mTOR Inhibition Induces Upstream Receptor Tyrosine

Cancer Research 66, 1500-1508 DOI: 10.1158/0008-5472.can-05-2925

Citation Report

#	Article	IF	CITATIONS
1	Activation of mTOR in a subgroup of ovarian carcinomas: Correlation with p-eIF-4E and prognosis. Oncology Reports, 1994, 20, 1409.	1.2	19
2	Pharmacodynamic Biomarkers for Molecular Cancer Therapeutics. Advances in Cancer Research, 2006, 96, 213-268.	1.9	141
3	Prolonged Rapamycin Treatment Inhibits mTORC2 Assembly and Akt/PKB. Molecular Cell, 2006, 22, 159-168.	4.5	2,388
4	S6K1 Regulates GSK3 under Conditions of mTOR-Dependent Feedback Inhibition of Akt. Molecular Cell, 2006, 24, 185-197.	4.5	260
5	Rapamycin confers preconditioning-like protection against ischemia–reperfusion injury in isolated mouse heart and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2006, 41, 256-264.	0.9	181
6	Drugging the PI3 kinome. Nature Biotechnology, 2006, 24, 794-796.	9.4	65
7	RNAi in moderation. Nature Biotechnology, 2006, 24, 796-797.	9.4	31
8	Systems biology and combination therapy in the quest for clinical efficacy. Nature Chemical Biology, 2006, 2, 458-466.	3.9	505
10	mTOR and cancer: insights into a complex relationship. Nature Reviews Cancer, 2006, 6, 729-734.	12.8	1,223
11	The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Reviews Genetics, 2006, 7, 606-619.	7.7	2,833
12	Predicted mechanisms of resistance to mTOR inhibitors. British Journal of Cancer, 2006, 95, 955-960.	2.9	82
13	Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 2006, 441, 424-430.	13.7	1,839
14	mTOR and cancer therapy. Oncogene, 2006, 25, 6436-6446.	2.6	436
15	Stress and mTORture signaling. Oncogene, 2006, 25, 6373-6383.	2.6	318
16	Acromegaly. New England Journal of Medicine, 2006, 355, 2558-2573.	13.9	1,049
17	Inhibitors of Insulin-like Growth Factor Signaling: A Therapeutic Approach for Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2006, 11, 27-39.	1.0	55
18	Inhibition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in hematologic malignancies. Current Treatment Options in Oncology, 2006, 7, 285-294.	1.3	70
19	IRS-1: Auditing the effectiveness of mTOR inhibitors. Cancer Cell, 2006, 9, 153-155.	7.7	70

#	Article	IF	CITATIONS
20	Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell, 2006, 10, 159-170.	7.7	388
21	Intracellular signaling in tumor and endothelial cells: The expected and, yet again, the unexpected. Cancer Cell, 2006, 10, 89-91.	7.7	55
22	Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-κB activation and cell survival. Cancer Cell, 2006, 10, 215-226.	7.7	116
23	AKT and cancer—Is it all mTOR?. Cancer Cell, 2006, 10, 254-256.	7.7	58
24	Future Directions in the Treatment of Hormone-Sensitive Advanced Breast Cancer: The RAD001 (Everolimus)-Letrozole Clinical Program. Seminars in Oncology, 2006, 33, 18-25.	0.8	23
25	Isoform Specific Inhibitors of PI3 Kinase in Glioma. Cell Cycle, 2006, 5, 2301-2305.	1.3	33
26	Investigating mammalian target of rapamycin inhibitors for their anticancer properties. Expert Opinion on Investigational Drugs, 2006, 15, 1201-1227.	1.9	15
27	Point mutations of protein kinases and individualised cancer therapy. Expert Opinion on Pharmacotherapy, 2006, 7, 2243-2261.	0.9	27
28	Progress in Chemoprevention Drug Development: The Promise of Molecular Biomarkers for Prevention of Intraepithelial Neoplasia and Cancer—A Plan to Move Forward. Clinical Cancer Research, 2006, 12, 3661-3697.	3.2	263
29	Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non–small-cell lung, pancreatic, colon, and breast tumors. Molecular Cancer Therapeutics, 2006, 5, 2676-2684.	1.9	216
30	Combined Transcriptional and Translational Targeting of EWS/FLI-1 in Ewing's Sarcoma. Clinical Cancer Research, 2006, 12, 6781-6790.	3.2	53
31	Turnover of the Active Fraction of IRS1 Involves Raptor-mTOR- and S6K1-Dependent Serine Phosphorylation in Cell Culture Models of Tuberous Sclerosis. Molecular and Cellular Biology, 2006, 26, 6425-6434.	1.1	152
32	Will Kinase Inhibitors Have a Dark Side?. New England Journal of Medicine, 2006, 355, 313-315.	13.9	35
33	Improving the outcome of patients with castration-resistant prostate cancer through rational drug development. British Journal of Cancer, 2006, 95, 767-774.	2.9	72
34	A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. British Journal of Cancer, 2006, 95, 1148-1154.	2.9	315
35	Phase I/II Study of the Mammalian Target of Rapamycin Inhibitor Everolimus (RAD001) in Patients with Relapsed or Refractory Hematologic Malignancies. Clinical Cancer Research, 2006, 12, 5165-5173.	3.2	281
36	Targeting the AIB1 Oncogene through Mammalian Target of Rapamycin Inhibition in the Mammary Gland. Cancer Research, 2006, 66, 11381-11388.	0.4	48
37	Preclinical Testing of Clinically Applicable Strategies for Overcoming Trastuzumab Resistance Caused by PTEN Deficiency. Clinical Cancer Research, 2007, 13, 5883-5888.	3.2	195

#	Article	IF	Citations
38	Abrogation of Signal Transducer and Activator of Transcription 3 Reactivation after Src Kinase Inhibition Results in Synergistic Antitumor Effects. Clinical Cancer Research, 2007, 13, 4233-4244.	3.2	60
39	Endothelial Akt Signaling Is Rate-Limiting for Rapamycin Inhibition of Mouse Mammary Tumor Progression. Cancer Research, 2007, 67, 5070-5075.	0.4	54
40	Inhibition of Mammalian Target of Rapamycin Signaling by 2-(Morpholin-1-yl)pyrimido[2,1-α]isoquinolin-4-one. Journal of Biological Chemistry, 2007, 282, 24463-24470.	1.6	30
41	Inhibition of Mammalian Target of Rapamycin Induces Phosphatidylinositol 3-Kinase-Dependent and Mnk-Mediated Eukaryotic Translation Initiation Factor 4E Phosphorylation. Molecular and Cellular Biology, 2007, 27, 7405-7413.	1.1	137
42	Targeting Protein Translation in Human Non–Small Cell Lung Cancer via Combined MEK and Mammalian Target of Rapamycin Suppression. Cancer Research, 2007, 67, 11300-11308.	0.4	88
43	Novel therapeutic targets in mantle cell lymphoma. Expert Opinion on Therapeutic Targets, 2007, 11, 929-940.	1.5	4
44	RAD001 (Everolimus) Delays Tumor Onset and Progression in a Transgenic Mouse Model of Ovarian Cancer. Cancer Research, 2007, 67, 2408-2413.	0.4	178
45	mTOR Inhibition in Lymphoma: A Rational and Promising Strategy. Letters in Drug Design and Discovery, 2007, 4, 224-231.	0.4	3
46	The Phosphoinositide 3-Kinase Pathway in Human Cancer: Genetic Alterations and Therapeutic Implications. Current Genomics, 2007, 8, 271-306.	0.7	206
47	Phase I Study of Everolimus in Pediatric Patients With Refractory Solid Tumors. Journal of Clinical Oncology, 2007, 25, 4806-4812.	0.8	149
48	Malignant glioma drug discovery – targeting protein kinases. Expert Opinion on Drug Discovery, 2007, 2, 1-17.	2.5	25
49	PTEN-Mediated Resistance to Epidermal Growth Factor Receptor Kinase Inhibitors. Clinical Cancer Research, 2007, 13, 378-381.	3.2	114
50	Prospective Assessment of Discontinuation and Reinitiation of Erlotinib or Gefitinib in Patients with Acquired Resistance to Erlotinib or Gefitinib Followed by the Addition of Everolimus. Clinical Cancer Research, 2007, 13, 5150-5155.	3.2	279
51	The Role of Phosphoinositide 3-Kinase Pathway Inhibitors in the Treatment of Lung Cancer. Clinical Cancer Research, 2007, 13, 4637s-4640s.	3.2	33
52	Controlling Gene Expression through RNA Regulons: The Role of the Eukaryotic Translation Initiation Factor eIF4E. Cell Cycle, 2007, 6, 65-69.	1.3	136
53	Akt/TSC/mTOR Activation by the KSHV G Protein-Coupled Receptor: Emerging Insights into the Molecular Oncogenesis and Treatment of Kaposi's Sarcoma. Cell Cycle, 2007, 6, 438-443.	1.3	60
54	Activation of polyamine catabolism by N1, N11-diethylnorspermine alters the cellular localization of mTOR and downregulates mTOR protein level in glioblastoma cells. Cancer Biology and Therapy, 2007, 6, 1644-1648.	1.5	23
55	Oncogenic Transformation by the Signaling Adaptor Proteins Insulin Receptor Substrate (IRS)-1 and IRS-2. Cell Cycle, 2007, 6, 705-713.	1.3	154

#	Article	IF	CITATIONS
56	The Novel mTOR Inhibitor RAD001 (Everolimus) Induces Antiproliferative Effects in Human Pancreatic Neuroendocrine Tumor Cells. Neuroendocrinology, 2007, 85, 54-60.	1.2	149
57	Rapamycin inhibits multiple stages of c-Neu/ErbB2–induced tumor progression in a transgenic mouse model of HER2-positive breast cancer. Molecular Cancer Therapeutics, 2007, 6, 2188-2197.	1.9	47
58	Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors. Molecular Cancer Therapeutics, 2007, 6, 1620-1628.	1.9	47
59	Selective Inhibition of Growth of <i>Tuberous Sclerosis Complex 2</i> –Null Cells by Atorvastatin Is Associated with Impaired Rheb and Rho GTPase Function and Reduced mTOR/S6 Kinase Activity. Cancer Research, 2007, 67, 9878-9886.	0.4	63
60	The Biology Behind mTOR Inhibition in Sarcoma. Oncologist, 2007, 12, 1007-1018.	1.9	163
61	Will Single-Time Tumor Profiling and a "Guilt by Association" Approach Allow Us to Outsmart HER2-Positive Breast Cancer?. Clinical Cancer Research, 2007, 13, 1071-1073.	3.2	0
62	Targeting Human Medulloblastoma: Oncolytic Virotherapy with Myxoma Virus Is Enhanced by Rapamycin. Cancer Research, 2007, 67, 8818-8827.	0.4	97
63	Control of Protein Synthesis in Malignant Transformation - the Role of eIF4E and the eIF4E Binding Proteins in the Regulation of Apoptosis. Current Cancer Therapy Reviews, 2007, 3, 151-163.	0.2	Ο
64	A Dual Phosphoinositide-3-Kinase α/mTOR Inhibitor Cooperates with Blockade of Epidermal Growth Factor Receptor in <i>PTEN</i> -Mutant Glioma. Cancer Research, 2007, 67, 7960-7965.	0.4	199
65	4E-Binding Protein 1, A Cell Signaling Hallmark in Breast Cancer that Correlates with Pathologic Grade and Prognosis. Clinical Cancer Research, 2007, 13, 81-89.	3.2	188
66	Phosphoprotein Pathway Mapping: Akt/Mammalian Target of Rapamycin Activation Is Negatively Associated with Childhood Rhabdomyosarcoma Survival. Cancer Research, 2007, 67, 3431-3440.	0.4	230
67	Rationale for a Phase I Trial of Erlotinib and the Mammalian Target of Rapamycin Inhibitor Everolimus (RAD001) for Patients with Relapsed Non–Small Cell Lung Cancer. Clinical Cancer Research, 2007, 13, 4628s-4631s.	3.2	39
68	Oncolytic Virotherapy Synergism with Signaling Inhibitors: Rapamycin Increases Myxoma Virus Tropism for Human Tumor Cells. Journal of Virology, 2007, 81, 1251-1260.	1.5	72
69	Targeting the AKT protein kinase for cancer chemoprevention. Molecular Cancer Therapeutics, 2007, 6, 2139-2148.	1.9	153
70	The combination of novel low molecular weight inhibitors of RAF (LBT613) and target of rapamycin (RAD001) decreases glioma proliferation and invasion. Molecular Cancer Therapeutics, 2007, 6, 2449-2457.	1.9	43
71	New drug development in digestive neuroendocrine tumors. Annals of Oncology, 2007, 18, 1307-1313.	0.6	27
72	The pro-survival pathways of mTOR and protein kinase B target glycogen synthase kinase-3β and nuclear factor-κB to foster endogenous microglial cell protection. International Journal of Molecular Medicine, 2007, 19, 263.	1.8	37
74	Use of pharmacokinetic/pharmacodynamic biomarkers to support rational cancer drug development. Biomarkers in Medicine, 2007, 1, 399-417.	0.6	29

#	Article	IF	CITATIONS
75	Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood, 2007, 109, 3509-3512.	0.6	318
76	Targeted therapy for Kaposi's sarcoma and Kaposi's sarcoma-associated herpesvirus. Current Opinion in Oncology, 2007, 19, 452-457.	1.1	38
77	Mammalian Target of Rapamycin Pathway Activity in Hepatocellular Carcinomas of Patients Undergoing Liver Transplantation. Transplantation, 2007, 83, 425-432.	0.5	139
78	Insulin and amino acid availability regulate atrogin-1 in avian QT6 cells. Biochemical and Biophysical Research Communications, 2007, 357, 181-186.	1.0	50
79	Rapamycin regulates the phosphorylation of rictor. Biochemical and Biophysical Research Communications, 2007, 362, 330-333.	1.0	55
80	Aspects of mTOR biology and the use of mTOR inhibitors in non-Hodgkin's lymphoma. Cancer Treatment Reviews, 2007, 33, 78-84.	3.4	54
81	Phosphorylation of ribosomal p70 S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Letters, 2007, 251, 105-113.	3.2	56
82	An activated mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR. Cancer Letters, 2007, 253, 236-248.	3.2	127
83	PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms. Molecular Cell, 2007, 25, 917-931.	4.5	527
84	Targeting the mTOR signaling network in cancer. Trends in Molecular Medicine, 2007, 13, 433-442.	3.5	306
85	The Mammalian Target of Rapamycin Pathway as a Potential Target for Cancer Chemoprevention. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 1330-1340.	1.1	55
86	What have we gained from the application of biological â€~rationales'?. European Journal of Cancer, Supplement, 2007, 5, 83-88.	2.2	0
87	Clinical trials update: endocrine and biological therapy combinations in the treatment of breast cancer. Breast Cancer Research, 2007, 9, 112.	2.2	20
88	IMC-A12, a Human IgG1 Monoclonal Antibody to the Insulin-Like Growth Factor I Receptor. Clinical Cancer Research, 2007, 13, 5549s-5555s.	3.2	154
89	Mechanisms of Disease: signaling of the insulin-like growth factor 1 receptor pathway—therapeutic perspectives in cancer. Nature Clinical Practice Oncology, 2007, 4, 591-602.	4.3	217
90	An update on mouse brain tumor models in cancer drug discovery. Expert Opinion on Drug Discovery, 2007, 2, 1435-1451.	2.5	2
91	Recent progress in the discovery of Akt inhibitors as anticancer agents. Expert Opinion on Therapeutic Patents, 2007, 17, 1077-1130.	2.4	37
92	Targeted Agents: The Rules of Combination. Clinical Cancer Research, 2007, 13, 5232-5237.	3.2	62

#	Article	IF	CITATIONS
93	Targeting mitochondria in the treatment of human cancer: a coordinated attack against cancer cell energy metabolism and signalling. Expert Opinion on Therapeutic Targets, 2007, 11, 1055-1069.	1.5	25
94	The Mammalian Target of Rapamycin Signaling Pathway: Twists and Turns in the Road to Cancer Therapy: Fig. 1 Clinical Cancer Research, 2007, 13, 3109-3114.	3.2	239
95	Abuse of Growth Hormone Among Young Athletes. Pediatric Clinics of North America, 2007, 54, 823-843.	0.9	14
97	Immunosuppressive Therapy and Malignancy in Organ Transplant Recipients. Drugs, 2007, 67, 1167-1198.	4.9	333
98	Rapamycin Limits Formation of Active Eukaryotic Initiation Factor 4F Complex Following Meal Feeding in Rat Hearts. Journal of Nutrition, 2007, 137, 1857-1862.	1.3	17
99	Targeting mTOR signaling in lung cancer. Critical Reviews in Oncology/Hematology, 2007, 63, 172-182.	2.0	70
100	Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leukemia Research, 2007, 31, 673-682.	0.4	95
101	Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene, 2007, 26, 1616-1625.	2.6	130
102	Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene, 2007, 26, 1932-1940.	2.6	718
103	Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene, 2007, 26, 1840-1851.	2.6	139
104	Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene, 2007, 26, 5655-5661.	2.6	148
105	Loss of PTEN selectively desensitizes upstream IGF1 and insulin signaling. Oncogene, 2007, 26, 7132-7142.	2.6	31
106	Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nature Reviews Drug Discovery, 2007, 6, 871-880.	21.5	153
107	Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy. British Journal of Cancer, 2007, 96, 952-959.	2.9	81
108	Identification of the JNK Signaling Pathway as a Functional Target of the Tumor Suppressor PTEN. Cancer Cell, 2007, 11, 555-569.	7.7	214
109	Bronchial and Peripheral Murine Lung Carcinomas Induced by T790M-L858R Mutant EGFR Respond to HKI-272 and Rapamycin Combination Therapy. Cancer Cell, 2007, 12, 81-93.	7.7	212
110	A New Mutational aktivation in the PI3K Pathway. Cancer Cell, 2007, 12, 104-107.	7.7	230
111	Drugging the Cancer Chaperone HSP90. Annals of the New York Academy of Sciences, 2007, 1113, 202-216.	1.8	477

# 112	ARTICLE The Two TORCs and Akt. Developmental Cell, 2007, 12, 487-502.	IF 3.1	CITATIONS
113	Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 241-253.	2.6	46
114	Rapamycin retards growth and causes marked alterations in the growth plate of young rats. Pediatric Nephrology, 2007, 22, 954-961.	0.9	57
115	Pharmacodynamics: biological activity of targeted therapies in clinical trials. Clinical and Translational Oncology, 2007, 9, 634-644.	1.2	8
116	Targeting AMPK: A new therapeutic opportunity in breast cancer. Critical Reviews in Oncology/Hematology, 2008, 67, 1-7.	2.0	147
117	Cross-Talk Between the ErbB/HER Family and the Type I Insulin-Like Growth Factor Receptor Signaling Pathway in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2008, 13, 485-498.	1.0	131
118	Mammalian target of rapamycin pathway inhibition enhances the effects of 5-aza-dC on suppressing cell proliferation in human gastric cancer cell lines. Science in China Series C: Life Sciences, 2008, 51, 640-647.	1.3	15
119	The future of tyrosine kinase inhibitors: Single agent or combination?. Current Oncology Reports, 2008, 10, 264-270.	1.8	9
120	Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunologic Research, 2008, 42, 84-105.	1.3	35
121	Rapamycin and mTOR kinase inhibitors. Journal of Chemical Biology, 2008, 1, 27-36.	2.2	354
122	Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGFâ€1 receptor by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 1190-1197.	0.8	168
123	Expression of an activated mammalian target of rapamycin in adenocarcinoma of the cervix: A potential biomarker and molecular target therapy. Molecular Carcinogenesis, 2008, 47, 446-457.	1.3	54
124	Systemic cancer therapy: Evolution over the last 60 years. Cancer, 2008, 113, 1857-1887.	2.0	43
125	Mammalian Target of Rapamycin as a Target in Hematological Malignancies. Current Problems in Cancer, 2008, 32, 161-177.	1.0	12
126	Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent <i>in vivo</i> antitumor activity. Molecular Cancer Therapeutics, 2008, 7, 1851-1863.	1.9	1,095
127	Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition. Stem Cells, 2008, 26, 3027-3036.	1.4	207
128	Phosphorylation-dependent binding of 14-3-3 terminates signalling by the Gab2 docking protein. EMBO Journal, 2008, 27, 2305-2316.	3.5	55
129	Oncogenic signaling of class I PI3K isoforms. Oncogene, 2008, 27, 2561-2574.	2.6	99

#	Article	IF	CITATIONS
130	Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene, 2008, 27, 4998-5010.	2.6	154
131	PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene, 2008, 27, 5416-5430.	2.6	193
132	The PTEN–PI3K pathway: of feedbacks and cross-talks. Oncogene, 2008, 27, 5527-5541.	2.6	778
133	The G1556S-type tuberin variant suppresses tumor formation in tuberous sclerosis 2 mutant (Eker) rats despite its deficiency in mTOR inhibition. Oncogene, 2008, 27, 6690-6697.	2.6	6
134	Common corruption of the mTOR signaling network in human tumors. Oncogene, 2008, 27, S43-S51.	2.6	275
135	Insulin and insulin-like growth factor signalling in neoplasia. Nature Reviews Cancer, 2008, 8, 915-928.	12.8	1,792
136	mTOR inhibition reverses acquired endocrine therapy resistance of breast cancer cells at the cell proliferation and geneâ€expression levels. Cancer Science, 2008, 99, 1992-2003.	1.7	66
137	Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochemical Pharmacology, 2008, 75, 1035-1044.	2.0	47
138	TORC1 Is Essential for NF1-Associated Malignancies. Current Biology, 2008, 18, 56-62.	1.8	195
139	Octreotide and the mTOR Inhibitor RAD001 (Everolimus) Block Proliferation and Interact with the Akt-mTOR-p70S6K Pathway in a Neuro-Endocrine Tumour Cell Line. Neuroendocrinology, 2008, 87, 168-181.	1.2	114
140	Selective inhibition of SCLC growth by the A12 anti-IGF-1R monoclonal antibody correlates with inhibition of Akt. Lung Cancer, 2008, 60, 166-174.	0.9	36
141	PTEN hamartoma tumor syndromes. European Journal of Human Genetics, 2008, 16, 1289-1300.	1.4	240
142	Insulin, insulin-like growth factors and neoplasia. Best Practice and Research in Clinical Endocrinology and Metabolism, 2008, 22, 625-638.	2.2	85
143	Down-regulation of Phospho-Akt Is a Major Molecular Determinant of Bortezomib-Induced Apoptosis in Hepatocellular Carcinoma Cells. Cancer Research, 2008, 68, 6698-6707.	0.4	109
144	Signalling by the EGF receptor in human cancers: accentuate the positive, eliminate the negative. , 2008, , 224-244.		1
145	Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Research, 2008, 10, R101.	2.2	186
146	EGFR Signaling Networks in Cancer Therapy. , 2008, , .		11
147	Malignant Melanoma in the 21st Century: The Emerging Molecular Landscape. Mayo Clinic Proceedings, 2008, 83, 825-846.	1.4	120

#	Article	IF	CITATIONS
148	NVP-BEZ235, a Dual PI3K/mTOR Inhibitor, Prevents PI3K Signaling and Inhibits the Growth of Cancer Cells with Activating PI3K Mutations. Cancer Research, 2008, 68, 8022-8030.	0.4	726
149	An Integrative Genomic and Proteomic Analysis of PIK3CA, PTEN, and AKT Mutations in Breast Cancer. Cancer Research, 2008, 68, 6084-6091.	0.4	916
150	The Impact of mTOR Inhibitors on the Development of Malignancy. Transplantation Proceedings, 2008, 40, S32-S35.	0.3	15
151	Targeted therapies in breast cancer: Where are we now?. European Journal of Cancer, 2008, 44, 2781-2790.	1.3	78
152	Targeting insulin and insulin-like growth factor signalling in oncology. Current Opinion in Pharmacology, 2008, 8, 384-392.	1.7	90
153	Preclinical evidences suggest new treatment options for endocrine disorders: Pasireotide (SOM230) and Everolimus (RAD001). Annales D'Endocrinologie, 2008, 69, 162-163.	0.6	9
154	Regulation of mTORC1 Signaling by Src Kinase Activity Is Akt1-Independent in RSV-Transformed Cells. Neoplasia, 2008, 10, 99-107.	2.3	42
155	The Role of the Hematologist/Oncologist in the Care of Patients with Vascular Anomalies. Pediatric Clinics of North America, 2008, 55, 339-355.	0.9	34
156	Mammalian target of rapamycin as a therapeutic target in oncology. Expert Opinion on Therapeutic Targets, 2008, 12, 209-222.	1.5	82
157	PI(3)K–Akt–mTOR pathway as a potential therapeutic target in neuroendocrine tumors. Expert Review of Endocrinology and Metabolism, 2008, 3, 207-222.	1.2	3
158	Deconstructing feedback-signaling networks to improve anticancer therapy with mTORC1 inhibitors. Cell Cycle, 2008, 7, 3805-3809.	1.3	95
159	Phosphorylation of eIF4E by MNKs supports protein synthesis, cell cycle progression and proliferation in prostate cancer cells. Carcinogenesis, 2008, 29, 2279-2288.	1.3	116
160	Efficacy of RAD001 (Everolimus) and Octreotide LAR in Advanced Low- to Intermediate-Grade Neuroendocrine Tumors: Results of a Phase II Study. Journal of Clinical Oncology, 2008, 26, 4311-4318.	0.8	622
161	Novel agents in the era of targeted therapy: what have we learned and how has our practice changed?. Annals of Oncology, 2008, 19, vii281-vii288.	0.6	4
162	Combination Strategy Targeting the Hypoxia Inducible Factor-1α with Mammalian Target of Rapamycin and Histone Deacetylase Inhibitors. Clinical Cancer Research, 2008, 14, 3589-3597.	3.2	105
163	Phosphatidylinositol 3-Kinase Hyperactivation Results in Lapatinib Resistance that Is Reversed by the mTOR/Phosphatidylinositol 3-Kinase Inhibitor NVP-BEZ235. Cancer Research, 2008, 68, 9221-9230.	0.4	474
164	Targeting the type 1 insulin-like growth factor receptor as a treatment for cancer. Expert Opinion on Therapeutic Targets, 2008, 12, 589-603.	1.5	103
165	Response of a Neuronal Model of Tuberous Sclerosis to Mammalian Target of Rapamycin (mTOR) Inhibitors: Effects on mTORC1 and Akt Signaling Lead to Improved Survival and Function. Journal of Neuroscience, 2008, 28, 5422-5432.	1.7	445

#	Article	IF	CITATIONS
166	Preclinical Cancer Therapy in a Mouse Model of Neurofibromatosis-1 Optic Glioma. Cancer Research, 2008, 68, 1520-1528.	0.4	130
167	Epidermal Growth Factor Receptor Inhibitors in Neuro-oncology: Hopes and Disappointments. Clinical Cancer Research, 2008, 14, 957-960.	3.2	125
168	2-Deoxyglucose induces Akt phosphorylation via a mechanism independent of LKB1/AMP-activated protein kinase signaling activation or glycolysis inhibition. Molecular Cancer Therapeutics, 2008, 7, 809-817.	1.9	79
169	Arsenic trioxide decreases AKT protein in a caspase-dependent manner. Molecular Cancer Therapeutics, 2008, 7, 1680-1687.	1.9	48
170	Effective <i>in vivo</i> targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Molecular Cancer Therapeutics, 2008, 7, 1237-1245.	1.9	130
171	eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Molecular Cancer Therapeutics, 2008, 7, 1782-1788.	1.9	99
172	ABT-263 and rapamycin act cooperatively to kill lymphoma cells <i>in vitro</i> and <i>in vivo</i> . Molecular Cancer Therapeutics, 2008, 7, 3265-3274.	1.9	69
173	Hsp90 Inhibition Suppresses Mutant EGFR-T790M Signaling and Overcomes Kinase Inhibitor Resistance. Cancer Research, 2008, 68, 5827-5838.	0.4	141
174	Rictor and Integrin-Linked Kinase Interact and Regulate Akt Phosphorylation and Cancer Cell Survival. Cancer Research, 2008, 68, 1618-1624.	0.4	200
175	Targeting Apoptosis Resistance in Rhabdomyosarcoma. Current Cancer Drug Targets, 2008, 8, 536-544.	0.8	18
176	Sirolimus treatment of left ventricular hypertrophy: who, and when?. European Heart Journal, 2008, 29, 2703-2704.	1.0	4
177	Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors' anticancer efficacy. Cancer Biology and Therapy, 2008, 7, 1952-1958.	1.5	86
178	Akt-dependent regulation of NF-κB is controlled by mTOR and Raptor in association with IKK. Genes and Development, 2008, 22, 1490-1500.	2.7	524
179	mTORC1 promotes survival through translational control of Mcl-1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10853-10858.	3.3	250
180	Characterization of an Akt Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity. Cancer Research, 2008, 68, 2366-2374.	0.4	271
181	Phosphatidylinositol 3-Kinase Inhibition Broadly Sensitizes Glioblastoma Cells to Death Receptor– and Drug-Induced Apoptosis. Cancer Research, 2008, 68, 6271-6280.	0.4	137
182	Mammalian Target of Rapamycin Repression by 3,3′-Diindolylmethane Inhibits Invasion and Angiogenesis in Platelet-Derived Growth Factor-D–Overexpressing PC3 Cells. Cancer Research, 2008, 68, 1927-1934.	0.4	102
183	Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8387-8392.	3.3	225

#	Article	IF	CITATIONS
184	Feedback Mechanisms Promote Cooperativity for Small Molecule Inhibitors of Epidermal and Insulin-Like Growth Factor Receptors. Cancer Research, 2008, 68, 8322-8332.	0.4	182
185	Can Systems Biology Understand Pathway Activation? Gene Expression Signatures as Surrogate Markers for Understanding the Complexity of Pathway Activation. Current Genomics, 2008, 9, 349-360.	0.7	39
186	mTORC1 signaling requires proteasomal function and the involvement of CUL4-DDB1 ubiquitin E3 ligase. Cell Cycle, 2008, 7, 373-381.	1.3	58
187	The Signaling Petri Net-Based Simulator: A Non-Parametric Strategy for Characterizing the Dynamics of Cell-Specific Signaling Networks. PLoS Computational Biology, 2008, 4, e1000005.	1.5	81
188	Palomid 529, a Novel Small-Molecule Drug, Is a TORC1/TORC2 Inhibitor That Reduces Tumor Growth, Tumor Angiogenesis, and Vascular Permeability. Cancer Research, 2008, 68, 9551-9557.	0.4	98
189	Enhancing Mammalian Target of Rapamycin (mTOR)–Targeted Cancer Therapy by Preventing mTOR/Raptor Inhibition-Initiated, mTOR/Rictor-Independent Akt Activation. Cancer Research, 2008, 68, 7409-7418.	0.4	152
190	Mammalian target of rapamycin inhibition as a therapeutic strategy in the management of urologic malignancies. Molecular Cancer Therapeutics, 2008, 7, 1347-1354.	1.9	116
191	Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. Journal of Clinical Investigation, 2008, 118, 3065-74.	3.9	1,132
192	Phase I Pharmacokinetic and Pharmacodynamic Study of the Oral Mammalian Target of Rapamycin Inhibitor Everolimus in Patients With Advanced Solid Tumors. Journal of Clinical Oncology, 2008, 26, 1588-1595.	0.8	466
193	Loss of Tuberous Sclerosis Complex-2 Function and Activation of Mammalian Target of Rapamycin Signaling in Endometrial Carcinoma. Clinical Cancer Research, 2008, 14, 2543-2550.	3.2	70
194	Phase I, Pharmacokinetic and Pharmacodynamic Study of the Anti–Insulinlike Growth Factor Type 1 Receptor Monoclonal Antibody CP-751,871 in Patients With Multiple Myeloma. Journal of Clinical Oncology, 2008, 26, 3196-3203.	0.8	152
195	Insulin-like Growth Factor-I Receptor Signaling Pathway Induces Resistance to the Apoptotic Activities of SCH66336 (Lonafarnib) through Akt/Mammalian Target of Rapamycin–Mediated Increases in Survivin Expression. Clinical Cancer Research, 2008, 14, 1581-1589.	3.2	51
196	Dose- and Schedule-Dependent Inhibition of the Mammalian Target of Rapamycin Pathway With Everolimus: A Phase I Tumor Pharmacodynamic Study in Patients With Advanced Solid Tumors. Journal of Clinical Oncology, 2008, 26, 1603-1610.	0.8	519
197	Dual Inhibition of PI3Kα and mTOR as an Alternative Treatment for Kaposi's Sarcoma. Cancer Research, 2008, 68, 8361-8368.	0.4	52
198	S6K1 Plays a Key Role in Glial Transformation. Cancer Research, 2008, 68, 6516-6523.	0.4	55
199	Antitumor activity of rapamycin and octreotide as single agents or in combination in neuroendocrine tumors. Endocrine-Related Cancer, 2008, 15, 257-266.	1.6	137
200	Molecular Targets and Targeted Therapies for Malignant Mesothelioma. Current Medicinal Chemistry, 2008, 15, 855-867.	1.2	33
201	The role of hormonal therapy in the management of hormonal-receptor-positive breast cancer with co-expression of HER2. Nature Clinical Practice Oncology, 2008, 5, 531-542.	4.3	153

#	Article	IF	CITATIONS
202	mTOR Mediates Survival Signals in Malignant Mesothelioma Grown as Tumor Fragment Spheroids. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 576-583.	1.4	60
203	Combination of rapamycin and 17-allylamino-17-demethoxygeldanamycin abrogates Akt activation and potentiates mTOR blockade in breast cancer cells. Anti-Cancer Drugs, 2008, 19, 681-688.	0.7	30
204	Targeting insulin-like growth factor 1 receptor in sarcomas. Current Opinion in Oncology, 2008, 20, 419-427.	1.1	94
205	An Attractive Therapeutic Target, mTOR Pathway, in ALK+ Anaplastic Large Cell Lymphoma. Advances in Anatomic Pathology, 2008, 15, 105-112.	2.4	4
206	Arterial pulse wave velocity, inflammatory markers, pathological GH and IGF states, cardiovascular and cerebrovascular disease. Vascular Health and Risk Management, 2008, Volume 4, 1361-1371.	1.0	20
207	Article Commentary: Molecular Targets of Breast Cancer: AKTing in Concert. Breast Cancer: Basic and Clinical Research, 2008, 2, BCBCR.S787.	0.6	6
208	Breast Tumor Cells with PI3K Mutation or HER2 Amplification Are Selectively Addicted to Akt Signaling. PLoS ONE, 2008, 3, e3065.	1.1	248
209	AAS, growth hormone, and insulin abuse: psychological and neuroendocrine effects. Therapeutics and Clinical Risk Management, 2008, Volume 4, 587-597.	0.9	22
210	Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. Journal of Clinical Investigation, 2008, 118, 2651-60.	3.9	272
211	Renal Cell Carcinoma: Biological Features and Rationale for Molecular-targeted Therapy. Keio Journal of Medicine, 2009, 58, 1-11.	0.5	18
212	Multiple roles and therapeutic implications of Akt signaling in cancer. OncoTargets and Therapy, 2009, 2, 135.	1.0	14
213	Impact of XIAP protein levels on the survival of myeloma cells. Haematologica, 2009, 94, 87-93.	1.7	34
214	S9, a Novel Anticancer Agent, Exerts Its Anti-Proliferative Activity by Interfering with Both PI3K-Akt-mTOR Signaling and Microtubule Cytoskeleton. PLoS ONE, 2009, 4, e4881.	1.1	50
215	Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocrine-Related Cancer, 2009, 16, 1017-1027.	1.6	67
216	Enhancing mTOR-targeted cancer therapy. Expert Opinion on Therapeutic Targets, 2009, 13, 1193-1203.	1.5	56
217	The future of targeted therapy approaches in melanoma. Expert Opinion on Drug Discovery, 2009, 4, 445-456.	2.5	1
218	Comparison of radiosensitizing effects of the mammalian target of rapamycin inhibitor CCI-779 to cisplatin in experimental models of head and neck squamous cell carcinoma. Molecular Cancer Therapeutics, 2009, 8, 2255-2265.	1.9	76
219	Targeting multiple kinases in glioblastoma multiforme. Expert Opinion on Investigational Drugs, 2009, 18, 277-292.	1.9	39

#	Article	IF	CITATIONS
220	The mTORC2 Complex Regulates Terminal Differentiation of C2C12 Myoblasts. Molecular and Cellular Biology, 2009, 29, 4691-4700.	1.1	53
221	The Rheb–mTOR Pathway Is Upregulated in Reactive Astrocytes of the Injured Spinal Cord. Journal of Neuroscience, 2009, 29, 1093-1104.	1.7	136
222	Targeting the PI3K/AKT Pathway for the Treatment of Prostate Cancer. Clinical Cancer Research, 2009, 15, 4799-4805.	3.2	324
223	Discovery of novel anticancer therapeutics targeting the PI3K/Akt/mTOR pathway. Future Medicinal Chemistry, 2009, 1, 137-155.	1.1	28
224	The Expression of Phospho-AKT, Phospho-mTOR, and PTEN in Extrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2009, 15, 660-667.	3.2	103
225	Insulin-Like Growth Factor-1 Receptor Inhibition Induces a Resistance Mechanism via the Epidermal Growth Factor Receptor/HER3/AKT Signaling Pathway: Rational Basis for Cotargeting Insulin-Like Growth Factor-1 Receptor and Epidermal Growth Factor Receptor in Hepatocellular Carcinoma. Clinical Cancer Research. 2009. 15. 5445-5456.	3.2	146
226	PPAR- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi>Agonists and Their Effects on IGF-I Receptor Signaling: Implications for Cancer. PPAR Research, 2009, 2009, 1-18.</mml:math 	1.1	92
227	Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18351-18356.	3.3	251
228	Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opinion on Therapeutic Targets, 2009, 13, 339-362.	1.5	77
229	Oral mTOR Inhibitor Everolimus in Patients With Gemcitabine-Refractory Metastatic Pancreatic Cancer. Journal of Clinical Oncology, 2009, 27, 193-198.	0.8	275
230	TORC-Specific Phosphorylation of Mammalian Target of Rapamycin (mTOR): Phospho-Ser2481 Is a Marker for Intact mTOR Signaling Complex 2. Cancer Research, 2009, 69, 1821-1827.	0.4	384
231	Response to imatinib plus sirolimus in advanced chordoma. Annals of Oncology, 2009, 20, 1886-1894.	0.6	142
232	AZD6244 (ARRY-142886) enhances the therapeutic efficacy of sorafenib in mouse models of gastric cancer. Molecular Cancer Therapeutics, 2009, 8, 2537-2545.	1.9	30
233	Inhibition of Mammalian Target of Rapamycin Is Required for Optimal Antitumor Effect of HER2 Inhibitors against HER2-Overexpressing Cancer Cells. Clinical Cancer Research, 2009, 15, 7266-7276.	3.2	124
234	Rapamycin for Chemoprevention of Upper Aerodigestive Tract Cancers. Cancer Prevention Research, 2009, 2, 7-9.	0.7	8
235	Rapamycin Inhibition of the Akt/mTOR Pathway Blocks Select Stages of VEGF-A ¹⁶⁴ –Driven Angiogenesis, in Part by Blocking S6Kinase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1172-1178.	1.1	99
236	Molecular pharmacology of phosphatidylinositol 3-kinase inhibition in human glioma. Cell Cycle, 2009, 8, 443-453.	1.3	69
237	PI3K/mTORC1 activation in hamartoma syndromes: Therapeutic prospects. Cell Cycle, 2009, 8, 403-413.	1.3	85

#	Article	IF	CITATIONS
238	Changing the clinical picture of challenging tumors: tales becoming reality?. Future Oncology, 2009, 5, 785-802.	1.1	1
239	Targeting mTOR with rapamycin: One dose does not fit all. Cell Cycle, 2009, 8, 1026-1029.	1.3	119
240	Cixutumumab. Expert Opinion on Investigational Drugs, 2009, 18, 1025-1033.	1.9	51
241	Experimental therapies in Ewing's sarcoma. Expert Opinion on Investigational Drugs, 2009, 18, 143-159.	1.9	13
242	Pulse mTOR inhibitor treatment effectively controls cyst growth but leads to severe parenchymal and glomerular hypertrophy in rat polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2009, 297, F1597-F1605.	1.3	35
243	Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2. PLoS Biology, 2009, 7, e1000038.	2.6	973
244	AKT/mTOR Pathway Activation and BCL-2 Family Proteins Modulate the Sensitivity of Human Small Cell Lung Cancer Cells to RAD001. Clinical Cancer Research, 2009, 15, 1277-1287.	3.2	85
245	NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Molecular Cancer Therapeutics, 2009, 8, 2204-2210.	1.9	232
246	Regulation of Mammary Stem/Progenitor Cells by PTEN/Akt/β-Catenin Signaling. PLoS Biology, 2009, 7, e1000121.	2.6	484
247	Cell type specificity of PI3K signaling in Pdk1- and Pten-deficient brains. Genes and Development, 2009, 23, 1619-1624.	2.7	66
248	Characterization of a Novel Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitor with a Unique Mechanism of Action for Cancer Therapy. Cancer Research, 2009, 69, 1924-1932.	0.4	32
249	mTOR Is a Promising Therapeutic Target Both in Cisplatin-Sensitive and Cisplatin-Resistant Clear Cell Carcinoma of the Ovary. Clinical Cancer Research, 2009, 15, 5404-5413.	3.2	151
250	Antitumor Activity of GSK1904529A, a Small-molecule Inhibitor of the Insulin-like Growth Factor-I Receptor Tyrosine Kinase. Clinical Cancer Research, 2009, 15, 3058-3067.	3.2	68
251	Increased AKT S473 phosphorylation after mTORC1 inhibition is rictor dependent and does not predict tumor cell response to PI3K/mTOR inhibition. Molecular Cancer Therapeutics, 2009, 8, 742-753.	1.9	188
252	Are We Hitting the Right Combination for Hormonally Sensitive Breast Cancer?. Journal of Clinical Oncology, 2009, 27, 2580-2582.	0.8	3
253	Validation of the type 1 insulin-like growth factor receptor as a therapeutic target in renal cancer. Molecular Cancer Therapeutics, 2009, 8, 1448-1459.	1.9	38
254	Inhibition of PI3K and MEK: It Is All about Combinations and Biomarkers. Clinical Cancer Research, 2009, 15, 4518-4520.	3.2	34
255	If Mammalian Target of Metformin Indirectly Is Mammalian Target of Rapamycin, Then the Insulin-Like Growth Factor-1 Receptor Axis Will Audit the Efficacy of Metformin in Cancer Clinical Trials. Journal of Clinical Oncology, 2009, 27, e207-e209.	0.8	32

#	Article	IF	CITATIONS
256	Pentagalloylglucose induces autophagy and caspase-independent programmed deaths in human PC-3 and mouse TRAMP-C2 prostate cancer cells. Molecular Cancer Therapeutics, 2009, 8, 2833-2843.	1.9	45
257	The Insulin-like Growth Factor-1 Receptor–Targeting Antibody, CP-751,871, Suppresses Tumor-Derived VEGF and Synergizes with Rapamycin in Models of Childhood Sarcoma. Cancer Research, 2009, 69, 7662-7671.	0.4	143
258	RAD001 (everolimus) inhibits tumour growth in xenograft models of human hepatocellular carcinoma. Journal of Cellular and Molecular Medicine, 2009, 13, 1371-1380.	1.6	128
259	Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines. Biochemical Pharmacology, 2009, 78, 460-468.	2.0	71
260	AKT-Independent Signaling Downstream of Oncogenic PIK3CA Mutations in Human Cancer. Cancer Cell, 2009, 16, 21-32.	7.7	472
261	Targeting the EGFR and the PKB pathway in cancer. Current Opinion in Cell Biology, 2009, 21, 185-193.	2.6	64
262	Translating biology into clinic: the case of glioblastoma. Current Opinion in Cell Biology, 2009, 21, 311-316.	2.6	21
263	Optimal targeting of the mTORC1 kinase in human cancer. Current Opinion in Cell Biology, 2009, 21, 219-229.	2.6	75
264	Evaluating Temsirolimus Activity in Multiple Tumors: A Review of Clinical Trials. Seminars in Oncology, 2009, 36, S46-S58.	0.8	57
265	Mammalian Target of Rapamycin: Discovery of Rapamycin Reveals a Signaling Pathway Important for Normal and Cancer Cell Growth. Seminars in Oncology, 2009, 36, S3-S17.	0.8	187
266	Critical and diverse involvement of Akt/mammalian target of rapamycin signaling in human lung carcinomas. Cancer, 2009, 115, 107-118.	2.0	42
267	Treatment of kidney cancer. Cancer, 2009, 115, 2262-2272.	2.0	105
268	Targeting mTOR in renal cell carcinoma. Cancer, 2009, 115, 2313-2320.	2.0	101
269	New therapeutic targets for the treatment of highâ€risk neuroblastoma. Journal of Cellular Biochemistry, 2009, 107, 46-57.	1.2	100
270	AMPâ€activated protein kinase enhances the expression of muscleâ€specific ubiquitin ligases despite its activation of IGFâ€1/Akt signaling in C2C12 myotubes. Journal of Cellular Biochemistry, 2009, 108, 458-468.	1.2	87
271	RAD 001 (everolimus) prevents mTOR and Akt late reâ€activation in response to imatinib in chronic myeloid leukemia. Journal of Cellular Biochemistry, 2010, 109, 320-328.	1.2	24
272	Combined inhibition of Dnmt and mTOR signaling inhibits formation and growth of colorectal cancer. International Journal of Colorectal Disease, 2009, 24, 629-639.	1.0	16
273	A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM). Journal of Neuro-Oncology, 2009, 92, 99-105.	1.4	160

#	Article	IF	CITATIONS
274	Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer and Metastasis Reviews, 2009, 28, 305-316.	2.7	148
275	Everolimus (RAD001) in the treatment of advanced renal cell carcinoma: biology and pathways. Medical Oncology, 2009, 26, 40-45.	1.2	0
276	Measuring and interpreting the selectivity of protein kinase inhibitors. Journal of Chemical Biology, 2009, 2, 131-151.	2.2	151
277	Targeting mitogen-activated protein kinase kinase (MEK) in solid tumors. Targeted Oncology, 2009, 4, 267-273.	1.7	20
278	Oleanane Triterpenoid CDDOâ€Me inhibits growth and induces apoptosis in prostate cancer cells by independently targeting proâ€survival Akt and mTOR. Prostate, 2009, 69, 851-860.	1.2	58
279	Inhibition of PI3K increases oxaliplatin sensitivity in cholangiocarcinoma cells. Cancer Cell International, 2009, 9, 3.	1.8	35
280	Expression and function of the insulin receptor substrate proteins in cancer. Cell Communication and Signaling, 2009, 7, 14.	2.7	147
281	Suppression of mTOR complex 2-dependent AKT phosphorylation in melanoma cells by combined treatment with rapamycin and LY294002. British Journal of Dermatology, 2009, 160, 955-964.	1.4	33
282	Inhibition of PI3K-AKT-mTOR Signaling Sensitizes Melanoma Cells to Cisplatin and Temozolomide. Journal of Investigative Dermatology, 2009, 129, 1500-1515.	0.3	116
283	EGFR-dependent and independent activation of Akt/mTOR cascade in bone and soft tissue tumors. Modern Pathology, 2009, 22, 1328-1340.	2.9	77
284	Inhibitor hijacking of Akt activation. Nature Chemical Biology, 2009, 5, 484-493.	3.9	272
285	Inhibitors paradoxically prime kinases. Nature Chemical Biology, 2009, 5, 448-449.	3.9	12
286	Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Reviews Cancer, 2009, 9, 550-562.	12.8	2,156
287	Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nature Reviews Drug Discovery, 2009, 8, 709-723.	21.5	285
288	Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Reviews Drug Discovery, 2009, 8, 627-644.	21.5	2,218
289	Immunoregulatory functions of mTOR inhibition. Nature Reviews Immunology, 2009, 9, 324-337.	10.6	744
290	Silibinin inhibits hypoxia-inducible factor-1α and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy. Oncogene, 2009, 28, 313-324.	2.6	161
291	Rapamycin induces transactivation of the EGFR and increases cell survival. Oncogene, 2009, 28, 1187-1196.	2.6	47

