CITATION REPORT List of articles citing

DOI: 10.1086/506610 Astrophysical Journal, 2006, 651, 142-154.

Source: https://exaly.com/paper-pdf/39528344/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1359	The Relation between Quasar and Merging Galaxy Luminosity Functions and the Merger-driven Star Formation History of the Universe. <i>Astrophysical Journal</i> , 2006 , 652, 864-888	4.7	184
1358	Cosmic Supernova Rates and the Hubble Sequence. <i>Astrophysical Journal</i> , 2006 , 652, 889-901	4.7	25
1357	DLAs AND GALAXY FORMATION. 2007 , 22, 2413-2427		1
1356	Do long duration gamma ray bursts follow star formation?. <i>Journal of Cosmology and Astroparticle Physics</i> , 2007 , 2007, 003-003	6.4	69
1355	Prospects for stochastic background searches using Virgo and LSC interferometers. 2007 , 24, S639-S64.	8	18
1354	Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects. <i>Journal of Cosmology and Astroparticle Physics</i> , 2007 , 2007, 011-011	6.4	91
1353	A stochastic background from extra-galactic double neutron stars. 2007 , 24, S627-S637		20
1352	On the Redshift Distribution of Gamma-Ray Bursts in theSwiftEra. <i>Astrophysical Journal</i> , 2007 , 661, 394	-441 / 5	93
1351	The Local Universe as Seen in the Far-Infrared and Far-Ultraviolet: A Global Point of View of the Local Recent Star Formation. 2007 , 173, 404-414		74
1350	The Gamma-Ray Burst Luminosity Function in the Light of the Swift 2 Year Data. <i>Astrophysical Journal</i> , 2007 , 656, L49-L52	4.7	78
1349	Star Formation in AEGIS Field Galaxies since $z=1.1$: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies. <i>Astrophysical Journal</i> , 2007 , 660, L43-L46	4.7	1355
1348	The Local Environments of Long-Duration Gamma-Ray Bursts. <i>Astrophysical Journal</i> , 2007 , 670, 584-591	4.7	8
1347	The Cosmic Coincidence as a Temporal Selection Effect Produced by the Age Distribution of Terrestrial Planets in the Universe. <i>Astrophysical Journal</i> , 2007 , 671, 853-860	4.7	12
1346	First Constraints on Source Counts at 350 fh. Astrophysical Journal, 2007, 665, 973-979	4.7	17
1345	Deducing the Lifetime of Short Gamma-Ray Burst Progenitors from Host Galaxy Demography. <i>Astrophysical Journal</i> , 2007 , 665, 1220-1226	4.7	48
1344	Clustering Properties of Rest-Frame UV-Selected Galaxies. I. the Correlation Length Derived from GALEX Data in the Local Universe. 2007 , 173, 494-502		14
1343	The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence. 2007 , 173, 315-341		244

(2007-2007)

1342	Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift. <i>Astrophysical Journal</i> , 2007 , 667, L37-L40	4.7	84
1341	Evolution of the Luminosity Function, Star Formation Rate, Morphology, and Size of Star-forming Galaxies Selected at Rest-Frame 1500 and 2800 A. <i>Astrophysical Journal</i> , 2007 , 654, 172-185	4.7	88
1340	Truncated Star Formation in Compact Groups of Galaxies: A Stellar Population Study. 2007, 133, 330-3	46	37
1339	AEGIS20: A Radio Survey of the Extended Groth Strip. <i>Astrophysical Journal</i> , 2007 , 660, L77-L80	4.7	64
1338	Statistics of Cosmological Black Hole Jet Sources: Blazar Predictions for theGamma-Ray Large Area Space Telescope. <i>Astrophysical Journal</i> , 2007 , 659, 958-975	4.7	64
1337	Measuring the cosmic star-formation rate density using deep radio surveys. 2007, 3, 415-416		
1336	Neutrino spectrum from SN 1987A and from cosmic supernovae. <i>Physical Review D</i> , 2007 , 76,	4.9	31
1335	Testing neutrino spectra formation in collapsing stars with the diffuse supernova neutrino flux. <i>Physical Review D</i> , 2007 , 75,	4.9	11
1334	Detection potential for the diffuse supernova neutrino background in the large liquid-scintillator detector LENA. <i>Physical Review D</i> , 2007 , 75,	4.9	38
1333	Probing late neutrino mass properties with supernova neutrinos. <i>Physical Review D</i> , 2007 , 76,	4.9	12
1332	Enhanced cosmological GRB rates and implications for cosmogenic neutrinos. <i>Physical Review D</i> , 2007 , 75,	4.9	52
1331	Predicting the cosmological constant from the causal entropic principle. <i>Physical Review D</i> , 2007 , 76,	4.9	73
1330	Using VO tools to investigate distant radio starbursts hosting obscured AGN in the HDF(N) region. <i>Astronomy and Astrophysics</i> , 2007 , 472, 805-822	5.1	17
1329	The ultraviolet properties of luminous infrared galaxies atz ~ 0.7. <i>Astronomy and Astrophysics</i> , 2007 , 469, 19-25	5.1	34
1328	The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyr. Evidence for a major build up of the red sequence betweenz= 2 andz= 1. <i>Astronomy and Astrophysics</i> , 2007 , 476, 137-150	5.1	229
1327	The cosmic star formation rate evolution fromz´=´5 toz´=´0 from the VIMOS VLT deep survey. <i>Astronomy and Astrophysics</i> , 2007 , 472, 403-419	5.1	69
1326	The reversal of the star formation-density relation in the distant universe. <i>Astronomy and Astrophysics</i> , 2007 , 468, 33-48	5.1	1113
1325	A narrow-band search for Ly\$mathsf{alpha}\$ emitting galaxies atz= 8.8. <i>Astronomy and Astrophysics</i> , 2007 , 461, 911-916	5.1	44

1324	Testing the supernova neutrino spectrum with the diffuse supernova neutrino flux. 2007, 168, 131-133		1
1323	Open issues with the gamma-ray burst redshift distribution. 2007 , 51, 539-546		20
1322	Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 375, 931-950	4.3	258
1321	Lyman-break galaxies at z´5 - I. First significant stellar mass assembly in galaxies that are not simply z´3 LBGs at higher redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 1024-1042	4.3	101
1320	On the evolutionary history of stars and their fossil mass and light. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 379, 985-1002	4.3	97
1319	Probing the star formation history using the redshift evolution of luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 285-299	4.3	42
1318	How many supernovae are we missing at high redshift?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 377, 1229-1235	4.3	50
1317	The missing metals problem - III. How many metals are expelled from galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 378, 525-540	4.3	77
1316	Supernovae in the Subaru Deep Field: an initial sample and Type Ia rate out to redshift 1.6. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 382, 1169-1186	4.3	69
1315	The DEEP2 Galaxy Redshift Survey: the role of galaxy environment in the cosmic star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 383, 1058-1078	4.3	204
1314	A census of metals and baryons in stars in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2007 , 383, 1439-1458	4.3	117
1313	On the detection of very high redshift gamma-ray bursts with Swift. 2007 , 380, L45-L48		15
1312	High-energy cosmology. 2007 , 309, 127-137		3
1311	Snapping supernovae at z>1.7. 2007 , 27, 213-225		15
1310			1
	The X-ray-infrared/submillimetre connection and the legacy era of cosmology. 2008 , 329, 127-130		
1309		618	27
1309		618	

(2008-2008)

1306	Gamma-ray bursts from the early Universe: predictions for present-day and future instruments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 189-194	4.3	22
1305	Star formation density and H\(\text{H}\)uminosity function of an emission-line-selected galaxy sample at z~ 0.24. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 383, 339-354	4.3	10
1304	The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 147-160	4.3	251
1303	The evolution of stellar mass and the implied star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 687-694	4.3	179
1302	Constrained semi-analytical models of galactic outflows. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 783-808	4.3	33
1301	Where are the missing gamma-ray burst redshifts?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 386, 111-116	4.3	20
1300	The stellar population histories of early-type galaxies [III. The Coma cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 386, 715-747	4.3	95
1299	Mass, metal, and energy feedback in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 577-600	4.3	390
1298	A 610-MHz survey of the Lockman Hole with the Giant Metrewave Radio Telescope - I. Observations, data reduction and source catalogue for the central 5 deg2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 387, 1037-1044	4.3	34
1297	Rates, progenitors and cosmic mix of Type Ia supernovae. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 388, 829-837	4.3	47
1296	A synthesis model for AGN evolution: supermassive black holes growth and feedback modes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , ???-???	4.3	110
1295	A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , ???-???	4.3	110
1294	Star formation history up toz= 7.4: implications for gamma-ray bursts and cosmic metallicity evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 388, 1487-1500	4.3	103
1293	Constraining the quasar population with the broad-line width distribution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 ,	4.3	22
1292	A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 391, 481-506	4.3	792
1291	Extragalactic constraints on the initial mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 391, 363-368	4.3	58
1290	Probing the low-luminosity gamma-ray burst population with new generation satellite detectors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 391, 405-410	4.3	9
1289	Non-thermal neutrinos from supernovae leaving a magnetar. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 391, 1893-1899	4.3	3

1288	Testing MeV dark matter with neutrino detectors. <i>Physical Review D</i> , 2008 , 77,	1 .9	46
1287	Upper limit on the cosmic gamma-ray burst rate from high energy diffuse neutrino background. Physical Review D, 2008 , 77,	ļ .9	3
1286	The effect of collective flavor oscillations on the diffuse supernova neutrino background. <i>Journal of Cosmology and Astroparticle Physics</i> , 2008 , 2008, 013	ó.4	33
1285	Nucleosynthesis from massive stars 50 years after B2FH. 2008 , 32, 187-232		6
1284	A Flat Photoionization Rate at 2 $\ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 $	ŀ ∕7	74
1283	A Cosmological Framework for the Co-evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity. 2008 , 175, 356-389		958
1282	Star-Forming Galaxies atz[0.24 in the Subaru Deep Field and the Sloan Digital Sky Survey. 2008 , 60, 1219-	1229	14
1281	Implications for Galaxy Evolution from Cosmic Evolution of the Supernova Rate Density. 2008 , 60, 169-18	32	10
1280	Upper limits on the diffuse supernova neutrino flux from the SuperKamiokande data. <i>Journal of Cosmology and Astroparticle Physics</i> , 2008 , 2008, 033	ó.4	20
1279	The Effect of AGN and SNe Feedback on Star Formation, Reionization and the Near Infrared Background. 2008 , 8, 631-642		2
1278	Astrophysical sources of a stochastic gravitational-wave background. 2008 , 25, 184018		46
1277	A Measurement of the Rate of Type Ia Supernovae at Redshiftz 10.1 from the First Season of the SDSS-II Supernova Survey. <i>Astrophysical Journal</i> , 2008 , 682, 262-282	l .7	87
1276	The Stellar Mass Assembly of Galaxies fromz= 0 toz= 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared withSpitzer. <i>Astrophysical Journal</i> , 2008 , 675, 234-261	ŀ ∙7	458
1275	Predictions of the causal entropic principle for environmental conditions of the universe. <i>Physical Review D</i> , 2008 , 77,	ļ .9	19
1274	The Luminosity Function of Long Gamma-Ray Burst and their rate at z 🖟. 2008 , 4, 212-216		
1273	Evolution and chemical and dynamical effects of high-mass stars. 2008, 4, 325-336		
1272	Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts. <i>Astrophysical Journal</i> , 2008 , 675, 566-585	1 .7	76
1271	The Evolution of AGN Host Galaxies: From Blue to Red and the Influence of Large-Scale Structures. Astrophysical Journal, 2008 , 675, 1025-1040	1 .7	127

(2008-2008)

1270	Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS). <i>Astronomy and Astrophysics</i> , 2008 , 479, 49-66	5.1	106
1269	Evidence of Cosmic Evolution of the Stellar Initial Mass Function. <i>Astrophysical Journal</i> , 2008 , 674, 29-50	4.7	198
1268	The H⊞ased Star Formation Rate Density of the Universe atz= 0.84. <i>Astrophysical Journal</i> , 2008 , 677, 169-185	4.7	79
1267	LyEmitting Galaxies at 0.2´. Astrophysical Journal, 2008, 680, 1072-1082	4.7	86
1266	Contribution to Unresolved Infrared Fluctuations from Dwarf Galaxies at Redshifts of 2B. <i>Astrophysical Journal</i> , 2008 , 681, 53-57	4.7	19
1265	FIREWORKSU38BoI4 Th Photometry of the GOODS Chandra Deep FieldBouth: Multiwavelength Catalog and Total Infrared Properties of DistantKs-selected Galaxies. <i>Astrophysical Journal</i> , 2008 , 682, 985-1003	4.7	254
1264	A Comprehensive Comparison of the Sun to Other Stars: Searching for Self-Selection Effects. Astrophysical Journal, 2008 , 684, 691-706	4.7	28
1263	A New Determination of the High-Redshift Type Ia Supernova Rates with theHubble Space TelescopeAdvanced Camera for Surveys. <i>Astrophysical Journal</i> , 2008 , 673, 981-998	4.7	57
1262	A Cosmological Framework for the Co-evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. II. Formation of Red Ellipticals. 2008 , 175, 390-422		282
1261	Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals. <i>Astrophysical Journal</i> , 2008 , 673, 999-1008	4.7	169
1260	Sensitive far-IR survey spectroscopy: BLISS for SPICA. 2008,		6
1259	Kinemetry of SINS High-Redshift Star-Forming Galaxies: Distinguishing Rotating Disks from Major Mergers. <i>Astrophysical Journal</i> , 2008 , 682, 231-251	4.7	203
1258	An Unexpectedly Swift Rise in the Gamma-Ray Burst Rate. <i>Astrophysical Journal</i> , 2008 , 673, L119-L122	4.7	98
1257	The Energy Output of the Universe from 0.1 to 1000 fb. Astrophysical Journal, 2008, 678, L101-L104	4.7	88
1256	A Survey About Nothing: Monitoring a Million Supergiants for Failed Supernovae. <i>Astrophysical Journal</i> , 2008 , 684, 1336-1342	4.7	189
1255	Linked Evolution of Gas and Star Formation in Galaxies Over Cosmic History. <i>Astrophysical Journal</i> , 2008 , 682, L13-L16	4.7	42
1254	Optical Morphologies of Millijansky Radio Galaxies Observed by theHubble Space Telescopeand in the Very Large Array FIRST Survey. 2008 , 179, 306-318		1
1253	Evolution of the Intergalactic Opacity: Implications for the Ionizing Background, Cosmic Star Formation, and Quasar Activity. <i>Astrophysical Journal</i> , 2008 , 688, 85-107	4.7	196

1252	Cosmic Ray Production of Beryllium and Boron at High Redshift. Astrophysical Journal, 2008, 673, 676-6	8 45.7	19
1251	Molecular Hydrogen and Global Star Formation Relations in Galaxies. <i>Astrophysical Journal</i> , 2008 , 680, 1083-1111	4.7	237
1250	The Contribution of Star Formation and Merging to Stellar Mass Buildup in Galaxies. <i>Astrophysical Journal</i> , 2008 , 680, 41-53	4.7	89
1249	Revealing the High-Redshift Star Formation Rate with Gamma-Ray Bursts. <i>Astrophysical Journal</i> , 2008 , 683, L5-L8	4.7	220
1248	An Integrated Picture of Star Formation, Metallicity Evolution, and Galactic Stellar Mass Assembly. <i>Astrophysical Journal</i> , 2008 , 686, 72-116	4.7	126
1247	The VIMOS VLT Deep Survey. Astronomy and Astrophysics, 2008, 487, 89-101	5.1	62
1246	The clustering of merging star-forming haloes: dust emission as high frequency arcminute CMB foreground. <i>Astronomy and Astrophysics</i> , 2008 , 478, 685-700	5.1	21
1245	AMAZE. Astronomy and Astrophysics, 2008, 488, 463-479	5.1	704
1244	Integral field near-infrared spectroscopy of II Zw 40. Astronomy and Astrophysics, 2008, 486, 393-403	5.1	39
1243	The H\$mathsf{alpha}\$ Galaxy survey. Astronomy and Astrophysics, 2008, 482, 507-516	5.1	34
1242	THE STAR FORMATION HISTORIES OF RED-SEQUENCE GALAXIES, MASS-TO-LIGHT RATIOS AND THE FUNDAMENTAL PLANE. <i>Astrophysical Journal</i> , 2009 , 702, 1275-1296	4.7	27
1241	ON THE NATURE OF THE FIRST GALAXIES SELECTED AT 350 th. Astrophysical Journal, 2009, 706, 319-32	274.7	2
1240	HOW DO DISKS SURVIVE MERGERS?. Astrophysical Journal, 2009 , 691, 1168-1201	4.7	391
1239	EVOLUTION OF THE RATE AND MODE OF STAR FORMATION IN GALAXIES SINCE $z=0.7$. Astrophysical Journal, 2009 , 699, L130-L133	4.7	14
1238	STAR FORMATION IN THE CHANDRA DEEP FIELD SOUTH: OBSERVATIONS CONFRONT SIMULATIONS. <i>Astrophysical Journal</i> , 2009 , 705, 617-623	4.7	41
1237	THE DUST-UNBIASED COSMIC STAR-FORMATION HISTORY FROM THE 20 CM VLA-COSMOS SURVEY. <i>Astrophysical Journal</i> , 2009 , 690, 610-618	4.7	65
1236	RELATION BETWEEN STELLAR MASS AND STAR-FORMATION ACTIVITY IN GALAXIES. <i>Astrophysical Journal</i> , 2009 , 690, 1074-1083	4.7	36
1235	TIMESCALES FOR LOW-MASS STAR FORMATION IN EXTRAGALACTIC ENVIRONMENTS: IMPLICATIONS FOR THE STELLAR INITIAL MASS FUNCTION. <i>Astrophysical Journal</i> , 2009 , 692, 283-289	4.7	11

1234	THE STELLAR POPULATIONS OF LYMAN BREAK GALAXIES ATz~ 5. Astrophysical Journal, 2009, 693, 507	- 5 43/3	65
1233	ONGOING AND CO-EVOLVING STAR FORMATION IN ZCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI. <i>Astrophysical Journal</i> , 2009 , 696, 396-410	4.7	186
1232	EPISODIC RANDOM ACCRETION AND THE COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLE SPINS. <i>Astrophysical Journal</i> , 2009 , 697, L141-L144	4.7	54
1231	SPATIAL CLUSTERING FROMGALEX-SDSS SAMPLES: STAR FORMATION HISTORY AND LARGE-SCALE CLUSTERING. <i>Astrophysical Journal</i> , 2009 , 698, 1838-1851	4.7	18
1230	THE WARM MOLECULAR GAS AROUND THE CLOVERLEAF QUASAR. <i>Astrophysical Journal</i> , 2009 , 705, 112-122	4.7	65
1229	THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS. <i>Astrophysical Journal</i> , 2009 , 705, L104-L108	4.7	212
1228	BLAST: A FAR-INFRARED MEASUREMENT OF THE HISTORY OF STAR FORMATION. <i>Astrophysical Journal</i> , 2009 , 707, 1740-1749	4.7	58
1227	INTENSITY DISTRIBUTION AND LUMINOSITY FUNCTION OF THE SWIFT GAMMA-RAY BURSTS. Astrophysical Journal, 2009 , 697, L68-L71	4.7	17
1226	THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION. <i>Astrophysical Journal</i> , 2009 , 697, 1493-1511	4.7	307
1225	First stars and the extragalactic background light: how recent ay observations constrain the early universe. <i>Astronomy and Astrophysics</i> , 2009 , 498, 25-35	5.1	27
1224	Integral field spectroscopy with SINFONI of VVDS galaxies. Astronomy and Astrophysics, 2009, 504, 789-	8 9 15	120
1223	Star formation and mass assembly in high redshift galaxies. <i>Astronomy and Astrophysics</i> , 2009 , 504, 751-	-75617	263
1222	Near-IR search for lensed supernovae behind galaxy clusters. <i>Astronomy and Astrophysics</i> , 2009 , 507, 71-83	5.1	29
1221	THE CONTRIBUTION OF ACTIVE GALACTIC NUCLEI TO THE MICROJANSKY RADIO POPULATION. <i>Astrophysical Journal</i> , 2009 , 698, 1033-1041	4.7	12
1220	LYMAN BREAK GALAXIES ATz~ 5: REST-FRAME UV SPECTRA. III Astrophysical Journal, 2009 , 704, 117-1	24 .7	4
1219	UV CONTINUUM SLOPE AND DUST OBSCURATION FROMz~ 6 TOz~ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT. <i>Astrophysical Journal</i> , 2009 , 705, 936-961	4.7	339
1218	STAR-FORMING OR STARBURSTING? THE ULTRAVIOLET CONUNDRUM. <i>Astrophysical Journal</i> , 2009 , 706, 553-570	4.7	54
1217	CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME. Astrophysical Journal, 2009 , 696, 620-635	4.7	383

1216	PASCHEN-EMISSION IN THE GRAVITATIONALLY LENSED GALAXY SMM J163554.2+661225. Astrophysical Journal, 2009 , 704, 1506-1518	4.7	13
1215	THE SINS SURVEY: MODELING THE DYNAMICS OFz~ 2 GALAXIES AND THE HIGH-zTULLY-FISHER RELATION. <i>Astrophysical Journal</i> , 2009 , 697, 115-132	4.7	224
1214	The core-collapse rate from the Supernova Legacy Survey. Astronomy and Astrophysics, 2009, 499, 653-6	5 6 0r	92
1213	CONSTRAINING THE STAR FORMATION HISTORIES OF GAMMA-RAY BURST HOST GALAXIES FROM THEIR OBSERVED ABUNDANCE PATTERNS. <i>Astrophysical Journal</i> , 2009 , 693, 1236-1249	4.7	19
1212	OBSERVATIONAL CONSTRAINTS ON THE CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND GALAXIES. <i>Astrophysical Journal</i> , 2009 , 707, 1566-1577	4.7	39
1211	GAMMA-RAY BURST LUMINOSITY FUNCTIONS BASED ON A NEWLY DISCOVERED CORRELATION BETWEEN PEAK SPECTRAL ENERGY ANDV/Vmax. <i>Astrophysical Journal</i> , 2009 , 700, 633-641	4.7	6
1210	LARGE AREA SURVEY FORZ= 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION. <i>Astrophysical Journal</i> , 2009 , 706, 1136-1151	4.7	236
1209	THE STELLAR CONTRIBUTION TO THE EXTRAGALACTIC BACKGROUND LIGHT AND ABSORPTION OF HIGH-ENERGY GAMMA RAYS. <i>Astrophysical Journal</i> , 2009 , 697, 483-492	4.7	48
1208	MOIRCS DEEP SURVEY. IV. EVOLUTION OF GALAXY STELLAR MASS FUNCTION BACK TOz~ 3. Astrophysical Journal, 2009 , 702, 1393-1412	4.7	91
1207	DETECTIONS OF WATER ICE, HYDROCARBONS, AND 3.3 th PAH INz~ 2 ULIRGs. <i>Astrophysical Journal</i> , 2009 , 703, 270-284	4.7	24
1206	THE DEPENDENCE OF STAR FORMATION ACTIVITY ON STELLAR MASS SURFACE DENSITY AND SERSIC INDEX IN zCOSMOS GALAXIES AT 0.5 . <i>Astrophysical Journal</i> , 2009 , 694, 1099-1114	4.7	35
1205	Neutrino diagnostics of ultrahigh energy cosmic ray protons. <i>Physical Review D</i> , 2009 , 79,	4.9	44
1204	Diffuse neutrino flux from failed supernovae. 2009 , 102, 231101		58
1203	NEAR-ULTRAVIOLET SOURCES IN THE HUBBLE ULTRA DEEP FIELD: THE CATALOG. 2009 , 138, 598-605		5
1202	THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OFz~ 2 STAR-FORMING GALAXIES. Astrophysical Journal, 2009 , 706, 1364-1428	4.7	804
1201	Cosmic core-collapse supernovae from upcoming sky surveys. <i>Journal of Cosmology and Astroparticle Physics</i> , 2009 , 2009, 047-047	6.4	26
1200	The star formation history of K-selected galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 3-20	4.3	134
1199	Evidence for luminosity evolution of long gamma-ray bursts inSwiftdata. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 299-303	4.3	50

1198	325-MHz observations of the ELAIS-N1 field using the Giant Metrewave Radio Telescope. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 269-281	4.3	28
1197	A new search for distant radio galaxies in the Southern hemisphere - III. Optical spectroscopy and analysis of the MRCR-SUMSS sample. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 1099	- 1 -₹20	29
1196	A massive white dwarf member of the Coma Berenices open cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 1591-1598	4.3	4
1195	A new detailed examination of white dwarfs in NGC 3532 and NGC 2287. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 2248-2256	4.3	42
1194	The relationship between star formation rate and radio synchrotron luminosity at 0 Monthly Notices of the Royal Astronomical Society, 2009 , 397, 1101-1112	4.3	38
1193	HiZELS: a high-redshift survey of Hæmitters - II. The nature of star-forming galaxies atz= 0.84. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 75-90	4.3	123
1192	LSD: Lyman-break galaxies Stellar populations and Dynamics - I. Mass, metallicity and gas atz~ 3.1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 1915-1931	4.3	276
1191	Understanding the redshift evolution of the luminosity functions of Lyman\(\text{\text{\text{e}}}\) mitters. Monthly Notices of the Royal Astronomical Society, 2009 , 398, 2061-2068	4.3	21
1190	Compactness of cold gas in high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 665-669	4.3	13
1189	Imprint of galaxy clustering in the cosmic gamma-ray background. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 2122-2127	4.3	42
1188	Are red 2MASS QSOs young?. Monthly Notices of the Royal Astronomical Society, 2009, 394, 533-546	4.3	30
1187	Galaxies in a simulated IDM Universe - I. Cold mode and hot cores. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 160-179	4.3	546
1186	The effects of gas on morphological transformation in mergers: implications for bulge and disc demographics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 802-814	4.3	156
1185	Influence of Population III stars on cosmic chemical evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 398, 1782-1792	4.3	28
1184	A spectroscopic measure of the star formation rate density in dwarf galaxies atz~ 1. 2009 , 395, L76-L80		6
1183	Are GRB optical afterglows relatively brighter at highz?. 2009 , 399, L108-L112		4
1182	High-redshift star formation rate up toz??? 8.3 derived from gamma-ray bursts and influence of background cosmology. 2009 , 400, L10-L14		47
1181	Theoretical cosmic Type Ia supernova rates. 2009 , 14, 638-648		17

