Gold(III) Salen Complex-Catalyzed Synthesis of Propara Coupling Reaction

Organic Letters 8, 1529-1532 DOI: 10.1021/ol0528641

Citation Report

#	Article	IF	CITATIONS
1	Phosphine Gold(I)-Catalyzed Hydroamination of Alkenes under Thermal and Microwave-Assisted Conditions. Organic Letters, 2006, 8, 2707-2710.	2.4	245
2	Direct addition of alkynes to imines and related Cî€N electrophiles: A convenient access to propargylamines. Chemical Communications, 2006, , 4263-4275.	2.2	331
3	The silver salt of 12-tungstophosphoric acid: an efficient catalyst for the three-component coupling of an aldehyde, an amine and an alkyne. Tetrahedron Letters, 2006, 47, 7563-7566.	0.7	122
5	Gold Catalysis. Angewandte Chemie - International Edition, 2006, 45, 7896-7936.	7.2	3,254
7	Allene formation by gold catalyzed cross-coupling of masked carbenes and vinylidenes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13569-13573.	3.3	278
8	Reactions of Câ^'H Bonds in Water. Chemical Reviews, 2007, 107, 2546-2562.	23.0	608
9	Amineâ^'Amide Equilibrium in Gold(III) Complexes and a Gold(III)â^'Gold(I) Aurophilic Bond. Inorganic Chemistry, 2007, 46, 1361-1368.	1.9	59
10	Organogold(III) Iminophosphorane Complexes as Efficient Catalysts in the Addition of 2-Methylfuran and Electron-Rich Arenes to Methyl Vinyl Ketone. Organometallics, 2007, 26, 4604-4611.	1.1	81
11	Synthesis of Î ² -amino carbonyl compounds via a Mannich reaction catalyzed by SalenZn complex. Catalysis Communications, 2007, 8, 2217-2221.	1.6	31
12	The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chemistry, 2007, 9, 742.	4.6	182
13	Gold-Catalyzed Multicomponent Synthesis of Aminoindolizines from Aldehydes, Amines, and Alkynes under Solvent-Free Conditions or in Water. Organic Letters, 2007, 9, 4323-4326.	2.4	287
14	Gold Nanoparticles and Gold(III) Complexes as General and Selective Hydrosilylation Catalysts. Angewandte Chemie - International Edition, 2007, 46, 7820-7822.	7.2	156
16	A highly efficient three-component coupling of aldehyde, terminal alkyne, and amine via C–H activation catalyzed by reusable immobilized copper in organic–inorganic hybrid materials under solvent-free reaction conditions. Tetrahedron, 2007, 63, 5455-5459.	1.0	90
17	Three-component one-pot process to propargylic amines and related amide and sulfonamide compounds: application to the construction of 2-(aminomethyl)benzofurans and indoles. Tetrahedron, 2007, 63, 10671-10683.	1.0	23
18	Zn(OAc)2·2H2O: a versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Letters, 2007, 48, 7184-7190.	0.7	127
19	Efficient one-pot synthesis of propargylamines using zinc dust. Tetrahedron Letters, 2007, 48, 7332-7334.	0.7	68
20	Homogeneous gold catalysis: The role of protons. Catalysis Today, 2007, 122, 211-214.	2.2	150
21	A new salen ligand: 2,2′-[(spiro[4.4]nonane-1,6-diyl)dinitrilomethylidyne]bis(4,6-dichlorophenol). Acta Crystallographica Section F: Structure Reports Online, 2007, 63, o3049-o3050.	0.2	0

#	Article	IF	Citations
22	Gold-Catalyzed Organic Reactions. Chemical Reviews, 2007, 107, 3180-3211.	23.0	3,055
23	Gold(I) atalyzed Intermolecular Hydroarylation of Alkenes with Indoles under Thermal and Microwaveâ€Assisted Conditions. Chemistry - A European Journal, 2008, 14, 8353-8364.	1.7	129
24	Recent Developments in Enantioselective Gold(I) Catalysis. Chemistry - A European Journal, 2008, 14, 5382-5391.	1.7	552
25	Silicaâ€Immobilized NHC–Cu ^I Complex: An Efficient and Reusable Catalyst for A ³ â€Coupling (Aldehyde–Alkyne–Amine) under Solventless Reaction Conditions. European Journal of Organic Chemistry, 2008, 2008, 2255-2261.	1.2	123
26	Copper Zeolites as Green Catalysts for Multicomponent Reactions of Aldehydes, Terminal Alkynes and Amines: An Efficient and Green Synthesis of Propargylamines. European Journal of Organic Chemistry, 2008, 2008, 4440-4445.	1.2	114
27	Supported Gold(III) Catalysts for Highly Efficient Threeâ€Component Coupling Reactions. Angewandte Chemie - International Edition, 2008, 47, 4358-4361.	7.2	251
28	A Highly Efficient and Selective Au ^I â€Catalyzed Tandem Synthesis of Diversely Substituted Pyrrolo[1,2â€ <i>a</i>]quinolines in Aqueous Media. Angewandte Chemie - International Edition, 2008, 47, 3805-3810.	7.2	143
29	Copper atalyzed Four omponent Coupling between Aldehydes, Amines, Alkynes, and Carbon Dioxide. Advanced Synthesis and Catalysis, 2008, 350, 1503-1506.	2.1	131
32	Asymmetric synthesis of trifluoromethylated propargylamines via 1,2-additions of trifluoromethylacetylide to N-tert-butanesulfinyl imines. Tetrahedron, 2008, 64, 2301-2306.	1.0	20
33	Gold-catalyzed reactions of C–H bonds. Tetrahedron, 2008, 64, 4917-4938.	1.0	378
34	An efficient synthesis of propargylamines via three-component coupling of aldehydes, amines and alkynes catalyzed by nanocrystalline copper(II) oxide. Tetrahedron Letters, 2008, 49, 3083-3086.	0.7	111
35	Highly efficient three-component (aldehyde–alkyne–amine) coupling reactions catalyzed by a reusable PS-supported NHC–Ag(I) under solvent-free reaction conditions. Tetrahedron Letters, 2008, 49, 6650-6654.	0.7	129
36	CuPy2Cl2: A Novel and Efficient Catalyst for Synthesis of Propargylamines Under the Conventional Method and Microwave Irradiation. Synthetic Communications, 2008, 38, 3215-3223.	1.1	16
37	Alternative Synthetic Methods through New Developments in Catalysis by Gold. Chemical Reviews, 2008, 108, 3266-3325.	23.0	1,468
39	Copper-Catalyzed Asymmetric Alkylation of Imines with Dialkylzinc and Related Reactions. Chemical Reviews, 2008, 108, 2874-2886.	23.0	274
40	Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 2008, 108, 3351-3378.	23.0	1,966
41	Gold-Catalyzed Organic Transformations. Chemical Reviews, 2008, 108, 3239-3265.	23.0	1,827
42	Diastereoselective Synthesis of <i>N</i> -Secondary Alkyl 2-Alkoxymethylpyrrolidines via Sequential Addition Reactions of Organolithium and -Magnesium Reagents to <i>N</i> -Thioformyl 2-Alkoxymethylpyrrolidines, Journal of Organic Chemistry, 2008, 73, 9518-9521	1.7	31

