2013, 38, 1034-1044.	1.6	59
224	Metal dyshomeostasis and oxidative stress in Alzheimer's disease. Neurochemistry International, 2013, 62, 540-555.	1.9	376
225	Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies. Progress in Neurobiology, 2013, 108, 21-43.	2.8	499
226	Incorporation of Î ² -sitosterol into mitochondrial membrane enhances mitochondrial function by promoting inner mitochondrial membrane fluidity. Journal of Bioenergetics and Biomembranes, 2013, 45, 301-305.	1.0	48
227	Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer's disease: Implications for synaptic dysfunction and neuronal damage. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1913-1921.	1.8	114
228	Glutathione peroxidase activity is neuroprotective in models of Huntington's disease. Nature Genetics, 2013, 45, 1249-1254.	9.4	117
229	Mitochondrial DNA damage in a mouse model of Alzheimer's disease decreases amyloid beta plaque formation. Neurobiology of Aging, 2013, 34, 2399-2407.	1.5	38
230	Amyloid β precursor protein as a molecular target for amyloid β–induced neuronal degeneration in Alzheimer's disease. Neurobiology of Aging, 2013, 34, 2525-2537.	1.5	40
231	The Kunitz-protease inhibitor domain in amyloid precursor protein reduces cellular mitochondrial enzymes expression and function. Biochemical and Biophysical Research Communications, 2013, 437, 642-647.	1.0	13
232	Epigenetic signature and enhancer activity of the human APOE gene. Human Molecular Genetics, 2013, 22, 5036-5047.	1.4	59
233	RNA silencing of genes involved in Alzheimer's disease enhances mitochondrial function and synaptic activity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2368-2378.	1.8	32
234	Aβ in Mitochondria—One Piece in the Alzheimer's Disease Puzzle. Oxidative Stress in Applied Basic Research and Clinical Practice, 2013, , 41-53.	0.4	0
235	Impaired mitochondrial energy production and ABC transporter function—A crucial interconnection in dementing proteopathies of the brain. Mechanisms of Ageing and Development, 2013, 134, 506-515.	2.2	26
236	Early Molecular Changes in Alzheimer Disease: Can We Catch the Disease in its Presymptomatic Phase?. Journal of Alzheimer's Disease, 2013, 38, 719-740.	1.2	40
237	The protective effect of hyperbaric oxygen and Ginkgo biloba extract on A?25?35-induced oxidative stress and neuronal apoptosis in rats. Behavioural Brain Research, 2013, 242, 1-8.	1.2	59
238	Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms. Neuromuscular Disorders, 2013, 23, 969-974.	0.3	18
239	Structureâ€Based Design and Synthesis of Benzothiazole Phosphonate Analogues with Inhibitors of Human ABADâ€Aβ for Treatment of Alzheimer's Disease. Chemical Biology and Drug Design, 2013, 81, 238-249.	1.5	64
240	Mitochondrial Diseases of the Brain. Free Radical Biology and Medicine, 2013, 63, 1-29.	1.3	361

#	Article	IF	CITATIONS
241	Association of TOMM40 Polymorphisms with Late-Onset Alzheimer's Disease in a Northern Han Chinese Population. NeuroMolecular Medicine, 2013, 15, 279-287.	1.8	29
242	Impaired transport of mitochondrial transcription factor A (TFAM) and the metabolic memory phenomenon associated with the progression of diabetic retinopathy. Diabetes/Metabolism Research and Reviews, 2013, 29, 204-213.	1.7	36
243	Protein Truncation as a Common Denominator of Human Neurodegenerative Foldopathies. Molecular Neurobiology, 2013, 48, 516-532.	1.9	14
244	Protective Effect of Bajijiasu Against β-Amyloid-Induced Neurotoxicity in PC12 Cells. Cellular and Molecular Neurobiology, 2013, 33, 837-850.	1.7	41
245	Is the mitochondrial outermembrane protein VDAC1 therapeutic target for Alzheimer's disease?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 67-75.	1.8	66
246	Axonal Transport and Mitochondrial Dysfunction in Alzheimer's Disease. Neurodegenerative Diseases, 2013, 12, 111-124.	0.8	32
247	Structural features within the nascent chain regulate alternative targeting of secretory proteins to mitochondria. EMBO Journal, 2013, 32, 1036-1051.	3.5	34
248	Dissection of Regulatory Networks that Are Altered in Disease via Differential Co-expression. PLoS Computational Biology, 2013, 9, e1002955.	1.5	164
250	Genetics of Alzheimer's Disease. BioMed Research International, 2013, 2013, 1-13.	0.9	75
251	Reduced VDAC1 Protects Against Alzheimer's Disease, Mitochondria, and Synaptic Deficiencies. Journal of Alzheimer's Disease, 2013, 37, 679-690.	1.2	57
252	A Paradigm Shift for Evaluating Pharmacotherapy for Alzheimer's Disease: The 10-Patient Screening Protocol. The Consultant Pharmacist, 2013, 28, 443-454.	0.4	6
253	TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease. PLoS ONE, 2013, 8, e62277.	1.1	133
254	Alzheimer's Disease Susceptibility Genes APOE and TOMM40, and Hippocampal Volumes in the Lothian Birth Cohort 1936. PLoS ONE, 2013, 8, e80513.	1.1	29
255	The influence of APOE and TOMM40 polymorphisms on hippocampal volume and episodic memory in old age. Frontiers in Human Neuroscience, 2013, 7, 198.	1.0	33
256	Deconstructing Mitochondrial Dysfunction in Alzheimer Disease. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-13.	1.9	98
257	Metabotyping of Docosahexaenoic Acid - Treated Alzheimer's Disease Cell Model. PLoS ONE, 2014, 9, e90123.	1.1	17
258	Proteomic Analysis of Lymphoblastoid Cells from Nasu-Hakola Patients: A Step Forward in Our Understanding of This Neurodegenerative Disorder. PLoS ONE, 2014, 9, e110073.	1.1	13
259	Mitochondrial Dysfunction: Different Routes to Alzheimer's Disease Therapy. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-11.	1.9	159

ARTICLE IF CITATIONS Glutathione and mitochondria. Frontiers in Pharmacology, 2014, 5, 151. 260 1.6 401 Molecular docking of fisetin with AD associated AChE, ABAD and BACE1 proteins. Bioinformation, 2014, 0.2 10, 562-568. Journal of Parkinson's disease & Alzheimer's disease. Journal of Parkinson's Disease and Alzheimer's 262 1.5 56 Disease, 2014, 1, . High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological 99 changes in the brain of 5XFAD mice. Cell Death and Disease, 2014, 5, e1083-e1083. Altered synapses in a Drosophila model of Alzheimer's disease. DMM Disease Models and Mechanisms, 264 1.2 55 2014, 7, 373-85. Effect of magnetic modulation of mitochondrial voltage-dependent anion channel 2 against beta-amyloid induced neurotoxicity. RSC Advances, 2014, 4, 63681-63684. 1.7 Mitochondrial protein quality control in health and disease. British Journal of Pharmacology, 2014, 266 2.7 51 171, 1870-1889. Mitochondrial Dysfunction. Progress in Molecular Biology and Translational Science, 2014, 127, 183-210. Does an Alzheimer's disease susceptibility gene influence the cognitive effects of cancer therapy?. Pediatric Blood and Cancer, 2014, 61, 1739-1742. 268 0.8 4 The Alzheimer's disease mitochondrial cascade hypothesis: Progress and perspectives. Biochimica Et 1.8 Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1219-1231. Huntingtin protein is essential for mitochondrial metabolism, bioenergetics and structure in murine 270 0.9 61 embryonic stem cells. Developmental Biology, 2014, 391, 230-240. FLZ inhibited \hat{I}^3 -secretase selectively and decreased $A\hat{I}^2$ mitochondrial production in APP-SH-SY5Y cells. 271 1.4 Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 75-85. Mitochondrial oxygen consumption deficits in skeletal muscle isolated from an Alzheimer's 272 0.8 25 disease-relevant murine model. BMC Neuroscience, 2014, 15, 24. The Protein Import Machinery of Mitochondria—A Regulatory Hub in Metabolism, Stress, and Disease. 7.2 Cell Metabolism, 2014, 19, 357-372. Mutations that affect mitochondrial functions and their association with neurodegenerative 274 2.4 47 diseases. Mutation Research - Reviews in Mutation Research, 2014, 759, 1-13. Down-regulation of Mortalin Exacerbates AÎ²-mediated Mitochondrial Fragmentation and Dysfunction. 58 Journal of Biological Chemistry, 2014, 289, 2195-2204. 276 The role of amyloid-beta in the regulation of memory. Biochemical Pharmacology, 2014, 88, 479-485. 2.0 105 Synergistic Exacerbation of Mitochondrial and Synaptic Dysfunction and Resultant Learning and 277 Memory Deficit in a Mouse Model of Diabetic Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 1.2 43, 451-463.