1180	The Effect of the Initial Mass Function of Stars on the Burst Rate of GRBs. 2009, 33, 151-157		О
1179	Stellar black holes and the origin of cosmic acceleration. <i>Physical Review D</i> , 2009 , 80,	4.9	18
1178	Gravitational-wave confusion background from cosmological compact binaries: Implications for future terrestrial detectors. <i>Physical Review D</i> , 2009 , 79,	4.9	39
1177	Star formation in the multiverse. <i>Physical Review D</i> , 2009 , 79,	4.9	16
1176	Curvature constraints from the causal entropic principle. <i>Physical Review D</i> , 2009 , 80,	4.9	10
1175	Diffuse supernova neutrino background is detectable in Super-Kamiokande. <i>Physical Review D</i> , 2009 , 79,	4.9	110
1174	OBSERVATIONS OF STARBURST GALAXIES WITH FAR-ULTRAVIOLET SPECTROGRAPHIC EXPLORER: GALACTIC FEEDBACK IN THE LOCAL UNIVERSE. 2009 , 181, 272-320		122
1173	GALAXY CLUSTERS IN THE IRAC DARK FIELD. II. MID-INFRARED SOURCES. <i>Astrophysical Journal</i> , 2009 , 700, 123-136	4.7	12
1172	Quasar Metal Abundances & Tost Galaxy Evolution. 2009 , 5, 171-178		
1171	The Cosmic Chemical Evolution as seen by the Brightest Events in the Universe. 2009 , 5, 139-146		1
1170	A rate study of Type Ia supernovae with Subaru/XMM-Newton Deep Survey. 2009 , 5, 358-361		
1169	BALANCING THE COSMIC ENERGY BUDGET: THE COSMIC X-RAY BACKGROUND, BLAZARS, AND THE COMPTON THICK ACTIVE GALACTIC NUCLEUS FRACTION. <i>Astrophysical Journal</i> , 2009 , 707, 778-78	36 ^{4.7}	38
1168	THE STAR FORMATION AND NUCLEAR ACCRETION HISTORIES OF NORMAL GALAXIES IN THE AGES SURVEY. <i>Astrophysical Journal</i> , 2009 , 696, 2206-2219	4.7	10
1167	THE [O II] B727 LUMINOSITY FUNCTION ATz~ 1. Astrophysical Journal, 2009, 701, 86-93	4.7	41
1166	THE EVOLUTION OFSWIFT/BAT BLAZARS AND THE ORIGIN OF THE MeV BACKGROUND. Astrophysical Journal, 2009 , 699, 603-625	4.7	144
1165	THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. I. THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE INITIAL MASS FUNCTION TO THE DERIVED PHYSICAL PROPERTIES OF GALAXIES. <i>Astrophysical Journal</i> , 2009 , 699, 486-506	4.7	949
1164	The radial distribution of core-collapse supernovae in spiral host galaxies. <i>Astronomy and Astrophysics</i> , 2009 , 508, 1259-1268	5.1	48
1163	Confusion background from compact binaries. 2010 , 228, 012009		2

1162 Molecular Gas in Galaxies at all Redshifts. 2010, 6, 47-54

1161 l	High precision spectra at large redshift for dynamical DE cosmologies. 2010 , 259, 012025		1
1160	EMPIRICAL DELAY-TIME DISTRIBUTIONS OF TYPE Ia SUPERNOVAE FROM THE EXTENDED GOODS/HUBBLE SPACE TELESCOPESUPERNOVA SURVEY. <i>Astrophysical Journal</i> , 2010 , 713, 32-40	4.7	21
	MERGERS AND BULGE FORMATION IN IDM: WHICH MERGERS MATTER?. <i>Astrophysical Journal</i> , 2010 , 715, 202-229	4.7	299
1158 l	COLOR-MAGNITUDE RELATIONS OF ACTIVE AND NON-ACTIVE GALAXIES IN THE CHANDRA DEEP FIELDS: HIGH-REDSHIFT CONSTRAINTS AND STELLAR-MASS SELECTION EFFECTS. <i>Astrophysical Journal</i> , 2010 , 720, 368-391	4.7	165
44 F	THEFERMI-LAT HIGH-LATITUDE SURVEY: SOURCE COUNT DISTRIBUTIONS AND THE ORIGIN OF THE EXTRAGALACTIC DIFFUSE BACKGROUND. <i>Astrophysical Journal</i> , 2010 , 720, 435-453	4.7	158
	Star formation and dust extinction properties of local galaxies from the AKARI-GALEX all-sky surveys. <i>Astronomy and Astrophysics</i> , 2010 , 514, A4	5.1	59
7766	MOIRCS DEEP SURVEY. VI. NEAR-INFRARED SPECTROSCOPY OFK-SELECTED STAR-FORMING GALAXIES ATz~ 2. <i>Astrophysical Journal</i> , 2010 , 718, 112-132	4.7	67
イイドイ	DECOMPOSING STAR FORMATION AND ACTIVE GALACTIC NUCLEUS WITHSPITZERMID-INFRARED SPECTRA: LUMINOSITY FUNCTIONS AND CO-EVOLUTION. <i>Astrophysical Journal</i> , 2010 , 722, 653-667	4.7	34
1153	A lower-limit flux for the extragalactic background light. <i>Astronomy and Astrophysics</i> , 2010 , 515, A19	5.1	130
イイドつ	GALAXY FORMATION WITH COLD GAS ACCRETION AND EVOLVING STELLAR INITIAL MASS FUNCTION. <i>Astrophysical Journal</i> , 2010 , 713, 1301-1309	4.7	11
1151 /	ASPITZER-SELECTED GALAXY CLUSTER ATz= 1.62. Astrophysical Journal, 2010 , 716, 1503-1513	4.7	206
1150	THE GAS CONSUMPTION HISTORY TO REDSHIFT 4. Astrophysical Journal, 2010 , 717, 323-332	4.7	75
	THE EVOLUTION OF THE STAR FORMATION RATE OF GALAXIES AT 0.0 ?z? 1.2. <i>Astrophysical Journal</i> 2010 , 718, 1171-1185	4.7	51
	GALAXY DOWNSIZING EVIDENCED BY HYBRID EVOLUTIONARY TRACKS. <i>Astrophysical Journal</i> , 2010 , 723, 755-766	4.7	29
	Cosmic evolution of submillimeter galaxies and their contribution to stellar mass assembly. Astronomy and Astrophysics, 2010 , 514, A67	5.1	190
	LONG-DURATION RADIO TRANSIENTS LACKING OPTICAL COUNTERPARTS ARE POSSIBLY GALACTIC NEUTRON STARS. <i>Astrophysical Journal</i> , 2010 , 711, 517-531	4.7	29
1145 (On the buildup of massive early-type galaxies atz\$la\$ 1. Astronomy and Astrophysics, 2010 , 519, A55	5.1	27

1144	OBSCURED STAR FORMATION AND ENVIRONMENT IN THE COSMOS FIELD. <i>Astrophysical Journal</i> , 2010 , 721, 607-614	4.7	21
1143	A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS-HALO MASS RELATION FOR 0 . <i>Astrophysical Journal</i> , 2010 , 717, 379-403	4.7	673
1142	PEP: FirstHerschelprobe of dusty galaxy evolution up to z \sim 3. Astronomy and Astrophysics, 2010 , 518, L27	5.1	61
1141	MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCEz~ 3. <i>Astrophysical Journal</i> , 2010 , 723, 129-145	4.7	53
1140	THE HIGH ENERGY BUDGET ALLOCATIONS IN SHOCKS AND GAMMA RAY BURSTS. <i>Astrophysical Journal</i> , 2010 , 722, 543-549	4.7	24
1139	REVEALING TYPE Ia SUPERNOVA PHYSICS WITH COSMIC RATES AND NUCLEAR GAMMA RAYS. <i>Astrophysical Journal</i> , 2010 , 723, 329-341	4.7	37
1138	MERGERS IN IDM: UNCERTAINTIES IN THEORETICAL PREDICTIONS AND INTERPRETATIONS OF THE MERGER RATE. <i>Astrophysical Journal</i> , 2010 , 724, 915-945	4.7	161
1137	VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS INz= 1.5 DISK GALAXIES. Astrophysical Journal, 2010 , 713, 686-707	4.7	685
1136	A MULTI-WAVELENGTH APPROACH TO THE PROPERTIES OF EXTREMELY RED GALAXY POPULATIONS. I. CONTRIBUTION TO THE STAR FORMATION RATE DENSITY AND ACTIVE GALACTIC NUCLEUS CONTENT. <i>Astrophysical Journal</i> , 2010 , 719, 790-802	4.7	14
1135	SIMULATIONS OF THE MICROWAVE SKY. Astrophysical Journal, 2010 , 709, 920-936	4.7	134
1134	THE MINOR ROLE OF GAS-RICH MAJOR MERGERS IN THE RISE OF INTERMEDIATE-MASS EARLY TYPES ATz? 1. <i>Astrophysical Journal</i> , 2010 , 710, 1170-1178	4.7	34
1133	HYDRODYNAMICAL SIMULATIONS OF GALAXY CLUSTERS WITHGALCONS. <i>Astrophysical Journal</i> , 2010 , 716, 918-928	4.7	8
1132	GRAVITATIONAL WAVES FROM INTERMEDIATE-MASS BLACK HOLES IN YOUNG CLUSTERS. Astrophysical Journal, 2010 , 719, 987-995	4.7	15
1131	SHORT GAMMA-RAY BURSTS FROM DYNAMICALLY ASSEMBLED COMPACT BINARIES IN GLOBULAR CLUSTERS: PATHWAYS, RATES, HYDRODYNAMICS, AND COSMOLOGICAL SETTING. <i>Astrophysical Journal</i> , 2010 , 720, 953-975	4.7	109
1130	The low-mass X-ray binary-millisecond radio pulsar birthrate problem revisited. <i>Science China: Physics, Mechanics and Astronomy</i> , 2010 , 53, 125-129	3.6	1
1129	The Lyman Æmission of high-z damped Lyman Æystems. 2010 , 409, L59-L63		33
1128	Observational upper limits on the gravitational wave production of core collapse supernovae. 2010 , 409, L132-L136		21
1127	Redshift distribution and luminosity function of long gamma-ray bursts from cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 1972-1980	4.3	35

1126	High-accuracy power spectra including baryonic physics in dynamical Dark Energy models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	7
1125	Going out with a bang: compact object collisions resulting from supernovae in binary systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 1381-1387	4.3	4
1124	Determining the escape fraction of ionizing photons during reionization with the GRB-derived star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 2561-2571	4.3	30
1123	A new empirical method to infer the starburst history of the Universe from local galaxy properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 985-1004	4.3	32
1122	The physics driving the cosmic star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 1536-1560	4.3	612
1121	Stellar populations of Lyæmitters atz= 3-4 based on deep large area surveys in the Subaru-SXDS/UKIDSS-UDS Field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 1580-1598	₃ 4·3	89
1120	The comoving infrared luminosity density: domination of cold galaxies across0 Monthly Notices of the Royal Astronomical Society, 2010 , 402, 2666-2670	4.3	16
1119	TheugrizYJHKluminosity distributions and densities from the combined MGC, SDSS and UKIDSS LAS data sets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	14
1118	Resolved spectroscopy of gravitationally lensed galaxies: recovering coherent velocity fields in subluminous $z\sim 2B$ galaxies. Monthly Notices of the Royal Astronomical Society, 2010 ,	4.3	90
1117	Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	98
1116	Galaxy formation spanning cosmic history. Monthly Notices of the Royal Astronomical Society, 2010, no-ne	0 4.3	29
1115	The Redshift One LDSS-3 Emission line Survey (ROLES): survey method and z~ 1 mass-dependent star formation rate density. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	7
1114	The local star formation rate density: assessing calibrations using [O ii], H and UV luminosities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	40
1113	The degeneracy of galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	4
1112	Survival of star-forming giant clumps in high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 406, 112-120	4.3	77
1111	Simulations on high-z long gamma-ray burst rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 406, 558-565	4.3	41
1110	The first gigayear of bulge star formation in Virgo ellipticals: constraints from their globular cluster systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	5
1109	An environmental Butcher-Oemler effect in intermediate-redshift X-ray clusters?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 406, 368-381	4.3	21

1108	The end of the rainbow: what can we say about the extragalactic sub-megahertz radio sky?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	1
1107	The luminosity function and the rate of Swift's gamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	122
1106	Feedback and recycled wind accretion: assembling the z= 0 galaxy mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 406, 2325-2338	4.3	371
1105	How is star formation quenched in massive galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 749-771	4.3	59
1104	Quantifying cosmic variance. Monthly Notices of the Royal Astronomical Society, 2010, 407, 2131-2140	4.3	94
1103	Gas accretion as the origin of chemical abundance gradients in distant galaxies. 2010 , 467, 811-3		171
1102	Discriminating between the physical processes that drive spheroid size evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 1099-1117	4.3	175
1101	2D kinematics and physical properties ofz ~ 3star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 1657-1669	4.3	34
1100	Mergers, active galactic nuclei and flormallgalaxies: contributions to the distribution of star formation rates and infrared luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 1693-1713	4.3	107
1099	Obscured star formation atz= 0.84 with HiZELS: the relationship between star formation rate and HBr ultraviolet dust extinction. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 402, 2017-2030	4.3	77
1098	On the origin of the galaxy star-formation-rate sequence: evolution and scatter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	82
1097	Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	156
1096	Star formation rates and masses of $z\sim2$ galaxies from multicolour photometry. Monthly Notices of the Royal Astronomical Society, 2010 , 407, 830-845	4.3	220
1095	Effects of cosmological parameters and star formation models on the cosmic star formation history in LDM cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 1464-14	76 ³	28
1094	Stellar mass and velocity functions of galaxies. Astronomy and Astrophysics, 2010, 522, A18	5.1	17
1093	EVOLUTION OF THE HEUMINOSITY FUNCTION. Astrophysical Journal, 2010 , 708, 534-549	4.7	29
1092	ON THE ORIGIN OF THE HIGHEST REDSHIFT GAMMA-RAY BURSTS. Astrophysical Journal, 2010 , 708, 117	-41. 2 6	34
1091	MODELING THE EXTRAGALACTIC BACKGROUND LIGHT FROM STARS AND DUST. <i>Astrophysical Journal</i> , 2010 , 712, 238-249	4.7	343

(2011-2010)

THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS. Astrophysical Journal, 2010 , 718, 1001-1018	4.7	411
1089 The extinction law at high redshift and its implications. <i>Astronomy and Astrophysics</i> , 2010 , 523, A85	5.1	103
THE COSMIC RATE, LUMINOSITY FUNCTION, AND INTRINSIC CORRELATIONS OF LONG GAMMA-RAY BURSTS. <i>Astrophysical Journal</i> , 2010 , 711, 495-516	4.7	140
Galaxy evolution from deep multi-wavelength infrared surveys: a prelude toHerschel. <i>Astronomy</i> and <i>Astrophysics</i> , 2010 , 517, A74	5.1	35
THE STANDARDIZED CANDLE METHOD FOR TYPE II PLATEAU SUPERNOVAE. <i>Astrophysical Journal</i> , 2010 , 715, 833-853	4.7	115
1085 Gravitational waves from compact objects. 2010 , 10, 1071-1099		4
High-redshift gamma-ray bursts: observational signatures of superconducting cosmic strings?. 2010 , 104, 241102		29
Synoptic sky surveys and the diffuse supernova neutrino background: Removing astrophysical uncertainties and revealing invisible supernovae. <i>Physical Review D</i> , 2010 , 81,	4.9	27
FERMILARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE. Astrophysical Journal, 2010 , 723, 1082-1096	4.7	101
1081 In Search of Extraterrestrial High-Energy Neutrinos. 2010 , 60, 129-162		36
1080 The Diffuse Supernova Neutrino Background. 2010 , 60, 439-462		137
Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV. <i>Journal of Cosmology</i> and Astroparticle Physics, 2010 , 2010, 013-013	6.4	156
1078 A Universal Stellar Initial Mass Function? A Critical Look at Variations. 2010 , 48, 339-389		717
1077 Gravitational wave background from binary systems. <i>Physical Review D</i> , 2011 , 84,	4.9	91
1076 The Star Formation Reference Survey. I. Survey Description and Basic Data. 2011 , 123, 1011-1029		13
1075 A new Tolman test of a cosmic distance duality relation at 21 cm. 2011 , 106, 221301		16
1074 Physical Properties of Galaxies fromz= 24. 2011 , 49, 525-580		109
THE NATURE OF THE WARM/HOT INTERGALACTIC MEDIUM. I. NUMERICAL METHODS, 1073 CONVERGENCE, AND O VI ABSORPTION. Astrophysical Journal, 2011 , 731, 6	4.7	102

1072	GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROMz~ 2.5 TOz~ 0.1. <i>Astrophysical Journal</i> , 2011 , 742, 96	4.7	508
1071	Constraints on the origin of ultra-high-energy cosmic rays from cosmogenic neutrinos and photons. <i>Astronomy and Astrophysics</i> , 2011 , 535, A66	5.1	38
1070	PACS Evolutionary Probe (PEP) [AHerschelkey program. Astronomy and Astrophysics, 2011, 532, A90	5.1	361
1069	Populations III.1 and III.2 gamma-ray bursts: constraints on the event rate for future radio and X-ray surveys. <i>Astronomy and Astrophysics</i> , 2011 , 533, A32	5.1	88
1068	STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES. Astrophysical Journal, 2011 , 739, 86	4.7	89
1067	Molecular Gas at High Redshift. 2011 , 167-177		2
1066	Lyman-Emitters as tracers of the transitioning Universe. <i>Astronomy and Astrophysics</i> , 2011 , 527, L7	5.1	11
1065	STAR FORMATION RATES AND STELLAR MASSES OF H\(\overline{1}\)ELECTED STAR-FORMING GALAXIES ATz= 0.84: A QUANTIFICATION OF THE DOWNSIZING. Astrophysical Journal, 2011 , 740, 47	4.7	14
1064	A dynamical mass estimator for highzgalaxies based on spectroastrometry. <i>Astronomy and Astrophysics</i> , 2011 , 533, A124	5.1	14
1063	ENVIRONMENTALLY DRIVEN GLOBAL EVOLUTION OF GALAXIES. <i>Astrophysical Journal</i> , 2011 , 741, 99	4.7	45
1062	Dark energy constraints from a space-based supernova survey. <i>Astronomy and Astrophysics</i> , 2011 , 525, A7	5.1	12
1061	STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM NEUTRON STARr-MODE INSTABILITY REVISITED. <i>Astrophysical Journal</i> , 2011 , 729, 59	4.7	23
1060	Evolutionary Map of the Universe. 2011 , 7, 489-493		
1059	Panchromatic properties of galaxies in wide-field optical spectroscopic and photometric surveys. 2011 , 7, 268-278		
1058	Environmental dependence of SFRs in late-type GAMA galaxies. 2011 , 7, 352-356		
1057	Charting the evolution of the ages and metallicities of massive galaxies since $z = 0.7$. 2011 , 7, 465-467		
1056	EMU: Evolutionary Map of the Universe. <i>Publications of the Astronomical Society of Australia</i> , 2011 , 28, 215-248	5.5	251
1055	SPECTROSCOPIC DETERMINATION OF THE LOW-REDSHIFT TYPE Ia SUPERNOVA RATE FROM THE SLOAN DIGITAL SKY SURVEY. <i>Astrophysical Journal</i> , 2011 , 731, 42	4.7	11

1	054	ACTIVE AND PASSIVE GALAXIES ATz~ 2: REST-FRAME OPTICAL MORPHOLOGIES WITH WFC3. Astrophysical Journal, 2011 , 743, 146	4.7	49
1	.053	A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. I. COMPARISON OF X-RAY AND MID-INFRARED SELECTED ACTIVE GALACTIC NUCLEI. <i>Astrophysical Journal</i> , 2011 , 729, 22	4.7	13
1	052	SUBLUMINOUS TYPE Ia SUPERNOVAE AT HIGH REDSHIFT FROM THE SUPERNOVA LEGACY SURVEY. <i>Astrophysical Journal</i> , 2011 , 727, 107	4.7	31
1	.051	AN EVOLVING STELLAR INITIAL MASS FUNCTION AND THE GAMMA-RAY BURST REDSHIFT DISTRIBUTION. <i>Astrophysical Journal Letters</i> , 2011 , 727, L34	7.9	37
1	050	VARIABILITY AND MULTIWAVELENGTH-DETECTED ACTIVE GALACTIC NUCLEI IN THE GOODS FIELDS. <i>Astrophysical Journal</i> , 2011 , 731, 97	4.7	29
1	049	THE MID-INFRARED LUMINOSITY FUNCTION ATZAstrophysical Journal, 2011 , 734, 40	4.7	11
1	048	LIFTING THE VEIL ON OBSCURED ACCRETION: ACTIVE GALACTIC NUCLEI NUMBER COUNTS AND SURVEY STRATEGIES FOR IMAGING HARD X-RAY MISSIONS. <i>Astrophysical Journal</i> , 2011 , 736, 56	4.7	65
1	047	THE zCOSMOS-SINFONI PROJECT. I. SAMPLE SELECTION AND NATURAL-SEEING OBSERVATIONS. <i>Astrophysical Journal</i> , 2011 , 743, 86	4.7	80
1	046	METALLICITY GRADIENT OF A LENSED FACE-ON SPIRAL GALAXY AT REDSHIFT 1.49. <i>Astrophysical Journal Letters</i> , 2011 , 732, L14	7.9	102
1	.045	THE CONTRIBUTION OF X-RAY BINARIES TO THE EVOLUTION OF LATE-TYPE GALAXIES: EVOLUTIONARY POPULATION SYNTHESIS SIMULATIONS. <i>Astrophysical Journal</i> , 2011 , 733, 5	4.7	8
1	044	THE MAJOR AND MINOR GALAXY MERGER RATES ATzAstrophysical Journal, 2011 , 742, 103	4.7	293
1	.043	THE DEEPESTHUBBLE SPACE TELESCOPECOLOR-MAGNITUDE DIAGRAM OF M32. EVIDENCE FOR INTERMEDIATE-AGE POPULATIONS. <i>Astrophysical Journal</i> , 2011 , 727, 55	4.7	25
1	042	ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TOz~ 3. Astrophysical Journal, 2011 , 738, 106	4.7	307
1	041	THE FRAY BACKGROUND constrains the ORIGINS OF THE RADIO AND X-RAY BACKGROUNDS. Astrophysical Journal Letters, 2011 , 729, L1	7.9	4
1	.040	THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD. Astrophysical Journal, 2011 , 730, 61	4.7	471
1	039	ON THE GeV AND TeV DETECTIONS OF THE STARBURST GALAXIES M82 AND NGC 253. Astrophysical Journal, 2011 , 734, 107	4.7	120
1	038	HST/NICMOS IMAGING OF BRIGHT HIGH-REDSHIFT 24 th SELECTED GALAXIES: MERGING PROPERTIES. <i>Astrophysical Journal</i> , 2011 , 730, 125	4.7	21
1	.037	The X-ray luminous galaxy cluster XMMU J1007.4+1237 atz= 1.56. <i>Astronomy and Astrophysics</i> , 2011 , 527, L10	5.1	69

1036	Photometric selection of Type Ia supernovae in the Supernova Legacy Survey. <i>Astronomy and Astrophysics</i> , 2011 , 534, A43	5.1	36
1035	Dust-obscured star formation and the contribution of galaxies escaping UV/optical color selections atz´~´2. <i>Astronomy and Astrophysics</i> , 2011 , 534, A81	5.1	11
1034	CONTRIBUTION OF GAMMA-RAY-LOUD RADIO GALAXIESICORE EMISSIONS TO THE COSMIC MeV AND GeV GAMMA-RAY BACKGROUND RADIATION. <i>Astrophysical Journal</i> , 2011 , 733, 66	4.7	111
1033	OBSERVING THE END OF COLD FLOW ACCRETION USING HALO ABSORPTION SYSTEMS. <i>Astrophysical Journal Letters</i> , 2011 , 735, L1	7.9	71
1032	How do galaxies acquire their mass?. Astronomy and Astrophysics, 2011, 533, A5	5.1	53
1031	FIRST DETECTIONS OF THE [N II] 122 th LINE AT HIGH REDSHIFT: DEMONSTRATING THE UTILITY OF THE LINE FOR STUDYING GALAXIES IN THE EARLY UNIVERSE. <i>Astrophysical Journal Letters</i> , 2011 , 740, L29	7.9	43
1030	A SEARCH FOR LYMAN BREAK GALAXIES IN THE CHANDRA DEEP FIELD SOUTH USINGSWIFTULTRAVIOLET/OPTICAL TELESCOPE. <i>Astrophysical Journal</i> , 2011 , 739, 98	4.7	11
1029	GOODSHerschel: an infrared main sequence for star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2011 , 533, A119	5.1	788
1028	Modeling the evolution of infrared galaxies: a parametric backward evolution model. <i>Astronomy and Astrophysics</i> , 2011 , 529, A4	5.1	122
1027	Evolution of the dusty infrared luminosity function fromz ´=´ 0toz ´=´ 2.3using observations fromSpitzer. <i>Astronomy and Astrophysics</i> , 2011 , 528, A35	5.1	244
1026	FAR-INFRARED PROPERTIES OF LYMAN BREAK GALAXIES FROM COSMOLOGICAL SIMULATIONS. Astrophysical Journal Letters, 2011 , 742, L33	7.9	10
1025	RADIO SUPERNOVAE IN THE GREAT SURVEY ERA. Astrophysical Journal, 2011 , 740, 23	4.7	12
1024	THE DIMINISHING IMPORTANCE OF MAJOR GALAXY MERGERS AT HIGHER REDSHIFTS. Astrophysical Journal Letters, 2011 , 738, L25	7.9	75
1023	THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE-GALAXY SCALING RELATIONS. <i>Astrophysical Journal</i> , 2011 , 734, 92	4.7	252
1022	Gravitational wave background from sub-luminous GRBs: prospects for second- and third-generation detectors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 410, 2123-2136	4.3	26
1021	A physical model for the origin of the diffuse cosmic infrared background and the opacity of the Universe to very high energy Frays. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 410, 2180-2	.1 9 3	10
1020	A SINFONI integral field spectroscopy survey for galaxy counterparts to damped Lyman Bystems - II. Dynamical properties of the galaxies towards Q0302 1223 and Q1009 10026?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 410, 2251-2256	4.3	28
1019	Multicomponent and variable velocity galactic outflow in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2579-2592	4.3	35