#	Article	IF	CITATIONS
44	Alkylzincâ€Mediated Addition of Alkynes to <i>N</i> â€Tosylaldimines: Enantioselective Synthesis of (<i>E</i>)â€(2â€Enâ€3â€ynyl)â€amines. Advanced Synthesis and Catalysis, 2009, 351, 1512-1516.	2.1	10
45	Semiconductorâ€Gold Nanocomposite Catalysts for the Efficient Threeâ€Component Coupling of Aldehyde, Amine and Alkyne in Water. Advanced Synthesis and Catalysis, 2009, 351, 2887-2896.	2.1	55
46	A Cationic Gold(I) Complex as a General Catalyst for the Intermolecular Hydroamination of Alkynes: Application to the Oneâ€Pot Synthesis of Allenes from Two Alkynes and a Sacrificial Amine. Chemistry - A European Journal, 2009, 15, 3056-3060.	1.7	140
47	Ironâ€Catalyzed Ligandâ€Free Threeâ€Component Coupling Reactions of Aldehydes, Terminal Alkynes, and Amines. Chemistry - A European Journal, 2009, 15, 2045-2049.	1.7	130
48	Copperâ€Catalyzed Amine–Alkyne–Alkyne Addition Reaction: An Efficient Method For the Synthesis of γ,δâ€Alkynylâ€Î²â€amino Acid Derivatives. Chemistry - A European Journal, 2009, 15, 11668-11674.	1.7	27
49	Mono―and Multisite Solid Catalysts in Cascade Reactions for Chemical Process Intensification. ChemSusChem, 2009, 2, 500-506.	3.6	77
50	Water-Soluble (Phosphane)gold(I) Complexes - Applications as Recyclable Catalysts in a Three-Component Coupling Reaction and as Antimicrobial and Anticancer Agents. European Journal of Inorganic Chemistry, 2009, 2009, 3421-3430.	1.0	63
51	Iron-catalyzed three-component coupling of aldehyde, alkyne, and amine under neat conditions in air. Tetrahedron Letters, 2009, 50, 2895-2898.	0.7	116
52	AuPPh3Cl/AgOTf-catalyzed reaction of terminal alkynes: nucleophilic addition to activated CO bond. Tetrahedron Letters, 2009, 50, 6053-6056.	0.7	27
53	One-pot synthesis of arene-fused 2-acylcyclohexenones from propargylic carboxylates. Science in China Series B: Chemistry, 2009, 52, 1337-1344.	0.8	2
54	Efficient stereoselective synthesis of benzoxazines via copper-catalyzed three-component coupling reactions. Tetrahedron Letters, 2009, 50, 57-59.	0.7	19
55	New domino approach for the synthesis of 2,3-disubstituted benzo[b]furans via copper-catalyzed multi-component coupling reactions followed by cyclization. Tetrahedron Letters, 2009, 50, 2353-2357.	0.7	60
56	InBr3-catalyzed three-component reaction: a facile synthesis of propargyl amines. Tetrahedron Letters, 2009, 50, 3493-3496.	0.7	55
57	Gold(I)-catalyzed arylmethylation of terminal alkynes. Tetrahedron Letters, 2009, 50, 2533-2535.	0.7	19
58	InBr3-catalyzed direct alkynylation of nitrones with terminal alkynes: an efficient synthesis of N-hydroxy-propargyl amines. Tetrahedron Letters, 2009, 50, 2952-2955.	0.7	23
59	Highly efficient gold(III)-catalyzed intermolecular hydroarylation of unactivated alkenes with arenes under mild conditions. Journal of Organometallic Chemistry, 2009, 694, 494-501.	0.8	63
60	Gold(III) iminophosphorane complexes as catalysts in C–C and C–O bond formations. Journal of Organometallic Chemistry, 2009, 694, 486-493.	0.8	67
61	Gold(III) (C^N) complex-catalyzed synthesis of propargylamines via a three-component coupling reaction of aldehydes, amines and alkynes. Journal of Organometallic Chemistry, 2009, 694, 583-591.	0.8	125

#	Article	IF	CITATIONS
62	The anti-cancer properties of gold(III) compounds with dianionic porphyrin and tetradentate ligands. Coordination Chemistry Reviews, 2009, 253, 1682-1691.	9.5	230
63	Graphiteâ€Supported Gold Nanoparticles as Efficient Catalyst for Aerobic Oxidation of Benzylic Amines to Imines and <i>N</i> â€Substituted 1,2,3,4â€Tetrahydroisoquinolines to Amides: Synthetic Applications and Mechanistic Study. Chemistry - an Asian Journal, 2009, 4, 1551-1561.	1.7	178
64	An Unprecedented Phosphinamidic Gold(III) Metallocycle: Synthesis via Tin(IV) Precursors, Structure, and Multicomponent Catalysis. Organometallics, 2009, 28, 1739-1747.	1.1	51
65	A Simple and Economic Synthesis of Propargylamines by Cul-Catalyzed Three-Component Coupling Reaction with Succinic Acid as Additive. Australian Journal of Chemistry, 2009, 62, 75.	0.5	31
66	Sequential Addition Reactions of Two Molecules of Grignard Reagents to Thioformamides. Journal of Organic Chemistry, 2009, 74, 5703-5706.	1.7	30
67	Copper(0)-Induced Deselenative Insertion of N,N-Disubstituted Selenoamides into Acetylenic Câ^'H Bond Leading to Propargylamines. Organic Letters, 2009, 11, 2045-2048.	2.4	33
68	Indium-Catalyzed Highly Efficient Three-Component Coupling of Aldehyde, Alkyne, and Amine via Câ^'H Bond Activation. Journal of Organic Chemistry, 2009, 74, 4364-4367.	1.7	169
69	Cold(III) Adducts with Chiral Pyridinyl-Oxazolines. Synthesis, Reactivity of the Coordinated Ligands, and Structural Characterizations. Organometallics, 2009, 28, 7015-7024.	1.1	26
70	Selective chemical reactions in supercritical carbon dioxide, water, and ionic liquids. Green Chemistry Letters and Reviews, 2009, 2, 121-156.	2.1	55
71	Monofluorinated aziridines in asymmetric synthesis of chiral fluorinated prop-2-yn-1-amines. Russian Journal of Organic Chemistry, 2010, 46, 976-986.	0.3	4
72	Efficient and General Synthesis of 3â€Aminoindolines and 3â€Aminoindoles <i>via</i> Copper atalyzed Three omponent Coupling Reaction. Advanced Synthesis and Catalysis, 2010, 352, 961-966.	2.1	63
73	Copper(II) Triflateâ€Catalyzed Threeâ€Component Coupling of Aldehydes, Alkynes and Carbamates. Advanced Synthesis and Catalysis, 2010, 352, 2437-2440.	2.1	18
74	Propargyl Amine Synthesis Catalysed by Gold and Copper Thin Films by Using Microwaveâ€Assisted Continuousâ€Flow Organic Synthesis (MACOS). Chemistry - A European Journal, 2010, 16, 126-133.	1.7	114
75	Efficient Microwaveâ€Assisted Synthesis of Secondary Alkylpropargylamines by Using A ³ â€Coupling with Primary Aliphatic Amines. Chemistry - A European Journal, 2010, 16, 3281-3284.	1.7	102
76	Mechanistic Insights into the Oneâ€Pot Synthesis of Propargylamines from Terminal Alkynes and Amines in Chlorinated Solvents Catalyzed by Gold Compounds and Nanoparticles. Chemistry - A European Journal, 2010, 16, 9287-9296.	1.7	62
77	Highly Diastereoselective Synthesis of αâ€Difluoromethyl Amines from <i>N</i> â€ <i>tert</i> â€Butylsulfinyl Ketimines and Difluoromethyl Phenyl Sulfone. Chemistry - A European Journal, 2010, 16, 11443-11454.	1.7	50
79	Gold Nanoparticles Embedded in a Mesoporous Carbon Nitride Stabilizer for Highly Efficient Three omponent Coupling Reaction. Angewandte Chemie - International Edition, 2010, 49, 5961-5965.	7.2	321
80	Copperâ€catalyzed oneâ€pot synthesis of propargylamines via Cĭ£¿H activation in PEG. Applied Organometallic Chemistry, 2010, 24, 809-812.	1.7	40