#	Article	IF	CITATIONS
278	Amyloidâ€beta (<scp>A</scp> β _{1–42})â€induced paralysis in <i><scp>C</scp>aenorhabditis elegans</i> is inhibited by the polyphenol quercetin through activation of protein degradation pathways. Molecular Nutrition and Food Research, 2014, 58, 1931-1940.	1.5	113
279	Epoxyeicosatrienoic acids pretreatment improves amyloid β-induced mitochondrial dysfunction in cultured rat hippocampal astrocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H475-H484.	1.5	55
280	Environmental factors in the development and progression of late-onset Alzheimer's disease. Neuroscience Bulletin, 2014, 30, 253-270.	1.5	35
281	TOMM40 gene polymorphisms association with lipid profile. Russian Journal of Genetics, 2014, 50, 198-204.	0.2	4
282	Evaluation of late-onset Alzheimer disease genetic susceptibility risks in a Canadian population. Neurobiology of Aging, 2014, 35, 936.e5-936.e12.	1.5	47
283	New applications of disease genetics and pharmacogenetics to drug development. Current Opinion in Pharmacology, 2014, 14, 81-89.	1.7	56
284	Inhibition of mitochondrial protein import by mutant huntingtin. Nature Neuroscience, 2014, 17, 822-831.	7.1	184
285	Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice. Human Molecular Genetics, 2014, 23, 3943-3957.	1.4	79
286	Upregulation of <scp>PGC</scp> â€lα expression by <scp>A</scp> lzheimer's diseaseâ€associated pathway: presenilin 1/amyloid precursor protein (<scp>APP</scp>)/intracellular domain of <scp>APP</scp> . Aging Cell, 2014, 13, 263-272.	3.0	45
287	Mitochondrial Toxic Effects of Aβ Through Mitofusins in the Early Pathogenesis of Alzheimer's Disease. Molecular Neurobiology, 2014, 50, 986-996.	1.9	32
288	Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiology of Aging, 2014, 35, 1513.e25-1513.e33.	1.5	58
289	The Effect of <i>TOMM40</i> Poly-T Repeat Lengths on Age of Onset and Cerebrospinal Fluid Biomarkers in Finnish Alzheimer's Disease Patients. Neurodegenerative Diseases, 2014, 14, 204-208.	0.8	6
291	Bivalent Compound 17MN Exerts Neuroprotection through Interaction at Multiple Sites in a Cellular Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 47, 1021-1033.	1.2	14
292	Structural Neuroimaging Genetics Interactions in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 48, 1051-1063.	1.2	36
294	Melatonin regulates the autophagic flux via activation of alphaâ€7 nicotinic acetylcholine receptors. Journal of Pineal Research, 2015, 59, 24-37.	3.4	38
296	Metabolic Risk Factors of Sporadic Alzheimer's Disease: Implications in the Pathology, Pathogenesis and Treatment. , 2015, 6, 282.		101
297	How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Frontiers in Cellular Neuroscience, 2015, 9, 166.	1.8	61
298	BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid. Frontiers in Cellular Neuroscience, 2015, 9, 382.	1.8	19

#	Article	IF	CITATIONS
299	Free Cholesterol $\hat{a} \in \mathbb{C}^{n}$ A Double-Edge Sword in Alzheimer Disease. , 0, , .		2
300	A review on mitochondrial restorative mechanism of antioxidants in Alzheimer's disease and other neurological conditions. Frontiers in Pharmacology, 2015, 6, 206.	1.6	109
301	β-Amyloid: the key peptide in the pathogenesis of Alzheimer's disease. Frontiers in Pharmacology, 2015, 6, 221.	1.6	216
302	The Contribution of Proteinase-Activated Receptors to Intracellular Signaling, Transcellular Transport and Autophagy in Alzheimer´s Disease. Current Alzheimer Research, 2015, 12, 2-12.	0.7	8
303	Interrelation of Oxidative Stress and Inflammation in Neurodegenerative Disease: Role of TNF. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-18.	1.9	486
304	Mitochondria-Targeted Protective Compounds in Parkinson's and Alzheimer's Diseases. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-30.	1.9	80
305	Biogenesis of mitochondrial outer membrane proteins, problems and diseases. Biological Chemistry, 2015, 396, 1199-1213.	1.2	24
306	Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. Human Molecular Genetics, 2015, 24, 2938-2951.	1.4	214
307	Oxidative stress accelerates amyloid deposition and memory impairment in a double-transgenic mouse model of Alzheimer's disease. Neuroscience Letters, 2015, 587, 126-131.	1.0	48
308	Identification of Alzheimer's disease–associated long noncoding RNAs. Neurobiology of Aging, 2015, 36, 2925-2931.	1.5	94
309	The Neuroprotective Effects of Decursin Isolated from Angelica gigas Nakai Against Amyloid β-Protein-Induced Apoptosis in PC 12 Cells via a Mitochondria-Related Caspase Pathway. Neurochemical Research, 2015, 40, 1555-1562.	1.6	18
310	Protein carbonylation after traumatic brain injury: cell specificity, regional susceptibility, and gender differences. Free Radical Biology and Medicine, 2015, 78, 89-100.	1.3	47
311	The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment. Neurobiology of Aging, 2015, 36, 2024-2033.	1.5	33
312	Synergistic effects of β-amyloid and ceramide-induced insulin resistance on mitochondrial metabolism in neuronal cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1810-1823.	1.8	16
313	The Role of Oxidative Stress in Neurodegenerative Diseases. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 151-167.	0.4	2
314	Quantitative Interaction Proteomics of Neurodegenerative Disease Proteins. Cell Reports, 2015, 11, 1134-1146.	2.9	88
315	Molecular mechanisms linking amyloid β toxicity and Tau hyperphosphorylation in Alzheimer׳s disease. Free Radical Biology and Medicine, 2015, 83, 186-191.	1.3	101
316	Mitochondrial biology, targets, and drug delivery. Journal of Controlled Release, 2015, 207, 40-58.	4.8	125

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
317	Aged monkey brains reveal the role of ubiquitin-conjugating enzyme UBL2N in the synaptosomal accumulation of mutant huntingtin. Human Molecular Genetics, 2015, 24, 1350-1362.	1.4	20
318	Axonal Transport Defects in Alzheimer's Disease. Molecular Neurobiology, 2015, 51, 1309-1321.	1.9	75
319	Risk Factors for Alzheimer's Disease. , 2016, , .		1
320	Killing Me Softly: Connotations to Unfolded Protein Response and Oxidative Stress in Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-17.	1.9	24
321	Alterations in Mitochondrial Quality Control in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2016, 10, 24.	1.8	153
322	The Rationale for Insulin Therapy in Alzheimer's Disease. Molecules, 2016, 21, 689.	1.7	14
323	Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration. PLoS ONE, 2016, 11, e0168157.	1.1	26
324	Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Frontiers in Pharmacology, 2016, 7, 88.	1.6	22
325	Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against <scp>A</scp> lzheimer's Disease. Brain Pathology, 2016, 26, 648-663.	2.1	73
326	Bioenergetics and metabolism: a bench to bedside perspective. Journal of Neurochemistry, 2016, 139, 126-135.	2.1	29
327	Mitochondrial Regulatory Pathways inÂtheÂPathogenesis of Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 53, 1257-1270.	1.2	22
328	Localization and Processing ofÂtheÂAmyloid-β Protein Precursor inÂMitochondria-Associated Membranes. Journal of Alzheimer's Disease, 2016, 55, 1549-1570.	1.2	107
329	Aberrant Co-localization of Synaptic Proteins Promoted by Alzheimer's Disease Amyloid-β Peptides: Protective Effect ofÂHuman Serum Albumin. Journal of Alzheimer's Disease, 2016, 55, 171-182.	1.2	18
330	Progress in drug development for Alzheimer's disease: An overview in relation to mitochondrial energy metabolism. European Journal of Medicinal Chemistry, 2016, 121, 774-784.	2.6	56
331	Proteasome regulates turnover of toxic human amylin in pancreatic cells. Biochemical Journal, 2016, 473, 2655-2670.	1.7	18
332	Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. Bioscience Reports, 2016, 36, e00286.	1.1	29
333	Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Human Molecular Genetics, 2016, 25, ddw330.	1.4	125
334	Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction. Experimental Cell Research, 2016, 347, 322-331.	1.2	84