#	Article	IF	CITATIONS
292	An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene, 2009, 28, 2773-2783.	2.6	205
293	Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future directions. Oncogene, 2009, 28, 3009-3021.	2.6	265
294	The novel molecule 2â€[5â€(2â€chloroethyl)â€2â€acetoxyâ€benzyl]â€4â€(2â€chloroethyl)â€phenyl acetate inhil phosphoinositide 3â€kinase/Akt/mammalian target of rapamycin signalling through JNK activation in cancer cells. FEBS Journal, 2009, 276, 4037-4050.	bits 2.2	6
295	PI3K and mTOR inhibitors—a new generation of targeted anticancer agents. Current Opinion in Cell Biology, 2009, 21, 194-198.	2.6	110
296	Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapeutics, 2009, 8, 1-9.	1.9	169
297	Antagonism of the mammalian target of rapamycin selectively mediates metabolic effects of epidermal growth factor receptor inhibition and protects human malignant glioma cells from hypoxia-induced cell death. Brain, 2009, 132, 1509-1522.	3.7	42
298	Regulation of mTORC1 and mTORC2 Complex Assembly by Phosphatidic Acid: Competition with Rapamycin. Molecular and Cellular Biology, 2009, 29, 1411-1420.	1.1	283
299	Synergistic combinations of signaling pathway inhibitors: Mechanisms for improved cancer therapy. Drug Resistance Updates, 2009, 12, 65-73.	6.5	45
300	DEPTOR Is an mTOR Inhibitor Frequently Overexpressed in Multiple Myeloma Cells and Required for Their Survival. Cell, 2009, 137, 873-886.	13.5	1,055
301	Systems pathology—taking molecular pathology into a new dimension. Nature Reviews Clinical Oncology, 2009, 6, 455-464.	12.5	62
302	Everolimus. Drugs, 2009, 69, 2115-2124.	4.9	11
303	Equivalent benefit of mTORC1 blockade and combined PI3K-mTOR blockade in a mouse model of tuberous sclerosis. Molecular Cancer, 2009, 8, 38.	7.9	59
304	PI3K inhibitors for cancer treatment: where do we stand?. Biochemical Society Transactions, 2009, 37, 265-272.	1.6	102
305	Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opinion on Investigational Drugs, 2009, 18, 1333-1349.	1.9	104
306	Are current drug development programmes realising the full potential of new agents? The scenario. Breast Cancer Research, 2009, 11, S21.	2.2	6
307	PTEN and the PI3-Kinase Pathway in Cancer. Annual Review of Pathology: Mechanisms of Disease, 2009, 4, 127-150.	9.6	992
308	Interactions between PTEN and the c-Met pathway in glioblastoma and implications for therapy. Molecular Cancer Therapeutics, 2009, 8, 376-385.	1.9	46
309	Interactions between PTEN and receptor tyrosine kinase pathways and their implications for glioma therapy. Expert Review of Anticancer Therapy, 2009, 9, 235-245.	1.1	43

#	Article	IF	Citations
310	Current Status and Challenges Associated with Targeting mTOR for Cancer Therapy. BioDrugs, 2009, 23, 77-91.	2.2	45
311	Changes in Endothelial Dysfunction and Associated Cardiovascular Disease Morbidity Markers in GH-IGF Axis Pathology. American Journal of Cardiovascular Drugs, 2009, 9, 371-381.	1.0	13
312	KRAS Mutations and Sensitivity to Epidermal Growth Factor Receptor Inhibitors in Colorectal Cancer: Practical Application of Patient Selection. Journal of Clinical Oncology, 2009, 27, 1130-1136.	0.8	218
313	Novel therapeutic agents for osteosarcoma. Expert Review of Anticancer Therapy, 2009, 9, 511-523.	1.1	75
314	EGFR Signals to mTOR Through PKC and Independently of Akt in Glioma. Science Signaling, 2009, 2, ra4.	1.6	153
315	Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncology, The, 2009, 10, 992-1000.	5.1	496
316	Early breast cancer. Lancet, The, 2009, 373, 1463-1479.	6.3	214
317	Inhibition of the Insulin-like Growth Factor-1 Receptor (IGF1R) Tyrosine Kinase as a Novel Cancer Therapy Approach. Journal of Medicinal Chemistry, 2009, 52, 4981-5004.	2.9	119
318	Cell Signaling in Kidney Cancer. Journal of Urology, 2009, 182, 2555-2556.	0.2	1
319	Targeting the mTOR Signaling Network for Cancer Therapy. Journal of Clinical Oncology, 2009, 27, 2278-2287.	0.8	587
320	KRAS Mutations and Susceptibility to Cetuximab and Panitumumab in Colorectal Cancer. Cancer Journal (Sudbury, Mass), 2009, 15, 110-113.	1.0	32
321	Contrast Enhanced Sonography Shows Superior Microvascular Renal Allograft Perfusion in Patients Switched From Cyclosporine A to Everolimus. Transplantation, 2009, 88, 261-265.	0.5	20
322	Biomarker-Driven Early Clinical Trials in Oncology. Cancer Journal (Sudbury, Mass), 2009, 15, 406-420.	1.0	149
323	Future Novel Single Agent and Combination Therapies. Cancer Journal (Sudbury, Mass), 2009, 15, 511-518.	1.0	12
324	Novel agents in development for pediatric sarcomas. Current Opinion in Oncology, 2009, 21, 332-337.	1.1	15
325	Mer receptor tyrosine kinase is a novel therapeutic target in pediatric B-cell acute lymphoblastic leukemia. Blood, 2009, 114, 2678-2687.	0.6	33
326	A novel dual PI3Kα/mTOR inhibitor PI-103 with high antitumor activity in non-small cell lung cancer cells. International Journal of Molecular Medicine, 2009, 24, 97-101.	1.8	39
327	Class IA Phosphatidylinositol 3-Kinase Signaling in Non-small Cell Lung Cancer. Journal of Thoracic Oncology, 2009, 4, 787-791.	0.5	30

#	Article	IF	CITATIONS
329	Clinical Development of Inhibitors of the Insulin-like Growth Factor Receptor in Oncology. Current Drug Targets, 2009, 10, 923-936.	1.0	55
330	Role of the Akt Pathway in Prostate Cancer. Current Cancer Drug Targets, 2009, 9, 163-175.	0.8	19
331	The Complexes of Mammalian Target of Rapamycin. Current Protein and Peptide Science, 2010, 11, 409-424.	0.7	118
332	Molecular Targeted Therapy in Prevalent Tumors: Learning from the Past and Future Perspectives. Current Clinical Pharmacology, 2010, 5, 166-177.	0.2	8
333	Development of Inhibitors of the IGF-IR/PI3K/Akt/mTOR Pathway. Reviews on Recent Clinical Trials, 2010, 5, 189-208.	0.4	39
334	Recent Progress in Phosphoinositide 3-Kinases: Oncogenic Properties and Prognostic and Therapeutic Implications. Current Protein and Peptide Science, 2010, 11, 425-435.	0.7	6
335	Rapamycin Ameliorates PKD Resulting from Conditional Inactivation of Pkd1. Journal of the American Society of Nephrology: JASN, 2010, 21, 489-497.	3.0	226
336	Commentary: Tackling the Challenges of Developing Targeted Therapies for Cancer. Oncologist, 2010, 15, 484-487.	1.9	15
337	Experimental Therapies and Clinical Trials in Bone Sarcoma. Journal of the National Comprehensive Cancer Network: JNCCN, 2010, 8, 715-725.	2.3	5
338	Phase II Trial of Gefitinib and Everolimus in Advanced Non-small Cell Lung Cancer. Journal of Thoracic Oncology, 2010, 5, 1623-1629.	0.5	92
339	Specific Targets in Sarcoma and Developmental Therapeutics. Journal of the National Comprehensive Cancer Network: JNCCN, 2010, 8, 677-686.	2.3	4
342	Systems Biology and TOR. The Enzymes, 2010, 28, 317-348.	0.7	1
343	Akt and Autophagy Cooperate to Promote Survival of Drug-Resistant Glioma. Science Signaling, 2010, 3, ra81.	1.6	253
344	Role of RAS in the Regulation of PI 3-Kinase. Current Topics in Microbiology and Immunology, 2010, 346, 143-169.	0.7	99
345	Traitements médicaux guidés par la biologie en pathologie mammaire. Oncologie, 2010, 12, 274-277.	0.2	1
346	Targeting mTOR in cancer: renal cell is just a beginning. Targeted Oncology, 2010, 5, 269-280.	1.7	35
347	Perspectives in drug development for metastatic renal cell cancer. Targeted Oncology, 2010, 5, 139-156.	1.7	9
348	Epidermal growth factor receptor and mammalian target of rapamycin as therapeutic targets in malignant glioma: current clinical status and perspectives. Targeted Oncology, 2010, 5, 183-191.	1.7	23

#	Article	IF	CITATIONS
349	Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Research and Treatment, 2010, 124, 79-88.	1.1	35
350	Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Research and Treatment, 2010, 123, 271-279.	1.1	179
351	The phosphatidyl inositol 3-kinase/AKT signaling pathway in breast cancer. Cancer and Metastasis Reviews, 2010, 29, 751-759.	2.7	146
352	Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. Journal of Neuro-Oncology, 2010, 96, 219-230.	1.4	208
353	The activity of mTOR inhibitor RAD001 (everolimus) in nasopharyngeal carcinoma and cisplatin-resistant cell lines. Investigational New Drugs, 2010, 28, 413-420.	1.2	58
354	Mammalian target of rapamycin (mTOR) regulates TLR3 induced cytokines in human oral keratinocytes. Molecular Immunology, 2010, 48, 294-304.	1.0	58
355	Combined treatment with cisplatin and sirolimus to enhance cell death in human mesothelioma. Journal of Thoracic and Cardiovascular Surgery, 2010, 139, 1233-1240.	0.4	28
356	Deciphering the Role of PI3K/Akt/mTOR Pathway in Breast Cancer Biology and Pathogenesis. Clinical Breast Cancer, 2010, 10, S59-S65.	1.1	116
357	Targeting Endocrine Resistance: Is There a Role for mTOR Inhibition?. Clinical Breast Cancer, 2010, 10, S79-S85.	1.1	17
358	Bicyclic triterpenoid Iripallidal induces apoptosis and inhibits Akt/mTOR pathway in glioma cells. BMC Cancer, 2010, 10, 328.	1.1	23
359	Implication of RICTOR in the mTOR inhibitor-mediated induction of insulin-like growth factor-I receptor (IGF-IR) and human epidermal growth factor receptor-2 (Her2) expression in gastrointestinal cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 435-442.	1.9	45
360	Posttranslational regulation of membrane type 1-matrix metalloproteinase (MT1-MMP) in mouse PTEN null prostate cancer cells: Enhanced surface expression and differential O-glycosylation of MT1-MMP. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 1287-1297.	1.9	24
361	Building on a foundation of VEGF and mTOR targeted agents in renal cell carcinoma. Biochemical Pharmacology, 2010, 80, 638-646.	2.0	16
362	SIK2 Is a Centrosome Kinase Required for Bipolar Mitotic Spindle Formation that Provides a Potential Target for Therapy in Ovarian Cancer. Cancer Cell, 2010, 18, 109-121.	7.7	126
363	B55β-Associated PP2A Complex Controls PDK1-Directed Myc Signaling and Modulates Rapamycin Sensitivity in Colorectal Cancer. Cancer Cell, 2010, 18, 459-471.	7.7	104
364	mTOR and cancer: many loops in one pathway. Current Opinion in Cell Biology, 2010, 22, 169-176.	2.6	375
365	Pharmacodynamic evaluation of temsirolimus in patients with newly diagnosed advancedâ€stage head and neck squamous cell carcinoma. Head and Neck, 2010, 32, 1619-1628.	0.9	24
366	NVP-BEZ235, a dual pan class I PI3 kinase and mTOR inhibitor, promotes osteogenic differentiation in human mesenchymal stromal cells. Journal of Bone and Mineral Research, 2010, 25, 2126-2137.	3.1	54

#	Article	IF	CITATIONS
367	Microelectrophoresis platform for fast serial analysis of single cells. Electrophoresis, 2010, 31, 2558-2565.	1.3	26
368	Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Current Opinion in Chemical Biology, 2010, 14, 412-420.	2.8	170
369	Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer treatment. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4308-4312.	1.0	74
370	Vertical inhibition of the mTORC1/mTORC2/PI3K pathway shows synergistic effects against melanoma in vitro and in vivo. BMC Pharmacology, 2010, 10, .	0.4	0
371	Immunohistochemical examination of the mTORC1 pathway in high grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinomas (PCa): A tissue microarray study (TMA). Prostate, 2010, 70, 1429-1436.	1.2	16
372	Methylthioadenosine phosphorylase and activated insulinâ€like growth factorâ€1 receptor/insulin receptor: potential therapeutic targets in chordoma. Journal of Pathology, 2010, 220, 608-617.	2.1	41
373	VHL and HIF signalling in renal cell carcinogenesis. Journal of Pathology, 2010, 221, 125-138.	2.1	258
374	Rictor is a novel target of p70 S6 kinase-1. Oncogene, 2010, 29, 1003-1016.	2.6	137
375	Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene, 2010, 29, 3733-3744.	2.6	283
376	Analysis of the genome to personalize therapy for melanoma. Oncogene, 2010, 29, 5545-5555.	2.6	125
377	A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate. British Journal of Cancer, 2010, 102, 104-114.	2.9	54
378	Dual inhibition of EGFR and mTOR pathways in small cell lung cancer. British Journal of Cancer, 2010, 103, 622-628.	2.9	61
379	Personalized medicine in oncology: the future is now. Nature Reviews Drug Discovery, 2010, 9, 363-366.	21.5	265
380	Everolimus: the first approved product for patients with advanced renal cell cancer after sunitinib and/or sorafenib. Biologics: Targets and Therapy, 2010, 4, 91.	3.0	20
381	Everolimus – a new approach in the treatment of renal cell carcinoma. Cancer Management and Research, 2010, , 61.	0.9	16
382	The PI3K/Akt and mTOR/P70S6K Signaling Pathways in Human Uveal Melanoma Cells: Interaction with B-Raf/ERK. , 2010, 51, 421.		95
383	Brain Tumor Stem Cells as Therapeutic Targets in Models of Glioma. Yonsei Medical Journal, 2010, 51, 633.	0.9	32
384	Role of erlotinib in first-line and maintenance treatment of advanced non-small-cell lung cancer. Cancer Management and Research, 2010, 2, 143.	0.9	19

#	Article	IF	CITATIONS
385	New Strategies in Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2010, 16, 1979-1987.	3.2	191
386	Regulation of Insulin-like Growth Factor–Mammalian Target of Rapamycin Signaling by MicroRNA in Childhood Adrenocortical Tumors. Cancer Research, 2010, 70, 4666-4675.	0.4	191
387	Targeting Insulin-Like Growth Factor Signaling: Rational Combination Strategies. Molecular Cancer Therapeutics, 2010, 9, 2447-2449.	1.9	20
388	The Role of the Akt/mTOR Pathway in Tobacco Carcinogen–Induced Lung Tumorigenesis. Clinical Cancer Research, 2010, 16, 4-10.	3.2	76
389	Suppression of mTOR via Akt-dependent and -independent mechanisms in selenium-treated colon cancer cells: involvement of AMPKÂ1. Carcinogenesis, 2010, 31, 1092-1099.	1.3	52
390	Zoledronic Acid Potentiates mTOR Inhibition and Abolishes the Resistance of Osteosarcoma Cells to RAD001 (Everolimus): Pivotal Role of the Prenylation Process. Cancer Research, 2010, 70, 10329-10339.	0.4	92
391	Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis. Endocrine-Related Cancer, 2010, 17, R287-R304.	1.6	62
392	New Strategies for Treatment of KRAS Mutant Metastatic Colorectal Cancer. Clinical Cancer Research, 2010, 16, 2921-2926.	3.2	70
393	Daily Oral Everolimus Activity in Patients With Metastatic Pancreatic Neuroendocrine Tumors After Failure of Cytotoxic Chemotherapy: A Phase II Trial. Journal of Clinical Oncology, 2010, 28, 69-76.	0.8	628
394	Basal and Treatment-Induced Activation of AKT Mediates Resistance to Cell Death by AZD6244 (ARRY-142886) in <i>Braf-</i> Mutant Human Cutaneous Melanoma Cells. Cancer Research, 2010, 70, 8736-8747.	0.4	222
395	Pathway-Based Identification of Biomarkers for Targeted Therapeutics: Personalized Oncology with PI3K Pathway Inhibitors. Science Translational Medicine, 2010, 2, 43ra55.	5.8	141
396	Predictive Biomarkers of Sensitivity to the Phosphatidylinositol 3′ Kinase Inhibitor GDC-0941 in Breast Cancer Preclinical Models. Clinical Cancer Research, 2010, 16, 3670-3683.	3.2	247
397	Targeting the Insulin-like Growth Factor Receptor-1R Pathway for Cancer Therapy. Clinical Cancer Research, 2010, 16, 2512-2517.	3.2	123
398	Inhibition of the PI3K Pathway: Hope We Can Believe in?. Clinical Cancer Research, 2010, 16, 3094-3099.	3.2	37
399	NVP-BEZ235 as a New Therapeutic Option for Sarcomas. Clinical Cancer Research, 2010, 16, 530-540.	3.2	142
400	New Strategies in Kidney Cancer: Therapeutic Advances through Understanding the Molecular Basis of Response and Resistance. Clinical Cancer Research, 2010, 16, 1348-1354.	3.2	80
401	The ATM Inhibitor KU-55933 Suppresses Cell Proliferation and Induces Apoptosis by Blocking Akt In Cancer Cells with Overactivated Akt. Molecular Cancer Therapeutics, 2010, 9, 113-125.	1.9	93
402	AT7867 Is a Potent and Oral Inhibitor of AKT and p70 S6 Kinase That Induces Pharmacodynamic Changes and Inhibits Human Tumor Xenograft Growth. Molecular Cancer Therapeutics, 2010, 9, 1100-1110.	1.9	59

		CITATION REPORT		
#	Article		IF	Citations
403	Adaptor Proteins as Targets for Cancer Prevention. Cancer Prevention Research, 2010,	3, 263-265.	0.7	4
404	Everolimus as a new potential antiproliferative agent in aggressive human bronchial ca Endocrine-Related Cancer, 2010, 17, 719-729.	rcinoids.	1.6	63
405	Pancreatic Endocrine Tumors: Expression Profiling Evidences a Role for AKT-mTOR Path Clinical Oncology, 2010, 28, 245-255.	way. Journal of	0.8	497
406	[¹⁸ F]Fluorodeoxyglucose Positron Emission Tomography for Outcome Po Mammalian Target of Rapamycin Inhibitor Therapy. Journal of Clinical Oncology, 2010,		0.8	3
407	The Akt isoforms, their unique functions and potential as anticancer therapeutic targe Biomolecular Concepts, 2010, 1, 389-401.	ïs.	1.0	10
408	Combining Targeted Therapies: Practical Issues to Consider at the Bench and Bedside. 15, 37-50.	Oncologist, 2010,	1.9	41
409	Mammalian target of rapamycin inhibition abrogates insulin-mediated mammary tumo type 2 diabetes. Endocrine-Related Cancer, 2010, 17, 941-951.	r progression in	1.6	38
410	Compensatory Insulin Receptor (IR) Activation on Inhibition of Insulin-Like Growth Fact (IGF-1R): Rationale for Cotargeting IGF-1R and IR in Cancer. Molecular Cancer Theraper 2652-2664.	tor-1 Receptor utics, 2010, 9,	1.9	189
411	Inhibitors of mTOR. Oncologist, 2010, 15, 1262-1269.		1.9	60
412	Molecular Therapy for Rhabdomyosarcoma. , 2010, , 425-458.			0
413	Singularity analysis of the AKT signaling pathway reveals connections between cancer diseases. Physical Biology, 2010, 7, 046015.	and metabolic	0.8	26
414	Pemetrexed Indirectly Activates the Metabolic Kinase AMPK in Human Carcinomas. Ca 2010, 70, 10299-10309.	ncer Research,	0.4	81
415	Targeted Therapy in Medulloblastoma in Molecularly Targeted Therapy for Childhood C 267-290.	äncer. , 2010, ,		1
416	New inhibitors of the mammalian target of rapamycin signaling pathway for cancer. Ex Investigational Drugs, 2010, 19, 919-930.	pert Opinion on	1.9	69
417	Clinical Development of Phosphatidylinositol-3 Kinase Pathway Inhibitors. Current Top Microbiology and Immunology, 2010, 347, 189-208.	ics in	0.7	15
418	Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroproof of rapamycin in neonatal hypoxia-ischemia. Autophagy, 2010, 6, 366-377.	btective effect	4.3	229
419	Everolimus. Clinical Cancer Research, 2010, 16, 1368-1372.		3.2	175
420	MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes d content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biolog 2010, 9, 717-724.	iffering in DNA gy and Therapy,	1.5	54

#	Article	IF	CITATIONS
421	<i>PIK3CA</i> mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor–positive breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10208-10213.	3.3	324
422	Review: Castration-resistant prostate cancer: new science and therapeutic prospects. Therapeutic Advances in Medical Oncology, 2010, 2, 189-207.	1.4	25
423	The Evolving Role of Histology in the Management of Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2010, 28, 5311-5320.	0.8	247
424	Small Tumors, Intermediate Models, Big Hopes. Journal of Clinical Oncology, 2010, 28, 4407-4409.	0.8	4
425	Development of Rational Drug Combinations with Investigational Targeted Agents. Oncologist, 2010, 15, 496-499.	1.9	8
426	The Combination of Multiple Receptor Tyrosine Kinase Inhibitor and Mammalian Target of Rapamycin Inhibitor Overcomes Erlotinib Resistance in Lung Cancer Cell Lines through c-Met Inhibition. Molecular Cancer Research, 2010, 8, 1142-1151.	1.5	24
427	Melanoma MicroRNA Signature Predicts Post-Recurrence Survival. Clinical Cancer Research, 2010, 16, 1577-1586.	3.2	204
428	Mammalian Target of Rapamycin Activator RHEB Is Frequently Overexpressed in Human Carcinomas and Is Critical and Sufficient for Skin Epithelial Carcinogenesis. Cancer Research, 2010, 70, 3287-3298.	0.4	151
430	Potential role of PI3K inhibitors in the treatment of breast cancer. Future Oncology, 2010, 6, 1251-1263.	1.1	8
431	Rictor Phosphorylation on the Thr-1135 Site Does Not Require Mammalian Target of Rapamycin Complex 2. Molecular Cancer Research, 2010, 8, 896-906.	1.5	61
432	Cryptotanshinone Inhibits Cancer Cell Proliferation by Suppressing Mammalian Target of Rapamycin–Mediated Cyclin D1 Expression and Rb Phosphorylation. Cancer Prevention Research, 2010, 3, 1015-1025.	0.7	97
433	Dual Inhibition of Akt/Mammalian Target of Rapamycin Pathway by <i>Nanoparticle Albumin-Bound</i> –Rapamycin and Perifosine Induces Antitumor Activity in Multiple Myeloma. Molecular Cancer Therapeutics, 2010, 9, 963-975.	1.9	156
434	Inhibition of mTORC1 signaling reduces tumor growth but does not prevent cancer progression in a mouse model of thyroid cancer. Carcinogenesis, 2010, 31, 1284-1291.	1.3	30
435	Chemoprevention Meets Glucose Control. Cancer Prevention Research, 2010, 3, 1049-1052.	0.7	55
436	MicroRNA-21 in Pancreatic Cancer: Correlation with Clinical Outcome and Pharmacologic Aspects Underlying Its Role in the Modulation of Gemcitabine Activity. Cancer Research, 2010, 70, 4528-4538.	0.4	409
437	An allosteric Akt inhibitor effectively blocks Akt signaling and tumor growth with only transient effects on glucose and insulin levels in vivo. Cancer Biology and Therapy, 2010, 9, 493-503.	1.5	61
438	From man to mouse and back again: advances in defining tumor AKTivities in vivo. DMM Disease Models and Mechanisms, 2010, 3, 705-720.	1.2	16
439	The mTOR Pathway: A New Target in Cancer Therapy. Current Cancer Drug Targets, 2010, 10, 484-495.	0.8	152

#	Article	IF	CITATIONS
440	RAD001 offers a therapeutic intervention through inhibition of mTOR as a potential strategy for esophageal cancer. Oncology Reports, 2010, 23, .	1.2	7
441	mTORC2. The Enzymes, 2010, 28, 99-124.	0.7	0
442	Hormone-Biological Therapy in Breast Cancer: Preclinical Evidence,Clinical Studies and Future Directions. Current Cancer Drug Targets, 2010, 10, 3-18.	0.8	3
443	Pharmacological Manipulation of the Akt Signaling Pathway Regulates Myxoma Virus Replication and Tropism in Human Cancer Cells. Journal of Virology, 2010, 84, 3287-3302.	1.5	22
444	PI3K/AKT/mTOR Inhibitors In Ovarian Cancer. Current Medicinal Chemistry, 2010, 17, 4433-4447.	1.2	41
445	Updates of mTOR Inhibitors. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 571-581.	0.9	161
446	Identification of Akt-selective cytotoxic compounds that enhance cytotoxic responses to rapamycin. Cancer Biology and Therapy, 2010, 10, 1256-1261.	1.5	1
447	A Pharmacodynamic Study of Rapamycin in Men with Intermediate- to High-Risk Localized Prostate Cancer. Clinical Cancer Research, 2010, 16, 3057-3066.	3.2	66
448	Combination of Two Insulin-Like Growth Factor-I Receptor Inhibitory Antibodies Targeting Distinct Epitopes Leads to an Enhanced Antitumor Response. Molecular Cancer Therapeutics, 2010, 9, 2593-2604.	1.9	56
449	What's New in Neoadjuvant Therapy for Breast Cancer?. Advances in Surgery, 2010, 44, 199-228.	0.6	8
450	Novel Medical Therapeutics in Glioblastomas, Including Targeted Molecular Therapies, Current and Future Clinical Trials. Neuroimaging Clinics of North America, 2010, 20, 425-448.	0.5	20
451	Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Molecular Cancer, 2010, 9, 135.	7.9	247
452	Antiangiogenic therapy for breast cancer. Breast Cancer Research, 2010, 12, 209.	2.2	21
453	The Role of Anti–Epidermal Growth Factor Receptor and Anti–Vascular Endothelial Growth Factor Therapies in the Treatment of Non–Small-Cell Lung Cancer. Clinical Lung Cancer, 2010, 11, 82-90.	1.1	38
454	Chemistry and Pharmacology of Rapamycin and Its Derivatives. The Enzymes, 2010, , 329-366.	0.7	6
455	AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with <i>In vitro</i> and <i>In vivo</i> Antitumor Activity. Cancer Research, 2010, 70, 288-298.	0.4	717
456	mTOR signaling in glioblastoma: lessons learned from bench to bedside. Neuro-Oncology, 2010, 12, 882-889.	0.6	159
457	Small Is Beautiful: Insulin-Like Growth Factors and Their Role in Growth, Development, and Cancer. Journal of Clinical Oncology, 2010, 28, 4985-4995.	0.8	190

	Сітатіс	CITATION REPORT	
# 458	ARTICLE Targeting Multiple Kinase Pathways: A Change In Paradigm. Clinical Cancer Research, 2010, 16, 1973-1978.	IF . 3.2	Citations
459	Future of Personalized Medicine in Oncology: A Systems Biology Approach. Journal of Clinical Oncology, 2010, 28, 2777-2783.	0.8	223
460	mTOR signaling and drug development in cancer. Nature Reviews Clinical Oncology, 2010, 7, 209-219.	12.5	369
461	GSK690693 Delays Tumor Onset and Progression in Genetically Defined Mouse Models Expressing Activated Akt. Clinical Cancer Research, 2010, 16, 486-496.	3.2	49
462	MK-2206, an Allosteric Akt Inhibitor, Enhances Antitumor Efficacy by Standard Chemotherapeutic Agents or Molecular Targeted Drugs <i>In vitro</i> and <i>In vivo</i> . Molecular Cancer Therapeutics, 2010, 9, 1956-1967.	1.9	821
463	Regulation of the mTOR Complex 1 Pathway byÂNutrients, Growth Factors, and Stress. Molecular Cell, 2010, 40, 310-322.	4.5	1,075
464	AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). Journal of Hepatology, 2010, 52, 79-87.	1.8	88
465	Inhibitors of phosphatidylinositol-3-kinase in cancer therapy. Molecular Aspects of Medicine, 2010, 31, 135-144.	2.7	35
466	Signal transduction therapy of cancer. Molecular Aspects of Medicine, 2010, 31, 287-329.	2.7	74
467	The rapamycin-derivative RAD001 (everolimus) inhibits cell viability and interacts with the Akt–mTOR–p70S6K pathway in human medullary thyroid carcinoma cells. Molecular and Cellular Endocrinology, 2010, 315, 87-94.	1.6	35
468	Compensatory activation of Akt in response to mTOR and Raf inhibitors – A rationale for dual-targeted therapy approaches in neuroendocrine tumor disease. Cancer Letters, 2010, 295, 100-109.	3.2	125
469	mTOR inhibition by everolimus counteracts VEGF induction by sunitinib and improves anti-tumor activity against gastric cancer in vivo. Cancer Letters, 2010, 296, 249-256.	3.2	40
470	RAD001 shows activity against gastric cancer cells and overcomes 5-FU resistance by downregulating thymidylate synthase. Cancer Letters, 2010, 299, 22-28.	3.2	42
471	Are we on the brink of nonsurgical treatment for ameloblastoma?. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2010, 110, 68-78.	1.6	35
472	Chemical Composition of Solanum nigrum Linn Extract and Induction of Autophagy by Leaf Water Extract and Its Major Flavonoids in AU565 Breast Cancer Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 8699-8708.	2.4	90
473	Prognostic markers and putative therapeutic targets for hepatocellular carcinoma. Molecular Aspects of Medicine, 2010, 31, 179-193.	2.7	75
474	Biological targeted therapies in patients with advanced enteropancreatic neuroendocrine carcinomas. Cancer Treatment Reviews, 2010, 36, S87-S94.	3.4	36
475	Survival Benefit With Proapoptotic Molecular and Pathologic Responses From Dual Targeting of Mammalian Target of Rapamycin and Epidermal Growth Factor Receptor in a Preclinical Model of Pancreatic Neuroendocrine Carcinogenesis. Journal of Clinical Oncology, 2010, 28, 4425-4433.	0.8	97

#	Article	IF	CITATIONS
477	AKT Signaling in Physiology and Disease. Current Topics in Microbiology and Immunology, 2010, 347, 105-133.	0.7	99
479	Cancer Systems Biology. Methods in Molecular Biology, 2010, 662, 245-263.	0.4	17
480	Hybrid Inhibitors of Phosphatidylinositol 3-Kinase (PI3K) and the Mammalian Target of Rapamycin (mTOR): Design, Synthesis, and Superior Antitumor Activity of Novel Wortmanninâ^'Rapamycin Conjugates. Journal of Medicinal Chemistry, 2010, 53, 452-459.	2.9	47
481	Systems pathology. Breast Cancer Research, 2010, 12, S4.	2.2	6
482	Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets. Genome Medicine, 2010, 2, 53.	3.6	43
483	Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Nature Reviews Clinical Oncology, 2010, 7, 98-107.	12.5	148
484	The PI3K Pathway As Drug Target in Human Cancer. Journal of Clinical Oncology, 2010, 28, 1075-1083.	0.8	1,114
485	The Somatostatin Analogue Octreotide Confers Sensitivity to Rapamycin Treatment on Pituitary Tumor Cells. Cancer Research, 2010, 70, 666-674.	0.4	93
486	The Selective Class I PI3K Inhibitor CH5132799 Targets Human Cancers Harboring Oncogenic <i>PIK3CA</i> Mutations. Clinical Cancer Research, 2011, 17, 3272-3281.	3.2	90
487	The Role of Autophagy in Cancer: Therapeutic Implications. Molecular Cancer Therapeutics, 2011, 10, 1533-1541.	1.9	1,018
488	Recent advances in the discovery of small-molecule ATP competitive mTOR inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 2011, 21, 1109-1127.	2.4	26
489	Pushing the Envelope in the mTOR Pathway: The Second Generation of Inhibitors. Molecular Cancer Therapeutics, 2011, 10, 395-403.	1.9	127
490	Targeted Therapy for Melanoma: A Primer. Surgical Oncology Clinics of North America, 2011, 20, 165-180.	0.6	25
491	The Role of Phosphatidylinositol 3-Kinase Signaling Pathways in Pancreatic Cancer. Pancreatology, 2011, 11, 252-260.	0.5	7
492	Special Considerations in Vascular Anomalies: Hematologic Management. Clinics in Plastic Surgery, 2011, 38, 153-160.	0.7	35
493	Targeting PI3K Signaling as a Therapeutic Approach for Colorectal Cancer. Gastroenterology, 2011, 141, 50-61.	0.6	102
494	The Akt-Specific Inhibitor MK2206 Selectively Inhibits Thyroid Cancer Cells Harboring Mutations That Can Activate the PI3K/Akt Pathway. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E577-E585.	1.8	93
495	Potential Synergies for Combined Targeted Therapy in the Treatment of Neuroendocrine Cancer. Drugs, 2011, 71, 841-852.	4.9	11

#	Article	IF	CITATIONS
496	Rapamycin potentiates cytotoxicity by docetaxel possibly through downregulation of Survivin in lung cancer cells. Journal of Experimental and Clinical Cancer Research, 2011, 30, 28.	3.5	28
497	Principles of Anticancer Drug Development. , 2011, , .		0
498	New Insights into theÂBiology of Renal Cell Carcinoma. Hematology/Oncology Clinics of North America, 2011, 25, 667-686.	0.9	56
499	mTOR Inhibitors inÂAdvanced Renal Cell Carcinoma. Hematology/Oncology Clinics of North America, 2011, 25, 835-852.	0.9	112
501	The mTOR protein as a target in thyroid cancer. Expert Opinion on Therapeutic Targets, 2011, 15, 1099-1112.	1.5	30
502	p38γ Mitogen-Activated Protein Kinase Contributes to Oncogenic Properties Maintenance and Resistance to Poly (ADP-Ribose)-Polymerase-1 Inhibition in Breast Cancer. Neoplasia, 2011, 13, 472-IN25.	2.3	47
503	Targeting the PI3K/mTOR Pathway in Murine Endocrine Cell Lines. American Journal of Pathology, 2011, 178, 336-344.	1.9	21
504	Principles and Strategies for Developing Network Models in Cancer. Cell, 2011, 144, 864-873.	13.5	167
505	The Evolving War on Cancer. Cell, 2011, 145, 19-24.	13.5	197
506	Emerging Therapies for Advanced Gastroenteropancreatic Neuroendocrine Tumors. Clinical Colorectal Cancer, 2011, 10, 298-309.	1.0	5
507	Protein kinase signaling networks in cancer. Current Opinion in Genetics and Development, 2011, 21, 4-11.	1.5	202
508	Mutant onco-proteins as drug targets: successes, failures, and future prospects. Current Opinion in Genetics and Development, 2011, 21, 29-33.	1.5	10
509	Functions and regulation of the 70kDa ribosomal S6 kinases. International Journal of Biochemistry and Cell Biology, 2011, 43, 47-59.	1.2	287
510	Indole-3-carbinol inhibited tobacco smoke carcinogen-induced lung adenocarcinoma in A/J mice when administered during the post-initiation or progression phase of lung tumorigenesis. Cancer Letters, 2011, 311, 57-65.	3.2	42
511	Lack of compensatory pAKT activation and eIF4E phosphorylation of lymphoma cells towards mTOR inhibitor, RAD001. European Journal of Cancer, 2011, 47, 1244-1257.	1.3	17
512	Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochemical and Biophysical Research Communications, 2011, 406, 194-199.	1.0	144
513	The EGFR/ErbB Family in Breast Cancer: From Signalling to Therapy. , 2011, , 1-32.		0
514	High-performance liquid chromatography analysis of a novel small-molecule, anti-cancer drug, Palomid 529, in human and mouse plasma and in mouse tissue homogenates. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3823-3831	1.2	4

ARTICLE IF CITATIONS # Emerging therapeutic approaches in the management of metastatic castration-resistant prostate 515 2.0 25 cancer. Prostate Cancer and Prostatic Diseases, 2011, 14, 206-218. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal 5.1 522 cancer. Lancet Oncology, The, 2011, 12, 594-603. Discovery of a Potent, Selective, and Orally Available Class I Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Kinase Inhibitor (GDC-0980) for the Treatment of Cancer. 517 2.9 184 Journal of Medicinal Chemistry, 2011, 54, 7579-7587. Will Kinase Inhibitors Make it as Glioblastoma Drugs?. Current Topics in Microbiology and 518 Immunology, 2011, 355, 135-169. The Effect of Leucine Restriction on Akt/mTOR Signaling in Breast Cancer Cell Lines In Vitro and In 519 0.9 15 Vivo. Nutrition and Cancer, 2011, 63, 264-271. Reverse Phase Protein Microarrays for Clinical Applications. Methods in Molecular Biology, 2011, 785, 0.4 3-12. 521 Regulation, Role, and Targeting of Akt in Cancer. Journal of Clinical Oncology, 2011, 29, 4715-4717. 0.8 48 Therapy for metastatic melanoma: an overview and update. Expert Review of Anticancer Therapy, 2011, 11, 725-737. 522 1.1 Role of everolimus in pancreatic neuroendocrine tumors. Expert Review of Anticancer Therapy, 2011, 523 1.1 10 11, 1653-1665. Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for 524 2.2 162 estrogen receptor-positive breast cancer. Breast Cancer Research, 2011, 13, R21. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic 525 2.2 365 implications in breast cancer. Breast Cancer Research, 2011, 13, 224. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncology, 2011, 7, 1149-1167. 1.1 526 191 Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin 527 6.0 772 Signaling. Science, 2011, 332, 1322-1326. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 6.3 938 study. Lancet, The, 2011, 378, 2005-2012. Will PI3K pathway inhibitors be effective as single agents in patients with cancer?. Oncotarget, 2011, 2, 529 0.8 49 1314-1321. Targeting the Epidermal Growth Factor Pathway as Therapy for Glioblastoma. Current Cancer Therapy Reviews, 2011, 7, 65-77. Sunitinib inhibits tumor vascularity and growth but does not affect Akt and ERK phosphorylation in 531 1.2 8 xenograft tumors. Oncology Reports, 2011, 26, 1075-80. A review of the epidemiology and treatment of Merkel cell carcinoma. Clinics, 2011, 66, 1817-1823. 38

#	Article	IF	CITATIONS
533	Role of mTOR Signaling in Tumor Cell Motility, Invasion and Metastasis. Current Protein and Peptide Science, 2011, 12, 30-42.	0.7	229
534	Signal Transduction Pathways in Breast Cancer $\hat{a} \in$ " Drug Targets and Challenges. , 0, , .		0
535	Perifosine and CCI 779 Co-Operate to Induce Cell Death and Decrease Proliferation in PTEN-Intact and PTEN-Deficient PDGF-Driven Murine Glioblastoma. PLoS ONE, 2011, 6, e14545.	1.1	64
536	Ablation of Akt2 Induces Autophagy through Cell Cycle Arrest, the Downregulation of p70S6K, and the Deregulation of Mitochondria in MDA-MB231 Cells. PLoS ONE, 2011, 6, e14614.	1.1	60
537	Sprouty 2 Is an Independent Prognostic Factor in Breast Cancer and May Be Useful in Stratifying Patients for Trastuzumab Therapy. PLoS ONE, 2011, 6, e23772.	1.1	43
538	A Mechanism for Synergy with Combined mTOR and PI3 Kinase Inhibitors. PLoS ONE, 2011, 6, e26343.	1.1	50
539	Coactivation of Receptor Tyrosine Kinases in Malignant Mesothelioma as a Rationale for Combination Targeted Therapy. Journal of Thoracic Oncology, 2011, 6, 864-874.	0.5	57
540	HER2-overexpressing breast cancer. Current Opinion in Oncology, 2011, 23, 547-558.	1.1	18
541	The Next Step: Innovative Molecular Targeted Therapies for Treatment of Intracranial Chordoma Patients. Neurosurgery, 2011, 68, 231-241.	0.6	26
542	Blockade of Insulin-Like Growth Factor Type-1 Receptor with Cixutumumab (IMC-A12): A Novel Approach to Treatment for Multiple Cancers. Current Drug Targets, 2011, 12, 2016-2033.	1.0	24
543	Phosphatidylinositol 3-Kinase Isoforms as Novel Drug Targets. Current Drug Targets, 2011, 12, 1056-1081.	1.0	38
544	The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells. Molecular Medicine Reports, 2011, 5, 503-8.	1.1	33
545	AKT inhibition by triciribine alone or as combination therapy for growth control of gastroenteropancreatic neuroendocrine tumors. International Journal of Oncology, 2011, 40, 876-88.	1.4	14
546	PI3K/AKT/mTOR Pathway in Angiogenesis. Frontiers in Molecular Neuroscience, 2011, 4, 51.	1.4	1,002
547	p53 controls neuronal death in the CA3 region of the newborn mouse hippocampus. European Journal of Neuroscience, 2011, 34, 374-381.	1.2	12
548	Multiple signal pathways in obesity-associated cancer. Obesity Reviews, 2011, 12, 1063-1070.	3.1	133
549	Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2â€mediated PI3K/Akt/mTOR signaling pathway. Cancer Science, 2011, 102, 219-225.	1.7	111
550	PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nature Reviews Cancer, 2011, 11, 289-301.	12.8	682

#	Article	IF	CITATIONS
551	mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology, 2011, 12, 21-35.	16.1	3,464
552	PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene, 2011, 30, 2547-2557.	2.6	471
553	Selective activation of Akt1 by mammalian target of rapamycin complex 2 regulates cancer cell migration, invasion, and metastasis. Oncogene, 2011, 30, 2954-2963.	2.6	111
554	Sunitinib and other targeted therapies for renal cell carcinoma. British Journal of Cancer, 2011, 104, 741-745.	2.9	47
555	Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. British Journal of Cancer, 2011, 104, 1755-1761.	2.9	160
556	FOXO3a reactivation mediates the synergistic cytotoxic effects of rapamycin and cisplatin in oral squamous cell carcinoma cells. Toxicology and Applied Pharmacology, 2011, 251, 8-15.	1.3	25
557	Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain, 2011, 152, 2582-2595.	2.0	90
558	PI3K/mTOR signaling regulates prostatic branching morphogenesis. Developmental Biology, 2011, 360, 329-342.	0.9	31
559	The role of the phosphatidylinositol 3-kinase (PI3K) pathway in the development and treatment of uterine cancer. Gynecologic Oncology, 2011, 123, 411-420.	0.6	23
560	Targeting of active mTOR inhibits primary leukemia T cells and synergizes with cytotoxic drugs and signaling inhibitors. Experimental Hematology, 2011, 39, 457-472.e3.	0.2	44
561	Beyond ATM: The protein kinase landscape of the DNA damage response. FEBS Letters, 2011, 585, 1625-1639.	1.3	175
562	Akt, FoxO and regulation of apoptosis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1978-1986.	1.9	839
563	AKT Inhibition Relieves Feedback Suppression of Receptor Tyrosine Kinase Expression and Activity. Cancer Cell, 2011, 19, 58-71.	7.7	867
564	Reciprocal Feedback Regulation of PI3K and Androgen Receptor Signaling in PTEN-Deficient Prostate Cancer. Cancer Cell, 2011, 19, 575-586.	7.7	1,026
565	mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: A roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle, 2011, 10, 3658-3677.	1.3	132
566	Hallmarks of Cancer: The Next Generation. Cell, 2011, 144, 646-674.	13.5	52,242
567	Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Reviews Drug Discovery, 2011, 10, 868-880.	21.5	830
568	Insulin-Like Growth Factor Pathway–Targeted Therapy in Breast Cancer. Current Breast Cancer Reports, 2011, 3, 6-14.	0.5	0

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
569	Chapter 10. The Future of Kinase Drug Discovery. RSC Drug Discovery Series, 2011, , 286-302.	0.2	0
570	Targeting the mTOR/4E-BP Pathway in Endometrial Cancer. Clinical Cancer Research, 2011, 17, 7518-7528.	3.2	32
571	"Overcoming breast cancer drug resistance with mTOR inhibitors― Could it be a myth or a real possibility in the short-term future?. Breast Cancer Research and Treatment, 2011, 128, 599-606.	1.1	52
572	Are we missing the mTOR target in breast cancer?. Breast Cancer Research and Treatment, 2011, 128, 607-611.	1.1	5
573	Phosphorylated S6K1 is a possible marker for endocrine therapy resistance in hormone receptor-positive breast cancer. Breast Cancer Research and Treatment, 2011, 126, 93-99.	1.1	40
574	Leukemias induced by altered TRK-signaling are sensitive to mTOR inhibitors in preclinical models. Annals of Hematology, 2011, 90, 283-292.	0.8	6
575	Novel small molecule drugs inhibit tumor cell metabolism and show potent anti-tumorigenic potential. Cancer Chemotherapy and Pharmacology, 2011, 68, 127-138.	1.1	6
576	The PI-3 kinase-Akt-MDM2-survivin signaling axis in high-risk neuroblastoma: a target for PI-3 kinase inhibitor intervention. Cancer Chemotherapy and Pharmacology, 2011, 68, 325-335.	1.1	30
577	Targeting phosphatidylinositol 3 kinase (PI3K)-Akt beyond rapalogs. Targeted Oncology, 2011, 6, 103-117.	1.7	37
578	Clinical activity of mammalian target of rapamycin inhibitors in solid tumors. Targeted Oncology, 2011, 6, 69-94.	1.7	38
579	The emerging role of mammalian target of rapamycin inhibitors in the treatment of sarcomas. Targeted Oncology, 2011, 6, 29-39.	1.7	39
580	Targeting the PI3K/AKT/mTOR Pathway in Non-Hodgkin's Lymphoma: Results, Biology, and Development Strategies. Current Oncology Reports, 2011, 13, 398-406.	1.8	38
581	The combination of gefitinib and RAD001 inhibits growth of HER2 overexpressing breast cancer cells and tumors irrespective of trastuzumab sensitivity. BMC Cancer, 2011, 11, 420.	1.1	25
582	Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation. Molecular Cancer, 2011, 10, 138.	7.9	54
583	Targeting insulin-like growth factor axis in hepatocellular carcinoma. Journal of Hematology and Oncology, 2011, 4, 30.	6.9	94
584	Signal transduction inhibitors and antiangiogenic therapies for malignant glioma. Glia, 2011, 59, 1205-1212.	2.5	28
585	Limitations in small intestinal neuroendocrine tumor therapy by mTor kinase inhibition reflect growth factor–mediated PI3K feedback loop activation via ERK1/2 and AKT. Cancer, 2011, 117, 4141-4154.	2.0	78
586	Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer, 2011, 117, 5094-5102.	2.0	177

