CITATION REPORT List of articles citing

Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits

DOI: 10.1063/1.1904565 Journal of Chemical Physics, 2005, 123, 62201.

Source: https://exaly.com/paper-pdf/39501499/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
716	Nonempirical construction of current-density functionals from conventional density-functional approximations. 2005 , 95, 196403		56
715	Binding energy curves from nonempirical density functionals. I. Covalent bonds in closed-shell and radical molecules. 2005 , 109, 11006-14		53
714	Time-dependent density functional theory: past, present, and future. <i>Journal of Chemical Physics</i> , 2005 , 123, 62206	3.9	665
713	Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. <i>Journal of Chemical Physics</i> , 2006 , 125, 074106	3.9	747
712	The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. Journal of Chemical Physics, 2006 , 124, 044103	3.9	488
711	Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. 2006 , 8, 4398-401		476
710	Comparative assessment of density functional methods for 3d transition-metal chemistry. <i>Journal of Chemical Physics</i> , 2006 , 124, 224105	3.9	169
709	Scaling down the Perdew-Zunger self-interaction correction in many-electron regions. <i>Journal of Chemical Physics</i> , 2006 , 124, 94108	3.9	108
708	Mechanistic insights into triterpene synthesis from quantum mechanical calculations. Detection of systematic errors in B3LYP cyclization energies. 2006 , 4, 530-43		114
707	Assessing a new nonempirical density functional: difficulties in treating pi-conjugation effects. Journal of Chemical Physics, 2006 , 124, 124112	3.9	34
706	Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. 2006 , 2, 364-82		2934
705	Structure and magnetism in bcc-based iron-cobalt alloys. 2006 , 73,		73
704	Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. 2006 , 110, 5121-9		628
703	On the accuracy of density functional theory in transition metal chemistry. 2006 , 102, 203		258
702	Testing the TPSS meta-generalized-gradient-approximation exchange-correlation functional in calculations of transition states and reaction barriers. <i>Journal of Chemical Physics</i> , 2006 , 125, 234104	3.9	39
701	Assessment of several hybrid DFT functionals for the evaluation of bond length alternation of increasingly long oligomers. 2006 , 110, 5952-9		71
700	Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. 2006 , 110, 13126-30		1001

(2007-2006)

699	Variational collapse of the optimized effective potential method with an orbital-dependent exchange-correlation functional based on second order perturbation theory. 2006 , 432, 336-342		17
698	A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. <i>Journal of Chemical Physics</i> , 2006 , 125, 194101	3.9	3551
697	Semiempirical hybrid density functional with perturbative second-order correlation. <i>Journal of Chemical Physics</i> , 2006 , 124, 034108	3.9	2321
696	Characterization of synthetic oxomanganese complexes and the inorganic core of the O2-evolving complex in photosystem II: evaluation of the DFT/B3LYP level of theory. 2006 , 100, 786-800		94
695	Proton affinities of maingroup-element hydrides and noble gases: trends across the periodic table, structural effects, and DFT validation. 2006 , 27, 1486-93		38
694	The optimized effective potential with finite temperature. 2006 , 18, 4295-304		7
693	Effective local potentials for orbital-dependent density functionals. <i>Journal of Chemical Physics</i> , 2006 , 125, 081104	3.9	79
692	A simple method to selectively scale down the self-interaction correction. <i>Journal of Chemical Physics</i> , 2006 , 124, 191101	3.9	33
691	Time-dependent density-functional theory beyond the local-density approximation. 2006 , 97, 036403		19
690	Nonuniversality of commonly used correlation-energy density functionals. <i>Journal of Chemical Physics</i> , 2006 , 124, 234111	3.9	10
689	KOHN-SHAM CALCULATIONS COMBINED WITH AN AVERAGE PAIR-DENSITY FUNCTIONAL THEORY. 2007 , 21, 2449-2459		4
688	Density functionals that are one- and two- are not always many-electron self-interaction-free, as shown for H2+, He2+, LiH+, and Ne2+. <i>Journal of Chemical Physics</i> , 2007 , 126, 104102	3.9	248
687	Simple implementation of complex functionals: scaled self-consistency. <i>Journal of Chemical Physics</i> , 2007 , 126, 144107	3.9	7
686	Nonlocal Wigner-like correlation energy density functional: parametrization and tests on two-electron systems. <i>Journal of Chemical Physics</i> , 2007 , 127, 024101	3.9	10
685	First-principles Periodic Density Functional Study of CO Adsorption on Spinel-type CuCr2O4 (100) Surface. 2007 , 20, 557-562		3
684	Atomic-orbital-based approximate self-interaction correction scheme for molecules and solids. 2007 , 75,		139
683	Noncollinear magnetism in density functional calculations. 2007 , 75,		67
682	Time-dependent density functional theory: Derivation of gradient-corrected dynamical exchange-correlational potentials. 2007 , 76,		16