#	Article	IF	CITATIONS
81	Mesoporous SBA-15 supported silver nanoparticles as environmentally friendly catalysts for three-component reaction of aldehydes, alkynes and amines with glycol as a "green―solvent. Journal of Molecular Catalysis A, 2010, 323, 40-44.	4.8	50
82	Magnetically separable Fe3O4 nanoparticles: an efficient catalyst for the synthesis of propargylamines. Tetrahedron Letters, 2010, 51, 1891-1895.	0.7	125
83	Synthesis of imidazo[1,2a]pyridines via three-component reaction of 2-aminopyridines, aldehydes and alkynes. Tetrahedron Letters, 2010, 51, 4605-4608.	0.7	74
84	A novel efficient method for synthesis of propargylamines via three-component coupling of aryl azide, aldehyde, and alkyne promoted by iron–iodine–copper(I) bromide. Tetrahedron Letters, 2010, 51, 5463-5465.	0.7	13
85	An efficient and facile one-pot synthesis of propargylamines by three-component coupling of aldehydes, amines, and alkynes via C–H activation catalyzed by NiCl2. Tetrahedron Letters, 2010, 51, 5555-5558.	0.7	135
86	Copper-Catalyzed Coupling Reaction of Câ^'OMe Bonds Adjacent to a Nitrogen Atom with Terminal Alkynes. Journal of Organic Chemistry, 2010, 75, 4554-4561.	1.7	23
87	Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chemistry, 2010, 12, 570.	4.6	291
88	Microwave-assisted multicomponent domino cyclization–aromatization: an efficient approach for the synthesis of substituted quinolines. Green Chemistry, 2010, 12, 875.	4.6	162
89	Subcellular Localization of a Fluorescent Artemisinin Derivative to Endoplasmic Reticulum. Organic Letters, 2010, 12, 1420-1423.	2.4	51
90	Silver(<scp>i</scp>)-mediated highly enantioselective synthesis of axially chiral allenes under thermal and microwave-assisted conditions. Chemical Communications, 2010, 46, 213-215.	2.2	118
91	Gold-Catalyzed Three-Component Coupling: Oxidative Oxyarylation of Alkenes. Journal of the American Chemical Society, 2010, 132, 8885-8887.	6.6	267
92	Cooperative multimetallic catalysis using metallosalens. Chemical Communications, 2010, 46, 2713.	2.2	212
93	Gold η ² -Coordination to Unsaturated and Aromatic Hydrocarbons: The Key Step in Gold-Catalyzed Organic Transformations. Organometallics, 2010, 29, 2-23.	1.1	263
94	Synthetic and Structural Studies of [AuCl ₃ (NHC)] Complexes. Organometallics, 2010, 29, 394-402.	1.1	135
96	Impregnated copper on magnetite: an efficient and green catalyst for the multicomponent preparation of propargylamines under solvent free conditions. Organic and Biomolecular Chemistry, 2010, 8, 43-46.	1.5	174
97	Chiral N-phosphonyl imine chemistry: an efficient asymmetric synthesis of chiral N-phosphonyl propargylamines. Organic and Biomolecular Chemistry, 2010, 8, 1091.	1.5	49
98	Nanocrystalline magnesium oxide stabilized gold nanoparticles: an advanced nanotechnology based recyclable heterogeneous catalyst platform for the one-pot synthesis of propargylamines. Green Chemistry, 2011, 13, 2878.	4.6	89
99	Silylative Coupling of Terminal Alkynes with Iodosilanes: New Catalytic Activation of sp-Hybridized Carbonâ^'Hydrogen Bonds. Organometallics, 2011, 30, 2539-2545.	1.1	27

#	Article	IF	CITATIONS
π 100	Fe ₃ O ₄ Nanoparticle-Supported Copper(I) Pybox Catalyst: Magnetically Recoverable Catalyst for Enantioselective Direct-Addition of Terminal Alkynes to Imines. Organic Letters, 2011, 13, 442-445.	2.4	171
101	Gold-Catalyzed Carbonâ^'Heteroatom Bond-Forming Reactions. Chemical Reviews, 2011, 111, 1657-1712.	23.0	1,222
102	Propargylamine Synthesis by Copper-Catalyzed Oxidative Coupling of Alkynes and Tertiary Amine <i>N</i> -Oxides. Journal of Organic Chemistry, 2011, 76, 6901-6905.	1.7	35
103	Chapter 7. Aqueous Phase Asymmetric Catalysis. RSC Green Chemistry, 0, , 206-236.	0.0	0
104	Well-defined N-heterocyclic carbene silver halides of 1-cyclohexyl-3-arylmethylimidazolylidenes: synthesis, structure and catalysis in A3-reaction of aldehydes, amines and alkynes. Dalton Transactions, 2011, 40, 2046.	1.6	70
105	Gold(I) Catalysts with Bifunctional P, N Ligands. Inorganic Chemistry, 2011, 50, 7863-7870.	1.9	34
106	Mannich reaction of secondary amines, aldehydes and alkynes in water using Cu/C nanoparticles as a heterogeneous catalyst. Journal of the Iranian Chemical Society, 2011, 8, S89-S103.	1.2	32
107	Why Does Gold(III) Porphyrin Act as a Selective Catalyst in the Cycloisomerization of Allenones?. Journal of Physical Chemistry C, 2011, 115, 2187-2195.	1.5	33
108	Microwave-Assisted Decarboxylative Three-Component Coupling of a 2-Oxoacetic Acid, an Amine, and an Alkyne. Journal of Organic Chemistry, 2011, 76, 7608-7613.	1.7	61
109	Nafion®NR50 catalyzed A3-coupling for the synthesis of propargylamines via C-H activation. Journal of the Iranian Chemical Society, 2011, 8, 462-469.	1.2	14
110	Synthesis of a Coordinatively Labile Gold(III) Methyl Complex. Organometallics, 2011, 30, 3250-3253.	1.1	17
111	Highly efficient gold(I)-catalyzed Overman rearrangement in water. Beilstein Journal of Organic Chemistry, 2011, 7, 781-785.	1.3	10
113	Nanosize Co3O4 as a novel, robust, efficient and recyclable catalyst for A3-coupling reaction of propargylamines. Catalysis Communications, 2011, 16, 114-119.	1.6	41
114	Gold(I)â€Catalyzed Enantioselective Intermolecular Hydroarylation of Allenes with Indoles and Reaction Mechanism by Density Functional Theory Calculations. Chemistry - an Asian Journal, 2011, 6, 812-824.	1.7	76
115	Silica‣upported Gold Nanoparticles Catalyzed Oneâ€Pot, Tandem Aerobic Oxidative Cyclization Reaction for Nitrogenâ€Containing Polyheterocyclic Compounds. ChemCatChem, 2011, 3, 386-393.	1.8	31
116	Enantioselective synthesis of cyclic carbamimidates via a three-component reaction of imines, terminal alkynes, and p-toluenesulfonylisocyanate using a monophosphine gold(i) catalyst. Chemical Science, 2011, 2, 1369.	3.7	113
117	Catalytic activities and properties of Au(III)/Schiff-base complexes in methanol oxidative carbonylation. Journal of Molecular Catalysis A, 2011, 340, 53-59.	4.8	15
118	Cold-Catalyzed Regioselective Dimerization of Aliphatic Terminal Alkynes. Synlett, 2012, 2012, 54-56.	1.0	10

#	Article	IF	CITATIONS
119	Gold-mediated bifunctional modification of oligosaccharidesvia a three-component coupling reaction. Organic and Biomolecular Chemistry, 2012, 10, 925-930.	1.5	44
120	Efficient iron(iii)-catalyzed three-component coupling reaction of alkynes, CH2Cl2 and amines to propargylamines. Chemical Communications, 2012, 48, 2024.	2.2	49
121	A novel and convenient copper-catalyzed three-component coupling of aldehydes, alkynes, and hydroxylamines leading to propargylamines. Tetrahedron Letters, 2012, 53, 4797-4801.	0.7	13
122	A simple procedure for polymer-supported N-heterocyclic carbene silver complex via click chemistry: an efficient and recyclable catalyst for the one-pot synthesis of propargylamines. Dalton Transactions, 2012, 41, 12428.	1.6	55
123	Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2, 16-58.	1.7	297
124	Coupling of Two Multistep Catalytic Cycles for the Oneâ€Pot Synthesis of Propargylamines from Alcohols and Primary Amines on a Nanoparticulated Gold Catalyst. Chemistry - A European Journal, 2012, 18, 14150-14156.	1.7	52
125	Heterogenized Gold Complexes: Recoverable Catalysts for Multicomponent Reactions of Aldehydes, Terminal Alkynes, and Amines. ACS Catalysis, 2012, 2, 399-406.	5.5	155
126	Copper(II)- and Palladium(II)-Catalyzed Enantioselective Claisen Rearrangement of Allyloxy- and Propargyloxy-Indoles to Quaternary Oxindoles and Spirocyclic Lactones. Journal of Organic Chemistry, 2012, 77, 11034-11055.	1.7	59
127	Synthesis of Propargylic and Allenic Carbamates <i>via</i> the C–H Amination of Alkynes. Organic Letters, 2012, 14, 280-283.	2.4	64
128	Gold-catalyzed amide synthesis from aldehydes and amines in aqueous medium. Chemical Communications, 2012, 48, 4112.	2.2	83
129	Engineering metal–organic frameworks immobilize gold catalysts for highly efficient one-pot synthesis of propargylamines. Green Chemistry, 2012, 14, 1710.	4.6	101
130	Reactivity of cationic gold(I) carbene complexes toward oxidative addition of bromine. Inorganica Chimica Acta, 2012, 391, 141-149.	1.2	20
131	The Role of Gold Acetylides as a Selectivity Trigger and the Importance of <i>gem</i> -Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics, 2012, 31, 644-661.	1.1	307
132	Site-Specific Modification of Amino Acids and Peptides by Aldehyde–Alkyne–Amine Coupling under Ambient Aqueous Conditions. Organic Letters, 2012, 14, 3000-3003.	2.4	53
133	A walk around the A3-coupling. Chemical Society Reviews, 2012, 41, 3790.	18.7	617
134	Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework. Chemical Communications, 2012, 48, 8961.	2.2	129
135	Gold(III) Compounds for Homogeneous Catalysis: Preparation, Reaction Conditions, and Scope of Application. Arabian Journal for Science and Engineering, 2012, 37, 1187-1225.	1.1	81
136	Synthesis, characterization and catalytic property of ruthenium–terpyridyl complexes. Polyhedron, 2012, 31, 227-234.	1.0	10