#	Article	IF	CITATIONS
587	Inhibition of mammalian target of rapamycin signaling by everolimus induces senescence in adult Tâ€cell leukemia/lymphoma and apoptosis in peripheral Tâ€cell lymphomas. International Journal of Cancer, 2011, 129, 1006-1017.	2.3	21
588	Alkaline stressâ€induced autophagy is mediated by mTORC1 inactivation. Journal of Cellular Biochemistry, 2011, 112, 2566-2573.	1.2	14
589	Quinazolines with intra-molecular hydrogen bonding scaffold (iMHBS) as PI3K/mTOR dual inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1270-1274.	1.0	32
590	Imidazo[1,5-a]pyrazines: Orally efficacious inhibitors of mTORC1 and mTORC2. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2092-2097.	1.0	21
591	Small-molecule inhibitors of the PI3K signaling network. Future Medicinal Chemistry, 2011, 3, 549-565.	1.1	96
592	Dual Targeting of Phosphoinositide 3-Kinase and Mammalian Target of Rapamycin Using NVP-BEZ235 as a Novel Therapeutic Approach in Human Ovarian Carcinoma. Clinical Cancer Research, 2011, 17, 2373-2384.	3.2	104
593	Phase I Trial of Cixutumumab Combined with Temsirolimus in Patients with Advanced Cancer. Clinical Cancer Research, 2011, 17, 6052-6060.	3.2	113
594	Phosphoproteomic Screen Identifies Potential Therapeutic Targets in Melanoma. Molecular Cancer Research, 2011, 9, 801-812.	1.5	83
595	Gastric Cancer Growth Control by BEZ235 <i>In Vivo</i> Does Not Correlate with PI3K/mTOR Target Inhibition but with [18F]FLT Uptake. Clinical Cancer Research, 2011, 17, 5322-5332.	3.2	33
596	Targeting of Insulin-Like Growth Factor Type 1 Receptor in Ewing Sarcoma: Unfulfilled Promise or a Promising Beginning?. Journal of Clinical Oncology, 2011, 29, 4581-4583.	0.8	26
597	High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1. Cell Cycle, 2011, 10, 3948-3956.	1.3	95
598	Looking Beyond Inhibition of VEGF/mTOR: Emerging Targets for Renal Cell Carcinoma Drug Development. Current Clinical Pharmacology, 2011, 6, 199-206.	0.2	20
599	Harnessing Impaired Energy Metabolism in Cancer Cell: Small Molecule- Mediated Ways to Regulate Tumorigenesis. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 272-279.	0.9	6
600	The Phosphoinositide 3-Kinase Signaling Pathway as a Therapeutic Target in Grade IV Brain Tumors. Current Cancer Drug Targets, 2011, 11, 894-918.	0.8	30
601	Autophagy modulation for cancer therapy. Cancer Biology and Therapy, 2011, 11, 169-176.	1.5	130
602	Targeted therapy in sarcomas: mammalian target of rapamycin inhibitors from bench to bedside. Expert Opinion on Investigational Drugs, 2011, 20, 1685-1705.	1.9	4
603	The mammalian target of rapamycin pathway as a therapeutic target in multiple myeloma. Leukemia and Lymphoma, 2011, 52, 1857-1866.	0.6	36
604	mTOR Inhibitors: Facing New Challenges Ahead. Current Medicinal Chemistry, 2011, 18, 2743-2762.	1.2	8

#	Article	IF	CITATIONS
605	Insulin-Like Growth Factor Signaling as a Therapeutic Target in Pancreatic Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 427-433.	0.9	44
606	Preclinical Characterization of OSI-027, a Potent and Selective Inhibitor of mTORC1 and mTORC2: Distinct from Rapamycin. Molecular Cancer Therapeutics, 2011, 10, 1394-1406.	1.9	171
607	Local delivery of rapamycin: a toxicity and efficacy study in an experimental malignant glioma model in rats. Neuro-Oncology, 2011, 13, 700-709.	0.6	28
608	Phosphatidylinositol 3-Kinase and Antiestrogen Resistance in Breast Cancer. Journal of Clinical Oncology, 2011, 29, 4452-4461.	0.8	346
609	RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes and Cancer, 2011, 2, 261-274.	0.6	580
610	Interpreting Mammalian Target of Rapamycin and Cell Growth Inhibition in a Genetically Engineered Mouse Model of <i>Nf1</i> -Deficient Astrocytes. Molecular Cancer Therapeutics, 2011, 10, 279-291.	1.9	32
611	Ridaforolimus (AP23573; MK-8669), a Potent mTOR Inhibitor, Has Broad Antitumor Activity and Can Be Optimally Administered Using Intermittent Dosing Regimens. Molecular Cancer Therapeutics, 2011, 10, 1059-1071.	1.9	92
612	Efficacy of Ganitumab (AMG 479), Alone and in Combination with Rapamycin, in Ewing's and Osteogenic Sarcoma Models. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 644-654.	1.3	71
613	Combination mTOR and IGF-1R Inhibition: Phase I Trial of Everolimus and Figitumumab in Patients with Advanced Sarcomas and Other Solid Tumors. Clinical Cancer Research, 2011, 17, 871-879.	3.2	150
614	Disruption of the Interface between the Pleckstrin Homology (PH) and Kinase Domains of Akt Protein Is Sufficient for Hydrophobic Motif Site Phosphorylation in the Absence of mTORC2. Journal of Biological Chemistry, 2011, 286, 39122-39129.	1.6	34
615	Current and future directions in mammalian target of rapamycin inhibitors development. Expert Opinion on Investigational Drugs, 2011, 20, 381-394.	1.9	48
616	mTOR Kinase Inhibition Causes Feedback-Dependent Biphasic Regulation of AKT Signaling. Cancer Discovery, 2011, 1, 248-259.	7.7	385
617	Combination of PI3K/mTOR Inhibitors: Antitumor Activity and Molecular Correlates. Cancer Research, 2011, 71, 4573-4584.	0.4	68
618	Combinatorial Effects of Lapatinib and Rapamycin in Triple-Negative Breast Cancer Cells. Molecular Cancer Therapeutics, 2011, 10, 1460-1469.	1.9	90
619	Prognostic Significance of Cytoplasmic p27 Expression in Human Melanoma. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2212-2221.	1.1	34
620	Levels of p27 Sensitize to Dual PI3K/mTOR Inhibition. Molecular Cancer Therapeutics, 2011, 10, 1450-1459.	1.9	40
621	Reduced VEGF Production, Angiogenesis, and Vascular Regrowth Contribute to the Antitumor Properties of Dual mTORC1/mTORC2 Inhibitors. Cancer Research, 2011, 71, 1573-1583.	0.4	86
622	S6 Kinase 2 Promotes Breast Cancer Cell Survival via Akt. Cancer Research, 2011, 71, 2590-2599.	0.4	44

#	Article	IF	CITATIONS
623	Targeting GPCR-Mediated p70S6K Activity May Improve Head and Neck Cancer Response to Cetuximab. Clinical Cancer Research, 2011, 17, 4996-5004.	3.2	26
624	Compensatory Pathways Induced by MEK Inhibition Are Effective Drug Targets for Combination Therapy against Castration-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2011, 10, 1581-1590.	1.9	63
625	Rapamycin Is a Potent Inhibitor of Skin Tumor Promotion by 12- <i>O</i> -Tetradecanoylphorbol-13-Acetate. Cancer Prevention Research, 2011, 4, 1011-1020.	0.7	55
626	Calpain interacts with class IA phosphoinositide 3-kinases regulating their stability and signaling activity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16217-16222.	3.3	36
627	Therapeutic Implications of the Emerging Molecular Biology of Uveal Melanoma. Clinical Cancer Research, 2011, 17, 2087-2100.	3.2	103
628	AKT down-regulates insulin-like growth factor-1 receptor as a negative feedback. Journal of Biochemistry, 2011, 150, 151-156.	0.9	14
629	Crosstalk with insulin and dependence on PI3K/Akt/mTOR rather than MAPK pathways in upregulation of basal growth following long-term oestrogen deprivation in three human breast cancer cell lines. Hormone Molecular Biology and Clinical Investigation, 2011, 5, 53-65.	0.3	4
630	Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biology and Therapy, 2011, 11, 938-946.	1.5	74
631	Understanding PLZF. Cell Cycle, 2011, 10, 771-775.	1.3	22
632	PDK1-driven Myc signaling regulates cellular response to mTOR inhibitors. Cell Cycle, 2011, 10, 1019-1020.	1.3	1
633	Metformin activates an Ataxia Telangiectasia Mutated (ATM)/Chk2-regulated DNA damage-like response. Cell Cycle, 2011, 10, 1499-1501.	1.3	72
634	Better Targeting Melanoma: Options Beyond Surgery and Conventional Chemotherapy. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2011, 5, 147-159.	0.7	2
635	Using Tandem Mass Spectrometry in Targeted Mode to Identify Activators of Class IA PI3K in Cancer. Cancer Research, 2011, 71, 5965-5975.	0.4	15
636	Inhibition of mTOR Kinase by AZD8055 Can Antagonize Chemotherapy-induced Cell Death through Autophagy Induction and Down-regulation of p62/Sequestosome 1. Journal of Biological Chemistry, 2011, 286, 40002-40012.	1.6	71
637	mTOR Complex 2 Targets Akt for Proteasomal Degradation via Phosphorylation at the Hydrophobic Motif. Journal of Biological Chemistry, 2011, 286, 14190-14198.	1.6	61
638	p27: A Barometer of Signaling Deregulation and Potential Predictor of Response to Targeted Therapies. Clinical Cancer Research, 2011, 17, 12-18.	3.2	172
639	Ribavirin Treatment Effects on Breast Cancers Overexpressing elF4E, a Biomarker with Prognostic Specificity for Luminal B-Type Breast Cancer. Clinical Cancer Research, 2011, 17, 2874-2884.	3.2	114
640	A Phase I Pharmacokinetic and Pharmacodynamic Study of Dalotuzumab (MK-0646), an Anti-Insulin-like Growth Factor-1 Receptor Monoclonal Antibody, in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2011, 17, 6304-6312.	3.2	113

#	Article	IF	CITATIONS
641	Drug approval challenges in the age of personalized cancer treatment. Personalized Medicine, 2011, 8, 633-640.	0.8	4
642	Kinome siRNA-phosphoproteomic screen identifies networks regulating AKT signaling. Oncogene, 2011, 30, 4567-4577.	2.6	61
643	Small molecule inhibitors of the IGF-1R/IR axis for the treatment of cancer. Expert Opinion on Investigational Drugs, 2011, 20, 605-621.	1.9	55
644	EGFR–PI3K–AKT–mTOR signaling in head and neck squamous cell carcinomas: attractive targets for molecular-oriented therapy. Expert Opinion on Therapeutic Targets, 2011, 15, 63-74.	1.5	134
645	Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells. Journal of Biological Chemistry, 2011, 286, 6433-6448.	1.6	56
646	Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy, 2011, 7, 176-187.	4.3	385
647	Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro-Oncology, 2011, 13, 384-392.	0.6	139
648	The mTOR-Regulated Phosphoproteome Reveals a Mechanism of mTORC1-Mediated Inhibition of Growth Factor Signaling. Science, 2011, 332, 1317-1322.	6.0	973
649	Targeting the Phosphatidylinositol 3-Kinase Signaling Pathway in Breast Cancer. Oncologist, 2011, 16, 404-414.	1.9	149
650	Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. Journal of Experimental Medicine, 2011, 208, 1799-1807.	4.2	103
651	mTOR Inhibitors in Cancer Treatment. , 2011, , .		0
652	Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer Therapy: Lessons from Past and Future Perspectives. Cancers, 2011, 3, 2478-2500.	1.7	44
653	Enhanced sensitivity to rapamycin following long-term oestrogen deprivation in MCF-7, T-47-D and ZR-75-1 human breast cancer cells. Journal of Endocrinology, 2011, 208, 21-29.	1.2	7
654	Vertical Inhibition of the mTORC1/mTORC2/PI3K Pathway Shows Synergistic Effects against Melanoma In Vitro and In Vivo. Journal of Investigative Dermatology, 2011, 131, 495-503.	0.3	47
655	mTORC1 inhibition increases neurotensin secretion and gene expression through activation of the MEK/ERK/c-Jun pathway in the human endocrine cell line BON. American Journal of Physiology - Cell Physiology, 2011, 301, C213-C226.	2.1	24
656	Targeted Therapy for Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: Can There Be Too Many Active Drugs?. Journal of Clinical Oncology, 2011, 29, 3111-3113.	0.8	3
657	Regulation of Autophagy by Kinases. Cancers, 2011, 3, 2630-2654.	1.7	158
658	Blocking the mTOR pathway: a drug discovery perspective. Biochemical Society Transactions, 2011, 39, 451-455.	1.6	23

#	Article	IF	CITATIONS
659	Combination of Farnesyltransferase and Akt Inhibitors Is Synergistic in Breast Cancer Cells and Causes Significant Breast Tumor Regression in ErbB2 Transgenic Mice. Clinical Cancer Research, 2011, 17, 2852-2862.	3.2	55
660	Acquired Resistance to Tamoxifen Is Associated with Loss of the Type I Insulin-like Growth Factor Receptor: Implications for Breast Cancer Treatment. Cancer Research, 2012, 72, 3372-3380.	0.4	99
661	The role of biomarkers in the development of novel cancer therapies. Drug Metabolism and Drug Interactions, 2012, 27, 89-99.	0.3	1
662	Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells. Cancers, 2012, 4, 1318-1332.	1.7	23
663	Mammalian target of rapamycin and the kidney. II. Pathophysiology and therapeutic implications. American Journal of Physiology - Renal Physiology, 2012, 303, F180-F191.	1.3	47
664	Rapamycin Induces Bad Phosphorylation in Association with Its Resistance to Human Lung Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 45-56.	1.9	40
665	Oral infusion of pomegranate fruit extract inhibits prostate carcinogenesis in the TRAMP model. Carcinogenesis, 2012, 33, 644-651.	1.3	69
666	Targeted Therapy and Molecular Genetics. , 2012, , 539-560.e6.		1
667	Potential molecular targets for Ewing′s sarcoma therapy. Indian Journal of Medical and Paediatric Oncology, 2012, 33, 195-202.	0.1	2
668	Regulation of HIF-1 alpha Expression By PI3K/Akt Pathway Inhibitors in Breast Cancer Cell Lines. Turkish Journal of Biochemistry, 2012, 37, 264-271.	0.3	0
669	Urothelial tumor initiation requires deregulation of multiple signaling pathways: implications in target-based therapies. Carcinogenesis, 2012, 33, 770-780.	1.3	20
670	Counteracting Autophagy Overcomes Resistance to Everolimus in Mantle Cell Lymphoma. Clinical Cancer Research, 2012, 18, 5278-5289.	3.2	58
671	Abrogating endocrine resistance by targeting $\mathrm{ER}\hat{I}\pm$ and PI3K in breast cancer. Frontiers in Oncology, 2012, 2, 145.	1.3	46
672	Autophagy limits the cytotoxic effects of the AKT inhibitor AZ7328 in human bladder cancer cells. Cancer Biology and Therapy, 2012, 13, 1325-1338.	1.5	26
673	Combined blockade of signalling pathways shows marked anti-tumour potential in phaeochromocytoma cell lines. Journal of Molecular Endocrinology, 2012, 49, 79-96.	1.1	44
674	Development of PI3K/AKT/mTOR Pathway Inhibitors and Their Application in Personalized Therapy for Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2012, 7, 1315-1326.	0.5	175
675	The Role of the PI3K-AKT Pathway in Melanoma. Cancer Journal (Sudbury, Mass), 2012, 18, 142-147.	1.0	197
676	Inhibition of mTOR Suppresses UVB-Induced Keratinocyte Proliferation and Survival. Cancer Prevention Research, 2012, 5, 1394-1404.	0.7	51

#	Article	IF	CITATIONS
677	Gene Expression Profile in Response to Doxorubicin–Rapamycin Combined Treatment of HER-2–Overexpressing Human Mammary Epithelial Cell Lines. Molecular Cancer Therapeutics, 2012, 11, 464-474.	1.9	6
678	Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro-Oncology, 2012, 14, 819-829.	0.6	117
679	Effect of KRAS Oncogene Substitutions on Protein Behavior: Implications for Signaling and Clinical Outcome. Journal of the National Cancer Institute, 2012, 104, 228-239.	3.0	424
680	Aloe-emodin suppresses prostate cancer by targeting the mTOR complex 2. Carcinogenesis, 2012, 33, 1406-1411.	1.3	54
681	Insulin-like Growth Factor Receptor Inhibitors: Baby or the Bathwater?. Journal of the National Cancer Institute, 2012, 104, 975-981.	3.0	172
682	Targeting the insulin-like growth factor receptor pathway in lung cancer: problems and pitfalls. Therapeutic Advances in Medical Oncology, 2012, 4, 51-60.	1.4	67
683	An Introduction to Phosphoinositides. Current Topics in Microbiology and Immunology, 2012, 362, 1-42.	0.7	17
684	Reversing Hormone Resistance: Have We Found the Golden Key?. Journal of Clinical Oncology, 2012, 30, 2707-2709.	0.8	26
685	From Node to Pathway Blockade: Lessons Learned From Targeting Mammalian Target of Rapamycin. Journal of Clinical Oncology, 2012, 30, 85-87.	0.8	5
686	Sorafenib and Mek inhibition is synergistic in medullary thyroid carcinoma in vitro. Endocrine-Related Cancer, 2012, 19, 29-38.	1.6	35
687	PIK3CA/PTEN Mutations and Akt Activation As Markers of Sensitivity to Allosteric mTOR Inhibitors. Clinical Cancer Research, 2012, 18, 1777-1789.	3.2	191
688	Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence. Cell Cycle, 2012, 11, 2391-2401.	1.3	108
689	Inhibition of MEK and PI3K/mTOR Suppresses Tumor Growth but Does Not Cause Tumor Regression in Patient-Derived Xenografts of RAS-Mutant Colorectal Carcinomas. Clinical Cancer Research, 2012, 18, 2515-2525.	3.2	172
690	mTOR-independent 4E-BP1 phosphorylation is associated with cancer resistance to mTOR kinase inhibitors. Cell Cycle, 2012, 11, 594-603.	1.3	66
691	AMPK: A bona fide resident of the mitotic spindle midzone. Cell Cycle, 2012, 11, 841-842.	1.3	5
692	A new clue to explain resistance to mTOR inhibitors. Cell Cycle, 2012, 11, 844-844.	1.3	4
693	Personalized therapy in endometrial cancer: Challenges and opportunities. Cancer Biology and Therapy, 2012, 13, 1-13.	1.5	61
694	Apoptosis in pluripotent stem cells: RPL11 strikes again. Cell Cycle, 2012, 11, 840-840.	1.3	3

ARTICLE IF CITATIONS # Disrupting the mTOR Signaling Network as a Potential Strategy for the Enhancement of Cancer 695 0.8 28 Radiotherapy. Current Cancer Drug Targets, 2012, 12, 899-924. Perspectives on mTOR Inhibitors for Castration-Refractory Prostate Cancer. Current Cancer Drug 0.8 Targets, 2012, 12, 940-949. 697 EDDiting p53 levels. Cell Cycle, 2012, 11, 839-839. 0 1.3 Rapamycin slows aging in mice. Cell Cycle, 2012, 11, 845-845. 698 Sorafenib enhances the therapeutic efficacy of rapamycin in colorectal cancers harboring oncogenic 699 1.3 27 KRAS and PIK3CA. Carcinogenesis, 2012, 33, 1782-1790. Mdmx: A p53 activator?. Cell Cycle, 2012, 11, 843-843. 1.3 Regulation of Cell Death and Survival by Resveratrol: Implications for Cancer Therapy. Anti-Cancer 701 0.9 9 Agents in Medicinal Chemistry, 2012, 12, 874-879. Targeting the PI3K pathway for cancer therapy. Future Medicinal Chemistry, 2012, 4, 1153-1169. 1.1 mTOR-Dependent Cell Survival Mechanisms. Cold Spring Harbor Perspectives in Biology, 2012, 4, 703 2.3 145 a008771-a008771. mTOR kinase inhibitors as a treatment strategy in hematological malignancies. Future Medicinal 704 1.1 Chemistry, 2012, 4, 487-504. Contrasted Outcomes to Gefitinib on Tumoral IGF1R Expression in Head and Neck Cancer Patients Receiving Postoperative Chemoradiation (GORTEC Trial 2004-02). Clinical Cancer Research, 2012, 18, 705 3.2 36 5123-5133. Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or 0.6 gliosarcoma: North American Brain Tumor Consortium study 05-02. Neuro-Öncology, 2012, 14, 1511-1518. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications 707 2.6 221 for targeting mTOR during malignancy. Oncogene, 2012, 31, 1949-1962. Antitumor Activity of Triolimus: A Novel Multidrug-Loaded Micelle Containing Paclitaxel, Rapamycin, and 17-AAG. Molecular Cancer Therapeutics, 2012, 11, 2233-2242. 76 The Insulin Receptor/Insulin-Like Growth Factor Receptor Family as a Therapeutic Target in Oncology. 709 3.2 89 Clinical Cancer Research, 2012, 18, 40-50. Everolimus and its role in hormone-resistant and trastuzumab-resistant metastatic breast cancer. 1.1 Future Oncology, 2012, 8, 1383-1396. mTOR inhibitors in the management of hormone receptor-positive breast cancer: the latest evidence 711 0.6 45 and future directions. Annals of Oncology, 2012, 23, 2526-2535. PI3Ksâ€"Drug Targets in Inflammation and Cancer. Sub-Cellular Biochemistry, 2012, 58, 111-181.

#	Article	IF	CITATIONS
713	PDGF Receptor Alpha Is an Alternative Mediator of Rapamycin-Induced Akt Activation: Implications for Combination Targeted Therapy of Synovial Sarcoma. Cancer Research, 2012, 72, 4515-4525.	0.4	68
714	Phase I Study of the Combination of Sorafenib and Temsirolimus in Patients with Metastatic Melanoma. Clinical Cancer Research, 2012, 18, 1120-1128.	3.2	57
715	Perifosine-mediated Akt inhibition in neuroendocrine tumor cells: role of specific Akt isoforms. Endocrine-Related Cancer, 2012, 19, 423-434.	1.6	29
716	Critical appraisal of the role of everolimus in advanced neuroendocrine tumors of pancreatic origin. Gastrointestinal Cancer: Targets and Therapy, 2012, , 29.	5.5	Ο
717	Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2718-2723.	3.3	313
718	Dual mTORC1/2 and HER2 Blockade Results in Antitumor Activity in Preclinical Models of Breast Cancer Resistant to Anti-HER2 Therapy. Clinical Cancer Research, 2012, 18, 2603-2612.	3.2	154
719	Expression of the Mammalian Target of Rapamycin Pathway Markers in Lung Adenocarcinoma and Squamous Cell Carcinoma. Pathobiology, 2012, 79, 84-93.	1.9	13
720	Tissue-Based Approaches to Study Pharmacodynamic Endpoints in Early Phase Oncology Clinical Trials. Current Drug Targets, 2012, 13, 1525-1534.	1.0	32
721	S6K inhibition renders cardiac protection against myocardial infarction through PDK1 phosphorylation of Akt. Biochemical Journal, 2012, 441, 199-207.	1.7	54
722	ATP-ase as a Potential Drug Target for Cancer, Tumor Growth and Cellular Functions. International Journal of Human Genetics, 2012, 12, 151-156.	0.1	8
723	Simultaneous targeting of PI3K and mTOR with NVP-BGT226 is highly effective in multiple myeloma. Anti-Cancer Drugs, 2012, 23, 131-138.	0.7	43
724	Targeting PI3 Kinase/AKT/mTOR Signaling in Cancer. Critical Reviews in Oncogenesis, 2012, 17, 69-95.	0.2	204
725	NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations. International Journal of Oncology, 2012, 40, 1259-1266.	1.4	40
726	The mTOR Pathway in Lung Cancer and Implications for Therapy and Biomarker Analysis. Journal of Thoracic Oncology, 2012, 7, 947-953.	0.5	68
727	mTOR Complex 2 Regulates Proper Turnover of Insulin Receptor Substrate-1 via the Ubiquitin Ligase Subunit Fbw8. Molecular Cell, 2012, 48, 875-887.	4.5	91
728	Inhibition of Mycobacterial Infection by the Tumor Suppressor PTEN. Journal of Biological Chemistry, 2012, 287, 23196-23202.	1.6	36
729	Mechanisms of intrinsic and acquired resistance to kinaseâ€ŧargeted therapies. Pigment Cell and Melanoma Research, 2012, 25, 819-831.	1.5	43
730	BRAFV600E Negatively Regulates the AKT Pathway in Melanoma Cell Lines. PLoS ONE, 2012, 7, e42598.	1.1	51

#	Article	IF	CITATIONS
731	Phase II trial of RAD001 and bicalutamide for castrationâ€resistant prostate cancer. BJU International, 2012, 110, 1729-1735.	1.3	71
732	Current Scientific Rationale for the Use of Somatostatin Analogs and mTOR Inhibitors in Neuroendocrine Tumor Therapy. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 727-737.	1.8	79
733	AT13148 Is a Novel, Oral Multi-AGC Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity. Clinical Cancer Research, 2012, 18, 3912-3923.	3.2	86
734	Identification of the Degradation Determinants of Insulin Receptor Substrate 1 for Signaling Cullin-RING E3 Ubiquitin Ligase 7-mediated Ubiquitination. Journal of Biological Chemistry, 2012, 287, 40758-40766.	1.6	21
735	Role and therapeutic potential of PI3Kâ€mTOR signaling in de novo resistance to BRAF inhibition. Pigment Cell and Melanoma Research, 2012, 25, 248-258.	1.5	98
736	Induction of Cutaneous Squamous Cell Carcinomas by RAF Inhibitors: Cause for Concern?. Journal of Clinical Oncology, 2012, 30, 329-330.	0.8	62
737	MRK003, a Î ³ -secretase inhibitor exhibits promising in vitro pre-clinical activity in multiple myeloma and non-Hodgkin's lymphoma. Leukemia, 2012, 26, 340-348.	3.3	65
738	Combination of ATP-competitive mammalian target of rapamycin inhibitors with standard chemotherapy for colorectal cancer. Investigational New Drugs, 2012, 30, 2219-2225.	1.2	15
739	Genetic heterogeneity and cancer drug resistance. Lancet Oncology, The, 2012, 13, e178-e185.	5.1	386
740	Effectiveness and molecular interactions of the clinically active mTORC1 inhibitor everolimus in combination with tamoxifen or letrozole in vitro and in vivo. Breast Cancer Research, 2012, 14, R132.	2.2	31
741	Amino acids and mTORC1: from lysosomes to disease. Trends in Molecular Medicine, 2012, 18, 524-533.	3.5	370
742	Bioinformatics and systems biology. Molecular Oncology, 2012, 6, 147-154.	2.1	22
743	Attacking a Nexus of the Oncogenic Circuitry by Reversing Aberrant elF4F-Mediated Translation. Molecular Cancer Therapeutics, 2012, 11, 1051-1061.	1.9	28
744	PI3K independent activation of mTORC1 as a target in lapatinib-resistant ERBB2+ breast cancer cells. Breast Cancer Research and Treatment, 2012, 136, 683-692.	1.1	36
745	Investigational drug MLN0128, a novel TORC1/2 inhibitor, demonstrates potent oral antitumor activity in human breast cancer xenograft models. Breast Cancer Research and Treatment, 2012, 136, 673-682.	1.1	73
746	Targeting Insulin and Insulin-Like Growth Factor Signaling in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 251-261.	1.0	78
747	JAK2/STAT5 Inhibition Circumvents Resistance to PI3K/mTOR Blockade: A Rationale for Cotargeting These Pathways in Metastatic Breast Cancer. Cancer Cell, 2012, 22, 796-811.	7.7	213
748	Akt/mTOR signaling pathway is crucial for gemcitabine resistance induced by Annexin II in pancreatic cancer cells. Journal of Surgical Research, 2012, 178, 758-767.	0.8	66

#	Article	IF	CITATIONS
749	Antitumor effect of the mTOR inhibitor everolimus in combination with trastuzumab on human breast cancer stem cells in vitro and in vivo. Tumor Biology, 2012, 33, 1349-1362.	0.8	48
750	MENX. Annales D'Endocrinologie, 2012, 73, 65-70.	0.6	6
751	An overview of the mTOR pathway as a target in cancer therapy. Expert Opinion on Therapeutic Targets, 2012, 16, 481-489.	1.5	33
752	Therapeutic targeting of the phosphatidylinositol 3-kinase signaling pathway: novel targeted therapies and advances in the treatment of colorectal cancer. Therapeutic Advances in Gastroenterology, 2012, 5, 319-337.	1.4	24
753	Exploiting p70 S6 kinase as a target for ovarian cancer. Expert Opinion on Therapeutic Targets, 2012, 16, 619-630.	1.5	42
754	Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma. British Journal of Cancer, 2012, 107, 1093-1099.	2.9	116
755	Enhanced Apoptosis and Tumor Growth Suppression Elicited by Combination of MEK (Selumetinib) and mTOR Kinase Inhibitors (AZD8055). Cancer Research, 2012, 72, 1804-1813.	0.4	81
756	Rictor-dependent AKT activation and inhibition of urothelial carcinoma by rapamycin. Urologic Oncology: Seminars and Original Investigations, 2012, 30, 69-77.	0.8	15
757	Impact of Genomics on Personalized Cancer Medicine. Clinical Cancer Research, 2012, 18, 612-618.	3.2	52
758	Insulin Growth Factor-Receptor (IGF-1R) Antibody Cixutumumab Combined with the mTOR Inhibitor Temsirolimus in Patients with Refractory Ewing's Sarcoma Family Tumors. Clinical Cancer Research, 2012, 18, 2625-2631.	3.2	184
759	Preclinical Assessment of the Absorption and Disposition of the Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor GDC-0980 and Prediction of Its Pharmacokinetics and Efficacy in Human. Drug Metabolism and Disposition, 2012, 40, 1785-1796.	1.7	36
760	Optimal homeostasis necessitates bistable control. Journal of the Royal Society Interface, 2012, 9, 2723-2734.	1.5	14
761	Achieving specificity in Akt signaling in cancer. Advances in Biological Regulation, 2012, 52, 78-87.	1.4	59
762	K-Ras mutation-mediated IGF-1-induced feedback ERK activation contributes to the rapalog resistance in pancreatic ductal adenocarcinomas. Cancer Letters, 2012, 322, 58-69.	3.2	24
763	Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde?. Cancer Letters, 2012, 323, 115-127.	3.2	115
764	Inhibition of LDH-A by lentivirus-mediated small interfering RNA suppresses intestinal-type gastric cancer tumorigenicity through the downregulation of Oct4. Cancer Letters, 2012, 321, 45-54.	3.2	51
765	Overcoming acquired resistance to letrozole by targeting the PI3K/AKT/mTOR pathway in breast cancer cell clones. Cancer Letters, 2012, 323, 77-87.	3.2	78
766	Acetylation of histone H3 prevents resistance development caused by chronic mTOR inhibition in renal cells. Cancer Letters, 2012, 324, 83-90.	3.2	40

# 767	ARTICLE Emerging therapies for urothelial cancer. Cancer Treatment Reviews, 2012, 38, 311-317.	IF 3.4	CITATIONS 8
768	Converting Cancer Therapies into Cures: Lessons from Infectious Diseases. Cell, 2012, 148, 1089-1098.	13.5	159
769	Effects of the combination of RAD001 and docetaxel on breast cancer stem cells. European Journal of Cancer, 2012, 48, 1581-1592.	1.3	43
770	The PI3K/AKT/mTOR Pathway as a Therapeutic Target in Endometrial Cancer. Clinical Cancer Research, 2012, 18, 5856-5864.	3.2	325
771	Novel synergistic antitumor effects of rapamycin with bortezomib on hepatocellular carcinoma cells and orthotopic tumor model. BMC Cancer, 2012, 12, 166.	1.1	35
772	Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics. BMC Cancer, 2012, 12, 38.	1.1	41
773	Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells. Molecular Cancer, 2012, 11, 85.	7.9	97
774	Small-molecule ATP-competitive dual IGF-1R and insulin receptor inhibitors: structural insights, chemical diversity and molecular evolution. Future Medicinal Chemistry, 2012, 4, 315-328.	1.1	11
775	Rapamycin has paradoxical effects on S6 phosphorylation in rats with and without seizures. Epilepsia, 2012, 53, 2026-2033.	2.6	20
776	Well-differentiated pancreatic neuroendocrine tumors: from genetics to therapy. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 199-208.	8.2	106
777	Functional drug–gene interactions in lung cancer. Expert Review of Molecular Diagnostics, 2012, 12, 291-302.	1.5	7
778	The promise of mTOR inhibitors in the treatment of colorectal cancer. Expert Opinion on Investigational Drugs, 2012, 21, 1775-1788.	1.9	26
779	Aspirin Inhibits mTOR Signaling, Activates AMP-Activated Protein Kinase, and Induces Autophagy in Colorectal Cancer Cells. Gastroenterology, 2012, 142, 1504-1515.e3.	0.6	356
780	Prognostic markers in renal cell carcinoma: A focus on the â€~mammalian target of rapamycin' pathway. Arab Journal of Urology Arab Association of Urology, 2012, 10, 110-117.	0.7	3
781	Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochemical Pharmacology, 2012, 84, 1154-1163.	2.0	192
782	The combination of RAD001 and NVP-BKM120 synergistically inhibits the growth of lung cancer in vitro and in vivo. Cancer Letters, 2012, 325, 139-146.	3.2	54
783	mTOR kinase inhibitor potentiates apoptosis of PI3K and MEK inhibitors in diagnostically defined subpopulations. Cancer Letters, 2012, 326, 168-175.	3.2	6
784	Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer. Cancer Treatment Reviews, 2012, 38, 767-775.	3.4	46

#	Article	IF	CITATIONS
785	Chemerin regulates proliferation and differentiation of myoblast cells via ERK1/2 and mTOR signaling pathways. Cytokine, 2012, 60, 646-652.	1.4	51
786	Overexpression of the mammalian target of rapamycin (mTOR) and angioinvasion are poor prognostic factors in early stage NSCLC: A verification study. Lung Cancer, 2012, 75, 217-222.	0.9	34
787	Exploratory analysis of activation of PTEN–PI3K pathway and downstream proteins in malignant pleural mesothelioma (MPM). Lung Cancer, 2012, 77, 192-198.	0.9	64
788	Efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 in a preclinical model of adrenocortical carcinoma. Molecular and Cellular Endocrinology, 2012, 364, 101-104.	1.6	29
789	Phosphoinositide 3-Kinases—A Historical Perspective. Sub-Cellular Biochemistry, 2012, 58, 95-110.	1.0	18
790	Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy?. Nature Reviews Clinical Oncology, 2012, 9, 529-541.	12.5	63
791	PI3K/Akt/mTOR and Raf/MEK/ERK signaling pathways perturbations in non-functioning pituitary adenomas. Endocrine, 2012, 42, 285-291.	1.1	31
792	Evidence of mTOR Activation by an AKT-Independent Mechanism Provides Support for the Combined Treatment of PTEN-Deficient Prostate Tumors with mTOR and AKT Inhibitors. Translational Oncology, 2012, 5, 422-429.	1.7	26
793	Targeting TORC1/2 Enhances Sensitivity to EGFR Inhibitors in Head and Neck Cancer Preclinical Models. Neoplasia, 2012, 14, 1005-1014.	2.3	40
794	The mTOR Signalling Pathway in Human Cancer. International Journal of Molecular Sciences, 2012, 13, 1886-1918.	1.8	662
796	Insulin-like Growth Factors and Cancer. , 2012, , .		16
797	Alternative dosing of dual PI3K and MEK inhibition in cancer therapy. BMC Cancer, 2012, 12, 612.	1.1	36
798	Active PI3K Pathway Causes an Invasive Phenotype Which Can Be Reversed or Promoted by Blocking the Pathway at Divergent Nodes. PLoS ONE, 2012, 7, e36402.	1.1	43
799	Impact of Combined mTOR and MEK Inhibition in Uveal Melanoma Is Driven by Tumor Genotype. PLoS ONE, 2012, 7, e40439.	1.1	63
800	Effects of Cortisol and Dexamethasone on Insulin Signalling Pathways in Skeletal Muscle of the Ovine Fetus during Late Gestation. PLoS ONE, 2012, 7, e52363.	1.1	29
801	Targeting mTOR Pathways in Human Malignancies. Current Pharmaceutical Design, 2012, 18, 2766-2777.	0.9	99
802	PI3K–AKT–mTOR inhibitors for the systemic treatment of endometrial cancer. Expert Review of Obstetrics and Gynecology, 2012, 7, 421-430.	0.4	1
803	mTOR Inhibition and the Tumor Vasculature. Current Angiogenesis, 2012, 1, 11-19.	0.1	4

#	Article	IF	Citations
804	The Target of Rapamycin: Structure and Functions. , 2012, , .		4
805	Treatment of advanced pancreatic neuroendocrine tumors: potential role of everolimus. OncoTargets and Therapy, 2012, 5, 217.	1.0	5
806	Everolimus and mTOR inhibition in pancreatic neuroendocrine tumors. Cancer Management and Research, 2012, 4, 207.	0.9	15
807	Initial testing (stage 1) of the mTOR kinase inhibitor AZD8055 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 191-199.	0.8	35
808	Emerging Therapeutics Targeting mRNA Translation. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012377-a012377.	2.3	51
809	Regulation and function of mTOR signalling in T cell fate decisions. Nature Reviews Immunology, 2012, 12, 325-338.	10.6	789
810	Negative Feedback and Adaptive Resistance to the Targeted Therapy of Cancer. Cancer Discovery, 2012, 2, 311-319.	7.7	188
811	Circumventing Cancer Drug Resistance in the Era of Personalized Medicine. Cancer Discovery, 2012, 2, 214-226.	7.7	419
812	The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opinion on Therapeutic Targets, 2012, 16, S17-S27.	1.5	580
813	The BOLERO-2 trial: the addition of everolimus to exemestane in the treatment of postmenopausal hormone receptor-positive advanced breast cancer. Future Oncology, 2012, 8, 651-657.	1.1	104
814	Pancreatic neuroendocrine tumors: A comprehensive review. International Journal of Cancer, 2012, 131, 1013-1022.	2.3	30
815	Insulin-Like Growth Factors and Insulin: At the Crossroad Between Tumor Development and Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 640-651.	1.7	37
816	MEK Inhibition Leads to PI3K/AKT Activation by Relieving a Negative Feedback on ERBB Receptors. Cancer Research, 2012, 72, 3228-3237.	0.4	287
817	Endoplasmic Reticulum Stress, the Unfolded Protein Response, Autophagy, and the Integrated Regulation of Breast Cancer Cell Fate. Cancer Research, 2012, 72, 1321-1331.	0.4	183
818	Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes and Development, 2012, 26, 641-650.	2.7	214
819	Management of Hepatocellular Carcinoma: Beyond Sorafenib. Current Oncology Reports, 2012, 14, 257-266.	1.8	27
820	Molecular Profiling of Patients with Colorectal Cancer and Matched Targeted Therapy in Phase I Clinical Trials. Molecular Cancer Therapeutics, 2012, 11, 2062-2071.	1.9	77
821	mTORC1 inhibition and ECM–cell adhesion-independent drug resistance via PI3K–AKT and PI3K–RAS–MAPK feedback loops. Tumor Biology, 2012, 33, 885-890.	0.8	26

#	Article	IF	CITATIONS
822	The PP242 Mammalian Target of Rapamycin (mTOR) Inhibitor Activates Extracellular Signal-regulated Kinase (ERK) in Multiple Myeloma Cells via a Target of Rapamycin Complex 1 (TORC1)/ Eukaryotic Translation Initiation Factor 4E (eIF-4E)/RAF Pathway and Activation Is a Mechanism of Resistance. Journal of Biological Chemistry, 2012, 287, 21796-21805.	1.6	72
823	Insights into melanoma: targeting the mTOR pathway for therapeutics. Expert Opinion on Therapeutic Targets, 2012, 16, 689-705.	1.5	34
824	Novel phosphatidylinositol 3-kinase inhibitor NVP-BKM120 induces apoptosis in myeloma cells and shows synergistic anti-myeloma activity with dexamethasone. Journal of Molecular Medicine, 2012, 90, 695-706.	1.7	50
825	PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies. Current Oncology Reports, 2012, 14, 129-138.	1.8	175
826	Signaling Pathways in Pheochromocytomas and Paragangliomas: Prospects for Future Therapies. Endocrine Pathology, 2012, 23, 21-33.	5.2	57
827	The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nature Reviews Cancer, 2012, 12, 159-169.	12.8	929
828	Inhibition of PI3K/mTOR Leads to Adaptive Resistance in Matrix-Attached Cancer Cells. Cancer Cell, 2012, 21, 227-239.	7.7	344
829	Akt and p53 are potential mediators of reduced mammary tumor growth by Chloroquine and the mTOR inhibitor RAD001. Biochemical Pharmacology, 2012, 83, 480-488.	2.0	39
830	Inhibition of tumor cell growth, proliferation and migration by X-387, a novel active-site inhibitor of mTOR. Biochemical Pharmacology, 2012, 83, 1183-1194.	2.0	16
831	Pyrazolopyrimidines as dual Akt/p70S6K inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2693-2697.	1.0	22
832	The dual PI3K and mTOR inhibitor NVP-BEZ235 exhibits anti-proliferative activity and overcomes bortezomib resistance in mantle cell lymphoma cells. Leukemia Research, 2012, 36, 912-920.	0.4	45
833	Human T cell expansion and experimental autoimmune encephalomyelitis inhibited by Lenaldekar, a small molecule discovered in a zebrafish screen. Journal of Neuroimmunology, 2012, 244, 35-44.	1.1	17
834	Synergistic anti-tumor effects of RAD001 with MEK inhibitors in neuroendocrine tumors: A potential mechanism of therapeutic limitation of mTOR inhibitor. Molecular and Cellular Endocrinology, 2012, 350, 99-106.	1.6	19
835	Dual inhibition of phosphatidylinositol 3â€kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. International Journal of Cancer, 2012, 130, 1695-1705.	2.3	144
836	Branchedâ€chain amino acids prevent insulinâ€induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2â€dependent mechanisms. Journal of Cellular Physiology, 2012, 227, 2097-2105.	2.0	57
837	3,5,3′triiodo‣â€ŧhyronine induces SREBPâ€1 expression by nonâ€genomic actions in human HEP C2 cells. Journal of Cellular Physiology, 2012, 227, 2388-2397.	2.0	52
838	Sorafenib, a multikinase inhibitor, is effective in vitro against nonâ€hodgkin lymphoma and synergizes with the mTOR inhibitor rapamycin. American Journal of Hematology, 2012, 87, 277-283.	2.0	26
839	Hormonal Resistance in Breast Cancer: Evolving Treatment Strategies. Current Breast Cancer Reports, 2012, 4, 66-74.	0.5	2

#	Article	IF	CITATIONS
840	A phase I study of daily everolimus plus low-dose weekly cisplatin for patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 2012, 69, 591-598.	1.1	50
841	The effect of mTOR inhibition alone or combined with MEK inhibitors on brain metastasis: an in vivo analysis in triple-negative breast cancer models. Breast Cancer Research and Treatment, 2012, 131, 425-436.	1.1	38
842	LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Research and Treatment, 2012, 131, 791-800.	1.1	142
843	A selectivity study on mTOR/PI3Kα inhibitors by homology modeling and 3D-QSAR. Journal of Molecular Modeling, 2012, 18, 171-186.	0.8	13
844	Inhibition of constitutively activated phosphoinositide 3â€kinase/AKT pathway enhances antitumor activity of chemotherapeutic agents in breast cancer susceptibility gene 1â€defective breast cancer cells. Molecular Carcinogenesis, 2013, 52, 667-675.	1.3	30
845	The mTOR inhibitor rapamycin opposes carcinogenic changes to epidermal Akt1/PKBα isoform signaling. Oncogene, 2013, 32, 3254-3262.	2.6	30
846	A hit to lead discovery of novel N-methylated imidazolo-, pyrrolo-, and pyrazolo-pyrimidines as potent and selective mTOR inhibitors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5097-5104.	1.0	26
847	PI3K Inhibitors as Novel Cancer Therapies: Implications for Cardiovascular Medicine. Journal of Cardiac Failure, 2013, 19, 268-282.	0.7	24
848	Breast cancer tissue slices as a model for evaluation of response to rapamycin. Cell and Tissue Research, 2013, 352, 671-684.	1.5	20
849	Identification of two novel inhibitors of mTOR signaling pathway based on high content screening. Cancer Chemotherapy and Pharmacology, 2013, 72, 799-808.	1.1	7
850	Multi-level model for the investigation of oncoantigen-driven vaccination effect. BMC Bioinformatics, 2013, 14, S11.	1.2	11
851	Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro. BMC Cancer, 2013, 13, 170.	1.1	27
852	Cell cycle-dependent activity of the novel dual PI3K-MTORC1/2 inhibitor NVP-BGT226 in acute leukemia. Molecular Cancer, 2013, 12, 46.	7.9	48
853	The Role of AKT/mTOR Pathway in Stress Response to UV-Irradiation: Implication in Skin Carcinogenesis by Regulation of Apoptosis, Autophagy and Senescence. International Journal of Molecular Sciences, 2013, 14, 15260-15285.	1.8	126
854	Everolimus therapy for progressive adrenocortical cancer. Endocrine, 2013, 44, 187-192.	1.1	45
855	Network nonlinearities in drug treatment. Interdisciplinary Sciences, Computational Life Sciences, 2013, 5, 85-94.	2.2	7
856	Combined targeting of AKT and mTOR using MKâ€2206 and RAD001 is synergistic in the treatment of cholangiocarcinoma. International Journal of Cancer, 2013, 133, 2065-2076.	2.3	71
857	Personalized therapy for breast cancer: a dream or a reality?. Future Oncology, 2013, 9, 1105-1119.	1.1	27