681	On the performance of local, semilocal, and nonlocal exchange-correlation functionals on transition metal molecules. <i>Journal of Chemical Physics</i> , 2007 , 126, 224105	3.9	6
680	Functional form of the generalized gradient approximation for exchange: The PBEIfunctional. 2007 , 75,		61
679	Meta-generalized gradient approximation: non-empirical construction and performance of a density functional. 2007 , 87, 1071-1084		11
678	Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. <i>Journal of Chemical Physics</i> , 2007 , 126, 144105	3.9	264
677	Chemical hardness and the discontinuity of the Kohn-Sham exchange-correlation potential. <i>Journal of Chemical Physics</i> , 2007 , 126, 214105	3.9	8
676	Cluster expansions in multicomponent systems: precise expansions from noisy databases. 2007 , 19, 406	206	17
675	Analytic derivatives for perturbatively corrected "double hybrid" density functionals: theory, implementation, and applications. <i>Journal of Chemical Physics</i> , 2007 , 126, 124115	3.9	162
674	Necessary and sufficient conditions for the N-representability of density functionals. 2007, 75,		50
673	Geometry Optimization of a Ru(IV) Allyl Dicationic Complex: A DFT Failure?. 2007, 3, 665-70		15
672	Comparative performance of exchange and correlation density functionals in determining intermolecular interaction potentials of the methane dimer. 2007 , 111, 9586-90		16
671	Accurate evaluation of valence and low-lying Rydberg states with standard time-dependent density functional theory. 2007 , 111, 5549-56		104
670	High-Density Limit of Two-Electron Systems: Results from the Extended Overhauser Approach. 2007 , 3, 796-802		4
669	Unusual conductance of polyyne-based molecular wires. 2007 , 98, 116801		92
668	Assessment of Approximate Density Functional Methods for the Study of the Interactions of Al(III) with Aromatic Amino Acids. 2007 , 3, 1830-6		8
667	Local hybrid functionals: an assessment for thermochemical kinetics. <i>Journal of Chemical Physics</i> , 2007 , 127, 194102	3.9	75
666	Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. 2007 , 9, 3397-406		890
665	London dispersion forces by range-separated hybrid density functional with second order perturbational corrections: the case of rare gas complexes. <i>Journal of Chemical Physics</i> , 2007 , 126, 0441	03 9	71
664	Understanding the Woodward-Hoffmann rules by using changes in electron density. 2007 , 13, 8240-7		186

(2008-2007)