#	Article	IF	Citations
335	Tongluo Xingnao Effervescent Tablet preserves mitochondrial energy metabolism and attenuates cognition deficits in APPswe/PS1De9 mice. Neuroscience Letters, 2016, 630, 101-108.	1.0	5
336	Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology. Scientific Reports, 2016, 6, 22244.	1.6	18
337	Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Human Molecular Genetics, 2016, 25, 4881-4897.	1.4	142
338	Mitochondrial Abnormalities and Synaptic Loss Underlie Memory Deficits Seen in Mouse Models of Obesity and Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 915-932.	1.2	55
339	Alzheimer's disease: the role of mitochondrial dysfunction and potential new therapies. Bioscience Horizons, 2016, 9, .	0.6	15
340	Association Analysis of Polymorphisms in TOMM40, CR1, PVRL2, SORL1, PICALM, and 14q32.13 Regions in Colombian Alzheimer Disease Patients. Alzheimer Disease and Associated Disorders, 2016, 30, 305-309.	0.6	15
341	Combined Genome-Wide CSF Aβ-42's Associations and Simple Network Properties Highlight New Risk Factors for Alzheimer's Disease. Journal of Molecular Neuroscience, 2016, 58, 120-128.	1.1	11
342	Evolution of Alzheimer's disease pathogenesis conception. Moscow University Biological Sciences Bulletin, 2016, 71, 4-10.	0.1	4
343	Quantitative Proteomic Analysis of the Orbital Frontal Cortex in Rats Following Extended Exposure to Caffeine Reveals Extensive Changes to Protein Expression: Implications for Neurological Disease. Journal of Proteome Research, 2016, 15, 1455-1471.	1.8	8
344	Influence of metformin on mitochondrial subproteome in the brain of apoE knockout mice. European Journal of Pharmacology, 2016, 772, 99-107.	1.7	9
345	Association of common variants in TOMM40/APOE/APOC1 region with human longevity in a Chinese population. Journal of Human Genetics, 2016, 61, 323-328.	1.1	20
346	Hydrogen Sulfide Selectively Inhibits γ-Secretase Activity and Decreases Mitochondrial Aβ Production in Neurons from APP/PS1 Transgenic Mice. Neurochemical Research, 2016, 41, 1145-1159.	1.6	8
347	Multiple faces of dynamin-related protein 1 and its role in Alzheimer's disease pathogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 814-828.	1.8	124
348	Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: focus on mitochondrial targets. Journal of Neural Transmission, 2016, 123, 125-135.	1.4	31
349	Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies. Progress in Neurobiology, 2017, 155, 171-193.	2.8	137
350	Mitochondrial Proteome Changes Correlating with β-Amyloid Accumulation. Molecular Neurobiology, 2017, 54, 2060-2078.	1.9	17
351	Genome instability in Alzheimer disease. Mechanisms of Ageing and Development, 2017, 161, 83-94.	2.2	83
352	Mitochondrial genes are altered in blood early in Alzheimer's disease. Neurobiology of Aging, 2017, 53, 36-47.	1.5	132

	CITATION	Report	
#	Article	IF	CITATIONS
353	Comparison of the glycopattern alterations of mitochondrial proteins in cerebral cortex between rat Alzheimer's disease and the cerebral ischemia model. Scientific Reports, 2017, 7, 39948.	1.6	9
354	The <i>Alu</i> neurodegeneration hypothesis: A primateâ€specific mechanism for neuronal transcription noise, mitochondrial dysfunction, andÂmanifestation of neurodegenerative disease. Alzheimer's and Dementia, 2017, 13, 828-838.	0.4	51
355	Mitochondria, Cybrids, Aging, and Alzheimer's Disease. Progress in Molecular Biology and Translational Science, 2017, 146, 259-302.	0.9	87
356	Mitochondria in Alzheimer's Disease and Diabetes-Associated Neurodegeneration: License to Heal!. Handbook of Experimental Pharmacology, 2017, 240, 281-308.	0.9	22
358	The protective role of plant biophenols in mechanisms of Alzheimer's disease. Journal of Nutritional Biochemistry, 2017, 47, 1-20.	1.9	71
359	Mitochondria-Division Inhibitor 1 Protects Against Amyloid-β induced Mitochondrial Fragmentation and Synaptic Damage in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 147-162.	1.2	83
360	Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 57, 1087-1103.	1.2	176
361	Aqua-soluble DDQ reduces the levels of Drp1 and Aβ and inhibits abnormal interactions between Aβ and Drp1 and protects Alzheimer's disease neurons from Aβ- and Drp1-induced mitochondrial and synaptic toxicities. Human Molecular Genetics, 2017, 26, 3375-3395.	1.4	50
362	Enhanced derivation of human pluripotent stem cell-derived cortical glutamatergic neurons by a small molecule. Scientific Reports, 2017, 7, 3282.	1.6	43
363	Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer's disease. Human Molecular Genetics, 2017, 26, 1483-1496.	1.4	83
364	Mitochondrial Perturbation in Alzheimer's Disease and Diabetes. Progress in Molecular Biology and Translational Science, 2017, 146, 341-361.	0.9	34
365	Long non-coding RNAs in brain development, synaptic biology, and Alzheimer's disease. Brain Research Bulletin, 2017, 132, 160-169.	1.4	52
366	Mitochondria are devoid of amyloid β-protein (Aβ)-producing secretases: Evidence for unlikely occurrence within mitochondria of Aβ generation from amyloid precursor protein. Biochemical and Biophysical Research Communications, 2017, 486, 321-328.	1.0	23
367	Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities atÂSynapses of Alzheimer's disease Neurons. Journal of Alzheimer's Disease, 2017, 57, 975-999.	1.2	294
368	PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer's disease. Brain, 2017, 140, 3233-3251.	3.7	211
369	Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta. Scientific Reports, 2017, 7, 9835.	1.6	31
370	Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 2017, 38, 1205-1235.	2.8	1,094
371	The biological foundation of the genetic association of TOMM40 with late-onset Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2973-2986.	1.8	44

#	Article	IF	CITATIONS
372	Proteinopathies and OXPHOS dysfunction in neurodegenerative diseases. Journal of Cell Biology, 2017, 216, 3917-3929.	2.3	59
373	Near infrared light decreases synaptic vulnerability to amyloid beta oligomers. Scientific Reports, 2017, 7, 15012.	1.6	38
374	Protein homeostasis of a metastable subproteome associated with Alzheimer's disease. Proceedings of the United States of America, 2017, 114, E5703-E5711.	3.3	77
375	Edaravone injection reverses learning and memory deficits in a rat model of vascular dementia. Acta Biochimica Et Biophysica Sinica, 2017, 49, 83-89.	0.9	17
376	Mitochondrial Ca2+ handling in Huntington's and Alzheimer's diseases – Role of ER-mitochondria crosstalk. Biochemical and Biophysical Research Communications, 2017, 483, 1069-1077.	1.0	34
377	Amyloid precursor protein processing and bioenergetics. Brain Research Bulletin, 2017, 133, 71-79.	1.4	143
378	Genetic ablation of the p66Shc adaptor protein reverses cognitive deficits and improves mitochondrial function in an APP transgenic mouse model of Alzheimer's disease. Molecular Psychiatry, 2017, 22, 605-614.	4.1	26
379	Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases. Journal of Biomedical Science, 2017, 24, 74.	2.6	86
380	Mitochondrial dynamics changes with age in an APPsw/PS1dE9 mouse model of Alzheimer's disease. NeuroReport, 2017, 28, 222-228.	0.6	40
381	Mitochondria as a Therapeutic Target for the Treatment of Alzheimer's Disease. , 2017, , 195-209.		Ο
382	Axonal Degeneration during Aging and Its Functional Role in Neurodegenerative Disorders. Frontiers in Neuroscience, 2017, 11, 451.	1.4	139
383	Blood-Based Bioenergetic Profiling Reflects Differences in Brain Bioenergetics and Metabolism. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-9.	1.9	51
384	Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer's disease and Parkinson's disease. Drug Design, Development and Therapy, 2017, Volume11, 797-810.	2.0	217
385	Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Research, 2018, 26, 93-111.	1.0	55
386	Alzheimer's Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines. Journal of Alzheimer's Disease, 2018, 62, 523-547.	1.2	75
387	A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death and Disease, 2018, 9, 335.	2.7	158
388	Spatio-temporal monitoring of lipid peroxyl radicals in live cell studies combining fluorogenic antioxidants and fluorescence microscopy methods. Free Radical Biology and Medicine, 2018, 128, 124-136.	1.3	19
389	Amyloid toxicity in Alzheimer's disease. Reviews in the Neurosciences, 2018, 29, 613-627.	1.4	312