#	Article	IF	CITATIONS
858	The balancing act of AKT in T cells. Frontiers in Biology, 2013, 8, 160-174.	0.7	11
859	Preclinical evaluation of combined TKI-258 and RAD001 in hepatocellular carcinoma. Cancer Chemotherapy and Pharmacology, 2013, 71, 1417-1425.	1.1	12
860	Combined targeting of FGFR2 and mTOR by ponatinib and ridaforolimus results in synergistic antitumor activity in FGFR2 mutant endometrial cancer models. Cancer Chemotherapy and Pharmacology, 2013, 71, 1315-1323.	1.1	58
861	Altered Ca2+ signaling in cancer cells: Proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2013, 1835, 180-193.	3.3	65
862	Re: Inhibition of mTORC2 but not mTORC1 Up-Regulates E-Cadherin Expression and Inhibits Cell Motility by Blocking HIF-2α Expression in Human Renal Cell Carcinoma. Journal of Urology, 2013, 190, 1957-1957.	0.2	2
863	Long-term effect of green tea extract during lactation on AMPK expression in rat offspring exposed to fetal malnutrition. Nutrition, 2013, 29, 1152-1158.	1.1	8
864	Inhibition of S6 kinase suppresses the apoptotic effect of eIF4E ablation by inducing TGF-β-dependent G1 cell cycle arrest. Cancer Letters, 2013, 333, 239-243.	3.2	16
865	Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: a multicentre, open-label, phase 2 trial. Lancet Oncology, The, 2013, 14, 371-382.	5.1	171
866	Endocrine Resistance in Breast Cancer: Focus on the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Signaling Pathway. Breast Care, 2013, 8, 248-255.	0.8	40
867	Functional proteomics characterization of residual triple-negative breast cancer after standard neoadjuvant chemotherapy. Annals of Oncology, 2013, 24, 2522-2526.	0.6	36
868	mTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Letters, 2013, 340, 1-8.	3.2	128
869	Therapeutic Targeting of Autophagy in Disease: Biology and Pharmacology. Pharmacological Reviews, 2013, 65, 1162-1197.	7.1	220
871	Molecular Pathways: PI3K Pathway Targets in Triple-Negative Breast Cancers. Clinical Cancer Research, 2013, 19, 3738-3744.	3.2	53
872	Single Copies of Mutant <i>KRAS</i> and Mutant <i>PIK3CA</i> Cooperate in Immortalized Human Epithelial Cells to Induce Tumor Formation. Cancer Research, 2013, 73, 3248-3261.	0.4	33
873	S6K1 determines the metabolic requirements for BCR-ABL survival. Oncogene, 2013, 32, 453-461.	2.6	31
874	What a Tangled Web We Weave: Emerging Resistance Mechanisms to Inhibition of the Phosphoinositide 3-Kinase Pathway. Cancer Discovery, 2013, 3, 1345-1354.	7.7	131
875	Everolimus in Advanced Pancreatic Neuroendocrine Tumors: The Clinical Experience. Cancer Research, 2013, 73, 1449-1453.	0.4	75
876	Somatostatin receptors: From signaling to clinical practice. Frontiers in Neuroendocrinology, 2013, 34, 228-252.	2.5	289

		CITATION R	EPORT	
#	Article		IF	CITATIONS
877	Tumor adaptation and resistance to RAF inhibitors. Nature Medicine, 2013, 19, 1401-1	409.	15.2	512
878	Systems biology: A biologist's viewpoint. Progress in Biophysics and Molecular Biology, 358-368.	, 2013, 113,	1.4	15
879	Development of Therapeutic Combinations Targeting Major Cancer Signaling Pathways Clinical Oncology, 2013, 31, 1592-1605.	s. Journal of	0.8	249
880	Effect of selumetinib on the growth of anastrozole-resistant tumors. Breast Cancer Res Treatment, 2013, 138, 699-708.	search and	1.1	13
881	The dual mTORC1 and mTORC2 inhibitor AZD8055 inhibits head and neck squamous c growth in vivo and in vitro. Biochemical and Biophysical Research Communications, 20	ell carcinoma cell 13, 440, 701-706.	1.0	32
882	Preclinical evaluation of the PI3K-mTOR dual inhibitor PF-04691502 as a novel theraper nasopharyngeal carcinoma. Investigational New Drugs, 2013, 31, 1399-1408.	utic drug in	1.2	24
883	PI3K Pathway Inhibitors: Better Not Left Alone. Current Pharmaceutical Design, 2013, 1	19, 895-906.	0.9	37
884	Leiomyosarcoma. Hematology/Oncology Clinics of North America, 2013, 27, 957-974.		0.9	108
885	Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK–mTOI Breast Cancer Research and Treatment, 2013, 141, 67-78.	RC1 signaling.	1.1	65
886	Preclinical evaluation of the AKT inhibitor MK-2206 in nasopharyngeal carcinoma cell lin Investigational New Drugs, 2013, 31, 567-575.	nes.	1.2	38
887	A phase I trial of the IGF-1R antibody Cixutumumab in combination with temsirolimus in metastatic breast cancer. Breast Cancer Research and Treatment, 2013, 139, 145-153.	n patients with	1.1	48
888	Everolimus-induced epithelial to mesenchymal transition in immortalized human renal tubular epithelial cells: key role of heparanase. Journal of Translational Medicine, 2013,	proximal 11, 292.	1.8	24
889	Insulin and IGFs in Obesity-Related Breast Cancer. Journal of Mammary Gland Biology a 2013, 18, 277-289.	nd Neoplasia,	1.0	79
890	New Approaches for Hormone-Receptor Positive Metastatic Breast Cancer. Current Bre Reports, 2013, 5, 309-320.	ast Cancer	0.5	0
891	PI3K/Akt/mTOR pathway inhibitors in the therapy of pancreatic neuroendocrine tumors 2013, 335, 1-8.	. Cancer Letters,	3.2	65
892	Genetically engineered mouse models of PI3K signaling inÂbreast cancer. Molecular Or 146-164.	1cology, 2013, 7,	2.1	34
893	Biology and therapeutic potential of PI3K signaling in ER+/HER2-negative breast cancer S12-S18.	[.] Breast, 2013, 22,	0.9	77
894	Combined Targeting of mTOR and AKT Is an Effective Strategy for Basal-like Breast Can Patient-Derived Xenograft Models. Molecular Cancer Therapeutics, 2013, 12, 1665-167	cer in 75.	1.9	38

#	Article	IF	CITATIONS
895	Upregulation of glutamate transporter GLT-1 by mTOR-Akt-NF-кB cascade in astrocytic oxygen-glucose deprivation. Glia, 2013, 61, 1959-1975.	2.5	51
896	Current and future directions for Phase II trials in high-grade glioma. Expert Review of Neurotherapeutics, 2013, 13, 369-387.	1.4	4
897	Pan-Mammalian Target of Rapamycin (mTOR) Inhibitor AZD8055 Primes Rhabdomyosarcoma Cells for ABT-737-induced Apoptosis by Down-regulating Mcl-1 Protein. Journal of Biological Chemistry, 2013, 288, 35287-35296.	1.6	57
898	Evaluation and Clinical Analyses of Downstream Targets of the Akt Inhibitor GDC-0068. Clinical Cancer Research, 2013, 19, 6976-6986.	3.2	72
899	Investigational agents in development for the treatment of ovarian cancer. Investigational New Drugs, 2013, 31, 213-229.	1.2	25
900	VS-5584, a Novel and Highly Selective PI3K/mTOR Kinase Inhibitor for the Treatment of Cancer. Molecular Cancer Therapeutics, 2013, 12, 151-161.	1.9	59
901	Benzyl isothiocyanate induces protective autophagy in human prostate cancer cells via inhibition of mTOR signaling. Carcinogenesis, 2013, 34, 406-414.	1.3	63
902	Concurrent inhibition of PI3-Kinase and mTOR induces cell death in diffuse large B cell lymphomas, a mechanism involving down regulation of Mcl-1. Cancer Letters, 2013, 339, 288-297.	3.2	30
903	Rapamycin decreases tau phosphorylation at Ser214 through regulation of cAMP-dependent kinase. Neurochemistry International, 2013, 62, 458-467.	1.9	56
904	Development of PI3K inhibitors: lessons learned from early clinical trials. Nature Reviews Clinical Oncology, 2013, 10, 143-153.	12.5	694
905	Targeted Therapy for Breast Cancer. American Journal of Pathology, 2013, 183, 1096-1112.	1.9	100
906	Evaluation of subchronic toxicity of GRD081, a dual PI3K/mTOR inhibitor, after 28-day repeated oral administration in Sprague–Dawley rats and beagle dogs. Food and Chemical Toxicology, 2013, 62, 687-698.	1.8	1
907	Reduced scytonemin isolated from Nostoc commune induces autophagic cell death in human T-lymphoid cell line Jurkat cells. Food and Chemical Toxicology, 2013, 60, 76-82.	1.8	35
908	Targeting PI3K, HER2 and the IL-8/JAK2 axis in metastatic breast cancer: Which combination makes the whole greater than the sum of its parts?. Drug Resistance Updates, 2013, 16, 68-72.	6.5	20
909	Tyrosine kinase receptor expression in chordomas: phosphorylated AKT correlates inversely with outcome. Human Pathology, 2013, 44, 1747-1755.	1.1	39
910	Metformin Impairs Vascular Endothelial Recovery After Stent Placement in the Setting of Locally Eluted Mammalian Target of Rapamycin Inhibitors Via S6 Kinase-Dependent Inhibition of Cell Proliferation. Journal of the American College of Cardiology, 2013, 61, 971-980.	1.2	35
911	Low Phosphorylated AKT Expression in Laryngeal Cancer: Indications for a Higher Metastatic Risk. International Journal of Radiation Oncology Biology Physics, 2013, 87, 349-355.	0.4	6
912	Rapamycin Induces Mitogen-activated Protein (MAP) Kinase Phosphatase-1 (MKP-1) Expression through Activation of Protein Kinase B and Mitogen-activated Protein Kinase Kinase Pathways. Journal of Biological Chemistry, 2013, 288, 33966-33977.	1.6	47

		CITATION R	EPORT	
#	Article		IF	CITATIONS
913	A recollection of mTOR signaling in learning and memory. Learning and Memory, 2013,	20, 518-530.	0.5	106
914	Inhibition of Protein Synthesis Alters Protein Degradation through Activation of Protein (AKT). Journal of Biological Chemistry, 2013, 288, 23875-23883.	Kinase B	1.6	45
915	Regulated in DNA damage and development 1 (REDD1) promotes cell survival during se by sustaining repression of signaling through the mechanistic target of rapamycin in co (mTORC1). Cellular Signalling, 2013, 25, 2709-2716.	rum deprivation mplex 1	1.7	72
916	Dual Pten/Tp53 Suppression Promotes Sarcoma Progression by Activating Notch Signal Journal of Pathology, 2013, 182, 2015-2027.	ing. American	1.9	21
917	Phosphorylation of 4E-BP1 predicts sensitivity to everolimus in gastric cancer cells. Can 2013, 331, 220-229.	cer Letters,	3.2	19
918	Cytosolic phospholipase A2α sustains pAKT, pERK and AR levels in PTEN-null/mutated p cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1	rostate cancer 1146-1157.	1.2	12
919	Treatment of pulmonary neuroendocrine tumours: State of the art and future developm Treatment Reviews, 2013, 39, 466-472.	ients. Cancer	3.4	63
920	Phase 2 Trial of Single-agent Everolimus in Chemotherapy-naive Patients with Castration Prostate Cancer (SAKK 08/08). European Urology, 2013, 64, 150-158.	n-resistant	0.9	120
921	mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain, 2	2013, 154, 1080-1091.	2.0	79
922	Sustained overexpression of Redd1 leads to Akt activation involved in cell survival. Cand 2013, 336, 319-324.	ter Letters,	3.2	21
923	Effects of epidermal growth factor receptor and phosphatase and tensin homologue ge on the inhibition of U87 <scp>MG</scp> glioblastoma cell proliferation induced by prot inhibitors. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 13-21.		0.9	12
924	Reprogramming of the MicroRNA Transcriptome Mediates Resistance to Rapamycin. Jou Biological Chemistry, 2013, 288, 6034-6044.	ırnal of	1.6	41
925	The dynamic nature of the kinome. Biochemical Journal, 2013, 450, 1-8.		1.7	90
926	Promise of rapalogues versus mTOR kinase inhibitors in subset specific breast cancer: C hope. Cancer Treatment Reviews, 2013, 39, 403-412.	ld targets new	3.4	32
927	Coexistent mutations of <i>KRAS</i> and <i>PIK3CA</i> affect the efficacy of NVPâ€BE PI3K/MTOR inhibitor, in regulating the PI3K/MTOR pathway in colorectal cancer. Interna of Cancer, 2013, 133, 984-996.	Z235, a dual tional Journal	2.3	49
928	Chemical Inhibitors and microRNAs (miRNA) Targeting the Mammalian Target of Rapam Pathway: Potential for Novel Anticancer Therapeutics. International Journal of Molecular 2013, 14, 3874-3900.	ycin (mTOR) r Sciences,	1.8	40
929	Emerging targeted agents in metastatic breast cancer. Nature Reviews Clinical Oncolog 191-210.	y, 2013, 10,	12.5	158
930	PUMA and BIM Are Required for Oncogene Inactivation–Induced Apoptosis. Science S ra20.	Signaling, 2013, 6,	1.6	107

		CITATION R	EPORT	
#	Article		IF	Citations
931	Everolimus in colorectal cancer. Expert Opinion on Pharmacotherapy, 2013, 14, 505-5	13.	0.9	22
932	Molecular characterization of anastrozole resistance in breast cancer: Pivotal role of th pathway in the emergence of $\langle i \rangle$ de novo $\langle /i \rangle$ or acquired resistance and importance of allosteric Akt inhibitor MKâ \in 206 with an aromatase inhibitor. International Journal of 133. 1589-1602.	combining the	2.3	42
933	Mammalian Target of Rapamycin in Renal Cell Carcinoma. , 2013, , 317-337.			0
934	Activity of the $\langle scp \rangle mTOR \langle scp \rangle$ inhibitor RAD001, the dual $\langle scp \rangle mTOR \langle scp \rangle$ and P BEZ235 and the PI3â kinase inhibitor BKM120 in hepatocellular carcinoma. Liver Inter 780-793.	13â€kinase inhibitor national, 2013, 33,	1.9	38
935	Chemical Development of Intracellular Protein Heterodimerizers. Chemistry and Biolog 549-557.	y, 2013, 20,	6.2	49
936	Adverse events associated with mTOR inhibitors. Expert Opinion on Drug Safety, 2013	, 12, 177-186.	1.0	172
937	Rapid optimization and prototyping for therapeutic antibody-like molecules. MAbs, 20	13, 5, 237-254.	2.6	27
938	PTEN in Prostate Cancer. , 2013, , 87-137.			2
939	The VHL/HIF axis in clear cell renal carcinoma. Seminars in Cancer Biology, 2013, 23, 18	3-25.	4.3	314
940	Therapeutic targeting of EGFR-activated metabolic pathways in glioblastoma. Expert O Investigational Drugs, 2013, 22, 1023-1040.	pinion on	1.9	32
941	Inhibition of mTORC2 but not mTORC1 Up-Regulates E-Cadherin Expression and Inhibi Blocking HIF-2α Expression in Human Renal Cell Carcinoma. Journal of Urology, 2013,		0.2	24
942	Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: New strategies for ove resistance to VEGFR and mTORC1 inhibitors. International Journal of Cancer, 2013, 13		2.3	65
944	Next generation of mammalian target of rapamycin inhibitors for the treatment of can Opinion on Investigational Drugs, 2013, 22, 715-722.	cer. Expert	1.9	16
945	Involvement of Heregulin/HER3 in the Primary Culture of Human Urothelial Cancer. Jou Urology, 2013, 190, 302-310.	rnal of	0.2	33
946	Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocrin Cancer, 2013, 20, R83-R99.	ne-Related	1.6	272
947	Regulation of insulin receptor substrate-1 by mTORC2 (mammalian target of rapamyci Biochemical Society Transactions, 2013, 41, 896-901.	n complex 2).	1.6	35
948	Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia. Expe Therapeutic Targets, 2013, 17, 921-936.	ert Opinion on	1.5	15
949	Navigating the Therapeutic Complexity of PI3K Pathway Inhibition in Melanoma. Clinica Research, 2013, 19, 5310-5319.	al Cancer	3.2	78

#	Article	IF	CITATIONS
950	Signalling Pathways Passing Src in Pancreatic Endocrine Tumours: Relevance for Possible Combined Targeted Therapies. Neuroendocrinology, 2013, 97, 67-73.	1.2	10
951	Synergistic Antiproliferative and Antiangiogenic Effects of EGFR and mTOR Inhibitors. Current Pharmaceutical Design, 2013, 19, 918-926.	0.9	9
952	Vascular tumors have increased p70 S6-kinase activation and are inhibited by topical rapamycin. Laboratory Investigation, 2013, 93, 1115-1127.	1.7	39
953	Oncogenic and Wild-type Ras Play Divergent Roles in the Regulation of Mitogen-Activated Protein Kinase Signaling. Cancer Discovery, 2013, 3, 112-123.	7.7	183
954	Overcoming resistance to mTOR inhibition for enhanced strategies in clinical trials. Expert Opinion on Investigational Drugs, 2013, 22, 679-685.	1.9	8
955	Ubiquitin Hydrolase UCH-L1 Destabilizes mTOR Complex 1 by Antagonizing DDB1-CUL4-Mediated Ubiquitination of Raptor. Molecular and Cellular Biology, 2013, 33, 1188-1197.	1.1	63
956	Phase II Study of Everolimus in Patients with Metastatic Colorectal Adenocarcinoma Previously Treated with Bevacizumab-, Fluoropyrimidine-, Oxaliplatin-, and Irinotecan-Based Regimens. Clinical Cancer Research, 2013, 19, 3987-3995.	3.2	57
957	Integration of Different "-omics―Technologies Identifies Inhibition of the IGF1R-Akt-mTOR Signaling Cascade Involved in the Cytotoxic Effect of Shikonin against Leukemia Cells. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-11.	0.5	24
958	Dual PI3K/AKT/mTOR Inhibitor BEZ235 Synergistically Enhances the Activity of JAK2 Inhibitor against Cultured and Primary Human Myeloproliferative Neoplasm Cells. Molecular Cancer Therapeutics, 2013, 12, 577-588.	1.9	94
959	Macrophage Autophagy in Atherosclerosis. Mediators of Inflammation, 2013, 2013, 1-14.	1.4	62
960	Cucurbitane Triterpenoid from <i>Momordica charantia</i> Induces Apoptosis and Autophagy in Breast Cancer Cells, in Part, through Peroxisome Proliferator-Activated Receptor <i>γ</i> Activation. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-12.	0.5	55
961	miR-205 Targets PTEN and PHLPP2 to Augment AKT Signaling and Drive Malignant Phenotypes in Non–Small Cell Lung Cancer. Cancer Research, 2013, 73, 5402-5415.	0.4	178
962	AKT-ing out: SGK kinases come to the fore. Biochemical Journal, 2013, 452, e11-e13.	1.7	18
963	mTOR, p70S6K, AKT, and ERK1/2 levels predict sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial carcinoids. Endocrine-Related Cancer, 2013, 20, 463-475.	1.6	62
964	Results of an International Randomized Phase III Trial of the Mammalian Target of Rapamycin Inhibitor Ridaforolimus Versus Placebo to Control Metastatic Sarcomas in Patients After Benefit From Prior Chemotherapy. Journal of Clinical Oncology, 2013, 31, 2485-2492.	0.8	213
965	mTOR Signaling Feedback Modulates Mammary Epithelial Differentiation and Restrains Invasion Downstream of <i>PTEN</i> Loss. Cancer Research, 2013, 73, 5218-5231.	0.4	13
966	<i>PIK3CA</i> and <i>AKT1</i> Mutations Have Distinct Effects on Sensitivity to Targeted Pathway Inhibitors in an Isogenic Luminal Breast Cancer Model System. Clinical Cancer Research, 2013, 19, 5413-5422.	3.2	84
967	mTORC1 Inhibitors Suppress Meningioma Growth in Mouse Models. Clinical Cancer Research, 2013, 19, 1180-1189.	3.2	85

#	Article	IF	CITATIONS
968	Protein Phosphatase 2A and DNA-dependent Protein Kinase Are Involved in Mediating Rapamycin-induced Akt Phosphorylation. Journal of Biological Chemistry, 2013, 288, 13215-13224.	1.6	47
969	Suppression of AKT Phosphorylation Restores Rapamycin-Based Synthetic Lethality in SMAD4-Defective Pancreatic Cancer Cells. Molecular Cancer Research, 2013, 11, 474-481.	1.5	12
970	Current Phase II clinical data for ridaforolimus in cancer. Expert Opinion on Investigational Drugs, 2013, 22, 1485-1493.	1.9	6
971	Signaling Determinants of Glioma Cell Invasion. Advances in Experimental Medicine and Biology, 2013, 986, 121-141.	0.8	67
972	Rapamycin regulates connective tissue growth factor expression of lung epithelial cells via phosphoinositide 3-kinase. Experimental Biology and Medicine, 2013, 238, 1082-1094.	1.1	23
973	Subtype-Specific MEK-PI3 Kinase Feedback as a Therapeutic Target in Pancreatic Adenocarcinoma. Molecular Cancer Therapeutics, 2013, 12, 2213-2225.	1.9	36
974	Extending the Convergence of Canonical WNT Signaling and Classic Cancer Pathways for Treatment of Malignant Peripheral Nerve Sheath Tumors. Cancer Discovery, 2013, 3, 610-612.	7.7	6
975	Emerging therapies and latest development in the treatment of unresectable pancreatic neuroendocrine tumors: an update for clinicians. Therapeutic Advances in Gastroenterology, 2013, 6, 474-490.	1.4	23
976	Inhibition of Rapamycin-Induced AKT Activation Elicits Differential Antitumor Response in Head and Neck Cancers. Cancer Research, 2013, 73, 1118-1127.	0.4	19
977	GDNF–RET Signaling in ER-Positive Breast Cancers Is a Key Determinant of Response and Resistance to Aromatase Inhibitors. Cancer Research, 2013, 73, 3783-3795.	0.4	97
978	New strategies to overcome resistance to mammalian target of rapamycin inhibitors in breast cancer. Current Opinion in Oncology, 2013, 25, 587-593.	1.1	11
979	Somatostatin receptor scintigraphy in patients with metastatic uveal melanoma. Melanoma Research, 2013, 23, 33-39.	0.6	11
980	Combining mTOR Inhibitors with Chemotherapy and Other Targeted Therapies in Advanced Breast Cancer: Rationale, Clinical Experience, and Future Directions. Breast Cancer: Basic and Clinical Research, 2013, 7, BCBCR.S10071.	0.6	31
981	New and emerging treatments for estrogen receptor-positive breast cancer: focus on everolimus. Therapeutics and Clinical Risk Management, 2013, 9, 27.	0.9	16
982	Target-Based Therapeutic Matching in Early-Phase Clinical Trials in Patients with Advanced Colorectal Cancer and <i>PIK3CA</i> Mutations. Molecular Cancer Therapeutics, 2013, 12, 2857-2863.	1.9	42
983	Targeting AKT with the allosteric AKT inhibitor MK-2206 in non-small cell lung cancer cells with acquired resistance to cetuximab. Cancer Biology and Therapy, 2013, 14, 481-491.	1.5	43
984	Treatment of Estrogen Receptor-Positive Breast Cancer. Current Medicinal Chemistry, 2013, 20, 596-604.	1.2	213
985	Upregulation of HOâ€1 is accompanied by activation of p38MAPK and mTOR in human oesophageal squamous carcinoma cells. Cell Biology International, 2013, 37, 584-592.	1.4	8

#	Article	IF	CITATIONS
986	Targeting core (mutated) pathways of high-grade gliomas: challenges of intrinsic resistance and drug efflux. CNS Oncology, 2013, 2, 271-288.	1.2	21
987	PI3Kδ Inhibition Augments the Efficacy of Rapamycin in Suppressing Proliferation of Epsteinâ^'Barr Virus (EBV)+ B Cell Lymphomas. American Journal of Transplantation, 2013, 13, 2035-2043.	2.6	31
988	Discovery of the Novel mTOR Inhibitor and Its Antitumor Activities <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2013, 12, 950-958.	1.9	19
989	JAK2-STAT5 signaling. Jak-stat, 2013, 2, e24635.	2.2	6
990	Insulin growth factor receptor (IGF-1R) antibody cixutumumab combined with the mTOR inhibitor temsirolimus in patients with metastatic adrenocortical carcinoma. British Journal of Cancer, 2013, 108, 826-830.	2.9	110
991	PTEN deficiency is associated with reduced sensitivity to mTOR inhibitor in human bladder cancer through the unhampered feedback loop driving PI3K/Akt activation. British Journal of Cancer, 2013, 109, 1586-1592.	2.9	68
992	Suppression of proinvasive RGS4 by mTOR inhibition optimizes glioma treatment. Oncogene, 2013, 32, 1099-1109.	2.6	35
993	Novel monofunctional platinum (II) complex Mono-Pt induces apoptosis-independent autophagic cell death in human ovarian carcinoma cells, distinct from cisplatin. Autophagy, 2013, 9, 996-1008.	4.3	82
994	Role of PI3K, mTOR and Akt2 signalling in hepatic tumorigenesis via the control of PKM2 expression. Biochemical Society Transactions, 2013, 41, 917-922.	1.6	39
995	Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas. Blood, 2013, 121, 2964-2974.	0.6	59
996	Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood, 2013, 122, 1610-1620.	0.6	146
997	DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses. Blood, 2013, 122, 1833-1842.	0.6	37
998	Protective role of autophagy in matrine-induced gastric cancer cell death. International Journal of Oncology, 2013, 42, 1417-1426.	1.4	42
999	Melanoma Mutagenesis and Aberrant Cell Signaling. Cancer Control, 2013, 20, 261-281.	0.7	29
1000	The Phosphoinositide-3-Kinase-Akt-mTOR Pathway as a Therapeutic Target in Breast Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2013, 11, 670-678.	2.3	96
1001	Targeting the Akt-pathway to Improve Radiosensitivity in Glioblastoma. Current Pharmaceutical Design, 2013, 19, 951-957.	0.9	26
1002	Ophiopogonin B-induced autophagy in non-small cell lung cancer cells via inhibition of the PI3K/Akt signaling pathway. Oncology Reports, 2013, 29, 430-436.	1.2	71
1003	Current Advances in Therapy for Metastatic Melanoma. Current Cancer Therapy Reviews, 2013, 9, 8-23.	0.2	Ο

# 1004	ARTICLE The PI3K/Akt/mTOR Pathway in Ovarian Cancer: Biological Rationale and Therapeutic Opportunities. , 0, ,	IF	CITATIONS
1005	Modulation of insulin-like growth factor-1 receptor and its signaling network for the treatment of cancer: current status and future perspectives. Oncology Reviews, 2013, 7, 3.	0.8	15
1006	Novel Targeted Therapies and Combinations for the Treatment of Multiple Myeloma. Cardiovascular & Hematological Disorders Drug Targets, 2013, 13, 2-15.	0.2	9
1007	IGF-1R as an anti-cancer target-trials and tribulations. Chinese Journal of Cancer, 2013, 32, 242-252.	4.9	173
1008	Akt1 Enhances CA916798 Expression through mTOR Pathway. PLoS ONE, 2013, 8, e62327.	1.1	7
1009	Combination of mTOR and EGFR Kinase Inhibitors Blocks mTORC1 and mTORC2 Kinase Activity and Suppresses the Progression of Colorectal Carcinoma. PLoS ONE, 2013, 8, e73175.	1.1	17
1010	Arsenic Trioxide Overcomes Rapamycin-Induced Feedback Activation of AKT and ERK Signaling to Enhance the Anti-Tumor Effects in Breast Cancer. PLoS ONE, 2013, 8, e85995.	1.1	25
1011	Targeting Oncogene-Induced Autophagy: A New Approach in Cancer Therapy?. Journal of Cancer Research, 2013, 2013, 1-10.	0.7	6
1012	Targeting the PI3K-AKT-mTOR signaling network in cancer. Chinese Journal of Cancer, 2013, 32, 253-265.	4.9	173
1013	The insulin–insulin-like growth-factor receptor family as a therapeutic target in oncology. , 0, , 110-118.		0
1014	РІЗК. , 0, , 218-230.		0
1015	MicroRNA-100 promotes the autophagy of hepatocellular carcinoma cells by inhibiting the expression of mTOR and IGF-1R. Oncotarget, 2014, 5, 6218-6228.	0.8	77
1016	Antitumor Activity and Induction of TP53-Dependent Apoptosis toward Ovarian Clear Cell Adenocarcinoma by the Dual PI3K/mTOR Inhibitor DS-7423. PLoS ONE, 2014, 9, e87220.	1.1	40
1017	Curcumin Significantly Enhances Dual PI3K/Akt and mTOR Inhibitor NVP-BEZ235-Induced Apoptosis in Human Renal Carcinoma Caki Cells through Down-Regulation of p53-Dependent Bcl-2 Expression and Inhibition of Mcl-1 Protein Stability. PLoS ONE, 2014, 9, e95588.	1.1	67
1018	Signaling Mechanisms that Suppress the Cytostatic Actions of Rapamycin. PLoS ONE, 2014, 9, e99927.	1.1	3
1019	mTOR Inhibition Induces Compensatory, Therapeutically Targetable MEK Activation in Renal Cell Carcinoma. PLoS ONE, 2014, 9, e104413.	1.1	20
1020	Complex Impacts of PI3K/AKT Inhibitors to Androgen Receptor Gene Expression in Prostate Cancer Cells. PLoS ONE, 2014, 9, e108780.	1.1	30
1021	Dual Pharmacological Targeting of the MAP Kinase and PI3K/mTOR Pathway in Preclinical Models of Colorectal Cancer. PLoS ONE, 2014, 9, e113037.	1.1	40

#	Article	IF	CITATIONS
1022	Molecular Alterations of PI3K/Akt/mTOR Pathway: A Therapeutic Target in Endometrial Cancer. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	56
1023	PI3K-AKT-mTOR-Signaling and beyond: the Complex Network in Gastroenteropancreatic Neuroendocrine Neoplasms. Theranostics, 2014, 4, 336-365.	4.6	78
1024	PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian Journal of Andrology, 2014, 16, 378.	0.8	217
1025	New Agents and New Targets for Renal Cell Carcinoma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2014, , e222-e227.	1.8	26
1026	mTOR and Regulation of Translation. , 2014, , 307-343.		3
1027	p70 Ribosomal protein S6 kinase (<i>Rps6kb1</i>): an update. Journal of Clinical Pathology, 2014, 67, 1019-1025.	1.0	70
1028	Sustained Inhibition of Receptor Tyrosine Kinases and Macrophage Depletion by PLX3397 and Rapamycin as a Potential New Approach for the Treatment of MPNSTs. Clinical Cancer Research, 2014, 20, 3146-3158.	3.2	86
1029	Pharmacodynamic and Antineoplastic Activity of BI 836845, a Fully Human IGF Ligand-Neutralizing Antibody, and Mechanistic Rationale for Combination with Rapamycin. Molecular Cancer Therapeutics, 2014, 13, 399-409.	1.9	83
1030	Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Research, 2014, 16, 430.	2.2	61
1031	Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Management, 2014, 3, 67-75.	1.5	104
1032	Sirolimus treatment of severe PTEN hamartoma tumor syndrome: case report and in vitro studies. Pediatric Research, 2014, 75, 527-534.	1.1	54
1033	The bromodomain and extra-terminal inhibitor CPI203 enhances the antiproliferative effects of rapamycin on human neuroendocrine tumors. Cell Death and Disease, 2014, 5, e1450-e1450.	2.7	51
1034	The PI3K/AKT/mTOR pathway in the pathophysiology and treatment of pituitary adenomas. Endocrine-Related Cancer, 2014, 21, R331-R344.	1.6	61
1035	Kinome-wide screening of HER2+ breast cancer cells for molecules that mediate cell proliferation or sensitize cells to trastuzumab therapy. Oncogenesis, 2014, 3, e133-e133.	2.1	18
1036	Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-Oncology, 2014, 16, 567-578.	0.6	140
1037	Rationale-based therapeutic combinations with PI3K inhibitors in cancer treatment. Molecular and Cellular Oncology, 2014, 1, e963447.	0.3	9
1038	Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. Pharmacogenomics and Personalized Medicine, 2014, 7, 203.	0.4	83
1039	MM-141, an IGF-IR– and ErbB3-Directed Bispecific Antibody, Overcomes Network Adaptations That Limit Activity of IGF-IR Inhibitors. Molecular Cancer Therapeutics, 2014, 13, 410-425.	1.9	99

#	Article	IF	CITATIONS
1040	Use of a preclinical model of pancreas cancer to identify potential candidates for rapalogue therapy. Gut, 2014, 63, 1379-1380.	6.1	0
1041	Standard of Care and Promising New Agents for Triple Negative Metastatic Breast Cancer. Cancers, 2014, 6, 2187-2223.	1.7	34
1042	Computer-Aided Targeting of the PI3K/Akt/mTOR Pathway: Toxicity Reduction and Therapeutic Opportunities. International Journal of Molecular Sciences, 2014, 15, 18856-18891.	1.8	63
1043	Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma. Journal of Neurosurgery, 2014, 121, 1434-1445.	0.9	35
1044	AZD5363 Inhibits Inflammatory Synergy between Interleukin-17 and Insulin/Insulin-Like Growth Factor 1. Frontiers in Oncology, 2014, 4, 343.	1.3	10
1045	A Proteomic View to Characterize the Effect of Chitosan Nanoparticle to Hepatic Cells: Is Chitosan Nanoparticle an Enhancer of PI3K/AKT1/mTOR Pathway?. BioMed Research International, 2014, 2014, 1-9.	0.9	8
1046	Targeting PI3K/mTOR Overcomes Resistance to HER2-Targeted Therapy Independent of Feedback Activation of AKT. Clinical Cancer Research, 2014, 20, 3507-3520.	3.2	100
1047	What is the future potential of the PI3K pathway in colorectal cancer treatment?. Colorectal Cancer, 2014, 3, 113-116.	0.8	0
1048	Emerging therapy for adrenocortical carcinoma. International Journal of Endocrine Oncology, 2014, 1, 173-182.	0.4	12
1049	What is the potential of using PI3K inhibitors in the management of breast cancer in the clinic?. Breast Cancer Management, 2014, 3, 345-357.	0.2	0
1050	Everolimus and zoledronic acid—a potential synergistic treatment for lung adenocarcinoma bone metastasis. Acta Biochimica Et Biophysica Sinica, 2014, 46, 792-801.	0.9	12
1051	Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. British Journal of Cancer, 2014, 110, 899-907.	2.9	108
1052	Colocalized Delivery of Rapamycin and Paclitaxel to Tumors Enhances Synergistic Targeting of the PI3K/Akt/mTOR Pathway. Molecular Therapy, 2014, 22, 1310-1319.	3.7	62
1053	Time now to <scp>TORC</scp> the <scp>TORC</scp> ? New developments in m <scp>TOR</scp> pathway inhibition in lymphoid malignancies. British Journal of Haematology, 2014, 166, 336-351.	1.2	40
1054	Inhibition of m <scp>TOR</scp> signalling potentiates the effects of trichostatin A in human gastric cancer cell lines by promoting histone acetylation. Cell Biology International, 2014, 38, 50-63.	1.4	20
1055	Switch in Signaling Control of mTORC1 Activity After Oncoprotein Expression in Thyroid Cancer Cell Lines. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1976-E1987.	1.8	22
1056	mTOR inhibitors: changing landscape of endocrine-resistant breast cancer. Future Oncology, 2014, 10, 443-456.	1.1	11
1057	Phase I Safety, Pharmacokinetic, and Pharmacodynamic Study of SAR245409 (XL765), a Novel, Orally Administered PI3K/mTOR Inhibitor in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2014, 20, 2445-2456.	3.2	88

#	Article	IF	CITATIONS
1058	Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities. Frontiers in Physiology, 2014, 5, 478.	1.3	40
1059	The Window of Desiccation Tolerance Shown by Early-Stage Germinating Seedlings Remains Open in the Resurrection Plant, Xerophyta viscosa. PLoS ONE, 2014, 9, e93093.	1.1	9
1060	Use of mTOR inhibitors in the treatment of malignancies. Expert Opinion on Pharmacotherapy, 2014, 15, 979-990.	0.9	5
1061	Inhibition of p70 S6 Kinase (S6K1) Activity by A77 1726 and Its Effect on Cell Proliferation and Cell Cycle Progress. Neoplasia, 2014, 16, 824-834.	2.3	32
1062	MEDI-573, Alone or in Combination with Mammalian Target of Rapamycin Inhibitors, Targets the Insulin-like Growth Factor Pathway in Sarcomas. Molecular Cancer Therapeutics, 2014, 13, 2662-2673.	1.9	21
1063	FoxO Transcription Factors Promote AKT Ser473 Phosphorylation and Renal Tumor Growth in Response to Pharmacologic Inhibition of the PI3K–AKT Pathway. Cancer Research, 2014, 74, 1682-1693.	0.4	112
1064	PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Archives of Gynecology and Obstetrics, 2014, 290, 1067-1078.	0.8	189
1065	A novel phosphatidylinositol 3-kinase (PI3K) inhibitor directs a potent FOXO-dependent, p53-independent cell cycle arrest phenotype characterized by the differential induction of a subset of FOXO-regulated genes. Breast Cancer Research, 2014, 16, 482.	2.2	41
1066	Targeting mTOR dependency in pancreatic cancer. Gut, 2014, 63, 1481-1489.	6.1	107
1067	Mirk/dyrk1B kinase is upregulated following inhibition of mTOR. Carcinogenesis, 2014, 35, 1968-1976.	1.3	20
1068	eRapa Restores a Normal Life Span in a FAP Mouse Model. Cancer Prevention Research, 2014, 7, 169-178.	0.7	63
1069	Dual Inhibition of PI3K and mTOR Signaling Pathways Decreases Human Pancreatic Neuroendocrine Tumor Metastatic Progression. Pancreas, 2014, 43, 88-92.	0.5	23
1070	Dual Inhibition of Phosphatidylinositol 3′-Kinase and Mammalian Target of Rapamycin Using NVP-BEZ235 as a Novel Therapeutic Approach for Mucinous Adenocarcinoma of the Ovary. International Journal of Gynecological Cancer, 2014, 24, 444-453.	1.2	19
1071	Integration of Protein Network Activation Mapping Technology for Personalized Therapy. , 2014, , 367-383.		0
1072	Role of ibrutinib for the treatment of mantle cell lymphoma in the elderly. International Journal of Hematologic Oncology, 2014, 3, 53-61.	0.7	0
1073	AKT as a therapeutic target in multiple myeloma. Expert Opinion on Therapeutic Targets, 2014, 18, 897-915.	1.5	44
1074	A Genetic Mouse Model of Invasive Endometrial Cancer Driven by Concurrent Loss of Pten and Lkb1 Is Highly Responsive to mTOR Inhibition. Cancer Research, 2014, 74, 15-23.	0.4	57
1075	Rapid Induction of Apoptosis by PI3K Inhibitors Is Dependent upon Their Transient Inhibition of RAS–ERK Signaling. Cancer Discovery, 2014, 4, 334-347.	7.7	169

	CITATION REF	ORT	
#	Article	IF	CITATIONS
1076	mTOR Signaling in Protein Translation Regulation: Implications in Cancer Genesis and Therapeutic Interventions. Molecular Biology International, 2014, 2014, 1-14.	1.7	149
1077	Molecularly Targeted Therapies in Multiple Myeloma. Leukemia Research and Treatment, 2014, 2014, 1-8.	2.0	43
1078	Targeting PI3K/Akt/mTOR Signaling in Cancer. Frontiers in Oncology, 2014, 4, 64.	1.3	1,077
1079	Targeting PI3K/mTOR Signaling in Cancer. Frontiers in Oncology, 2014, 4, 84.	1.3	450
1080	The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma. Cancers, 2014, 6, 1441-1463.	1.7	167
1081	The Prolyl Peptidases PRCP/PREP Regulate IRS-1 Stability Critical for Rapamycin-induced Feedback Activation of PI3K and AKT. Journal of Biological Chemistry, 2014, 289, 21694-21705.	1.6	17
1082	Dual PI3K/mTOR Inhibitor NVP-BEZ235 Sensitizes Docetaxel in Castration Resistant Prostate Cancer. Journal of Urology, 2014, 191, 227-234.	0.2	60
1083	Systematic combination screening reveals synergism between rapamycin and sunitinib against human lung cancer. Cancer Letters, 2014, 342, 159-166.	3.2	33
1084	Third-line dovitinib in metastatic renal cell carcinoma. Lancet Oncology, The, 2014, 15, 245-246.	5.1	12
1085	Tailored therapeutic strategies for synovial sarcoma: Receptor tyrosine kinase pathway analyses predict sensitivity to the mTOR inhibitor RAD001. Cancer Letters, 2014, 347, 114-122.	3.2	13
1086	Targeting the mTOR Signaling Network for Alzheimer's Disease Therapy. Molecular Neurobiology, 2014, 49, 120-135.	1.9	111
1087	Glioblastoma: From Molecular Pathology to Targeted Treatment. Annual Review of Pathology: Mechanisms of Disease, 2014, 9, 1-25.	9.6	427
1088	Partial response of a rare malignant metastatic diffuse tenosynovial giant cell tumor with benign histologic features, treated with SCH 717–454, an insulin growth factor receptor inhibitor, in combination with everolimus, an MTOR inhibitor. Targeted Oncology, 2014, 9, 73-79.	1.7	7
1089	Growth factor and signaling pathways and their relevance to prostate cancer therapeutics. Cancer and Metastasis Reviews, 2014, 33, 581-594.	2.7	27
1090	Vertical blockade of the IGFR- PI3K/Akt/mTOR pathway for the treatment of hepatocellular carcinoma: the role of survivin. Molecular Cancer, 2014, 13, 2.	7.9	32
1091	Expression of Wilms' tumor gene (WT1) is associated with survival in malignant pleural mesothelioma. Clinical and Translational Oncology, 2014, 16, 776-782.	1.2	16
1092	Molecular basis of pharmacological therapy in Cushing's disease. Endocrine, 2014, 46, 181-198.	1.1	27
1093	Examining Changes in [18 F]FDG and [18 F]FLT Uptake in U87-MG Glioma Xenografts as Early Response Biomarkers to Treatment with the Dual mTOR1/2 Inhibitor AZD8055. Molecular Imaging and Biology, 2014, 16, 421-430.	1.3	20

#	Article	IF	CITATIONS
1094	Benzofuran derivatives as a novel class of inhibitors of mTOR signaling. European Journal of Medicinal Chemistry, 2014, 74, 41-49.	2.6	30
1095	Engrailed2 modulates cerebellar granule neuron precursor proliferation, differentiation and insulin-like growth factor 1 signaling during postnatal development. Molecular Autism, 2014, 5, 9.	2.6	20
1096	Targeting the PI3K/Akt/mTOR Pathway in Malignancy: Rationale and Clinical Outlook. BioDrugs, 2014, 28, 373-381.	2.2	14
1097	Everolimus in combination with letrozole inhibit human breast cancer MCF-7/Aro stem cells via PI3K/mTOR pathway: an experimental study. Tumor Biology, 2014, 35, 1275-1286.	0.8	25
1098	Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Breast Cancer Research, 2014, 16, R12.	2.2	56
1099	PI3K pathway inhibitors for the treatment of brain metastases with a focus on HER2+ breast cancer. Journal of Neuro-Oncology, 2014, 117, 7-13.	1.4	15
1100	Multitargeted molecular docking study of plant-derived natural products on phosphoinositide-3 kinase pathway components. Medicinal Chemistry Research, 2014, 23, 1690-1700.	1.1	24
1101	The PI3K/AKT/MTOR Signaling Pathway: The Role of PI3K and AKT Inhibitors in Breast Cancer. Current Breast Cancer Reports, 2014, 6, 59-70.	0.5	7
1102	Role of Akt in human malignant glioma: from oncogenesis to tumor aggressiveness. Journal of Neuro-Oncology, 2014, 117, 205-215.	1.4	48
1103	Everolimus in combination with octreotide longâ€acting repeatable in a firstâ€ine setting for patients with neuroendocrine tumors: An ITMO group study. Cancer, 2014, 120, 2457-2463.	2.0	62
1104	Status of PI3K/Akt/mTOR Pathway Inhibitors in Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, 335-342.	0.2	72
1105	Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treatment Reviews, 2014, 40, 862-871.	3.4	257
1106	Exploiting Cancer Dependence on Molecular Chaperones. , 2014, , 239-274.		1
1107	Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. , 2014, 142, 164-175.		648
1108	Regulation of matrix metalloproteinaseâ€1, â€3, and â€9 in Mycobacterium tuberculosisâ€dependent respiratory networks by the rapamycinâ€sensitive PI3K/p70 S6K cascade. FASEB Journal, 2014, 28, 85-93.	0.2	27
1109	Clinical relevance of KRAS mutations in codon 13: Where are we?. Cancer Letters, 2014, 343, 1-5.	3.2	31
1110	Emerging strategies to overcome the resistance to current mTOR inhibitors in renal cell carcinoma. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 221-231.	3.3	46
1111	Rational combination of dual PI3K/mTOR blockade and Bcl-2/-xL inhibition in AML. Physiological Genomics, 2014, 46, 448-456.	1.0	26

#	Article	IF	CITATIONS
1112	A novel direct activator of <scp>AMPK</scp> inhibits prostate cancer growth by blocking lipogenesis. EMBO Molecular Medicine, 2014, 6, 519-538.	3.3	168
1113	Preclinical trial of a new dual mTOR inhibitor, MLN0128, using renal cell carcinoma tumorgrafts. International Journal of Cancer, 2014, 134, 2322-2329.	2.3	40
1114	Mutant PIK3CA controls DUSP1-dependent ERK 1/2 activity to confer response to AKT target therapy. British Journal of Cancer, 2014, 111, 2103-2113.	2.9	36
1115	Inhibition of pan-class I phosphatidyl-inositol-3-kinase by NVP-BKM120 effectively blocks proliferation and induces cell death in diffuse large B-cell lymphoma. Leukemia and Lymphoma, 2014, 55, 425-434.	0.6	41
1116	A parallel-arm phase I trial of the humanised anti-IGF-1R antibody dalotuzumab in combination with the AKT inhibitor MK-2206, the mTOR inhibitor ridaforolimus, or the NOTCH inhibitor MK-0752, in patients with advanced solid tumours. British Journal of Cancer, 2014, 111, 1932-1944.	2.9	71
1117	Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis. Leukemia, 2014, 28, 2197-2205.	3.3	60
1118	Upregulation of IGF1R by Mutant <i>RAS</i> in Leukemia and Potentiation of <i>RAS</i> Signaling Inhibitors by Small-Molecule Inhibition of IGF1R. Clinical Cancer Research, 2014, 20, 5483-5495.	3.2	16
1119	Loss-of-function RNAi screens in breast cancer cells identify AURKB, PLK1, PIK3R1, MAPK12, PRKD2, and PTK6 as sensitizing targets of rapamycin activity. Cancer Letters, 2014, 354, 336-347.	3.2	22
1120	Clinical development of mTOR inhibitors in breast cancer. Breast Cancer Research, 2014, 16, 203.	2.2	49
1121	Combined SFK/mTOR Inhibition Prevents Rapamycin-Induced Feedback Activation of AKT and Elicits Efficient Tumor Regression. Cancer Research, 2014, 74, 4762-4771.	0.4	34
1122	Suppression of Feedback Loops Mediated by PI3K/mTOR Induces Multiple Overactivation of Compensatory Pathways: An Unintended Consequence Leading to Drug Resistance. Molecular Cancer Therapeutics, 2014, 13, 2477-2488.	1.9	224
1123	Rapamycin prevents <i>N</i> â€methylâ€Dâ€aspartateâ€induced retinal damage through an ERKâ€dependent mechanism in rats. Journal of Neuroscience Research, 2014, 92, 692-702.	1.3	20
1124	Inhibition of fatty acid synthase induces pro-survival Akt and ERK signaling in K-Ras-driven cancer cells. Cancer Letters, 2014, 353, 258-263.	3.2	11
1125	EGFR Blockade Enriches for Lung Cancer Stem–like Cells through Notch3-Dependent Signaling. Cancer Research, 2014, 74, 5572-5584.	0.4	105
1126	RapidCaP, a Novel GEM Model for Metastatic Prostate Cancer Analysis and Therapy, Reveals Myc as a Driver of <i>Pten</i> -Mutant Metastasis. Cancer Discovery, 2014, 4, 318-333.	7.7	83
1127	Stratification of clear cell renal cell carcinoma by signaling pathway analysis. Expert Review of Proteomics, 2014, 11, 237-249.	1.3	9
1128	Identification of mTORC2 as a Necessary Component of HRG/ErbB2-Dependent Cellular Transformation. Molecular Cancer Research, 2014, 12, 940-952.	1.5	20
1129	Luminal B Breast Cancer: Molecular Characterization, Clinical Management, and Future Perspectives. Journal of Clinical Oncology, 2014, 32, 2794-2803.	0.8	298