Energy landscapes of nucleophilic substitution reactions: a comparison of density functional theory and coupled cluster methods. 2007 , 28, 1551-1560		87
Proton Affinities in Water of Maingroup-Element Hydrides Æffects of Hydration and Methyl Substitution. 2007 , 2007, 3646-3654		82
The H2-hydrogenation of ketones catalysed by ruthenium(II) complexes: A density functional theory study. 2007 , 812, 39-49		32
The performances of a parameter-free local correlation functional: The Ragotfortona model. 2007 , 439, 381-385		19
Normalization and Fermi©oulomb and Coulomb hole sum rules for approximate wave functions. 2007 , 107, 816-823		2
How tight is the Lieb-Oxford bound?. <i>Journal of Chemical Physics</i> , 2007 , 127, 054106	3.9	47
Hybrid exchange correlation functionals and potentials: Concept elaboration. 2007, 48, S1-S31		33
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. 2008 , 120, 215-241		19079
Empirical analysis of the Lieb Dxford bound in ions and molecules. 2008, 108, 2428-2432		15
Toluene dioxygenase-catalyzed synthesis of cis-dihydrodiol metabolites from 2-substituted naphthalene substrates: assignments of absolute configurations and conformations from circular dichroism and optical rotation measurements. 2008 , 14, 11500-11		21
QUILD: QUantum-regions interconnected by local descriptions. 2008, 29, 724-34		114
Circumacenes versus periacenes: HOMOIIUMO gap and transition from nonmagnetic to magnetic ground state with size. 2008 , 466, 72-75		94
Optimal operators for Hartreeflock exchange from long-range corrected hybrid density functionals. 2008 , 467, 176-178		61
Properties of the multi-electron densities BetweenIthe HohenbergKohn theorems and variational principle. 2008 , 858, 1-11		9
Density functionals with broad applicability in chemistry. 2008, 41, 157-67		5345
Orbital-dependent density functionals: Theory and applications. 2008 , 80, 3-60		941
TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes: Conventional versus Long-Range Hybrids. 2008 , 4, 123-35		681
Universal mathematical identities in density functional theory: results from three different spin-resolved representations. <i>Journal of Chemical Physics</i> , 2008 , 128, 204108	3.9	61
	and coupled cluster methods. 2007, 28, 1551-1560 Proton Affinities in Water of Maingroup-Element Hydrides (Effects of Hydration and Methyl Substitution. 2007, 2007, 3646-3654 The H2-hydrogenation of ketones catalysed by ruthenium(II) complexes: A density functional theory study. 2007, 812, 39-49 The performances of a parameter-free local correlation functional: The Ragottlortona model. 2007, 439, 381-385 Normalization and Fermitloulomb and Coulomb hole sum rules for approximate wave functions. 2007, 107, 816-823 How tight is the Lieb-Oxford bound?. Journal of Chemical Physics, 2007, 127, 054106 Hybrid exchange correlation functionals and potentials: Concept elaboration. 2007, 48, 51-531 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. 2008, 120, 215-241 Empirical analysis of the Lieb®xford bound in ions and molecules. 2008, 108, 2428-2432 Toluene dioxygenase-catalyzed synthesis of dis-dihydrodiol metabolites from 2-substituted naphthalene substrates: assignments of absolute configurations and conformations from circular dichroism and optical rotation measurements. 2008, 14, 11500-11 QUILD: QUantum-regions interconnected by local descriptions. 2008, 29, 724-34 Circumacenes versus periacenes: HOMOBUMO gap and transition from nonmagnetic to magnetic ground state with size. 2008, 466, 72-75 Optimal operators for HartreeBock exchange from long-range corrected hybrid density functionals. 2008, 467, 176-178 Properties of the multi-electron densities BetweenIthe HohenbergRohn theorems and variational principle. 2008, 858, 1-11 Density functionals with broad applicability in chemistry. 2008, 41, 157-67 Orbital-dependent density functionals: Theory and applications. 2008, 80, 3-60 TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes: Conventional versus Long-Range Hybrids. 2008, 4,	and coupled cluster methods. 2007, 28, 1551-1560 Proton Affinities in Water of Maingroup-Element Hydrides (Effects of Hydration and Methyl Substitution, 2007, 2007, 3646-3654 The H2-hydrogenation of ketones catalysed by ruthenium(II) complexes: A density functional theory study. 2007, 812, 39-49 The performances of a parameter-free local correlation functional: The Ragottortona model. 2007, 439, 381-385 Normalization and Fermitoulomb and Coulomb hole sum rules for approximate wave functions. 2007, 107, 816-823 How tight is the Lieb-Oxford bound?. Journal of Chemical Physics, 2007, 127, 054106 3-9 Hybrid exchange correlation functionals and potentials: Concept elaboration. 2007, 48, 51-531 The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. 2008, 120, 215-241 Empirical analysis of the LiebDxford bound in ions and molecules. 2008, 108, 2428-2432 Toluene dioxygenase-catalyzed synthesis of cis-dihydrodiol metabolites from 2-substituted anaphthalene substrates: assignments of absolute configurations and conformations from circular dichroism and optical rotation measurements. 2008, 14, 11500-11 QUILD: QUantum-regions interconnected by local descriptions. 2008, 29, 724-34 Circumacenes versus periacenes: HOMOIIUMO gap and transition from nonmagnetic to magnetic ground state with size. 2008, 466, 72-75 Optimal operators for HartreeBock exchange from long-range corrected hybrid density functionals. 2008, 467, 176-178 Properties of the multi-electron densities BetweenIthe HohenbergRohn theorems and variational principle. 2008, 858, 1-11 Density functionals with broad applicability in chemistry. 2008, 41, 157-67 Orbital-dependent density functionals: Theory and applications. 2008, 80, 3-60 TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes: Conventional versus Long-Range Hybrids. 200

