Hydration of tricalcium aluminate (C3A) in the presence Raman spectroscopy and X-ray diffraction

Journal of Materials Chemistry 16, 1263 DOI: 10.1039/b509904h

Citation Report

#	Article	IF	CITATIONS
1	In situRaman analysis of hydrating C3A and C4AF pastes in presence and absence of sulphate. Advances in Applied Ceramics, 2006, 105, 209-216.	0.6	67
2	SEM–SCA: combined SEM – Raman spectrometer for analysis of OPC clinker. Advances in Applied Ceramics, 2007, 106, 327-334.	0.6	26
3	A Raman Study of the Sulfated Cement Hydrates: Ettringite and Monosulfoaluminate. Journal of Advanced Concrete Technology, 2007, 5, 299-312.	0.8	87
4	Structural Features of C?S?H(I) and Its Carbonation in Air?A Raman Spectroscopic Study. Part II: Carbonated Phases. Journal of the American Ceramic Society, 2007, 90, 908-917.	1.9	240
5	The use of Raman spectroscopy as a versatile characterization tool for calcium sulphoaluminate cements: a compositional and hydration study. Journal of Materials Science, 2007, 42, 8426-8432.	1.7	38
6	<i>In situ</i> Raman study of mineral phases formed as byâ€products in a rotary kiln for clinker production. Journal of Raman Spectroscopy, 2008, 39, 806-812.	1.2	15
7	On the symmetry of Ba3Al2O6 – X-ray diffraction and Raman spectroscopy studies. Solid State Sciences, 2009, 11, 77-84.	1.5	24
8	Ageing of calcium silicate cements for endodontic use in simulated body fluids: a microâ€Raman study. Journal of Raman Spectroscopy, 2009, 40, 1858-1866.	1.2	53
9	Use of microâ€Raman spectroscopy to study reaction kinetics in blended white cement pastes containing metakaolin. Journal of Raman Spectroscopy, 2009, 40, 2063-2068.	1.2	39
10	Vibrational study on the bioactivity of Portland cement-based materials for endodontic use. Journal of Molecular Structure, 2009, 924-926, 548-554.	1.8	42
11	Shedding light into adhesive optimization of material interfaces byÂplasma treatment. Applied Physics A: Materials Science and Processing, 2010, 100, 265-272.	1.1	1
12	Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions. Clinical Oral Investigations, 2010, 14, 659-668.	1.4	91
13	Microstructural development of early age hydration shells around cement grains. Cement and Concrete Research, 2010, 40, 4-13.	4.6	155
14	Ãlcalis incorporados ao aluminato tricálcico: efeitos na hidratação. Ambiente ConstruÃdo, 2010, 10, 177-189.	0.2	4
15	Hydration reactions of the C3A-CaSO4.2H2O system (1 : 1 mole ratio) at 30 and 50°C. Part I – effect of calcium lignosulfonate. Advances in Cement Research, 2010, 22, 123-126.	0.7	2
16	Characterisation of cement hydrate phases by TEM, NMR and Raman spectroscopy. Advances in Cement Research, 2010, 22, 233-248.	0.7	141
17	Current themes in cement research. Advances in Applied Ceramics, 2010, 109, 253-259.	0.6	10
18	Influence of some heavy metal nitrates on the hydration of C ₃ A. Advances in Cement Research, 2011, 23, 215-220.	0.7	3

#	Article	IF	CITATIONS
19	Effect of tricalcium aluminate on the properties of tricalcium silicate-tricalcium aluminate mixtures: setting time, mechanical strength and biocompatibility. International Endodontic Journal, 2011, 44, 41-50.	2.3	37
20	Three-dimensional printing of flash-setting calcium aluminate cement. Journal of Materials Science, 2011, 46, 2947-2954.	1.7	51
21	Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids. Journal of Molecular Structure, 2011, 993, 367-375.	1.8	34
22	Analyses of the surfaces of concrete by Raman and FTâ€IR spectroscopies: comparative study of hardened samples after demoulding and after organic postâ€treatment. Surface and Interface Analysis, 2011, 43, 714-725.	0.8	54
23	A new approach in quantitative in-situ XRD of cement pastes: Correlation of heat flow curves with early hydration reactions. Cement and Concrete Research, 2011, 41, 123-128.	4.6	256