#	Article	IF	CITATIONS
1130	Signaling pathways in breast cancer: Therapeutic targeting of the microenvironment. Cellular Signalling, 2014, 26, 2843-2856.	1.7	79
1131	Design, Synthesis, and Biological Activity of Pyridopyrimidine Scaffolds as Novel PI3K/mTOR Dual Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 613-631.	2.9	71
1132	PIP5K1 $\hat{l}\pm$ inhibition as a therapeutic strategy for prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12578-12579.	3.3	11
1133	Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: An emerging treatment strategy for squamous cell lung carcinoma. Cancer Treatment Reviews, 2014, 40, 980-989.	3.4	95
1134	The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells. Biochemical and Biophysical Research Communications, 2014, 450, 973-978.	1.0	27
1135	Investigational drugs targeting somatostatin receptors for treatment of acromegaly and neuroendocrine tumors. Expert Opinion on Investigational Drugs, 2014, 23, 1619-1635.	1.9	33
1136	A dihydroselenoquinazoline inhibits S6 ribosomal protein signalling, induces apoptosis and inhibits autophagy in MCF-7 cells. European Journal of Pharmaceutical Sciences, 2014, 63, 87-95.	1.9	15
1137	Therapeutic Antibodies in Breast Cancer. Seminars in Oncology, 2014, 41, 576-588.	0.8	3
1138	Combinatorial therapy discovery using mixed integer linear programming. Bioinformatics, 2014, 30, 1456-1463.	1.8	73
1139	mTORC1 inhibition delays growth of neurofibromatosis type 2 schwannoma. Neuro-Oncology, 2014, 16, 493-504.	0.6	67
1140	Anticipating mechanisms of resistance to PI3K inhibition in breast cancer: a challenge in the era of precision medicine. Biochemical Society Transactions, 2014, 42, 733-741.	1.6	9
1141	Threeâ€dimensional models of cancer for pharmacology and cancer cell biology: Capturing tumor complexity in vitro/ex vivo. Biotechnology Journal, 2014, 9, 1115-1128.	1.8	316
1142	A Comprehensive Evaluation of Biomarkers Predictive of Response to PI3K Inhibitors and of Resistance Mechanisms in Head and Neck Squamous Cell Carcinoma. Molecular Cancer Therapeutics, 2014, 13, 2738-2750.	1.9	72
1143	Targeting the mTOR Signaling Pathway in Neuroendocrine Tumors. Current Treatment Options in Oncology, 2014, 15, 365-379.	1.3	74
1144	Combined targeting of mTOR and c-MET signaling pathways for effective management of epithelioid sarcoma. Molecular Cancer, 2014, 13, 185.	7.9	37
1145	A Diverse Array of Cancer-Associated <i>MTOR</i> Mutations Are Hyperactivating and Can Predict Rapamycin Sensitivity. Cancer Discovery, 2014, 4, 554-563.	7.7	384
1146	The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cellular Signalling, 2014, 26, 2694-2701.	1.7	868
1147	Epstein-Barr Virus-Encoded Latent Membrane Protein 2A Promotes the Epithelial-Mesenchymal Transition in Nasopharyngeal Carcinoma via Metastatic Tumor Antigen 1 and Mechanistic Target of Rapamycin Signaling Induction. Journal of Virology, 2014, 88, 11872-11885.	1.5	48

#	Article	IF	CITATIONS
1148	Vertical inhibition of PI3K/Akt/mTOR signaling demonstrates in vitro and in vivo anti-fibrotic activity. Journal of Dermatological Science, 2014, 76, 104-111.	1.0	39
1149	PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. Breast Cancer Research, 2014, 16, R13.	2.2	54
1150	Dihydroartemisinin inhibits the mammalian target of rapamycin-mediated signaling pathways in tumor cells. Carcinogenesis, 2014, 35, 192-200.	1.3	49
1151	MTOR Mutations in the Crosshairs of Targeted Therapy. Cancer Discovery, 2014, 4, 513-515.	7.7	2
1152	Mantle Cell Lymphoma: Taking Therapeutic Advantage of New Insights into the Biology. Current Hematologic Malignancy Reports, 2014, 9, 254-261.	1.2	0
1153	Inhibition of mTORC1 induces loss of E-cadherin through AKT/GSK-3Î ² signaling-mediated upregulation of E-cadherin repressor complexes in non-small cell lung cancer cells. Respiratory Research, 2014, 15, 26.	1.4	27
1154	Rapamycin Rescues ABT-737 Efficacy in Small Cell Lung Cancer. Cancer Research, 2014, 74, 2846-2856.	0.4	52
1155	The links between AKT and two intracellular proteolytic cascades: Ubiquitination and autophagy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 342-352.	3.3	58
1156	Eukaryotic translation initiation factor 4E as a novel therapeutic target in hematological malignancies and beyond. Expert Opinion on Therapeutic Targets, 2014, 18, 1035-1048.	1.5	18
1157	Can we unlock the potential of IGF-1R inhibition in cancer therapy?. Cancer Treatment Reviews, 2014, 40, 1096-1105.	3.4	119
1158	Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends in Biochemical Sciences, 2014, 39, 465-474.	3.7	134
1159	Combination of rituximab and mammalian target of rapamycin inhibitor everolimus (RAD001) in diffuse large B-cell lymphoma. Leukemia and Lymphoma, 2014, 55, 1151-1157.	0.6	13
1160	Change or die: Targeting adaptive signaling to kinase inhibition in cancer cells. Biochemical Pharmacology, 2014, 91, 417-425.	2.0	8
1161	The dual PI3K/mTOR inhibitor NVP-BEZ235 prevents epithelial–mesenchymal transition induced by hypoxia and TGF-β1. European Journal of Pharmacology, 2014, 729, 45-53.	1.7	42
1162	Benzofuran derivatives as anticancer inhibitors of mTOR signaling. European Journal of Medicinal Chemistry, 2014, 81, 181-191.	2.6	29
1163	Assessing the efficacy of targeting the phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway in endometrial cancer. Gynecologic Oncology, 2014, 133, 346-352.	0.6	34
1164	Differential activity of MEK and ERK inhibitors in BRAF inhibitor resistant melanoma. Molecular Oncology, 2014, 8, 544-554.	2.1	98
1165	Genetics and epigenetics of adrenocortical tumors. Molecular and Cellular Endocrinology, 2014, 386, 67-84	1.6	88

#	Article	IF	CITATIONS
1166	Dual mTORC1/2 inhibition in a preclinical xenograft tumor model of endometrial cancer. Gynecologic Oncology, 2014, 132, 468-473.	0.6	18
1167	PI3K/AKT signaling pathway and cancer: an updated review. Annals of Medicine, 2014, 46, 372-383.	1.5	887
1168	Glial Progenitors as Targets for Transformation in Glioma. Advances in Cancer Research, 2014, 121, 1-65.	1.9	38
1169	Advances in Therapy for Pediatric Sarcomas. Current Oncology Reports, 2014, 16, 395.	1.8	25
1170	Transforming growth factor-β (TGF-β) induces the expression of chondrogenesis-related genes through TGF-β receptor II (TGFRII)–AKT–mTOR signaling in primary cultured mouse precartilaginous stem cells. Biochemical and Biophysical Research Communications, 2014, 450, 646-651.	1.0	18
1171	Drug resistance to targeted therapies: Déjà vu all over again. Molecular Oncology, 2014, 8, 1067-1083.	2.1	187
1172	ERK and AKT signaling cooperate to translationally regulate survivin expression for metastatic progression of colorectal cancer. Oncogene, 2014, 33, 1828-1839.	2.6	145
1173	Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Oncogene, 2014, 33, 1590-1600.	2.6	76
1174	Targeted therapy for melanoma: rational combinatorial approaches. Oncogene, 2014, 33, 1-9.	2.6	85
1175	Insulin-like growth factor receptor polymorphism defines clinical outcome in estrogen receptor-positive breast cancer patients treated with tamoxifen. Pharmacogenomics Journal, 2014, 14, 28-34.	0.9	29
1176	Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene, 2014, 33, 745-755.	2.6	55
1177	Immunohistochemical Evidence for the Association between Attenuated mTOR Signaling and Diffuse Alveolar Damage, A Fatal Lung Complication. Tohoku Journal of Experimental Medicine, 2014, 234, 67-75.	0.5	5
1179	Activation of EGFR-PI3K-AKT signaling is required for Mycoplasma hyorhinis-promoted gastric cancer cell International, 2014, 14, 135.	1.8	37
1180	Approaches for measuring signalling plasticity in the context of resistance to targeted cancer therapies. Biochemical Society Transactions, 2014, 42, 791-797.	1.6	5
1181	Cytotoxic effects exerted by pentachlorophenol by targeting nodal pro-survival signaling pathways in human pancreatic cancer cells. Toxicology Reports, 2014, 1, 1162-1174.	1.6	2
1182	Phloroglucinol induces apoptosis through the regulation of insulin-like growth factor 1 receptor signaling pathways in human colon cancer HT-29 cells. International Journal of Oncology, 2014, 45, 1036-1042.	1.4	14
1183	MEK and PI3K inhibition in solid tumors: rationale and evidence to date. Therapeutic Advances in Medical Oncology, 2015, 7, 170-180.	1.4	105
1184	A phase I doseâ€escalation study to assess safety, tolerability, pharmacokinetics, and preliminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CCâ€223 in patients with advanced solid tumors or multiple myeloma. Cancer, 2015, 121, 3481-3490.	2.0	68

		CITATION REPORT		
#	Article		IF	CITATIONS
1185	Basal expression of insulinâ€like growth factor 1 receptor determines intrinsic resistan cells to a phosphatidylinositol 3â€kinase inhibitor ZSTK474. Cancer Science, 2015, 100		1.7	12
1186	Protective Effects of Everolimus against <i>N</i> -Methyl-D-aspartic Acid-Ind Damage in Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 1765-1771.	uced Retinal	0.6	13
1187	Immunohistochemical analysis of phosphorylated mammalian target of rapamycin and signaling components in invasive breast cancer. Molecular Medicine Reports, 2015, 12	its downstream , 5246-5254.	1.1	13
1191	Cellular and molecular effects of the mTOR inhibitor everolimus. Clinical Science, 2015	, 129, 895-914.	1.8	74
1192	The PI3K/mTOR inhibitor PF-04691502 induces apoptosis and inhibits microenvironme CLL and the Eµ-TCL1 mouse model. Blood, 2015, 125, 4032-4041.	ntal signaling in	0.6	34
1193	The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challeng Journal of Cancer, 2015, 34, 4-16.	es. Chinese	4.9	162
1194	Epithelial to mesenchymal transition in the liver field: the double face of Everolimus in Gastroenterology, 2015, 15, 118.	vitro. BMC	0.8	15
1195	TIMP3 Attenuates the Loss of Neural Stem Cells, Mature Neurons and Neurocognitive Traumatic Brain Injury. Stem Cells, 2015, 33, 3530-3544.	Dysfunction in	1.4	38
1196	PDK1-mTOR signaling pathway inhibitors reduce cell proliferation in MK2206 resistant cells. Cancer Cell International, 2015, 15, 91.	neuroblastoma	1.8	21
1197	Overcoming Phosphatidylinositol 3-Kinase (PI3K) Activation in Breast Cancer: Emerging The Journal of Oncopathology, 2015, 3, 27-39.	g PI3K Inhibitors.	0.1	2
1198	Converting biology into clinical benefit: lessons learned from BRAF inhibitors. Melanom Management, 2015, 2, 241-254.	la	0.1	10
1199	Everolimus combined with gefitinib in patients with metastatic castrationâ€resistant p Phase 1/2 results and signaling pathway implications. Cancer, 2015, 121, 3853-3861.	rostate cancer:	2.0	27
1200	Chemical manipulation of the mTORC1 pathway in industrially relevant CHOK1 cells er production of therapeutic proteins. Biotechnology Journal, 2015, 10, 1041-1050.	hances	1.8	13
1201	Targeted therapy in sarcomas other than GIST tumors. Journal of Surgical Oncology, 20)15, 111, 632-640.	0.8	11
1202	Targeting AMPK for cancer prevention and treatment. Oncotarget, 2015, 6, 7365-737	3.	0.8	287
1203	mTOR Directs Breast Morphogenesis through the PKC-alpha-Rac1 Signaling Axis. PLoS e1005291.	Genetics, 2015, 11,	1.5	40
1204	RICTOR involvement in the PI3K/AKT pathway regulation in melanocytes and melanom 2015, 6, 28120-28131.	a. Oncotarget,	0.8	26
1205	PI3K and AKT: Unfaithful Partners in Cancer. International Journal of Molecular Science 21138-21152.	s, 2015, 16,	1.8	208

#	Article	IF	CITATIONS
1206	Dual Inhibition of MEK and PI3K Pathway in KRAS and BRAF Mutated Colorectal Cancers. International Journal of Molecular Sciences, 2015, 16, 22976-22988.	1.8	102
1207	Role of IGF1R in Breast Cancer Subtypes, Stemness, and Lineage Differentiation. Frontiers in Endocrinology, 2015, 6, 59.	1.5	152
1208	The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins. Frontiers in Endocrinology, 2015, 6, 73.	1.5	35
1209	The Role of the Insulin/IGF System in Cancer: Lessons Learned from Clinical Trials and the Energy Balance-Cancer Link. Frontiers in Endocrinology, 2015, 6, 77.	1.5	118
1210	Potentiation of Growth Inhibitory Responses of the mTOR Inhibitor Everolimus by Dual mTORC1/2 Inhibitors in Cultured Breast Cancer Cell Lines. PLoS ONE, 2015, 10, e0131400.	1.1	43
1211	TORC1 Inhibition by Rapamycin Promotes Antioxidant Defences in a Drosophila Model of Friedreich's Ataxia. PLoS ONE, 2015, 10, e0132376.	1.1	51
1212	Lithium Modulates Autophagy in Esophageal and Colorectal Cancer Cells and Enhances the Efficacy of Therapeutic Agents In Vitro and In Vivo. PLoS ONE, 2015, 10, e0134676.	1.1	32
1213	Additive Anti-Tumor Effects of Lovastatin and Everolimus In Vitro through Simultaneous Inhibition of Signaling Pathways. PLoS ONE, 2015, 10, e0143830.	1.1	16
1214	Endoplasmic Reticulum Stress in Heat- and Shake-Induced Injury in the Rat Small Intestine. PLoS ONE, 2015, 10, e0143922.	1.1	10
1215	Endothelial Cell mTOR Complex-2 Regulates Sprouting Angiogenesis. PLoS ONE, 2015, 10, e0135245.	1.1	38
1216	Platycodin-D Induced Autophagy in Non-Small Cell Lung Cancer Cells via PI3K/Akt/mTOR and MAPK Signaling Pathways. Journal of Cancer, 2015, 6, 623-631.	1.2	107
1217	Potential Therapeutic Targets in Uterine Sarcomas. Sarcoma, 2015, 2015, 1-14.	0.7	34
1218	Targeting the PI3K/AKT/mTOR Pathway in Cancer Cells. , 0, , .		7
1220	Polyphenol-rich extract of <i>Pimenta dioica</i> berries (Allspice) kills breast cancer cells by autophagy and delays growth of triple negative breast cancer in athymic mice. Oncotarget, 2015, 6, 16379-16395.	0.8	32
1221	Point mutations of the mTOR-RHEB pathway in renal cell carcinoma. Oncotarget, 2015, 6, 17895-17910.	0.8	63
1222	Editorial (Thematic Issue: Immunophilins, Protein Chemistry and Cell Biology of a Promising New Class) Tj ETQq1	1 8:78431	4 ₁ gBT /Ove
1223	Apoptotic effects of high-dose rapamycin occur in S-phase of the cell cycle. Cell Cycle, 2015, 14, 2285-2292.	1.3	26
1224	LKB1 gene inactivation does not sensitize non-small cell lung cancer cells to mTOR inhibitors in vitro. Acta Pharmacologica Sinica, 2015, 36, 1107-1112.	2.8	2

#	Article	IF	CITATIONS
1225	Kinase and BET Inhibitors Together Clamp Inhibition of PI3K Signaling and Overcome Resistance to Therapy. Cancer Cell, 2015, 27, 837-851.	7.7	205
1226	Renal tumours in a Tsc2+/â^ mouse model do not show feedback inhibition of Akt and are effectively prevented by rapamycin. Oncogene, 2015, 34, 922-931.	2.6	14
1227	Phase 1b study of the mammalian target of rapamycin inhibitor sirolimus in combination with nanoparticle albumin–bound paclitaxel in patients with advanced solid tumors. Cancer, 2015, 121, 1817-1826.	2.0	11
1228	High Phosphorylation Status of AKT/mTOR Signal in DESI2-Reduced Pancreatic Ductal Adenocarcinoma. Pathology and Oncology Research, 2015, 21, 267-272.	0.9	4
1229	Posttranslational modifications of FOXO1 regulate epidermal growth factor receptor tyrosine kinase inhibitor resistance for non-small cell lung cancer cells. Tumor Biology, 2015, 36, 5485-5495.	0.8	15
1230	Loss of Tuberous Sclerosis Complex 2 (TSC2) Is Frequent in Hepatocellular Carcinoma and Predicts Response to mTORC1 Inhibitor Everolimus. Molecular Cancer Therapeutics, 2015, 14, 1224-1235.	1.9	74
1232	Inhibition of PI3K Pathway Reduces Invasiveness and Epithelial-to-Mesenchymal Transition in Squamous Lung Cancer Cell Lines Harboring <i>PIK3CA</i> Gene Alterations. Molecular Cancer Therapeutics, 2015, 14, 1916-1927.	1.9	43
1233	The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5′TOP sequence. Nucleic Acids Research, 2015, 43, 8077-8088.	6.5	55
1234	Co-administration of the mTORC1/TORC2 inhibitor INK128 and the Bcl-2/Bcl-xL antagonist ABT-737 kills human myeloid leukemia cells through Mcl-1 down-regulation and AKT inactivation. Haematologica, 2015, 100, 1553-1563.	1.7	27
1235	Cáncer de mama con receptores hormonales positivos: tratamiento adyuvante, primera lÃnea en cáncer metastásico y nuevas estrategias (inhibición de mTOR). Gaceta Mexicana De Oncologia, 2015, 14, 277-292.	0.0	1
1236	Discovery of novel quinoline-based mTOR inhibitors via introducing intra-molecular hydrogen bonding scaffold (iMHBS): The design, synthesis and biological evaluation. Bioorganic and Medicinal Chemistry, 2015, 23, 7585-7596.	1.4	21
1237	A structural insight into the inhibitory mechanism of an orally active PI3K/mTOR dual inhibitor, PKI-179 using computational approaches. Journal of Molecular Graphics and Modelling, 2015, 62, 226-234.	1.3	20
1238	Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Molecular Cancer, 2015, 14, 207.	7.9	135
1239	Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death. Phytomedicine, 2015, 22, 902-910.	2.3	44
1240	Intravesical dual PI3K/mTOR complex 1/2 inhibitor NVP-BEZ235 therapy in an orthotopic bladder cancer model. International Journal of Oncology, 2015, 47, 377-383.	1.4	9
1241	Combining AZD8931, a novel EGFR/HER2/HER3 signalling inhibitor, with AZD5363 limits AKT inhibitor induced feedback and enhances antitumour efficacy in HER2-amplified breast cancer models. International Journal of Oncology, 2015, 47, 446-454.	1.4	34
1242	The PI3K/mTOR dual inhibitor P7170 demonstrates potent activity against endocrine-sensitive and endocrine-resistant ER+ breast cancer. Breast Cancer Research and Treatment, 2015, 149, 69-79.	1.1	15
1243	Measurement of PIP3 Levels Reveals an Unexpected Role for p110Î ² in Early Adaptive Responses to p110α-Specific Inhibitors in Luminal Breast Cancer. Cancer Cell, 2015, 27, 97-108.	7.7	165

#	Article	IF	CITATIONS
1244	Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncology, 2015, 51, 291-298.	0.8	136
1245	A Translational, Pharmacodynamic, and Pharmacokinetic Phase IB Clinical Study of Everolimus in Resectable Non–Small Cell Lung Cancer. Clinical Cancer Research, 2015, 21, 1859-1868.	3.2	22
1246	Buparlisib, an oral pan-PI3K inhibitor for the treatment of breast cancer. Expert Opinion on Investigational Drugs, 2015, 24, 421-431.	1.9	29
1247	MLN0128, an ATP-Competitive mTOR Kinase Inhibitor with Potent <i>In Vitro</i> and <i>In Vivo</i> Antitumor Activity, as Potential Therapy for Bone and Soft-Tissue Sarcoma. Molecular Cancer Therapeutics, 2015, 14, 395-406.	1.9	83
1248	mTOR Signaling in T Cell Immunity and Autoimmunity. International Reviews of Immunology, 2015, 34, 50-66.	1.5	66
1249	The effect of the dual PI3K and <scp>mTOR</scp> inhibitor BEZ235 on tumour growth and osteolytic bone disease in multiple myeloma. European Journal of Haematology, 2015, 94, 343-354.	1.1	29
1250	A new era of improving progression-free survival with dual blockade in postmenopausal HR+, HER2â^' advanced breast cancer. Cancer Treatment Reviews, 2015, 41, 94-104.	3.4	22
1251	Emerging therapeutic targets in bladder cancer. Cancer Treatment Reviews, 2015, 41, 170-178.	3.4	108
1252	Dual PI3K/mTOR Inhibitors Induce Rapid Overactivation of the MEK/ERK Pathway in Human Pancreatic Cancer Cells through Suppression of mTORC2. Molecular Cancer Therapeutics, 2015, 14, 1014-1023.	1.9	81
1253	Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Reports, 2015, 16, 280-296.	2.0	200
1254	Avasimibe Encapsulated in Human Serum Albumin Blocks Cholesterol Esterification for Selective Cancer Treatment. ACS Nano, 2015, 9, 2420-2432.	7.3	68
1255	Targeting drivers of melanoma with synthetic small molecules and phytochemicals. Cancer Letters, 2015, 359, 20-35.	3.2	67
1256	The role of the PI3K pathway in colorectal cancer. Critical Reviews in Oncology/Hematology, 2015, 94, 18-30.	2.0	96
1257	BRAF Inhibition Stimulates Melanoma-Associated Macrophages to Drive Tumor Growth. Clinical Cancer Research, 2015, 21, 1652-1664.	3.2	106
1258	Current treatment strategies for inhibiting mTOR in cancer. Trends in Pharmacological Sciences, 2015, 36, 124-135.	4.0	234
1259	Efficacy, safety, pharmacokinetics and pharmacodynamics of SAR245409 (voxtalisib, XL765), an orally administered phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor: a phase 1 expansion cohort in patients with relapsed or refractory lymphoma. Leukemia and Lymphoma, 2015, 56, 1763-1770.	0.6	28
1260	Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: A tale of two complexes. Advances in Biological Regulation, 2015, 57, 64-74.	1.4	63
1261	Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells. Scientific Reports, 2015, 5, 7697.	1.6	29

#	Article	IF	CITATIONS
1262	A phase Ib study of linsitinib (OSI-906), a dual inhibitor of IGF-1R and IR tyrosine kinase, in combination with everolimus as treatment for patients with refractory metastatic colorectal cancer. Investigational New Drugs, 2015, 33, 187-193.	1.2	35
1263	PI3K/AKT/mTOR pathway inhibitors: the ideal combination partners for breast cancer therapies?. Expert Review of Anticancer Therapy, 2015, 15, 51-68.	1.1	41
1264	The expanding role of mTOR in cancer cell growth and proliferation. Mutagenesis, 2015, 30, 169-176.	1.0	154
1265	Adaptive stress signaling in targeted cancer therapy resistance. Oncogene, 2015, 34, 5599-5606.	2.6	57
1266	FGFR-Mediated Reactivation of MAPK Signaling Attenuates Antitumor Effects of Imatinib in Gastrointestinal Stromal Tumors. Cancer Discovery, 2015, 5, 438-451.	7.7	83
1267	Targeting Focal Adhesion Kinase and Resistance to mTOR Inhibition in Pancreatic Neuroendocrine Tumors. Journal of the National Cancer Institute, 2015, 107, djv123.	3.0	38
1268	Crosstalk between PI3K and Ras pathways via protein phosphatase 2A in human ovarian clear cell carcinoma. Cancer Biology and Therapy, 2015, 16, 325-335.	1.5	12
1269	A Phase I Study of Everolimus and Docetaxel inÂPatients With Castration-Resistant ProstateÂCancer. Clinical Genitourinary Cancer, 2015, 13, 113-123.	0.9	33
1270	Oxovanadium-based inhibitors can drive redox-sensitive cytotoxicity in neuroblastoma cells and synergise strongly with buthionine sulfoximine. Cancer Letters, 2015, 357, 316-327.	3.2	15
1271	Implication of PI3K/Akt pathway in pancreatic cancer: When PI3K isoforms matter?. Advances in Biological Regulation, 2015, 59, 19-35.	1.4	65
1272	A Novel Covalent mTOR Inhibitor, DHM25, Shows in Vivo Antitumor Activity against Triple-Negative Breast Cancer Cells. Journal of Medicinal Chemistry, 2015, 58, 6559-6573.	2.9	33
1273	AKT Antagonist AZD5363 Influences Estrogen Receptor Function in Endocrine-Resistant Breast Cancer and Synergizes with Fulvestrant (ICI182780) <i>In Vivo</i> . Molecular Cancer Therapeutics, 2015, 14, 2035-2048.	1.9	55
1274	Phase I study of the anti-IGF1R antibody cixutumumab with everolimus and octreotide in advanced well-differentiated neuroendocrine tumors. Endocrine-Related Cancer, 2015, 22, 431-441.	1.6	26
1275	Suppression of mTOR pathway in solid tumors: lessons learned from clinical experience in renal cell carcinoma and neuroendocrine tumors and new perspectives. Future Oncology, 2015, 11, 1809-1828.	1.1	19
1276	Inhibition of autophagy sensitizes malignant pleural mesothelioma cells to dual PI3K/mTOR inhibitors. Cell Death and Disease, 2015, 6, e1757-e1757.	2.7	43
1277	The Role of mTOR Inhibitors and PI3K Pathway Blockade in Renal Cell Cancer. , 2015, , 295-314.		0
1278	A phase I trial of vertical inhibition of IGF signalling using cixutumumab, an anti-IGF-1R antibody, and selumetinib, an MEK 1/2 inhibitor, in advanced solid tumours. British Journal of Cancer, 2015, 112, 24-31.	2.9	35
1280	mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells. Cancer Letters, 2015, 367, 76-87.	3.2	45

ARTICLE IF CITATIONS Precision medicine for metastatic breast cancerâ€"limitations and solutions. Nature Reviews Clinical 1281 12.5 272 Oncology, 2015, 12, 693-704. B-cell receptor signaling in the pathogenesis of lymphoid malignancies. Blood Cells, Molecules, and 0.6 Diseases, 2015, 55, 255-265. Phase I study of the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat in advanced 1284 1.2 50 renal cell carcinoma and other solid tumors. Investigational New Drugs, 2015, 33, 1040-1047. mTOR Inhibition Induces EGFR Feedback Activation in Association with Its Resistance to Human 1285 1.8 Pancreatic Cancer. International Journal of Molecular Sciences, 2015, 16, 3267-3282. Novel therapeutic strategies for multiple myeloma. Experimental Hematology, 2015, 43, 732-741. 1286 0.2 98 Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and 1287 energy status and the pathways through which it attenuates degenerative disease. Free Radical 1.3 661 Biology and Medicine, 2015, 88, 108-146. FOXP1 regulation via the PI3K/Akt/p70S6K signaling pathway in breast cancer cells. Oncology Letters, 1288 0.8 29 2015, 9, 1482-1488. Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor 1289 1.3 24 development and continued growth of established tumors. Carcinogenesis, 2015, 36, 487-497. 1290 The PI3K/AKT/mTOR interactive pathway. Molecular BioSystems, 2015, 11, 1946-1954. 2.9 379 1291 Mechanisms of aromatase inhibitor resistance. Nature Reviews Cancer, 2015, 15, 261-275. 12.8 319 Significance of 4E-binding protein 1 as a therapeutic target for invasive urothelial carcinoma of the 1292 0.8 14 bladder. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 166.e9-166.e15. EGFR-AKT-mTOR activation mediates epiregulin-induced pleiotropic functions in cultured osteoblasts. 1293 1.4 29 Molecular and Cellular Biochemistry, 2015, 398, 105-113. Prognostic value of dual-specificity phosphatase 6 expression in non-small cell lung cancer. Tumor 1294 0.8 9 Biology, 2015, 36, 1199-1206. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone 1295 5.8 276 receptor–positive breast cancer. Science Translational Medicine, 2015, 7, 283ra51. The <scp>PI</scp>3<scp>K</scp>/<scp>A</scp>kt/m<scp>TOR</scp> axis in head and neck cancer: 1296 1.5 132 functions, aberrations, crossâ€talk, and therapies. Oral Diseases, 2015, 21, 815-825. Design, synthesis and biological evaluation of novel 4-alkynyl-quinoline derivatives as PI3K/mTOR dual inhibitors. European Journal of Medicinal Chemistry, 2015, 99, 36-50. Resistance to Aromatase Inhibitors in Breast Cancer. Resistance To Targeted Anti-cancer Therapeutics, 1298 0.1 4 2015,,. VHL and HIF in Clear Cell Renal Cell Carcinoma: Molecular Abnormalities and Potential Clinical 1299 Applications., 2015, , 57-110.

#	Article	IF	CITATIONS
1300	mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene, 2015, 34, 2239-2250.	2.6	235
1301	The synergistic inhibition of breast cancer proliferation by combined treatment with 4EGI-1 and MK2206. Cell Cycle, 2015, 14, 232-242.	1.3	10
1302	Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends in Pharmacological Sciences, 2015, 36, 236-252.	4.0	44
1303	25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells. Journal of Ethnopharmacology, 2015, 164, 265-272.	2.0	9
1304	The PI3K/AKT Pathway and Renal Cell Carcinoma. Journal of Genetics and Genomics, 2015, 42, 343-353.	1.7	267
1305	Effects of preset sequential administrations of sunitinib and everolimus on tumour differentiation in Caki-1 renal cell carcinoma. British Journal of Cancer, 2015, 112, 86-94.	2.9	16
1308	A Phase I Study of Cixutumumab (IMC-A12) in Combination with Temsirolimus (CCI-779) in Children with Recurrent Solid Tumors: A Children's Oncology Group Phase I Consortium Report. Clinical Cancer Research, 2015, 21, 1558-1565.	3.2	20
1309	The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000prime Reports, 2015, 7, 13.	5.9	91
1310	Targeting PI3K/mTOR Signaling Displays Potent Antitumor Efficacy against Nonfunctioning Pituitary Adenomas. Clinical Cancer Research, 2015, 21, 3204-3215.	3.2	59
1311	Overexpression of PAK1 Promotes Cell Survival in Inflammatory Bowel Diseases and Colitis-associated Cancer. Inflammatory Bowel Diseases, 2015, 21, 287-296.	0.9	47
1312	Akt1 and Akt3 Exert Opposing Roles in the Regulation of Vascular Tumor Growth. Cancer Research, 2015, 75, 40-50.	0.4	49
1313	Metformin and breast cancer: Basic knowledge in clinical context. Cancer Treatment Reviews, 2015, 41, 441-447.	3.4	13
1314	Everolimus in diffuse large B-cell lymphomas. Future Oncology, 2015, 11, 373-383.	1.1	20
1315	Activation of insulin-like growth factor receptor signaling mediates resistance to histone deacetylase inhibitors. Cancer Letters, 2015, 361, 197-206.	3.2	11
1316	The preclinical evaluation of the dual mTORC1/2 inhibitor INK-128 as a potential anti-colorectal cancer agent. Cancer Biology and Therapy, 2015, 16, 34-42.	1.5	50
1317	Molecular Pathways: Clinical Applications and Future Direction of Insulin-like Growth Factor-1 Receptor Pathway Blockade. Clinical Cancer Research, 2015, 21, 4270-4277.	3.2	138
1318	Targeting LKB1 in cancer – exposing and exploiting vulnerabilities. British Journal of Cancer, 2015, 113, 574-584.	2.9	81
1319	Differential IKK/NF-κB Activity Is Mediated by TSC2 through mTORC1 in PTEN-Null Prostate Cancer and Tuberous Sclerosis Complex Tumor Cells. Molecular Cancer Research, 2015, 13, 1602-1614.	1.5	20

#	Article	IF	CITATIONS
1320	5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) enhances the efficacy of rapamycin in human cancer cells. Cell Cycle, 2015, 14, 3331-3339.	1.3	40
1321	The comparison between dual inhibition of mTOR with MAPK and PI3K signaling pathways in KRAS mutant NSCLC cell lines. Tumor Biology, 2015, 36, 9339-9345.	0.8	12
1322	Systematic analysis of <scp>BRAF^V</scp> ^{600E} melanomas reveals a role for <scp>JNK</scp> /câ€Jun pathway in adaptive resistance to drugâ€induced apoptosis. Molecular Systems Biology, 2015, 11, 797.	3.2	84
1323	Catalytic mammalian target of rapamycin inhibitors as antineoplastic agents. Leukemia and Lymphoma, 2015, 56, 2518-2523.	0.6	1
1324	AMP-activated Protein Kinase (AMPK) Control of mTORC1 Is p53- and TSC2-independent in Pemetrexed-treated Carcinoma Cells. Journal of Biological Chemistry, 2015, 290, 27473-27486.	1.6	66
1325	Endocrine resistance in breast cancer – An overview and update. Molecular and Cellular Endocrinology, 2015, 418, 220-234.	1.6	280
1326	The dynamic control of signal transduction networks in cancer cells. Nature Reviews Cancer, 2015, 15, 515-527.	12.8	282
1327	Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacologica Sinica, 2015, 36, 1163-1169.	2.8	100
1328	Enhancing Endocrine Therapy for Hormone Receptor–Positive Advanced Breast Cancer: Cotargeting Signaling Pathways. Journal of the National Cancer Institute, 2015, 107, djv212.	3.0	79
1329	Diacylglycerol kinase-ζ regulates mTORC1 and lipogenic metabolism in cancer cells through SREBP-1. Oncogenesis, 2015, 4, e164-e164.	2.1	30
1330	Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against osteosarcoma. Cancer Biology and Therapy, 2015, 16, 602-609.	1.5	33
1331	Dual targeting of mTORC1 and mTORC2 by INK-128 potently inhibits human prostate cancer cell growth in vitro and in vivo. Tumor Biology, 2015, 36, 8177-8184.	0.8	23
1332	Aschantin targeting on the kinase domain of mammalian target of rapamycin suppresses epidermal growth factor-induced neoplastic cell transformation. Carcinogenesis, 2015, 36, 1223-1234.	1.3	17
1333	Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Molecular Immunology, 2015, 68, 575-584.	1.0	23
1334	PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics, 2015, 16, 1843-1862.	0.6	180
1335	Identification of a Non-Gatekeeper Hot Spot for Drug-Resistant Mutations in mTOR Kinase. Cell Reports, 2015, 11, 446-459.	2.9	18
1336	p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase. Journal of Biological Chemistry, 2015, 290, 28915-28931.	1.6	14
1337	Heightening Energetic Stress Selectively Targets LKB1-Deficient Non–Small Cell Lung Cancers. Cancer Research, 2015, 75, 4910-4922.	0.4	41

#	Article	IF	CITATIONS
1338	Feedback Suppression of PI3Kα Signaling in PTEN-Mutated Tumors Is Relieved by Selective Inhibition of PI3Kβ. Cancer Cell, 2015, 27, 109-122.	7.7	203
1339	Berberine regulates AMPâ€activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice. Molecular Carcinogenesis, 2015, 54, 1096-1109.	1.3	90
1340	Metformin displays anti-myeloma activity and synergistic effect with dexamethasone in in vitro and in vivo xenograft models. Cancer Letters, 2015, 356, 443-453.	3.2	52
1341	BRAF Targets in Melanoma. Cancer Drug Discovery and Development, 2015, , .	0.2	2
1343	Synergistic coâ€ŧargeting of prostateâ€specific membrane antigen and androgen receptor in prostate cancer. Prostate, 2015, 75, 242-254.	1.2	75
1344	PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nature Reviews Cancer, 2015, 15, 7-24.	12.8	1,083
1345	Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chemical Reviews, 2015, 115, 327-394.	23.0	1,063
1346	Targeting the eIF4A RNA helicase as an anti-neoplastic approach. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 781-791.	0.9	69
1347	Susceptibility of PTEN-positive metastatic tumors to small interfering RNA targeting the mammalian target of rapamycin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 185-194.	1.7	15
1348	Targeting Hypoxic Adaptations of Cancer Cells: Molecular Mechanisms and Therapeutic Opportunities. , 2015, , 311-329.		0
1349	mTOR regulate EMT through RhoA and Rac1 pathway in prostate cancer. Molecular Carcinogenesis, 2015, 54, 1086-1095.	1.3	53
1350	High Efficacy of Combination Therapy Using PI3K/AKT Inhibitors with Androgen Deprivation in Prostate Cancer Preclinical Models. European Urology, 2015, 67, 1177-1185.	0.9	82
1351	Stress Response Pathways in Cancer. , 2015, , .		3
1352	The Combination of Rapamycin and Resveratrol Blocks Autophagy and Induces Apoptosis in Breast Cancer Cells. Journal of Cellular Biochemistry, 2015, 116, 450-457.	1.2	90
1353	GSK-3 modulates cellular responses to a broad spectrum of kinase inhibitors. Nature Chemical Biology, 2015, 11, 58-63.	3.9	28
1354	Combination of the mTOR Inhibitor Ridaforolimus and the Anti-IGF1R Monoclonal Antibody Dalotuzumab: Preclinical Characterization and Phase I Clinical Trial. Clinical Cancer Research, 2015, 21, 49-59.	3.2	49
1355	The mTOR signaling pathway as a treatment target for intracranial neoplasms. Neuro-Oncology, 2015, 17, 189-199.	0.6	44
1356	Synuclein Î ³ Âprotects Akt and mTOR and renders tumor resistance to Hsp90 disruption. Oncogene, 2015, 34, 2398-2405.	2.6	23

#	Article	IF	CITATIONS
1357	The anti-diabetic drug metformin inhibits vascular endothelial growth factor expression via the mammalian target of rapamycin complex 1/hypoxia-inducible factor-11± signaling pathway in ELT-3 cells. Molecular and Cellular Endocrinology, 2015, 399, 1-8.	1.6	47
1358	Autophagy inhibition enhances RAD001-induced cytotoxicity in human bladder cancer cells. Drug Design, Development and Therapy, 2016, 10, 1501.	2.0	20
1359	Insulin Promotes the Expression of the Gluconeogenic Rate-Limiting Enzymes Phosphoenolpyruvate Carboxykinase (Pepck) and Glucose 6-Phosphatase (G6pase) through PI3k/Akt/mTOR Signaling Pathway in Goose Hepatocytes. Brazilian Journal of Poultry Science, 2016, 18, 395-400.	0.3	3
1360	Review of PI3K/mTOR Inhibitors Entering Clinical Trials to Treat Triple Negative Breast Cancers. Recent Patents on Anti-Cancer Drug Discovery, 2016, 11, 283-296.	0.8	35
1361	Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget, 2016, 7, 54120-54136.	0.8	23
1362	A personalized Approach for Targeting the Melanoma: Inhibition of Oncogenic Signaling in Combination with Small Molecules. General Medicine (Los Angeles, Calif), 2016, 04, .	0.2	1
1363	Improving Response to Hormone Therapy in Breast Cancer: New Targets, New Therapeutic Options. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e40-e54.	1.8	29
1364	Fortifying the Treatment of Prostate Cancer with Physical Activity. Prostate Cancer, 2016, 2016, 1-11.	0.4	19
1365	Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. OncoTargets and Therapy, 2016, 9, 1899.	1.0	44
1366	The combination of NVP-BKM120 with trastuzumab or RAD001 synergistically inhibits the growth of breast cancer stem cells in vivo. Oncology Reports, 2016, 36, 356-364.	1.2	19
1367	The PI3K/Akt Pathway in Tumors of Endocrine Tissues. Frontiers in Endocrinology, 2015, 6, 188.	1.5	104
1368	Targeting mTOR in Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2016, 6, 99.	1.3	33
1369	The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells. Molecules, 2016, 21, 1512.	1.7	36
1370	Activity-Based Proteomics Reveals Heterogeneous Kinome and ATP-Binding Proteome Responses to MEK Inhibition in KRAS Mutant Lung Cancer. Proteomes, 2016, 4, 16.	1.7	5
1371	Ridaforolimus (MK-8669) synergizes with Dalotuzumab (MK-0646) in hormone-sensitive breast cancer. BMC Cancer, 2016, 16, 814.	1.1	8
1372	Judicious Toggling of mTOR Activity to Combat Insulin Resistance and Cancer: Current Evidence and Perspectives. Frontiers in Pharmacology, 2016, 7, 395.	1.6	131
1373	Targeting the PI3K/AKT/mTOR Pathway in Prostate Cancer Development and Progression: Insight to Therapy. Clinical Cancer Drugs, 2016, 3, 36-62.	0.3	6
1374	Pharmacodynamic Biomarker Development for PI3K Pathway Therapeutics. Translational Oncogenomics, 2016, Suppl. 1, 33-49.	1.7	25

#	Article	IF	CITATIONS
1375	Therapeutic potential of mTOR inhibitors for targeting cancer stem cells. British Journal of Clinical Pharmacology, 2016, 82, 1180-1188.	1.1	27
1376	RES-529. Anti-Cancer Drugs, 2016, 27, 475-487.	0.7	30
1377	Targeting mTOR for the treatment of B cell malignancies. British Journal of Clinical Pharmacology, 2016, 82, 1213-1228.	1.1	36
1378	Clinical Implementation of Novel Targeted Therapeutics in Advanced Breast Cancer. Journal of Cellular Biochemistry, 2016, 117, 2454-2463.	1.2	8
1379	A phase 2 trial of everolimus and pasireotide long-acting release in patients with metastatic uveal melanoma. Melanoma Research, 2016, 26, 272-277.	0.6	31
1380	The AKT-mTOR Signaling Pathway for Drug Response Prediction and Prognostic Signatures. Cancer Drug Discovery and Development, 2016, , 109-124.	0.2	0
1381	Blocking mammalian target of rapamycin alleviates bone cancer pain and morphine tolerance <i>via</i> µâ€opioid receptor. International Journal of Cancer, 2016, 138, 2013-2020.	2.3	28
1382	<pre><scp>TAK</scp>â€228 (formerly <scp>MLN</scp>0128), an investigational oral dual <scp>TORC</scp>1/2 inhibitor: A phase I dose escalation study in patients with relapsed or refractory multiple myeloma, nonâ€Hodgkin lymphoma, or Waldenström's macroglobulinemia. American Journal of Hematology, 2016, 91, 400-405.</pre>	2.0	89
1383	Wild-type phosphatase and tensin homolog deleted on chromosome 10 improved the sensitivity of cells to rapamycin through regulating phosphorylation of Akt in esophageal squamous cell carcinoma. Ecological Management and Restoration, 2016, 30, n/a-n/a.	0.2	1
1384	Role of Excessive Autophagy Induced by Mechanical Overload in Vein Graft Neointima Formation: Prediction and Prevention. Scientific Reports, 2016, 6, 22147.	1.6	12
1385	Interplay between cell cycle and autophagy induced by boswellic acid analog. Scientific Reports, 2016, 6, 33146.	1.6	24
1386	Molecular Changes During Breast Cancer and Mechanisms of Endocrine Therapy Resistance. Progress in Molecular Biology and Translational Science, 2016, 144, 539-562.	0.9	10
1387	Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. International Journal of Oncology, 2016, 49, 285-293.	1.4	20
1388	Drosophila Lung Cancer Models Identify Trametinib plus Statin as Candidate Therapeutic. Cell Reports, 2016, 14, 1477-1487.	2.9	88
1389	Differential effects of rapamycin treatment on tonic and phasic GABAergic inhibition in dentate granule cells after focal brain injury in mice. Experimental Neurology, 2016, 280, 30-40.	2.0	31
1390	Efficacy and Safety of Everolimus in Extrapancreatic Neuroendocrine Tumor: A Comprehensive Review of Literature. Oncologist, 2016, 21, 875-886.	1.9	15
1391	Therapeutic Benefit of Selective Inhibition of p110α PI3-Kinase in Pancreatic Neuroendocrine Tumors. Clinical Cancer Research, 2016, 22, 5805-5817.	3.2	35
1392	Ridaforolimus improves the anti-tumor activity of dual HER2 blockade in uterine serous carcinoma in vivo models with HER2 gene amplification and PIK3CA mutation. Gynecologic Oncology, 2016, 141, 570-579.	0.6	3

#	Article	IF	CITATIONS
1393	Targeting translation: elF4E as an emerging anticancer drug target. Expert Reviews in Molecular Medicine, 2016, 18, e2.	1.6	41
1394	Dual mTORC1/2 Inhibition as a Novel Strategy for the Resensitization and Treatment of Platinum-Resistant Ovarian Cancer. Molecular Cancer Therapeutics, 2016, 15, 1557-1567.	1.9	40
1395	Lymphangioleiomyomatosis: Current understanding and potential treatments. , 2016, 158, 114-124.		39
1396	Resveratrol Potentiates Growth Inhibitory Effects of Rapamycin in <i>PTEN</i> -deficient Lipoma Cells by Suppressing p70S6 Kinase Activity. Nutrition and Cancer, 2016, 68, 342-349.	0.9	7
1397	Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Human Molecular Genetics, 2016, 25, 2295-2313.	1.4	45
1398	Metformin use and young age lung cancer: A case series report. Oncology Letters, 2016, 11, 2899-2902.	0.8	1
1399	Differential Receptor Tyrosine Kinase PET Imaging for Therapeutic Guidance. Journal of Nuclear Medicine, 2016, 57, 1413-1419.	2.8	28
1400	Negative regulation of the FOXO3a transcription factor by mTORC2 induces a pro-survival response following exposure to ultraviolet-B irradiation. Cellular Signalling, 2016, 28, 798-809.	1.7	24
1401	Mechanism-based modeling of the clinical effects of bevacizumab and everolimus on vestibular schwannomas of patients with neurofibromatosis type 2. Cancer Chemotherapy and Pharmacology, 2016, 77, 1263-1273.	1.1	20
1403	RAD001 (everolimus) attenuates experimental autoimmune neuritis by inhibiting the mTOR pathway, elevating Akt activity and polarizing M2 macrophages. Experimental Neurology, 2016, 280, 106-114.	2.0	25
1404	Metformin with everolimus and octreotide in pancreatic neuroendocrine tumor patients with diabetes. Future Oncology, 2016, 12, 1251-1260.	1.1	29
1405	Genetics of Melanoma. , 2016, , .		3
1406	The Wide Experience of the Sequential Therapy for Patients with Metastatic Renal Cell Carcinoma. Current Oncology Reports, 2016, 18, 66.	1.8	6
1407	Targeting the Mammalian Target of Rapamycin in Lung Cancer. American Journal of the Medical Sciences, 2016, 352, 507-516.	0.4	18
1408	BEZ235: When Promising Science Meets Clinical Reality. Oncologist, 2016, 21, 1033-1034.	1.9	33
1409	Peptide Hormones, Metformin and New-Wave Practices and Research Therapies. , 2016, , 201-229.		1
1410	mTOR inhibitors response and mTOR pathway in pancreatic neuroendocrine tumors. Endocrine-Related Cancer, 2016, 23, 883-891.	1.6	28
1411	Chemically Modified Bodies. , 2016, , .		1