645	Calculation of Fukui Functions Without Differentiating to the Number of Electrons. 3. Local Fukui Function and Dual Descriptor. 2008 , 4, 1065-72		38
644	Benchmark calculations on the adiabatic ionization potentials of M-NH(3) (M=Na,Al,Ga,In,Cu,Ag). <i>Journal of Chemical Physics</i> , 2008 , 128, 154301	3.9	15
643	Exact-exchange energy density in the gauge of a semilocal density-functional approximation. 2008 , 77,		85
642	Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. 2008 , 4, 1849-68		784
641	Performance of a nonempirical meta-generalized gradient approximation density functional for excitation energies. <i>Journal of Chemical Physics</i> , 2008 , 128, 084110	3.9	30
640	Electronic structure of copper phthalocyanine: a comparative density functional theory study. Journal of Chemical Physics, 2008 , 128, 164107	3.9	143
639	Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound. <i>Journal of Chemical Physics</i> , 2008 , 128, 184109	3.9	224
638	Intracule densities in the strong-interaction limit of density functional theory. 2008 , 10, 3440-6		14
637	Range separation and local hybridization in density functional theory. 2008 , 112, 12530-42		81
636	A computational study of some structural analogues of the lowest energy structure of periodane. 2008 , 106, 141-146		2
635	Toward an accurate and efficient theory of physisorption. I. Development of an augmented density-functional theory model. 2008 , 112, 9993-1005		23
634	Semiempirical double-hybrid density functional with improved description of long-range correlation. 2008 , 112, 2702-12		114
633	Nonempirical density functionals investigated for jellium: Spin-polarized surfaces, spherical clusters, and bulk linear response. 2008 , 77,		23
632	Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction. 2008 , 78,		187
631	Generalized-gradient exchange-correlation hole obtained from a correlation factor ansatz. <i>Journal of Chemical Physics</i> , 2008 , 128, 234104	3.9	26
630	A revised electronic Hessian for approximate time-dependent density functional theory. <i>Journal of Chemical Physics</i> , 2008 , 129, 184114	3.9	62
629	Erratum. 2008 , 88, 277-278		1
628	Performance of the M06 family of exchange-correlation functionals for predicting magnetic coupling in organic and inorganic molecules. <i>Journal of Chemical Physics</i> , 2008 , 128, 114103	3.9	179

(2009-2008)