#	Article	IF	CITATIONS
390	Aβ ₄₂ oligomers impair the bioenergetic activity in hippocampal synaptosomes derived from APP-KO mice. Biological Chemistry, 2018, 399, 453-465.	1.2	2
391	Disturbed sleep and diabetes: A potential nexus of dementia risk. Metabolism: Clinical and Experimental, 2018, 84, 85-93.	1.5	37
392	Synergistic Protective Effects of Mitochondrial Division Inhibitor 1 and Mitochondria-Targeted Small Peptide SS31 in Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 1549-1565.	1.2	66
393	Assembly of 809 whole mitochondrial genomes with clinical, imaging, and fluid biomarker phenotyping. Alzheimer's and Dementia, 2018, 14, 514-519.	0.4	14
394	TSPO regulation in reactive gliotic diseases. Journal of Neuroscience Research, 2018, 96, 978-988.	1.3	14
395	The <scp>APP</scp> swe/ <scp>PS</scp> 1A246E mutations in an astrocytic cell line leads to increased vulnerability to oxygen and glucose deprivation, Ca ²⁺ dysregulation, and mitochondrial abnormalities. Journal of Neurochemistry, 2018, 145, 170-182.	2.1	4
396	Development of GMP â€1 a molecular chaperone network modulator protecting mitochondrial function and its assessment in fly and mice models of Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2018, 22, 3464-3474.	1.6	11
397	Role of Mitochondria in Neurodegenerative Diseases: The Dark Side of the "Energy Factoryâ€: , 2018, , 213-239.		6
398	Mitochondria and Alzheimer's Disease: the Role of Mitochondrial Genetic Variation. Current Genetic Medicine Reports, 2018, 6, 1-10.	1.9	45
399	Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer's disease: A focus on human studies. Pharmacological Research, 2018, 131, 32-43.	3.1	156
400	Exercise as a Positive Modulator of Brain Function. Molecular Neurobiology, 2018, 55, 3112-3130.	1.9	63
401	Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 34-53.	2.5	24
402	Neuroketotherapeutics: A modern review of a century-old therapy. Neurochemistry International, 2018, 117, 114-125.	1.9	96
403	Newly Developed Drugs for Alzheimer's Disease in Relation to Energy Metabolism, Cholinergic and Monoaminergic Neurotransmission. Neuroscience, 2018, 370, 191-206.	1.1	48
404	Mitochondria and Mitochondrial Cascades in Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 1403-1416.	1.2	500
405	<scp>mPOS</scp> is a novel mitochondrial trigger of cell death – implications for neurodegeneration. FEBS Letters, 2018, 592, 759-775.	1.3	35
406	Nuclear Encoded Mitochondrial Proteins in Metabolite Transport and Oxidation Pathway Connecting Metabolism of Nutrients. , 2018, , .		0
407	Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochemical Society Transactions, 2018, 46, 1225-1238.	1.6	25

#	ARTICLE	IF	CITATIONS
408	Age-Dependent Decrease of Mitochondrial Complex II Activity in a Familial Mouse Model for Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 66, 75-82.	1.2	13
409	Passive Immunotherapy in Alzheimer's Disease. , 0, , .		2
410	Análisis de desempeños cognitivos y polimorfismos en SORL, PVRL2, CR1, TOMM40, APOE, PICALM, GWAS_14q, CLU y BIN1 en pacientes con trastorno neurocognitivo leve y en sujetos cognitivamente sanos. NeurologÃa, 2021, 36, 681-691.	0.3	8
411	Mechanisms of protein toxicity in neurodegenerative diseases. Cellular and Molecular Life Sciences, 2018, 75, 3159-3180.	2.4	103
412	Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. International Review of Cell and Molecular Biology, 2018, 340, 209-344.	1.6	208
413	Current Concepts of Neurodegenerative Mechanisms in Alzheimer's Disease. BioMed Research International, 2018, 2018, 1-12.	0.9	113
414	Mitochondrial accumulation of amyloid β (Aβ) peptides requires TOMM22 as a main Aβ receptor in yeast. Journal of Biological Chemistry, 2018, 293, 12681-12689.	1.6	33
415	A novel high-throughput assay for respiration in isolated brain microvessels reveals impaired mitochondrial function in the aged mice. GeroScience, 2018, 40, 365-375.	2.1	54
416	Adapentpronitrile, a New Dipeptidyl Peptidase-IV Inhibitor, Ameliorates Diabetic Neuronal Injury Through Inhibiting Mitochondria-Related Oxidative Stress and Apoptosis. Frontiers in Cellular Neuroscience, 2018, 12, 214.	1.8	13
417	Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules, 2018, 23, 283.	1.7	45
418	DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Medical Genomics, 2018, 11, 43.	0.7	32
419	MitoCPR: a novel protective mechanism in response to mitochondrial protein import stress. Acta Biochimica Et Biophysica Sinica, 2018, 50, 1072-1074.	0.9	5
420	Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology, 2019, 44, 837-849.	2.8	142
421	The PINK1 kinase-driven ubiquitin ligase Parkin promotes mitochondrial protein import through the presequence pathway in living cells. Scientific Reports, 2019, 9, 11829.	1.6	48
422	The energetic brain – A review from students to students. Journal of Neurochemistry, 2019, 151, 139-165.	2.1	148
423	The Effects of APOE4 on Mitochondrial Dynamics and Proteins in vivo. Journal of Alzheimer's Disease, 2019, 70, 861-875.	1.2	34
424	Mitochondrial degradation of amyloidogenic proteins — A new perspective for neurodegenerative diseases. Progress in Neurobiology, 2019, 181, 101660.	2.8	14
425	Integrating Gene and Protein Expression Reveals Perturbed Functional Networks in Alzheimer's Disease. Cell Reports, 2019, 28, 1103-1116.e4.	2.9	67

#	Article	IF	CITATIONS
426	Ginsenoside Re Inhibits ROS/ASK-1 Dependent Mitochondrial Apoptosis Pathway and Activation of Nrf2-Antioxidant Response in Beta-Amyloid-Challenged SH-SY5Y Cells. Molecules, 2019, 24, 2687.	1.7	52
427	Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Frontiers in Pharmacology, 2019, 10, 902.	1.6	173
428	Cognition in Vascular Aging and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2019, 72, 55-70.	1.2	8
429	Quantitative interaction proteomics reveals differences in the interactomes of amyloid precursor protein isoforms. Journal of Neurochemistry, 2019, 149, 399-412.	2.1	12
430	Quantitative profiling brain proteomes revealed mitochondrial dysfunction in Alzheimer's disease. Molecular Brain, 2019, 12, 8.	1.3	117
431	In vivo Ca 2+ imaging of astrocytic microdomains reveals a critical role of the amyloid precursor protein for mitochondria. Clia, 2019, 67, 985-998.	2.5	15
432	Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. British Journal of Pharmacology, 2019, 176, 3489-3507.	2.7	279
433	Melatonin in Alzheimer's Disease: A Latent Endogenous Regulator of Neurogenesis to Mitigate Alzheimer's Neuropathology. Molecular Neurobiology, 2019, 56, 8255-8276.	1.9	103
434	Can Healthy Diets, Regular Exercise, and Better Lifestyle Delay the Progression of Dementia in Elderly Individuals?. Journal of Alzheimer's Disease, 2019, 72, S37-S58.	1.2	36
435	Interactions between BIM Protein and Beta-Amyloid May Reveal a Crucial Missing Link between Alzheimer's Disease and Neuronal Cell Death. ACS Chemical Neuroscience, 2019, 10, 3555-3564.	1.7	21
436	The effects of bioactive components from the rhizome of Salvia miltiorrhiza (Danshen) on the characteristics of Alzheimer's disease. Chinese Medicine, 2019, 14, 19.	1.6	27
437	Mitochondrial Dysfunction and Stress Responses in Alzheimer's Disease. Biology, 2019, 8, 39.	1.3	40
438	Exendin-4 attenuates brain mitochondrial toxicity through PI3K/Akt-dependent pathway in amyloid beta (1–42)-induced cognitive deficit rats. Neurochemistry International, 2019, 128, 39-49.	1.9	46
439	Dysfunction of mitochondria: Implications for Alzheimer's disease. International Review of Neurobiology, 2019, 145, 13-27.	0.9	50
440	The vexing complexity of the amyloidogenic pathway. Protein Science, 2019, 28, 1177-1193.	3.1	25
441	PTCD1 Is Required for Mitochondrial Oxidative-Phosphorylation: Possible Genetic Association with Alzheimer's Disease. Journal of Neuroscience, 2019, 39, 4636-4656.	1.7	26
442	Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nature Neuroscience, 2019, 22, 401-412.	7.1	1,008
443	A promising structural magnetic resonance imaging assessment in patients with preclinical cognitive decline and diabetes mellitus. Journal of Cellular Physiology, 2019, 234, 16838-16846.	2.0	5