24	Characterization and photocatalytic performance in air of cementitious materials containing TiO2. Case study of formaldehyde removal. Applied Catalysis B: Environmental, 2011, 107, 1-8.	10.8	81
25	Composition of Concrete Surfaces after Demoulding and Coating: Comparative Study by XPS, FTIR and Raman Spectroscopies. Key Engineering Materials, 0, 466, 215-223.	0.4	2
26	Setting properties and biocompatibility of dicalcium silicate with varying additions of tricalcium aluminate. Journal of Biomaterials Applications, 2012, 27, 171-178.	1.2	13
27	Properties of synthetic monosulfate as a novel material for arsenic removal. Journal of Hazardous Materials, 2012, 227-228, 402-409.	6.5	16
28	Physicochemical properties and <i>in vitro</i> biocompatibility of a hydraulic calcium silicate/tricalcium aluminate cement for endodontic use. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1257-1263.	1.6	15
29	Carbonation of ternary cement systems. Construction and Building Materials, 2012, 27, 313-318.	3.2	31
30	Alkaline Hydration of Tricalcium Aluminate. Journal of the American Ceramic Society, 2012, 95, 3317-3324.	1.9	35
31	A Raman spectroscopic study of the evolution of sulfates and hydroxides in cement–fly ash pastes. Cement and Concrete Research, 2013, 53, 91-103.	4.6	48
32	Effect of Nano Silica on Setting Time and Physical Properties of Mineral Trioxide Aggregate. Journal of Endodontics, 2013, 39, 1448-1451.	1.4	43
33	Synthesis, characterization and hydration analysis of a novel epoxy/superplasticizer oilwell cement slurry – Some mechanistic features by solution microcalorimetry. Journal of Colloid and Interface Science, 2013, 392, 359-368.	5.0	21
34	Post mortem study of refractory lining used in FCC units. Engineering Failure Analysis, 2013, 34, 290-299.	1.8	5
35	Hydration of calcium aluminates and calcium sulfoaluminate studied by Raman spectroscopy. Cement and Concrete Research, 2013, 47, 43-50.	4.6	120
36	Cementos Biomédicos de Fosfato Tricálcico Reforzados con Silicatos y Aluminatos de Calcio-Preparación, Caracterización y Estudios de biodegradación. IFMBE Proceedings, 2013, , 100-103.	0.2	1

#	Article	IF	CITATIONS
37	Raman Spectroscopy of Anhydrous and Hydrated Calcium Aluminates and Sulfoaluminates. Journal of the American Ceramic Society, 2013, 96, 3589-3595.	1.9	67
38	The effect of prehydration on the engineering properties of CEM I Portland cement. Advances in Cement Research, 2013, 25, 12-20.	0.7	26
39	Determination and imaging of binder remnants and aggregates in historic cement stone by Raman microscopy. Journal of Raman Spectroscopy, 2013, 44, 882-891.	1.2	21
40	Impact of environmental moisture on C ₃ A polymorphs in the absence and presence of CaSO ₄ · 0·5 H ₂ O. Advances in Cement Research, 2014, 26, 29-40.	0.7	19
41	Effect of Endodontic Cement on Bone Mineral Density Using Serial Dual-energy X-ray Absorptiometry. Journal of Endodontics, 2014, 40, 648-651.	1.4	18
42	Sisal fiber-reinforced cement composite with Portland cement substitution by a combination of metakaolin and nanoclay. Journal of Materials Science, 2014, 49, 7604-7619.	1.7	57
43	A force field for tricalcium aluminate to characterize surface properties, initial hydration, and organically modified interfaces in atomic resolution. Dalton Transactions, 2014, 43, 10602-10616.	1.6	87
44	Characteristics of Copper-based Oxygen Carriers Supported on Calcium Aluminates for Chemical-Looping Combustion with Oxygen Uncoupling (CLOU). Industrial & Engineering Chemistry Research, 2015, 54, 6713-6723.	1.8	22
45	What do different tests tell about the mechanical and biological properties of bioceramic materials?. Endodontic Topics, 2015, 32, 47-85.	0.5	19