627	Universal and nonuniversal contributions to block-block entanglement in many-fermion systems. 2008 , 77,		10
626	Feasibility of density functional methods to predict dielectric properties of polymers. <i>Journal of Chemical Physics</i> , 2008 , 128, 064109	3.9	7
625	Reverse engineering in many-body quantum physics: Correspondence between many-body systems and effective single-particle equations. 2009 , 79,		17
624	On the self-consistent implementation of general occupied-orbital dependent exchange-correlation functionals with application to the B05 functional. <i>Journal of Chemical Physics</i> , 2009 , 131, 084103	3.9	24
623	Nonempirical hyper-generalized-gradient functionals constructed from the Lieb-Oxford bound. 2009 , 79,		29
622	A new all-round density functional based on spin states and S(N)2 barriers. <i>Journal of Chemical Physics</i> , 2009 , 131, 094103	3.9	104
621	EXACT AND APPROXIMATE RELATIONS FOR THE SPIN-DEPENDENCE OF THE EXCHANGE ENERGY IN HIGH MAGNETIC FIELDS. 2009 , 23, 3004-3008		2
620	Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. 2009 , 106, 4963-8		280
619	Approximate Density Functionals: Which Should I Choose?. 2009,		14
618	Toward improved density functionals for the correlation energy. <i>Journal of Chemical Physics</i> , 2009 , 131, 134109	3.9	43
617	Interesting properties of Thomas-Fermi kinetic and Parr electron-electron-repulsion DFT energy functional generated compact one-electron density approximation for ground-state electronic energy of molecular systems. 2009 , 30, 1445-53		3
616	How the choice of a computational model could rule the chemical interpretation: the Ni(II) catalyzed ethylene dimerization as a case study. 2010 , 31, 1053-62		7
615	Density functional theory of transition metal phthalocyanines, I: electronic structure of NiPc and CoPcBelf-interaction effects. 2009 , 95, 159-163		101
614	Coordinate scaling of the kinetic energy in pair density functional theory: A Legendre transform approach. 2009 , 109, 1699-1705		14
613	Range separation combined with the Overhauser model: Application to the H2 molecule along the dissociation curve. 2009 , 109, 1950-1961		8
612	Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. 2009 , 5, 2420-35		799
611	"Mindless" DFT Benchmarking. 2009 , 5, 993-1003		191

609	Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory. 2009 , 5, 743-53	61
608	Self-consistent polarization density functional theory: application to argon. 2009 , 113, 2075-85	19
607	Benzene-water (BZWn (n = 1-10)) clusters. 2009 , 113, 13845-52	86
606	Evaluation of range-separated hybrid and other density functional approaches on test sets relevant for transition metal-based homogeneous catalysts. 2009 , 113, 11742-9	48
605	Quantum chemical calculations of the Cl- + CH3I> CH3Cl + I- potential energy surface. 2009 , 113, 1976-84	26
604	Optical Absorptions of New Blue-Light Emitting Oligoquinolines Bearing Pyrenyl and Triphenyl Endgroups Investigated with Time-Dependent Density Functional Theory. 2009 , 5, 866-72	4
603	A semi-empirical approach to accurate standard enthalpies of formation for solid hydrides. 2009 , 469, 617-622	11
602	Density functional theory for transition metals and transition metal chemistry. 2009 , 11, 10757-816	1248
601	Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed. 2009 , 5, 902-8	273
600	Coverage of dynamic correlation effects by density functional theory functionals: density-based analysis for neon. <i>Journal of Chemical Physics</i> , 2009 , 130, 164102	19
599	Calculation of the lattice constant of solids with semilocal functionals. 2009, 79,	600
598	Role of exchange in density-functional theory for weakly interacting systems: Quantum Monte Carlo analysis of electron density and interaction energy. 2009 , 80,	21
597	Calculation of electronic circular dichroism spectra with time-dependent double-hybrid density functional theory. 2009 , 113, 767-76	120
596	Gradient-dependent density functionals of the Perdew-Burke-Ernzerhof type for atoms, molecules, and solids. 2009 , 79,	31
595	Density functional theory simulations of complex hydride and carbon-based hydrogen storage materials. 2009 , 38, 211-25	100
594	Optimization and basis-set dependence of a restricted-open-shell form of B2-PLYP double-hybrid density functional theory. 2009 , 113, 9861-73	70
593	On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments. <i>Journal of Chemical Physics</i> , 2009 , 130, 154102	90
592	Assessment of a density functional with full exact exchange and balanced non-locality of correlation. 2009 , 107, 1077-1088	17

(2010-2009)