1018	Large-scale outflows from z? 0.7 starburst galaxies identified via ultrastrong Mg ii quasar absorption lines. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 1559-1572	4.3	74	
1017	The emission line properties of gravitationally lensed 1.5 Monthly Notices of the Royal Astronomical Society, 2011 , 413, 643-658	4.3	98	
1016	Nearby supernova rates from the Lick Observatory Supernova Search - III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 1473-1507	4.3	397	
1015	Probing star formation across cosmic time with absorption-line systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 801-811	4.3	76	
1014	HerMES: SPIRE emission from radio-selected active galactic nuclei?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 1777-1786	4.3	25	
1013	The GALEX-SDSS NUV and FUV flux density and local star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 2570-2582	4.3	47	
1012	Turbulence in the intergalactic medium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 2721-2734	4.3	16	
1011	A deep probe of the galaxy stellar mass functions at $z\sim 1-3$ with the GOODS NICMOS Survey. Monthly Notices of the Royal Astronomical Society, 2011 , 413, 2845-2859	4.3	83	
1010	[O ii] emitters in the GOODS field at z~ 1.85: a homogeneous measure of evolving star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 2883-2894	4.3	13	
1009	Cosmic chemical evolution with an early population of intermediate-mass stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 2987-3002	4.3	12	
1008	GAMA/H-ATLAS: the ultraviolet spectral slope and obscuration in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 1002-1012	4.3	31	
1007	The LABOCA survey of the Extended Chandra Deep Field-South: a photometric redshift survey of submillimetre galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 1479-1508	4.3	167	
1006	Properties of star-forming galaxies in a cluster and its surrounding structure at. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 2670-2687	4.3	47	
1005	Modelling galaxy and AGN evolution in the infrared: black hole accretion versus star formation activity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , no-no	4.3	10	
1004	Dark halo response and the stellar initial mass function in early-type and late-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , no-no	4.3	55	
1003	The luminosity function of Swift long gamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 2174-2181	4.3	37	
1002	Molecular gas in intermediate-redshift ultraluminous infrared galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 2600-2606	4.3	8	
1001	Population III stars and the long gamma-ray burst rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 2760-2767	4.3	60	

1000	Supernovae in the Subaru Deep Field: the rate and delay-time distribution of Type Ia supernovae out to redshift 2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 916-940	4.3	90
999	The WiggleZ Dark Energy Survey: high-resolution kinematics of luminous star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 2601-2623	4.3	81
998	On the puzzling plateau in the specific star formation rate at z= 2-7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 2737-2751	4.3	88
997	Gamma-ray burst rate: high-redshift excess and its possible origins. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 3025-3034	4.3	47
996	Probing cosmic star formation up to z= 9.4 with gamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 500-504	4.3	44
995	The contribution of star-forming galaxies to the cosmic radio background. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 691-695	4.3	6
994	The specific star formation rate of high redshift galaxies: the case for two modes of star formation. 2011 , 410, L42-L46		43
993	Supermassive black holes: connecting the growth to the cosmic star formation rate. 2011 , 418, L30-L34		6
992	Astrophysics: How galaxies got their black holes. 2011 , 469, 305-6		2
991	AIDS: Drugs that prevent HIV infection. 2011 , 469, 306-7		16
991	AIDS: Drugs that prevent HIV infection. 2011 , 469, 306-7 A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3 Emission line Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 304-320	4.3	16 39
	A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3	4-3	
990	A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3 Emission line Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 304-320 Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass		39
990 989	A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3 Emission line Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 304-320 Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 1647-1662 The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by active galactic nucleus feedback. <i>Monthly Notices of the Royal Astronomical</i>	4.3	39 149
990 989 988	A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3 Emission line Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 304-320 Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 1647-1662 The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by active galactic nucleus feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 2782-2789 Genesis of the dusty Universe: modelling submillimetre source counts. <i>Monthly Notices of the Royal</i>	4.3	39 149 92
990 989 988 987	A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3 Emission line Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 304-320 Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 1647-1662 The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by active galactic nucleus feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 2782-2789 Genesis of the dusty Universe: modelling submillimetre source counts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 176-194 On the observability of collective flavor oscillations in diffuse supernova neutrino background.	4.3	39 149 92 13
990 989 988 987 986	A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3 Emission line Survey. Monthly Notices of the Royal Astronomical Society, 2011, 414, 304-320 Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1647-1662 The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by active galactic nucleus feedback. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2782-2789 Genesis of the dusty Universe: modelling submillimetre source counts. Monthly Notices of the Royal Astronomical Society, 2011, 418, 176-194 On the observability of collective flavor oscillations in diffuse supernova neutrino background. 2011, 702, 209-215	4.3	39 149 92 13 11

982	GRBs on probation: Testing the UHE CR paradigm with IceCube. 2011 , 35, 87-94		71
981	Gamma-ray bursts as probes of the distant Universe. 2011 , 12, 288-297		10
980	Open questions in GRB physics. 2011 , 12, 206-225		86
979	Constraint on dark matter annihilation with dark star formation using Fermi extragalactic diffuse gamma-ray background data. <i>Journal of Cosmology and Astroparticle Physics</i> , 2011 , 2011, 020-020	6.4	4
978	Ultrahigh energy cosmic ray acceleration in newly born magnetars and their associated gravitational wave signatures. <i>Physical Review D</i> , 2011 , 84,	4.9	18
977	Cosmic Star-Formation Activity at $z = 2.2$ Probed by H \oplus mission-Line Galaxies. 2011 , 63, S437-S446		34
976	The cosmic history of star formation. 2011 , 333, 178-81		7
975	SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY. 2011 , 192, 1		558
974	UV-TO-FIR ANALYSIS OF SPITZER /IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES. 2011 , 193, 30		86
973	THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE DATA: PANCHROMATIC FAINT OBJECT COUNTS FOR 0.2-2 th WAVELENGTH. 2011 , 193, 27		217
972	CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY. 2011 , 197, 35		1279
971	The astrophysical gravitational wave stochastic background. 2011 , 11, 369-390		123
970	SHOCK BREAKOUT IN TYPE II PLATEAU SUPERNOVAE: PROSPECTS FOR HIGH-REDSHIFT SUPERNOVA SURVEYS. 2011 , 193, 20		61
969	Polycyclic Aromatic Hydrocarbons as Star Formation Rate Indicators. 2011 , 46, 133-141		14
968	Dusty extreme starbursts in the early universe. 2011 , 52, 23-33		
96 7	MOIRCS Deep Survey. X. Evolution of Quiescent Galaxies as a Function of Stellar Mass at 0.5 z 2.5. 2011 , 63, S403-S414		17
966	Galaxy Evolution in a Pilot Survey up toz=1and CDM Halos. 2011 , 2011, 1-13		2
965	THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE. <i>Astrophysical Journal</i> , 2011 , 738, 154	4.7	166

964	Holographic Dark Information Energy. 2011 , 13, 924-935		2
963	MOIRCS Deep Survey. VII. NIR Morphologies of Star-Forming Galaxies at Redshift z 1. 2011 , 63, S363-S377	7	7
962	Impact of star formation inhomogeneities on merger rates and interpretation of LIGO results. 2012 , 29, 145011		5
961	Neutrinos from Cosmic Accelerators including Magnetic Field and Flavor Effects. 2012 , 2012, 1-41		20
960	Gamma-ray bursts and their links with supernovae and cosmology. 2012 , 12, 1139-1161		15
959	SELECTION EFFECTS ON THE OBSERVED REDSHIFT DEPENDENCE OF GAMMA-RAY BURST JET OPENING ANGLES. <i>Astrophysical Journal</i> , 2012 , 745, 168	ŀ.7	28
958	HST/ACS PHOTOMETRY OF OLD STARS IN NGC 1569: THE STAR FORMATION HISTORY OF A NEARBY STARBURST. 2012 , 143, 117		18
957	Cosmological measure with volume averaging and the vacuum energy problem. 2012 , 29, 085014		39
956	Cosmic histories of star formation and reionization: an analysis with a power-law approximation. Journal of Cosmology and Astroparticle Physics, 2012 , 2012, 023-023	.4	12
955	NIR Spectroscopy of Star-Forming Galaxies atz~ 1.4 with Subaru/FMOS: The MassMetallicity Relation. 2012 , 64, 60		94
954	Olber's paradox for superluminal neutrinos: constraining extreme neutrino speeds at TeVIeV energies with the diffuse neutrino background. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 054-054	4	1
953	Gamma-ray and neutrino backgrounds as probes of the high-energy universe: hints of cascades, general constraints, and implications for TeV searches. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 030-030	·4	62
952	Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors. <i>Physical Review D</i> , 2012 , 85,	l.9	66
951	Gravitational wave background from rotating neutron stars. <i>Physical Review D</i> , 2012 , 86,	.9	28
950	Mock data challenge for the Einstein Gravitational-Wave Telescope. <i>Physical Review D</i> , 2012 , 86,	9	65
949	Constraints on the origin of the ultrahigh energy cosmic rays using cosmic diffuse neutrino flux limits: An analytical approach. <i>Physical Review D</i> , 2012 , 85,	9	17
948	3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE. 2012 , 200, 13		442
947	Energizing the Disk-Halo at Different Redshifts: Linking the cosmic evolution of gas and star formation in galaxies. 2012 , 56, 135-142		

946	Modelling the gas kinematics in disk galaxies. 2012 , 56, 355-362		2
945	AGES: THE AGN AND GALAXY EVOLUTION SURVEY. 2012 , 200, 8		124
944	Sources of gravitational waves. 16-41		
943	Neutrinos from GRBs in the Fermi Era. 2012 , 375, 052039		
942	WERE PROGENITORS OF LOCALL* GALAXIES Ly EMITTERS AT HIGH REDSHIFT?. Astrophysical Journal, 2012 , 754, 118	4.7	36
941	THE SDSS-II SUPERNOVA SURVEY: PARAMETERIZING THE TYPE Ia SUPERNOVA RATE AS A FUNCTION OF HOST GALAXY PROPERTIES. <i>Astrophysical Journal</i> , 2012 , 755, 61	4.7	67
940	CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION. <i>Astrophysical Journal</i> , 2012 , 744, 95	4.7	165
939	CLUSTERING PROPERTIES OF BZK-SELECTED GALAXIES IN GOODS-N: ENVIRONMENTAL QUENCHING AND TRIGGERING OF STAR FORMATION ATz~ 2. <i>Astrophysical Journal</i> , 2012 , 756, 71	4.7	59
938	SUBMILLIMETER FOLLOW-UP OFWISE-SELECTED HYPERLUMINOUS GALAXIES. <i>Astrophysical Journal</i> , 2012 , 756, 96	4.7	97
937	A POPULATION OFz> 2 FAR-INFRAREDHERSCHEL-SPIRE-SELECTED STARBURSTS. <i>Astrophysical Journal</i> , 2012 , 761, 139	4.7	49
936	ASSEMBLY OF THE RED SEQUENCE IN INFRARED-SELECTED GALAXY CLUSTERS FROM THE IRAC SHALLOW CLUSTER SURVEY. <i>Astrophysical Journal</i> , 2012 , 756, 114	4.7	55
935	THE WiggleZ DARK ENERGY SURVEY: GALAXY EVOLUTION AT 0.25 ?z? 0.75 USING THE SECOND RED-SEQUENCE CLUSTER SURVEY. <i>Astrophysical Journal</i> , 2012 , 747, 91	4.7	4
934	THE HERSCHEL FILAMENT: A SIGNATURE OF THE ENVIRONMENTAL DRIVERS OF GALAXY EVOLUTION DURING THE ASSEMBLY OF MASSIVE CLUSTERS AT $z=0.9$. Astrophysical Journal Letters, 2012 , 749, L43	7.9	14
933	A comparison between star formation rate diagnostics and rate of core collapse supernovae within 11 Mpc. <i>Astronomy and Astrophysics</i> , 2012 , 537, A132	5.1	82
932	THEHUBBLE SPACE TELESCOPECLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE Ia SUPERNOVAE AND THEIR HOSTS AT 0.9 . <i>Astrophysical Journal</i> , 2012 , 750, 1	4.7	43
931	The mean star formation rate of X-ray selected active galaxies and its evolution fromz ~ 2.5: results from PEP-Herschel. <i>Astronomy and Astrophysics</i> , 2012 , 545, A45	5.1	219
930	THE SUPPRESSION OF STAR FORMATION AND THE EFFECT OF THE GALAXY ENVIRONMENT IN LOW-REDSHIFT GALAXY GROUPS. <i>Astrophysical Journal</i> , 2012 , 757, 122	4.7	67
929	CALIBRATING THE STAR FORMATION RATE ATz~ 1 FROM OPTICAL DATA. <i>Astrophysical Journal</i> , 2012 , 746, 124	4.7	22

928	The evolving slope of the stellar mass function at 0.6 Astronomy and Astrophysics, 2012 , 538, A33	5.1	106
927	REST-FRAME UV-OPTICALLY SELECTED GALAXIES AT 2.3 ?z? 3.5: SEARCHING FOR DUSTY STAR-FORMING AND PASSIVELY EVOLVING GALAXIES. <i>Astrophysical Journal</i> , 2012 , 749, 149	4.7	34
926	GRAVITATIONAL WAVES FROM FALLBACK ACCRETION ONTO NEUTRON STARS. <i>Astrophysical Journal</i> , 2012 , 761, 63	4.7	37
925	METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES. <i>Astrophysical Journal</i> , 2012 , 753, 16	4.7	137
924	THE PROPERTIES OF THE STAR-FORMING INTERSTELLAR MEDIUM ATz= 0.8\overline{\pi}.2 FROM HiZELS: STAR FORMATION AND CLUMP SCALING LAWS IN GAS-RICH, TURBULENT DISKS. <i>Astrophysical Journal</i> , 2012 , 760, 130	4.7	107
923	PRECISE IDENTIFICATIONS OF SUBMILLIMETER GALAXIES: MEASURING THE HISTORY OF MASSIVE STAR-FORMING GALAXIES TOz> 5,,. <i>Astrophysical Journal</i> , 2012 , 761, 89	4.7	95
922	COLD GAS ACCRETION BY HIGH-VELOCITY CLOUDS AND THEIR CONNECTION TO QSO ABSORPTION-LINE SYSTEMS. <i>Astrophysical Journal</i> , 2012 , 750, 165	4.7	39
921	Extragalactic Gamma-ray Background Radiation from Beamed and Unbeamed Active Galactic Nuclei. 2012 , 355, 012037		4
920	Cosmic chemical evolution with intermediate mass pop III stars. 2012 , 337, 012074		
919	Simulating the X-ray evolution of late-type galaxies with population synthesis. 2012, 8, 375-376		
919 918	Simulating the X-ray evolution of late-type galaxies with population synthesis. 2012 , 8, 375-376 Star Formation Efficiency at Intermediate Redshift. 2012 , 8, 303-306		
918	Star Formation Efficiency at Intermediate Redshift. 2012 , 8, 303-306		
918	Star Formation Efficiency at Intermediate Redshift. 2012 , 8, 303-306 From Gas to Stars over Cosmic Time. 2012 , 8, 3-15	5.5	189
918 917 916	Star Formation Efficiency at Intermediate Redshift. 2012 , 8, 303-306 From Gas to Stars over Cosmic Time. 2012 , 8, 3-15 Star Formation and the Atomic-Molecular Transition. 2012 , 8, 227-234 Type-Ia Supernova Rates and the Progenitor Problem: A Review. <i>Publications of the Astronomical</i>	5·5 4·7	189
918 917 916 915	Star Formation Efficiency at Intermediate Redshift. 2012, 8, 303-306 From Gas to Stars over Cosmic Time. 2012, 8, 3-15 Star Formation and the Atomic-Molecular Transition. 2012, 8, 227-234 Type-la Supernova Rates and the Progenitor Problem: A Review. Publications of the Astronomical Society of Australia, 2012, 29, 447-465 DEMOGRAPHICS AND PHYSICAL PROPERTIES OF GAS OUTFLOWS/INFLOWS AT 0.4. Astrophysical		
918 917 916 915 914	Star Formation Efficiency at Intermediate Redshift. 2012, 8, 303-306 From Gas to Stars over Cosmic Time. 2012, 8, 3-15 Star Formation and the Atomic-Molecular Transition. 2012, 8, 227-234 Type-la Supernova Rates and the Progenitor Problem: A Review. Publications of the Astronomical Society of Australia, 2012, 29, 447-465 DEMOGRAPHICS AND PHYSICAL PROPERTIES OF GAS OUTFLOWS/INFLOWS AT 0.4. Astrophysical Journal, 2012, 760, 127 THE SINS/ZC-SINF SURVEY ofz~ 2 GALAXY KINEMATICS: OUTFLOW PROPERTIES. Astrophysical	4.7	243

(2012-2012)

910	Comparison of star formation rates from Hand infrared luminosity as seen byHerschel. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 330-341	4.3	23
909	Probing the peak of the star formation rate density with the extragalactic background light. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 1097-1106	4.3	14
908	The properties of the star-forming interstellar medium atz = 0.84-2.23 from HiZELS: mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 935-950	4.3	126
907	Constraining very heavy dark matter using diffuse backgrounds of neutrinos and cascaded gamma rays. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 043-043	6.4	83
906	Extragalactic propagation of ultrahigh energy cosmic-rays. 2012 , 39-40, 33-43		78
905	Neutrinos from failed supernovae at future water and liquid argon detectors. <i>Physical Review D</i> , 2012 , 85,	4.9	19
904	Galaxy And Mass Assembly (GAMA): the 0.013 Monthly Notices of the Royal Astronomical Society, 2012 , 427, 3244-3264	4.3	75
903	EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY. 2012 , 144, 59		53
902	A COMPLETE SAMPLE OF BRIGHTSWIFTLONG GAMMA-RAY BURSTS. I. SAMPLE PRESENTATION, LUMINOSITY FUNCTION AND EVOLUTION. <i>Astrophysical Journal</i> , 2012 , 749, 68	4.7	170
901	Estimating gas accretion in disc galaxies using the KennicuttBchmidt law. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 2166-2177	4.3	42
900	[O ii] emitters at $z \sim 4.6$ in the GOODS field: a homogeneous measure of evolving star formation. Monthly Notices of the Royal Astronomical Society, 2012 , 426, 2178-2188	4.3	3
899	Stochastic backgrounds of gravitational waves from cosmological sources the role of dark energy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 2758-2771	4.3	3
898	On the fraction of star formation occurring in bound stellar clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 3008-3040	4.3	277
897	Star formation in high-redshift quasars: excess [O ii] emission in the radio-loud population. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 2401-2410	4.3	34
896	ON THE LAST 10 BILLION YEARS OF STELLAR MASS GROWTH IN STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2012 , 745, 149	4.7	119
895	A REDSHIFT SURVEY OFHERSCHELFAR-INFRARED SELECTED STARBURSTS AND IMPLICATIONS FOR OBSCURED STAR FORMATION. <i>Astrophysical Journal</i> , 2012 , 761, 140	4.7	122
894	Gamma-ray bursts. 2012 , 337, 932-6		68
893	Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence. Journal of Cosmology and Astroparticle Physics, 2012 , 2012, 012-012	6.4	34

892	THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5. <i>Astrophysical Journal Letters</i> , 2012 , 754, L29	7.9	617
891	The rate of supernovae at redshift 0.1¶.0. Astronomy and Astrophysics, 2012, 545, A96	5.1	38
890	THE FAINTEST X-RAY SOURCES FROMz= 0 TO 8,,. Astrophysical Journal, 2012 , 748, 50	4.7	63
889	CRITICAL STAR FORMATION RATES FOR REIONIZATION: FULL REIONIZATION OCCURS AT REDSHIFTz[]. Astrophysical Journal, 2012, 747, 100	4.7	122
888	ENERGY SPECTRUM AND CHEMICAL COMPOSITION OF ULTRAHIGH ENERGY COSMIC RAYS FROM SEMI-RELATIVISTIC HYPERNOVAE. <i>Astrophysical Journal</i> , 2012 , 746, 40	4.7	16
887	A STARBURSTING PROTO-CLUSTER IN MAKING ASSOCIATED WITH A RADIO GALAXY ATz= 2.53 DISCOVERED BY H\(\text{H}\)MAGING. Astrophysical Journal, 2012 , 757, 15	4.7	67
886	THE LUMINOSITY FUNCTION OFFERMI-DETECTED FLAT-SPECTRUM RADIO QUASARS. <i>Astrophysical Journal</i> , 2012 , 751, 108	4.7	167
885	THE DIFFUSE GAMMA-RAY BACKGROUND FROM TYPE Ia SUPERNOVAE. <i>Astrophysical Journal</i> , 2012 , 747, 120	4.7	7
884	KECK SPECTROSCOPY OF FAINT 3 . Astrophysical Journal, 2012, 751, 51	4.7	89
883	PHYSICAL PROPERTIES OF LyEMITTERS ATz~ 0.3 FROM UV-TO-FIR MEASUREMENTS. Astrophysical Journal, 2012 , 751, 139	4.7	13
882	MASSIV: Mass Assembly Survey with SINFONI in VVDS. Astronomy and Astrophysics, 2012, 539, A92	5.1	120
881	Herschel-PACS far-infrared detections of Lyman-Amitters at 2.0 ?'z?'3.5. <i>Astronomy and Astrophysics</i> , 2012 , 541, A65	5.1	22
88o	Spectrum of the unresolved cosmic X-ray background: what is unresolved 50 years after its discovery. <i>Astronomy and Astrophysics</i> , 2012 , 548, A87	5.1	33
879	UltraVISTA: a new ultra-deep near-infrared survey in COSMOS. <i>Astronomy and Astrophysics</i> , 2012 , 544, A156	5.1	479
878	Searching for the first stars with the Gaiamission. Astronomy and Astrophysics, 2012, 545, A102	5.1	9
877	Tidal dwarf galaxies in the nearby Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 70-79	4.3	57
876	On the inconsistency between the estimates of cosmic star formation rate and stellar mass density of high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 1280-1284	4.3	18
875	The Herschel Multi-tiered Extragalactic Survey: SPIRE-mm photometric redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 2758-2773	4.3	91

(2012-2012)

874	observers BelectIthe same objects?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 3181-	3 1 93	39	
873	Star formation at z=1.47 from HiZELS: an H⊞[O ii] double-blind study?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 1926-1945	4.3	172	
872	Constraining the near-infrared background light from Population III stars using high-redshift gamma-ray sources. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 800-809	4.3	15	
871	Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 2662-2683	4.3	228	
870	Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 1239-1262	4.3	124	
869	Systematics in the interpretation of aggregated neutrino flux limits and flavor ratios from gamma-ray bursts. 2012 , 35, 508-529		38	
868	The next-generation liquid-scintillator neutrino observatory LENA. 2012, 35, 685-732		163	
867	Constraints on the redshift evolution of the LXBFR relation from the cosmic X-ray backgrounds. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , no-no	4.3	15	
866	On the evolution of the star formation rate function of massive galaxies: constraints at from the GOODS-MUSIC catalogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , no-no	4.3	8	
865	The Sydney-AAO Multi-object Integral field spectrograph. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , no-no	4.3	196	
864	Galaxy properties from the ultraviolet to the far-infrared: Itold dark matter models confront observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 1992-2015	4.3	173	
863	Improved models for cosmic infrared background anisotropies: new constraints on the infrared galaxy population. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 2832-2845	4.3	51	
862	A decrease of the gas exchanges between galaxies and the intergalactic medium, from 12 to 6 billion years ago. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 2888-2903	4.3	21	
861	Radio imaging of the Subaru/XMM-NewtonDeep Field- III. Evolution of the radio luminosity function beyond z= 1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 3060-3083	4.3	96	
860	Cosmic star formation rate: a theoretical approach. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 3116-3126	4.3	12	
859	Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 2675-2684	4.3	47	
858	Semi-analytic modelling of the extragalactic background light and consequences for extragalactic gamma-ray spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 3189-3207	4.3	256	
857	Joint Lyman & mitters - quasars reionization constraints. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 774-786	4.3	2	

856	Metallicity effects on cosmic Type Ib/c supernovae and gamma-ray burst rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 3049-3057	4.3	15
855	The evolution of massive black holes and their spins in their galactic hosts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 2533-2557	4.3	140
854	Gamma-ray bursts: the isotropic-equivalent-energy function and the cosmic formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 2627-2632	4.3	14
853	Cosmological implications of a stellar initial mass function that varies with the Jeans mass in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 3601-3615	4.3	38
852	Suppression of star formation in the central 200 kpc of a z= 1.4 galaxy cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 3652-3662	4.3	20
851	How to distinguish starbursts and quiescently star-forming galaxies: the B imodallsubmillimetre galaxy population as a case study. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 951-970	4.3	95
850	THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROMz= 0-8. Astrophysical Journal, 2013 , 770, 57	4.7	1365
849	REVISITING THE COSMIC STAR FORMATION HISTORY: CAUTION ON THE UNCERTAINTIES IN DUST CORRECTION AND STAR FORMATION RATE CONVERSION. <i>Astrophysical Journal</i> , 2013 , 763, 3	4.7	19
848	THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914. Astrophysical Journal, 2013 , 768, 166	4.7	57
847	Gamma-ray bursts in the swift-Fermi era. 2013 , 8, 661-678		47
8 ₄₇	Gamma-ray bursts in the swift-Fermi era. 2013 , 8, 661-678 Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013 , 51, 393-455		447
· ·		3.6	
846	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013 , 51, 393-455 Implications of the cosmic infrared background excess for the cosmic star formation. <i>Science China</i> :	3.6	447
8 ₄ 6	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013 , 51, 393-455 Implications of the cosmic infrared background excess for the cosmic star formation. <i>Science China: Physics, Mechanics and Astronomy</i> , 2013 , 56, 1029-1034	3.6 4·3	1
846 845 844	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013, 51, 393-455 Implications of the cosmic infrared background excess for the cosmic star formation. <i>Science China: Physics, Mechanics and Astronomy</i> , 2013, 56, 1029-1034 A topological extension of GR: Black holes induce dark energy. 2013, 410, 012149 A model for cosmological simulations of galaxy formation physics. <i>Monthly Notices of the Royal</i>		1
846 845 844 843	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013, 51, 393-455 Implications of the cosmic infrared background excess for the cosmic star formation. <i>Science China: Physics, Mechanics and Astronomy</i> , 2013, 56, 1029-1034 A topological extension of GR: Black holes induce dark energy. 2013, 410, 012149 A model for cosmological simulations of galaxy formation physics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013, 436, 3031-3067 The nature of [S III] 1096, 9532 emitters at z = 1.34 and 1.23. <i>Science China: Physics, Mechanics and</i>	4.3	4471563
846 845 844 843	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013, 51, 393-455 Implications of the cosmic infrared background excess for the cosmic star formation. <i>Science China: Physics, Mechanics and Astronomy</i> , 2013, 56, 1029-1034 A topological extension of GR: Black holes induce dark energy. 2013, 410, 012149 A model for cosmological simulations of galaxy formation physics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013, 436, 3031-3067 The nature of [S III]B096, 9532 emitters at z = 1.34 and 1.23. <i>Science China: Physics, Mechanics and Astronomy</i> , 2013, 56, 2226-2235	4.3	4471563