#	Article	IF	CITATIONS
137	Cyclometallated Gold(III) Complexes as Effective Catalysts for Synthesis of Propargylic Amines, Chiral Allenes and Isoxazoles. Advanced Synthesis and Catalysis, 2013, 355, 2055-2070.	2.1	89
138	CuBr for KA2 reaction: en route to propargylic amines bearing a quaternary carbon center. Chemical Communications, 2013, 49, 8976.	2.2	42
139	Synthesis of indole-2-, 3-, or 5-substituted propargylamines via gold(III)-catalyzed three component reaction of aldehyde, alkyne, and amine in aqueous medium. Tetrahedron, 2013, 69, 8025-8033.	1.0	37
140	Synthesis of [Zn(ΙΙ)BHPPDAH] as New Heterogeneous Catalyst without Being Immobilized on Any Support and Applied for Mannich Reaction. Heteroatom Chemistry, 2013, 24, 372-383.	0.4	18
141	Copper(I) Halide Promoted Diastereoselective Synthesis of Chiral Propargylamines and Chiral Allenes using 2-Dialkylaminomethylpyrrolidine, Aldehydes, and 1-Alkynes. Journal of Organic Chemistry, 2013, 78, 1463-1470.	1.7	49
142	Mild-Condition Synthesis of Allenes from Alkynes and Aldehydes Mediated by Tetrahydroisoquinoline (THIQ). Journal of Organic Chemistry, 2013, 78, 11783-11793.	1.7	35
143	Bis-cyclometallated gold(iii) complexes as efficient catalysts for synthesis of propargylamines and alkylated indoles. Chemical Communications, 2013, 49, 8869.	2.2	47
144	When NHC Ligands Make a Difference in Gold Catalysis. Israel Journal of Chemistry, 2013, 53, 892-900.	1.0	58
145	CHAPTER 1. Asymmetric Domino Reactions Based on the Use of Chiral Substrates. RSC Catalysis Series, 0, , 1-149.	0.1	0
146	Dual Gold Catalysis: Ïf,ï€â€Propyne Acetylide and Hydroxylâ€Bridged Digold Complexes as Easyâ€Toâ€Prepare a Easyâ€Toâ€Handle Precatalysts. Chemistry - A European Journal, 2013, 19, 1058-1065.	nd 1.7	137
147	Stereocontrolled Domino Reactions. Chemical Reviews, 2013, 113, 442-524.	23.0	610
148	Cu(II) salen complex catalyzed synthesis of propargylamines by a three-component coupling reaction. Chinese Journal of Catalysis, 2013, 34, 2217-2222.	6.9	25
149	Cold nanoparticles immobilized on lipoic acid functionalized SBA-15: Synthesis, characterization and catalytic applications. Applied Catalysis A: General, 2013, 454, 119-126.	2.2	31
150	Efficient three-component coupling catalysed by mesoporous copper–aluminum based nanocomposites. Green Chemistry, 2013, 15, 1238.	4.6	88
151	Catalytic Nucleophilic Additions of Alkynes in Water. , 2013, , 87-108.		2
152	Mechanistic Investigations of a Stable, Highly Active, Extremely Sterically Shielded Molecular Gold Catalyst. ChemCatChem, 2013, 5, 2330-2335.	1.8	33
153	Catalytic Three omponent Domino Reaction for the Preparation of Trisubstituted Oxazoles. Chemistry - A European Journal, 2013, 19, 7982-7988.	1.7	33
154	Bimetallic Enantioselective Approach to Axially Chiral Allenes. Organic Letters, 2013, 15, 2254-2257.	2.4	42

#	Article	IF	CITATIONS
155	A Facile Synthesis of 4,6,7,8,8 <i>a</i> ,9â€Hexahydropyrrolo[1,2â€ <i>a</i>][1,2,3]triazolo[1,5â€ <i>d</i>]pyrÂazines by a Threeâ€Component Coupling Reaction Followed by Intramolecular 1,3â€Dipolar Cycloaddition. European Journal of Organic Chemistry, 2013, 2013, 4119-4130.	1.2	26
156	Metal-Free Decarboxylative Three-Component Coupling Reaction for the Synthesis of Propargylamines. Organic Letters, 2013, 15, 3322-3325.	2.4	73
157	Gold(III)-Catalyzed Three-Component Coupling Reaction (TCC) Selective toward Furans. Organic Letters, 2013, 15, 2884-2887.	2.4	66
158	Synthesis and Reactivity of N-Heterocyclic Carbene Gold(I) and Gold(III) Imidate Complexes and Their Catalytic Activity in 1,5-Enyne Cycloisomerization. Organometallics, 2013, 32, 3108-3120.	1.1	24
159	Application of tartarate derived bidentate bioxazolines in enantioselective addition of terminal alkynes to imines. Tetrahedron Letters, 2013, 54, 3613-3616.	0.7	13
160	Propargylamines formed from three-component coupling reactions catalyzed by silver oxide nanoparticles. RSC Advances, 2013, 3, 1732-1734.	1.7	44
161	A Unique Route to Tetrasubstituted Propargylic Amines by Catalytic Markovnikov Hydroamination–Alkynylation. Advanced Synthesis and Catalysis, 2013, 355, 3586-3590.	2.1	18
162	Conquering three-carbon axial chirality of allenes. Organic Chemistry Frontiers, 2014, 1, 1210-1224.	2.3	258
163	Stable mesoporous Fe/TiO2 nanoparticles: A recoverable catalyst for solvent-free synthesis of propargylamine via CH activation. Applied Catalysis A: General, 2014, 488, 231-238.	2.2	27
164	Oneâ€Pot Synthesis of 2â€lminoâ€4â€(trifluoromethyl)thiazolidinâ€4â€ol Derivatives in a Threeâ€Component Reaction: Application to Structurally Diverse Scaffolds of Biological Interest Through Subsequent Reactions. European Journal of Organic Chemistry, 2014, 2014, 2468-2479.	1.2	15
165	Cyclization of Gold Acetylides: Synthesis of Vinyl Sulfonates via Gold Vinylidene Complexes. Angewandte Chemie - International Edition, 2014, 53, 3854-3858.	7.2	99
166	Manganese(<scp>ii</scp>) chloride catalyzed highly efficient one-pot synthesis of propargylamines and fused triazoles via three-component coupling reaction under solvent-free condition. RSC Advances, 2014, 4, 26301-26308.	1.7	35
167	Efficient synthesis of propargylamines from terminal alkynes, dichloromethane and tertiary amines over silver catalysts. Organic and Biomolecular Chemistry, 2014, 12, 247-250.	1.5	40
168	Rhodium(III)â€Catalyzed Threeâ€Component Reaction of Imines, Alkynes, and Aldehydes through CH Activation. Chemistry - A European Journal, 2014, 20, 16882-16886.	1.7	57
171	Mild gold-catalyzed three-component dehydrogenative coupling of terminal alkynes to amines and indole-2-carboxaldehyde. Organic and Biomolecular Chemistry, 2014, 12, 2523-2527.	1.5	35
172	Silverâ€Catalyzed Transformation of Propargylic Amine <i>N</i> â€Oxides to Enones and Acyloxy Ketones <i>via</i> Isoxazolinium Intermediates. Advanced Synthesis and Catalysis, 2014, 356, 2965-2973.	2.1	12
173	Direct Enantioselective Three omponent Synthesis of Optically Active Propargylamines in Water. Chemistry - A European Journal, 2014, 20, 8848-8851.	1.7	41
174	Nano copper(<scp>i</scp>) oxide–zinc oxide catalyzed coupling of aldehydes or ketones, secondary amines, and terminal alkynes in solvent-free conditions. New Journal of Chemistry, 2014, 38, 624-635.	1.4	67