591	Physical signatures of discontinuities of the time-dependent exchange-correlation potential. 2009 , 11, 4647-54	19
590	Charge density reconstitution from approximate exchange-correlation holes. 2009 , 87, 1444-1450	14
589	On Occupied-orbital Dependent Exchange-correlation Functionals: From Local Hybrids to Beckell B05 Model. 2010 , 224, 545-567	8
588	Ab initio dynamic correlation effects in density functional theories: a density based study for argon. 2010 , 125, 433-444	13
587	Theoretical investigations of the oxygen reduction reaction on Pt(111). 2010 , 11, 2779-94	176
586	Synthesis, spectroscopy, and quantum-chemical calculations on 1-substituted phenyl-3,5-diphenylformazans. 2010 , 75, 54-60	17
585	Toward ab initio density functional theory for nuclei. 2010 , 64, 120-168	100
584	Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes. 2010 , 28, 465-71	22
583	Interfacial electronic structure of vanadyl naphthalocyanine on highly ordered pyrolytic graphite. 2010 , 604, 1649-1657	17
582	Absorption spectra of recently synthesised organic dyes: A TD-DFT study. 2010 , 110, 2121-2129	23
581	Assessing the performances of some recently proposed density functionals for the description of bond dissociations involving organic radicals. 2010 , 110, 2320-2329	11
580	The subsystem functional scheme: The Armiento-Mattsson 2005 (AM05) functional and beyond. 2010 , 110, 2274-2282	8
579	A computational study of the absorption spectra of 1-substituted phenyl-3,5-diphenylformazans. 2010 , 110, 2140-2146	5
578	Van der Waals density functional from multipole dispersion interactions. <i>Journal of Chemical Physics</i> , 2010 , 132, 014110	10
577	The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation. <i>Journal of Chemical Physics</i> , 2010 , 132, 024304	20
576	Subsystem functionals and the missing ingredient of confinement physics in density functionals. 2010 , 82,	9
575	Systematic investigation of a family of gradient-dependent functionals for solids. 2010 , 81,	35
574	Density-functional expansion methods: evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations. <i>Journal of Chemical Physics</i> , 2010 , 133, 244107	27

573	Recent advances in the visible and UV spectroscopy of metal dication complexes. 2010 , 29, 555-588	20
572	Basis set dependence of the doubly hybrid XYG3 functional. <i>Journal of Chemical Physics</i> , 2010 , 133, 104195	39
571	Many-electron self-interaction and spin polarization errors in local hybrid density functionals. <i>Journal of Chemical Physics</i> , 2010 , 133, 134116	78
57°	Prediction of Excitation Energies for Conjugated Oligomers and Polymers from Time-Dependent Density Functional Theory. 2010 , 3, 3430-3467	2
569	Image states at the interface with a dipolar organic semiconductor. <i>Journal of Chemical Physics</i> , 2010 , 133, 124701	17
568	Cumulene molecular wire conductance from first principles. 2010 , 81,	41
567	Electronic structure theory study of the F(-) + CH(3)I -> FCH(3) + I(-) potential energy surface. 2010 , 114, 9635-43	48
566	Extending the reliability and applicability of B3LYP. 2010 , 46, 3057-70	145
565	Adiabatic connection at negative coupling strengths. 2010 , 81,	7
564	The contribution of computational studies to organometallic catalysis: descriptors, mechanisms and models. 2010 , 296-310	93
563	A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions - Assessment of Common and Reparameterized (meta-)GGA Density Functionals. 2010 , 6, 107-26	340
562	Investigation of Self-Interaction Corrections for an Exactly Solvable Model System: Orbital Dependence and Electron Localization. 2010 , 6, 3319-29	14
561	Ab initio DFT [the seamless connection between WFT and DFT. 2010, 108, 3313-3322	13
560	Complexes of C60 with cyclic oligothiophenes: a theoretical study. 2010 , 114, 5406-13	8
559	Assessment of Functionals for TD-DFT Calculations of Singlet-Triplet Transitions. 2010 , 6, 1532-7	173
558	Magnetizabilities at Self-Interaction-Corrected Density Functional Theory Level. 2010 , 6, 3302-11	9
557	The Exchange-Energy Density Functional Based on the Modified Becke-Roussel Model. 2010 , 6, 647-61	6
556	How Well Can Kohn-Sham DFT Describe the HO2 + O3 Reaction?. 2010 , 6, 2751-61	20

(2011-2010)