щ			CITATIONS
#	Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and	IF	CHATIONS
444	senescence. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 517-536.	2.3	16
445	Clogging the mitochondrial protein-entry gate promotes obesity. Nature Metabolism, 2019, 1, 1175-1176.	5.1	1
446	Mitochondrial Cholesterol in Alzheimer's Disease and Niemann–Pick Type C Disease. Frontiers in Neurology, 2019, 10, 1168.	1.1	37
447	Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity. Nature Metabolism, 2019, 1, 1243-1257.	5.1	39
448	Amyloid precursor proteinâ€nediated mitochondrial regulation and Alzheimer's disease. British Journal of Pharmacology, 2019, 176, 3464-3474.	2.7	28
449	Neurometabolites and associations with cognitive deficits in mild cognitive impairment: a magnetic resonance spectroscopy study at 7ÂTesla. Neurobiology of Aging, 2019, 73, 211-218.	1.5	61
450	Underappreciated Roles of the Translocase of the Outer and Inner Mitochondrial Membrane Protein Complexes in Human Disease. DNA and Cell Biology, 2019, 38, 23-40.	0.9	21
451	Biochemical deficits and cognitive decline in brain aging: Intervention by dietary supplements. Journal of Chemical Neuroanatomy, 2019, 95, 70-80.	1.0	39
452	Elucidating Critical Proteinopathic Mechanisms and Potential Drug Targets in Neurodegeneration. Cellular and Molecular Neurobiology, 2020, 40, 313-345.	1.7	11
453	Mitophagy in Alzheimer's Disease and Other Age-Related Neurodegenerative Diseases. Cells, 2020, 9, 150.	1.8	151
454	Metal Binding by GMP-1 and Its Pyrimido [1, 2]benzimidazole Analogs Confirms Protection Against Amyloid-β Associated Neurotoxicity. Journal of Alzheimer's Disease, 2020, 73, 695-705.	1.2	7
455	Inhibition of DNM1L and mitochondrial fission attenuates inflammatory response in fibroblastâ€like synoviocytes of rheumatoid arthritis. Journal of Cellular and Molecular Medicine, 2020, 24, 1516-1528.	1.6	22
456	Analysis of cognitive performance and polymorphisms of SORL1, PVRL2, CR1, TOMM40, APOE, PICALM, GWAS_14q, CLU, and BIN1 in patients with mild cognitive impairment and cognitively healthy controls. NeurologÃa (English Edition), 2021, 36, 681-691.	0.2	7
457	Corticotropin-releasing hormone (CRH) alters mitochondrial morphology and function by activating the NF-kB-DRP1 axis in hippocampal neurons. Cell Death and Disease, 2020, 11, 1004.	2.7	16
458	Multi-Target Effects of the Cannabinoid CP55940 on Familial Alzheimer's Disease PSEN1 E280A Cholinergic-Like Neurons: Role of CB1 Receptor. Journal of Alzheimer's Disease, 2021, 82, S359-S378.	1.2	10
459	Spotlight on Ferroptosis: Iron-Dependent Cell Death in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 196.	1.7	47
460	The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the metabolic link to Alzheimer's disease. International Review of Neurobiology, 2020, 154, 207-233.	0.9	43
461	Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration. Antioxidants, 2020, 9, 647.	2.2	159

#	Article	IF	CITATIONS
462	Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. Journal of Personalized Medicine, 2020, 10, 116.	1.1	26
463	When It Comes to an End: Oxidative Stress Crosstalk with Protein Aggregation and Neuroinflammation Induce Neurodegeneration. Antioxidants, 2020, 9, 740.	2.2	52
464	Molecular Dysfunctions of Mitochondria-Associated Membranes (MAMs) in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 9521.	1.8	34
465	Targeting Mitophagy in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 78, 1273-1297.	1.2	6
466	Biomarkers: Our Path Towards a Cure for Alzheimer Disease. Biomarker Insights, 2020, 15, 117727192097636.	1.0	21
467	Extracellular Vesicles and Damage-Associated Molecular Patterns: A Pandora's Box in Health and Disease. Frontiers in Immunology, 2020, 11, 601740.	2.2	32
468	Common aspects between glaucoma and brain neurodegeneration. Mutation Research - Reviews in Mutation Research, 2020, 786, 108323.	2.4	8
469	Infusion of Plasma from Exercised Mice Ameliorates Cognitive Dysfunction by Increasing Hippocampal Neuroplasticity and Mitochondrial Functions in 3xTg-AD Mice. International Journal of Molecular Sciences, 2020, 21, 3291.	1.8	13
470	Intramitochondrial proteostasis is directly coupled to α-synuclein and amyloid β1-42 pathologies. Journal of Biological Chemistry, 2020, 295, 10138-10152.	1.6	22
471	Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Molecular Neurodegeneration, 2020, 15, 30.	4.4	562
472	The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BioMed Research International, 2020, 2020, 1-18.	0.9	31
473	Mechanisms Linking Mitochondrial Dysfunction and Proteostasis Failure. Trends in Cell Biology, 2020, 30, 317-328.	3.6	27
474	Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxidants and Redox Signaling, 2020, 32, 1188-1236.	2.5	61
475	Nrf2 activation through the PI3K/CSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage. Alzheimer's Research and Therapy, 2020, 12, 13.	3.0	42
476	Interplay Between Mitochondrial Oxidative Disorders and Proteostasis in Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 1444.	1.4	55
477	How the Mitoprotein-Induced Stress Response Safeguards the Cytosol: A Unified View. Trends in Cell Biology, 2020, 30, 241-254.	3.6	66
478	Influence of Mitochondrial ATP-Sensitive Potassium Channels on Toxic Effect of Amyloid-β 25–35. Neurochemical Journal, 2020, 14, 90-100.	0.2	1
479	Mitochondria in Alzheimer's disease and their potential role in Alzheimer's proteostasis. Experimental Neurology, 2020, 330, 113321.	2.0	66

#	Article	IF	CITATIONS
480	Mitochondrial and Nuclear DNA Oxidative Damage in Physiological and Pathological Aging. DNA and Cell Biology, 2020, 39, 1410-1420.	0.9	69
481	Effects of Novel Tacrine Derivatives on Mitochondrial Energy Metabolism and Monoamine Oxidase Activity—In Vitro Study. Molecular Neurobiology, 2021, 58, 1102-1113.	1.9	5
482	Mitochondria and Calcium in Alzheimer's Disease: From Cell Signaling to Neuronal Cell Death. Trends in Neurosciences, 2021, 44, 136-151.	4.2	119
483	Alzheimer's disease improved through the activity of mitochondrial chain complexes and their gene expression in rats by boswellic acid. Metabolic Brain Disease, 2021, 36, 255-264.	1.4	17
484	Quality control of the mitochondrial proteome. Nature Reviews Molecular Cell Biology, 2021, 22, 54-70.	16.1	231
485	Functions of amyloid precursor protein in metabolic diseases. Metabolism: Clinical and Experimental, 2021, 115, 154454.	1.5	38
486	Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease. Journal of the Neurological Sciences, 2021, 421, 117253.	0.3	95
487	Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Molecular Neurobiology, 2021, 58, 1418-1437.	1.9	11
488	Exploring the role of mitochondrial proteins as molecular target in Alzheimer's disease. Mitochondrion, 2021, 56, 62-72.	1.6	15
489	Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. , 2021, 221, 107749.		29
490	Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Letters, 2021, 595, 1107-1131.	1.3	48
491	Alterations in inter-organelle crosstalk and Ca2+ signaling through mitochondria during proteotoxic stresses. Mitochondrion, 2021, 57, 37-46.	1.6	10
492	Intracellular Sources of ROS/H2O2 in Health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells, 2021, 10, 233.	1.8	49
493	Impact of Genetic Risk Factors for Alzheimer's Disease on Brain Glucose Metabolism. Molecular Neurobiology, 2021, 58, 2608-2619.	1.9	13
494	Mitochondria-associated membranes (MAMs): a potential therapeutic target for treating Alzheimer's disease. Clinical Science, 2021, 135, 109-126.	1.8	32
495	Novel DNA methylation marker discovery by assumptionâ€free genomeâ€wide association analysis of cognitive function in twins. Aging Cell, 2021, 20, e13293.	3.0	7
496	Metabolic disorder in Alzheimer's disease. Metabolic Brain Disease, 2021, 36, 781-813.	1.4	23
497	Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review. Frontiers in Aging Neuroscience, 2021, 13, 646901.	1.7	16