838	Galaxy formation: The cosmic web in focus. 2013 , 497, 191-2		Ο
837	Star Formation in Galaxies. 2013 , 141-181		8
836	The Cool ISM in Galaxies. 2013 , 183-205		
835	The Influence of Environment on Galaxy Evolution. 2013 , 207-263		4
834	From gas to stars over cosmic time. 2013 , 340, 1229229		4
833	A TOPOLOGICAL EXTENSION OF GENERAL RELATIVITY TO EXPLORE THE NATURE OF QUANTUM SPACETIME, DARK ENERGY AND INFLATION. 2013 , 22, 1330022		
832	MID-INFRARED DETERMINATION OF TOTAL INFRARED LUMINOSITY AND STAR FORMATION RATES OF LOCAL AND HIGH-REDSHIFT GALAXIES. <i>Astrophysical Journal</i> , 2013 , 767, 73	4.7	55
831	The extragalactic background light and the gamma-ray opacity of the universe. 2013 , 43, 112-133		117
830	HERMES: Simulating the propagation of ultra-high energy cosmic rays. 2013, 128, 1		4
829	EFFECTS OF STELLAR ROTATION ON STAR FORMATION RATES AND COMPARISON TO CORE-COLLAPSE SUPERNOVA RATES. <i>Astrophysical Journal</i> , 2013 , 769, 113	4.7	26
828	On the connection between the intergalactic medium and galaxies: the H igalaxy cross-correlation at z? 1?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 437, 2017-2075	4.3	36
827	The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 2645-2663	4.3	151
826	Disc stability and neutral hydrogen as a tracer of dark matter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 2537-2549	4.3	18
825	The VISTA Deep Extragalactic Observations (VIDEO) survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 1281-1295	4.3	153
824	A redshift@bservation time relation for gamma-ray bursts: evidence of a distinct subluminous population. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 167-181	4.3	20
823	The cosmic evolution of the IMF under the Jeans conjecture with implications for massive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 2892-2906	4.3	23
822	Dust extinctions for an unbiased sample of gamma-ray burst afterglows. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 1231-1244	4.3	76
821	The insignificance of major mergers in driving star formation at z? 2. 2013 , 429, L40-L44		52

820	Herschel reveals the obscured star formation in HiZELS H´emitters at $z = 1.47$. Monthly Notices of the Royal Astronomical Society, 2013 , 434, 3218-3235	4.3	49
819	Evolution of the far-infrared luminosity functions in the Spitzer Wide-area Infrared Extragalactic Legacy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 291-306	4.3	23
818	Shaping the galaxy stellar mass function with supernova- and AGN-driven winds. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 2966-2979	4.3	136
817	Calibrating [O ii] star formation rates at z Monthly Notices of the Royal Astronomical Society, 2013 , 430, 1042-1050	4.3	30
816	Galactic star formation and accretion histories from matching galaxies to dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society,</i> 2013 , 428, 3121-3138	4.3	911
815	A large HBurvey at $z = 2.23$, 1.47, 0.84 and 0.40: the 11 Gyr evolution of star-forming galaxies from HiZELS?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 1128-1146	4.3	252
814	The WiggleZ Dark Energy Survey: star formation in UV-luminous galaxies from their luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 257-281	4.3	5
813	Detectability of high-redshift superluminous supernovae with upcoming optical and near-infrared surveys []I. Beyond z´=´6. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 2483-2493	4.3	29
812	Accretion-driven evolution of black holes: Eddington ratios, duty cycles and active galaxy fractions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 421-446	4.3	120
811	On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 882-899	4.3	65
810	On the H i column density density density of the Royal Astronomical Society, 2013 , 431, 3408-3413	4.3	30
809	Evolution of faint radio sources in the VIDEO-XMM3 field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 1084-1095	4.3	49
808	Connecting stellar mass and star-formation rate to dark matter halo mass out to $z \sim 2$. Monthly Notices of the Royal Astronomical Society, 2013 , 431, 648-661	4.3	63
807	Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 3506-3522	4.3	18
806	Serendipitous detection of an overdensity of Herschel-SPIRE 250 h sources south of MRC 1138 26?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 2505-2514	4.3	11
805	Characterization of Scuba-2 450 th and 850 th selected galaxies in the COSMOS field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 1919-1954	4.3	115
804	Comparison of H i and optical redshifts of galaxies (the impact of redshift uncertainties on spectral line stacking. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 2613-2625	4.3	10
803	A survey of molecular gas in luminous sub-millimetre galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 3047-3067	4.3	326

(2013-2013)

802	On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z´~ 2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 423-436	4.3	128
801	Narrow-line region gas kinematics of 24´264 optically selected AGN: the radio connection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 622-638	4.3	167
800	Detection of H i in distant galaxies using spectral stacking. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 1398-1410	4.3	83
799	Rates of superluminous supernovae at $z \sim 0.2$. Monthly Notices of the Royal Astronomical Society, 2013 , 431, 912-922	4.3	133
798	Molecular gas in type 2 quasars at $z \sim 0.20.3$?. Monthly Notices of the Royal Astronomical Society, 2013 , 434, 978-991	4.3	18
797	Variations in the stellar CMF and IMF: from bottom to top. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 170-177	4.3	58
796	The First Billion Years project: the impact of stellar radiation on the co-evolution of Populations II and III. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 1857-1872	4.3	127
795	Evolution of star formation in the UKIDSS Ultra Deep Survey field Π . Luminosity functions and cosmic star formation rate out to $z'=1.6$. Monthly Notices of the Royal Astronomical Society, 2013 , 433, 796-811	4.3	38
794	HerMES: THE FAR-INFRARED EMISSION FROM DUST-OBSCURED GALAXIES. <i>Astrophysical Journal</i> , 2013 , 775, 61	4.7	16
793	CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD. 2013 , 207, 24		327
792	VLT/X-SHOOTER NEAR-INFRARED SPECTROSCOPY ANDHSTIMAGING OF GRAVITATIONALLY LENSEDz~ 2 COMPACT QUIESCENT GALAXIES. <i>Astrophysical Journal</i> , 2013 , 777, 87	4.7	12
791	Galaxy And Mass Assembly: evolution of the Hauminosity function and star formation rate density up to z Monthly Notices of the Royal Astronomical Society, 2013 , 433, 2764-2789	4.3	83
790	DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES. <i>Astrophysical Journal</i> , 2013 , 779, 72	4.7	284
789	COMPACT OBJECT COALESCENCE RATE ESTIMATION FROM SHORT GAMMA-RAY BURST OBSERVATIONS. <i>Astrophysical Journal</i> , 2013 , 767, 140	4.7	40
788	THE COSMIC BPT DIAGRAM: CONFRONTING THEORY WITH OBSERVATIONS. <i>Astrophysical Journal Letters</i> , 2013 , 774, L10	7.9	166
787	SCATTERED EMISSION FROMz~ 1 GALACTIC OUTFLOWS. <i>Astrophysical Journal</i> , 2013 , 770, 41	4.7	59
786	COSMIC RAYS CAN DRIVE STRONG OUTFLOWS FROM GAS-RICH HIGH-REDSHIFT DISK GALAXIES. Astrophysical Journal Letters, 2013 , 777, L38	7.9	95
7 ⁸ 5	A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION. Astrophysical Journal, 2013, 778, 128	4.7	139

784	A MULTIVARIATE FIT LUMINOSITY FUNCTION AND WORLD MODEL FOR LONG GAMMA-RAY BURSTS. <i>Astrophysical Journal</i> , 2013 , 766, 111	4.7	21
783	THE EXTRAGALACTIC BACKGROUND LIGHT FROM THE MEASUREMENTS OF THE ATTENUATION OF HIGH-ENERGY GAMMA-RAY SPECTRUM. <i>Astrophysical Journal Letters</i> , 2013 , 772, L12	7.9	7
782	EVIDENCE FOR NEW RELATIONS BETWEEN GAMMA-RAY BURST PROMPT AND X-RAY AFTERGLOW EMISSION FROM 9 YEARS OF SWIFT. 2013 , 209, 20		30
781	THE DEEP2 GALAXY REDSHIFT SURVEY: CLUSTERING DEPENDENCE ON GALAXY STELLAR MASS AND STAR FORMATION RATE ATz~ 1. <i>Astrophysical Journal</i> , 2013 , 767, 89	4.7	48
78o	ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2013 , 767, 88	4.7	197
779	NATURE OF HSELECTED GALAXIES ATz> 2. I. MAIN-SEQUENCE AND DUSTY STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2013 , 778, 114	4.7	30
778	CONSTRAINING THE STAR FORMATION HISTORIES IN DARK MATTER HALOS. I. CENTRAL GALAXIES. <i>Astrophysical Journal</i> , 2013 , 770, 115	4.7	41
777	EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION: GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS. <i>Astrophysical Journal</i> , 2013 , 768, 197	4.7	102
776	CROSS-CORRELATIONS AS A COSMOLOGICAL CARBON MONOXIDE DETECTOR. <i>Astrophysical Journal</i> , 2013 , 768, 15	4.7	50
775	THE JHU-SDSS METAL ABSORPTION LINE CATALOG: REDSHIFT EVOLUTION AND PROPERTIES OF Mg II ABSORBERS. <i>Astrophysical Journal</i> , 2013 , 770, 130	4.7	116
774	DETERMINING THE LUMINOSITY FUNCTION OF SWIFT LONG GAMMA-RAY BURSTS WITH PSEUDO-REDSHIFTS. <i>Astrophysical Journal Letters</i> , 2013 , 772, L8	7.9	18
773	CHEMICAL ENRICHMENT OF DAMPED Ly SYSTEMS AS A DIRECT CONSTRAINT ON POPULATION III STAR FORMATION. <i>Astrophysical Journal</i> , 2013 , 772, 93	4.7	38
772	A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. III. BRIGHTNESS DISTRIBUTIONS AND LUMINOSITY FUNCTIONS OF OPTICAL AFTERGLOWS. <i>Astrophysical Journal</i> , 2013 , 774, 132	4.7	15
771	ANCIENT LIGHT FROM YOUNG COSMIC CITIES: PHYSICAL AND OBSERVATIONAL SIGNATURES OF GALAXY PROTO-CLUSTERS. <i>Astrophysical Journal</i> , 2013 , 779, 127	4.7	171
770	A GENERALIZED POWER-LAW DIAGNOSTIC FOR INFRARED GALAXIES ATz> 1: ACTIVE GALACTIC NUCLEI AND HOT INTERSTELLAR DUST. <i>Astrophysical Journal</i> , 2013 , 768, 103	4.7	10
769	A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2013 , 773, 3	4.7	145
768	Two-phase galaxy evolution: the cosmic star formation histories of spheroids and discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 2622-2632	4.3	50
767	UHECR ESCAPE MECHANISMS FOR PROTONS AND NEUTRONS FROM GAMMA-RAY BURSTS, AND THE COSMIC-RAY-NEUTRINO CONNECTION. <i>Astrophysical Journal</i> , 2013 , 768, 186	4.7	37

766	GAMMA-RAY BURST AND STAR FORMATION RATES: THE PHYSICAL ORIGIN FOR THE REDSHIFT EVOLUTION OF THEIR RATIO. <i>Astrophysical Journal Letters</i> , 2013 , 773, L22	7.9	32
765	THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TOz= 4 FROM THE COSMOS/UltraVISTA SURVEY. <i>Astrophysical Journal</i> , 2013 , 777, 18	4.7	602
764	IS THE METALLICITY OF THE PROGENITOR OF LONG GAMMA-RAY BURSTS REALLY LOW?. Astrophysical Journal, 2013 , 772, 42	4.7	17
763	THE DUST PROPERTIES OFz~ 3 MIPS-LBGs FROM PHOTOCHEMICAL MODELS. <i>Astrophysical Journal</i> , 2013 , 768, 178	4.7	3
762	Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 2598-	2603	95
761	Newborn spheroids at high redshift: when and how did the dominant, old stars in today's massive galaxies form?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 925-934	4.3	38
760	The end of an era I the Population III to Population II transition and the near-infrared background. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 2047-2053	4.3	9
759	The faster the narrower: characteristic bulk velocities and jet opening angles of gamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 1410-1423	4.3	50
758	Radio Continuum Surveys with Square Kilometre Array Pathfinders. <i>Publications of the Astronomical Society of Australia</i> , 2013 , 30,	5.5	63
757	Massive starburst galaxies in a $z=2.16$ proto-cluster unveiled by panoramic Hemapping. Monthly Notices of the Royal Astronomical Society, 2013 , 428, 1551-1564	4.3	68
756	Neutral atomic hydrogen (H i) gas evolution in field galaxies at z \sim 0.1 and \sim 0.2. Monthly Notices of the Royal Astronomical Society, 2013 , 435, 2693-2706	4.3	67
755	X-ray bright active galactic nuclei in massive galaxy clusters []. Number counts and spatial distribution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 3509-3525	4.3	36
754	The spatial extent and distribution of star formation in 3D-HST mergers at z \sim 1.5. Monthly Notices of the Royal Astronomical Society, 2013 , 432, 285-300	4.3	16
753	SDSS J002531.46 $\rlap{\ mathred 10}$ 04022.2 at z = 0.30: a candidate for the (ultra)luminous infrared galaxy to optical quasar transition?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 2104-2111	4.3	4
752	ENVIRONMENTAL EFFECTS ON STAR FORMATION ACTIVITY ATz~ 0.9 IN THE COSMOS FIELD. Astrophysical Journal, 2013 , 768, 51	4.7	3
751	THE HETDEX PILOT SURVEY. IV. THE EVOLUTION OF [O II] EMITTING GALAXIES FROMz~ 0.5 TOz~ 0. Astrophysical Journal, 2013 , 769, 83	4.7	38
750	THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE. <i>Astrophysical Journal</i> , 2013 , 770, 88	4.7	24
749	EMPIRICAL LINKS BETWEEN XRB AND AGN ACCRETION USING THE COMPLETEZAstrophysical Journal, 2013 , 778, 188	4.7	19

748	Hermes: The Contribution to the Cosmic Infrared Background from Galaxies Selected by Mass and Redshift. <i>Astrophysical Journal</i> , 2013 , 779, 32	4.7	84
747	MassThetallicity relation from $z=5$ to the present: evidence for a transition in the mode of galaxy growth at $z=2.6$ due to the end of sustained primordial gas infall. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 2680-2687	4.3	94
746	Herschel-ATLAS/GAMA: What determines the far-infrared properties of radio galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 609-625	4.3	12
745	The Redshift Distribution of the TOUGH Survey. 2013 , 61, 397-401		
744	The origin of the chemical elements in cluster cores. 2013 , 334, 416-421		20
743	Stochastic gravitational wave background from hydrodynamic turbulence in differentially rotating neutron stars. <i>Physical Review D</i> , 2013 , 87,	4.9	27
742	Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors. <i>Physical Review D</i> , 2013 , 87,	4.9	29
741	Imprint of explosion mechanism on supernova relic neutrinos. <i>Physical Review D</i> , 2013 , 88,	4.9	20
74º	Testing the hadronuclear origin of PeV neutrinos observed with IceCube. <i>Physical Review D</i> , 2013 , 88,	4.9	220
739	Photohadronic origin of the TeV-PeV neutrinos observed in IceCube. <i>Physical Review D</i> , 2013 , 88,	4.9	59
738	On rates of supernovae strongly lensed by galactic haloes in Millennium Simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 2392-2399	4.3	3
737	Ultrahigh energy cosmic ray nuclei from extragalactic pulsars and the effect of their Galactic counterparts. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 010-010	6.4	45
736	EMPIRICAL PREDICTIONS FOR (SUB-)MILLIMETER LINE AND CONTINUUM DEEP FIELDS. Astrophysical Journal, 2013 , 765, 9	4.7	33
735	HerschelPEP/HerMES: the redshift evolution (0 🕮) of dust attenuation and of the total (UV+IR) star formation rate density. <i>Astronomy and Astrophysics</i> , 2013 , 554, A70	5.1	131
734	PROTO-GROUPS AT 1.8 . Astrophysical Journal, 2013 , 765, 109	4.7	42
733	Progenitor delay-time distribution of short gamma-ray bursts: Constraints from observations. <i>Astronomy and Astrophysics</i> , 2013 , 558, A22	5.1	10
732	FEEDBACK FROM HIGH-MASS X-RAY BINARIES ON THE HIGH-REDSHIFT INTERGALACTIC MEDIUM: MODEL SPECTRA. <i>Astrophysical Journal</i> , 2013 , 764, 76	4.7	27
731	THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS. <i>Astrophysical Journal</i> , 2013 , 765, 138	4.7	6

(2014-2013)

730	Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local H\(\textit{H}\)Astronomy and Astrophysics, 2013 , 560, A66	5.1	119
729	AN X-RAY AND MULTIWAVELENGTH SURVEY OF HIGHLY RADIO-LOUD QUASARS ATz> 4: JET-LINKED EMISSION IN THE BRIGHTEST RADIO BEACONS OF THE EARLY UNIVERSE. <i>Astrophysical Journal</i> , 2013 , 763, 109	4.7	28
728	Galaxy And Mass Assembly (GAMA): linking star formation histories and stellar mass growth. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 209-221	4.3	69
727	How can star formation be sustained?. 2013 , 9, 228-239		7
726	The Dawes Review 1: Kinematic Studies of Star-Forming Galaxies Across Cosmic Time. <i>Publications of the Astronomical Society of Australia</i> , 2013 , 30,	5.5	100
725	The high-redshift star formation rate derived from gamma-ray bursts: possible origin and cosmic reionization. <i>Astronomy and Astrophysics</i> , 2013 , 556, A90	5.1	43
724	The ESO UVES advanced data products quasar sample. Astronomy and Astrophysics, 2013, 556, A141	5.1	124
723	The deepestHerschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations. <i>Astronomy and Astrophysics</i> , 2013 , 553, A132	5.1	292
722	Far-infrared-detected Lyman-break galaxies atz~ 3. Astronomy and Astrophysics, 2013, 554, L3	5.1	31
721	Ultra-high-energy cosmic ray source statistics in the GZK energy range. <i>Astronomy and Astrophysics</i> , 2013 , 552, A125	5.1	7
720	21-cm absorption from galaxies atz~ 0.3. Astronomy and Astrophysics, 2013 , 558, A84	5.1	25
719	HAWK-I infrared supernova search in starburst galaxies. Astronomy and Astrophysics, 2013, 554, A127	5.1	14
718	Gas fraction and star formation efficiency atzAstronomy and Astrophysics, 2013, 550, A41	5.1	94
717	THE METALLICITY EVOLUTION OF STAR-FORMING GALAXIES FROM REDSHIFT 0 TO 3: COMBINING MAGNITUDE-LIMITED SURVEY WITH GRAVITATIONAL LENSING. <i>Astrophysical Journal</i> , 2013 , 763, 9	4.7	59
716	PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THEHUBBLE SPACE TELESCOPE. <i>Astrophysical Journal</i> , 2013 , 763, 35	4.7	35
715	THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION. <i>Astrophysical Journal</i> , 2013 , 762, 39	4.7	93
714	Rapidly growing black holes and host galaxies in the distant Universe from theHerschelRadio Galaxy Evolution Project. <i>Astronomy and Astrophysics</i> , 2014 , 566, A53	5.1	65
713	Impact of star formation history on the measurement of star formation rates. <i>Astronomy and Astrophysics</i> , 2014 , 571, A72	5.1	60

712	Astrophysics, cosmology, and fundamental physics with compact binary coalescence and the Einstein Telescope. 2014 , 484, 012008		14
711	Active galactic nuclei and their role in galaxy evolution: The infrared perspective. 2014 , 23, 1430015		8
710	Cosmic PeV neutrinos and the sources of ultrahigh energy protons. <i>Physical Review D</i> , 2014 , 90,	4.9	29
709	Bounds on the origin of extragalactic ultrahigh energy cosmic rays from the IceCube neutrino observations. <i>Physical Review D</i> , 2014 , 90,	4.9	8
708	A MAGNIFIED VIEW OF STAR FORMATION ATz= 0.9 FROM TWO LENSED GALAXIES,. 2014 , 148, 65		4
707	KECK/MOSFIRE SPECTROSCOPIC CONFIRMATION OF A VIRGO-LIKE CLUSTER ANCESTOR AT $z=2.095$. Astrophysical Journal Letters, 2014 , 795, L20	7.9	56
706	A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING MAIN SEQUENCE FROM z \sim 0-6. 2014 , 214, 15		774
705	CHARTING THE EVOLUTION OF THE AGES AND METALLICITIES OF MASSIVE GALAXIES SINCEz= 0.7. Astrophysical Journal, 2014 , 788, 72	4.7	101
704	EXTREME GAS FRACTIONS IN CLUMPY, TURBULENT DISK GALAXIES AT z \sim 0.1. Astrophysical Journal Letters, 2014 , 790, L30	7.9	35
703	THE STAR-FORMING GALAXY CONTRIBUTION TO THE COSMIC MeV AND GeV GAMMA-RAY BACKGROUND. <i>Astrophysical Journal</i> , 2014 , 786, 40	4.7	34
702	SUPERNOVA RELIC NEUTRINOS AND THE SUPERNOVA RATE PROBLEM: ANALYSIS OF UNCERTAINTIES AND DETECTABILITY OF ONEMG AND FAILED SUPERNOVAE. <i>Astrophysical Journal</i> , 2014 , 790, 115	4.7	32
701	Molecular gas content of H i monsters and implications to cold gas content evolution in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 1363-1379	4.3	10
700	Minor versus major mergers: the stellar mass growth of massive galaxies from z´=´3 using number density selection techniques. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 2198-2213	4.3	45
699	A complete sample of bright Swift short gamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 2342-2356	4.3	79
698	Larson's scaling laws, and the gravitational instability of clumpy discs at high redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 1230-1238	4.3	27
697	The stellar mass function of star-forming galaxies and the mass-dependent SFR function since z´=´2.23 from HiZELS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3516-3528	4.3	115
696	X-ray bright active galactic nuclei in massive galaxy clusters - III. New insights into the triggering mechanisms of cluster AGN. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 446, 2709-2729	4.3	23
695	Cosmic star formation probed via parametric stack-fitting of known sources to radio imaging. Monthly Notices of the Royal Astronomical Society, 2014 , 439, 1286-1293	4.3	5

694	An empirical model for the star formation history in dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 1294-1312	4.3	52
693	Scenario Machine: fast radio bursts, short gamma-ray burst, dark energy and Laser Interferometer Gravitational-wave Observatory silence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 1193-1199	4.3	18
692	Carbon monoxide intensity mapping at moderate redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 3506-3512	4.3	43
691	Constraint on the gas-to-dust ratio in massive star-forming galaxies atz´~´1.4. 2014 , 66, 81		5
690	The Type îa supernovae rate with Subaru/XMM-Newton Deep Survey. 2014 , 66, 49		10
689	The infrared imaging spectrograph (IRIS) for TMT: overview of innovative science programs. 2014,		5
688	The evolution of the star-forming sequence in hierarchical galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 2637-2664	4.3	46
687	DYNAMO []. A sample of H\(\text{Huminous galaxies with resolved kinematics.}\) Monthly Notices of the Royal Astronomical Society, 2014 , 437, 1070-1095	4.3	94
686	The mass the tallicity relation at $z\sim 1.4$ revealed with Subaru/FMOS?. Monthly Notices of the Royal Astronomical Society, 2014 , 437, 3647-3663	4.3	63
685	How sensitive are predicted galaxy luminosities to the choice of stellar population synthesis model?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 264-283	4.3	140
684	An ALMA survey of sub-millimetre Galaxies in the Extended Chandra Deep Field South: the far-infrared properties of SMGs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 1267-128	74.3	225
683	Black hole accretion preferentially occurs in gas-rich galaxies*. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 1059-1065	4.3	38
682	Supernovae and extragalactic astronomy with laser guide star adaptive optics. 2014,		1
681	SLUG Lational Company Company Star Grant Start Grant Grant Start Grant Grant Start Grant Start Grant Start Grant Start Grant Grant Grant Start Grant G	4.3	72
680	Angular clustering of z \sim 2 star-forming and passive galaxies in 2.5 square degrees of deep CFHT imaging. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 2661-2678	4.3	8
679	The nature of the ISM in galaxies during the star-formation activity peak of the Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 1301-1317	4.3	31
678	Herschel Multitiered Extragalactic Survey: clusters of dusty galaxies uncovered by Herschel? and Planck Monthly Notices of the Royal Astronomical Society, 2014 , 439, 1193-1211	4.3	56
677	Dynamics of stellar black holes in young star clusters with different metallicities - II. Black hole-black hole binaries. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 3703-3717	4.3	161

676	Implications ofFermi-LAT observations on the origin of IceCube neutrinos. <i>Journal of Cosmology and Astroparticle Physics</i> , 2014 , 2014, 028-028	6.4	16
675	Describing the observed cosmic neutrinos by interactions of nuclei with matter. <i>Physical Review D</i> , 2014 , 90,	4.9	14
674	Second Einstein Telescope mock science challenge: Detection of the gravitational-wave stochastic background from compact binary coalescences. <i>Physical Review D</i> , 2014 , 89,	4.9	21
673	Cosmic neutrino cascades from secret neutrino interactions. <i>Physical Review D</i> , 2014 , 90,	4.9	86
672	Pinpointing extragalactic neutrino sources in light of recent IceCube observations. <i>Physical Review D</i> , 2014 , 90,	4.9	69
671	Diffuse PeV neutrinos from EeV cosmic ray sources: Semirelativistic hypernova remnants in star-forming galaxies. <i>Physical Review D</i> , 2014 , 89,	4.9	58
670	PdBI COLD DUST IMAGING OF TWO EXTREMELY REDH[[4.5] > 4 GALAXIES DISCOVERED WITH SEDS AND CANDELS. <i>Astrophysical Journal</i> , 2014 , 788, 126	4.7	8
669	TEMPORAL SELF-ORGANIZATION IN GALAXY FORMATION. Astrophysical Journal Letters, 2014 , 785, L21	7.9	4
668	BRINGING SIMULATION AND OBSERVATION TOGETHER TO BETTER UNDERSTAND THE INTERGALACTIC MEDIUM. <i>Astrophysical Journal</i> , 2014 , 791, 64	4.7	6
667	STARS WERE BORN IN SIGNIFICANTLY DENSER REGIONS IN THE EARLY UNIVERSE. <i>Astrophysical Journal</i> , 2014 , 787, 120	4.7	69
666	THE MASS-METALLICITY AND FUNDAMENTAL METALLICITY RELATIONS ATz> 2 USING VERY LARGE TELESCOPE AND SUBARU NEAR-INFRARED SPECTROSCOPY OF zCOSMOS GALAXIES. <i>Astrophysical Journal</i> , 2014 , 792, 3	4.7	70
665	DISTANCE DETERMINATION TO EIGHT GALAXIES USING EXPANDING PHOTOSPHERE METHOD. Astrophysical Journal, 2014 , 782, 98	4.7	53
664	Globular cluster formation in the context of galaxy formation and evolution. 2014 , 31, 244006		109
663	INTENSITY MAPPING ACROSS COSMIC TIMES WITH THE LyLINE. Astrophysical Journal, 2014, 786, 111	4.7	63
662	THE EVOLUTION OF INTERSTELLAR MEDIUM MASS PROBED BY DUST EMISSION: ALMA OBSERVATIONS ATz= 0.3-2. <i>Astrophysical Journal</i> , 2014 , 783, 84	4.7	209
661	IS THERE A MAXIMUM STAR FORMATION RATE IN HIGH-REDSHIFT GALAXIES?, , ,. <i>Astrophysical Journal</i> , 2014 , 784, 9	4.7	65
660	THE DOMINANT EPOCH OF STAR FORMATION IN THE MILKY WAY FORMED THE THICK DISK. Astrophysical Journal Letters, 2014 , 781, L31	7.9	98
659	CHEMICAL CONSTRAINTS ON THE CONTRIBUTION OF POPULATION III STARS TO COSMIC REIONIZATION. <i>Astrophysical Journal</i> , 2014 , 787, 64	4.7	14