46	Effects of lactic and citric acid on early-age engineering properties of Portland/calcium aluminate blended cements. Construction and Building Materials, 2015, 101, 389-395.	3.2	37
47	α -Tricalcium phosphate cements modified with β -dicalcium silicate and tricalcium aluminate: Physicochemical characterization, <i>in vitro</i> bioactivity and cytotoxicity. , 2015, 103, 72-83.		22
48	Varying fly ash and slag contents in Portland limestone cement mortars exposed to external sulfates. Construction and Building Materials, 2015, 78, 333-341.	3.2	33
49	An experimental investigation of laser scabbling of concrete. Construction and Building Materials, 2015, 89, 76-89.	3.2	17
50	Synthesis and performance of itaconic acid/acrylamide/sodium styrene sulfonate as a self-adapting retarder for oil well cement. RSC Advances, 2015, 5, 55428-55437.	1.7	17
51	Raman Spectroscopy Study on the Hydration Behaviors of Portland Cement Pastes during Setting. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	27
52	A novel cementitious microfiltration membrane: mechanisms of pore formation and properties for water permeation. RSC Advances, 2015, 5, 99-108.	1.7	10
53	Shedding light onto the spectra of lime: Raman and luminescence bands of CaO, Ca(OH) ₂ and CaCO ₃ . Journal of Raman Spectroscopy, 2015, 46, 141-146.	1.2	103
54	Fabrication of a low-cost cementitious catalytic membrane for p-chloronitrobenzene degradation using a hybrid ozonation-membrane filtration system. Chemical Engineering Journal, 2015, 262, 904-912.	6.6	31

#	Article	IF	CITATIONS
55	The Influence of Activated Coal Mining Wastes on the Mineralogy of Blended Cement Pastes. Journal of the American Ceramic Society, 2016, 99, 300-307.	1.9	22
56	Stability of single phase C3A hydrates against pressurized CO2. Construction and Building Materials, 2016, 122, 426-434.	3.2	26
57	In-situ reaction of the very early hydration of C3A-gypsum-sucrose system by Micro-Raman spectroscopy. Cement and Concrete Composites, 2016, 73, 251-256.	4.6	13
58	Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in alkali-activated slag pastes. Cement and Concrete Research, 2016, 89, 310-319.	4.6	82
59	Evaluation of microstructural and microchemical aspects of high density concrete exposed to sustained elevated temperature. Construction and Building Materials, 2016, 126, 453-465.	3.2	17
60	Calcium aluminates in clinker remnants as marker phases for various types of 19th-century cement studied by Raman microspectroscopy. European Journal of Mineralogy, 2016, 28, 907-914.	0.4	12
61	Chemical mapping of cement pastes by using confocal Raman spectroscopy. Frontiers of Structural and Civil Engineering, 2016, 10, 168-173.	1.2	20
62	The influence of pH buffers on hydration of hydraulic phases in system CaO–Al2O3. Journal of Thermal Analysis and Calorimetry, 2016, 124, 629-638.	2.0	9
63	The effect of curing relative humidity on the microstructure of self-compacting concrete. Construction and Building Materials, 2016, 104, 154-159.	3.2	14
64	Calcium silicate-based cements and functional impacts of various constituents. Dental Materials Journal, 2017, 36, 8-18.	0.8	55
65	Novel approach to fabricate organo-LDH hybrid by the intercalation of sodium hexadecyl sulfate into tricalcium aluminate. Applied Clay Science, 2017, 140, 25-30.	2.6	29
66	In situ Raman studies on cement paste prepared with natural pozzolanic volcanic ash and Ordinary Portland Cement. Construction and Building Materials, 2017, 148, 444-454.	3.2	32
67	Role of Adsorption Phenomena in Cubic Tricalcium Aluminate Dissolution. Langmuir, 2017, 33, 45-55.	1.6	93
68	Using ultrasonic wave reflection to monitor false set of cement paste. Cement and Concrete Composites, 2017, 84, 10-18.	4.6	13