#	Article	IF	CITATIONS
175	Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Advances, 2014, 4, 10001.	1.7	99
176	Copper-catalyzed decarboxylative coupling reactions for the synthesis of propargyl amines. Tetrahedron Letters, 2014, 55, 4875-4878.	0.7	37
177	[Silver(I)(Pyridine-Containing Ligand)] Complexes As Unusual Catalysts for A ³ -Coupling Reactions. Journal of Organic Chemistry, 2014, 79, 7311-7320.	1.7	88
178	GOLD-CATALYZED MULTI-COMPONENT REACTIONS. Catalytic Science Series, 2014, , 225-251.	0.6	2
180	Copper(I) atalyzed Decarboxylative Coupling of Propiolic Acids with Secondary Amines and Aldehydes. European Journal of Organic Chemistry, 2014, 2014, 5346-5350.	1.2	25
181	Copper(II) Catalyzed Expeditious Synthesis of Furoquinoxalines through a One-Pot Three-Component Coupling Strategy. Organic Letters, 2014, 16, 4528-4531.	2.4	42
182	Immobilized silver on surface-modified ZnO nanoparticles: As an efficient catalyst for synthesis of propargylamines in water. Journal of Molecular Catalysis A, 2014, 395, 52-57.	4.8	49
183	Polymerâ€anchored copper(II) complex: an efficient reusable catalyst for the synthesis of propargylamines. Applied Organometallic Chemistry, 2014, 28, 756-759.	1.7	21
184	Cationic Copper(I) Complexes as Highly Efficient Catalysts for Single and Double A ³ â€Coupling Mannich Reactions of Terminal Alkynes: Mechanistic Insights and Comparative Studies with Analogous Gold(I) Complexes. Chemistry - A European Journal, 2014, 20, 14317-14328.	1.7	21
186	Zinc Salt Promoted Diastereoselective Synthesis of Chiral Propargylamines Using Chiral Piperazines and Their Enantioselective Conversion into Chiral Allenes. European Journal of Organic Chemistry, 2014, 2014, 6067-6076.	1.2	32
187	Solvent effects in gold-catalysed A3-coupling reactions. Tetrahedron Letters, 2014, 55, 151-154.	0.7	46
189	One-Pot Synthesis of Propargylamines Using Ag(I)-Exchanged K10 Montmorillonite Clay as Reusable Catalyst in Water. ACS Sustainable Chemistry and Engineering, 2014, 2, 781-787.	3.2	60
190	Nano-size ZnS: A novel, efficient and recyclable catalyst for A3-coupling reaction of propargylamines. Journal of Molecular Catalysis A, 2014, 381, 126-131.	4.8	50
191	Efficient one-pot synthesis of propargylamines catalysed by gold nanocrystals stabilized on montmorillonite. Catalysis Science and Technology, 2014, 4, 4001-4009.	2.1	67
192	Deactivation of Cationic Cu ^I and Au ^I Catalysts for A ³ Coupling by CH ₂ Cl ₂ : Mechanistic Implications of the Formation of Neutral Cu ^I and Au ^I Chlorides. Angewandte Chemie - International Edition, 2014, 53, 7253-7258.	7.2	46
193	Synergistic Gold(I)/Trimethylsilyl Catalysis: Efficient Alkynylation of N,Oâ€Acetals and Related Proâ€Electrophiles. Advanced Synthesis and Catalysis, 2014, 356, 2040-2050.	2.1	24
194	Silver and gold-catalyzed multicomponent reactions. Beilstein Journal of Organic Chemistry, 2014, 10, 481-513.	1.3	115
195	Efficient Rhodium atalyzed Multicomponent Reaction for the Synthesis of Novel Propargylamines. Chemistry - A European Journal, 2015, 21, 17701-17707.	1.7	27

#	Article	IF	CITATIONS
196	Oneâ€Pot Preparation of Propargylamines Catalyzed by Heterogeneous Copper Catalyst Supported on Periodic Mesoporous Organosilica with Ionic Liquid Framework. ChemPlusChem, 2015, 80, 1573-1579.	1.3	30
197	Gold and silver catalysis: from organic transformation to bioconjugation. Organic and Biomolecular Chemistry, 2015, 13, 6667-6680.	1.5	57
198	Visual detection of formaldehyde by highly selective fluorophore labeling via gold(iii) complex-mediated three-component coupling reaction. Organic and Biomolecular Chemistry, 2015, 13, 7408-7411.	1.5	18
199	Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A3-coupling synthesis of propargylamines. Chinese Chemical Letters, 2015, 26, 1085-1090.	4.8	45
200	Preparation of Au nanoparticles by Anthemis xylopoda flowers aqueous extract and their application for alkyne/aldehyde/amine A ³ -type coupling reactions. RSC Advances, 2015, 5, 46240-46246.	1.7	94
201	Syntheses and structures of two gold(<scp>i</scp>) coordination compounds derived from P–S hybrid ligands and their efficient catalytic performance in the photodegradation of nitroaromatics in water. Dalton Transactions, 2015, 44, 5662-5671.	1.6	48
202	Cyclometallated gold(iii) aryl-pyridine complexes as efficient catalysts for three-component synthesis of substituted oxazoles. Dalton Transactions, 2015, 44, 5347-5353.	1.6	36
203	Catalytic Tandem Markovnikov Hydroamination–Alkynylation and Markovnikov Hydroamination–Hydrovinylation. Advanced Synthesis and Catalysis, 2015, 357, 539-548.	2.1	14
204	Noble metal-based composite nanomaterials fabricated via solution-based approaches. Journal of Materials Chemistry A, 2015, 3, 3182-3223.	5.2	95
205	Catalytic hydration of alkynes to ketones by a salen–gold(III) complex. Catalysis Communications, 2015, 65, 102-104.	1.6	25
206	Harmony of CdI2with CuBr for the one-pot synthesis of optically active α-allenols. Organic and Biomolecular Chemistry, 2015, 13, 4080-4089.	1.5	18
207	Continuous flow reactions in water for the synthesis of propargylamines via a metal-free decarboxylative coupling reaction. Tetrahedron Letters, 2015, 56, 4697-4700.	0.7	14
208	Facile and diverse microwave-assisted synthesis of secondary propargylamines in water using CuCl/CuCl2. RSC Advances, 2015, 5, 28921-28924.	1.7	22
210	Nanocomposites of Gold and Semiconductors. , 2015, , 31-91.		0
211	The fluxional amine gold(iii) complex as an excellent catalyst and precursor of biologically active acyclic carbenes. Dalton Transactions, 2015, 44, 9052-9062.	1.6	26
212	Silver(I) complexes as efficient source for silver oxide nanoparticles with catalytic activity in A3 coupling reactions. Inorganica Chimica Acta, 2015, 438, 255-263.	1.2	30
213	NiO nanoparticles catalyzed three component coupling reaction of aldehyde, amine and terminal alkynes. Catalysis Communications, 2015, 72, 174-179.	1.6	27
214	Sustainable and Versatile CuO/GNS Nanocatalyst for Highly Efficient Base Free Coupling Reactions. ACS Sustainable Chemistry and Engineering, 2015, 3, 2478-2488.	3.2	57