#	Article	IF	CITATIONS
498	In search of biomarkers for leprosy by unraveling the host immune response to <i>Mycobacterium leprae</i> . Immunological Reviews, 2021, 301, 175-192.	2.8	33
499	The role of mitophagy in the regulation of mitochondrial energetic status in neurons. Autophagy, 2021, 17, 4182-4201.	4.3	61
500	Current Perspective of Hydrogen Sulfide as a Novel Gaseous Modulator of Oxidative Stress in Glaucoma. Antioxidants, 2021, 10, 671.	2.2	7
501	Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer's Disease and Type 2 Diabetes. Molecular Neurobiology, 2021, 58, 3677-3691.	1.9	16
502	Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites, 2021, 11, 233.	1.3	10
503	NIPSNAP protein family emerges as a sensor of mitochondrial health. BioEssays, 2021, 43, e2100014.	1.2	10
504	Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells, 2021, 10, 1236.	1.8	73
505	In vivo brain imaging of mitochondrial Ca2+ in neurodegenerative diseases with multiphoton microscopy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118998.	1.9	8
507	Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life, 2021, 11, 432.	1.1	14
508	Chemical Stimulation of Rodent and Human Cortical Synaptosomes: Implications in Neurodegeneration. Cells, 2021, 10, 1174.	1.8	3
509	Nutraceuticals-based therapeutic approach: recent advances to combat pathogenesis of Alzheimer's disease. Expert Review of Neurotherapeutics, 2021, 21, 625-642.	1.4	19
510	Immature Persimmon Suppresses Amyloid Beta (Aβ) Mediated Cognitive Dysfunction via Tau Pathology in ICR Mice. Current Issues in Molecular Biology, 2021, 43, 405-422.	1.0	2
511	Alzheimer's disease and type 2 diabetes mellitus: Pathophysiologic and pharmacotherapeutics links. World Journal of Diabetes, 2021, 12, 745-766.	1.3	28
512	TOMM40 RNA Transcription in Alzheimer's Disease Brain and Its Implication in Mitochondrial Dysfunction. Genes, 2021, 12, 871.	1.0	17
513	Targeting cellular batteries for the therapy of neurological diseases. Environmental Science and Pollution Research, 2021, 28, 41517-41532.	2.7	3
514	Mitochondrial genetic variation in human bioenergetics, adaptation, and adult disease. American Journal of Human Biology, 2021, , e23629.	0.8	1
515	Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharmaceutica Sinica B, 2022, 12, 511-531.	5.7	26
516	Sensing, signaling and surviving mitochondrial stress. Cellular and Molecular Life Sciences, 2021, 78, 5925-5951.	2.4	40

#	Article	IF	CITATIONS
517	Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants, 2021, 10, 1069.	2.2	53
518	The transferred translocases: An old wine in a new bottle. Biotechnology and Applied Biochemistry, 2022, 69, 1587-1610.	1.4	1
519	Linking Oxidative Stress and Proteinopathy in Alzheimer's Disease. Antioxidants, 2021, 10, 1231.	2.2	57
520	Bibliometric Analysis Study on the Mechanisms of Brain Energy Metabolism Disorders in Alzheimer's Disease From 2000 to 2020. Frontiers in Neurology, 2021, 12, 670220.	1.1	15
521	Neuroprotective Efficacy of Apple Cider Vinegar on Zinc-High Fat Diet-Induced Mono Amine Oxidase Alteration in Murine Model of AD. Journal of the American College of Nutrition, 2022, 41, 658-667.	1.1	8
522	Structural and Functional Alterations in Mitochondria-Associated Membranes (MAMs) and in Mitochondria Activate Stress Response Mechanisms in an In Vitro Model of Alzheimer's Disease. Biomedicines, 2021, 9, 881.	1.4	26
523	Activity of Selected Group of Monoterpenes in Alzheimer's Disease Symptoms in Experimental Model Studies—A Non-Systematic Review. International Journal of Molecular Sciences, 2021, 22, 7366.	1.8	15
524	Mitochondrial pathway polygenic risk scores are associated with Alzheimer's Disease. Neurobiology of Aging, 2021, 108, 213-222.	1.5	10
525	Defective mitophagy and synaptic degeneration in Alzheimer's disease: Focus on aging, mitochondria and synapse. Free Radical Biology and Medicine, 2021, 172, 652-667.	1.3	81
526	Targeted Lipidomics of Mitochondria in a Cellular Alzheimer's Disease Model. Biomedicines, 2021, 9, 1062.	1.4	9
527	Mini review: Mitochondrial dysfunction in Alzheimer's disease: Therapeutic implications of lithium. Neuroscience Letters, 2021, 760, 136078.	1.0	10
528	Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in Diabetes Mellitus and Alzheimer's disease. Pharmacological Research, 2021, 171, 105783.	3.1	32
529	Cannabinoid receptor 2 selective agonists and Alzheimer's disease: An insight into the therapeutic potentials. Journal of Neuroscience Research, 2021, 99, 2888-2905.	1.3	9
530	The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neuroscience and Biobehavioral Reviews, 2021, 128, 454-466.	2.9	8
531	Molecular Machinery and Pathophysiology of Mitochondrial Dynamics. Frontiers in Cell and Developmental Biology, 2021, 9, 743892.	1.8	18
532	Mitochondrial links between brain aging and Alzheimer's disease. Translational Neurodegeneration, 2021, 10, 33.	3.6	26
533	Two hit mitochondrial-driven model of synapse loss in neurodegeneration. Neurobiology of Disease, 2021, 158, 105451.	2.1	10
534	Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102422.	1.7	11

#	Article	IF	CITATIONS
535	Defective Autophagy and Mitophagy in Aging and Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 612757.	1.4	85
536	Targeting Alzheimer's disease neuronal mitochondria as a therapeutic approach. , 2021, , 343-364.		0
537	Aging-Dependent Mitophagy Dysfunction in Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 2362-2378.	1.9	25
538	Association and Interaction of <i>TOMM40</i> and <i>PVRL2</i> with Plasma Amyloid-Î' and Alzheimer's Disease Among Chinese Older Adults: A Population-Based Study. SSRN Electronic Journal, 0, , .	0.4	0
540	A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. Advances in Experimental Medicine and Biology, 2020, 1131, 131-161.	0.8	39
541	The Role of Mitochondria in Neurodegenerative Diseases: the Lesson from Alzheimer's Disease and Parkinson's Disease. Molecular Neurobiology, 2020, 57, 2959-2980.	1.9	180
542	Roles of mitochondria in human disease. Essays in Biochemistry, 2010, 47, 115-137.	2.1	147
543	Mitochondrial Mutations: Newly Discovered Players in Neuronal Degeneration. Neuroscientist, 2011, 17, 645-658.	2.6	24
544	Physical exercise during exposure to 40-Hz light flicker improves cognitive functions in the 3xTg mouse model of Alzheimer's disease. Alzheimer's Research and Therapy, 2020, 12, 62.	3.0	33
545	Mitochondrial Complex I Inhibition Accelerates Amyloid Toxicity. Development & Reproduction, 2017, 21, 417-424.	0.1	13
546	The Dictyostelium model for mitochondrial biology and disease. International Journal of Developmental Biology, 2019, 63, 497-508.	0.3	18
547	Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. , 2020, 11, 1291.		64
548	Mitochondrial cholesterol in health and disease. Histology and Histopathology, 2009, 24, 117-32.	0.5	79
549	Brain pyrimidine nucleotide synthesis and Alzheimer disease. Aging, 2019, 11, 8433-8462.	1.4	23
550	Biothiols and oxidative stress markers and polymorphisms of <i>TOMM40</i> and <i>APOC1</i> genes in Alzheimer's disease patients. Oncotarget, 2018, 9, 35207-35225.	0.8	32
551	Key Role of Mitochondria in Alzheimer's Disease Synaptic Dysfunction. Current Pharmaceutical Design, 2013, 19, 6440-6450.	0.9	41
552	New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Current Pharmaceutical Design, 2017, 23, 731-752.	0.9	30
553	Genetic Editing and Pharmacogenetics in Current And Future Therapy Of Neurocognitive Disorders. Current Alzheimer Research, 2020, 17, 238-258.	0.7	5