69	Dissolution Kinetics of Cubic Tricalcium Aluminate Measured by Digital Holographic Microscopy. Langmuir, 2017, 33, 9645-9656.	1.6	40
70	Solution chemistry of cubic and orthorhombic tricalcium aluminate hydration. Cement and Concrete Research, 2017, 100, 176-185.	4.6	59
71	In situ chemical modification of C–S–H induced by CO2 laser irradiation. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	0
72	Raman spectroscopic investigation of Friedel's salt. Cement and Concrete Composites, 2018, 86, 306-314.	4.6	63

#	Article	IF	Citations
73	Microstructure of Carbonation-Activated Steel Slag Binder. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	21
74	Synchrotron X-ray nanotomographic and spectromicroscopic study of the tricalcium aluminate hydration in the presence of gypsum. Cement and Concrete Research, 2018, 111, 130-137.	4.6	79
75	Effect of Gypsum on the Early Hydration of Cubic and Na-Doped Orthorhombic Tricalcium Aluminate. Materials, 2018, 11, 568.	1.3	21
76	Impact of the coupled substitution of CaCO3 and CaSO4·2H2O on chloride binding behavior in hydrated C3A pastes. Construction and Building Materials, 2019, 217, 638-650.	3.2	10
77	In situ full view of the Portland cement hydration by confocal Raman microscopy. Journal of Raman Spectroscopy, 2019, 50, 720-730.	1.2	28
78	A quantitative study of the C3A hydration. Cement and Concrete Research, 2019, 115, 145-159.	4.6	74
79	Thermal properties and crystallization mechanism of undoped and Nd\$\$^{3+}\$\$-doped \$\$hbox {SiO}_2\$\$–\$\$hbox {Al}_2hbox {O}_3\$\$–CaO–MgO glasses. Journal of Thermal Analysis and Calorimetry, 2020, 140, 275-282.	2.0	0
80	Extraction of Tricalcium Aluminate for Research Applications by Selective Dissolution of Portland Cement Clinker. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	5
81	Ultrahigh removal performance of lead from wastewater by tricalcium aluminate via precipitation combining flocculation with amorphous aluminum. Journal of Cleaner Production, 2020, 246, 118728.	4.6	29
82	Effect of graphene oxide (GO) on the hydration and dissolution of alite in a synthetic cement system. Journal of Materials Science, 2020, 55, 3419-3433.	1.7	19
83	Dissolution and early hydration of tricalcium aluminate in aqueous sulfate solutions. Cement and Concrete Research, 2020, 137, 106191.	4.6	23
84	Hydration model for the OPC-CNT mixture: Theory and experiment. Construction and Building Materials, 2020, 264, 120691.	3.2	11
85	In-situ monitoring of early hydration of clinker and Portland cement with optical fiber excitation Raman spectroscopy. Cement and Concrete Composites, 2020, 112, 103664.	4.6	15
86	C3A passivation with gypsum and hemihydrate monitored by optical spectroscopy. Cement and Concrete Research, 2020, 133, 106082.	4.6	8
87	Characterization of Multiphase Mixtures of Calcium Aluminates and Magnesium Aluminate Spinel Using Timeâ€Gated Raman Spectroscopy. Steel Research International, 2020, 91, 2000084.	1.0	4
88	Nanodispersed TiO2 hydrosol modified Portland cement paste: The underlying role of hydration on self-cleaning mechanisms. Cement and Concrete Research, 2020, 136, 106156.	4.6	44
89	Influence of water activity on hydration of tricalcium aluminate alcium sulfate systems. Journal of the American Ceramic Society, 2020, 103, 3851-3870.	1.9	18
90	Dissolution and initial hydration behavior of tricalcium aluminate in low activity sulfate solutions. Cement and Concrete Research, 2020, 130, 105989.	4.6	35

#	Article	IF	Citations
91	Investigation on early-age hydration, mechanical properties and microstructure of seawater sea sand cement mortar. Construction and Building Materials, 2020, 249, 118776.	3.2	130