(2014-2014)

658	FOREGROUND CONTAMINATION IN LYHNTENSITY MAPPING DURING THE EPOCH OF REIONIZATION. <i>Astrophysical Journal</i> , 2014 , 785, 72	4.7	44
657	A MOLECULAR LINE SCAN IN THE HUBBLE DEEP FIELD NORTH: CONSTRAINTS ON THE CO LUMINOSITY FUNCTION AND THE COSMIC H2DENSITY. <i>Astrophysical Journal</i> , 2014 , 782, 79	4.7	77
656	ARE DUSTY GALAXIES BLUE? INSIGHTS ON UV ATTENUATION FROM DUST-SELECTED GALAXIES. Astrophysical Journal, 2014 , 796, 95	4.7	101
655	THE OPTICAL LUMINOSITY FUNCTION OF GAMMA-RAY BURSTS DEDUCED FROM ROTSE-III OBSERVATIONS. <i>Astrophysical Journal</i> , 2014 , 795, 103	4.7	3
654	THE EVOLUTION OF GALAXY SIZE AND MORPHOLOGY ATz~ 0.5-3.0 IN THE GOODS-N REGION WITHHUBBLE SPACE TELESCOPE/WFC3 DATA. <i>Astrophysical Journal</i> , 2014 , 785, 18	4.7	43
653	DYNAMO II. Coupled stellar and ionized-gas kinematics in two low-redshift clumpy discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 3206-3221	4.3	31
652	The red supergiant and supernova rate problems: implications for core-collapse supernova physics. 2014 , 445, L99-L103		61
651	MEASURING GALAXY CLUSTERING AND THE EVOLUTION OF [C II] MEAN INTENSITY WITH FAR-IR LINE INTENSITY MAPPING DURING 0.5 . <i>Astrophysical Journal</i> , 2014 , 793, 116	4.7	34
650	THE PROPERTIES OF HEMISSION-LINE GALAXIES ATz= 2.24. Astrophysical Journal, 2014 , 784, 152	4.7	19
649	EVIDENCE OF VERY LOW METALLICITY AND HIGH IONIZATION STATE IN A STRONGLY LENSED, STAR-FORMING DWARF GALAXY AT $z=3.417$. Astrophysical Journal Letters, 2014 , 788, L4	7.9	27
648	PROBING THE COSMIC GAMMA-RAY BURST RATE WITH TRIGGER SIMULATIONS OF THESWIFTBURST ALERT TELESCOPE. <i>Astrophysical Journal</i> , 2014 , 783, 24	4.7	66
647	TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS. <i>Astrophysical Journal Letters</i> , 2014 , 795, L25	7.9	79
646	A TALE OF TWO FEEDBACKS: STAR FORMATION IN THE HOST GALAXIES OF RADIO AGNs. <i>Astrophysical Journal</i> , 2014 , 784, 137	4.7	30
645	TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE. <i>Astrophysical Journal</i> , 2014 , 783, 28	4.7	108
644	RESOLVED STAR FORMATION ON SUB-GALACTIC SCALES IN A MERGER ATz= 1.7. <i>Astrophysical Journal</i> , 2014 , 790, 143	4.7	20
643	NO MORE ACTIVE GALACTIC NUCLEI IN CLUMPY DISKS THAN IN SMOOTH GALAXIES ATz~ 2 IN CANDELS/3D-HST. <i>Astrophysical Journal</i> , 2014 , 793, 101	4.7	15
642	THE INFRARED MEDIUM-DEEP SURVEY. II. HOW TO TRIGGER RADIO AGNs? HINTS FROM THEIR ENVIRONMENTS. <i>Astrophysical Journal</i> , 2014 , 797, 26	4.7	8
641	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES ATz~ 1.6. II. THE MASS-METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION. Astrophysical Journal, 2014 , 792, 75	4.7	120

640	AKARIIRC 2.5-5 th SPECTROSCOPY OF INFRARED GALAXIES OVER A WIDE LUMINOSITY RANGE. Astrophysical Journal, 2014 , 794, 139	4.7	27
639	THE CORE COLLAPSE SUPERNOVA RATE FROM THE SDSS-II SUPERNOVA SURVEY. <i>Astrophysical Journal</i> , 2014 , 792, 135	4.7	57
638	LONG GAMMA-RAY BURSTS TRACE THE STAR FORMATION HISTORY. <i>Astrophysical Journal</i> , 2014 , 785, 70	4.7	8
637	THE NATURE OF HESELECTED GALAXIES ATz> 2. II. CLUMPY GALAXIES AND COMPACT STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2014 , 780, 77	4.7	32
636	EVOLUTION OF COLD STREAMS AND THE EMERGENCE OF THE HUBBLE SEQUENCE. <i>Astrophysical Journal Letters</i> , 2014 , 789, L21	7.9	19
635	The ultraviolet to far-infrared spectral energy distribution of star-forming galaxies in the redshift desert. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 1337-1363	4.3	15
634	The role of cluster mergers and travelling shocks in shaping the H $\frac{1}{2}$ uminosity function at z ~ 0.2: Bausage $\frac{1}{2}$ and Boothbrush $\frac{1}{2}$ clusters. Monthly Notices of the Royal Astronomical Society, 2014 , 438, 1377-13	9 0 ·3	41
633	The star formation history of mass-selected galaxies from the VIDEO survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 1459-1471	4.3	18
632	ULTRA-FAINT ULTRAVIOLET GALAXIES ATz~ 2 BEHIND THE LENSING CLUSTER A1689: THE LUMINOSITY FUNCTION, DUST EXTINCTION, AND STAR FORMATION RATE DENSITY. <i>Astrophysical Journal</i> , 2014 , 780, 143	4.7	103
631	THE LYMAN ALPHA REFERENCE SAMPLE. II.HUBBLE SPACE TELESCOPEIMAGING RESULTS, INTEGRATED PROPERTIES, AND TRENDS. <i>Astrophysical Journal</i> , 2014 , 782, 6	4.7	90
630	COSMOLOGICAL ZOOM SIMULATIONS OFz= 2 GALAXIES: THE IMPACT OF GALACTIC OUTFLOWS. Astrophysical Journal, 2014 , 782, 84	4.7	48
629	Star formation in high redshift galaxies including supernova feedback: Effect on stellar mass and luminosity functions. 2014 , 30, 89-99		8
628	Which galaxies dominate the neutral gas content of the Universe?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 920-941	4.3	69
627	Investigating evidence for different black hole accretion modes since redshift z \sim 1. Monthly Notices of the Royal Astronomical Society, 2014 , 440, 339-352	4.3	29
626	Cosmological tests using gamma-ray bursts, the star formation rate and possible abundance evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 3329-3341	4.3	45
625	Mirror dark matter: Cosmology, galaxy structure and direct detection. 2014 , 29, 1430013		128
624	Neutrinos in core-collapse supernovae and nucleosynthesis. 2014 , 41, 044007		21
623	Origin of the high energy cosmic neutrino background. 2014 , 113, 191102		12

622	Expulsion of dust from dark-matter halos at high redshifts. 2014 , 58, 497-505		3
621	AN ALMA SURVEY OF SUB-MILLIMETER GALAXIES IN THE EXTENDEDCHANDRADEEP FIELD SOUTH: SUB-MILLIMETER PROPERTIES OF COLOR-SELECTED GALAXIES. <i>Astrophysical Journal</i> , 2014 , 780, 115	4.7	14
620	A SIMPLE MODEL LINKING GALAXY AND DARK MATTER EVOLUTION. <i>Astrophysical Journal</i> , 2014 , 793, 12	4.7	34
619	Far-Infrared Surveys of Galaxy Evolution. 2014 , 52, 373-414		62
618	Cosmic Star-Formation History. 2014 , 52, 415-486		1949
617	STOCHASTIC MICROHERTZ GRAVITATIONAL RADIATION FROM STELLAR CONVECTION. Astrophysical Journal, 2014 , 792, 55	4.7	3
616	Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars. 2014 , 52, 487-528		508
615	Constraining warm dark matter with high-z supernova lensing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 13-19	4.3	6
614	LONG GRBs ARE METALLICITY-BIASED TRACERS OF STAR FORMATION: EVIDENCE FROM HOST GALAXIES AND REDSHIFT DISTRIBUTION. 2014 , 213, 15		22
613	Search for strong gravitational lensing effect in the current GRB data of BATSE. <i>Science China: Physics, Mechanics and Astronomy,</i> 2014 , 57, 1592-1599	3.6	8
612	Seeding black holes in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 2751-2767	4.3	31
611	The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. 2014 , 52, 589-660		600
610	A model for cosmological simulations of galaxy formation physics: multi-epoch validation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 1985-2004	4.3	210
609	Dusty star-forming galaxies at high redshift. 2014 , 541, 45-161		440
608	Cosmological simulations of black hole growth: AGN luminosities and downsizing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 2304-2324	4.3	205
607	Clustering, host halos, and environment of $z'\sim 2$ galaxies as a function of their physical properties. Astronomy and Astrophysics, 2014 , 567, A103	5.1	36
606	A low-luminosity type-1 QSO sample. Astronomy and Astrophysics, 2014, 561, A140	5.1	31
605	Planck2013 results. XXX. Cosmic infrared background measurements and implications for star formation. <i>Astronomy and Astrophysics</i> , 2014 , 571, A30	5.1	171

604	Evolution of the mass, size, and star formation rate in high redshift merging galaxies. <i>Astronomy and Astrophysics</i> , 2014 , 562, A1	5.1	79
603	Planck2013 results. XVIII. The gravitational lensing-infrared background correlation. <i>Astronomy and Astrophysics</i> , 2014 , 571, A18	5.1	99
602	The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). Astronomy and Astrophysics, 2014, 569, A124	5.1	14
601	Dips in the diffuse supernova neutrino background. <i>Journal of Cosmology and Astroparticle Physics</i> , 2014 , 2014, 014-014	6.4	29
600	Galaxy And Mass Assembly (GAMA): ugrizYJHK SEsic luminosity functions and the cosmic spectral energy distribution by Hubble type. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 1245-1	1 2 189	68
599	Mapping and resolving galaxy formation at its peak epoch with Mahalo-Subaru and Gracias-ALMA. 2014 , 10, 255-258		
598	Chemo-Kinematic Survey of z ~ 1 Star Forming Galaxies using Keck OSIRIS LGS-AO. 2014 , 10, 362-362		
597	The role of the dark matter haloes on the cosmic star formation rate. 2015 , 41, 48-52		
596	High-energy Cosmogenic Neutrinos. 2015 , 61, 392-398		1
595	Mock data and science challenge for detecting an astrophysical stochastic gravitational-wave background with Advanced LIGO and Advanced Virgo. <i>Physical Review D</i> , 2015 , 92,	4.9	25
595 594		4.9	25 17
	background with Advanced LIGO and Advanced Virgo. <i>Physical Review D</i> , 2015 , 92, Model of the stochastic gravitational-wave background due to core collapse to black holes. <i>Physical</i>		<u> </u>
594	background with Advanced LIGO and Advanced Virgo. <i>Physical Review D</i> , 2015 , 92, Model of the stochastic gravitational-wave background due to core collapse to black holes. <i>Physical Review D</i> , 2015 , 92, Unified model for cosmic rays above 1017 eV and the diffuse gamma-ray and neutrino	4.9	17
594 593	background with Advanced LIGO and Advanced Virgo. <i>Physical Review D</i> , 2015 , 92, Model of the stochastic gravitational-wave background due to core collapse to black holes. <i>Physical Review D</i> , 2015 , 92, Unified model for cosmic rays above 1017 eV and the diffuse gamma-ray and neutrino backgrounds. <i>Physical Review D</i> , 2015 , 92, Strongly lensed gravitational waves from intrinsically faint double compact binaries prediction for	4.9	17
594 593 592	background with Advanced LIGO and Advanced Virgo. <i>Physical Review D</i> , 2015 , 92, Model of the stochastic gravitational-wave background due to core collapse to black holes. <i>Physical Review D</i> , 2015 , 92, Unified model for cosmic rays above 1017 eV and the diffuse gamma-ray and neutrino backgrounds. <i>Physical Review D</i> , 2015 , 92, Strongly lensed gravitational waves from intrinsically faint double compact binaries prediction for the Einstein Telescope. <i>Journal of Cosmology and Astroparticle Physics</i> , 2015 , 2015, 006-006 Do high energy astrophysical neutrinos trace star formation? <i>Journal of Cosmology and</i>	4.9 4.9 6.4	17 19 41
594 593 592 591	background with Advanced LIGO and Advanced Virgo. Physical Review D, 2015, 92, Model of the stochastic gravitational-wave background due to core collapse to black holes. Physical Review D, 2015, 92, Unified model for cosmic rays above 1017 eV and the diffuse gamma-ray and neutrino backgrounds. Physical Review D, 2015, 92, Strongly lensed gravitational waves from intrinsically faint double compact binaries prediction for the Einstein Telescope. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 006-006 Do high energy astrophysical neutrinos trace star formation?. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 2015, 029-029 Erratum: Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos	4·9 4·9 6.4 4·9	17 19 41 21
594 593 592 591	background with Advanced LIGO and Advanced Virgo. Physical Review D, 2015, 92, Model of the stochastic gravitational-wave background due to core collapse to black holes. Physical Review D, 2015, 92, Unified model for cosmic rays above 1017 eV and the diffuse gamma-ray and neutrino backgrounds. Physical Review D, 2015, 92, Strongly lensed gravitational waves from intrinsically faint double compact binaries prediction for the Einstein Telescope. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 006-006 Do high energy astrophysical neutrinos trace star formation?. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 029-029 Erratum: Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos [Phys. Rev. D 90, 103005 (2014)]. Physical Review D, 2015, 92, THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). V. EXTENT AND SPATIAL	4·9 4·9 6.4 4·9	17 19 41 21

(2015-2015)

	586	SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, 2015 , 811, 58	4.7	23
	585	DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS. <i>Astrophysical Journal</i> , 2015 , 812, 104	4.7	17
,	584	EVOLUTION OF STAR FORMATION PROPERTIES OF HIGH-REDSHIFT CLUSTER GALAXIES SINCEz= 2. Astrophysical Journal, 2015 , 810, 90	4.7	28
	583	EXTRAGALACTIC HIGH-ENERGY TRANSIENTS: EVENT RATE DENSITIES AND LUMINOSITY FUNCTIONS. <i>Astrophysical Journal</i> , 2015 , 812, 33	4.7	86
	582	FIRST RESULTS FROM COPSS: THE CO POWER SPECTRUM SURVEY. <i>Astrophysical Journal</i> , 2015 , 814, 140	4.7	28
,	581	A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD. Astrophysical Journal, 2015 , 814, 97	4.7	8
,	580	Supernova rates from the SUDARE VST-OmegaCAM search. <i>Astronomy and Astrophysics</i> , 2015 , 584, A62	5.1	55
	579	The role of massive halos in the star formation history of the Universe. <i>Astronomy and Astrophysics</i> , 2015 , 579, A132	5.1	14
,	578	The cosmic MeV neutrino background as a laboratory for black hole formation. 2015 , 751, 413-417		10
	577	Cosmic reionization of hydrogen and helium: contribution from both mini-quasars and stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 1875-1882	4.3	3
,	576	A blind H i mass function from the Arecibo Ultra-Deep Survey (AUDS). <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 3726-3741	4.3	45
	575	On the nature of Hæmitters atz~ 2 from the HiZELS survey: physical properties, Lyæscape fraction and main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 2018-2033	4.3	37
,	574	Predicting dust extinction properties of star-forming galaxies from HAUV ratio. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 879-892	4.3	28
	573	The ATLAS 5.5 GHz survey of the extendedChandraDeep Field South: the second data release. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 952-972	4.3	13
	572	Globular clusters as the relics of regular star formation in Bormallhigh-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1658-1686	4.3	203
	571	The inferred evolution of the cold gas properties of CANDELS galaxies at 0.5 Monthly Notices of the Royal Astronomical Society, 2015 , 454, 2258-2276	4.3	38
	570	The rate, luminosity function and time delay of non-Collapsar short GRBs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 3026-3037	4.3	155
	569	Periodic signals from the Circinus region: two new cataclysmic variables and the ultraluminous X-ray source candidate GC X-1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1112-1127	4.3	20

568	Galaxy merger histories and the role of merging in driving star formation atz'> 1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 2845-2850	4.3	35
567	The evolving relation between star formation rate and stellar mass in the VIDEO survey sincez´=´3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 2541-2558	4.3	42
566	New H i 21-cm absorbers at low and intermediate redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 1268-1280	4.3	21
565	The very wide-fieldgzKgalaxy survey []. Details of the clustering properties of star-forming galaxies atz~ 2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 213-225	4.3	15
564	Resolved spectroscopy of gravitationally lensed galaxies: global dynamics and star-forming clumps on ~100´pc scales at 1´. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1812-1835	4.3	95
563	Looking for Population III stars with He îi line intensity mapping. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 2506-2513	4.3	18
562	NOISE-BASED DETECTION AND SEGMENTATION OF NEBULOUS OBJECTS. 2015 , 220, 1		46
561	The excess radio background and fast radio transients. <i>Journal of Cosmology and Astroparticle Physics</i> , 2015 , 2015, 053-053	6.4	3
560	Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances. <i>Astronomy and Astrophysics</i> , 2015 , 578, A87	5.1	104
559	Molecular gas content in strongly lensedz~ 1.5B star-forming galaxies with low infrared luminosities. <i>Astronomy and Astrophysics</i> , 2015 , 577, A50	5.1	60
558	Abundance and temperature distributions in the hot intra-cluster gas of Abell 4059. <i>Astronomy and Astrophysics</i> , 2015 , 575, A37	5.1	33
557	Toward unveiling internal properties of Hii regions and their connections at the cosmic noon era. 2015 , 11, 53-53		
556	The spectral energy distribution of the redshift 7.1 quasar ULAS J1120+0641. <i>Astronomy and Astrophysics</i> , 2015 , 575, A31	5.1	23
555	The star formation rate cookbook at 1'. Astronomy and Astrophysics, 2015 , 582, A80	5.1	14
554	Star formation in the local Universe from the CALIFA sample. <i>Astronomy and Astrophysics</i> , 2015 , 584, A87	5.1	78
553	Galaxy stellar mass assembly: the difficulty matching observations and semi-analytical predictions. <i>Astronomy and Astrophysics</i> , 2015 , 575, A32	5.1	18
552	The galaxy stellar mass function at 3.5 🔟 .5 in the CANDELS/UDS, GOODS-South, and HUDF fields. <i>Astronomy and Astrophysics</i> , 2015 , 575, A96	5.1	175
551	The neutral gas content of post-merger galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 221-236	4.3	34

550	The ultimate fate of cosmic rays from galaxies and their role in the intergalactic medium. 2015 , 448, L20	0-L24	9
549	Selection of AGN candidates in the GOODS-South Field through Spitzer/MIPS 24 th variability. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 3199-3223	4.3	6
548	Star formation quenching in simulated group and cluster galaxies: when, how, and why?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 969-992	4.3	88
547	CF-HiZELS, an ~10´deg2 emission-line survey with spectroscopic follow-up: HḤ[O iii]´+´H晦nd [O ii] luminosity functions at z´=´0.8, 1.4 and 2.2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2303-2323	4.3	52
546	Radio-quiet quasars in the VIDEO survey: evidence for AGN-powered radio emission at S1.4 GHz Monthly Notices of the Royal Astronomical Society, 2015 , 448, 2665-2686	4.3	41
545	The formation history of massive cluster galaxies as revealed by CARLA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 2318-2336	4.3	17
544	Evolution of star formation in the UKIDSS Ultra Deep Survey Field [II. Star formation as a function of stellar mass betweenz´=´1.46 and 0.63. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 2015-2025	4.3	6
543	Evolution of the atomic and molecular gas content of galaxies in dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 477-493	4.3	60
542	The MassiveBlack-II simulation: the evolution of haloes and galaxies to z´~´0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1349-1374	4.3	206
541	Observational properties of simulated galaxies in overdense and average regions at redshifts z? 612. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 418-432	4.3	28
540	H-ATLAS/GAMA: quantifying the morphological evolution of the galaxy population using cosmic calorimetry. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 3489-3507	4.3	13
539	Stochastic gravitational wave background from magnetic deformation of newly born magnetars. <i>Monthly Notices of the Royal Astronomical Society,</i> 2015 , 454, 2299-2304	4.3	9
538	The search for failed supernovae with the Large Binocular Telescope: first candidates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 3289-3305	4.3	104
537	A CO-rich merger shaping a powerful and hyperluminous infrared radio galaxy at z´=´2: the Dragonfly Galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 1025-1035	4.3	11
536	Cosmic gamma-ray bursts from primordial stars: A new renaissance in astrophysics?. 2015 , 30, 1545021		1
535	Radio AGN in spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1595-1604	4.3	22
534	Evolution of the H \(\mathbb{H}\) [O iii] and [O ii] luminosity functions and the [O ii] star formation history of the Universe up toz \(\alpha\) 5 from HiZELS. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3948	- 3 968	70
533	The star formation history inferred from long gamma-ray bursts with high pseudo-redshifts. 2015 , 38, 11-15		2

532	SELECTION EFFECTS IN GAMMA-RAY BURST CORRELATIONS: CONSEQUENCES ON THE RATIO BETWEEN GAMMA-RAY BURST AND STAR FORMATION RATES. <i>Astrophysical Journal</i> , 2015 , 800, 31	4.7	34
531	TORQUE-LIMITED GROWTH OF MASSIVE BLACK HOLES IN GALAXIES ACROSS COSMIC TIME. Astrophysical Journal, 2015 , 800, 127	4.7	44
530	A NEW MODEL FOR DARK MATTER HALOS HOSTING QUASARS. <i>Astrophysical Journal Letters</i> , 2015 , 798, L38	7.9	15
529	REVISITING COINCIDENCE RATE BETWEEN GRAVITATIONAL WAVE DETECTION AND SHORT GAMMA-RAY BURST FOR THE ADVANCED AND THIRD GENERATION. <i>Astrophysical Journal</i> , 2015 , 799, 69	4.7	24
528	THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV. Astrophysical Journal, 2015 , 799, 86	4.7	421
527	A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION. <i>Astrophysical Journal</i> , 2015 , 799, 32	4.7	100
526	The impact of galactic feedback on the circumgalactic medium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 895-909	4.3	70
525	Galaxy formation in the Planck cosmology []. Matching the observed evolution of star formation rates, colours and stellar masses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2663-26	8 0 ·3	371
524	Short versus long gamma-ray bursts: a comprehensive study of energetics and prompt gamma-ray correlations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 126-143	4.3	34
523	Diffuse neutrinos from extragalactic supernova remnants: Dominating the 100 TeV IceCube flux. 2015 , 745, 35-39		34
523 522		4.7	34 148
	2015 , 745, 35-39 GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR R ADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TOz? 4. <i>Astrophysical Journal</i> , 2015 ,	4.7	
522	2015, 745, 35-39 GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIRRADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TOz? 4. Astrophysical Journal, 2015, 807, 141 A refined sub-grid model for black hole accretion and AGN feedback in large cosmological		148
522 521	GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIRRADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TOz? 4. Astrophysical Journal, 2015, 807, 141 A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1504-1525 Optical supernova remnants in nearby galaxies and their influence on star formation rates derived	4.3	148
522 521 520	GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIRRADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TOz? 4. Astrophysical Journal, 2015, 807, 141 A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1504-1525 Optical supernova remnants in nearby galaxies and their influence on star formation rates derived from Hibmission. Monthly Notices of the Royal Astronomical Society, 2015, 446, 943-958 The initial mass function and star formation law in the outer disc of NGC 2915. Monthly Notices of	4.3	148 101 13
522521520519	GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIRRADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TOz? 4. Astrophysical Journal, 2015, 807, 141 A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1504-1525 Optical supernova remnants in nearby galaxies and their influence on star formation rates derived from Hemission. Monthly Notices of the Royal Astronomical Society, 2015, 446, 943-958 The initial mass function and star formation law in the outer disc of NGC 2915. Monthly Notices of the Royal Astronomical Society, 2015, 447, 618-635 Accessing the population of high-redshift Gamma Ray Bursts. Monthly Notices of the Royal	4·3 4·3	148 101 13 21
522521520519518	GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIRBADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TOz? 4. Astrophysical Journal, 2015, 807, 141 A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1504-1525 Optical supernova remnants in nearby galaxies and their influence on star formation rates derived from Hiemission. Monthly Notices of the Royal Astronomical Society, 2015, 446, 943-958 The initial mass function and star formation law in the outer disc of NGC 2915. Monthly Notices of the Royal Astronomical Society, 2015, 447, 618-635 Accessing the population of high-redshift Gamma Ray Bursts. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2514-2524 On the importance of using appropriate spectral models to derive physical properties of galaxies at	4·3 4·3 4·3	148 101 13 21 21

(2015-2015)