#	Article	IF	CITATIONS
215	CO ₂ Chemistry in SCUT Group: New Methods for Conversion of Carbon Dioxide into Organic Compounds. ACS Symposium Series, 2015, , 71-108.	0.5	1
216	Metal-Based Composite Nanomaterials. , 2015, , .		6
217	Au(III) catalyst supported on a thermoresponsive hydrogel and its application to the A-3 coupling reaction in water. Journal of Catalysis, 2015, 322, 104-108.	3.1	25
218	A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chinese Chemical Letters, 2015, 26, 6-10.	4.8	49
219	Acridine based (S,N,S) pincer ligand: designing silver(<scp>i</scp>) complexes for the efficient activation of A ³ (aldehyde, alkyne and amine) coupling. Dalton Transactions, 2015, 44, 1962-1968.	1.6	36
220	Microwave-Assisted Synthesis of Ruthenium(II) Complexes with Trimethylsilylacetylene as Inhibitors against the Migration of Breast Cancer Cells. Australian Journal of Chemistry, 2015, 68, 137.	0.5	5
221	Identifying a Highly Active Copper Catalyst for KA ² Reaction of Aromatic Ketones. Chemistry - A European Journal, 2016, 22, 2266-2269.	1.7	32
223	Gold and silver nanoparticles supported on metal-organic frameworks: a highly active catalyst for three-component coupling reaction. Chemical Research in Chinese Universities, 2016, 32, 443-450.	1.3	18
224	Synthesis, Structure and Catalytic Properties of a Cu(II) Coordination Polymer Constructed from Paddle-Wheel Building Blocks. Journal of Cluster Science, 2016, 27, 1229-1238.	1.7	3
225	Chemoselective reductive alkynylation of tertiary amides by Ir and Cu(<scp>i</scp>) bis-metal sequential catalysis. Chemical Communications, 2016, 52, 11967-11970.	2.2	109
226	Polymeric Complex of 1â€Phenylsulfanyl/selenylmethylâ€1 <i>H</i> â€Benzotriazole with Ag(I): Pre–catalystfor A ³ Coupling Affording Propargylamines on aGram/Lab Scale. ChemistrySelect, 2016, 1, 3573-3579.	0.7	13
227	Copper(<scp>ii</scp>) carboxymethylcellulose (CMC-Cu ^{II}) as an efficient catalyst for aldehyde–alkyne–amine coupling under solvent-free conditions. RSC Advances, 2016, 6, 94399-94407.	1.7	32
228	Three-Component Coupling of Aldehyde, Alkyne, and Amine via C–H Bond Activation Using Indium-Based Metal–Organic Framework Mil-68(In) as a Recyclable Heterogeneous Catalyst. Catalysis Letters, 2016, 146, 2087-2097.	1.4	11
229	Recent developments in asymmetric alkynylations. Tetrahedron Letters, 2016, 57, 4771-4784.	0.7	59
230	Synthesis, structure and multifunctional catalytic properties of a Cu(<scp>i</scp>)-coordination polymer with outer-hanging CuBr ₂ . RSC Advances, 2016, 6, 108645-108653.	1.7	12
231	Zn(<scp>ii</scp>) anchored onto the magnetic natural hydroxyapatite (Zn ^{II} /HAP/Fe ₃ O ₄): as a novel, green and recyclable catalyst for A ³ -coupling reaction towards propargylamine synthesis under solvent-free conditions. RSC Advances, 2016, 6, 106473-106484.	1.7	59
232	Phosphine/phenylacetylide-ligated Au clusters for multicomponent coupling reactions. Journal of Catalysis, 2016, 340, 287-294.	3.1	45
233	Supported Au/MIL-53(Al): a reusable green solid catalyst for the three-component coupling reaction of aldehyde, alkyne, and amine. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 335-348.	0.8	28

ARTICLE IF CITATIONS Goldâ€Catalyzed Imination/Mannich Reaction Cascades of 3â€Enâ€Jâ€ynamides with Anilines and Aldehydes to 234 2.1 32 Enable 1,5â€Nitrogen Functionalizations. Advanced Synthesis and Catalysis, 2016, 358, 1421-1427. Tin(II) Chloride Catalyzed Multicomponent Synthesis of Propargylamines and Intramolecular [3+2] 1.3 Cycloaddition. Asian Journal of Organic Chemistry, 2016, 5, 257-263. Copper nanoparticles supported on starch micro particles as a degradable heterogeneous catalyst for 236 1.7 73 three-component coupling synthesis of propargylamines. RSC Advances, 2016, 6, 4983-4991. Facile synthesis of ZnAl₂O₄nanoparticles: efficient and reusable porous nano ZnAl₂O₄and copper supported on ZnAl₂0₄catalysts for one pot green synthesis of propargylamines and imidazo[1.2-a]pvridines by A³coupling reactions. RSC Advances. 2016. 6. 3117-3125. Gold nanoparticles supported on mercaptoethanol directly bonded to MCM-41: An efficient catalyst 238 1.6 40 for the synthesis of propargylamines. Catalysis Communications, 2016, 73, 88-92. Polyacrylonitrile Fiber Supported <i>N</i>-Heterocyclic Carbene Ag(I) As Efficient Catalysts for Three-Component Coupling and Intramolecular 1,3-Dipolar Cycloaddition Reactions under Flow Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3438-3447. 3.2 C,Oâ€Chelated BINOL/Gold(III) Complexes: Synthesis and Catalysis with Tunable Product Profiles. 240 7.2 59 Angewandte Chemie - International Edition, 2017, 56, 3074-3079. C,Oâ€Chelated BINOL/Gold(III) Complexes: Synthesis and Catalysis with Tunable Product Profiles. 1.6 16 Angewandte Chemie, 2017, 129, 3120-3125. Modular synthesis of propargylamine modified cyclodextrins by a gold(<scp>iii</scp>)-catalyzed 242 1.7 17 three-component coupling reaction. RSC Advances, 2017, 7, 14477-14480. Cycloaurated Phosphinothioic Amide Complex as a Precursor of Gold(I) Nanoparticles: Efficient 243 Catalysts for A³ Synthesis of Propargylamines under Solvent-Free Conditions. 1.1 Organometallics, 2017, 36, 1962-1973. Ionic Liquid-Attached Colloidal Silica Nanoparticles as a New Class of Silica Nanoparticles for the 244 7 1.4 Preparation of Propargylamines. Catalysis Letters, 2017, 147, 1696-1703. Synthesis, post-modification and catalytic properties of metal-organic framework NH2-MIL-53(Al). 1.3 Chemical Research in Chinese Universities, 2017, 33, 231-238. Magnetically recoverable Fe₃O₄@Au-coated nanoscale catalysts for the 246 1.6 40 A³-coupling reaction. Dalton Transactions, 2017, 46, 5133-5137. Theoretical Studies of Allene Synthesis through Cadmium Iodideâ€Mediated Allenylation of Terminal Alkynes. Asian Journal of Organic Chemistry, 2017, 6, 1778-1782. 247 1.3 Magnetically recoverable graphene-based nanocomposite material as an efficient catalyst for the synthesis of propargylamines via A³ coupling reaction. New Journal of Chémistry, 2017, 41, 248 1.4 24 12756-12766. A novel tetramer copper(I) complex containing diallylphosphine ligands: Synthesis, characterization and catalytic application in A3-coupling (Aldehyde-Ámine-Álkyne) reactions. Inorganica Chimica Acta, 1.2 2017, 467, 155-162. Well-Defined Chiral Gold(III) Complex Catalyzed Direct Enantioconvergent Kinetic Resolution of 250 6.6 91 1,5-Enynes. Journal of the American Chemical Society, 2017, 139, 11016-11019. Synthesis and Reactivity of Propargylamines in Organic Chemistry. Chemical Reviews, 2017, 117, 14091-14200.

#	Article	IF	CITATIONS
252	C–C coupling reactions using a gold(<scp>iii</scp>) phosphorus complex confined within metal–organic framework fibers in aqueous solution. RSC Advances, 2017, 7, 50838-50843.	1.7	9
253	Efficient multicomponent synthesis of propargylamines catalyzed by copper nanoparticles supported on metal-organic framework derived nanoporous carbon. Catalysis Communications, 2017, 89, 91-95.	1.6	54
254	Efficient Synthesis of Propargylamines in Aqueous Media Catalyzed by Au Nanoparticles under Ambient Temperature. ChemistrySelect, 2018, 3, 2053-2058.	0.7	6
255	Reviewing Gold(III) complexes as effective biological operators. Main Group Chemistry, 2018, 17, 35-52.	0.4	13
256	Gold Nanoparticles Supported on Imidazoleâ€Modified Bentonite: Environmentally Benign Heterogeneous Catalyst for the Threeâ€Component Synthesis of Propargylamines in Water. ChemPlusChem, 2018, 83, 431-438.	1.3	31
257	Highly Efficient Aqueous Synthesis of Propargylamines through C-H Activation Catalyzed by Magnetic Organosilica-Supported Gold Nanoparticles as an Artificial Metalloenzyme. European Journal of Inorganic Chemistry, 2018, 2018, 2589-2598.	1.0	26
258	Cu 2 O nanoparticles supported hydrothermal carbon microspheres as catalyst for propargylamine synthesis. Molecular Catalysis, 2018, 451, 209-219.	1.0	26
259	Copper(I) atalyzed multicomponent reactions in sustainable media. Applied Organometallic Chemistry, 2018, 32, e4256.	1.7	10
260	High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels. Applied Surface Science, 2018, 439, 272-281.	3.1	19
261	Progress in Synthesis of Propargylamine and Its Derivatives by Nanoparticle Catalysis via A3 coupling: A Decade Update. ChemistrySelect, 2018, 3, 147-169.	0.7	69
262	Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20, 86-107.	4.6	107
263	Highly Enantioselective Synthesis of Propargyl Amides through Rh-Catalyzed Asymmetric Hydroalkynylation of Enamides: Scope, Mechanism, and Origin of Selectivity. Journal of the American Chemical Society, 2018, 140, 506-514.	6.6	77
264	Immobilized Gold Nanoparticles Prepared from Gold(III)-Containing Ionic Liquids on Silica: Application to the Sustainable Synthesis of Propargylamines. Molecules, 2018, 23, 2975.	1.7	16
265	Copperâ€Catalyzed Highly Efficient Acetyleneâ€Mannich Reaction of Secondary Amines, Paraformaldehyde and Terminal Alkynes. ChemistrySelect, 2018, 3, 13629-13631.	0.7	3
266	Experimental and Computational Investigations of 4-((E)-(2-Amino-5- Nitrophenylimino)Methyl)-5- (Hydroxymethyl)-2-Methylpyridin-3-Ol Schiff Base Derived from Vitamin B6. Journal of Structural Chemistry, 2018, 59, 1326-1334.	0.3	1
267	Fabrication of Bimetallic Agâ€Co Nanoparticle Deposited on Hierarchical ZSMâ€5 as a Selective Catalyst for Synthesis of Propargylamine in Water via Multicomponent A ₃ Coupling. ChemistrySelect, 2018, 3, 12666-12675.	0.7	13
268	Synthesis of Gold(III) Complexes with Bidentate Amino-Thiolate Ligands as Precursors of Novel Bifunctional Acyclic Diaminocarbenes. ACS Omega, 2018, 3, 13097-13103.	1.6	6
269	Gold Nanoparticles-Decorated Dithiocarbamate Nanocomposite: An Efficient Heterogeneous Catalyst for the Green A3-Coupling Synthesis of Propargylamines. Catalysis Letters, 2018, 148, 3467-3476.	1.4	26