#	Article	IF	CITATIONS
1412	Salt-Inducible Kinase 2 Couples Ovarian Cancer Cell Metabolism with Survival at the Adipocyte-Rich Metastatic Niche. Cancer Cell, 2016, 30, 273-289.	7.7	143
1413	Rapamycin-Induced Hypoxia Inducible Factor 2A Is Essential for Chondrogenic Differentiation of Amniotic Fluid Stem Cells. Stem Cells Translational Medicine, 2016, 5, 580-590.	1.6	12
1414	A novel AKT inhibitor, AZD5363, inhibits phosphorylation of AKT downstream molecules, and activates phosphorylation of mTOR and SMG-1 dependent on the liver cancer cell type. Oncology Letters, 2016, 11, 1685-1692.	0.8	23
1415	IGF-1R and mTOR Blockade: Novel Resistance Mechanisms and Synergistic Drug Combinations for Ewing Sarcoma. Journal of the National Cancer Institute, 2016, 108, djw182.	3.0	49
1416	Inhibitory effect on the proliferation of human heptoma induced by cell-permeable manganese superoxide dismutase. Biomedicine and Pharmacotherapy, 2016, 83, 1379-1386.	2.5	4
1417	The pivotal role of mammalian target of rapamycin inhibition in the treatment of patients with neuroendocrine tumors. Cancer Medicine, 2016, 5, 2953-2964.	1.3	15
1418	Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discovery, 2016, 6, 1315-1333.	7.7	137
1419	PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs). Journal of Biological Chemistry, 2016, 291, 20042-20054.	1.6	20
1420	Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors. Journal of Clinical Oncology, 2016, 34, 3803-3815.	0.8	336
1421	Protective effects of PFâ€4708671 against <i>N</i> â€methylâ€ <scp>d</scp> â€aspartic acidâ€induced retinal damage in rats. Fundamental and Clinical Pharmacology, 2016, 30, 529-536.	1.0	4
1422	Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK. Biochemical Pharmacology, 2016, 116, 39-50.	2.0	26
1423	mTORC2 Signaling Drives the Development and Progression of Pancreatic Cancer. Cancer Research, 2016, 76, 6911-6923.	0.4	63
1424	Discovering new mTOR inhibitors for cancer treatment through virtual screening methods and in vitro assays. Scientific Reports, 2016, 6, 18987.	1.6	38
1425	ERK and p38 MAPK Activities Determine Sensitivity to PI3K/mTOR Inhibition via Regulation of MYC and YAP. Cancer Research, 2016, 76, 7168-7180.	0.4	53
1426	miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR–p-PI3K/AKT-c-JUN. Nature Communications, 2016, 7, 11309.	5.8	144
1427	Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium. Nature Communications, 2016, 7, 10960.	5.8	77
1428	MicroRNA-486-5p enhances hepatocellular carcinoma tumor suppression through repression of IGF-1R and its downstream mTOR, STAT3 and c-Myc. Oncology Letters, 2016, 12, 2567-2573.	0.8	66
1429	Acidic tumor microenvironment abrogates the efficacy of mTORC1 inhibitors. Molecular Cancer, 2016, 15, 78.	7.9	54

		CITATION REPORT		
#	Article		IF	Citations
1430	Adaptations to chronic rapamycin in mice. Pathobiology of Aging & Age Related Diseas	es, 2016, 6, 31688.	1.1	12
1431	Molecular Pathways: Targeting the PI3K Pathway in Cancer—BET Inhibitors to the Res Cancer Research, 2016, 22, 2605-2610.	scue. Clinical	3.2	37
1432	Selective activity of deguelin identifies therapeutic targets for androgen receptor-posit cancer. Breast Cancer Research and Treatment, 2016, 157, 475-488.	ive breast	1.1	37
1433	mTOR Regulates Cap Junction Alpha-1 Protein Trafficking in Sertoli Cells and Is Require Maintenance of Spermatogenesis in Mice. Biology of Reproduction, 2016, 95, 13-13.	d for the	1.2	59
1434	C6 ceramide sensitizes the anti-hepatocellular carcinoma (HCC) activity by AZD-8055, dual inhibitor. Tumor Biology, 2016, 37, 11039-11048.	a novel mTORC1/2	0.8	16
1435	PI3K-Akt-mTOR Signaling in Cancer and Cancer Therapeutics. Cancer Drug Discovery at 2016, , 1-25.	nd Development,	0.2	0
1436	Abrogation of Autophagy by Chloroquine Alone or in Combination with mTOR Inhibitor Apoptosis in Neuroendocrine Tumor Cells. Neuroendocrinology, 2016, 103, 724-737.	rs Induces	1.2	21
1437	Endoplasmic reticulum stress eIF2α–ATF4 pathway-mediated cyclooxygenase-2 indu cadmium-induced autophagy in kidney. Cell Death and Disease, 2016, 7, e2251-e2251	iction regulates	2.7	80
1438	PTEN negatively regulates mTORC2 formation and signaling in grade IV glioma via Rict hyperphosphorylation at Thr1135 and direct the mode of action of an mTORC1/2 inhib 2016, 5, e227-e227.	or vitor. Oncogenesis,	2.1	41
1439	14-Deoxy-11,12-didehydroandrographolide induces DDIT3-dependent endoplasmic reti stress-mediated autophagy in T-47D breast carcinoma cells. Toxicology and Applied Ph 2016, 300, 55-69.		1.3	19
1440	Emerging Role of mTOR in the Response to Cancer Therapeutics. Trends in Cancer, 201	16, 2, 241-251.	3.8	95
1442	Phase <scp>II</scp> study of dual phosphoinositolâ€3â€kinase (<scp>PI</scp> 3K) and rapamycin (<scp>mTOR</scp>) inhibitor <scp>BEZ</scp> 235 in patients with locally a metastatic transitional cell carcinoma. BJU International, 2016, 118, 408-415.		1.3	53
1443	The Role of mTOR Inhibitors in Breast Cancer. , 2016, , 67-92.			0
1444	Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mous Prevention Research, 2016, 9, 215-224.	e Skin. Cancer	0.7	16
1445	Doubling Down on mTOR Inhibition: Harnessing ZEBRA for Insights. European Urology, 457-459.	, 2016, 69,	0.9	3
1446	AKT signaling in ERBB2-amplified breast cancer. , 2016, 158, 63-70.			49
1448	Combination of mTOR Inhibitors Augments Potency while Activating PI3K Signaling in Neuroendocrinology, 2016, 103, 592-604.	Pituitary Tumors.	1.2	3
1449	Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can b with novel PI3K-AKT-mTOR inhibitors. British Journal of Cancer, 2016, 114, 650-658.	e overcome	2.9	69

#	Article	IF	CITATIONS
1450	Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncology, 2016, 5, 77-90.	1.2	28
1451	Rational selection of biomarker driven therapies for gynecologic cancers: The more we know, the more we know. Gynecologic Oncology, 2016, 141, 65-71.	0.6	11
1452	Differential Effects of PI3K and Dual PI3K/mTOR Inhibition in Rat Prolactin-Secreting Pituitary Tumors. Molecular Cancer Therapeutics, 2016, 15, 1261-1270.	1.9	19
1453	Tuberous sclerosis—A model for tumour growth. Seminars in Cell and Developmental Biology, 2016, 52, 3-11.	2.3	18
1454	Intermittent High-Dose Scheduling of AZD8835, a Novel Selective Inhibitor of PI3Kα and PI3Kδ, Demonstrates Treatment Strategies for <i>PIK3CA</i> -Dependent Breast Cancers. Molecular Cancer Therapeutics, 2016, 15, 877-889.	1.9	38
1455	Ewing sarcoma: The clinical relevance of the insulin-like growth factor 1 and the poly-ADP-ribose-polymerase pathway. European Journal of Cancer, 2016, 53, 171-180.	1.3	38
1456	The Evolving Role of Mammalian Target of Rapamycin (mTOR) Inhibitors in Renal Cell Carcinoma. , 2016, , 47-66.		0
1457	Inhibition of the PI3K/Akt and mTORC1 signaling pathways promotes the elongation of vascular endothelial cells. Journal of Cell Science, 2016, 129, 1165-78.	1.2	39
1458	Mechanistic Target of Rapamycin Complex 1 (mTORC1) and mTORC2 as Key Signaling Intermediates in Mesenchymal Cell Activation. Journal of Biological Chemistry, 2016, 291, 6262-6271.	1.6	35
1459	Signaling Pathways and Emerging Therapies in Multiple Myeloma. Current Hematologic Malignancy Reports, 2016, 11, 156-164.	1.2	20
1460	New Targeted Agents in Endometrial Cancer: Are We Really Making Progress?. Current Oncology Reports, 2016, 18, 23.	1.8	9
1461	N-Hydroxyphthalimide exhibits antitumor activity by suppressing mTOR signaling pathway in BT-20 and LoVo cells. Journal of Experimental and Clinical Cancer Research, 2016, 35, 41.	3.5	8
1462	The Enigma of Rapamycin Dosage. Molecular Cancer Therapeutics, 2016, 15, 347-353.	1.9	80
1463	Persistent effect of mTOR inhibition on preneoplastic foci progression and gene expression in a rat model of hepatocellular carcinoma. Carcinogenesis, 2016, 37, 408-419.	1.3	7
1464	Randomized Open-Label Phase II Trial of Apitolisib (GDC-0980), a Novel Inhibitor of the PI3K/Mammalian Target of Rapamycin Pathway, Versus Everolimus in Patients With Metastatic Renal Cell Carcinoma. Journal of Clinical Oncology, 2016, 34, 1660-1668.	0.8	99
1465	Cotargeting Androgen Receptor Splice Variants and mTOR Signaling Pathway for the Treatment of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2016, 22, 2744-2754.	3.2	52
1466	Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer. Trends in Pharmacological Sciences, 2016, 37, 192-206.	4.0	104
1467	Strategically Timing Inhibition of Phosphatidylinositol 3-Kinase to Maximize Therapeutic Index in Estrogen Receptor Alpha–Positive, <i>PIK3CA</i> -Mutant Breast Cancer. Clinical Cancer Research, 2016, 22, 2250-2260.	3.2	29

#	Article	IF	CITATIONS
1468	mTOR Inhibition for Cancer Therapy: Past, Present and Future. , 2016, , .		3
1469	A potent therapeutics for gallbladder cancer by combinatorial inhibition of the MAPK and mTOR signaling networks. Journal of Gastroenterology, 2016, 51, 711-721.	2.3	15
1470	mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Research, 2016, 26, 46-65.	5.7	103
1471	The PI3K-mTOR Pathway. , 2016, , 19-45.		1
1472	Downregulation of Glutamate Transporter EAAT4 by Conditional Knockout of Rheb1 in Cerebellar Purkinje Cells. Cerebellum, 2016, 15, 314-321.	1.4	5
1473	Inhibition of Survival Pathways MAPK and NF-kB Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via Suppression of Autophagy. Targeted Oncology, 2016, 11, 183-195.	1.7	59
1474	Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies. Critical Reviews in Oncology/Hematology, 2016, 97, 178-196.	2.0	25
1475	Emerging strategies for targeting PI3K in gynecologic cancer. Gynecologic Oncology, 2016, 140, 333-344.	0.6	21
1476	The PI3K/AKT Pathway as a Target for Cancer Treatment. Annual Review of Medicine, 2016, 67, 11-28.	5.0	631
1477	Future directions in the diagnosis and medical treatment of adrenocortical carcinoma. Endocrine-Related Cancer, 2016, 23, R43-R69.	1.6	52
1478	Feedback regulation in cell signalling: Lessons for cancer therapeutics. Seminars in Cell and Developmental Biology, 2016, 50, 85-94.	2.3	53
1479	Anticancer activity of Ophiobolin A, isolated from the endophytic fungus <i>Bipolaris setariae</i> . Natural Product Research, 2016, 30, 1455-1458.	1.0	33
1480	Role of Merlin/NF2 inactivation in tumor biology. Oncogene, 2016, 35, 537-548.	2.6	307
1481	Newer medical therapies for metastatic soft tissue sarcoma. Expert Review of Anticancer Therapy, 2017, 17, 257-270.	1.1	7
1482	Strategies to overcome therapeutic resistance in renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 102-110.	0.8	35
1483	IKBKE Is Required during KRAS-Induced Pancreatic Tumorigenesis. Cancer Research, 2017, 77, 320-329.	0.4	29
1484	mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nature Communications, 2017, 8, 14124.	5.8	62
1485	The Complex Roles of Mechanistic Target of Rapamycin in Adipocytes and Beyond. Trends in Endocrinology and Metabolism, 2017, 28, 319-339.	3.1	53

#	Article	IF	CITATIONS
1486	Lipid sensing by mTOR complexes via de novo synthesis of phosphatidic acid. Journal of Biological Chemistry, 2017, 292, 6303-6311.	1.6	99
1487	New Insights in Estrogen Receptor (ER) Biology and Implications for Treatment. Current Breast Cancer Reports, 2017, 9, 13-25.	0.5	4
1488	Signaling pathways as therapeutic targets in biliary tract cancer. Expert Opinion on Therapeutic Targets, 2017, 21, 485-498.	1.5	4
1489	A New View of Pathway-Driven Drug Resistance in Tumor Proliferation. Trends in Pharmacological Sciences, 2017, 38, 427-437.	4.0	68
1490	Usnic Acid Benzylidene Analogues as Potent Mechanistic Target of Rapamycin Inhibitors for the Control of Breast Malignancies. Journal of Natural Products, 2017, 80, 932-952.	1.5	24
1491	Novel therapeutic approaches in chondrosarcoma. Future Oncology, 2017, 13, 637-648.	1.1	96
1492	Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2017, 129, 177-187.	0.6	138
1493	Understanding the <scp>mTOR</scp> signaling pathway via mathematical modeling. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1379.	6.6	31
1494	Molecular targeted therapies in adrenal, pituitary and parathyroid malignancies. Endocrine-Related Cancer, 2017, 24, R239-R259.	1.6	16
1495	Tackling endocrine resistance in ER-positive HER2-negative advanced breast cancer: A tale of imprecision medicine. Critical Reviews in Oncology/Hematology, 2017, 114, 91-101.	2.0	15
1496	Everolimus as first line therapy for pancreatic neuroendocrine tumours: current knowledge and future perspectives. Journal of Cancer Research and Clinical Oncology, 2017, 143, 1209-1224.	1.2	14
1497	Targeting PI3K Signaling in Combination Cancer Therapy. Trends in Cancer, 2017, 3, 454-469.	3.8	124
1498	Moving beyond vascular endothelial growth factor-targeted therapy in renal cell cancer: latest evidence and therapeutic implications. Therapeutic Advances in Medical Oncology, 2017, 9, 287-298.	1.4	4
1499	Combined Inhibition of NEDD8-Activating Enzyme and mTOR Suppresses <i>NF2</i> Loss–Driven Tumorigenesis. Molecular Cancer Therapeutics, 2017, 16, 1693-1704.	1.9	31
1500	Recent progress towards clinically relevant ATP-competitive Akt inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2838-2848.	1.0	34
1501	Enrichment of PI3K-AKT–mTOR Pathway Activation in Hepatic Metastases from Breast Cancer. Clinical Cancer Research, 2017, 23, 4919-4928.	3.2	74
1502	Combined Inhibition of Both p110α and p110β Isoforms of Phosphatidylinositol 3-Kinase Is Required for Sustained Therapeutic Effect in PTEN-Deficient, ER+ Breast Cancer. Clinical Cancer Research, 2017, 23, 2795-2805.	3.2	26
1503	Phase I study of temsirolimus in combination with cetuximab in patients with advanced solid tumours. European Journal of Cancer, 2017, 81, 81-89.	1.3	11

#	Article	IF	CITATIONS
1504	Predictive Markers of Response to Everolimus and Sunitinib in Neuroendocrine Tumors. Targeted Oncology, 2017, 12, 611-622.	1.7	20
1505	Acquired Tamoxifen Resistance in MCF-7 Breast Cancer Cells Requires Hyperactivation of eIF4F-Mediated Translation. Hormones and Cancer, 2017, 8, 219-229.	4.9	14
1506	Growth inhibition of human breast carcinoma cells by overexpression of regulator of G-protein signaling 4. Oncology Letters, 2017, 13, 4357-4363.	0.8	11
1507	Akt Signaling Is Sustained by a CD44 Splice Isoform–Mediated Positive Feedback Loop. Cancer Research, 2017, 77, 3791-3801.	0.4	47
1508	Kâ€Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines. Molecular Oncology, 2017, 11, 1130-1142.	2.1	15
1509	Everolimus-related adverse events in neuroendocrine tumors and comparative considerations with breast and renal cancer: a critical overview. Expert Opinion on Orphan Drugs, 2017, 5, 525-536.	0.5	0
1510	Control of B lymphocyte development and functions by the mTOR signaling pathways. Cytokine and Growth Factor Reviews, 2017, 35, 47-62.	3.2	42
1511	The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nature Communications, 2017, 8, 15503.	5.8	116
1512	Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Advances in Biological Regulation, 2017, 65, 36-58.	1.4	33
1513	A pharmacokinetic–pharmacodynamic model predicting tumour growth inhibition after intermittent administration with the mTOR kinase inhibitor AZD8055. British Journal of Pharmacology, 2017, 174, 2652-2661.	2.7	8
1514	Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Molecular Cancer, 2017, 16, 100.	7.9	203
1515	TAK-228 (formerly MLN0128), an investigational dual TORC1/2 inhibitor plus paclitaxel, with/without trastuzumab, in patients with advanced solid malignancies. Cancer Chemotherapy and Pharmacology, 2017, 80, 261-273.	1.1	37
1516	Role of YAP1 as a Marker of Sensitivity to Dual AKT and P70S6K Inhibition in Ovarian and Uterine Malignancies. Journal of the National Cancer Institute, 2017, 109, .	3.0	9
1517	A phase II study of combined ridaforolimus and dalotuzumab compared with exemestane in patients with estrogen receptor-positive breast cancer. Breast Cancer Research and Treatment, 2017, 163, 535-544.	1.1	16
1518	Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nature Communications, 2017, 8, 14622.	5.8	201
1519	Modulation of Bax and mTOR for Cancer Therapeutics. Cancer Research, 2017, 77, 3001-3012.	0.4	24
1520	PRAS40 alleviates neurotoxic prion peptideâ€induced apoptosis via mTORâ€AKT signaling. CNS Neuroscience and Therapeutics, 2017, 23, 416-427.	1.9	6
1521	Advances in the treatment of advanced oestrogen-receptor-positive breast cancer. Lancet, The, 2017, 389, 2403-2414.	6.3	168

#	Article	IF	CITATIONS
1522	A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatric Blood and Cancer, 2017, 64, e26409.	0.8	66
1523	Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood, 2017, 129, 88-99.	0.6	92
1524	Synthesis, antifungal and antitumor activity of two new types of imidazolin-2-ones. Bioorganic and Medicinal Chemistry, 2017, 25, 6501-6510.	1.4	11
1525	Targeted Therapy and Prevention of Endometrial Cancer. Molecular Pathology Library, 2017, , 187-223.	0.1	0
1527	Urokinase-type plasminogen activator (uPA) is critical for progression of tuberous sclerosis complex 2 (TSC2)-deficient tumors. Journal of Biological Chemistry, 2017, 292, 20528-20543.	1.6	13
1528	Clinical development of mTor inhibitors for renal cancer. Expert Opinion on Investigational Drugs, 2017, 26, 1229-1237.	1.9	49
1529	PI3K/mTOR Inhibitors in the Treatment of Luminal Breast Cancer. Why, When and to Whom. Breast Care, 2017, 12, 290-294.	0.8	21
1530	Efficacy and safety of long-acting pasireotide or everolimus alone or in combination in patients with advanced carcinoids of the lung and thymus (LUNA): an open-label, multicentre, randomised, phase 2 trial. Lancet Oncology, The, 2017, 18, 1652-1664.	5.1	108
1531	Structure–Activity Relationships of New Natural Product-Based Diaryloxazoles with Selective Activity against Androgen Receptor-Positive Breast Cancer Cells. Journal of Medicinal Chemistry, 2017, 60, 9275-9289.	2.9	28
1532	hnRNPM guides an alternative splicing program in response to inhibition of the PI3K/AKT/mTOR pathway in Ewing sarcoma cells. Nucleic Acids Research, 2017, 45, 12270-12284.	6.5	57
1533	Key signaling pathways in thyroid cancer. Journal of Endocrinology, 2017, 235, R43-R61.	1.2	95
1534	p53 Nongenotoxic Activation and mTORC1 Inhibition Lead to Effective Combination for Neuroblastoma Therapy. Clinical Cancer Research, 2017, 23, 6629-6639.	3.2	23
1535	Everolimus selectively targets vemurafenib resistant BRAFV600E melanoma cells adapted to low pH. Cancer Letters, 2017, 408, 43-54.	3.2	36
1536	Inhibition of p70S6K does not mimic the enhancement of Akt phosphorylation by rapamycin. Heliyon, 2017, 3, e00378.	1.4	11
1537	5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology. Journal of Medicinal Chemistry, 2017, 60, 7524-7538.	2.9	109
1538	Adaptation to TKI Treatment Reactivates ERK Signaling in Tyrosine Kinase–Driven Leukemias and Other Malignancies. Cancer Research, 2017, 77, 5554-5563.	0.4	36
1539	Enhancement of mTOR signaling contributes to acquired Xâ€ray and Câ€ion resistance in mouse squamous carcinoma cell line. Cancer Science, 2017, 108, 2004-2010.	1.7	13
1540	Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthritis and Cartilage, 2017, 25, 2134-2146.	0.6	83

#	Article	IF	CITATIONS
1541	mTOR Kinase Inhibition Effectively Decreases Progression of a Subset of Neuroendocrine Tumors that Progress on Rapalog Therapy and Delays Cardiac Impairment. Molecular Cancer Therapeutics, 2017, 16, 2432-2441.	1.9	13
1542	New treatment options for metastatic renal cell carcinoma. ESMO Open, 2017, 2, e000185.	2.0	60
1543	Cooperation between p21 and Akt is required for p53â€dependent cellular senescence. Aging Cell, 2017, 16, 1094-1103.	3.0	87
1544	Novel Hsp90 inhibitor platycodin D disrupts Hsp90/Cdc37 complex and enhances the anticancer effect of mTOR inhibitor. Toxicology and Applied Pharmacology, 2017, 330, 65-73.	1.3	33
1545	Safety, tolerabilityÂand antitumour activity of LY2780301 (p70S6K/AKT inhibitor) in combination with gemcitabine in molecularly selected patients with advanced or metastatic cancer: a phase IB dose escalation study. European Journal of Cancer, 2017, 83, 194-202.	1.3	14
1546	Tumor LDH-A expression and serum LDH status are two metabolic predictors for triple negative breast cancer brain metastasis. Scientific Reports, 2017, 7, 6069.	1.6	66
1547	The PI3K Pathway in Human Disease. Cell, 2017, 170, 605-635.	13.5	1,702
1548	Resistance to Targeted Therapies in Breast Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2017, , .	0.1	1
1549	Co-targeting PI3K, mTOR, and IGF1R with small molecule inhibitors for treating undifferentiated pleomorphic sarcoma. Cancer Biology and Therapy, 2017, 18, 816-826.	1.5	19
1550	The IGF-1R/AKT pathway has opposing effects on Nutlin-3a-induced apoptosis. Cancer Biology and Therapy, 2017, 18, 895-903.	1.5	10
1551	Pre-S2 Mutant-Induced Mammalian Target of Rapamycin Signal Pathways as Potential Therapeutic Targets for Hepatitis B Virus-Associated Hepatocellular Carcinoma. Cell Transplantation, 2017, 26, 429-438.	1.2	23
1552	Targeting the mTOR pathway in breast cancer. Tumor Biology, 2017, 39, 101042831771082.	0.8	20
1553	A randomized phase II trial of ridaforolimus, dalotuzumab, and exemestane compared with ridaforolimus and exemestane in patients with advanced breast cancer. Breast Cancer Research and Treatment, 2017, 165, 601-609.	1.1	25
1554	A Review of Fulvestrant in Breast Cancer. Oncology and Therapy, 2017, 5, 17-29.	1.0	112
1555	mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature, 2017, 547, 109-113.	13.7	142
1556	Dasatinib + Gefitinib, a non platinum-based combination with enhanced growth inhibitory, anti-migratory and anti-invasive potency against human ovarian cancer cells. Journal of Ovarian Research, 2017, 10, 31.	1.3	13
1557	Effects of the single and combined treatment with dopamine agonist, somatostatin analog and mTOR inhibitors in a human lung carcinoid cell line: an in vitro study. Endocrine, 2017, 56, 603-620.	1.1	14
1558	mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene, 2017, 36, 2191-2201.	2.6	312

#	Article	IF	CITATIONS
1559	Polyphenolics from mango (Mangifera indica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice. Journal of Nutritional Biochemistry, 2017, 41, 12-19.	1.9	52
1560	Adaptive mechanisms of resistance to anti-neoplastic agents. MedChemComm, 2017, 8, 53-66.	3.5	12
1561	Exploiting receptor tyrosine kinase co-activation for cancer therapy. Drug Discovery Today, 2017, 22, 72-84.	3.2	30
1562	PI3K–mTOR Pathway Inhibition Exhibits Efficacy Against High-grade Glioma in Clinically Relevant Mouse Models. Clinical Cancer Research, 2017, 23, 1286-1298.	3.2	56
1563	mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging. Journal of Orthopaedic Research, 2017, 35, 1375-1382.	1.2	27
1564	Renal Toxicities of Novel Agents Used for Treatment of Multiple Myeloma. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 176-189.	2.2	44
1565	Neuroprotection Through Rapamycin-Induced Activation of Autophagy and PI3K/Akt1/mTOR/CREB Signaling Against Amyloid-β-Induced Oxidative Stress, Synaptic/Neurotransmission Dysfunction, and Neurodegeneration in Adult Rats. Molecular Neurobiology, 2017, 54, 5815-5828.	1.9	144
1566	Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features <i>In Vitro</i> and in an Imiquimod-Induced Psoriasis-Like Disease in Mice. Antioxidants and Redox Signaling, 2017, 26, 49-69.	2.5	71
1567	Simultaneous Targeting of NPC1 and VDAC1 by Itraconazole Leads to Synergistic Inhibition of mTOR Signaling and Angiogenesis. ACS Chemical Biology, 2017, 12, 174-182.	1.6	66
1568	Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. Mutation Research - Reviews in Mutation Research, 2017, 772, 105-122.	2.4	28
1569	Vertical inhibition of the PI3K/Akt/mTOR pathway is synergistic in breast cancer. Oncogenesis, 2017, 6, e385-e385.	2.1	56
1570	Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nature Communications, 2017, 8, 2207.	5.8	27
1571	The potential of emerging therapeutics for epithelioid sarcoma. Expert Opinion on Orphan Drugs, 2017, 5, 983-989.	0.5	2
1572	Differential Role of Rapamycin in Epidermis-Induced IL-15-IGF-1 Secretion via Activation of Akt/mTORC2. Cellular Physiology and Biochemistry, 2017, 42, 1755-1768.	1.1	9
1573	Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget, 2017, 8, 4008-4042.	0.8	145
1574	The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients, 2017, 9, 1176.	1.7	215
1575	Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers, 2017, 9, 52.	1.7	1,153
1576	Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers, 2017, 9, 86.	1.7	28

# 1577	ARTICLE Pancreatic Neuroendocrine Neoplasms: Basic Biology, Current Treatment Strategies and Prospects for the Future. International Journal of Molecular Sciences, 2017, 18, 143.	IF 1.8	CITATIONS
1578	Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.	1.9	65
1580	Multi-drug loaded micelles delivering chemotherapy and targeted therapies directed against HSP90 and the PI3K/AKT/mTOR pathway in prostate cancer. PLoS ONE, 2017, 12, e0174658.	1.1	16
1581	Specific blockade of Rictor-mTOR association inhibits mTORC2 activity and is cytotoxic in glioblastoma. PLoS ONE, 2017, 12, e0176599.	1.1	70
1582	Regulation of anti-apoptotic Bcl-2 family protein Mcl-1 by S6 kinase 2. PLoS ONE, 2017, 12, e0173854.	1.1	16
1583	Docosahexaenoic acid reduces sterol regulatory element binding protein-1 and fatty acid synthase expression and inhibits cell proliferation by inhibiting pAkt signaling in a human breast cancer MCF-7 cell line. BMC Cancer, 2017, 17, 890.	1.1	39
1584	O-GlcNAc regulation of autophagy and α-synuclein homeostasis; implications for Parkinson's disease. Molecular Brain, 2017, 10, 32.	1.3	67
1585	A network modeling approach to elucidate drug resistance mechanisms and predict combinatorial drug treatments in breast cancer. Cancer Convergence, 2017, 1, 5.	8.0	50
1586	Different roles of Akt and mechanistic target of rapamycin in serum‑dependent chondroprotection of human osteoarthritic chondrocytes. International Journal of Molecular Medicine, 2017, 41, 977-984.	1.8	5
1587	The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget, 2017, 8, 96103-96116.	0.8	173
1588	Is phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway therapeutic target for esophageal adenocarcinoma. Shanghai Chest, 2017, 1, 51-51.	0.3	0
1589	Preclinical therapeutic efficacy of a novel blood-brain barrier-penetrant dual PI3K/mTOR inhibitor with preferential response in PI3K/PTEN mutant glioma. Oncotarget, 2017, 8, 21741-21753.	0.8	16
1590	Phase 1b study of pasireotide, everolimus, and selective internal radioembolization therapy for unresectable neuroendocrine tumors with hepatic metastases. Cancer, 2018, 124, 1992-2000.	2.0	17
1591	Phosphorylation of AKT and ERK1/2 and mutations of PIK3CA and PTEN are predictive of breast cancer cell sensitivity to everolimus in vitro. Cancer Chemotherapy and Pharmacology, 2018, 81, 745-754.	1.1	18
1592	Pan-class l PI3-kinase inhibitor BKM120 induces MEK1/2-dependent mitotic catastrophe in non-Hodgkin lymphoma leading to apoptosis or polyploidy determined by Bax/Bak and p53. Cell Death and Disease, 2018, 9, 384.	2.7	13
1593	Drug discovery targeting the mTOR pathway. Clinical Science, 2018, 132, 543-568.	1.8	65
1594	Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation. Biochemical and Biophysical Research Communications, 2018, 497, 326-331.	1.0	18
1595	Anti-tumor effect of AZD8055 against neuroblastoma cells in vitro and in vivo. Experimental Cell Research, 2018, 365, 177-184.	1.2	25

#	Article	IF	CITATIONS
1596	Autophagy as a pharmacological target in hematopoiesis and hematological disorders. Biochemical Pharmacology, 2018, 152, 347-361.	2.0	12
1597	Mechanisms of Resistance to PI3K and AKT Inhibitors. Resistance To Targeted Anti-cancer Therapeutics, 2018, , 117-146.	0.1	3
1598	Voxtalisib (XL765) in patients with relapsed or refractory non-Hodgkin lymphoma or chronic lymphocytic leukaemia: an open-label, phase 2 trial. Lancet Haematology,the, 2018, 5, e170-e180.	2.2	44
1599	Use of dual mTOR inhibitor MLN0128 against everolimus-resistant breast cancer. Breast Cancer Research and Treatment, 2018, 170, 499-506.	1.1	14
1600	Interplay Between Metabolic Sensors and Immune Cell Signaling. Experientia Supplementum (2012), 2018, 109, 115-196.	0.5	2
1601	A First-in-Human Phase 1 Study of LY3023414, an Oral PI3K/mTOR Dual Inhibitor, in Patients with Advanced Cancer. Clinical Cancer Research, 2018, 24, 3253-3262.	3.2	71
1602	Combining chloroquine with RAD001 inhibits tumor growth in a NEN mouse model. Endocrine-Related Cancer, 2018, 25, 677-686.	1.6	14
1603	Foxo-dependent Par-4 Upregulation Prevents Long-term Survival of Residual Cells Following PI3K–Akt Inhibition. Molecular Cancer Research, 2018, 16, 599-609.	1.5	13
1604	Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Research and Treatment, 2018, 169, 397-406.	1.1	312
1605	A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913. Neuro-Oncology, 2018, 20, 666-673.	0.6	108
1606	Selective mTORC2 Inhibitor Therapeutically Blocks Breast Cancer Cell Growth and Survival. Cancer Research, 2018, 78, 1845-1858.	0.4	54
1607	Anthelmintic niclosamide suppresses transcription of BCR-ABL fusion oncogene via disabling Sp1 and induces apoptosis in imatinib-resistant CML cells harboring T315I mutant. Cell Death and Disease, 2018, 9, 68.	2.7	8
1608	Survivin is a novel transcription regulator of KIT and is downregulated by miRNAâ€494 in gastrointestinal stromal tumors. International Journal of Cancer, 2018, 142, 2080-2093.	2.3	21
1609	Rapamycin Confers Neuroprotection against Colistin-Induced Oxidative Stress, Mitochondria Dysfunction, and Apoptosis through the Activation of Autophagy and mTOR/Akt/CREB Signaling Pathways. ACS Chemical Neuroscience, 2018, 9, 824-837.	1.7	67
1610	Combination of melatonin and rapamycin for head and neck cancer therapy: Suppression of <scp>AKT</scp> / <scp>mTOR</scp> pathway activation, and activation of mitophagy and apoptosis via mitochondrial function regulation. Journal of Pineal Research, 2018, 64, e12461.	3.4	131
1611	PI3K inhibition to overcome endocrine resistance in breast cancer. Expert Opinion on Investigational Drugs, 2018, 27, 1-15.	1.9	38
1612	Deregulated PP1α phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nature Communications, 2018, 9, 159.	5.8	39
1613	p53 promotes AKT and SP1-dependent metabolism through the pentose phosphate pathway that inhibits apoptosis in response to Nutlin-3a. Journal of Molecular Cell Biology, 2018, 10, 331-340.	1.5	18

#	Article	IF	CITATIONS
1614	Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways. Journal of Experimental and Clinical Cancer Research, 2018, 37, 63.	3.5	181
1615	Synergistic antitumour effects of rapamycin and oncolytic reovirus. Cancer Gene Therapy, 2018, 25, 148-160.	2.2	7
1616	Generation of an animal model of Pten hamartoma tumour syndrome in the retina. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	6
1617	Dual inhibition of the <scp>mTORC</scp> 1 and <scp>mTORC</scp> 2 signaling pathways is a promising therapeutic target for adult Tâ€cell leukemia. Cancer Science, 2018, 109, 103-111.	1.7	30
1618	Phenformin-Induced Mitochondrial Dysfunction Sensitizes Hepatocellular Carcinoma for Dual Inhibition of mTOR. Clinical Cancer Research, 2018, 24, 3767-3780.	3.2	34
1620	A Phase I Trial of the IGF-1R Antibody Ganitumab (AMG 479) in Combination with Everolimus (RAD001) and Panitumumab in Patients with Advanced Cancer. Oncologist, 2018, 23, 782-790.	1.9	19
1621	Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine:methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. Journal of Dairy Science, 2018, 101, 5502-5514.	1.4	27
1622	Autophagy flux inhibition augments gastric cancer resistance to the anti-human epidermal growth factor receptor 2 antibody trastuzumab. Oncology Letters, 2018, 15, 4143-4150.	0.8	5
1623	A phase I dose-escalation study of the safety and pharmacokinetics of a tablet formulation of voxtalisib, a phosphoinositide 3-kinase inhibitor, in patients with solid tumors. Investigational New Drugs, 2018, 36, 36-44.	1.2	10
1624	Therapeutic Potential of Targeting PI3K/AKT Pathway in Treatment of Colorectal Cancer: Rational and Progress. Journal of Cellular Biochemistry, 2018, 119, 2460-2469.	1.2	150
1625	A phase Ib study of everolimus combined with metformin for patients with advanced cancer. Investigational New Drugs, 2018, 36, 53-61.	1.2	15
1626	Targeted Therapy and Molecular Genetics. , 2018, , 470-492.e10.		3
1627	Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma. Neuro-Oncology, 2018, 20, 78-91.	0.6	24
1628	GSK3α/β: A Novel Therapeutic Target for Neuroendocrine Tumors. Neuroendocrinology, 2018, 106, 335-351.	1.2	10
1629	PQR309 Is a Novel Dual PI3K/mTOR Inhibitor with Preclinical Antitumor Activity in Lymphomas as a Single Agent and in Combination Therapy. Clinical Cancer Research, 2018, 24, 120-129.	3.2	92
1630	PI3K/Akt/mTOR pathway involvement in regulating growth hormone secretion in a rat pituitary adenoma cell line. Endocrine, 2018, 60, 308-316.	1.1	18
1631	Everolimus in Combination with Octreotide Long-Acting Repeatable in a First-Line Setting for Patients with Neuroendocrine Tumors: A 5-Year Update. Neuroendocrinology, 2018, 106, 307-311.	1.2	17
1632	Changing Paradigms in the Management of Breast Cancer. , 2018, , .		1

#	Article	IF	CITATIONS
1633	New Targets for Therapy in Lung Cancer. , 2018, , 479-489.e6.		1
1634	Lack of Constitutively Active DNA Repair Sensitizes Glioblastomas to Akt Inhibition and Induces Synthetic Lethality with Radiation Treatment in a p53-Dependent Manner. Molecular Cancer Therapeutics, 2018, 17, 336-346.	1.9	8
1635	New Treatments for Metastatic Breast Cancer. , 2018, , 167-197.		0
1636	The mTOR kinase inhibitor everolimus synergistically enhances the antiâ€ŧumor effect of the Bruton's tyrosine kinase (BTK) inhibitor PLSâ€123 on Mantle cell lymphoma. International Journal of Cancer, 2018, 142, 202-213.	2.3	21
1637	Dueling for dual inhibition: Means to enhance effectiveness of PI3K/Akt/mTOR inhibitors in AML. Blood Reviews, 2018, 32, 235-248.	2.8	48
1638	Targeting PI3K, mTOR, ERK, and Bcl-2 signaling network shows superior antileukemic activity against AML ex vivo. Biochemical Pharmacology, 2018, 148, 13-26.	2.0	38
1639	Intravesical Thalidomide boosts bacillus Calmette-Guérin (BCG) in non-muscle invasive bladder cancer treatment. Medical Oncology, 2018, 35, 3.	1.2	5
1640	Buparlisib plus fulvestrant in postmenopausal women with hormone-receptor-positive, HER2-negative, advanced breast cancer progressing on or after mTOR inhibition (BELLE-3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncology, The, 2018, 19, 87-100.	5.1	307
1641	Autophagy promotes escape from phosphatidylinositol 3â€kinase inhibition in estrogen receptorâ€positive breast cancer. FASEB Journal, 2018, 32, 1222-1235.	0.2	22
1642	Autophagy activation is required for influenza A virus-induced apoptosis and replication. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 364-378.	1.9	74
1643	FOXO in B-cell lymphopoiesis and B cell neoplasia. Seminars in Cancer Biology, 2018, 50, 132-141.	4.3	27
1644	Estrogen receptor alpha drives mTORC1 inhibitor-induced feedback activation of PI3K/AKT in ER+ breast cancer. Oncotarget, 2018, 9, 8810-8822.	0.8	15
1645	TORward a Molecular Convergence Point in Pulmonary Arterial Hypertension WithÂmTOR. JACC Basic To Translational Science, 2018, 3, 763-765.	1.9	0
1646	The impact of PI3K inhibitors on breast cancer cell and its tumor microenvironment. PeerJ, 2018, 6, e5092.	0.9	36
1647	Basic Mechanisms of Glioblastoma Multiforme Cell Invasion: A Review Article. Journal of Neurology and Neuroscience, 2018, 09, .	0.4	2
1648	Targeting mTOR in Glioblastoma: Rationale and Preclinical/Clinical Evidence. Disease Markers, 2018, 2018, 1-10.	0.6	81
1649	Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. International Journal of Molecular Sciences, 2018, 19, 3773.	1.8	71
1650	mTORC1 is a key mediator of RON-dependent breast cancer metastasis with therapeutic potential. Npj Breast Cancer, 2018, 4, 36.	2.3	20

#	Article	IF	CITATIONS
1651	Disrupting the CD95–PLCγ1 interaction prevents Th17-driven inflammation. Nature Chemical Biology, 2018, 14, 1079-1089.	3.9	23
1652	Galangin and Pinocembrin from Propolis Ameliorate Insulin Resistance in HepG2 Cells via Regulating Akt/mTOR Signaling. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-10.	0.5	30
1653	Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget, 2018, 9, 8027-8041.	0.8	42
1654	Effects and Mechanisms of Rapamycin Action on Experimental Neurodegeneration. Neurochemical Journal, 2018, 12, 347-358.	0.2	5
1655	Membraneâ€ŧethered Notch1 exhibits oncogenic property via activation of EGFR–PI3K–AKT pathway in oral squamous cell carcinoma. Journal of Cellular Physiology, 2018, 234, 5940-5952.	2.0	18
1656	PI3K pathway in prostate cancer: All resistant roads lead to PI3K. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 198-206.	3.3	27
1657	A Patient-derived Xenograft Model of Pancreatic Neuroendocrine Tumors Identifies Sapanisertib as a Possible New Treatment for Everolimus-resistant Tumors. Molecular Cancer Therapeutics, 2018, 17, 2702-2709.	1.9	30
1658	Reduced menin expression impairs rapamycin effects as evidenced by an increase in mTORC2 signaling and cell migration. Cell Communication and Signaling, 2018, 16, 64.	2.7	13
1659	IGF1R upregulation confers resistance to isoform-specific inhibitors of PI3K in PIK3CA-driven ovarian cancer. Cell Death and Disease, 2018, 9, 944.	2.7	33
1660	MNK1 inhibitor CGP57380 overcomes mTOR inhibitor-induced activation of eIF4E: the mechanism of synergic killing of human T-ALL cells. Acta Pharmacologica Sinica, 2018, 39, 1894-1901.	2.8	18
1661	Intracellular Delivery of Rapamycin From FKBP Elastin-Like Polypeptides Is Consistent With Macropinocytosis. Frontiers in Pharmacology, 2018, 9, 1184.	1.6	16
1662	Discovery and Preclinical Characterization of 5-[4,6-Bis({3-oxa-8-azabicyclo[3.2.1]octan-8-yl})-1,3,5-triazin-2-yl]-4-(difluoromethyl)pyridin-2-amine (PQR620), a Highly Potent and Selective mTORC1/2 Inhibitor for Cancer and Neurological Disorders. lournal of Medicinal Chemistry, 2018, 61, 10084-10105.	2.9	62
1663	Imatinib and everolimus in patients with progressing advanced chordoma: A phase 2 clinical study. Cancer, 2018, 124, 4056-4063.	2.0	40
1664	Functional Proteomics and Deep Network Interrogation Reveal a Complex Mechanism of Action of Midostaurin in Lung Cancer Cells. Molecular and Cellular Proteomics, 2018, 17, 2434-2447.	2.5	17
1665	Insulin Receptor Substrate Suppression by the Tyrphostin NT157 Inhibits Responses to Insulin-Like Growth Factor-I and Insulin in Breast Cancer Cells. Hormones and Cancer, 2018, 9, 371-382.	4.9	14
1666	Rapamycin and fingolimod modulate Treg/Th17 cells in experimental autoimmune encephalomyelitis by regulating the Akt-mTOR and MAPK/ERK pathways. Journal of Neuroimmunology, 2018, 324, 26-34.	1.1	27
1667	ETV7 is an essential component of a rapamycin-insensitive mTOR complex in cancer. Science Advances, 2018, 4, eaar3938.	4.7	82
1668	Mevalonate pathway blockage enhances the efficacy of mTOR inhibitors with the activation of retinoblastoma protein in renal cell carcinoma. Cancer Letters, 2018, 431, 182-189.	3.2	16

# 1669	ARTICLE An update on the management of pancreatic neuroendocrine tumors. Anti-Cancer Drugs, 2018, 29, 597-612.	IF 0.7	Citations 8
1670	Effects of NVP‑BEZ235, a dual phosphatidylinositolÃ⁻¿½3-kinase/mammalian target of rapamycin inhibitor, on HTLV-1-infected T-cell lines. Oncology Letters, 2018, 15, 5311-5317.	0.8	7
1671	Enhanced ZnR/GPR39 Activity in Breast Cancer, an Alternative Trigger of Signaling Leading to Cell Growth. Scientific Reports, 2018, 8, 8119.	1.6	18
1672	Dual Src and MEK Inhibition Decreases Ovarian Cancer Growth and Targets Tumor Initiating Stem-Like Cells. Clinical Cancer Research, 2018, 24, 4874-4886.	3.2	60
1673	Growth Factor Signaling Pathways and Targeted Therapy. , 2018, , 305-322.		0
1674	mTORC1 pathway in DNA damage response. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1293-1311.	1.9	97
1675	Cancer Metabolism: Current Understanding and Therapies. Chemical Reviews, 2018, 118, 6893-6923.	23.0	161
1676	Signaling pathway screening platforms are an efficient approach to identify therapeutic targets in cancers that lack known driver mutations: a case report for a cancer of unknown primary origin. Npj Genomic Medicine, 2018, 3, 15.	1.7	9
1677	Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer. Nature Chemical Biology, 2018, 14, 768-777.	3.9	64
1678	mTORC1 Negatively Regulates the Replication of Classical Swine Fever Virus Through Autophagy and IRES-Dependent Translation. IScience, 2018, 3, 87-101.	1.9	13
1679	Rapamycin mediates mTOR signaling in reactive astrocytes and reduces retinal ganglion cell loss. Experimental Eye Research, 2018, 176, 10-19.	1.2	23
1680	Anticancer effects of combinational treatment with BRAFV600E siRNA and PI3K pathway inhibitors in melanoma cell lines harboring BRAFV600E. Oncology Letters, 2018, 16, 632-642.	0.8	6
1681	Effect of combined treatment with a pan-PI3K inhibitor or an isoform-specific PI3K inhibitor and everolimus on cell proliferation in GH-secreting pituitary tumour in an experimental setting. Endocrine, 2018, 62, 663-680.	1.1	9
1682	Dual mTOR/PI3K inhibitor NVP‑BEZ235 arrests colorectal cancer cell growth and displays differential inhibition of 4E‑BP1. Oncology Reports, 2018, 40, 1083-1092.	1.2	15
1683	Utility of a Novel Three-Dimensional and Dynamic (3DD) Cell Culture System for PK/PD Studies: Evaluation of a Triple Combination Therapy at Overcoming Anti-HER2 Treatment Resistance in Breast Cancer. Frontiers in Pharmacology, 2018, 9, 403.	1.6	8
1684	DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiological Reviews, 2018, 98, 1765-1803.	13.1	64
1685	Targeting tumour re-wiring by triple blockade of mTORC1, epidermal growth factor, and oestrogen receptor signalling pathways in endocrine-resistant breast cancer. Breast Cancer Research, 2018, 20, 44.	2.2	17
1686	Migration inhibition of water stress proteins from Nostoc commune Vauch. via activation of autophagy in DLD-1 cells. International Journal of Biological Macromolecules, 2018, 119, 669-676.	3.6	13