92	Catalytic ozonation with silicate-based microfiltration membrane for the removal of iopamidol in aqueous solution. Separation and Purification Technology, 2021, 257, 117873.	3.9	10
93	Raman spectroscopy as a tool to understand the mechanism of concrete durability—A review. Construction and Building Materials, 2021, 268, 121079.	3.2	25
94	The effect of a polycarboxylate ether on C3A / CaSO4·2H2O passivation monitored by optical spectroscopy. Construction and Building Materials, 2021, 270, 121856.	3.2	2
95	Microstructural Investigation of the Effects of Carbon Black Nanoparticles on Hydration Mechanisms, Mechanical and Piezoresistive Properties of Cement Mortars. Materials Research, 2021, 24, .	0.6	8
96	Influences of calcium sulfate bearing material and zinc oxide nanoparticle on hydration properties of white cement clinker. Journal of Materials Research and Technology, 2021, 11, 2003-2014.	2.6	2
97	Improvement of the fabricated and application of aluminosilicate-based microfiltration membrane. Chemosphere, 2021, 273, 129628.	4.2	9
98	Hydration inhibition mechanism of gypsum on tricalcium aluminate from ReaxFF molecular dynamics simulation and quantum chemical calculation. Molecular Simulation, 2021, 47, 1465-1476.	0.9	4
99	Correlated strength enhancement mechanisms in carbon nanotube based geopolymer and OPC binders. Construction and Building Materials, 2021, 305, 124748.	3.2	14
100	Hydration and microstructural characterization of early-age cement paste with ultrasonic wave velocity and electrical resistivity measurements. Construction and Building Materials, 2021, 303, 124508.	3.2	30
101	Enabling phase quantification of anhydrous cements via Raman imaging. Cement and Concrete Research, 2021, 150, 106592.	4.6	13
102	The role of sulfate ions in tricalcium aluminate hydration: New insights. Cement and Concrete Research, 2020, 130, 105973.	4.6	50
103	Early hydration of cementitious systems accelerated by aluminium sulphate: Effect of fine limestone. Cement and Concrete Research, 2020, 134, 106069.	4.6	55
104	Hydration of C3A/gypsum composites in the presence of graphene oxide. Materials Today Communications, 2020, 23, 100889.	0.9	6
106	Study on Synthesis of Tricalciumaluminate Clinker by Hydrate-burning Method. Journal of the Korean Ceramic Society, 2007, 44, 517-523.	1.1	2
107	Examination of Hardened Cement Paste. Japanese Journal of Forensic Science and Technology, 2008, 13, 187-194.	0.1	0

#	Article	IF	CITATIONS
110	Comparison of Compressive Strength and Setting Time of Four Experimental Nanohybrid Mineral Trioxide Aggregates and Angelus Mineral Trioxide Aggregate. World Journal of Dentistry, 2017, 8, 386-392.	0.1	4
111	The influence of low amounts on in situ-polymerized bisphenol-diamine net in cement slurries prepared in seawater – structural analysis after long-term contact with in situ-generated mud-acid fracturing fluid. Revista Materia, 2020, 25, .	0.1	0
112	Effect of Aluminosilicate Nanoparticles on Cement Blends Containing Volcanic Ash and Metakaolin. , 2020, , 145-155.		0
113	Microstructural characterization of self-healing products in cementitious systems containing crystalline admixture in the short- and long-term. Cement and Concrete Composites, 2022, 126, 104369.	4.6	11
114	Stability of hemicarbonate under cement paste-like conditions. Cement and Concrete Research, 2022, 153, 106692.	4.6	42
115	Influence of tricalcium aluminate on the microstructure evolution of CaO specimen during hydration. Journal of the European Ceramic Society, 2022, 42, 1796-1803.	2.8	5
116	Characterization of Calcium Silicate Hydrate Gels with Different Calcium to Silica Ratios and Polymer Modifications. Gels, 2022, 8, 75.	2.1	15