#	Article	IF	CITATIONS
270	Cooperative N-heterocyclic carbene Au and amino catalysis for continuous synthesis of secondary propargylamines in a fiber supported hydrophilic microenvironment. Chemical Engineering Journal, 2018, 349, 456-465.	6.6	23
271	Synthesis and crystal structures of salen-type Cu(<scp>ii</scp>) and Ni(<scp>ii</scp>) Schiff base complexes: application in [3+2]-cycloaddition and A ³ -coupling reactions. New Journal of Chemistry, 2018, 42, 13754-13762.	1.4	42
272	Diastereoselective synthesis of propargylamines catalyzed by Cu-MCM-41. Tetrahedron Letters, 2018, 59, 2403-2406.	0.7	10
273	Efficient Gold(I) Acyclic Diaminocarbenes for the Synthesis of Propargylamines and Indolizines. ACS Omega, 2018, 3, 9805-9813.	1.6	16
274	Iron oxide modified with pyridylâ€ŧriazole ligand for stabilization of gold nanoparticles: An efficient heterogeneous catalyst for A ³ coupling reaction in water. Applied Organometallic Chemistry, 2018, 32, e4454.	1.7	25
275	Bifunctional Solid Catalyst for Organic Reactions in Water: Simultaneous Anchoring of Acetylacetone Ligands and Amphiphilic Ionic Liquid "Tags―by Using a Dihydropyran Linker. Chemistry - an Asian Journal, 2018, 13, 2529-2542.	1.7	14
276	Copper-Based Bulk and Nano-Catalysts for the One-Pot Propargylamine Synthesis. Mini-Reviews in Organic Chemistry, 2019, 16, 361-368.	0.6	7
277	Chemoselective and photocleavable cysteine modification of peptides and proteins using isoxazoliniums. Communications Chemistry, 2019, 2, .	2.0	30
278	Gold atalyzed Oneâ€Pot Synthesis of 1,3â€Ðisubstituted Allenes from Benzaldehydes and Terminal Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 5050-5056.	2.1	17
279	An Efficient A ³ Coupling Catalyst Based on a Silver Complex Bearing Nâ€Heterocyclic Carbene and Homoscorpionate Bis(3â€methylâ€mercaptoimidazolyl)borate Ligands. ChemistrySelect, 2019, 4, 9268-9273.	0.7	14
281	Fluorescent Labelling of Glycans with FRETâ€Based Probes in a Gold(III)â€Mediated Threeâ€Component Coupling Reaction. ChemPlusChem, 2019, 84, 1739-1743.	1.3	8
282	Silverâ€Mediated Organic Transformations of Propargylamines to Enones, αâ€Thioketones, and Isochromans. ChemistrySelect, 2019, 4, 1476-1482.	0.7	7
283	Ternary hybrid TiO2-PANI-AuNPs for photocatalytic A3-coupling of aldehydes, amines and alkynes: First photochemical synthesis of propargyl amines. Materials Science and Engineering C, 2019, 99, 191-201.	3.8	20
284	Zn-Catalyzed Multicomponent KA ² Coupling: One-Pot Assembly of Propargylamines Bearing Tetrasubstituted Carbon Centers. ACS Omega, 2019, 4, 10279-10292.	1.6	41
285	Cobaltâ€Catalyzed Threeâ€Component Synthesis of Propargylamine Derivatives and Sonogashira Reaction: A Comparative Study between Coâ€NPs and Coâ€NHC@MWCNTs. ChemistrySelect, 2019, 4, 4598-4603.	0.7	13
287	Tuning anion species and chain length of ligands grafted on the fiber for an efficient polymer-supported Ni(II) complex catalyst in one-pot multicomponent A3-coupling. Journal of Catalysis, 2019, 372, 321-329.	3.1	31
288	Recent Advances in the A ³ Coupling Reactions and their Applications. European Journal of Organic Chemistry, 2019, 2019, 2704-2720.	1.2	99
289	CuONPs@CMC: an efficient recoverable nanocatalyst for decarboxylative A3 and A3 couplings under neat condition. Research on Chemical Intermediates, 2019, 45, 3359-3378.	1.3	15

#	Article	IF	CITATIONS
290	Caffeine gold complex supported on magnetic nanoparticles as a green and high turnover frequency catalyst for room temperature A ³ coupling reaction in water. Applied Organometallic Chemistry, 2019, 33, e4760.	1.7	44
291	Synthesis of Propargylamines via Michael Addition Using Methyl Vinyl Ketone Derivatives, 1-Alkynes, and Secondary Amines Catalyzed by Copper (I) Halides. ACS Omega, 2019, 4, 21587-21595.	1.6	8
292	ZnCl ₂ loaded TiO ₂ nanomaterial: an efficient green catalyst to one-pot solvent-free synthesis of propargylamines. RSC Advances, 2019, 9, 32735-32743.	1.7	14
293	Catalysis by Supported Gold Nanoparticles. , 2019, , 91-108.		2
294	Practical synthesis of silyl-protected and functionalized propargylamines using nanostructured Ag/TiO2 and Pt/TiO2 as active recyclable catalysts. Chemical Papers, 2019, 73, 435-445.	1.0	12
295	One-pot three-component synthesis of propargylamines using an efficient and reusable copper bio-functionalized magnetic graphene oxide nanocomposite. Polyhedron, 2020, 177, 114309.	1.0	5
296	Fibroinâ€functionalized magnetic carbon nanotube as a green support for anchoring silver nanoparticles as a biocatalyst for A ³ coupling reaction. Applied Organometallic Chemistry, 2020, 34, e5395.	1.7	15
297	A new copper complex on graphene oxide: A heterogeneous catalyst for <i>N</i> â€arylation and Câ€H activation. Applied Organometallic Chemistry, 2020, 34, e5362.	1.7	22
298	Zinc Oxide Sensitized Graphene Quantum Dots "ZnOâ€GQDs― A Hybrid Concept to Study Charge Transfer and its Catalytic Applicability to Synthesize Tetrasubstituted Propargylamines. Asian Journal of Organic Chemistry, 2020, 9, 2162-2169.	1.3	8
299	Manganeseâ€Catalyzed Multicomponent Synthesis of Tetrasubstituted Propargylamines: System Development and Theoretical Study. Advanced Synthesis and Catalysis, 2020, 362, 3872-3885.	2.1	18
300	Triarylborane catalysed <i>N</i> -alkylation of amines with aryl esters. Catalysis Science and Technology, 2020, 10, 7523-7530.	2.1	8
301	Heterogeneous gold(I)-catalyzed three-component reaction of aldehydes, alkynes, and orthoformates toward propargyl ethers. Synthetic Communications, 2020, 50, 1936-1945.	1.1	0
302	Two inorganic–organic hybrid silver-polyoxometalates as reusable catalysts for one-pot synthesis of propargylamines <i>via</i> a three-component coupling reaction at room temperature. CrystEngComm, 2020, 22, 2642-2648.	1.3	16
303	Catalytic Activity of <i>trans</i> -Bis(pyridine)gold Complexes. Journal of the American Chemical Society, 2020, 142, 6439-6446.	6.6	25
304	Choline chlorideâ€urea deep eutectic solvent as an efficient media for the synthesis of propargylamines via organocuprate intermediate. Applied Organometallic Chemistry, 2020, 34, e5895.	1.7	16
305	Pyridine―and Quinolineâ€Based Cold(III) Complexes: Synthesis, Characterization, and Application. European Journal of Organic Chemistry, 2020, 2020, 2867-2877.	1.2	19
306	Cu II @PAA/PVC mesoporous fibers: A hybrid wedding as a highâ€performance versatile heterogeneous catalyst for A 3 , KA 2 , and decarboxylative A 3 reactions. Applied Organometallic Chemistry, 2020, 34, e5429.	1.7	13
307	Efficient Sonogashira and A 3 coupling reactions catalyzed by biosynthesized magnetic Fe 3 O 4 @Ni nanoparticles from Euphorbia maculata extract. Applied Organometallic Chemistry, 2020, 34, e5473.	1.7	27