#	Article	IF	CITATIONS
1687	Impact of Genomics on Personalization of Breast Cancer Care. , 2018, , 331-372.		2
1688	The Role of mTOR in Neuroendocrine Tumors: Future Cornerstone of a Winning Strategy?. International Journal of Molecular Sciences, 2018, 19, 747.	1.8	42
1689	A TFEB nuclear export signal integrates amino acid supply and glucose availability. Nature Communications, 2018, 9, 2685.	5.8	84
1690	Activation of Cyclooxygenase-2 by ATF4 During Endoplasmic Reticulum Stress Regulates Kidney Podocyte Autophagy Induced by Lupus Nephritis. Cellular Physiology and Biochemistry, 2018, 48, 753-764.	1.1	28
1691	Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Human Reproduction, 2018, 33, 1705-1714.	0.4	144
1692	The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1870, 185-197.	3.3	40
1693	Targeted Therapies in Type II Endometrial Cancers: Too Little, but Not Too Late. International Journal of Molecular Sciences, 2018, 19, 2380.	1.8	39
1694	The role of GSK3 and its reversal with GSK3 antagonism in everolimus resistance. Endocrine-Related Cancer, 2018, 25, 893-908.	1.6	24
1695	FOXOs Maintaining the Equilibrium for Better or for Worse. Current Topics in Developmental Biology, 2018, 127, 49-103.	1.0	17
1696	RAPTOR up-regulation contributes to resistance of renal cancer cells to PI3K-mTOR inhibition. PLoS ONE, 2018, 13, e0191890.	1.1	23
1697	Phase 1/1b dose escalation and expansion study of BEZ235, a dual PI3K/mTOR inhibitor, in patients with advanced solid tumors including patients with advanced breast cancer. Cancer Chemotherapy and Pharmacology, 2018, 82, 285-298.	1.1	37
1698	Intravital Imaging to Monitor Therapeutic Response in Moving Hypoxic Regions Resistant to PI3K Pathway Targeting in Pancreatic Cancer. Cell Reports, 2018, 23, 3312-3326.	2.9	61
1699	Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature, 2018, 558, 540-546.	13.7	374
1700	mTOR Signalling Pathway-protein Expression in Post-transplant Cutaneous Squamous-cell Carcinomas Before and After Conversion to mTOR-inhibitors. Anticancer Research, 2018, 38, 3319-3322.	0.5	3
1701	Novel role of Giα2 in cell migration: Downstream of PI3â€kinase–AKT and Rac1 in prostate cancer cells. Journal of Cellular Physiology, 2019, 234, 802-815.	2.0	12
1702	Molecular characterization of autophagic and apoptotic signaling induced by sorafenib in liver cancer cells. Journal of Cellular Physiology, 2019, 234, 692-708.	2.0	45
1703	TFEB Mediates Immune Evasion and Resistance to mTOR Inhibition of Renal Cell Carcinoma via Induction of PD-L1. Clinical Cancer Research, 2019, 25, 6827-6838.	3.2	47
1704	Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiation Oncology, 2019, 14, 141.	1.2	285

		CITATION REPORT		
#	Article		IF	Citations
1705	mTOR: Role in cancer, metastasis and drug resistance. Seminars in Cancer Biology, 201	9, 59, 92-111.	4.3	299
1706	Systemic treatment for lung carcinoids: from bench to bedside. Clinical and Translation 2019, 8, 22.	al Medicine,	1.7	15
1707	MAPK SIGNALLING PATHWAY: ROLE IN CANCER PATHOGENESIS. Journal of Critical Rev	iews, 2019, , 1-6.	0.7	2
1708	Low-dose triple drug combination targeting the PI3K/AKT/mTOR pathway and the MAPA effective approach in ovarian clear cell carcinoma. Cancer Letters, 2019, 461, 102-111.	K pathway is an	3.2	40
1709	Dynamic Regulation of Caveolin-1 Phosphorylation and Caveolae Formation by Mamma Rapamycin Complex 2 in Bladder Cancer Cells. American Journal of Pathology, 2019, 18	alian Target of 39, 1846-1862.	1.9	13
1710	Anticancer compound XL765 as PI3K/mTOR dual inhibitor: A structural insight into the mechanism using computational approaches. PLoS ONE, 2019, 14, e0219180.	inhibitory	1.1	27
1711	Synergistic Anti-Tumor Effect of mTOR Inhibitors with Irinotecan on Colon Cancer Cells 2019, 11, 1581.	. Cancers,	1.7	26
1712	The Novel Phosphatidylinositol-3-Kinase (PI3K) Inhibitor Alpelisib Effectively Inhibits Gro PTEN-Haploinsufficient Lipoma Cells. Cancers, 2019, 11, 1586.	wth of	1.7	17
1713	Homer1 mediates CaSR-dependent activation of mTOR complex 2 and initiates a novel AKT-dependent β-catenin stabilization in osteoblasts. Journal of Biological Chemistry, 2 16337-16350.	pathway for 2019, 294,	1.6	17
1714	AKT signaling promotes DNA damage accumulation and proliferation in polycystic kidn Human Molecular Genetics, 2020, 29, 31-48.	ey disease.	1.4	13
1715	mTOR signaling in Brown and Beige adipocytes: implications for thermogenesis and ob and Metabolism, 2019, 16, 74.	esity. Nutrition	1.3	24
1716	Phase I clinical trial of the combination of eribulin and everolimus in patients with meta triple-negative breast cancer. Breast Cancer Research, 2019, 21, 119.	static	2.2	21
1717	Safety lead-in of the MEK inhibitor trametinib in combination with GSK2141795, an AK patients with recurrent endometrial cancer: An NRG Oncology/GOG study. Gynecologic 2019, 155, 420-428.		0.6	28
1718	<p>NCAPG Promotes The Proliferation Of Hepatocellular Carcinoma Through PI3k Signaling</p> . OncoTargets and Therapy, 2019, Volume 12, 8537-8552.	(/AKT	1.0	97
1719	Akt inhibition synergizes with polycomb repressive complex 2 inhibition in the treatmen myeloma. Cancer Science, 2019, 110, 3695-3707.	nt of multiple	1.7	17
1720	Novel therapeutic avenues in triple-negative breast cancer: PI3K/AKT inhibition, androg blockade, and beyond. Therapeutic Advances in Medical Oncology, 2019, 11, 1758835		1.4	41
1721	Synergistic Highly Potent Targeted Drug Combinations in Different Pheochromocytoma Including Human Tumor Cultures. Endocrinology, 2019, 160, 2600-2617.	a Models	1.4	24
1722	Nutrient restriction causes reversible G2 arrest in <i>Xenopus</i> neural progenitors. D (Cambridge), 2019, 146, .	Pevelopment	1.2	10

#	Article	IF	Citations
1723	A Conformational Restriction Strategy for the Identification of a Highly Selective Pyrimido-pyrrolo-oxazine mTOR Inhibitor. Journal of Medicinal Chemistry, 2019, 62, 8609-8630.	2.9	24
1724	Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Molecular Medicine Reports, 2019, 19, 4529-4535.	1.1	111
1725	ALI multilayered co-cultures mimic biochemical mechanisms of the cancer cell-fibroblast cross-talk involved in NSCLC MultiDrug Resistance. BMC Cancer, 2019, 19, 854.	1.1	18
1726	Eribulin Synergistically Increases Anti-Tumor Activity of an mTOR Inhibitor by Inhibiting pAKT/pS6K/pS6 in Triple Negative Breast Cancer. Cells, 2019, 8, 1010.	1.8	25
1727	A Novel Therapeutic Induces DEPTOR Degradation in Multiple Myeloma Cells with Resulting Tumor Cytotoxicity. Molecular Cancer Therapeutics, 2019, 18, 1822-1831.	1.9	7
1728	A Three-dimensional and Dynamic (3DD) Cell Culture System for Evaluation of Pharmacokinetics, Safety and Efficacy of Anti-cancer Drugs. Current Pharmacology Reports, 2019, 5, 460-467.	1.5	1
1729	HIV protease inhibitors and autoimmunity: An odd, but promising idea. Autoimmunity Reviews, 2019, 18, 102370.	2.5	0
1730	<p>Inhibition of esophageal cancer growth through the suppression of PI3K/AKT/mTOR signaling pathway</p> . OncoTargets and Therapy, 2019, Volume 12, 7637-7647.	1.0	38
1731	Phosphorylation of TSC2 by PKC-δ reveals a novel signaling pathway that couples protein synthesis to mTORC1 activity. Molecular and Cellular Biochemistry, 2019, 456, 123-134.	1.4	16
1732	A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer. Gynecologic Oncology, 2019, 153, 135-148.	0.6	45
1733	Molecular docking studies on the interaction of NCI anticancer analogues with human Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit. Journal of King Saud University - Science, 2019, 31, 1151-1166.	1.6	72
1734	Pharmacological inhibition of mTORC1 but not mTORC2 protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism through Akt and autophagy induction. Osteoarthritis and Cartilage, 2019, 27, 965-976.	0.6	54
1735	Allosteric and ATP-Competitive Inhibitors of mTOR Effectively Suppress Tumor Progression-Associated Epithelial-Mesenchymal Transition in the Kidneys of Tsc2+/â^ Mice. Neoplasia, 2019, 21, 731-739.	2.3	9
1736	Everolimus for the treatment of advanced pancreatic ductal adenocarcinoma (PDAC). Expert Opinion on Investigational Drugs, 2019, 28, 583-592.	1.9	17
1737	Targeting Translation of mRNA as a Therapeutic Strategy in Cancer. Current Hematologic Malignancy Reports, 2019, 14, 219-227.	1.2	31
1738	Therapeutic Potency of PI3K Pharmacological Inhibitors of Gastrointestinal Cancer. Middle East Journal of Digestive Diseases, 2019, 11, 5-16.	0.2	11
1739	<p>DCZ0814 induces apoptosis and G0/G1 phase cell cycle arrest in myeloma by dual inhibition of mTORC1/2</p> . Cancer Management and Research, 2019, Volume 11, 4797-4808.	0.9	2
1740	Autophagy and mTOR pathways in mouse embryonic stem cell, lung cancer and somatic fibroblast cell lines. Journal of Cellular Biochemistry, 2019, 120, 18066-18076.	1.2	8

#	Article	IF	CITATIONS
1741	Dual inhibition of the PI3K and MAPK pathways enhances nab-paclitaxel/gemcitabine chemotherapy response in preclinical models of pancreatic cancer. Cancer Letters, 2019, 459, 41-49.	3.2	35
1742	Feedback Activation of SGK3 and AKT Contributes to Rapamycin Resistance by Reactivating mTORC1/4EBP1 Axis via TSC2 in Breast Cancer. International Journal of Biological Sciences, 2019, 15, 929-941.	2.6	21
1743	Randomized phase II trial of neoadjuvant everolimus in patients with high-risk localized prostate cancer. Investigational New Drugs, 2019, 37, 559-566.	1.2	12
1744	Phosphatidylinositol 5 Phosphate 4-Kinase Regulates Plasma-Membrane PIP3 Turnover and Insulin Signaling. Cell Reports, 2019, 27, 1979-1990.e7.	2.9	39
1745	miR-124 upregulates astrocytic glutamate transporter-1 via the Akt and mTOR signaling pathway post ischemic stroke. Brain Research Bulletin, 2019, 149, 231-239.	1.4	16
1746	A study of sirolimus and mTOR kinase inhibitor in a hypomorphic <i>Pkd1</i> mouse model of autosomal dominant polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2019, 317, F187-F196.	1.3	24
1747	Targeting the PI3-kinase pathway in triple-negative breast cancer. Annals of Oncology, 2019, 30, 1051-1060.	0.6	180
1748	Combining Multiscale Experimental and Computational Systems Pharmacological Approaches to Overcome Resistance to HER2-targeted Therapy in Breast Cancer. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 531-545.	1.3	12
1749	Epimagnolin targeting on an active pocket of mammalian target of rapamycin suppressed cell transformation and colony growth of lung cancer cells. Molecular Carcinogenesis, 2019, 58, 1221-1233.	1.3	10
1750	Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1322-1337.	1.9	20
1751	Challenges for the Clinical Development of PI3K Inhibitors: Strategies to Improve Their Impact in Solid Tumors. Cancer Discovery, 2019, 9, 482-491.	7.7	141
1752	Genomic heterogeneity and efficacy of PI3K pathway inhibitors in patients with gynaecological cancer. ESMO Open, 2019, 4, e000444.	2.0	8
1753	Rebound pathway overactivation by cancer cells following discontinuation of PI3K or mTOR inhibition promotes cancer cell growth. Biochemical and Biophysical Research Communications, 2019, 513, 546-552.	1.0	2
1754	Beneficial effects of dual TORC1/2 inhibition on chronic experimental colitis. International Immunopharmacology, 2019, 70, 88-100.	1.7	4
1755	Systemic treatment of pancreatic neuroendocrine tumors. Surgical Practice, 2019, 23, 48-58.	0.1	0
1756	Emerging roles of microRNAs in regulating the mTOR signaling pathway during tumorigenesis. Journal of Cellular Biochemistry, 2019, 120, 10874-10883.	1.2	11
1757	mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. International Journal of Molecular Sciences, 2019, 20, 755.	1.8	406
1758	Evaluation of preclinical efficacy of everolimus and pasireotide in thyroid cancer cell lines and xenograft models. PLoS ONE, 2019, 14, e0206309.	1.1	7

#	Article	IF	CITATIONS
1759	Targeting mTOR with MLN0128 Overcomes Rapamycin and Chemoresistant Primary Effusion Lymphoma. MBio, 2019, 10, .	1.8	27
1760	Long non-coding RNAs: Functional regulatory players in breast cancer. Non-coding RNA Research, 2019, 4, 36-44.	2.4	82
1761	Combined mTORC1/mTORC2 inhibition blocks growth and induces catastrophic macropinocytosis in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24583-24592.	3.3	34
1762	Overview of the relevance of PI3K pathway in HR-positive breast cancer. Annals of Oncology, 2019, 30, x3-x11.	0.6	92
1763	The Clinicopathological Spectrum of Acromegaly. Journal of Clinical Medicine, 2019, 8, 1962.	1.0	42
1764	Direct physical interaction of active Ras with mSIN1 regulates mTORC2 signaling. BMC Cancer, 2019, 19, 1236.	1.1	12
1765	Reverse Phase Protein Arrays. Advances in Experimental Medicine and Biology, 2019, , .	0.8	1
1766	Evaluation of the dual mTOR/PI3K inhibitors Gedatolisib (PF-05212384) and PF-04691502 against ovarian cancer xenograft models. Scientific Reports, 2019, 9, 18742.	1.6	18
1767	Sevoflurane downregulates insulin-like growth factor-1 to inhibit cell proliferation, invasion and trigger apoptosis in glioma through the PI3K/AKT signaling pathway. Anti-Cancer Drugs, 2019, 30, 670-676.	0.7	18
1768	Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells, 2019, 8, 1584.	1.8	149
1769	Phase IB Dose Escalation and Expansion Study of AKT Inhibitor Afuresertib with Carboplatin and Paclitaxel in Recurrent Platinum-resistant Ovarian Cancer. Clinical Cancer Research, 2019, 25, 1472-1478.	3.2	38
1770	Modulator of the PI3K/Akt oncogenic pathway affects mTOR complex 2 in human adenocarcinoma cells. Investigational New Drugs, 2019, 37, 902-911.	1.2	5
1771	Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut, 2019, 68, 742-758.	6.1	68
1772	Urolithin A, a Novel Natural Compound to Target PI3K/AKT/mTOR Pathway in Pancreatic Cancer. Molecular Cancer Therapeutics, 2019, 18, 301-311.	1.9	64
1773	mTOR kinase inhibition reduces tissue factor expression and growth of pancreatic neuroendocrine tumors. Journal of Thrombosis and Haemostasis, 2019, 17, 169-182.	1.9	10
1774	Overcoming Endocrine Resistance in Breast Cancer. , 2019, , 393-422.		2
1775	Molecular-targeted therapies and precision medicine for endometrial cancer. Japanese Journal of Clinical Oncology, 2019, 49, 108-120.	0.6	38
1776	Inhibition of mTOR Signaling and Clinical Activity of Rapamycin in Head and Neck Cancer in a Window of Opportunity Trial. Clinical Cancer Research, 2019, 25, 1156-1164.	3.2	66

		CITATION REPORT		
#	Article		IF	CITATIONS
1777	Estrogen Receptor and Breast Cancer. Cancer Drug Discovery and Development, 2019, , .		0.2	4
1778	The Molecular and Clinical Landscape of Pancreatic Neuroendocrine Tumors. Pancreas, 20	19, 48, 9-21.	0.5	17
1779	Novel Non–HER2-targeted Therapies in HER2+ Breast Cancer. , 2019, , 179-212.			0
1780	B591, a novel specific pan-PI3K inhibitor, preferentially targets cancer stem cells. Oncogen 3371-3386.	ıe, 2019, 38,	2.6	21
1781	Molecular Mechanisms of Endocrine Resistance. Cancer Drug Discovery and Development, 265-307.	, 2019, ,	0.2	5
1782	Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. AC Neuroscience, 2019, 10, 120-131.	S Chemical	1.7	45
1783	Proproliferative function of adaptor protein GRB10 in prostate carcinoma. FASEB Journal, 2 3198-3211.	2019, 33,	0.2	13
1784	The regulatory role of COX-2 in the interaction between Cr(VI)-induced endoplasmic reticu and autophagy in DF-1 cells. Ecotoxicology and Environmental Safety, 2019, 170, 112-119		2.9	17
1785	NRF2 through RPS6 Activation Is Related to Anti-HER2 Drug Resistance in <i>HER2</i> -Am Cancer. Clinical Cancer Research, 2019, 25, 1639-1649.	plified Gastric	3.2	47
1786	Pharmacological inhibition of S6K1 facilitates platelet activation by enhancing Akt phosph Platelets, 2019, 30, 241-250.	orylation.	1.1	2
1787	Phase II, 2â€stage, 2â€arm, PIK3CA mutation stratified trial of MKâ€⊋206 in recurrent end International Journal of Cancer, 2020, 147, 413-422.	ometrial cancer.	2.3	31
1788	Identification of Two Kinase Inhibitors with Synergistic Toxicity with Low-Dose Hydrogen P Colorectal Cancer Cells In vitro. Cancers, 2020, 12, 122.	eroxide in	1.7	14
1789	Phase 2 study of LY3023414 in patients with advanced endometrial cancer harboring active mutations in the PI3K pathway. Cancer, 2020, 126, 1274-1282.	vating	2.0	37
1790	Promotion of Myofibroblast Differentiation and Tissue Fibrosis by the Leukotriene B ₄ –Leukotriene B ₄ Receptor Axis in Systemic Sclerosis. Arthri Rheumatology, 2020, 72, 1013-1025.	tis and	2.9	17
1791	PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochemical Phar 2020, 172, 113729.	macology,	2.0	174
1792	Effect of AKT1 (p. E17K) Hotspot Mutation on Malignant Tumorigenesis and Prognosis. Fra and Developmental Biology, 2020, 8, 573599.	ontiers in Cell	1.8	26
1793	Specific c-Jun N-Terminal Kinase Inhibitor, JNK-IN-8 Suppresses Mesenchymal Profile of PTX MCF-7 Cells through Modulating PI3K/Akt, MAPK and Wnt Signaling Pathways. Biology, 20	-Resistant)20, 9, 320.	1.3	6
1794	Possible Novel Therapeutic Targets in Lymphangioleiomyomatosis Treatment. Frontiers in 2020, 7, 554134.	Medicine,	1.2	7

#	Article	IF	CITATIONS
1795	Upregulation of Akt/Raptor signaling is associated with rapamycin resistance of breast cancer cells. Chemico-Biological Interactions, 2020, 330, 109243.	1.7	10
1796	Targeting the HIF2–VEGF axis in renal cell carcinoma. Nature Medicine, 2020, 26, 1519-1530.	15.2	248
1797	EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nature Communications, 2020, 11, 5878.	5.8	29
1798	<p>Nanotechnology-Based Targeting of mTOR Signaling in Cancer</p> . International Journal of Nanomedicine, 2020, Volume 15, 5767-5781.	3.3	12
1799	Treatment of ErbB2 breast cancer by mitochondrial targeting. Cancer & Metabolism, 2020, 8, 17.	2.4	5
1800	Metformin and Everolimus: A Promising Combination for Neuroendocrine Tumors Treatment. Cancers, 2020, 12, 2143.	1.7	13
1801	Current and emerging biologic therapies for triple negative breast cancer. Expert Opinion on Biological Therapy, 2022, 22, 591-602.	1.4	11
1802	High Sensitivity of Circulating Tumor Cells Derived from a Colorectal Cancer Patient for Dual Inhibition with AKT and mTOR Inhibitors. Cells, 2020, 9, 2129.	1.8	26
1803	Treatment of Metastatic Uveal Melanoma: Systematic Review. Cancers, 2020, 12, 2557.	1.7	43
1804	Phase 1 study of mTORC1/2 inhibitor sapanisertib (TAK-228) in advanced solid tumours, with an expansion phase in renal, endometrial or bladder cancer. British Journal of Cancer, 2020, 123, 1590-1598.	2.9	57
1805	<i>RICTOR</i> Amplification Promotes NSCLC Cell Proliferation through Formation and Activation of mTORC2 at the Expense of mTORC1. Molecular Cancer Research, 2020, 18, 1675-1684.	1.5	5
1806	Progress in the management of endometrial cancer (subtypes, immunotherapy, alterations in PIK3CA) Tj ETQq1 1	0,78431 1,1	4 rgBT /Overi
1807	Metformin Restores the Drug Sensitivity of MCF-7 Cells Resistant Derivates via the Cooperative Modulation of Growth and Apoptotic-Related Pathways. Pharmaceuticals, 2020, 13, 206.	1.7	7
1808	Mitochondrial dysfunction contributes to Rapamycin-induced apoptosis of Human Glioblastoma Cells - A synergistic effect with Temozolomide. International Journal of Medical Sciences, 2020, 17, 2831-2843.	1.1	14
1809	Learning to encode cellular responses to systematic perturbations with deep generative models. Npj Systems Biology and Applications, 2020, 6, 35.	1.4	7
1810	A bibliometric analysis of highly cited Phosphoinositide 3-Kinase (PI3K) research papers. Collnet Journal of Scientometrics and Information Management, 2020, 14, 37-54.	0.4	0
1811	Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neuro-Oncology Advances, 2020, 2, vdaa138.	0.4	14
1812	mTOR Pathway in Gastroenteropancreatic Neuroendocrine Tumor (GEP-NETs). Frontiers in Endocrinology, 2020, 11, 562505.	1.5	25

#	Article	IF	CITATIONS
1813	Insulin-like growth factor-1 receptor induces immunosuppression in lung cancer by upregulating B7–H4 expression through the MEK/ERK signaling pathway. Cancer Letters, 2020, 485, 14-26.	3.2	16
1814	FLT3-IRAK dual targeting: an exciting new therapeutic option guided by adaptive activation of immune response pathways. Annals of Translational Medicine, 2020, 8, 511-511.	0.7	1
1815	Mammalian Target of Rapamycin-RhoA Signaling Impairments in Direct Striatal Projection Neurons Induce Altered Behaviors and Striatal Physiology in Mice. Biological Psychiatry, 2020, 88, 945-954.	0.7	8
1816	Radiosensitizers in the temozolomide era for newly diagnosed glioblastoma. Neuro-Oncology Practice, 2020, 7, 268-276.	1.0	12
1817	2,6-DMBQ is a novel mTOR inhibitor that reduces gastric cancer growth in vitro and in vivo. Journal of Experimental and Clinical Cancer Research, 2020, 39, 107.	3.5	8
1818	Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nature Communications, 2020, 11, 1383.	5.8	30
1819	Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nature Reviews Urology, 2020, 17, 292-307.	1.9	59
1820	Withania somnifera (L.) Dunal: A potential therapeutic adjuvant in cancer. Journal of Ethnopharmacology, 2020, 255, 112759.	2.0	30
1821	Infraredâ€A Irradiationâ€induced Inhibition of Human Keratinocyte Proliferation and Potential Mechanisms. Photochemistry and Photobiology, 2020, 96, 1105-1115.	1.3	6
1822	Activation of notch 3/c-MYC/CHOP axis regulates apoptosis and promotes sensitivity of lung cancer cells to mTOR inhibitor everolimus. Biochemical Pharmacology, 2020, 175, 113921.	2.0	18
1823	Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction and Targeted Therapy, 2020, 5, 113.	7.1	299
1824	Phenotypic characterization of patients with activated PI3KÎ′ syndrome 1 presenting with features of systemic lupus erythematosus. Genes and Diseases, 2021, 8, 907-917.	1.5	7
1825	The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. International Journal of Molecular Sciences, 2020, 21, 4507.	1.8	289
1826	Is There a Role for Dual PI3K/mTOR Inhibitors for Patients Affected with Lymphoma?. International Journal of Molecular Sciences, 2020, 21, 1060.	1.8	27
1827	Combined Targeting of AKT and mTOR Inhibits Proliferation of Human NF1-Associated Malignant Peripheral Nerve Sheath Tumour Cells In Vitro but not in a Xenograft Mouse Model In Vivo. International Journal of Molecular Sciences, 2020, 21, 1548.	1.8	15
1828	Autophagy and mTOR signaling during intervertebral disc aging and degeneration. JOR Spine, 2020, 3, e1082.	1.5	51
1829	Distinct Roles of mTOR Targets S6K1 and S6K2 in Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 1199.	1.8	52
1830	Alterations and molecular targeting of the GSK-3 regulator, PI3K, in head and neck cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118679.	1.9	14

#	Article	IF	CITATIONS
1831	Design, Synthesis, and Biological Evaluation of Imidazo[1,2- <i>a</i>]pyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 3028-3046.	2.9	50
1832	Somatostatin receptor expression and mTOR pathway activation in glioneuronal tumours of childhood. Seizure: the Journal of the British Epilepsy Association, 2020, 76, 123-130.	0.9	2
1833	Inhibition of mTOR via an AAV-Delivered shRNA Tested in a Rat OIR Model as a Potential Antiangiogenic Gene Therapy. , 2020, 61, 45.		6
1834	A Phase I Trial of IGF-1R Inhibitor Cixutumumab and mTOR Inhibitor Temsirolimus in Metastatic Castration-resistant Prostate Cancer. Clinical Genitourinary Cancer, 2020, 18, 171-178.e2.	0.9	25
1835	Aerosolizable Marine Phycotoxins and Human Health Effects: In Vitro Support for the Biogenics Hypothesis. Marine Drugs, 2020, 18, 46.	2.2	14
1836	First-in-Human Phase I Study to Evaluate the Brain-Penetrant PI3K/mTOR Inhibitor GDC-0084 in Patients with Progressive or Recurrent High-Grade Glioma. Clinical Cancer Research, 2020, 26, 1820-1828.	3.2	54
1837	Identification of a Novel Oxadiazole Inhibitor of Mammalian Target of Rapamycin. Bulletin of the Korean Chemical Society, 2020, 41, 296-303.	1.0	1
1838	Rosemary Extract Inhibits Proliferation, Survival, Akt, and mTOR Signaling in Triple-Negative Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 810.	1.8	28
1839	Molecular targets for NF1-associated malignant peripheral nerve sheath tumor. Reports of Practical Oncology and Radiotherapy, 2020, 25, 556-561.	0.3	1
1840	Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Frontiers in Pharmacology, 2020, 11, 344.	1.6	17
1841	STING couples with PI3K to regulate actin reorganization during BCR activation. Science Advances, 2020, 6, eaax9455.	4.7	19
1842	The PI3K-Akt-mTOR Signaling Pathway in Human Acute Myeloid Leukemia (AML) Cells. International Journal of Molecular Sciences, 2020, 21, 2907.	1.8	158
1843	Virtual docking screening and QSAR studies to explore AKT and mTOR inhibitors acting on PI3K in cancers. Wspolczesna Onkologia, 2020, 24, 5-12.	0.7	1
1844	Phase I clinical trial of temsirolimus and perifosine for recurrent glioblastoma. Annals of Clinical and Translational Neurology, 2020, 7, 429-436.	1.7	29
1845	Profiling the Surfaceome Identifies Therapeutic Targets for Cells with Hyperactive mTORC1 Signaling. Molecular and Cellular Proteomics, 2020, 19, 294-307.	2.5	8
1846	Genetic Alterations in the PI3K/AKT Pathway and Baseline AKT Activity Define AKT Inhibitor Sensitivity in Breast Cancer Patient-derived Xenografts. Clinical Cancer Research, 2020, 26, 3720-3731.	3.2	21
1847	Current updates and future perspectives on the management of renal cell carcinoma. Life Sciences, 2021, 264, 118632.	2.0	48
1848	The role of PI3K inhibitors in the treatment of malignant lymphomas. Leukemia and Lymphoma, 2021, 62, 517-527.	0.6	5

#	Article	IF	CITATIONS
1849	mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why?. Frontiers of Medicine, 2021, 15, 221-231.	1.5	34
1850	Targeting translation regulators improves cancer therapy. Genomics, 2021, 113, 1247-1256.	1.3	12
1851	Dacomitinib and gedatolisib in combination with fractionated radiation in head and neck cancer. Clinical and Translational Radiation Oncology, 2021, 26, 15-23.	0.9	6
1852	Galectin-3 mediates cardiac remodeling caused by impaired glucose and lipid metabolism through inhibiting two pathways of activating Akt. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H364-H380.	1.5	18
1853	Genome-wide translation patterns in gliomas: An integrative view. Cellular Signalling, 2021, 79, 109883.	1.7	4
1854	Benefits of a nurse-led home injection service for acromegaly patients treated with somatuline autogel. Endocrine, 2021, 71, 453-458.	1.1	1
1855	Functional and genomic characterization of patientâ€derived xenograft model to study the adaptation to mTORC1 inhibitor in clear cell renal cell carcinoma. Cancer Medicine, 2021, 10, 119-134.	1.3	4
1856	Luminal A breast cancer resistance mechanisms and emerging treatments. , 2021, , 1-22.		2
1857	Survival of salivary gland cancer stem cells requires mTOR signaling. Cell Death and Disease, 2021, 12, 108.	2.7	6
1858	Targeted Treatment of Triple-Negative Breast Cancer. Cancer Journal (Sudbury, Mass), 2021, 27, 50-58.	1.0	7
1859	Phosphoinositide 3-Kinase Signaling in the Tumor Microenvironment: What Do We Need to Consider When Treating Chronic Lymphocytic Leukemia With PI3K Inhibitors?. Frontiers in Immunology, 2020, 11, 595818.	2.2	13
1860	Treatment of Luminal Metastatic Breast Cancer beyond CDK4/6 Inhibition: Is There a Standard of Care in Clinical Practice?. Breast Care, 2021, 16, 115-128.	0.8	10
1861	mTOR and AMP-Activated Protein Kinase in Obesity and Cancer. , 2021, , 81-107.		0
1862	Comparing mTOR inhibitor Rapamycin with Torin-2 within the RIST molecular-targeted regimen in neuroblastoma cells. International Journal of Medical Sciences, 2021, 18, 137-149.	1.1	9
1863	Green Nanoparticles: A Hope for Targeted Delivery of Natural Therapeuticals for the Management of Glioblastoma Multiforme (GBM). , 2021, , 397-437.		0
1864	Raptor and rictor expression in patients with human papillomavirus-related oropharyngeal squamous cell carcinoma. BMC Cancer, 2021, 21, 87.	1.1	11
1865	Facile synthesis of rapamycin-peptide conjugates as mTOR and Akt inhibitors. Organic and Biomolecular Chemistry, 2021, 19, 4352-4358.	1.5	1
1866	Clinical and genomic characteristics of metabolic syndrome in colorectal cancer. Aging, 2021, 13, 5442-5460.	1.4	3

щ		15	CITATIONS
#	ARTICLE Rapamycin-Loaded Lipid Nanocapsules Induce Selective Inhibition of the mTORC1-Signaling Pathway in	IF	CITATIONS
1867	Glioblastoma Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 602998.	2.0	7
1868	Regulation of PTEN translation by PI3K signaling maintains pathway homeostasis. Molecular Cell, 2021, 81, 708-723.e5.	4.5	51
1869	mTOR Inhibitors as Radiosensitizers in Neuroendocrine Neoplasms. Frontiers in Oncology, 2020, 10, 578380.	1.3	3
1870	Targeted drug delivery strategies for precision medicines. Nature Reviews Materials, 2021, 6, 351-370.	23.3	388
1871	Mechanisms of Resistance to PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. Cancers, 2021, 13, 1538.	1.7	37
1872	Genomic Alterations in <i>PIK3CA</i> -Mutated Breast Cancer Result in mTORC1 Activation and Limit the Sensitivity to PI3Kl± Inhibitors. Cancer Research, 2021, 81, 2470-2480.	0.4	20
1873	Chondroitinase ABC Promotes Axon Regeneration and Reduces Retrograde Apoptosis Signaling in Lamprey. Frontiers in Cell and Developmental Biology, 2021, 9, 653638.	1.8	14
1874	Regulation of DNA duplication by the mTOR signaling pathway. Cell Cycle, 2021, 20, 742-751.	1.3	6
1875	The Biochemical Diagnosis of Acromegaly. Journal of Clinical Medicine, 2021, 10, 1147.	1.0	17
1876	mTORâ€mediated calcium transients affect cardiac function in ex vivo ischemia–reperfusion injury. Physiological Reports, 2021, 9, e14807.	0.7	1
1877	Organismal roles for the PI3KÎ \pm and β isoforms: their specificity, redundancy or cooperation is context-dependent. Biochemical Journal, 2021, 478, 1199-1225.	1.7	12
1878	Randomized Phase II Trial of Capecitabine and Lapatinib with or without IMC-A12 (Cituxumumab) in Patients with HER2-Positive Advanced Breast Cancer Previously Treated with Trastuzumab and Chemotherapy: NCCTG N0733 (Alliance). Breast Cancer Research and Treatment, 2021, 188, 477-487.	1.1	5
1879	Targeted therapy in metastatic, recurrent and refractory Ewing sarcoma and osteogenic sarcoma. Review of literature. Russian Journal of Pediatric Hematology and Oncology, 2021, 8, 57-63.	0.1	1
1881	Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFRâ€ŧargeting agents to treat head and neck squamous cell carcinoma. Medicinal Research Reviews, 2022, 42, 112-155.	5.0	24
1882	Targeted Cancer Therapy: What's New in the Field of Neuroendocrine Neoplasms?. Cancers, 2021, 13, 1701.	1.7	19
1883	Safety and activity of vandetanib in combination with everolimus in patients with advanced solid tumors: a phase I study. ESMO Open, 2021, 6, 100079.	2.0	7
1884	Inhibition of Autophagy at Different Stages by ATG5 Knockdown and Chloroquine Supplementation Enhances Consistent Human Disc Cellular Apoptosis and Senescence Induction rather than Extracellular Matrix Catabolism. International Journal of Molecular Sciences, 2021, 22, 3965.	1.8	18
1885	Sapanisertib Plus Exemestane or Fulvestrant in Women with Hormone Receptor–Positive/HER2-Negative Advanced or Metastatic Breast Cancer. Clinical Cancer Research, 2021, 27, 3329-3338.	3.2	8

#	Article	IF	CITATIONS
1887	Combined Targeting of AKT and mTOR Synergistically Inhibits Formation of Primary Colorectal Carcinoma Tumouroids <i>In Vitro</i> : A 3D Tumour Model for Pre-therapeutic Drug Screening. Anticancer Research, 2021, 41, 2257-2275.	0.5	8
1888	Research Progresses of Targeted Therapy and Immunotherapy for Hepatocellular Carcinoma. Current Medicinal Chemistry, 2021, 28, 3107-3146.	1.2	9
1889	MTOR Signaling and Metabolism in Early T Cell Development. Genes, 2021, 12, 728.	1.0	16
1890	Current status of medical treatment for gastroenteropancreatic neuroendocrine neoplasms and future perspectives. Japanese Journal of Clinical Oncology, 2021, 51, 1185-1196.	0.6	8
1891	The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. European Journal of Pharmacology, 2021, 898, 173983.	1.7	47
1892	In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nature Communications, 2021, 12, 3055.	5.8	55
1893	José Baselga M.D., Ph.D. (1959–2021) leading cancer researcher and oncologist. Journal of Experimental and Clinical Cancer Research, 2021, 40, 156.	3.5	0
1894	The therapeutic landscape of hepatocellular carcinoma. Med, 2021, 2, 505-552.	2.2	20
1895	IGF1-Stimulated Posttraumatic Hippocampal Remodeling Is Not Dependent on mTOR. Frontiers in Cell and Developmental Biology, 2021, 9, 663456.	1.8	2
1896	Involvement of mTOR Pathways in Recovery from Spinal Cord Injury by Modulation of Autophagy and Immune Response. Biomedicines, 2021, 9, 593.	1.4	9
1897	Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Molecular and Cellular Endocrinology, 2021, 527, 111213.	1.6	36
1898	The Novel Oral mTORC1/2 Inhibitor TAK-228 Reverses Trastuzumab Resistance in HER2-Positive Breast Cancer Models. Cancers, 2021, 13, 2778.	1.7	3
1899	The present and future of PI3K inhibitors for cancer therapy. Nature Cancer, 2021, 2, 587-597.	5.7	63
1900	Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers, 2021, 13, 2922.	1.7	29
1901	Dihydroartemisinin Inhibits mTORC1 Signaling by Activating the AMPK Pathway in Rhabdomyosarcoma Tumor Cells. Cells, 2021, 10, 1363.	1.8	4
1902	Direct P70S6K1 inhibition to replace dexamethasone in synergistic combination with MCL-1 inhibition in multiple myeloma. Blood Advances, 2021, 5, 2593-2607.	2.5	4
1903	Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor growth. Nature Chemical Biology, 2021, 17, 1065-1074.	3.9	33
1904	Pathogenesis and Potential Therapeutic Targets for Triple-Negative Breast Cancer. Cancers, 2021, 13, 2978.	1.7	12

#	Article	IF	CITATIONS
1905	Combined Inhibition of Akt and mTOR Is Effective Against Non-Hodgkin Lymphomas. Frontiers in Oncology, 2021, 11, 670275.	1.3	4
1906	The Small-Molecule Inhibitor MRIA9 Reveals Novel Insights into the Cell Cycle Roles of SIK2 in Ovarian Cancer Cells. Cancers, 2021, 13, 3658.	1.7	17
1907	Tumor Growth in the High Frequency Medulloblastoma Mouse Model Ptch1+/â^'/Tis21KO Has a Specific Activation Signature of the PI3K/AKT/mTOR Pathway and Is Counteracted by the PI3K Inhibitor MEN1611. Frontiers in Oncology, 2021, 11, 692053.	1.3	4
1908	Functional and structural analyses of novel Smith-Kingsmore Syndrome-Associated MTOR variants reveal potential new mechanisms and predictors of pathogenicity. PLoS Genetics, 2021, 17, e1009651.	1.5	9
1909	Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Frontiers in Oncology, 2021, 11, 689131.	1.3	6
1910	Phase I Dose-Escalation Study of the Dual PI3K-mTORC1/2 Inhibitor Gedatolisib in Combination with Paclitaxel and Carboplatin in Patients with Advanced Solid Tumors. Clinical Cancer Research, 2021, 27, 5012-5019.	3.2	10
1911	The effectiveness of monotherapy with PI3K/AKT/mTOR pathway inhibitors in ovarian cancer: A meta-analysis. Gynecologic Oncology, 2021, 163, 433-444.	0.6	21
1912	Pharmacological inhibition of the PI3K/PTEN/Akt and mTOR signalling pathways limits follicle activation induced by ovarian cryopreservation and in vitro culture. Journal of Ovarian Research, 2021, 14, 95.	1.3	11
1913	Regulation and metabolic functions of mTORC1 and mTORC2. Physiological Reviews, 2021, 101, 1371-1426.	13.1	250
1914	AKT Degradation Selectively Inhibits the Growth of PI3K/PTEN Pathway–Mutant Cancers with Wild-Type KRAS and BRAF by Destabilizing Aurora Kinase B. Cancer Discovery, 2021, 11, 3064-3089.	7.7	32
1915	Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Molecular Neurodegeneration, 2021, 16, 44.	4.4	104
1916	Estrogen Receptor-Alpha and p53 Status as Regulators of AMPK and mTOR in Luminal Breast Cancer. Cancers, 2021, 13, 3612.	1.7	4
1917	Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers, 2021, 13, 3386.	1.7	12
1918	Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer. Cancers, 2021, 13, 3517.	1.7	68
1919	Chemical and Structural Strategies to Selectively Target mTOR Kinase. ChemMedChem, 2021, 16, 2744-2759.	1.6	12
1920	Loss of tyrosine catabolic enzyme HPD promotes glutamine anaplerosis through mTOR signaling in liver cancer. Cell Reports, 2021, 36, 109617.	2.9	18
1921	Co-targeting CDK4/6 and AKT with endocrine therapy prevents progression in CDK4/6 inhibitor and endocrine therapy-resistant breast cancer. Nature Communications, 2021, 12, 5112.	5.8	38
1922	Insulin Receptor Substrate 1 Is Involved in the Phycocyanin-Mediated Antineoplastic Function of Non-Small Cell Lung Cancer Cells. Molecules, 2021, 26, 4711.	1.7	8

#	Article	IF	CITATIONS
1923	The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nature Communications, 2021, 12, 4920.	5.8	20
1924	Systemic and liver-directed therapies in metastatic uveal melanoma: state-of-the-art and novel perspectives. Future Oncology, 2021, 17, 4583-4606.	1.1	2
1925	mTOR Inhibition Increases Transcription Factor E3 (TFE3) Activity and Modulates Programmed Death-Ligand 1 (PD-L1) Expression in Translocation Renal Cell Carcinoma. American Journal of Pathology, 2021, 191, 1999-2008.	1.9	4
1926	Phase 1 study of M2698, a p70S6K/AKT dual inhibitor, in patients with advanced cancer. Journal of Hematology and Oncology, 2021, 14, 127.	6.9	12
1927	Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 9722.	1.8	12
1928	Bipartite binding and partial inhibition links DEPTOR and mTOR in a mutually antagonistic embrace. ELife, 2021, 10, .	2.8	5
1929	Targeting PI3K Pathway in Pancreatic Ductal Adenocarcinoma: Rationale and Progress. Cancers, 2021, 13, 4434.	1.7	38
1930	Harmaline isolated from <i>Peganum harmala</i> suppresses growth of esophageal squamous cell carcinoma through targeting <scp>mTOR</scp> . Phytotherapy Research, 2021, 35, 6377-6388.	2.8	7
1931	A Preclinical Investigation of CBM-N019 as a Potential Inhibitor of Clioblastoma via Exosomal mTOR/CDK6/STAT3 Signaling. Cells, 2021, 10, 2391.	1.8	2
1932	Design, Synthesis and SAR in 2,4,7-Trisubstituted Pyrido[3,2-d]Pyrimidine Series as Novel PI3K/mTOR Inhibitors. Molecules, 2021, 26, 5349.	1.7	0
1933	Phase Ib Dose Expansion and Translational Analyses of Olaparib in Combination with Capivasertib in Recurrent Endometrial, Triple-Negative Breast, and Ovarian Cancer. Clinical Cancer Research, 2021, 27, 6354-6365.	3.2	31
1934	Identification of Clinical Candidate M2698, a Dual p70S6K and Akt Inhibitor, for Treatment of PAM Pathway-Altered Cancers. Journal of Medicinal Chemistry, 2021, 64, 14603-14619.	2.9	6
1935	Discovery of 4-aminopyrimidine analogs as highly potent dual P70S6K/Akt inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128352.	1.0	2
1936	Targeting the AKT Pathway in Ovarian Cancer. , 2011, , 73-94.		3
1937	Pharmacodynamic Studies in Early Phase Drug Development. , 2011, , 215-256.		2
1938	Targeting the Insulin-Like Growth Factor-I Receptor in Cancer Therapy. , 2012, , 193-213.		1
1939	Molecular Biology of Clear Cell Renal Carcinoma. , 2012, , 27-47.		1
1940	The mTOR Pathway in Multiple Myeloma. , 2013, , 97-116.		1

#	Article	IF	CITATIONS
1941	The PI3K Pathway in Colorectal Cancers. , 2013, , 157-199.		1
1942	Detecting PTEN and PI3K Signaling in Brain. Methods in Molecular Biology, 2016, 1388, 53-62.	0.4	3
1943	The PI3K-AKT Pathway in Melanoma. , 2016, , 165-180.		3
1944	Downstream of mTOR: Translational Control of Cancer. , 2009, , 201-216.		1
1945	mTOR Signaling in Angiogenesis. , 2009, , 49-74.		1
1946	Signaling Determinants of Glioma Cell Invasion. Advances in Experimental Medicine and Biology, 2020, 1202, 129-149.	0.8	73
1947	Molecular Biology of Kidney Cancer. , 2015, , 31-57.		10
1948	Resistance to PI3K Pathway Inhibition. Cancer Drug Discovery and Development, 2016, , 125-147.	0.2	2
1949	Resistance to HER2-Targeted Therapy. Resistance To Targeted Anti-cancer Therapeutics, 2017, , 35-88.	0.1	2
1950	The Mammalian Target of Rapamycin Kinase and Tumor Growth Inhibition. , 2007, 172, 99-124.		33
1951	Molecular Biology of Kidney Cancer. , 2012, , 29-46.		2
1952	Head and Neck Cancers. , 2014, , 499-512.		1
1953	Hepatic, Pancreatic and Biliary Cancers. , 2014, , 611-629.		1
1954	Using Reverse Phase Protein Array (RPPA) to Identify and Target Adaptive Resistance. Advances in Experimental Medicine and Biology, 2019, 1188, 251-266.	0.8	17
1955	Inhibition of autophagy by geniposide protects against myocardial ischemia/reperfusion injury. International Immunopharmacology, 2020, 85, 106609.	1.7	17
1956	Targeting the lκB Kinase Enhancer and Its Feedback Circuit in Pancreatic Cancer. Translational Oncology, 2020, 13, 481-489.	1.7	2
1957	Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochemical Society Transactions, 2020, 48, 1859-1875.	1.6	22
1958	Physiological Effects and Disease Manifestations of Performance-Enhancing Androgenic–Anabolic Steroids, Growth Hormone, and Insulin. , 2009, , 174-212.		1