514	The star formation history of galaxies: the role of galaxy mass, morphology and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 2749-2763	4.3	42
513	Gamma-ray burst cosmology. 2015 , 67, 1-17		75
512	Constraining the primordial initial mass function with stellar archaeology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 3892-3908	4.3	61
511	(ALMOST) DARK HI SOURCES IN THE ALFALFA SURVEY: THE INTRIGUING CASE OF HI1232+20. Astrophysical Journal, 2015 , 801, 96	4.7	49
510	ARE THE BULK OFz> 2HERSCHELGALAXIES PROTO-SPHEROIDS?. Astrophysical Journal, 2015, 803, 35	4.7	9
509	SPECTRUM OF THE SUPERNOVA RELIC NEUTRINO BACKGROUND AND METALLICITY EVOLUTION OF GALAXIES. <i>Astrophysical Journal</i> , 2015 , 804, 75	4.7	30
508	PRIMUS: EFFECTS OF GALAXY ENVIRONMENT ON THE QUIESCENT FRACTION EVOLUTION ATZ Astrophysical Journal, 2015 , 806, 162	4.7	16
507	GALAXY FORMATION ATz> 3 REVEALED BY NARROWBAND-SELECTED [O III] EMISSION LINE GALAXIES. <i>Astrophysical Journal</i> , 2015 , 806, 208	4.7	13
506	THE MOSFIRE DEEP EVOLUTION FIELD (MOSDEF) SURVEY: REST-FRAME OPTICAL SPECTROSCOPY FOR ~1500 H -SELECTED GALAXIES AT \$1.37leqslant zleqslant 3.8\$. 2015 , 218, 15		226
505	STAR FORMATION HISTORY, DUST ATTENUATION, AND EXTRAGALACTIC BACKGROUND LIGHT. Astrophysical Journal, 2015 , 805, 33	4.7	44
504	ULTRAVIOLET ISM DIAGNOSTICS FOR STAR-FORMING GALAXIES. I. TRACERS OF METALLICITY AND EXTINCTION. <i>Astrophysical Journal</i> , 2015 , 805, 151	4.7	5
503	EXTRAGALACTIC STAR-FORMING GALAXIES WITH HYPERNOVAE AND SUPERNOVAE AS HIGH-ENERGY NEUTRINO AND GAMMA-RAY SOURCES: THE CASE OF THE 10 TeV NEUTRINO DATA. <i>Astrophysical Journal</i> , 2015 , 806, 24	4.7	43
502	DISSECTING THE GASEOUS HALOS OFz~ 2 DAMPED LyBYSTEMS WITH CLOSE QUASAR PAIRS. <i>Astrophysical Journal</i> , 2015 , 808, 38	4.7	39
501	Luminosity function of [O ii] emission-line galaxies in the MassiveBlack-II simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 277-287	4.3	6
500	Galaxies as seen through the most energetic explosions in the universe. 2015 , 7, 95-104		3
499	Research on the redshift evolution of luminosity function and selection effect of GRBs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1785-1791	4.3	9
498	The nature of the Diffuse Gamma-Ray Background. 2015 , 598, 1-58		73
497	Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 034-034	6.4	11

496	THE LUMINOSITY AND STELLAR MASS FUNCTIONS OF GRB HOST GALAXIES: INSIGHT INTO THE METALLICITY BIAS. <i>Astrophysical Journal</i> , 2015 , 802, 103	4.7	46
495	Search for Supernova Relic Neutrinos with 2.2 MeV Gamma Tagging at Super-Kamiokande-IV. 2015 , 61, 384-391		3
494	The impact of star formation and gamma-ray burst rates at high redshift on cosmic chemical evolution and reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 2575-2587	4.3	63
493	GROUND-BASED PalNARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES. 2015 , 217, 1		17
492	THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VII. THE HOST GALAXY LUMINOSITY FUNCTION: PROBING THE RELATIONSHIP BETWEEN GRBs AND STAR FORMATION TO REDSHIFT ~6. Astrophysical Journal, 2015 , 808, 73	4.7	52
491	AN UNEXPECTEDLY LOW-REDSHIFT EXCESS OF SWIFT GAMMA-RAY BURST RATE. 2015 , 218, 13		41
490	Galaxy And Mass Assembly (GAMA): bivariate functions of HBtar-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 875-901	4.3	18
489	COSMOLOGICAL EVOLUTION OF LONG GAMMA-RAY BURSTS AND THE STAR FORMATION RATE. <i>Astrophysical Journal</i> , 2015 , 806, 44	4.7	42
488	Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis. 2015 , 11, 1042-1042		93
487	The dynamical evolution of molecular clouds near the Galactic Centre []. Orbital structure and evolutionary timeline. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 1059-1079	4.3	154
486	Are gamma-ray bursts the sources of ultra-high energy cosmic rays?. 2015 , 62, 66-91		39
485	THE UBIQUITY OF COEVAL STARBURSTS IN MASSIVE GALAXY CLUSTER PROGENITORS. Astrophysical Journal, 2016 , 824, 36	4.7	60
484	TIMING THE EVOLUTION OF QUIESCENT AND STAR-FORMING LOCAL GALAXIES. <i>Astrophysical Journal</i> , 2016 , 824, 45	4.7	29
483	ZFIRE: A KECK/MOSFIRE SPECTROSCOPIC SURVEY OF GALAXIES IN RICH ENVIRONMENTS ATz~ 2. <i>Astrophysical Journal</i> , 2016 , 828, 21	4.7	42
482	COPSS II: THE MOLECULAR GAS CONTENT OF TEN MILLION CUBIC MEGAPARSECS AT REDSHIFTz~ 3. <i>Astrophysical Journal</i> , 2016 , 830, 34	4.7	54
481	THE GAS MASS OF STAR-FORMING GALAXIES AT z 🗓 .3. Astrophysical Journal Letters, 2016 , 818, L28	7.9	31
480	THE ABSOLUTE RATE OF LGRB FORMATION. Astrophysical Journal, 2016 , 823, 154	4.7	14
479	Local starburst galaxies and their descendants. <i>Astronomy and Astrophysics</i> , 2016 , 587, A72	5.1	25

(2016-2016)

THE PHASE SPACE OF \$25IM 1.2\$ SPARCS CLUSTERS: USINGHERSCHELTO PROBE DUST TEMPERATURE AS A FUNCTION OF ENVIRONMENT AND ACCRETION HISTORY. <i>Astrophysical</i> <i>Journal</i> , 2016 , 816, 48	4.7	37
THE SEARCH FOR HI EMISSION AT z 10.4 IN GRAVITATIONALLY LENSED GALAXIES WITH THE GREEN BANK TELESCOPE. 2016 , 152, 30		4
Properties of galaxies at the faint end of the Haminosity function atz~ 0.62. <i>Astronomy and Astrophysics</i> , 2016 , 591, A151	5.1	4
A high definition view of the COSMOS Wall atz ~ 0.73. <i>Astronomy and Astrophysics</i> , 2016 , 592, A78	5.1	15
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: selecting emission line galaxies using the Fisher discriminant. <i>Astronomy and Astrophysics</i> , 2016 , 585, A50	5.1	20
Multi-wavelength characterisation ofz~ 2 clustered, dusty star-forming galaxies discovered byPlanck. <i>Astronomy and Astrophysics</i> , 2016 , 585, A54	5.1	16
Multi-messenger aspects of cosmic neutrinos*. 2016 , 116, 11001		
HIGHEST REDSHIFT IMAGE OF NEUTRAL HYDROGEN IN EMISSION: A CHILES DETECTION OF A STARBURSTING GALAXY AT $z=0.376$. Astrophysical Journal Letters, 2016 , 824, L1	7.9	64
IceCube constraints on fast-spinning pulsars as high-energy neutrino sources. Journal of Cosmology	6.4	
and Astroparticle Physics, 2016 , 2016, 010-010	0.4	11
and Astroparticle Physics, 2016, 2016, 010-010 Neutrino physics with JUNO. 2016, 43, 030401	0.4	483
	6.4	
Neutrino physics with JUNO. 2016 , 43, 030401 Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino	·	483
Neutrino physics with JUNO. 2016, 43, 030401 Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 017-017	6.4	483 6
Neutrino physics with JUNO. 2016, 43, 030401 Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 017-017 Star formation along the Hubble sequence. Astronomy and Astrophysics, 2016, 590, A44 Short gamma-ray bursts at the dawn of the gravitational wave era. Astronomy and Astrophysics,	6.4 5.1	483 6
Neutrino physics with JUNO. 2016 , 43, 030401 Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors. <i>Journal of Cosmology and Astroparticle Physics</i> , 2016 , 2016, 017-017 Star formation along the Hubble sequence. <i>Astronomy and Astrophysics</i> , 2016 , 590, A44 Short gamma-ray bursts at the dawn of the gravitational wave era. <i>Astronomy and Astrophysics</i> , 2016 , 594, A84 GRAVITATIONAL WAVE BACKGROUND FROM BINARY MERGERS AND METALLICITY EVOLUTION	6.4 5.1 5.1	483 6 103 82
Neutrino physics with JUNO. 2016, 43, 030401 Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 017-017 Star formation along the Hubble sequence. Astronomy and Astrophysics, 2016, 590, A44 Short gamma-ray bursts at the dawn of the gravitational wave era. Astronomy and Astrophysics, 2016, 594, A84 GRAVITATIONAL WAVE BACKGROUND FROM BINARY MERGERS AND METALLICITY EVOLUTION OF GALAXIES. Astrophysical Journal, 2016, 832, 146 Determination of cosmological parameters from gamma ray burst characteristics and afterglow	6.4 5.1 5.1	483 6 103 82
Neutrino physics with JUNO. 2016, 43, 030401 Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 017-017 Star formation along the Hubble sequence. Astronomy and Astrophysics, 2016, 590, A44 Short gamma-ray bursts at the dawn of the gravitational wave era. Astronomy and Astrophysics, 2016, 594, A84 GRAVITATIONAL WAVE BACKGROUND FROM BINARY MERGERS AND METALLICITY EVOLUTION OF GALAXIES. Astrophysical Journal, 2016, 832, 146 Determination of cosmological parameters from gamma ray burst characteristics and afterglow correlations. 2016, 361, 1 RED-SUPERGIANT AND SUPERNOVA RATE PROBLEMS: IMPLICATION FOR THE RELIC SUPERNOVA	6.4 5.1 5.1 4.7	483 6 103 82 11
	THE SEARCH FOR HI EMISSION AT z (D.4 IN GRAVITATIONALLY LENSED GALAXIES WITH THE GREEN BANK TELESCOPE. 2016, 152, 30 Properties of galaxies at the faint end of the Helluminosity function atz~ 0.62. Astronomy and Astrophysics, 2016, 591, A151 A high definition view of the COSMOS Wall atz ~ 0.73. Astronomy and Astrophysics, 2016, 592, A78 The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: selecting emission line galaxies using the Fisher discriminant. Astronomy and Astrophysics, 2016, 585, A50 Multi-wavelength characterisation ofz~ 2 clustered, dusty star-forming galaxies discovered byPlanck. Astronomy and Astrophysics, 2016, 585, A54 Multi-messenger aspects of cosmic neutrinos*. 2016, 116, 11001 HIGHEST REDSHIFT IMAGE OF NEUTRAL HYDROGEN IN EMISSION: A CHILES DETECTION OF A STARBURSTING GALAXY AT z = 0.376. Astrophysical Journal Letters, 2016, 824, L1	TEMPERATURE AS A FUNCTION OF ENVIRONMENT AND ACCRETION HISTORY. Astrophysical Journal, 2016, 816, 48 THE SEARCH FOR HI EMISSION AT z ID.4 IN GRAVITATIONALLY LENSED GALAXIES WITH THE GREEN BANK TELESCOPE. 2016, 152, 30 Properties of galaxies at the faint end of the Hilliaminosity function atz~ 0.62. Astronomy and Astrophysics, 2016, 591, A151 A high definition view of the COSMOS Wall atz ~ 0.73. Astronomy and Astrophysics, 2016, 592, A78 The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: selecting emission line galaxies using the Fisher discriminant. Astronomy and Astrophysics, 2016, 585, A50 Multi-wavelength characterisation ofz~ 2 clustered, dusty star-forming galaxies discovered byPlanck. Astronomy and Astrophysics, 2016, 585, A54 Multi-messenger aspects of cosmic neutrinos*. 2016, 116, 11001 HIGHEST REDSHIFT IMAGE OF NEUTRAL HYDROGEN IN EMISSION: A CHILES DETECTION OF A STARBURSTING GALAXY AT z = 0.376. Astrophysical Journal Letters, 2016, 824, L1 JecCube constraints on fast-spinning pulsars as high-energy neutring sources. Journal of Cosmology

460	The rate and luminosity function of long gamma ray bursts. Astronomy and Astrophysics, 2016, 587, A40	5.1	46
459	Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube. 2016 , 117, 241101		87
458	THE HIGH CADENCE TRANSIENT SURVEY (HITS). I. SURVEY DESIGN AND SUPERNOVA SHOCK BREAKOUT CONSTRAINTS. <i>Astrophysical Journal</i> , 2016 , 832, 155	4.7	32
457	THE MOSDEF SURVEY: THE STRONG AGREEMENT BETWEEN H \pm AND UV-TO-FIR STAR FORMATION RATES FOR z ~ 2 STAR-FORMING GALAXIES. <i>Astrophysical Journal Letters</i> , 2016 , 820, L23	7.9	41
456	THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY. Astrophysical Journal, 2016 , 822, 80	4.7	92
455	CRPropa 3日 public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles. <i>Journal of Cosmology and Astroparticle Physics</i> , 2016 , 2016, 038-038	6.4	122
454	ON THE INCONSISTENCY BETWEEN COSMIC STELLAR MASS DENSITY AND STAR FORMATION RATE UP TOz~ 8. <i>Astrophysical Journal</i> , 2016 , 820, 114	4.7	11
453	ISM MASSES AND THE STAR FORMATION LAW ATZ= 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD. <i>Astrophysical Journal</i> , 2016 , 820, 83	4.7	298
452	Diffuse supernova neutrinos at underground laboratories. 2016 , 79, 49-77		36
451	Massive black hole binaries from runaway collisions: the impact of metallicity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 3432-3446	4.3	158
450	Indication of a local fog of subankle ultrahigh energy cosmic rays. <i>Physical Review D</i> , 2016 , 94,	4.9	21
449	Hierarchical black hole triples in young star clusters: impact of Kozaillidov resonance on mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2443-2452	4.3	43
448	COSMOGENIC NEUTRINOS CHALLENGE THE COSMIC-RAY PROTON DIP MODEL. <i>Astrophysical Journal</i> , 2016 , 825, 122	4.7	43
447	REVISITING THE CONTRIBUTIONS OF SUPERNOVA AND HYPERNOVA REMNANTS TO THE DIFFUSE HIGH-ENERGY BACKGROUNDS: CONSTRAINTS ON VERY HIGH REDSHIFT INJECTION. <i>Astrophysical Journal</i> , 2016 , 826, 133	4.7	21
446	Binary black hole merger rates inferred from luminosity function of ultra-luminous X-ray sources. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 461, 4329-4334	4.3	10
445	[O iii] emission line as a tracer of star-forming galaxies at high redshifts: comparison between H= and [O iii] emitters at z=2.23 in HiZELS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 181-189	4.3	13
444	Gas-to-dust ratios in massive star-forming galaxies atz~ 1.4. 2016 , 68, 62		5
443	Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter. 2016 , 117, 091301		137

(2016-2016)

442	Origin of central abundances in the hot intra-cluster medium. <i>Astronomy and Astrophysics</i> , 2016 , 595, A126	5.1	39
441	Instability of supersonic cold streams feeding galaxies []. Linear Kelvin⊞elmholtz instability with body modes. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 463, 3921-3947	4.3	32
440	Second Einstein Telescope mock data and science challenge: Low frequency binary neutron star data analysis. <i>Physical Review D</i> , 2016 , 93,	4.9	16
439	Probing BSM neutrino physics with flavor and spectral distortions: Prospects for future high-energy neutrino telescopes. <i>Physical Review D</i> , 2016 , 93,	4.9	51
438	COMPARING SIMULATIONS OF AGN FEEDBACK. Astrophysical Journal, 2016, 825, 83	4.7	17
437	The evolution of galaxies at constant number density: a less biased view of star formation, quenching, and structural formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1112-	1 729	15
436	PROPERTIES OF THE INTERSTELLAR MEDIUM IN STAR-FORMING GALAXIES ATz~ 1.4 REVEALED WITH ALMA. <i>Astrophysical Journal</i> , 2016 , 819, 82	4.7	19
435	THE ALFALFA HBURVEY. I. PROJECT DESCRIPTION AND THE LOCAL STAR FORMATION RATE DENSITY FROM THE FALL SAMPLE. <i>Astrophysical Journal</i> , 2016 , 824, 25	4.7	11
434	THE MOSDEF SURVEY: DYNAMICAL AND BARYONIC MASSES AND KINEMATIC STRUCTURES OF STAR-FORMING GALAXIES AT 1.4 配2.6. <i>Astrophysical Journal</i> , 2016 , 819, 80	4.7	53
433	The deepest X-ray view of high-redshift galaxies: constraints on low-rate black hole accretion. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 348-374	4.3	55
432	THE MOSDEF SURVEY: ELECTRON DENSITY AND IONIZATION PARAMETER ATz~ 2.3. <i>Astrophysical Journal</i> , 2016 , 816, 23	4.7	153
431	MAGIICAT IV. KINEMATICS OF THE CIRCUMGALACTIC MEDIUM AND EVIDENCE FOR QUIESCENT EVOLUTION AROUND RED GALAXIES. <i>Astrophysical Journal</i> , 2016 , 818, 171	4.7	23
430	HOW FAR AWAY ARE THE SOURCES OF ICECUBE NEUTRINOS? CONSTRAINTS FROM THE DIFFUSE TERAELECTRONVOLT GAMMA-RAY BACKGROUND. <i>Astrophysical Journal</i> , 2016 , 825, 148	4.7	9
429	GAMA/H-ATLAS: a meta-analysis of SFR indicators ©comprehensive measures of the SFRM*relation and cosmic star formation history atz'. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 458-485	4.3	80
428	GAMA/H-ATLAS: common star formation rate indicators and their dependence on galaxy physical parameters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1898-1916	4.3	11
427	LOFAR/H-ATLAS: a deep low-frequency survey of theHerschel-ATLAS North Galactic Pole field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 1910-1936	4.3	79
426	Ultrahigh-energy cosmic ray production by turbulence in gamma-ray burst jets and cosmogenic neutrinos. <i>Physical Review D</i> , 2016 , 94,	4.9	21
425	Tracing outflows in the AGN forbidden region with SINFONI. <i>Astronomy and Astrophysics</i> , 2016 , 592, A14	. 8.1	42

424	A TOTAL MOLECULAR GAS MASS CENSUS INZ~ 28 STAR-FORMING GALAXIES: LOW-JCO EXCITATION PROBES OF GALAXIESŒVOLUTIONARY STATES. <i>Astrophysical Journal</i> , 2016 , 827, 18	4.7	48
423	The early phases of galaxy formation and evolution. 2016 ,		
422	HIGH-ENERGY NEUTRINO EMISSION FROM WHITE DWARF MERGERS. <i>Astrophysical Journal</i> , 2016 , 832, 20	4.7	15
421	Sub-mm emission line deep fields: CO and [C ii] luminosity functions out toz= 6. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 93-110	4.3	44
420	The HerMES submillimetre local and low-redshift luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 1999-2023	4.3	30
419	Optimizing commensality of radio continuum and spectral line observations in the era of the SKA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3419-3431	4.3	6
418	The KMOS Redshift One Spectroscopic Survey (KROSS): dynamical properties, gas and dark matter fractions of typicalz~ 1 star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 1888-1904	4.3	125
417	A recalibration of strong-line oxygen abundance diagnostics via the direct method and implications for the high-redshift universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 1529-1547	4.3	39
416	Heavily reddenedz~ 2 Type 1 quasars []I. H	4.3	8
415	The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully E isher relation atz~ 1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 103-129	4.3	35
414	ULTRAHIGH-ENERGY COSMIC RAYS AND BLACK HOLE MERGERS. <i>Astrophysical Journal Letters</i> , 2016 , 823, L29	7.9	32
413	The flatness and sudden evolution of the intergalactic ionizing background. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 1385-1397	4.3	7
412	Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UVfar-IR) and the low-zenergy budget. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 3911-3942	4.3	100
411	Galaxy And Mass Assembly (GAMA): the 325´MHz radio luminosity function of AGN and star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 730-744	4.3	22
410	Star formation and gas phase history of the cosmic web. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2804-2825	4.3	8
409	The most luminous H & mitters atz~ 0.8 \overline{\mathbb{Q}}.23 from HiZELS: evolution of AGN and star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 1739-1752	4.3	28
408	Brightest group galaxies: stellar mass and star formation rate (paper I). <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 2762-2775	4.3	14
407	Long GRBs as a tool to investigate star formation in dark matter halos. 2016 , 9-10, 1-8		3

(2017-2016)

406	MODELING THESWIFTBAT TRIGGER ALGORITHM WITH MACHINE LEARNING. <i>Astrophysical Journal</i> , 2016 , 818, 55	4.7	3	
405	Proposed searches for candidate sources of gravitational waves in a nearby core-collapse supernova survey. 2016 , 42, 24-28		5	
404	THESWIFTGAMMA-RAY BURST HOST GALAXY LEGACY SURVEY. I. SAMPLE SELECTION AND REDSHIFT DISTRIBUTION. <i>Astrophysical Journal</i> , 2016 , 817, 7	4.7	83	
403	YOUNG, STAR-FORMING GALAXIES AND THEIR LOCAL COUNTERPARTS: THE EVOLVING RELATIONSHIP OF MASSBFRIMETALLICITY SINCEz~ 2.1. <i>Astrophysical Journal</i> , 2016 , 817, 10	4.7	23	
402	Are the distributions of fast radio burst properties consistent with a cosmological population?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 708-717	4.3	58	
401	GRBs and Fundamental Physics. 2016 , 202, 195-234		7	
400	Constraining the redshift distribution of ultrahigh@nergy@osmic@y sources by isotropic gamma-ray background. 2017 ,		1	
399	Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C. <i>Astrophysical Journal</i> , 2017 , 835,	4.7	92	
398	Nebular Emission Line Ratios inz? 2B Star-forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio. <i>Astrophysical Journal</i> , 2017 , 836, 164	4.7	131	
397	Revisiting the Redshift Distribution of Gamma-Ray Bursts in the Swift Era. <i>Astrophysical Journal</i> , 2017 , 837, 17	4.7	12	
396	Numerical Simulation of Star Formation by the Bow Shock of the Centaurus A Jet. <i>Astrophysical Journal</i> , 2017 , 835, 232	4.7	2	
395	Log-normal Star Formation Histories in Simulated and Observed Galaxies. <i>Astrophysical Journal</i> , 2017 , 839, 26	4.7	39	
394	Cosmic-ray Induced Destruction of CO in Star-forming Galaxies. <i>Astrophysical Journal</i> , 2017 , 839, 90	4.7	69	
393	The GalaxyHalo Connection in High-redshift Universe: Details and Evolution of Stellar-to-halo Mass Ratios of Lyman Break Galaxies on CFHTLS Deep Fields. <i>Astrophysical Journal</i> , 2017 , 841, 8	4.7	16	
392	Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe. <i>Astrophysical Journal</i> , 2017 , 841, 6	4.7	19	
391	Can tidal disruption events produce the IceCube neutrinos?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 1354-1359	4.3	33	
390	VALES. Astronomy and Astrophysics, 2017 , 602, A49	5.1	11	
389	Small-scale Intensity Mapping: Extended LyHHHand Continuum Emission as a Probe of Halo Star Formation in High-redshift Galaxies. <i>Astrophysical Journal</i> , 2017 , 841, 19	4.7	22	

388	Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction. <i>Astronomy and Astrophysics</i> , 2017 , 601, A29	5.1	92
387	The ALHAMBRA survey:B-band luminosity function of quiescent and star-forming galaxies at 0.2 ½. <i>Astronomy and Astrophysics</i> , 2017 , 599, A62	5.1	12
386	Systematic Survey for [O ii], [O iii], and HBlobs atz= 0.1¶.5: The Implication for Evolution of Galactic-scale Outflow. <i>Astrophysical Journal</i> , 2017 , 841, 93	4.7	10
385	A Submillimeter Perspective on the GOODS Fields (SUPER GOODS). I. An Ultradeep SCUBA-2 Survey of the GOODS-N. <i>Astrophysical Journal</i> , 2017 , 837, 139	4.7	42
384	The MOSDEF Survey: Metallicity Dependence of PAH Emission at High Redshift and Implications for 24th Inferred IR Luminosities and Star Formation Rates atz~ 2. <i>Astrophysical Journal</i> , 2017 , 837, 157	4.7	29
383	The Maximum Isotropic Energy of Gamma-Ray Bursts. <i>Astrophysical Journal</i> , 2017 , 837, 119	4.7	18
382	First Results from the KMOS Lens-Amplified Spectroscopic Survey (KLASS): Kinematics of Lensed Galaxies at Cosmic Noon. <i>Astrophysical Journal</i> , 2017 , 838, 14	4.7	33
381	THE QUENCHED MASS PORTION OF STAR-FORMING GALAXIES AND THE ORIGIN OF THE STAR FORMATION SEQUENCE SLOPE. <i>Astrophysical Journal</i> , 2017 , 834, 39	4.7	9
380	Universe opacity and EBL. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1532-1542	4.3	6
379	Delayed triggering of radio active galactic nuclei in gas-rich minor mergers in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 4706-4720	4.3	29
378	The EAGLE simulations: atomic hydrogen associated with galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 4204-4226	4.3	100
377	Star Formation in Galaxies atz~ 4½ from the SMUVS Survey: A Clear Starburst/Main-sequence Bimodality for HEmitters on the SFRM* Plane. <i>Astrophysical Journal</i> , 2017 , 849, 45	4.7	40
376	Constraints and prospects on gravitational-wave and neutrino emissions using GW150914. <i>Physical Review D</i> , 2017 , 96,	4.9	1
375	Stellar Mass Function of Active and Quiescent Galaxies via the Continuity Equation. <i>Astrophysical Journal</i> , 2017 , 847, 13	4.7	15
374	Star Formation, Supernovae, Iron, and Consistent Cosmic and Galactic Histories. <i>Astrophysical Journal</i> , 2017 , 848, 25	4.7	86
373	A large HBurvey of star formation in relaxed and merging galaxy cluster environments atz~0.150.3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 2916-2935	4.3	22
372	Constraining the contribution of galaxies and active galactic nuclei to cosmic reionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 3713-3726	4.3	11
371	Local analogues of high-redshift star-forming galaxies: integral field spectroscopy of green peas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 2311-2320	4.3	15