555	On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies. 2010 , 6, 2071-85	335
554	Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. 2010 , 22, 253202	1092
553	Role of van der Waals bonding in the layered oxide V2O5: First-principles density-functional calculations. 2010 , 82,	73
552	Computational organic chemistry. 2010 , 106, 407	6
551	Density functional theory for strongly-interacting electrons: perspectives for physics and chemistry. 2010 , 12, 14405-19	48
550	Doubly hybrid density functional for accurate description of thermochemistry, thermochemical kinetics and nonbonded interactions. 2011 , 30, 115-160	106
549	Adequate representation of charge polarization effects leads to a successful treatment of the CF4 + SiCl4 -> CCl4 + SiF4 reaction by density functional theory. 2011 , 47, 2357-9	4
548	Molecular Dynamics Simulation and Molecular Orbital Method. 2011 , 1349-1384	O
547	Optical Excitations in Hematite (日e2O3) via Embedded Cluster Models: A CASPT2 Study. 2011 , 115, 20795-20805	50
546	Accurate Band Gaps for Semiconductors from Density Functional Theory. 2011 , 2, 212-217	340
546 545	Accurate Band Gaps for Semiconductors from Density Functional Theory. 2011 , 2, 212-217 Approximate Density Functionals: Which Should I Choose?. 2011 ,	340
545	Approximate Density Functionals: Which Should I Choose?. 2011 , Density Functional Theory for Transition Metal Chemistry: The Case of a Water-Splitting Ruthenium	
545 544	Approximate Density Functionals: Which Should I Choose?. 2011 , Density Functional Theory for Transition Metal Chemistry: The Case of a Water-Splitting Ruthenium Cluster. 2011 , 137-163	3
545544543	Approximate Density Functionals: Which Should I Choose?. 2011, Density Functional Theory for Transition Metal Chemistry: The Case of a Water-Splitting Ruthenium Cluster. 2011, 137-163 Accurate Dispersion-Corrected Density Functionals for General Chemistry Applications. 2011, 1-16	3
545544543542	Approximate Density Functionals: Which Should I Choose?. 2011, Density Functional Theory for Transition Metal Chemistry: The Case of a Water-Splitting Ruthenium Cluster. 2011, 137-163 Accurate Dispersion-Corrected Density Functionals for General Chemistry Applications. 2011, 1-16 Microstructural Design of Ceramics: Theory and Experiment. 2011, 231-295 Organometallic reactivity: the role of metal-ligand bond energies from a computational	3 2 1
545544543542541	Approximate Density Functionals: Which Should I Choose?. 2011, Density Functional Theory for Transition Metal Chemistry: The Case of a Water-Splitting Ruthenium Cluster. 2011, 137-163 Accurate Dispersion-Corrected Density Functionals for General Chemistry Applications. 2011, 1-16 Microstructural Design of Ceramics: Theory and Experiment. 2011, 231-295 Organometallic reactivity: the role of metal-ligand bond energies from a computational perspective. 2011, 40, 11184-91 Accurate Conformational Energy Differences of Carbohydrates: A Complete Basis Set	3 2 1

537	Construction of an optimal GGA functional for molecules and solids. 2011 , 83,	71
536	Computational chemical analysis of [FeFe] hydrogenase H-cluster analogues to discern catalytically relevant features of the natural diatomic ligand configuration. 2011 , 115, 8691-704	5
535	Modeling Catalytic Reactions on Surfaces with Density Functional Theory. 2011 , 1-38	5
534	Density functional theory calculations of surface properties and H2 adsorption on the Cu2O (111) surface. 2011 , 257, 10710-10714	17
533	Accurate prediction of experimental free energy of activation barriers for the aliphatic-Claisen rearrangement through DFT calculations. 2011 , 976, 167-182	13
532	Density Functional Theory. 2011 , 255-368	3
531	Electronic structure of dye-sensitized TiO2 clusters from many-body perturbation theory. 2011 , 84,	38
530	Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. 2011 , 7, 291-309	841
529	Computational and spectroscopic studies of organic mixed-valence compounds: where is the charge?. 2011 , 13, 16973-86	102
528	Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance. 2011 , 2, 1991-1997	152
527	Prediction of the maximum absorption wavelength of azobenzene dyes by QSPR tools. 2011 , 83, 353-61	14
526	Electron transport through molecular junctions. 2011 , 509, 1-87	139
525	The influence of density functional approximations on the description of LiH + NH3 -> LiNH2 + H2 reaction. 2011 , 511, 427-433	8
524	The formulation of a self-consistent constricted variational density functional theory for the description of excited states. 2011 , 391, 11-18	55
523	A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. 2011 , 13, 6670-88	1347
522	Time-dependent density functional theory investigation of the electronic spectra of hexanuclear chalcohalide rhenium(III) clusters. 2011 , 115, 211-8	12
521	Modeling of the functionalization of single-wall carbon nanotubes towards its solubilization in an aqueous medium. 2011 , 61, 381-388	12
520	Density Functional Calculations. 2011 , 445-519	2