117	Impact of Na/Al Ratio on the Extent of Alkali-Activation Reaction: Non-linearity and Diminishing Returns. Frontiers in Chemistry, 2021, 9, 806532.	1.8	4
118	Degradation of iopamidol by silicate-based microfiltration membrane activated peroxymonosulfate in aqueous solution: Efficiency, mechanism and degradation pathway. Journal of Cleaner Production, 2022, 338, 130562.	4.6	2
119	Effect of Water–Solid Mixing Sequence and Crystallization Water of Calcium Sulphate on the Hydration of C3A. Materials, 2022, 15, 2297.	1.3	1
120	Penetrated surface characteristics of cement - mixed sand in powder bed 3D printing. Journal of Asian Ceramic Societies, 2022, 10, 306-313.	1.0	3
121	Raman study of the ageing test of natural hydraulic lime under the influence of industrial port activities. Journal of Raman Spectroscopy, 2022, 53, 608-616.	1.2	1
122	De-Powdering Effect of Foundry Sand for Cement Casting. Applied Sciences (Switzerland), 2022, 12, 266.	1.3	0
124	Unveiling Non-isothermal Crystallization of CaO–Al ₂ O ₃ –B ₂ O ₃ –Na ₂ O–Li _{2<!--<br-->Glass via <i>In Situ</i>X-ray Scattering and Raman Spectroscopy. Inorganic Chemistry, 2022, 61, 7017-7025.}	sub>Oâ€′	"SiO ₂
125	Effect of Tartaric Acid on the Hydration of Oil Well Cement at Elevated Temperatures between 60 Oc and 89 Oc. SSRN Electronic Journal, 0, , .	0.4	0
126	Effect of Alkali Salts on the Hydration Process of Belite Clinker. Materials, 2022, 15, 3424.	1.3	2
127	Heat of hydration in clays stabilized by a high-alumina steel furnace slag. Cleaner Materials, 2022, 5, 100105.	1.9	4
128	Tracing the Status of Silica Fume in Cementitious Materials Subjected to Deterioration Mechanisms with Raman Microscope. Materials, 2022, 15, 5195.	1.3	1

#	Article	IF	CITATIONS
129	A new insight into influence of calcium bromide on the early strength of mortar mixed with alkali free liquid accelerator: Formation of new crystal Ca4Al2O6Br2·10H2O. Construction and Building Materials, 2022, 349, 128766.	3.2	4
130	Effect of tartaric acid on the hydration of oil well cement at elevated temperatures between 60°C and 89°C. Cement and Concrete Research, 2022, 161, 106952.	4.6	10
131	New insights into the effect of calcium formate on hydration process of C3A-AF-Gp System: Formation C3Aâ^™Ca(HCOO)2·11H2O phase. Construction and Building Materials, 2022, 351, 128941.	3.2	3
132	Influence of Sulfates on Formation of Ettringite during Early C3A Hydration. Materials, 2022, 15, 6934.	1.3	1
133	Elaboration and Luminescence Properties of Laser-Heated Pedestal Growth Sr ₃ Al ₂ O ₆ -Based Fibers. Crystal Growth and Design, 2022, 22, 6828-6836.	1.4	1
134	Chemical-Physical Properties and Bioactivity of New Premixed Calcium Silicate-Bioceramic Root Canal Sealers. International Journal of Molecular Sciences, 2022, 23, 13914.	1.8	19
135	Effect of elevated Al concentration on early-age hydration of Portland cement. Cement and Concrete Composites, 2023, 136, 104866.	4.6	13
136	Chloride binding behaviors and early age hydration of tricalcium aluminate in chloride-containing solutions. Cement and Concrete Composites, 2023, 137, 104928.	4.6	12
137	Mechanical properties and hydration of ultra-high-performance seawater sea-sand concrete (UHPSSC) with limestone calcined clay cement (LC3). Construction and Building Materials, 2023, 376, 130950.	3.2	6
138	Early stage ettringite and monosulfoaluminate carbonation investigated by in situ Raman spectroscopy coupled with principal component analysis. Materials Today Communications, 2023, 35, 105539.	0.9	2
139	The hydration of tricalcium aluminate (Ca3Al2O6) in Portland cement-related systems: A review. Cement and Concrete Research, 2023, 168, 107150.	4.6	7
140	Cement Kiln Dust (CKD) as a Partial Substitute for Cement in Pozzolanic Concrete Blocks. Buildings, 2023, 13, 568.	1.4	1