370	Extragalactic radio continuum surveys and the transformation of radio astronomy. 2017 , 1, 671-678		49	
369	Predicting HCN, HCO+, multi-transition CO, and dust emission of star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 602, A51	5.1	12	
368	Missing dust signature in the cosmic microwave background. 2017 , 470, L44-L48		3	
367	Cosmic initial conditions for a habitable universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 3095-3102	4.3	2	
366	The Role of the Most Luminous Obscured AGNs in Galaxy Assembly atz~ 2. <i>Astrophysical Journal</i> , 2017 , 844, 106	4.7	17	
365	A Bullook at gravitational waves: the black hole birth rate from neutrinos combined with the merger rate from LIGO. <i>Journal of Cosmology and Astroparticle Physics</i> , 2017 , 2017, 052-052	6.4	2	
364	Environments and Rates of Supernovae. 2017 , 33-45			
363	Robust Cross-correlation-based Measurement of Clump Sizes in Galaxies. <i>Astrophysical Journal</i> , 2017 , 845, 37	4.7	3	
362	Intrinsic AGN SED & black hole growth in the Palomar Green quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 59-79	4.3	23	
361	Point-source and diffuse high-energy neutrino emission from Type IIn supernovae. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1881-1893	4.3	20	
360	Astrophysical Sources of High-Energy Neutrinos in the IceCube Era. 2017 , 67, 45-67		38	
359	The little Galaxies that could (reionize the universe): predicting faint end slopes & escape fractions at z>4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 4077-4092	4.3	24	
358	A possible connection between the spin temperature of damped Lyman \(\frac{1}{40}\) bsorption systems and star formation history. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3159-3166	4.3	8	
357	Extragalactic radio surveys in the pre-Square Kilometre Array era. 2017 , 4, 170522		27	
356	Systematic study of the stochastic gravitational-wave background due to stellar core collapse. <i>Physical Review D</i> , 2017 , 95,	4.9	20	
355	Intensity Mapping of H丹H即\$[{rm{O}},{rm{II}}]\$, and \$[{rm{O}},{rm{III}}]\$ Lines atzAstrophysical Journal, 2017 , 835, 273	4.7	19	
354	THE LOCAL [C ii] 158th EMISSION LINE LUMINOSITY FUNCTION. Astrophysical Journal, 2017, 834, 36	4.7	22	
353	Tracing the Evolution of Dust Obscured Star Formation and Accretion Back to the Reionisation Epoch with SPICA. <i>Publications of the Astronomical Society of Australia</i> , 2017 , 34,	5.5	14	

352	GALAXY EVOLUTION AT HIGH REDSHIFT: OBSCURED STAR FORMATION, GRB RATES, COSMIC REIONIZATION, AND MISSING SATELLITES. <i>Astrophysical Journal</i> , 2017 , 835, 37	4.7	15
351	Evolution of Dust-obscured Star Formation and Gas toz= 2.2 from HiZELS. <i>Astrophysical Journal</i> , 2017 , 838, 119	4.7	9
350	Testing decay of astrophysical neutrinos with incomplete information. <i>Physical Review D</i> , 2017 , 95,	4.9	51
349	Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection. <i>Astrophysical Journal</i> , 2017 , 843, 84	4.7	84
348	A test of SDSS aperture corrections using integral-field spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 639-650	4.3	3
347	Search and study of objects of the early universe. 2017 , 72, 93-99		1
346	Galaxy formation in the Planck cosmology IIV. Mass and environmental quenching, conformity and clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 2626-2645	4.3	55
345	12CO(J= 1 \$to \$ 0) On-the-fly Mapping Survey of the Virgo Cluster Spirals. II. Molecular Gas Properties in Different Density Environments. <i>Astrophysical Journal</i> , 2017 , 843, 50	4.7	10
344	The pulse luminosity function ofSwiftgamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 2000-2017	4.3	4
343	Giant clumps in simulated high-zGalaxies: properties, evolution and dependence on feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 635-665	4.3	70
342	Gamma-ray burst cosmology: Hubble diagram and star formation history. 2017 , 26, 1730002		6
341	Explosions throughout the universe. 2017 , 26, 1730003		1
340	(Star)bursts of FIRE: observational signatures of bursty star formation in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 88-104	4.3	117
339	A deep ALMA image of theHubble Ultra Deep Field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 861-883	4.3	212
338	HSTHBgrism spectroscopy of ROLES: a flatter low-mass slope for thez ~ 1 SSFRBass relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 3143-3160	4.3	3
337	ALMA observations of atomic carbon inz ~ 4 dusty star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 2825-2841	4.3	68
336	Effects of spatial fluctuations in the extragalactic background light on hard gamma-ray spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 2896-2902	4.3	4
335	Atomic and molecular absorption in redshifted radio sources. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 4514-4525	4.3	11

334	Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function to z´=´0.1 from the r-band selected equatorial regions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 283-302	4.3	64
333	Diffuse neutrinos from luminous and dark supernovae: prospects for upcoming detectors at the ?(10) kt scale. <i>Journal of Cosmology and Astroparticle Physics</i> , 2017 , 2017, 031-031	6.4	19
332	Diffuse Neutrino Flux from Supernovae. 2017 , 1637-1653		
331	Stochastic gravitational wave background from newly born massive magnetars: The role of a dense matter equation of state. <i>Physical Review D</i> , 2017 , 95,	4.9	7
330	Large-scale clustering as a probe of the origin and the host environment of fast radio bursts. <i>Physical Review D</i> , 2017 , 95,	4.9	12
329	Molecular Gas Kinematics and Star Formation Properties of the Strongly-lensed Quasar Host Galaxy RXS J1131 231. <i>Astrophysical Journal</i> , 2017 , 836, 180	4.7	9
328	Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks. <i>Astrophysical Journal</i> , 2017 , 846, 35	4.7	16
327	Modeling the redshift and energy distributions of fast radio bursts. 2017 , 17, 14		4
326	What have we learned about the sources of ultrahigh-energy cosmic rays via neutrino astronomy?. 2017 , 291-293, 159-166		3
325	A 1.4 deg2 blind survey for C II], C III] and C IV at $z \sim 0.71.5$ III. Luminosity functions and cosmic average line ratios. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 2575-2586	4.3	6
324	The Interstellar Medium in [O iii]-selected Star-forming Galaxies atz~ 3.2. <i>Astrophysical Journal</i> , 2017 , 849, 39	4.7	13
		4.7	
323	The MOSDEF Survey: The Prevalence and Properties of Galaxy-wide AGN-driven Outflows atz~ 2. <i>Astrophysical Journal</i> , 2017 , 849, 48	4.7	32
323			
	Astrophysical Journal, 2017 , 849, 48 The dust attenuation of star-forming galaxies at z´~ ´3 and beyond: New insights from ALMA	4.7	32
322	Astrophysical Journal, 2017, 849, 48 The dust attenuation of star-forming galaxies at z'~'3 and beyond: New insights from ALMA observations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 483-490 The binary black hole merger rate from ultraluminous X-ray source progenitors. Monthly Notices of	4.7	32 50
322	Astrophysical Journal, 2017, 849, 48 The dust attenuation of star-forming galaxies at z'~'3 and beyond: New insights from ALMA observations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 483-490 The binary black hole merger rate from ultraluminous X-ray source progenitors. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3683-3691 Massive quiescent galaxies at z > 3 in the Millennium simulation populated by a semi-analytic galaxy	4.7	32 50 6
322 321 320	The dust attenuation of star-forming galaxies at z'~'3 and beyond: New insights from ALMA observations. Monthly Notices of the Royal Astronomical Society, 2017, 472, 483-490 The binary black hole merger rate from ultraluminous X-ray source progenitors. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3683-3691 Massive quiescent galaxies at z > 3 in the Millennium simulation populated by a semi-analytic galaxy formation model. 2017, 471, L36-L40 The volumetric rate of superluminous supernovae atz~ 1. Monthly Notices of the Royal Astronomical	4·3 4·3	32 50 6 8

316	The limited role of galaxy mergers in driving stellar mass growth over cosmic time. 2017 , 472, L50-L54		26
315	Study of Red Supergiant and Supernova Rate Problems via Relic Supernova Neutrino Spectrum. 2017 ,		
314	The MUSE Hubble Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A5	5.1	41
313	The MUSE Hubble Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A6	5.1	53
312	ZFIRE: using Hequivalent widths to investigate the in situ initial mass function at z´~´2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 3071-3108	4.3	15
311	Evidence that the AGN dominates the radio emission in $z' \sim 1$ radio-quiet quasars. Monthly Notices of the Royal Astronomical Society, 2017 , 468, 217-238	4.3	31
310	CHEERS: The chemical evolution RGS sample. Astronomy and Astrophysics, 2017, 607, A98	5.1	32
309	Molecular gas properties of a lensed star-forming galaxy at $z \sim 3.6$: a case study. <i>Astronomy and Astrophysics</i> , 2017 , 605, A81	5.1	29
308	The rise and fall of stellar across the peak of cosmic star formation history: effects of mergers versus diffuse stellar mass acquisition. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 12	4 1 -₹25	58 ²⁶
307	The potential of tracing the star formation history with H I 21-cm in intervening absorption systems. <i>Astronomy and Astrophysics</i> , 2017 , 606, A56	5.1	5
306	On the redshift distribution and physical properties of ACT-selected DSFGs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 968-984	4.3	19
305	The COSMOS-[O ii] survey: evolution of electron density with star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3220-3234	4.3	38
304	Illuminating the past 8 billion years of cold gas towards two gravitationally lensed quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 4450-4467	4.3	21
303	Astronomical Distance Determination in the Space Age. 2018 , 214, 1		20
302	Modelling the cosmic spectral energy distribution and extragalactic background light over all time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 898-916	4.3	19
301	Diffuse supernova neutrino background from extensive core-collapse simulations of 81100 M? progenitors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 1363-1374	4.3	29
300	The GRBBLSN connection: misaligned magnetars, weak jet emergence, and observational signatures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 2659-2674	4.3	37
299	Limits on the Lorentz Invariance Violation from UHECR Astrophysics. <i>Astrophysical Journal</i> , 2018 , 853, 23	4.7	14

(2018-2018)

298	Implications of the Large O vi Columns around Low-redshiftL*Galaxies. <i>Astrophysical Journal</i> , 2018 , 852, 33	4.7	47	
297	A 16 deg2 survey of emission-line galaxies at z´. 2018 , 70,		9	
296	Astrophysical neutrinos and cosmic rays observed by IceCube. 2018 , 62, 2902-2930		11	
295	A New Diagnostic Diagram of Ionization Sources for High-redshift Emission Line Galaxies. <i>Astrophysical Journal</i> , 2018 , 856, 171	4.7	5	
294	Investigating a population of infrared-bright gamma-ray burst host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 2-27	4.3	10	
293	Extragalactic archaeology with the C, N, and O chemical abundances. <i>Astronomy and Astrophysics</i> , 2018 , 610, L16	5.1	14	
292	Low-luminosity AGN and X-Ray Binary Populations in COSMOS Star-forming Galaxies. <i>Astrophysical Journal</i> , 2018 , 865, 43	4.7	20	
291	The zenithal 4-m International Liquid Mirror Telescope: a unique facility for supernova studies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 2075-2085	4.3	5	
290	Cosmic evolution of the spatially resolved star formation rate and stellar mass of the CALIFA survey. <i>Astronomy and Astrophysics</i> , 2018 , 615, A27	5.1	40	
289	Far-infrared Herschel SPIRE spectroscopy of lensed starbursts reveals physical conditions of ionized gas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 59-97	4.3	37	
288	SizeIluminosity Scaling Relations of Local and Distant Star-forming Regions. <i>Astrophysical Journal</i> , 2018 , 869, 11	4.7	7	
287	Evolution of the cold gas fraction and the star formation history: Prospects with current and future radio facilities. <i>Publications of the Astronomical Society of Australia</i> , 2018 , 35,	5.5	4	
286	The Dawes Review 8: Measuring the Stellar Initial Mass Function. <i>Publications of the Astronomical Society of Australia</i> , 2018 , 35,	5.5	43	
285	A gamma-ray determination of the Universe's star formation history. 2018 , 362, 1031-1034		71	
284	The Redshift Dependence of the Radio Flux of Gamma-Ray Bursts and Their Host Galaxies. <i>Astrophysical Journal</i> , 2018 , 865, 82	4.7	4	
283	Strongly lensed repeating fast radio bursts as precision probes of the universe. 2018 , 9, 3833		57	
282	On the normalized FRB luminosity function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 2320-2337	4.3	68	
281	Formation of S0 galaxies through mergers. <i>Astronomy and Astrophysics</i> , 2018 , 617, A113	5.1	36	

280	Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background. <i>Journal of Cosmology and Astroparticle Physics</i> , 2018 , 2018, 019-019	6.4	21	
279	Prediction of Supernova Rates in Known Galaxy Galaxy Strong-lens Systems. <i>Astrophysical Journal</i> , 2018 , 864, 91	4.7	10	
278	Euclid: Superluminous supernovae in the Deep Survey. Astronomy and Astrophysics, 2018, 609, A83	5.1	19	
277	Probing Star Formation in Galaxies at z 🗓 via a Giant Metrewave Radio Telescope Stacking Analysis. <i>Astrophysical Journal</i> , 2018 , 865, 39	4.7	8	
276	Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. <i>Physical Review D</i> , 2018 , 98,	4.9	85	
275	HÆmitting Galaxies at z ~ 0.6 in the Deep And Wide Narrow-band Survey. <i>Astrophysical Journal</i> , 2018 , 858, 96	4.7	7	
274	Near-identical star formation rate densities from Hand FUVat redshift zero. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 119-133	4.3	7	
273	Universe opacity and CMB. Monthly Notices of the Royal Astronomical Society, 2018, 478, 283-301	4.3	7	
272	Neutral hydrogen (H i) gas content of galaxies at z 🛈 .32. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1879-1894	4.3	38	
271	Tomographic intensity mapping versus galaxy surveys: observing the Universe in H æmission with new generation instruments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 1587-1608	4.3	15	
270	Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 155-166	4.3	24	
269	GAMA/G10-COSMOS/3D-HST: the 0 Monthly Notices of the Royal Astronomical Society, 2018 , 475, 289	1 _z 2. 9 35	5 94	
268	Searching for dark matter with neutron star mergers and quiet kilonovae. <i>Physical Review D</i> , 2018 , 97,	4.9	26	
267	The THESEUS space mission concept: science case, design and expected performances. 2018 , 62, 191-24	14	90	
266	Diffuse neutrino supernova background as a cosmological test. 2018 , 45, 055201		4	
265	Deep Extragalactic VIsible Legacy Survey (DEVILS): motivation, design, and target catalogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 768-799	4.3	34	
264	A catalogue of faint local radio AGN and the properties of their host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 807-816	4.3	6	
263	Lensing of fast radio bursts by binaries to probe compact dark matter. <i>Astronomy and Astrophysics</i> , 2018 , 614, A50	5.1	30	

262	Compact Binary Mergers and the Event Rate of Fast Radio Bursts. <i>Astrophysical Journal</i> , 2018 , 858, 89	4.7	28
261	Quasar ICIV forest cross-correlation with SDSS DR12. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 610-622	4.3	2
260	TheSpitzer-IRAC/MIPS Extragalactic Survey (SIMES). II. Enhanced Nuclear Accretion Rate in Galaxy Groups atz~ 0.2. <i>Astrophysical Journal</i> , 2018 , 857, 64	4.7	3
259	Multi-PeV Signals from a New Astrophysical Neutrino Flux beyond the Glashow Resonance. 2018 , 120, 241105		14
258	Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds. 2019 , 99,		13
257	Neutrino Physics with Dark Matter Detectors. 2019 , 69, 137-161		11
256	Prospects of strongly lensed repeating fast radio bursts: Complementary constraints on dark energy evolution. <i>Physical Review D</i> , 2019 , 99,	4.9	13
255	Cosmogenic photon and neutrino fluxes in the Auger era. <i>Journal of Cosmology and Astroparticle Physics</i> , 2019 , 2019, 002-002	6.4	43
254	Jet Geometry and Rate Estimate of Coincident Gamma-Ray Burst and Gravitational-wave Observations. <i>Astrophysical Journal</i> , 2019 , 880, 55	4.7	7
253	Two sub-millimetre bright protoclusters bounding the epoch of peak star-formation activity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 1790-1812	4.3	12
252	Searching for the 380 GHz H2O emission from the high-z lensed quasi-stellar object MG´J0414+0534. 2019 , 71,		1
251	Constraining Chaplygin models using diffuse supernova neutrino background. 2019 , 26, 100397		2
250	Cold neutral hydrogen gas in galaxies. 2019 , 40, 1		2
249	Constraining the evolution of the baryon fraction in the IGM with FRB and H(z) data. <i>Journal of Cosmology and Astroparticle Physics</i> , 2019 , 2019, 039-039	6.4	10
248	Revisiting the event rate of short GRBs and estimating their detectable number within the Advanced LIGO horizon. 2019 , 19, 118		O
247	Atomic Hydrogen in Star-forming Galaxies at Intermediate Redshifts. <i>Astrophysical Journal Letters</i> , 2019 , 882, L7	7.9	15
246	SCUBA-2 observations of candidate starbursting protoclusters selected by Planck and Herschel-SPIRE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3840-3859	4.3	12
245	A Universal Energy Distribution for FRB 121102. Astrophysical Journal, 2019 , 882, 108	4.7	17

244	A New Measurement of the Hubble Constant and Matter Content of the Universe Using Extragalactic Background Light Ray Attenuation. <i>Astrophysical Journal</i> , 2019 , 885, 137	4.7	44
243	The FRATS project: real-time searches for fast radio bursts and other fast transients with LOFAR at 135 MHz. <i>Astronomy and Astrophysics</i> , 2019 , 621, A57	5.1	9
242	Using the Extragalactic Gamma-Ray Background to Constrain the Hubble Constant and Matter Density of the Universe. <i>Astrophysical Journal</i> , 2019 , 882, 87	4.7	11
241	New Horizon: On the Origin of the Stellar Disk and Spheroid of Field Galaxies at $z=0.7$. Astrophysical Journal, 2019 , 883, 25	4.7	21
240	The effect of the metallicity-specific star formation history on double compact object mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3740-3759	4.3	114
239	Recalibrating the cosmic star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5359-5365	4.3	18
238	Merging Rates of Compact Binaries in Galaxies: Perspectives for Gravitational Wave Detections. <i>Astrophysical Journal</i> , 2019 , 881, 157	4.7	32
237	Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data. 2019 , 79, 1		52
236	Iron abundance distribution in the hot gas of merging galaxy clusters. <i>Astronomy and Astrophysics</i> , 2019 , 629, A31	5.1	5
235	The luminosity function and formation rate of a complete sample of long gamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 4607-4613	4.3	10
234	Cosmic tau neutrino detection via Cherenkov signals from air showers from Earth-emerging taus. <i>Physical Review D</i> , 2019 , 100,	4.9	12
233	UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z´= 0110. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3143-3194	4.3	346
232	Constraining the Active Galactic Nucleus and Starburst Properties of the IR-luminous Quasar Host Galaxy APM08279+5255 at Redshift 4 with SOFIA. <i>Astrophysical Journal</i> , 2019 , 876, 48	4.7	2
231	Testing Feedback-regulated Star Formation in Gas-rich, Turbulent Disk Galaxies. <i>Astrophysical Journal</i> , 2019 , 870, 46	4.7	16
230	Extremely Massive Quasars Are Not Good Proxies for Dense Environments Compared to Massive Galaxies: Environments of Extremely Massive Quasars and Galaxies. <i>Astrophysical Journal</i> , 2019 , 871, 57	4.7	9
229	Multimessenger Implications of AT2018cow: High-energy Cosmic-Ray and Neutrino Emissions from Magnetar-powered Superluminous Transients. <i>Astrophysical Journal</i> , 2019 , 878, 34	4.7	17
228	An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey. <i>Astrophysical Journal</i> , 2019 , 877, 140	4.7	84
227	Measuring the Circumgalactic and Intergalactic Baryon Contents with Fast Radio Bursts. Astrophysical Journal, 2019 , 872, 88	4.7	26

226	On the Star Formation Efficiency in High-redshift Ly Emitters. 2019, 131, 074101		4
225	Magnetar as Central Engine of Gamma-Ray Bursts: Central Enginellet Connection, Windlet Energy Partition, and Origin of Some Ultra-long Bursts. <i>Astrophysical Journal</i> , 2019 , 877, 153	4.7	4
224	A Spectroscopic Study of a Rich Cluster at $z = 1.52$ with Subaru and LBT: The Environmental Impacts on the Mass Metallicity Relation. <i>Astrophysical Journal</i> , 2019 , 877, 118	4.7	2
223	Observational Constraints on the Merger History of Galaxies since z 16 : Probabilistic Galaxy Pair Counts in the CANDELS Fields. <i>Astrophysical Journal</i> , 2019 , 876, 110	4.7	55
222	What drives the velocity dispersion of ionized gas in star-forming galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 4463-4472	4.3	18
221	The SCUBA-2 Cluster Snapshot Survey []. Catalogue of lensed galaxies and submillimetre-bright central galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 2757-2778	4.3	0
220	Feedback by supermassive black holes in galaxy evolution: impacts of accretion and outflows on the star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1509-1522	4.3	9
219	Ultrahigh energy cosmic rays from a nearby extragalactic source in the diffusive regime. <i>Physical Review D</i> , 2019 , 99,	4.9	4
218	On the Common Origin of Cosmic Rays across the Ankle and Diffuse Neutrinos at the Highest Energies from Low-luminosity Gamma-Ray Bursts. <i>Astrophysical Journal</i> , 2019 , 872, 110	4.7	22
217	Radio Sources in the Nearby Universe. <i>Astrophysical Journal</i> , 2019 , 872, 148	4.7	12
216	Detection and Classification of Supernovae Beyond z ~ 2 Redshift with the James Webb Space Telescope. <i>Astrophysical Journal</i> , 2019 , 874, 158	4.7	3
215	Angular momentum evolution of bulge stars in disc galaxies in NIHAO. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 5477-5491	4.3	7
214	Multi-wavelength de-blended Herschel view of the statistical properties of dusty star-forming galaxies across cosmic time. <i>Astronomy and Astrophysics</i> , 2019 , 624, A98	5.1	18
213	The evolution of cold neutral gas and the star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3911-3920	4.3	8
212	Constraining the era of helium reionization using fast radio bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 2281-2286	4.3	24
211	Towards the first detection of strongly lensed H i emission. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3681-3690	4.3	3
210	IQ-Collaboratory 1.1: The Star-forming Sequence of Simulated Central Galaxies. <i>Astrophysical Journal</i> , 2019 , 872, 160	4.7	15
209	KROSSBAMI: a direct IFS comparison of the TullyBisher relation across 8 Gyr sincez 🗓 . <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 2166-2188	4.3	26

208	Extragalactic gamma-ray background from star-forming galaxies: Will empirical scalings suffice?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 4020-4030	4.3	3
207	Size Scaling of Clump Instabilities in Turbulent, Feedback-regulated Disks. <i>Astrophysical Journal</i> , 2019 , 874, 170	4.7	
206	Universe's Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos. 2019 , 122, 061103		26
205	Are all fast radio bursts repeating sources?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 5500-5508	4.3	40
204	The relative specific Type Ia supernovae rate from three years of ASAS-SN. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3785-3796	4.3	11
203	Unbiased Differential Size Evolution and the Inside-out Growth of Galaxies in the Deep CANDELS GOODS Fields at 1 ½ []. Astrophysical Journal, 2019, 887, 113	4.7	14
202	Obscured AGN at 1.5 Astronomy and Astrophysics, 2019 , 626, A9	5.1	23
201	A Dissection of Spatially Resolved AGN Feedback across the Electromagnetic Spectrum. <i>Astrophysical Journal</i> , 2019 , 887, 200	4.7	8
200	A Tale of Two Clusters: An Analysis of Gas-phase Metallicity and Nebular Gas Conditions in Proto-cluster Galaxies at $z \sim 2$. Astrophysical Journal, 2019 , 883, 153	4.7	5
199	A LOFAR-IRAS cross-match study: the far-infrared radio correlation and the 150 MHz luminosity as a star-formation rate tracer. <i>Astronomy and Astrophysics</i> , 2019 , 631, A109	5.1	13
198	The WISE Extended Source Catalog (WXSC). I. The 100 Largest Galaxies. 2019 , 245, 25		39
197	The Large-scale Ionization Cones in the Galaxy. Astrophysical Journal, 2019, 886, 45	4.7	17
196	Astrophysical stochastic gravitational wave background. 2019 , 340, 945-951		2
195	The expanded Giant Metrewave Radio Telescope. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3007-3021	4.3	3
194	The 1.28 GHz MeerKAT DEEP2 Image. Astrophysical Journal, 2020, 888, 61	4.7	43
193	Galaxy And Mass Assembly (GAMA): a forensic SED reconstruction of the cosmic star formation history and metallicity evolution by galaxy type. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 5581-5603	4.3	16
192	FLASH early science discovery of an intervening H i 21-cm absorber from an ASKAP survey of the GAMA 23 field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 3627-3641	4.3	17
191	Review of uncertainties in the cosmic supernova relic neutrino background. 2020 , 35, 2030011		1

(2020-2020)

190	The evolution of gamma-ray burst jet opening angle through cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 4371-4381	4.3	7
189	Fast extragalactic x-ray transients from binary neutron star mergers. <i>Physical Review D</i> , 2020 , 101,	4.9	1
188	Neutron star mergers and how to study them. 2020 , 23, 1		13
187	Cosmogenic neutrino fluxes under the effect of active-sterile secret interactions. <i>Physical Review D</i> , 2020 , 101,	4.9	2
186	Ultra-Long Gamma-Ray Bursts detection with SVOM/ECLAIRs. 2020 , 50, 91-123		3
185	SCUBA-2 overdensities associated with candidate protoclusters selected from Planck data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 5985-5991	4.3	1
184	Imprints of the redshift evolution of double neutron star merger rate on the signal-to-noise ratio distribution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 523-531	4.3	2
183	A 16 deg2 survey of emission-line galaxies at z < 1.6 from HSC-SSP PDR2 and CHORUS. 2020 , 72,		6
182	Dust and gas content of high-redshift galaxies hosting obscured AGN in the Chandra Deep Field-South. <i>Astronomy and Astrophysics</i> , 2020 , 636, A37	5.1	15
181	Revisiting the distance to the nearest ultrahigh energy cosmic ray source: Effects of extragalactic magnetic fields. <i>Physical Review D</i> , 2020 , 102,	4.9	3
180	xGASS: the role of bulges along and across the local star-forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5596-5605	4.3	9
179	Viewing Short Gamma-Ray Bursts From a Different Angle. 2020 , 7,		1
178	New constraints on the origin of medium-energy neutrinos observed by IceCube. <i>Physical Review D</i> , 2020 , 101,	4.9	14
177	Fundamental physics with the diffuse supernova background neutrinos. <i>Physical Review D</i> , 2020 , 102,	4.9	8
176	Grand unified neutrino spectrum at Earth: Sources and spectral components. 2020, 92,		23
175	On the energy and redshift distributions of fast radio bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 157-167	4.3	14
174	The consequences of gamma-ray burst jet opening angle evolution on the inferred star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 5041-5047	4.3	3
173	Observable features in ultrahigh energy neutrinos due to active-sterile secret interactions. <i>Physical Review D</i> , 2020 , 102,	4.9	1