#	Article	IF	CITATIONS
308	A ³ Coupling Reaction in the Synthesis of Heterocyclic Compounds. Advanced Synthesis and Catalysis, 2021, 363, 40-61.	2.1	45
309	Cold nanoparticle stabilized dithiocarbamate functionalized magnetite carbon as promise clean nanocatalyst for A3-coupling organic transformation. Molecular Catalysis, 2021, 499, 111252.	1.0	26
310	The effect of ligand modification on the structure and electronic spectra of tetraazamacrocyclic complexes Au(III). Journal of Molecular Structure, 2021, 1224, 129162.	1.8	3
311	The Ketone-Amine-Alkyne (KA2) coupling reaction: Transition metal-catalyzed synthesis of quaternary propargylamines. Coordination Chemistry Reviews, 2021, 429, 213603.	9.5	25
312	An expeditious one pot green synthesis of novel bioactive 1, 4-dihydropyridine derivatives at ambient temperature and molecular modelling. Current Research in Green and Sustainable Chemistry, 2021, 4, 100108.	2.9	4
313	High-Valent Cu, Ag, and Au Coordination Compounds. , 2021, , 474-516.		3
314	Selective Extraction of Gold with Polymeric Inclusion Membranes Based on Salen Ligands with Electron- Accepting Substituents. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2654-2664.	1.9	3
315	Intramolecular C-N Bond Formation via Thermal Arene C-H Bond Activation Supported by Au(III) Complexes. Materials, 2021, 14, 1676.	1.3	0
316	Unconventional Gold-Catalyzed One-Pot/Multicomponent Synthesis of Propargylamines Starting from Benzyl Alcohols. Catalysts, 2021, 11, 513.	1.6	6
318	Metalâ€Free Doubly Decarboxylative Threeâ€Component Reaction: Synthesis of Propargyl Amines. Asian Journal of Organic Chemistry, 2021, 10, 2530-2533.	1.3	1
319	Bis (1(3-trimethoxysilylpropyl)-3-methyl-imidazolium) copper tetrachloride attached to colloidal silica nanoparticles as an efficient catalyst for the preparation of propargylamines. Research on Chemical Intermediates, 2017, 43, 7375-7386.	1.3	2
320	Photosensitizer-free visible light-mediated gold-catalysed cis-difunctionalization of silyl-substituted alkynes. Chemical Science, 2017, 8, 7537-7544.	3.7	56
321	Synthesis of propargylamines catalyzed by nano-colloidal silica-tethered polyhedral oligomeric silsesquioxanes with eight branches of 3-aminopropyltriethoxysilane as an efficient catalyst. Main Group Metal Chemistry, 2017, 40, .	0.6	6
322	Modern Catalysts in A ³ - Coupling Reactions. Current Organic Chemistry, 2020, 23, 2783-2801.	0.9	12
323	A Simple and Efficient One-Pot Three-Component Synthesis of Propargylamines Using Bismuth (III) Chloride. Bulletin of the Korean Chemical Society, 2012, 33, 1556-1560.	1.0	30
324	Synthesis of C,N,N-Cyclometalated Gold(III) Complexes with Anionic Amide Ligands. Synlett, 0, , .	1.0	1
325	Ultra-fast Cu-based A3-coupling catalysts: faceted Cu2O microcrystals as efficient catalyst-delivery systems in batch and flow conditions. Canadian Journal of Chemistry, 0, , .	0.6	2
331	Transition Metal-catalysed Nucleophilic Additions of Terminal Alkynes in Water: Development and Synthetic Utility. RSC Green Chemistry, 2019, , 343-403.	0.0	0

#	Article	IF	CITATIONS
332	A core–shell superparamagnetic metal–organic framework: a recyclable and green catalyst for the synthesis of propargylamines. New Journal of Chemistry, 2021, 45, 21342-21349.	1.4	6
333	Highly Efficient Single A3-Coupling (Aldehyde-Amine-Alkyne) Reaction Catalyzed by Air Stable Silver-(N-Heterocyclic Carbene) Complexes: Synthesis and Characterization. Polycyclic Aromatic Compounds, 0, , 1-16.	1.4	1
334	Reduced zwitterionic graphene oxide sheets decorated with Nickel nanoparticles as magnetically and efficient catalyst for A 3 â€coupling reactions under optimized green experimental conditions. Applied Organometallic Chemistry, 0, , .	1.7	4
335	Quinolinium modified β-cyclodextrin: An ionic ligand towards sustainable A3-coupling and tandem cyclisation reactions of aldehydes, amines and alkynes. Molecular Catalysis, 2022, 519, 112151.	1.0	3
336	Synthesis of 1 <i>H</i> -isoindoliums by electrophile-mediated cascade cyclization/iodination of propargylamine-based 1,6-diynes. Organic and Biomolecular Chemistry, 2022, 20, 3755-3762.	1.5	4
337	DABCO-based ionic liquid-modified magnetic nanoparticles supported gold as an efficient catalyst for A3 coupling reaction in water. Journal of the Iranian Chemical Society, 0, , 1.	1.2	1
338	Tandem-catalysis-enabled highly chemoselective deoxygenative alkynylation and alkylation of tertiary amides: a versatile entry to functionalized α-substituted amines. Organic Chemistry Frontiers, 2022, 9, 3237-3246.	2.3	7
339	Metal-Catalysed A3 Coupling Methodologies: Classification and Visualisation. Catalysts, 2022, 12, 660.	1.6	13
340	One pot synthesis of propargylamines by three component amine-aldehyde-acetylene (A3) coupling catalyzed by neutral Ag(I) and Au(I) and cationic Pd(II) and Ni(II) complexes of a pincer N-heterocyclic carbene. Molecular Catalysis, 2022, 529, 112515.	1.0	6
341	Metal nanoparticles decorated two-dimensional nanosheets as heterogeneous catalysts for coupling reactions. Catalysis Reviews - Science and Engineering, 0, , 1-73.	5.7	6
343	Copper nanoparticles decorated on boron nitride nanoflakes as an efficient catalyst for the synthesis of propargylamines under green conditions. Molecular Catalysis, 2022, 533, 112687.	1.0	6
344	Copper (II)-immobilized on Starch-coated Nanomagnetite as an Efficient and Magnetically Recoverable Catalyst for the Synthesis of Propargylamines through One-pot A ³ Coupling Reaction. Organic Preparations and Procedures International, 0, , 1-14.	0.6	0
347	Novel 1,2,3-triazolyl phosphine with a pyridyl functionality: synthesis, coinage metal complexes, photophysical studies and Cu(<scp>i</scp>) catalyzed C–O coupling of phenols with aryl bromides. Dalton Transactions, 2023, 52, 1785-1796.	1.6	2
348	Propargyl Amines: Versatile Building Blocks in Postâ€Ugi Transformations. ChemistryOpen, 2023, 12, .	0.9	2
349	Thiamine carbene liganded gold(<scp>i</scp>) chloride catalyzes an efficient aldehyde–alkyne–amine coupling reaction in water. Green Chemistry, 0, , .	4.6	0
350	Gold nanoparticles immobilized on Nâ€doped ordered mesoporous carbon: An efficient catalyst for A3 and KA2 coupling reactions. Applied Organometallic Chemistry, 2023, 37, .	1.7	0
351	Gold-catalyzed multicomponent reactions. Organic Chemistry Frontiers, 2023, 10, 2359-2384.	2.3	8
359	Multicomponent Mannich and Related Reactions. , 2024, , .		Ο

ARTICLE

IF CITATIONS