#	Article	IF	CITATIONS
554	Pyruvate Dehydrogenase Kinases in the Nervous System: Their Principal Functions in Neuronal-glial Metabolic Interaction and Neuro-metabolic Disorders. Current Neuropharmacology, 2012, 10, 393-403.	1.4	39
555	Mechanisms of Melatonin in Alleviating Alzheimer's Disease. Current Neuropharmacology, 2017, 15, 1010-1031.	1.4	140
556	Therapeutic Potential of Multifunctional Tacrine Analogues. Current Neuropharmacology, 2019, 17, 472-490.	1.4	35
557	Potential Therapeutic Role of Phytochemicals to Mitigate Mitochondrial Dysfunctions in Alzheimer's Disease. Antioxidants, 2021, 10, 23.	2.2	25
558	Recent Progress of Mitochondrial Dysfunction Induced by β-Amyloid Protein*. Progress in Biochemistry and Biophysics, 2010, 37, 589-593.	0.3	3
559	Metal Metabolic Homeostasis Disruption and Early Initiation of Mechanism for Alzheimer′s Disease*. Progress in Biochemistry and Biophysics, 2012, 39, 756-763.	0.3	4
560	Mitochondrial Dysregulation in Skeletal Muscle from Patients Diagnosed with Alzheimer's Disease and Sporadic Inclusion Body Myositis. Open Journal of Molecular and Integrative Physiology, 2014, 04, 11-19.	0.6	5
561	Molecular and biochemical trajectories from diabetes to Alzheimer's disease: A critical appraisal. World Journal of Diabetes, 2015, 6, 1223.	1.3	35
562	The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer's disease. BMB Reports, 2019, 52, 679-688.	1.1	19
563	Emerging perspectives on mitochondrial dysfunction and inflammation in Alzheimer's disease. BMB Reports, 2020, 53, 35-46.	1.1	44
564	Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. ELife, 2016, 5, .	2.8	117
565	Unfolding is the driving force for mitochondrial import and degradation of the Parkinson's disease-related protein DJ-1. Journal of Cell Science, 2021, 134, .	1.2	3
566	Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 84, 1391-1414.	1.2	26
567	Research on The Effect of Amyloid beta on Mitochondrial Dysfunction <l>ln vivo</l> and <l>ln vitro</l> *. Progress in Biochemistry and Biophysics, 2010, 37, 154-160.	0.3	1
568	The Genetics of Alzheimer's Disease and Parkinson's Disease. Advances in Neurobiology, 2011, , 695-755.	1.3	7
570	mtDNA Mutations in Brain Aging and Neurodegeneration. , 2012, , 79-91.		0
572	Consequences of Altered Mortalin Expression in Control of Cell Proliferation and Brain Function. , 2012, , 95-109.		0
573	Mitochondrial Dysfunction in Sporadic Alzheimer's Disease: Mechanisms, Consequences and Interventions. , 2012, , 49-65.		0

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
574	The AmyloidProtein and Alzheimer's Disease. Frontiers in Neuroscience, 2012, , 1-85.	0.0	0
575	The Impact of HAART on Advanced Brain Aging: Implications for Mitochondrial Dysfunction and APP Processing. Journal of Antivirals & Antiretrovirals, 2013, 05, .	0.1	1
576	Genetic and non-genetic factors responsible for mitochondrial failure and Alzheimer's disease. Genetika, 2014, 46, 631-647.	0.1	0
579	Mitochondrial Function and Neurodegenerative Diseases. , 2018, , 369-414.		1
581	Alternation of Mitochondrial and Golgi Apparatus in Neurodegenerative Disorders. Advances in Medical Diagnosis, Treatment, and Care, 2019, , 102-128.	0.1	0
582	Mitochondrial Dysfunction in Aging and Neurodegeneration. Advances in Medical Diagnosis, Treatment, and Care, 2019, , 76-101.	0.1	0
584	Disentangling Mitochondria in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 11520.	1.8	34
585	Microglial Mitophagy and Neurodegenerative Disorders. Advances in Medical Diagnosis, Treatment, and Care, 2020, , 88-128.	0.1	0
586	Characterization of mitochondrial DNA quantity and quality in the human aged and Alzheimer's disease brain. Molecular Neurodegeneration, 2021, 16, 75.	4.4	44
588	Promising molecular targets for pharmacological therapy of neurodegenerative pathologies. Acta Naturae, 2020, 12, 60-80.	1.7	3
590	Pathogenesis of Alzheimer's disease. Clinical Interventions in Aging, 2007, 2, 347-59.	1.3	162
592	Alzheimer's disease: diverse aspects of mitochondrial malfunctioning. International Journal of Clinical and Experimental Pathology, 2010, 3, 570-81.	0.5	75
596	Contribution of Mitochondrial Dysfunction Combined with NLRP3 Inflammasome Activation in Selected Neurodegenerative Diseases. Pharmaceuticals, 2021, 14, 1221.	1.7	13
597	Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases?. Frontiers in Neuroscience, 2021, 15, 746873.	1.4	17
598	Alteration of mitochondrial homeostasis is an early event in a C. elegans model of human tauopathy. Aging, 2021, 13, 23876-23894.	1.4	9
599	Exercise and Syzygium aromaticum reverse memory deficits, apoptosis and mitochondrial dysfunction of the hippocampus in Alzheimer's disease. Journal of Ethnopharmacology, 2022, 286, 114871.	2.0	11
600	Mitochondrial Membrane Potential Influences Amyloid-β Protein Precursor Localization and Amyloid-β Secretion. Journal of Alzheimer's Disease, 2022, 85, 381-394.	1.2	16
601	Mitochondrially-Targeted Therapeutic Strategies for Alzheimer's Disease. Current Alzheimer Research, 2021, 18, 753-771.	0.7	6

#	Article	IF	CITATIONS
602	The Cause of Alzheimer's Disease: The Theory of Multipathology Convergence to Chronic Neuronal Stress. , 2022, 13, 37.		22
603	A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Frontiers in Aging Neuroscience, 2021, 13, 788055.	1.7	3
604	Association and interaction of TOMM40 and PVRL2 with plasma amyloid-β and Alzheimer's disease among Chinese older adults: a population-based study. Neurobiology of Aging, 2022, 113, 143-151.	1.5	12
605	Beta-Amyloid Instigates Dysfunction of Mitochondria in Cardiac Cells. Cells, 2022, 11, 373.	1.8	15
606	Western and ketogenic diets in neurological disorders: can you tell the difference?. Nutrition Reviews, 2022, 80, 1927-1941.	2.6	7
607	The 40-Hz White Light-Emitting Diode (LED) Improves the Structure–Function of the Brain Mitochondrial KATP Channel and Respiratory Chain Activities in Amyloid Beta Toxicity. Molecular Neurobiology, 2022, 59, 2424-2440.	1.9	5
608	Physiology and pharmacology of amyloid precursor protein. , 2022, 235, 108122.		33
609	The amyloid state of proteins: A boon or bane?. International Journal of Biological Macromolecules, 2022, 200, 593-617.	3.6	12
610	MicroRNA‑4722‑5p and microRNA‑615‑3p serve as potential biomarkers for Alzheimer's disease. Experimental and Therapeutic Medicine, 2022, 23, 241.	0.8	14
611	Exercise-Eating Pattern and Social Inclusion (EES) is an Effective Modulator of Pathophysiological Hallmarks of Alzheimer's Disease. , 0, , .		0
612	Mitochondrial Targeting of Amyloid-β Protein Precursor Intracellular Domain Induces Hippocampal Cell Death via a Mechanism Distinct from Amyloid-β. Journal of Alzheimer's Disease, 2022, 86, 1727-1744.	1.2	5
613	N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants, 2022, 11, 416.	2.2	10
614	From the Structural and (Dys)Function of ATP Synthase to Deficiency in Age-Related Diseases. Life, 2022, 12, 401.	1.1	11
615	Endoplasmic reticulum-unfolded protein response pathway modulates the cellular response to mitochondrial proteotoxic stress. Cell Stress and Chaperones, 2022, 27, 241-256.	1.2	9
617	The key roles of organelles and ferroptosis in Alzheimer's disease. Journal of Neuroscience Research, 2022, 100, 1257-1280.	1.3	9
618	Verteporfin is a substrate-selective γ-secretase inhibitor that binds the amyloid precursor protein transmembrane domain. Journal of Biological Chemistry, 2022, 298, 101792.	1.6	3
619	Cytosolic Quality Control of Mitochondrial Protein Precursors—The Early Stages of the Organelle Biogenesis. International Journal of Molecular Sciences, 2022, 23, 7.	1.8	10
620	Role of Mitochondrial Protein Import in Age-Related Neurodegenerative and Cardiovascular Diseases. Cells, 2021, 10, 3528.	1.8	8