#	Article	IF	CITATIONS
1962	RABL6A inhibits tumor-suppressive PP2A/AKT signaling to drive pancreatic neuroendocrine tumor growth. Journal of Clinical Investigation, 2019, 129, 1641-1653.	3.9	25
1963	PDCFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. Journal of Clinical Investigation, 2007, 117, 730-738.	3.9	321
1964	Cotargeting survival signaling pathways in cancer. Journal of Clinical Investigation, 2008, 118, 3003-6.	3.9	106
1965	Predicting drug susceptibility of non–small cell lung cancers based on genetic lesions. Journal of Clinical Investigation, 2009, 119, 1727-1740.	3.9	230
1966	Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. Journal of Clinical Investigation, 2010, 120, 2858-2866.	3.9	309
1967	Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor–positive human breast cancer. Journal of Clinical Investigation, 2010, 120, 2406-2413.	3.9	447
1968	Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. Journal of Clinical Investigation, 2011, 121, 1231-1241.	3.9	362
1969	Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. Journal of Clinical Investigation, 2011, 121, 4311-4321.	3.9	177
1970	mTORC1 is essential for leukemia propagation but not stem cell self-renewal. Journal of Clinical Investigation, 2012, 122, 2114-2129.	3.9	117
1971	mTORC1 inhibition restricts inflammation-associated gastrointestinal tumorigenesis in mice. Journal of Clinical Investigation, 2013, 123, 767-81.	3.9	89
1972	Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. Journal of Clinical Investigation, 2013, 123, 1732-1740.	3.9	166
1973	The role of RICTOR amplification in targeted therapy and drug resistance. Molecular Medicine, 2020, 26, 20.	1.9	18
1974	Beyond Trastuzumab and Lapatinib: New Options for HER2-Positive Breast Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, 33, e2-e11.	1.8	16
1975	Insulin-like growth factor 1 receptor (IGF-1R): A potential therapeutic target for gastrointestinal stromal tumors (GIST). Journal of Clinical Oncology, 2008, 26, 10507-10507.	0.8	4
1976	Research progress on signaling pathways in cirrhotic portal hypertension. World Journal of Clinical Cases, 2018, 6, 335-343.	0.3	10
1977	Antitumor Activity of Rapamycin in a Phase I Trial for Patients with Recurrent PTEN-Deficient Clioblastoma. PLoS Medicine, 2008, 5, e8.	3.9	499
1978	Analysis of Compound Synergy in High-Throughput Cellular Screens by Population-Based Lifetime Modeling. PLoS ONE, 2010, 5, e8919.	1.1	24
1979	Carboxy Terminal Tail of Polycystin-1 Regulates Localization of TSC2 to Repress mTOR. PLoS ONE, 2010, 5, e9239.	1.1	86

#	Article	IF	CITATIONS
1980	MYC Cooperates with AKT in Prostate Tumorigenesis and Alters Sensitivity to mTOR Inhibitors. PLoS ONE, 2011, 6, e17449.	1.1	77
1981	Inhibition of Chondrosarcoma Growth by mTOR Inhibitor in an In Vivo Syngeneic Rat Model. PLoS ONE, 2012, 7, e32458.	1.1	54
1982	FKBP5 as a Selection Biomarker for Gemcitabine and Akt Inhibitors in Treatment of Pancreatic Cancer. PLoS ONE, 2012, 7, e36252.	1.1	48
1983	PI3K Inhibition Enhances Doxorubicin-Induced Apoptosis in Sarcoma Cells. PLoS ONE, 2012, 7, e52898.	1.1	27
1984	Different Patterns of Akt and ERK Feedback Activation in Response to Rapamycin, Active-Site mTOR Inhibitors and Metformin in Pancreatic Cancer Cells. PLoS ONE, 2013, 8, e57289.	1.1	118
1985	Detection of Rapalog-Mediated Therapeutic Response in Renal Cancer Xenografts Using 64Cu-bevacizumab ImmunoPET. PLoS ONE, 2013, 8, e58949.	1.1	27
1986	Combined RNAi-Mediated Suppression of Rictor and EGFR Resulted in Complete Tumor Regression in an Orthotopic Glioblastoma Tumor Model. PLoS ONE, 2013, 8, e59597.	1.1	26
1987	Dual Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235 Has a Therapeutic Potential and Sensitizes Cisplatin in Nasopharyngeal Carcinoma. PLoS ONE, 2013, 8, e59879.	1.1	44
1988	Targeting mTOR to Overcome Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance in Non-Small Cell Lung Cancer Cells. PLoS ONE, 2013, 8, e69104.	1.1	42
1989	Luminal Breast Cancer Cell Lines Overexpressing ZNF703 Are Resistant to Tamoxifen through Activation of Akt/mTOR Signaling. PLoS ONE, 2013, 8, e72053.	1.1	36
1990	Regulatory Networks and Complex Interactions between the Insulin and Angiotensin II Signalling Systems: Models and Implications for Hypertension and Diabetes. PLoS ONE, 2013, 8, e83640.	1.1	9
1991	Rapamycin Ameliorates Inflammation and Fibrosis in the Early Phase of Cirrhotic Portal Hypertension in Rats through Inhibition of mTORC1 but Not mTORC2. PLoS ONE, 2014, 9, e83908.	1.1	44
1992	FBXW7 Mutations in Patients with Advanced Cancers: Clinical and Molecular Characteristics and Outcomes with mTOR Inhibitors. PLoS ONE, 2014, 9, e89388.	1.1	50
1993	Evaluation of In Vitro Activity of the Class I PI3K Inhibitor Buparlisib (BKM120) in Pediatric Bone and Soft Tissue Sarcomas. PLoS ONE, 2015, 10, e0133610.	1.1	30
1994	Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic Î ² -Cells. PLoS ONE, 2016, 11, e0149995.	1.1	21
1995	Temporal Progression of Pneumonic Plague in Blood of Nonhuman Primate: A Transcriptomic Analysis. PLoS ONE, 2016, 11, e0151788.	1.1	10
1996	Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells. PLoS ONE, 2016, 11, e0154745.	1.1	42
1997	1H NMR Metabolomics Reveals Association of High Expression of Inositol 1, 4, 5 Trisphosphate Receptor and Metabolites in Breast Cancer Patients. PLoS ONE, 2017, 12, e0169330.	1.1	36

#	Article	IF	CITATIONS
1998	The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models. PLoS ONE, 2017, 12, e0182852.	1.1	23
1999	Treatment Algorithms for Hormone Receptor–Positive Advanced Breast Cancer: Going Forward in Endocrine Therapy—Overcoming Resistance and Introducing New Agents. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, , e28-e36.	1.8	5
2000	New insights into 4E-BP1-regulated translation in cancer progression and metastasis. Cancer Cell & Microenvironment, 2014, 1, .	0.8	12
2001	EGF and IGF1 affect sunitinib activity in BP-NEN: new putative targets beyond VEGFR?. Endocrine Connections, 2019, 8, 680-690.	0.8	6
2002	Thyroid and colorectal cancer screening in acromegaly patients: should it be different from that in the general population?. European Journal of Endocrinology, 2020, 183, D1-D13.	1.9	19
2004	DEPTOR is linked to a TORC1-p21 survival proliferation pathway in multiple myeloma cells. Genes and Cancer, 2014, 5, 407-419.	0.6	19
2005	Alveolar rhabdomyosarcoma: morphoproteomics and personalized tumor graft testing further define the biology of PAX3-FKHR(FOXO1) subtype and provide targeted therapeutic options. Oncotarget, 2016, 7, 46263-46272.	0.8	9
2006	Targeting the PI3K/Akt/mTOR pathwaybeyond rapalogs. Oncotarget, 2010, 1, 530-43.	0.8	192
2007	Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget, 2016, 7, 48206-48219.	0.8	32
2008	Integrated <i>in vivo</i> genetic and pharmacologic screening identifies co-inhibition of EGRF and ROCK as a potential treatment regimen for triple-negative breast cancer. Oncotarget, 2016, 7, 42859-42872.	0.8	10
2009	<i>BRAFV600E</i> -dependent Mcl-1 stabilization leads to everolimus resistance in colon cancer cells. Oncotarget, 2016, 7, 47699-47710.	0.8	51
2010	The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget, 2010, 1, 89-103.	0.8	227
2011	Targeted depletion of <i>PIK3R2</i> induces regression of lung squamous cell carcinoma. Oncotarget, 2016, 7, 85063-85078.	0.8	16
2012	Synergistic antitumor activity of the combination of salubrinal and rapamycin against human cholangiocarcinoma cells. Oncotarget, 2016, 7, 85492-85501.	0.8	22
2013	Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Oncotarget, 2017, 8, 7878-7890.	0.8	17
2014	Concomitant inhibition of receptor tyrosine kinases and downstream AKT synergistically inhibited growth of KRAS/BRAF mutant colorectal cancer cells. Oncotarget, 2017, 8, 5003-5015.	0.8	16
2015	Co-targeting translation and proteasome rapidly kills colon cancer cells with mutant <i>RAS/RAF</i> via ER stress. Oncotarget, 2017, 8, 9280-9292.	0.8	11
2016	First Mnks degrading agents block phosphorylation of eIF4E, induce apoptosis, inhibit cell growth, migration and invasion in triple negative and Her2-overexpressing breast cancer cell lines. Oncotarget, 2014, 5, 530-543.	0.8	52

#	Article		IF	CITATIONS
2017	mTOR pathway in colorectal cancer: an update. Oncotarget, 2014, 5, 49-66.		0.8	155
2018	Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and H breast tumor cells. Oncotarget, 2017, 8, 28971-28989.	HER2-positive	0.8	11
2019	Anti-proliferative and anti-secretory effects of everolimus on human pancreatic neuroe tumors primary cultures: is there any benefit from combination with somatostatin ana Oncotarget, 2017, 8, 41044-41063.		0.8	24
2020	Targeting ERK enhances the cytotoxic effect of the novel PI3K and mTOR dual inhibitor preclinical models of pancreatic cancer. Oncotarget, 2017, 8, 44295-44311.	r VS-5584 in	0.8	29
2021	Targeting the PI3K/Akt/mTOR Pathway - Beyond Rapalogs. Oncotarget, 2010, 1, 530-5	43.	0.8	278
2022	Combination treatment of RAD001 and BEZ235 exhibits synergistic antitumor activity down-regulation of p-4E-BP1/Mcl-1 in small cell lung cancer. Oncotarget, 2017, 8, 1064	via 486-106498.	0.8	12
2023	Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion cap-dependent translational activation of snail. Oncotarget, 2014, 5, 6015-6027.	via	0.8	43
2024	Combined therapy with RAD001 e BEZ235 overcomes resistance of PET immortalized o inhibition. Oncotarget, 2014, 5, 5381-5391.	cell lines to mTOR	0.8	41
2025	Dual PI3K/mTOR inhibition is required to effectively impair microenvironment survival s mantle cell lymphoma. Oncotarget, 2014, 5, 6788-6800.	signals in	0.8	32
2026	Catalytic mTOR inhibitors can overcome intrinsic and acquired resistance to allosteric inhibitors. Oncotarget, 2014, 5, 8544-8557.	mTOR	0.8	56
2027	Molecular rationale for the use of PI3K/AKT/mTOR pathway inhibitors in combination w in <i>ALK</i> -mutated neuroblastoma. Oncotarget, 2014, 5, 8737-8749.	vith crizotinib	0.8	72
2028	The structural basis for cancer treatment decisions. Oncotarget, 2014, 5, 7285-7302.		0.8	43
2029	Novel robust biomarkers for human bladder cancer based on activation of intracellular pathways. Oncotarget, 2014, 5, 9022-9032.	signaling	0.8	43
2030	A subgroup of pleural mesothelioma expresses ALK protein and may be targetable by c rapamycin and crizotinib therapy. Oncotarget, 2018, 9, 20781-20794.	ombined	0.8	16
2031	Hitting two oncogenic machineries in cancer cells: cooperative effects of the multi-kina ponatinib and the BET bromodomain blockers JQ1 or dBET1 on human carcinoma cells 2018, 9, 26491-26506.	ase inhibitor . Oncotarget,	0.8	23
2032	mTORC1/2 inhibition re-sensitizes platinum-resistant ovarian cancer by disrupting selection of DNA damage and survival mRNAs. Oncotarget, 2018, 9, 33064-33076.	ctive translation	0.8	17
2033	Targeting of hyperactivated mTOR signaling in high-risk acute lymphoblastic leukemia model. Oncotarget, 2015, 6, 1382-1395.	in a pre-clinical	0.8	11
2034	Rapamycin inhibits mSin1 phosphorylation independently of mTORC1 and mTORC2. O 4286-4298.	Dncotarget, 2015, 6,	0.8	21

ARTICLE IF CITATIONS Thyrocyte-specific inactivation of <i>p53</i> and <i>Pten</i> results in anaplastic thyroid carcinomas 2035 0.8 75 faithfully recapitulating human tumors. Oncotarget, 2011, 2, 1109-1126. AKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on 0.8 54 mTORC1/4E-BP1 axis. Oncotarget, 2015, 6, 13962-13977. Etoposide enhances antitumor efficacy of MDR1-driven oncolytic adenovirus through 2037 0.8 5 autoupregulation of the <i>MDR1 </i>promoter activity. Oncotarget, 2015, 6, 38308-38326. A putative biomarker signature for clinically effective AKT inhibition: correlation of in vitro, in vivo and clinical data identifies the importance of modulation of the mTORC1 pathway. Oncotarget, 2015, 6, 2038 0.8 41736-41749. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR 2039 0.8 19 inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget, 2016, 7, 9718-9731. A positive feedback loop involving EGFR/Akt/mTORC1 and IKK/NF-ήB regulates head and neck squamous 2040 0.8 56 cell carcinoma proliferation. Oncotarget, 2016, 7, 31892-31906. The mTOR inhibitor Everolimus synergizes with the PI3K inhibitor GDC0941 to enhance anti-tumor 2041 0.8 38 efficacy in uveal melanoma. Oncotarget, 2016, 7, 23633-23646. Combination of an anti-EGFRvIII antibody CH12 with Rapamycin synergistically inhibits the growth of 2042 0.8 EGFRvIII+PTENâ^' glioblastoma <i>in vivo</i>. Oncotarget, 2016, 7, 24752-24765. Crosstalk between the IGF-1R/AKT/mTORC1 pathway and the tumor suppressors p53 and p27 determines 2043 cisplatin sensitivity and limits the effectiveness of an IGF-1R pathway inhibitor. Oncotarget, 2016, 7, 0.8 27 27511-27526. Morphoproteomics and biomedical analytics confirm the mTORC2/Akt pathway as a resistance signature and activated ERK and STAT3 as concomitant prosurvival/antiapoptotic pathways in 2044 0.8 metastatic renal cell carcinoma (RCC) progressing on rapalogs: Pathogenesis and therapeutic options. Oncotarget, 0, 7, 41612-41621 Dual targeting of PI3K and MEK enhances the radiation response of <i>K-RAS</i> mutated non-small 2045 0.8 28 cell lung cancer. Oncotarget, 2016, 7, 43746-43761. Network rewiring, adaptive resistance and combating strategies in breast cancer., 2019, 2, 1106-1126. 2046 Mechanistic target of rapamycin inhibitors: successes and challenges as cancer therapeutics. , 2019, 2, 2047 11 1069-1085. Heat shock protein 47 promotes tumor survival and therapy resistance by modulating AKT signaling <i>via</i> PHLPP1 in colorectal cancer. Cancer Biology and Medicine, 2020, 17, 343-356. 2048 1.4 The IGF-1R/AKT pathway determines cell fate in response to p53. Translational Cancer Research, 2016, 5, 2049 23 0.4 664-675. 2050 Targeting the mTOR Pathway in Tumor Malignancy. Current Cancer Drug Targets, 2013, 13, 267-277. Targeting Different Pathways Using Novel Combination Therapy in Triple Negative Breast Cancer. 2051 0.8 78 Current Cancer Drug Targets, 2020, 20, 586-602. The Role of Peptidyl Prolyl Isomerases in Aging and Vascular Diseases. Current Molecular Pharmacology, 2015, 9, 165-179.

#	Article	IF	Citations
	Rapamycin protects testes against germ cell apoptosis and oxidative stress induced by testicular		
2053	ischemia-reperfusion. Iranian Journal of Basic Medical Sciences, 2017, 20, 905-911.	1.0	16
2054	Pharmacological Inhibition of mTORC2 Reduces Migration and Metastasis in Melanoma. International Journal of Molecular Sciences, 2021, 22, 30.	1.8	18
2055	Therapeutic options for lymphangioleiomyomatosis (LAM): where we are and where we are going. F1000 Medicine Reports, 2009, 1, .	2.9	8
2056	Targeted inhibition of mRNA translation initiation factors as a novel therapeutic strategy for mature B-cell neoplasms. , 2020, 1, 3-25.		7
2057	Targeting mTOR network in colorectal cancer therapy. World Journal of Gastroenterology, 2014, 20, 4178.	1.4	85
2058	PYP1‑4 peptide from Pyropia yezoensis protects against acetaminophen‑induced hepatotoxicity in HepG2 cells. Experimental and Therapeutic Medicine, 2020, 19, 849-860.	0.8	4
2059	Capsaicin and sorafenib combination treatment exerts synergistic anti‑hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncology Reports, 2018, 40, 3235-3248.	1.2	34
2060	AKT expression is associated with degree of pathologic response in adenocarcinoma of the esophagus treated with neoadjuvant therapy. Journal of Gastrointestinal Oncology, 2016, 7, 158-65.	0.6	10
2061	Adaptive resistance to targeted therapies in cancer. Translational Lung Cancer Research, 2013, 2, 152-9.	1.3	36
2062	Neuroprotective effects of rapamycin on spinal cord injury in rats by increasing autophagy and Akt signaling. Neural Regeneration Research, 2019, 14, 721.	1.6	42
2063	Converging paths to progress for skull base chordoma: Review of current therapy and future molecular targets. , 2013, 4, 72.		16
2064	Crizotinib in Combination with Everolimus Synergistically Inhibits Proliferation of Anaplastic Lymphoma Kinase‒Positive Anaplastic Large Cell Lymphoma. Cancer Research and Treatment, 2018, 50, 599-613.	1.3	9
2065	Metformin and mTOR Inhibitors: Allies against Ovarian and Breast Cancers. Journal of Carcinogenesis & Mutagenesis, 2017, 08, .	0.3	1
2066	Exercise, Science and Designer Doping: Traditional and Emerging Trends. Journal of Steroids & Hormonal Science, 2012, 03, .	0.1	1
2067	Tumor Resistance to Molecularly Targeted Agents. Journal of Cancer Therapy, 2011, 02, 258-265.	0.1	1
2068	Management of Hepatocellular Carcinoma: Updated Review. Journal of Cancer Therapy, 2013, 04, 536-545.	0.1	13
2069	Recent advances in multidisciplinary management of hepatocellular carcinoma. World Journal of Hepatology, 2015, 7, 673.	0.8	77
2070	Targeting the Phosphatidylinositol-3-kinase Pathway in Gastric Cancer: Can Omics Improve Outcomes?. International Neurourology Journal, 2016, 20, S131-140.	0.5	20

#	Article	IF	CITATIONS
2071	12-O-tetradecanoylphorbol-1,3-acetate-induced degradation of protein kinase B via ubiquitin- -proteasomal pathway depends on its Ser473 phosphorylation in gastric cancer cells. Folia Histochemica Et Cytobiologica, 2013, 51, 11-17.	0.6	2
2072	Current development of the second generation of mTOR inhibitors as anticancer agents. Chinese Journal of Cancer, 2013, 32, 8-18.	4.9	81
2073	Molecular mechanisms of tumor resistance to PI3K-mTOR-targeted therapy. Chinese Journal of Cancer, 2013, 32, 376-379.	4.9	32
2074	NCCN Task Force Report: mTOR Inhibition in Solid Tumors. Journal of the National Comprehensive Cancer Network: JNCCN, 2008, 6, S-1-S-20.	2.3	29
2075	The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals. Asian Pacific Journal of Cancer Prevention, 2014, 15, 6463-6475.	0.5	38
2076	PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biology and Medicine, 2015, 12, 342-54.	1.4	183
2077	Perturbation biology nominates upstream–downstream drug combinations in RAF inhibitor resistant melanoma cells. ELife, 2015, 4, .	2.8	95
2078	Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct functions in glutamatergic synaptic transmission. ELife, 2020, 9, .	2.8	47
2079	GNAQ and BRAF mutations show differential activation of the mTOR pathway in human transformed cells. PeerJ, 2013, 1, e104.	0.9	12
2080	Role of methyltransferase-like enzyme 3 and methyltransferase-like enzyme 14 in urological cancers. PeerJ, 2020, 8, e9589.	0.9	17
2081	Hayatine inhibits amino acid-induced mTORC1 activation as a novel mTOR-Rag A/C interaction disruptor. Biochemical and Biophysical Research Communications, 2021, 583, 71-78.	1.0	1
2082	Playing the Devil's Advocate: Should We Give a Second Chance to mTOR Inhibition in Renal Clear Cell Carcinoma? – ie Strategies to Revert Resistance to mTOR Inhibitors. Cancer Management and Research, 2021, Volume 13, 7623-7636.	0.9	6
2083	Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers, 2021, 13, 5117.	1.7	31
2084	TCTP protein degradation by targeting mTORC1 and signaling through S6K, Akt, and Plk1 sensitizes lung cancer cells to DNA-damaging drugs. Scientific Reports, 2021, 11, 20812.	1.6	4
2087	Utilizing combinations of molecular targeted agents to sensitize tumor cells to EGFR inhibitors. , 2008, , 356-369.		0
2088	The Mammalian Target of Rapamycin and Multiple Myeloma. , 2008, , 323-330.		0
2089	Using Neurofibromatosis Type 1 Mouse Models to Understand Human Pediatric Low-Grade Gliomas. , 2009, , 45-59.		0
2090	mTOR Signaling in Glioblastoma: Lessons Learned from Bench to Bedside. , 2009, , 99-111.		0

	CITATION	Report	
#	Article	IF	CITATIONS
2091	Drug Combinations as a Therapeutic Approach for mTORC1 Inhibitors in Human Cancer. , 2009, , 149-178.		0
2092	Beyond Docetaxel: Emerging Agents in the Treatment of Advanced Prostate Cancer. , 2010, , 147-151.		0
2093	Everolimus: Emerging Evidence of its Therapeutic Impact in Patients with Advanced Renal Cell Carcinoma. Clinical Medicine Reviews in Oncology, 0, 2, 99-107.	0.0	0
2094	Targeting UVB Mediated Signal Transduction Pathways for the Chemoprevention of Squamous Cell Carcinoma. , 2011, , 335-363.		0
2095	Effects and Therapeutic Potential of Targeting Dysregulated Signaling Axes in Squamous Cell Carcinoma: Another Kinase of Transcription and Mammalian Target of Rapamycin. , 2011, , 383-405.		0
2096	Cancer Chemoprevention. , 2011, , 463-481.		0
2097	IGF-I and Insulin Receptor Families in Cancer. Energy Balance and Cancer, 2011, , 243-268.	0.2	1
2098	The Dynamics of the Cell Signaling Network; Implications for Targeted Therapies. , 2011, , 33-53.		0
2099	Targeting the mTOR, PI3K, and AKT Pathways in Melanoma. , 2012, , 107-123.		0
2100	The Role of mTOR Inhibitors and P13K Pathway Blockade in RCC. , 2012, , 209-223.		0
2101	Exploitation of Aberrant Signalling Pathways as Useful Targets for Renal Clear Cell Carcinoma Therapy. , 0, , .		0
2103	Development and Clinical Implementation of Reverse Phase Protein Microarrays for Protein Network Activation Mapping: Personalized Cancer Therapy. , 2012, , 309-323.		0
2104	Biophysical and Biochemical Models of Mechanisms of Cellular Development via the Cellular Cycle in Normal Tissue, Cancerous Tissue, and Inflammatory Processes. Critical Reviews in Eukaryotic Gene Expression, 2013, 23, 171-193.	0.4	5
2105	Neuregulin1 Improved Cardiac Function in Doxorubicin-Treated Mice with Cardiomyocyte-Specific over expression of a Dominant-Negative PI3Kp110α. Journal of Cardiovascular Diseases & Diagnosis, 2013, 01, .	0.0	0
2106	Metabolic Basis of Treatment Failures; Autophagy and Malignant Cancer Progression. Journal of Clinical & Experimental Oncology, 2013, 02, .	0.1	0
2107	V- type proton ATP-ase to target cancer cells with the aid of Cyanobacterial metallothionein. IOSR Journal of Pharmacy, 2013, 3, 01-03.	0.1	0
2108	Beyond Trastuzumab and Lapatinib: New Options for HER2-Positive Breast Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, , e2-e11.	1.8	6
2109	Inhibiting the Phosphoinositide 3-Kinase/AKT/Mammalian Target of Rapamycin Pathway. , 2013, , 81-114.		0

#	Article	IF	CITATIONS
2111	Current and Emerging Therapies Targeting Translation. , 2014, , 279-304.		0
2113	Sarcomas. , 2014, , 453-466.		0
2115	Novel Targets for Future Medical Treatments. , 2015, , 145-162.		0
2117	Recurrent Bone Tumors. Pediatric Oncology, 2015, , 221-263.	0.5	0
2118	Models and Mechanisms of High-Fat Diet (HFD) Promotion of Pancreatic Cancer. Energy Balance and Cancer, 2015, , 197-215.	0.2	0
2119	Management of Advanced Endometrial Cancer and Inhibitors of the PI3K/AKT/mTOR Pathway. , 2015, , 327-341.		0
2120	Autophagy in Cancer Therapy: Progress and Issues. Journal of Cancer Research Updates, 2015, 4, 1-12.	0.3	0
2122	Combination Therapies Targeting the PI3K/AKT/mTOR Pathways. Cancer Drug Discovery and Development, 2016, , 151-180.	0.2	0
2123	The PI3K-mTOR Pathway in Prostate Cancer: Biological Significance and Therapeutic Opportunities. Cancer Drug Discovery and Development, 2016, , 263-289.	0.2	0
2124	The Role of mTOR Inhibitors in Neuroendocrine Tumors. , 2016, , 93-112.		0
2125	Crosstalk Mechanisms Following Targeted Therapy in Head and Neck Cancer. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2016, 59, 181.	0.0	0
2126	Forthcoming Drugs for Metastatic Renal Cell Carcinoma Therapy. , 2017, , 333-349.		0
2131	PROMISING TARGETED THERAPIES GENES AND PROGNOSTIC BIOMARKERS OF GASTRIC CANCER. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2018, 73, 262-272.	0.2	0
2132	RET in breast cancer: pathogenic implications and mechanisms of drug resistance. , 2019, 2, 1136-1152.		6
2133	KRAS as Potential Target in Colorectal Cancer Therapy. , 2019, , 389-424.		1
2136	Computer Optimization of Stealth Biodegradable Polymeric Dual-loaded Nanoparticles for Cancer Therapy Using Central Composite Face-centered Design. Pharmaceutical Nanotechnology, 2020, 8, 108-132.	0.6	2
2137	Oncological management of advanced neuroendocrine tumours (Review). Molecular and Clinical Oncology, 2020, 13, 8.	0.4	0
2139	A Phase II Study to Assess the Safety and Efficacy of the Dual mTORC1/2 and PI3K Inhibitor Bimiralisib (POR309) in Relapsed, Refractory Lymphoma, HemaSphere, 2021, 5, e656	1.2	6

#	Article	IF	CITATIONS
2140	Current and Emerging Molecular Therapies for Head and Neck Squamous Cell Carcinoma. Cancers, 2021, 13, 5471.	1.7	18
2141	Activation of ERK and p38 Reduces AZD8055-Mediated Inhibition of Protein Synthesis in Hepatocellular Carcinoma HepG2 Cell Line. International Journal of Molecular Sciences, 2021, 22, 11824.	1.8	2
2142	The highs and lows of ionizing radiation and its effects on protein synthesis. Cellular Signalling, 2022, 89, 110169.	1.7	4
2143	KDM1A inhibition augments the efficacy of rapamycin for the treatment of endometrial cancer. Cancer Letters, 2022, 524, 219-231.	3.2	12
2145	Characterization of Antineovascularization Activity and Ocular Pharmacokinetics of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GNE-947. Drug Metabolism and Disposition, 2020, 48, 408-419.	1.7	5
2146	Targeted therapy for gastrointestinal and pancreatic neuroendocrine tumors. Malignant Tumours, 2020, 9, 49-58.	0.1	1
2147	Superior cancer preventive efficacy of low versus high dose of mTOR inhibitor in a mouse model of prostate cancer. Oncotarget, 2020, 11, 1373-1387.	0.8	7
2150	Chemo- and Radiosensitization Through Inhibition of PI3K/Akt Signaling. , 2007, , 313-334.		1
2152	The pro-survival pathways of mTOR and protein kinase B target glycogen synthase kinase-3beta and nuclear factor-kappaB to foster endogenous microglial cell protection. International Journal of Molecular Medicine, 2007, 19, 263-72.	1.8	92
2156	Everolimus - a new approach in the treatment of renal cell carcinoma. Cancer Management and Research, 2010, 2, 61-70.	0.9	22
2157	Mammalian target of rapamycin: a central node of complex signaling cascades. International Journal of Clinical and Experimental Pathology, 2011, 4, 476-95.	0.5	68
2159	New molecular targeted therapies for advanced non-small-cell lung cancer. Journal of Thoracic Disease, 2011, 3, 30-56.	0.6	29
2161	Phosphorylated mTOR expression correlates with poor outcome in early-stage triple negative breast carcinomas. International Journal of Clinical and Experimental Pathology, 2012, 5, 806-13.	0.5	41
2162	Role of mTOR inhibition in preventing resistance and restoring sensitivity to hormone-targeted and HER2-targeted therapies in breast cancer. Clinical Advances in Hematology and Oncology, 2013, 11, 217-24.	0.3	18
2163	mTOR inhibitor AZD8055 inhibits proliferation and induces apoptosis in laryngeal carcinoma. International Journal of Clinical and Experimental Medicine, 2014, 7, 337-47.	1.3	16
2165	MYC-xing it up with PIK3CA mutation and resistance to PI3K inhibitors: summit of two giants in breast cancers. American Journal of Cancer Research, 2015, 5, 1-19.	1.4	29
2166	Preclinical evaluation of PI3K inhibitor BYL719 as a single agent and its synergism in combination with cisplatin or MEK inhibitor in nasopharyngeal carcinoma (NPC). American Journal of Cancer Research, 2015, 5, 1496-506.	1.4	15
2167	A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma. American Journal of Translational Research (discontinued), 2016, 8, 719-31.	0.0	27

#	Article	IF	CITATIONS
2168	Anti-tumor efficacy of BEZ235 is complemented by its anti-angiogenic effects via downregulation of PI3K-mTOR-HIF1alpha signaling in HER2-defined breast cancers. American Journal of Cancer Research, 2016, 6, 714-46.	1.4	19
2169	M2698 is a potent dual-inhibitor of p70S6K and Akt that affects tumor growth in mouse models of cancer and crosses the blood-brain barrier. American Journal of Cancer Research, 2016, 6, 806-18.	1.4	8
2170	Personalized care in uterine cancer. Clinical Advances in Hematology and Oncology, 2012, 10, 797-805.	0.3	4
2171	mTOR function and therapeutic targeting in breast cancer. American Journal of Cancer Research, 2017, 7, 383-404.	1.4	53
2172	Targeting mTORC2 component rictor inhibits cell proliferation and promotes apoptosis in gastric cancer. American Journal of Translational Research (discontinued), 2017, 9, 4317-4330.	0.0	12
2173	Everolimus following 5-aza-2-deoxycytidine is a promising therapy in paclitaxel-resistant clear cell carcinoma of the ovary. American Journal of Cancer Research, 2018, 8, 56-69.	1.4	5
2174	The regulatory network of nasopharyngeal carcinoma metastasis with a focus on EBV, IncRNAs and miRNAs. American Journal of Cancer Research, 2018, 8, 2185-2209.	1.4	18
2175	Promising new treatments for pancreatic cancer in the era of targeted and immune therapies. American Journal of Cancer Research, 2019, 9, 1871-1888.	1.4	12
2176	Rapamycin effects on mTOR signaling in benign, premalignant and malignant human breast epithelial cells. Anticancer Research, 2009, 29, 1143-50.	0.5	15
2177	Resveratrol attenuates stimulated T-cell activation and proliferation: potential therapy against cellular rejection in organ transplantation. American Journal of Clinical and Experimental Immunology, 2020, 9, 81-90.	0.2	1
2178	A tipping-point for apoptosis following dual inhibition of HER2 signaling network by T-DM1 plus GDC-0980 maximizes anti-tumor efficacy. American Journal of Cancer Research, 2021, 11, 2867-2892.	1.4	1
2179	Experimental and computational assessment of the synergistic pharmacodynamic drug–drug interactions of a triple combination therapy in refractory HER2-positive breast cancer cells. Journal of Pharmacokinetics and Pharmacodynamics, 2022, 49, 227-241.	0.8	2
2180	A Phase 1 Study of Sapanisertib (TAK-228) in East Asian Patients with Advanced Nonhematological Malignancies. Targeted Oncology, 2022, 17, 15-24.	1.7	7
2182	The Bumpy Road towards mTOR Inhibition in Glioblastoma: Quo Vadis?. Biomedicines, 2021, 9, 1809.	1.4	4
2183	Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. International Journal of Molecular Sciences, 2021, 22, 13068.	1.8	11
2184	JKST6, a novel multikinase modulator of the BCR-ABL1/STAT5 signaling pathway that potentiates direct BCR-ABL1 inhibition and overcomes imatinib resistance in chronic myelogenous leukemia. Biomedicine and Pharmacotherapy, 2021, 144, 112330.	2.5	4
2185	Sapanisertib plus Fulvestrant in Postmenopausal Women with Estrogen Receptor–Positive/HER2-Negative Advanced Breast Cancer after Progression on Aromatase Inhibitor. Clinical Cancer Research, 2022, 28, 1107-1116.	3.2	7
2186	Preclinical evaluation of the dual mTORC1/2 inhibitor sapanisertib in combination with cisplatin in nasopharyngeal carcinoma. European Journal of Pharmacology, 2022, 915, 174688.	1.7	4

#	Article	IF	Citations
2187	Dual Inhibition of mTORC1/2 Reduces Migration of Cholangiocarcinoma Cells by Regulation of Matrixmetalloproteinases. Frontiers in Cell and Developmental Biology, 2021, 9, 785979.	1.8	6
2188	Molecular design of dual inhibitors of PI3K and potential molecular target of cancer for its treatment: A review. European Journal of Medicinal Chemistry, 2022, 228, 114039.	2.6	18
2189	Biomarkers of everolimus efficacy in breast cancer therapy. Journal of Oncology Pharmacy Practice, 2022, , 107815522110736.	0.5	2
2190	Pancreatic Cancer: Current Multimodality Treatment Options and the Future Impact of Molecular Biological Profiling. Visceral Medicine, 2022, 38, 20-29.	0.5	7
2191	Novel Repositioning Therapy for Drug-Resistant Glioblastoma: In Vivo Validation Study of Clindamycin Treatment Targeting the mTOR Pathway and Combination Therapy with Temozolomide. Cancers, 2022, 14, 770.	1.7	2
2192	Evi1 involved in benzene-induced haematotoxicity via modulation of PI3K/mTOR pathway and negative regulation Serpinb2. Chemico-Biological Interactions, 2022, 354, 109836.	1.7	3
2193	Optochemical Control of mTOR Signaling and mTOR-Dependent Autophagy. ACS Pharmacology and Translational Science, 2022, 5, 149-155.	2.5	2
2194	Stanniocalcin2 inhibits the epithelial-mesenchymal transition and invasion of trophoblasts via activation of autophagy under high-glucose conditions. Molecular and Cellular Endocrinology, 2022, 547, 111598.	1.6	4
2195	Quercetin- and rutin-based nano-formulations for cancer treatment: A systematic review of improved efficacy and molecular mechanisms. Phytomedicine, 2022, 97, 153909.	2.3	22
2196	Integrative proteomic and phosphoproteomic profiling of invasive micropapillary breast carcinoma. Journal of Proteomics, 2022, 257, 104511.	1.2	3
2197	Ribosomal Protein S6: A Potential Therapeutic Target against Cancer?. International Journal of Molecular Sciences, 2022, 23, 48.	1.8	40
2198	Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduction and Targeted Therapy, 2021, 6, 425.	7.1	302
2199	Autophagy and Skin Diseases. Frontiers in Pharmacology, 2022, 13, 844756.	1.6	20
2200	PTEN loss confers sensitivity to rapalogs in clear cell renal cell carcinoma. Acta Pharmacologica Sinica, 2022, 43, 2397-2409.	2.8	5
2201	Biomarker-Based Phase II Study of Sapanisertib (TAK-228): An mTORC1/2 Inhibitor in Patients With Refractory Metastatic Renal Cell Carcinoma. JCO Precision Oncology, 2022, 6, e2100448.	1.5	5
2202	An omic and multidimensional spatial atlas from serial biopsies of an evolving metastatic breast cancer. Cell Reports Medicine, 2022, 3, 100525.	3.3	22
2203	Neem and Turmeric in the management of Covid Associated Mucormycosis (CAM) derived through network pharmacology. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3281-3294.	2.0	4
2204	METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. British Journal of Cancer, 2022, 127, 30-42.	2.9	18

#	Article	IF	CITATIONS
2205	Rapamycin limits CD4+ T cell proliferation in simian immunodeficiency virus–infected rhesus macaques on antiretroviral therapy. Journal of Clinical Investigation, 2022, 132, .	3.9	5
2206	Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer. Nature Reviews Cancer, 2022, 22, 323-339.	12.8	107
2207	Pyrimidine-5-carbonitrile based potential anticancer agents as apoptosis inducers through PI3K/AKT axis inhibition in leukaemia K562. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 895-911.	2.5	10
2208	Transcriptomics Reveals the Mevalonate and Cholesterol Pathways Blocking as Part of the Bacterial Cyclodipeptides Cytotoxic Effects in HeLa Cells of Human Cervix Adenocarcinoma. Frontiers in Oncology, 2022, 12, 790537.	1.3	5
2209	Combined Targeting of AKT and mTOR Inhibits Tumor Formation of EpCAM+ and CD90+ Human Hepatocellular Carcinoma Cells in an Orthotopic Mouse Model. Cancers, 2022, 14, 1882.	1.7	6
2210	Menstrual blood-derived endometrial stem cells ameliorate the viability of ovarian granulosa cells injured by cisplatin through activating autophagy. Reproductive Toxicology, 2022, 110, 39-48.	1.3	2
2211	Recent Developments in Targeting RAS Downstream Effectors for RAS-Driven Cancer Therapy. Molecules, 2021, 26, 7561.	1.7	3
2212	The Autophagy Inhibitor Chloroquine, Alone or in Combination with mTOR Inhibitors, Displays Anti-Tumor Effects in In Vitro and In Vivo Lung Carcinoid Models. Cancers, 2021, 13, 6327.	1.7	5
2213	Functional Mapping of AKT Signaling and Biomarkers of Response from the FAIRLANE Trial of Neoadjuvant Ipatasertib plus Paclitaxel for Triple-Negative Breast Cancer. Clinical Cancer Research, 2022, 28, 993-1003.	3.2	21
2214	How Compensatory Mechanisms and Adaptive Rewiring Have Shaped Our Understanding of Therapeutic Resistance in Cancer. Cancer Research, 2021, 81, 6074-6077.	0.4	16
2215	Application of mTORC1 Inhibitors for Tissue-Agnostic Management of Standard-Therapy-Refractory Solid Tumors. Cancers, 2022, 14, 1936.	1.7	1
2216	AKT mutant allele-specific activation dictates pharmacologic sensitivities. Nature Communications, 2022, 13, 2111.	5.8	10
2228	Akt pathway as a target for therapeutic intervention in HNSCC. Histology and Histopathology, 2008, 23, 1269-78.	0.5	42
2230	An Update to Hallmarks of Cancer. Cureus, 2022, , .	0.2	4
2231	Management of Pheochromocytomas and Paragangliomas: A Case-Based Review of Clinical Aspects and Perspectives. Journal of Clinical Medicine, 2022, 11, 2591.	1.0	4
2232	Combination mTOR and SHP2 inhibitor treatment of lymphatic malformation endothelial cells. Microvascular Research, 2022, 143, 104397.	1.1	4
2233	DRD2 Agonist Cabergoline Abolished the Escape Mechanism Induced by mTOR Inhibitor Everolimus in Tumoral Pituitary Cells. Frontiers in Endocrinology, 2022, 13, .	1.5	3
2235	Genome-wide cross-cancer analysis illustrates the critical role of bimodal miRNA in patient survival and drug responses to PI3K inhibitors. PLoS Computational Biology, 2022, 18, e1010109.	1.5	1

		CITATION REPORT		
#	Article		IF	CITATIONS
2236	The Central Role of mTORC1 in Amino Acid Sensing. Cancer Research, 2022, 82, 2964-29	<i>)</i> 74.	0.4	7
2237	The drug-induced phenotypic landscape of colorectal cancer organoids. Nature Commun 2022, 13, .	ications,	5.8	22
2238	Focal Adhesion Kinase Provides a Collateral Vulnerability That Can Be Leveraged to Impro Inhibitor Efficacy. Cancers, 2022, 14, 3374.	ve mTORC1	1.7	2
2240	Small Molecules and Immunotherapy Agents for Enhancing Radiotherapy in Glioblastoma Biomedicines, 2022, 10, 1763.		1.4	4
2241	Brusatol modulates diverse cancer hallmarks and signaling pathways as a potential cance therapeutic. , 2022, 1, .	?r		12
2242	Recent advances and application of ruthenium complexes in tumor malignancy. Material Proceedings, 2023, 72, 2822-2827.	s Today:	0.9	14
2243	Beyond controlling cell size: functional analyses of S6K in tumorigenesis. Cell Death and 2022, 13, .	Disease,	2.7	17
2244	ERK5 Is a Major Determinant of Chemical Sarcomagenesis: Implications in Human Pathol 2022, 14, 3509.	ogy. Cancers,	1.7	2
2245	PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. Cells, 2022, 11, 2508.		1.8	42
2246	The Effects of Deoxyelephantopin on the Akt/mTOR/P70S6K Signaling Pathway in MCF-7 Carcinoma Cells <i>In Vitro</i> . Journal of Pharmacology and Pharmacotherapeutics, 0, , 0976500X2211140.	Breast	0.2	0
2247	Uterine leiomyosarcoma. , 2023, , 145-160.			0
2248	BET inhibition induces vulnerability to MCL1 targeting through upregulation of fatty acid pathway in breast cancer. Cell Reports, 2022, 40, 111304.	synthesis	2.9	1
2249	Mechanism of Citri Reticulatae Pericarpium as an Anticancer Agent from the Perspective Flavonoids: A Review. Molecules, 2022, 27, 5622.	of	1.7	6
2250	Randomized Phase II Trial of Sapanisertib ± TAK-117 vs. Everolimus in Patients With Adv Carcinoma After VEGF-Targeted Therapy. Oncologist, 2022, 27, 1048-1057.	anced Renal Cell	1.9	4
2251	Waldenström Macroglobulinemia: Mechanisms of Disease Progression and Current The International Journal of Molecular Sciences, 2022, 23, 11145.	rapies.	1.8	4
2252	Therapy Resistant Gastroenteropancreatic Neuroendocrine Tumors. Cancers, 2022, 14, 4	769.	1.7	3
2253	Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer C International, 2022, 22, .	ell	1.8	53
2254	Addressing the Role of Angiogenesis in Patients with Advanced Pancreatic Neuroendocri Treated with Everolimus: A Biological Prospective Analysis of Soluble Biomarkers and Clir Outcomes. Cancers, 2022, 14, 4471.	ne Tumors ical	1.7	5

#	Article	IF	CITATIONS
2255	Pharmacological mTOR-inhibition facilitates clearance of AD-related tau aggregates in the mouse brain. European Journal of Pharmacology, 2022, 934, 175301.	1.7	5
2256	Elevated ITGA5 facilitates hyperactivated mTORC1-mediated progression of laryngeal squamous cell carcinoma via upregulation of EFNB2. Theranostics, 2022, 12, 7431-7449.	4.6	4
2257	Interactive contribution of hyperinsulinemia, hyperglycemia, and mammalian target of rapamycin signaling to valvular interstitial cell differentiation and matrix remodeling. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	0
2258	Evaluation of the panâ€class I phosphoinositide 3â€kinase (PI3K) inhibitor copanlisib in the Pediatric Preclinical Testing Consortium in vivo models of osteosarcoma. Pediatric Blood and Cancer, 2023, 70,	0.8	1
2259	Growth Hormone Excess: Implications and Management. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, .	0.6	0
2260	Statin use in patients with hormone receptorâ€positive metastatic breast cancer treated with everolimus and exemestane. Cancer Medicine, 2023, 12, 5461-5470.	1.3	1
2261	Targeted therapy and molecular genetics. , 2023, , 464-488.e11.		0
2262	A Lamin Family-Based Signature Predicts Prognosis and Immunotherapy Response in Hepatocellular Carcinoma. Journal of Immunology Research, 2022, 2022, 1-23.	0.9	2
2263	The <scp>MASTL</scp> / <scp>PP2A</scp> cell cycle kinaseâ€phosphatase module restrains <scp>Pl3Kâ€Akt</scp> activity in an <scp>mTORC1</scp> â€dependent manner. EMBO Journal, 2023, 42, .	3.5	5
2264	The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. Life, 2022, 12, 1992.	1.1	18
2265	Mechanisms of Resistance in Gastroenteropancreatic Neuroendocrine Tumors. Cancers, 2022, 14, 6114.	1.7	2
2267	Function-oriented synthesis of Imidazo[1,2-a]pyrazine and Imidazo[1,2-b]pyridazine derivatives as potent PI3K/mTOR dual inhibitors. European Journal of Medicinal Chemistry, 2022, , 115030.	2.6	3
2268	Recent progress of experimental model in pancreatic neuroendocrine tumors: drawbacks and challenges. Endocrine, 2023, 80, 266-282.	1.1	3
2269	Dual mTORC1/2 Inhibition Synergistically Enhances AML Cell Death in Combination with the BCL2 Antagonist Venetoclax. Clinical Cancer Research, 2023, 29, 1332-1343.	3.2	2
2270	The Role of Autophagy Regulation as a Novel Approach for Cancer Immunotherapy. , 2023, , 1-24.		0
2272	The deficiency of Maged1 attenuates Parkinson's disease progression in mice. Molecular Brain, 2023, 16,	1.3	2
2273	Intervertebral disc cell fate during aging and degeneration: apoptosis, senescence, and autophagy. North American Spine Society Journal (NASSJ), 2023, 14, 100210.	0.3	2
2274	Inceptor correlates with markers of prostate cancer progression and modulates insulin/IGF1 signaling and cancer cell migration. Molecular Metabolism, 2023, 71, 101706.	3.0	1

#	Article	IF	CITATIONS
2275	PI5P4Kα supports prostate cancer metabolism and exposes a survival vulnerability during androgen receptor inhibition. Science Advances, 2023, 9, .	4.7	9
2276	mTOR inhibition overcomes RSK3-mediated resistance to BET inhibitors in small cell lung cancer. JCI Insight, 2023, 8, .	2.3	6
2277	Targeting mTOR for Anti-Aging and Anti-Cancer Therapy. Molecules, 2023, 28, 3157.	1.7	4
2278	Capsaicin suppresses the migration and invasion of human nasopharyngeal carcinoma cells through the modulation of mTOR signaling pathway. Food Science and Biotechnology, 0, , .	1.2	0
2279	UBXN2A suppresses the Rictor-mTORC2 signaling pathway, an established tumorigenic pathway in human colorectal cancer. Oncogene, 2023, 42, 1763-1776.	2.6	1
2280	m6A-modification of cyclin D1 and c-myc IRESs in glioblastoma controls ITAF activity and resistance to mTOR inhibition. Cancer Letters, 2023, 562, 216178.	3.2	4
2281	Phase I study of sapanisertib with carboplatin and paclitaxel in mTOR pathway altered solid malignancies. Npj Precision Oncology, 2023, 7, .	2.3	1
2309	Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	7