172	Contribution of starburst nuclei to the diffuse gamma-ray and neutrino flux. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5880-5891	4.3	11
171	Magnetar as Central Engine of Gamma-Ray Bursts: Quasi-universal Jet, Event Rate, and X-Ray Luminosity Function of Dipole Radiations. <i>Astrophysical Journal</i> , 2020 , 894, 52	4.7	1
170	Extragalactic cosmic rays diffusing from two populations of sources. <i>Physical Review D</i> , 2020 , 101,	4.9	4
169	AGN feedback in a galaxy merger: multi-phase, galaxy-scale outflows with a fast molecular gas blob ~6 kpc away from IRAS F08572+3915. <i>Astronomy and Astrophysics</i> , 2020 , 635, A47	5.1	15
168	Balmer Break Galaxy Candidates at $z\sim 6$: A Potential View on the Star Formation Activity at z ? 14. <i>Astrophysical Journal</i> , 2020 , 889, 137	4.7	16
167	The Astrobiological Copernican Weak and Strong Limits for Intelligent Life. <i>Astrophysical Journal</i> , 2020 , 896, 58	4.7	14
166	Resolving the excess of long GRBB at low redshift in the Swift era. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 1479-1491	4.3	3
165	Constraining the fraction of core-collapse supernovae harbouring choked jets with high-energy neutrinos. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 843-847	4.3	3
164	Can we detect PeV neutrinos from merging black hole binaries?. 2020 , 25, 17-22		
163	The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design. 2020 , 132, 03	35001	137
163 162	The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design. 2020, 132, 03 A large, deep 3 deg2 survey of H [O iii], and [O ii] emitters from LAGER: constraining luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020, 493, 3966-3984	35001 4·3	137 7
	A large, deep 3 deg2 survey of H ⊞[O iii], and [O ii] emitters from LAGER: constraining luminosity		
162	A large, deep 3 deg2 survey of H [O iii], and [O ii] emitters from LAGER: constraining luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 3966-3984 Atacama Cosmology Telescope: Dusty Star-forming Galaxies and Active Galactic Nuclei in the	4.3	7
162 161	A large, deep 3 deg2 survey of H [O iii], and [O ii] emitters from LAGER: constraining luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 3966-3984 Atacama Cosmology Telescope: Dusty Star-forming Galaxies and Active Galactic Nuclei in the Equatorial Survey. <i>Astrophysical Journal</i> , 2020 , 893, 104 Reconstructing the fraction of baryons in the intergalactic medium with fast radio bursts via	4.3	7
162 161 160	A large, deep 3 deg2 survey of H [O iii], and [O ii] emitters from LAGER: constraining luminosity functions. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3966-3984 Atacama Cosmology Telescope: Dusty Star-forming Galaxies and Active Galactic Nuclei in the Equatorial Survey. Astrophysical Journal, 2020, 893, 104 Reconstructing the fraction of baryons in the intergalactic medium with fast radio bursts via Gaussian processes. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 023-023	4.3	7 9 6
162 161 160	A large, deep 3 deg2 survey of H F[O iii], and [O ii] emitters from LAGER: constraining luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 3966-3984 Atacama Cosmology Telescope: Dusty Star-forming Galaxies and Active Galactic Nuclei in the Equatorial Survey. <i>Astrophysical Journal</i> , 2020 , 893, 104 Reconstructing the fraction of baryons in the intergalactic medium with fast radio bursts via Gaussian processes. <i>Journal of Cosmology and Astroparticle Physics</i> , 2020 , 2020, 023-023 On the event rate and luminosity function of superluminous supernovae. 2021 , 83, 101506	4.3	7 9 6
162 161 160 159	A large, deep 3 deg2 survey of H F[O iii], and [O ii] emitters from LAGER: constraining luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 3966-3984 Atacama Cosmology Telescope: Dusty Star-forming Galaxies and Active Galactic Nuclei in the Equatorial Survey. <i>Astrophysical Journal</i> , 2020 , 893, 104 Reconstructing the fraction of baryons in the intergalactic medium with fast radio bursts via Gaussian processes. <i>Journal of Cosmology and Astroparticle Physics</i> , 2020 , 2020, 023-023 On the event rate and luminosity function of superluminous supernovae. 2021 , 83, 101506 Search for low-energy neutrinos from astrophysical sources with Borexino. 2021 , 125, 102509	4·3 4·7 6.4	7 9 6 1 7

(2021-2021)

154	Impact of binary interactions on the diffuse supernova neutrino background. <i>Physical Review D</i> , 2021 , 103,	4.9	7
153	Multiwavelength dissection of a massive heavily dust-obscured galaxy and its blue companion at z~2. <i>Astronomy and Astrophysics</i> , 2021 , 646, A127	5.1	1
152	Star formation rate density across the cosmic time. 2021 , 366, 1		O
151	Size, shade, or shape? The contribution of galaxies of different types to the star formation history of the Universe from SDSS-IV MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 31	28 ⁴ 3 ³ 14	3 ²
150	Reconstruction of baryon fraction in intergalactic medium through dispersion measurements of fast radio bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 4576-4580	4.3	1
149	Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background. <i>Astrophysical Journal</i> , 2021 , 909, 169	4.7	13
148	The best place and time to live in the Milky Way. Astronomy and Astrophysics, 2021, 647, A41	5.1	4
147	Testing fundamental physics with astrophysical transients. 2021 , 16, 1		8
146	AGN and star formation across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3992-4007	4.3	4
145	The infrared-radio correlation of star-forming galaxies is stronglyM?-dependent but nearly redshift-invariant sincez~ 4. <i>Astronomy and Astrophysics</i> , 2021 , 647, A123	5.1	15
144	Fast Optical Transients from Stellar-mass Black Hole Tidal Disruption Events in Young Star Clusters. <i>Astrophysical Journal</i> , 2021 , 911, 104	4.7	8
143	Connecting Galactic Outflows and Star Formation: Inferences from H \blacksquare Maps and Absorption-line Spectroscopy at 1?z?1.5* \square 2021 , 161, 212		1
142	Modeling and searching for a stochastic gravitational-wave background from ultralight vector bosons. <i>Physical Review D</i> , 2021 , 103,	4.9	9
141	Effect of redshift distributions of fast radio bursts on cosmological constraints. <i>Physical Review D</i> , 2021 , 103,	4.9	4
140	Flavor triangle of the diffuse supernova neutrino background. <i>Journal of Cosmology and Astroparticle Physics</i> , 2021 , 2021, 011	6.4	4
139	Giant Metrewave Radio Telescope Detection of Hi 21 cm Emission from Star-forming Galaxies at z 🛭 1.3. <i>Astrophysical Journal Letters</i> , 2021 , 913, L24	7.9	3
138	The Geometry of Cold, Metal-enriched Gas around Galaxies at $z\sim 1.2$. Astrophysical Journal, 2021 , 913, 50	4.7	5
137	The miniJPAS survey. Astronomy and Astrophysics, 2021, 649, A79	5.1	2

136	Cosmic Star Formation History Measured at 1.4 GHz. Astrophysical Journal, 2021, 914, 126	4.7	3
135	J-PLUS: The star formation main sequence and rate density at d ? 75 Mpc. <i>Astronomy and Astrophysics</i> , 2021 , 650, A68	5.1	2
134	Probing Cosmic Reionization and Molecular Gas Growth with TIME. <i>Astrophysical Journal</i> , 2021 , 915, 33	4.7	8
133	Intervening or associated? Machine learning classification of redshifted H i 21-cm absorption. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 1548-1556	4.3	2
132	Origin of metals in old Milky Way halo stars based on GALAH and Gaia. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 5410-5429	4.3	3
131	High-energy neutrino production in clusters of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 1762-1774	4.3	2
130	Chronos: A NIR spectroscopic galaxy survey to probe the most fundamental stages of galaxy evolution. 2021 , 51, 729		
129	The emergence of passive galaxies in the early Universe. <i>Astronomy and Astrophysics</i> , 2021 , 652, A30	5.1	10
128	Physical Characterization of Serendipitously Uncovered Millimeter-wave Line-emitting Galaxies at z ~ 2.5 behind the Local Luminous Infrared Galaxy VV 114. <i>Astrophysical Journal</i> , 2021 , 917, 94	4.7	2
127	On the relation between the astrophysical neutrino fluxes and the cosmic ray fluxes. <i>Journal of Cosmology and Astroparticle Physics</i> , 2021 , 2021, 009	6.4	O
126	The nature of hyperluminous infrared galaxies. Astronomy and Astrophysics,	5.1	O
125	Magnetic diffusion and interaction effects on ultrahigh energy cosmic rays: Protons and nuclei. <i>Physical Review D</i> , 2021 , 104,	4.9	O
124	Revisiting the luminosity and redshift distributions of long gamma-ray bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 52-68	4.3	0
123	A Statistical Estimation of the Occurrence of Extraterrestrial Intelligence in the Milky Way Galaxy. 2021 , 9, 5		5
122	Interferometric cubelet stacking to recover H i emission from distant galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 2308-2318	4.3	O
121	High-energy cosmology. 2007 , 127-137		1
120	Matching the Local and Cosmic Star Formation Histories. 2008, 143-146		1
119	The Effect of Galactic Feedback on Gas Accretion and Wind Recycling. 2017 , 301-321		14

118	Observations of the High Redshift Universe. 2008 , 259-364		6
117	Fundamental Cosmological Observations and Data Interpretation. 2009 , 7-201		3
116	Distributed Radioactivities. 2011 , 345-436		1
115	Cosmic Rays in the Interstellar Medium. 2013 , 7-20		2
114	Sources of GeV Photons and the Fermi Results. 2013 , 225-355		6
113	Near Field Cosmology: The Origin of the Galaxy and the Local Group. 2014 , 1-144		3
112	HiZELS: The High Redshift Emission Line Survey with UKIRT. 2013 , 235-250		12
111	Negative feedback effects on star formation history and cosmic reionization. <i>Astronomy and Astrophysics</i> , 2009 , 494, 817-827	5.1	2
110	Cosmic star-formation history from a non-parametric inversion of infrared galaxy counts. <i>Astronomy and Astrophysics</i> , 2009 , 504, 727-740	5.1	83
109	Dynamical properties of AMAZE and LSD galaxies from gas kinematics and the Tully-Fisher relation atz '~'3. <i>Astronomy and Astrophysics</i> , 2011 , 528, A88	5.1	113
108	Galaxy evolution and star formation efficiency at 0.2 ´. Astronomy and Astrophysics, 2011, 528, A124	5.1	63
107	GMASS ultradeep spectroscopy of galaxies atz´~´2. <i>Astronomy and Astrophysics</i> , 2012 , 539, A61	5.1	30
106	GMASS ultradeep spectroscopy of galaxies atz´~´ 2. <i>Astronomy and Astrophysics</i> , 2013 , 549, A63	5.1	76
105	The star formation rate density and dust attenuation evolution over 12 Gyr with the VVDS surveys. <i>Astronomy and Astrophysics</i> , 2012 , 539, A31	5.1	199
104	Enhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschelobservations. <i>Astronomy and Astrophysics</i> , 2012 , 540, A109	5.1	161
103	Lyman continuum leaking galaxies. Search strategies and local candidates. <i>Astronomy and Astrophysics</i> , 2013 , 554, A38	5.1	24
102	The longFray burst rate and the correlation with host galaxy properties. <i>Astronomy and Astrophysics</i> , 2012 , 539, A113	5.1	55
101	The interaction-driven starburst contribution to the cosmic star formation rate density. <i>Astronomy and Astrophysics</i> , 2013 , 552, A44	5.1	25

100	The impact of binary stars on the colors of high-redshift galaxies. <i>Astronomy and Astrophysics</i> , 2013 , 554, A136	5.1	3
99	Revisiting the formation rate and redshift distribution of long gamma-ray bursts. <i>Astronomy and Astrophysics</i> , 2013 , 559, A64	5.1	7
98	Metallicity evolution, metallicity gradients, and gas fractions atz~ 3.4. <i>Astronomy and Astrophysics</i> , 2014 , 563, A58	5.1	167
97	New light on gamma-ray burst host galaxies withHerschel. <i>Astronomy and Astrophysics</i> , 2014 , 565, A112	5.1	60
96	An excess of dusty starbursts related to the Spiderweb galaxy. <i>Astronomy and Astrophysics</i> , 2014 , 570, A55	5.1	76
95	Star formation inz> 1 3CR host galaxies as seen byHerschel. <i>Astronomy and Astrophysics</i> , 2015 , 575, A80	5.1	45
94	The stochastic background of gravitational waves due to thef-mode instability in neutron stars. <i>Astronomy and Astrophysics</i> , 2016 , 586, A86	5.1	7
93	Spatially-resolved star formation histories of CALIFA galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 607, A128	5.1	40
92	The role of molecular gas in galaxy transition in compact groups. <i>Astronomy and Astrophysics</i> , 2017 , 607, A110	5.1	10
91	Evidence for strong evolution of the cosmic star formation density at high redshifts. <i>Astronomy and Astrophysics</i> , 2007 , 461, 423-431	5.1	51
90	Carbon monoxide line emission as a CMB foreground: tomography of the star-forming universe with different spectral resolutions. <i>Astronomy and Astrophysics</i> , 2008 , 489, 489-504	5.1	63
89	The 0.4 \$mathsf{. Astronomy and Astrophysics, 2009, 496, 57-75	5.1	295
88	The Co-Formation of Spheroids and Quasars Traced in their Clustering. <i>Astrophysical Journal</i> , 2007 , 662, 110-130	4.7	85
87	Galaxy Mergers atz? 1 in the HUDF: Evidence for a Peak in the Major Merger Rate of Massive Galaxies1. Astrophysical Journal, 2008, 678, 751-757	4.7	58
86	EVOLUTION OF MASSIVE PROTOSTARS WITH HIGH ACCRETION RATES. <i>Astrophysical Journal</i> , 2009 , 691, 823-846	4.7	268
85	CONSTRAINTS ON THE EXTRAGALACTIC BACKGROUND LIGHT FROM VERY HIGH ENERGY GAMMA-RAY OBSERVATIONS OF BLAZARS. <i>Astrophysical Journal</i> , 2009 , 698, 1761-1766	4.7	33
84	ORBITING CIRCUMGALACTIC GAS AS A SIGNATURE OF COSMOLOGICAL ACCRETION. <i>Astrophysical Journal</i> , 2011 , 738, 39	4.7	133
83	A LARGE POPULATION OF MASSIVE COMPACT POST-STARBURST GALAXIES ATz> 1: IMPLICATIONS FOR THE SIZE EVOLUTION AND QUENCHING MECHANISM OF QUIESCENT GALAXIES. <i>Astrophysical Journal</i> , 2012 , 745, 179	4.7	159

(2010-2015)

82	THE EVOLUTION OF THE FAR-UV LUMINOSITY FUNCTION AND STAR FORMATION RATE DENSITY OF THECHANDRADEEP FIELD SOUTH FROMz= 0.2 TO 1.2 WITHSWIFT/UVOT. <i>Astrophysical Journal</i> , 2015 , 808, 178	4.7	5	
81	High-energy neutrinos from fallback accretion of binary neutron star merger remnants. <i>Journal of Cosmology and Astroparticle Physics</i> , 2020 , 2020, 045-045	6.4	7	
80	Combined limit on the photon mass with nine localized fast radio bursts. 2020, 20, 206		4	
79	STAR FORMATION ACTIVITY IN A YOUNG GALAXY CLUSTER ATZ= 0.866. <i>Astrophysical Journal</i> , 2016 , 825, 108	4.7	1	
78	The ALMA Spectroscopic Survey in the HUDF: the Molecular Gas Content of Galaxies and Tensions with IllustrisTNG and the Santa Cruz SAM. <i>Astrophysical Journal</i> , 2019 , 882, 137	4.7	49	
77	A Search for Neutrino Point-source Populations in 7 yr of IceCube Data with Neutrino-count Statistics. <i>Astrophysical Journal</i> , 2020 , 893, 102	4.7	3	
76	Detecting Pair-instability Supernovae at z ? 5 with the James Webb Space Telescope. <i>Astrophysical Journal</i> , 2020 , 894, 94	4.7	7	
75	Cosmological Constraints from Line Intensity Mapping with Interlopers. <i>Astrophysical Journal</i> , 2020 , 894, 152	4.7	14	
74	The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Multiband Constraints on Line-luminosity Functions and the Cosmic Density of Molecular Gas. <i>Astrophysical Journal</i> , 2020 , 902, 110	4.7	29	
73	Neutron Star B lack Hole Mergers from Gravitational-wave Captures. <i>Astrophysical Journal</i> , 2020 , 903, 8	4.7	14	
72	Cosmological Parameter Estimation for Dynamical Dark Energy Models with Future Fast Radio Burst Observations. <i>Astrophysical Journal</i> , 2020 , 903, 83	4.7	12	
71	Dying of the Light: An X-Ray Fading Cold Quasar at z ~ 0.405. <i>Astrophysical Journal</i> , 2020 , 903, 106	4.7	3	
70	A Multilevel Empirical Bayesian Approach to Estimating the Unknown Redshifts of 1366 BATSE Catalog Long-duration Gamma-Ray Bursts. <i>Astrophysical Journal</i> , 2020 , 903, 33	4.7	5	
69	High-energy Neutrinos and Gamma Rays from Nonrelativistic Shock-powered Transients. Astrophysical Journal, 2020 , 904, 4	4.7	7	
68	Implications of a Fast Radio Burst from a Galactic Magnetar. <i>Astrophysical Journal Letters</i> , 2020 , 899, L27	7.9	66	
67	EUNHA: A NEW COSMOLOGICAL HYDRODYNAMIC SIMULATION CODE. 2014 , 47, 87-98		4	
66	The role of mergers and gas accretion in black hole growth and galaxy evolution. 2021 , 21, 212		1	
65	Is Our Environment Special?. 2010 , 391-418			

64 Stellar Population Diagnostics of Galaxies. 133-169

63	References. 269-318		
62	Cosmic Evolution of Gas Content and Accretion. 2015 , 413-421		
61	Physics of Baryons. 2016 , 239-266		
60	Diffuse Neutrino Flux from Supernovae. 2016 , 1-17		
59	GRBs and Fundamental Physics. Space Sciences Series of ISSI, 2016 , 197-236	0.1	
58	Detectability and Uncertainties of the Supernova Relic Neutrino Background. 2017,		
57	Research on the Processing Mode of Astronomical Information. <i>Journal of Antennas</i> , 2018 , 07, 25-34	O	1
56	Astronomical Distance Determination in the Space Age. Space Sciences Series of ISSI, 2018, 283-351	0.1	
55	Criticism of the Big Bang Theory Based on Shouyuan Chen Effect. <i>Astronomy and Astrophysics</i> , 2019 , 07, 40-52	O	
54	The Shouyuan Chen Effect and Doppler Effect Confronted in Astronomy. <i>Astronomy and Astrophysics</i> , 2019 , 07, 53-64	O	
53	Channel Astronomy (Brief Introduction): Astronomical Signal Channel Processing Mode. <i>Astronomy and Astrophysics</i> , 2019 , 07, 21-30	O	
52	Boosted dark matter from diffuse supernova neutrinos. <i>Physical Review D</i> , 2021 , 104,	4.9	0
51	CNNs for enhanced background discrimination in DSNB searches in large-scale water-Gd detectors. <i>Journal of Cosmology and Astroparticle Physics</i> , 2021 , 2021, 051	6.4	1
50	How will our knowledge of short gamma-ray bursts affect the distance measurement of binary neutron stars?. <i>Science China: Physics, Mechanics and Astronomy</i> , 2022 , 65, 1	3.6	0
49	Probing secret interactions of astrophysical neutrinos in the high-statistics era. <i>Physical Review D</i> , 2021 , 104,	4.9	1
48	Discussion. Springer Theses, 2021 , 119-142	0.1	
47	Introduction. <i>SpringerBriefs in Astronomy</i> , 2021 , 1-38	0.7	

46	Cosmic Near-infrared Background Tomography with SPHEREx Using Galaxy Cross-correlations. <i>Astrophysical Journal</i> , 2022 , 925, 136	4.7	1
45	A forecast of using fast radio burst observations to constrain holographic dark energy. <i>Journal of Cosmology and Astroparticle Physics</i> , 2022 , 2022, 006	6.4	2
44	Search for High-energy Neutrinos from Ultraluminous Infrared Galaxies with IceCube. <i>Astrophysical Journal</i> , 2022 , 926, 59	4.7	О
43	The First Large Absorption Survey in H i (FLASH): I. Science goals and survey design. <i>Publications of the Astronomical Society of Australia</i> , 2022 , 39,	5.5	1
42	Luminosity Function and Event Rate Density of XMM-Newton-selected Supernova Shock Breakout Candidates. <i>Astrophysical Journal</i> , 2022 , 927, 224	4.7	О
41	Signatures of population III supernovae at Cosmic Dawn: the case of GN-z11-flash. <i>General Relativity and Gravitation</i> , 2022 , 54, 1	2.3	Ο
40	Submillimetre galaxies in two massive protoclusters at $z = 2.24$: witnessing the enrichment of extreme starbursts in the outskirts of HAE density peaks. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	О
39	Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO. <i>Universe</i> , 2022 , 8, 181	2.5	O
38	3D template-based Fermi -LAT constraints on the diffuse supernova axion-like particle background. <i>Physical Review D</i> , 2022 , 105,	4.9	О
37	Stellar masses of clumps in gas-rich, turbulent disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 3079-3097	4.3	Ο
36	Properties of High-redshift Gamma-Ray Bursts. Astrophysical Journal, 2022, 929, 111	4.7	О
35	A Comparative Study of Luminosity Functions and Event Rate Densities of Long GRBs with Non-parametric Method. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
34	Scaling relations of z \sim 0:25-1:5 galaxies in various environments from the morpho-kinematics analysis of the MAGIC sample. <i>Astronomy and Astrophysics</i> ,	5.1	О
33	The star-formation rates of QSOs. Monthly Notices of the Royal Astronomical Society,	4.3	O
32	Supernovae and their cosmological implications. Rivista Del Nuovo Cimento,	3.5	
31	The Redshift Evolution of Ultraluminous X-Ray Sources out to $z \sim 0.5$: Comparison with X-Ray Binary Populations and Contribution to the Cosmic X-Ray Background. <i>Astrophysical Journal</i> , 2022 , 932, 27	4.7	
30	The Cosmic History of Long Gamma-Ray Bursts. Astrophysical Journal, 2022, 932, 10	4.7	О
29	The Physical Properties of Star-forming Galaxies with Strong [O iii] Lines at z = 3.25. <i>Astrophysical Journal</i> , 2022 , 933, 50	4.7	

28	The TeV Diffuse Cosmic Neutrino Spectrum and the Nature of Astrophysical Neutrino Sources. <i>Astrophysical Journal</i> , 2022 , 933, 190	4.7	1
27	Contribution from TeV halos to the isotropic gamma-ray background. <i>Physical Review D</i> , 2022 , 106,	4.9	
26	Theoretically Modeling Photoionized Regions with Fractal Geometry in Three Dimensions. <i>Astrophysical Journal Letters</i> , 2022 , 934, L8	7.9	
25	Impact of late-time neutrino emission on the diffuse supernova neutrino background. 2022, 106,		1
24	The Effect of Metallicity on the Formation of Massive Black Holes through Stellar Collisions in Young Massive Star Clusters. 2022 , 6, 157		0
23	FLASH Pilot Survey: Detections of associated 21 cm H î absorption in GAMA galaxies at 0.42 & amp;lt;z & amp;lt; 1.00.		1
22	Non-universal stellar initial mass functions: Large uncertainties in star formation rates at z \square \square and other astrophysical probes.		1
21	On the Mass Function of GWTC-2 Binary Black Hole Systems and Their Progenitors. 2022 , 938, 69		О
20	The Stellar-mass Function of Long Gamma-Ray Burst Host Galaxies. 2022 , 938, 129		O
19	Prospects for detecting the diffuse supernova neutrino background with JUNO. 2022 , 2022, 033		1
18	From Galactic Chemical Evolution to Cosmic Supernova Rates Synchronized with Core-Collapse Supernovae Limited to the Narrow Progenitor Mass Range.		1
17	Intermediate-mass Black Holes on the Run from Young Star Clusters. 2022 , 940, 131		O
16	Diffuse supernova neutrino background as a probe of late-time neutrino mass generation. 2022 , 106,		0
15	Rocks, water, and noble liquids: Unfolding the flavor contents of supernova neutrinos. 2022, 106,		1
14	A next-generation liquid xenon observatory for dark matter and neutrino physics. 2023, 50, 013001		1
13	ALMA Lensing Cluster Survey: Hubble Space Telescope and Spitzer Photometry of 33 Lensed Fields Built with CHArGE. 2022 , 263, 38		O
12	Detection of H \hat{i} 21 cm emission from a strongly lensed galaxy at z \sim 1.3.		0
11	Modeling the Extragalactic Background Light and the Cosmic Star Formation History. 2022 , 941, 33		O

CITATION REPORT

10	Diffuse supernova neutrino background in the standard and double collapse models. 2022, 106,	O
9	Forecast of cosmological constraints with type Ia supernovae from the Chinese Space Station Telescope. 2023 , 66,	O
8	The Impact of GRBs on Exoplanetary Habitability. 2023 , 9, 60	O
7	Near-future discovery of point sources of ultra-high-energy neutrinos. 2023, 2023, 026	О
6	Does a radio jet drive the massive multiphase outflow in the ultra-luminous infrared galaxy IRAS 10565´+´2448?. 2023 , 520, 5712-5723	O
5	Extragalactic Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory. 2023 , 219,	O
4	Lyman continuum leaker candidates among highly ionised, low-redshift dwarf galaxies selected from He II. 2023 , 672, A11	O
3	SUPER VII. morphology and kinematics of H Emission in AGN host galaxies at cosmic noon using SINFONI. 2023 , 520, 5783-5802	O
2	Searching for Supernovae in HETDEX Data Release 3*. 2023 , 946, 31	O
1	Bump hunting in the diffuse flux of high-energy cosmic neutrinos. 2023, 107,	O