#	Article	IF	CITATIONS
621	Mitochondrial Deficits With Neural and Social Damage in Early-Stage Alzheimer's Disease Model Mice. Frontiers in Aging Neuroscience, 2021, 13, 748388.	1.7	7
622	Peripheral Pathways to Neurovascular Unit Dysfunction, Cognitive Impairment, and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2022, 14, 858429.	1.7	9
624	Mitochondrial Dysfunction in Aging and Neurodegeneration. , 2022, , 253-278.		0
625	Altered Mitochondrial Protein Homeostasis and Proteinopathies. Frontiers in Molecular Neuroscience, 2022, 15, 867935.	1.4	8
626	Natural Bioactive Products and Alzheimer's Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models. Diseases (Basel, Switzerland), 2022, 10, 28.	1.0	4
627	Mechanisms of Mitochondrial Malfunction in Alzheimer's Disease: New Therapeutic Hope. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-28.	1.9	16
628	The Molecular and Functional Interaction Between Membrane-Bound Organelles and Membrane-Less Condensates. Frontiers in Cell and Developmental Biology, 2022, 10, 896305.	1.8	4
629	Protein interaction networks in neurodegenerative diseases: From physiological function to aggregation. Journal of Biological Chemistry, 2022, 298, 102062.	1.6	30
630	Intracellular Aβ42 Aggregation Leads to Cellular Thermogenesis. Journal of the American Chemical Society, 2022, 144, 10034-10041.	6.6	16
631	Defective mitophagy and the etiopathogenesis of Alzheimer's disease. Translational Neurodegeneration, 2022, 11, .	3.6	11
632	Boosting mitochondrial health to counteract neurodegeneration. Progress in Neurobiology, 2022, 215, 102289.	2.8	15
633	Amyloid Beta Peptide-Mediated Alterations in Mitochondrial Dynamics and its Implications for Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2023, 22, 1039-1056.	0.8	1
634	Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer's Disease. Frontiers in Neuroscience, 0, 16, .	1.4	7
635	Modulation of Reactive Oxygen Species Homeostasis as a Pleiotropic Effect of Commonly Used Drugs. Frontiers in Aging, 0, 3, .	1.2	3
636	Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism?. Biochemical Journal, 2022, 479, 1337-1359.	1.7	6
637	Neuroprotective Effects of Oligosaccharides in Rehmanniae Radix on Transgenic Caenorhabditis elegans Models for Alzheimer's Disease. Frontiers in Pharmacology, 0, 13, .	1.6	8
638	Spatial Distribution and Hierarchical Clustering of β-Amyloid and Glucose Metabolism in Alzheimer's Disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1
639	Dysfunction of Mitochondria in Alzheimerâ $€$ ™s Disease: ANT and VDAC Interact with Toxic Proteins and Aid to Determine the Fate of Brain Cells. International Journal of Molecular Sciences, 2022, 23, 7722.	1.8	14

#	Article	IF	CITATIONS
640	mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases. Current Neuropharmacology, 2023, 21, 578-598.	1.4	1
641	Neuronopathic Gaucher disease: Beyond lysosomal dysfunction. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	6
642	Adult-Onset Deficiency of Mitochondrial Complex III in a Mouse Model of Alzheimer's Disease Decreases Amyloid Beta Plaque Formation. Molecular Neurobiology, 0, , .	1.9	2
643	Molecular linkages among Aβ, tau, impaired mitophagy, and mitochondrial dysfunction in Alzheimer's disease. , 2022, , 91-109.		0
645	Therapeutic approaches of nutraceuticals in the prevention of Alzheimer's disease. Journal of Food Biochemistry, 2022, 46, .	1.2	9
646	A CHCHD6–APP axis connects amyloid and mitochondrial pathology in Alzheimer's disease. Acta Neuropathologica, 0, , .	3.9	3
648	Mitochondrial proteotoxicity: implications and ubiquitin-dependent quality control mechanisms. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	3
650	Impact prediction of translocation of the mitochondrial outer membrane 70 as biomarker in Alzheimer's disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	2
651	Immunosenescence and Aging: Neuroinflammation Is a Prominent Feature of Alzheimer's Disease and Is a Likely Contributor to Neurodegenerative Disease Pathogenesis. Journal of Personalized Medicine, 2022, 12, 1817.	1.1	7
652	Mitochondria Transfer in Brain Injury and Disease. Cells, 2022, 11, 3603.	1.8	11
653	Amyloid precursor protein and mitochondria. Current Opinion in Neurobiology, 2023, 78, 102651.	2.0	10
654	Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Translational Neurodegeneration, 2022, 11, .	3.6	11
655	The Role of Caspases in Alzheimer's Disease: Pathophysiology Implications and Pharmacologic Modulation. Journal of Alzheimer's Disease, 2022, , 1-20.	1.2	3
658	The paradigm of amyloid precursor protein in amyotrophic lateral sclerosis: The potential role of the 682YENPTY687 motif. Computational and Structural Biotechnology Journal, 2023, 21, 923-930.	1.9	3
659	The Journey of Mitochondrial Protein Import and the Roadmap to Follow. International Journal of Molecular Sciences, 2023, 24, 2479.	1.8	5
660	Interactions between amyloid, amyloid precursor protein, and mitochondria. Biochemical Society Transactions, 2023, 51, 173-182.	1.6	11
661	Antioxidant Thymoquinone and Its Potential in the Treatment of Neurological Diseases. Antioxidants, 2023, 12, 433.	2.2	7
662	Mitochondrial mechanisms in Alzheimer's disease: Quest for therapeutics. Drug Discovery Today, 2023, 28, 103547.	3.2	6

#	Article	IF	Citations
663	Alzheimer's disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochemical Pharmacology, 2023, 211, 115522.	2.0	15
664	Isolated Mitochondrial Preparations and In organello Assays: A Powerful and Relevant Ex vivo Tool for Assessment of Brain (Patho)physiology. Current Neuropharmacology, 2023, 21, 1433-1449.	1.4	Ο
665	Mitochondrial cholesterol: Metabolism and impact on redox biology and disease. Redox Biology, 2023, 61, 102643.	3.9	14
666	Insights into the promising prospect of medicinal chemistry studies against neurodegenerative disorders. Chemico-Biological Interactions, 2023, 373, 110375.	1.7	1
667	The Alzheimer's Disease Mitochondrial Cascade Hypothesis: A Current Overview. Journal of Alzheimer's Disease, 2023, 92, 751-768.	1.2	19
668	Mitochondrial dysfunction rapidly modulates the abundance and thermal stability of cellular proteins. Life Science Alliance, 2023, 6, e202201805.	1.3	6
669	Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. International Journal of Molecular Sciences, 2023, 24, 7258.	1.8	7
670	Insights from Drosophila on AÎ2- and tau-induced mitochondrial dysfunction: mechanisms and tools. Frontiers in Neuroscience, 0, 17, .	1.4	2
678	Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	49
686	Ayurveda: Ayurvedic herbs against neurological disorders: are they golden nuggets?. , 2023, , 1-40.		0
690	Stem Cell-Based Therapy for Parkinson's Disease. , 2023, , 1-33.		0