519	Excited-state calculations with TD-DFT: from benchmarks to simulations in complex environments. 2011 , 13, 16987-98		258	
518	Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. 2011 , 2, 2810-28	17	716	
517	Failure of the Weizs@ker kinetic energy functional for one-, two-, and three-electron distribution functions. 2011 , 49, 1810-1821		24	
516	Performance of density functional theory on homogeneous gold catalysis. 2011 , 128, 647-661		75	
515	Relativistic nuclear energy density functionals: Mean-field and beyond. 2011 , 66, 519-548		304	
514	Advances in local hybrid exchange-correlation functionals: from thermochemistry to magnetic-resonance parameters and hyperpolarizabilities. 2011 , 111, 2625-2638		40	
513	The HO2+O3 reaction: Current status and prospective work. 2011 , 965, 291-297		13	
512	Density-functional study of the sign preference of the binding of 1-propanol to tungsten oxide seed particles. 2011 , 966, 322-327		1	
511	Chemical shift tensors: theory and application to molecular structural problems. 2011 , 58, 176-201		81	
510	Exact-exchange density functional theory for neutron drops. 2011 , 84,		7	
509	Simple impurity embedded in a spherical jellium: Approximations of density functional theory compared to quantum Monte Carlo benchmarks. 2011 , 84,		2	
508	Communication: A global hybrid generalized gradient approximation to the exchange-correlation functional that satisfies the second-order density-gradient constraint and has broad applicability in chemistry. <i>Journal of Chemical Physics</i> , 2011 , 135, 191102	3.9	217	
507	Modeling the iron oxides and oxyhydroxides for the prediction of environmentally sensitive phase transformations. 2011 , 83,		58	
506	A simple but fully nonlocal correction to the random phase approximation. <i>Journal of Chemical Physics</i> , 2011 , 134, 114110	3.9	31	
505	Self-consistent, constrained linear-combination-of-atomic-potentials approach to quantum mechanics. <i>Journal of Chemical Physics</i> , 2011 , 134, 044122	3.9	6	
504	Non-empirical improvement of PBE and its hybrid PBE0 for general description of molecular properties. <i>Journal of Chemical Physics</i> , 2012 , 136, 104108	3.9	62	
503	Importance of the correlation contribution for local hybrid functionals: range separation and self-interaction corrections. <i>Journal of Chemical Physics</i> , 2012 , 136, 014111	3.9	62	
502	B2-PPW91: a promising double-hybrid density functional for the electric response properties. Journal of Chemical Physics, 2012, 136, 124111	3.9	27	

501	Insensitivity of the error of the minimally empirical hybrid functional revTPSSh to its parameters. Journal of Chemical Physics, 2012 , 137, 224104	3.9	1
500	Symmetric two-point weighted density approximation for exchange energies. 2012, 85,		11
499	Functional relations for the density-functional exchange and correlation functionals connecting functionals at three densities. 2012 , 85,		1
498	AuN clusters (N=16) supported on MgO(100) surfaces: Effect of exact exchange and dispersion interactions on adhesion energies. 2012 , 85,		30
497	Constraint on the second functional derivative of the exchange-correlation energy. 2012 , 110, 2275-22	79	
496	Hybrid Functional Study of the Structural and Electronic Properties of Co and Ni. 2012 , 81, 114715		13
495	Chemiluminescence of Coelenterazine and Fluorescence of Coelenteramide: A Systematic Theoretical Study. 2012 , 8, 2796-807		39
494	A first-principles-based correlation functional for harmonious connection of short-range correlation and long-range dispersion. <i>Journal of Chemical Physics</i> , 2012 , 137, 204121	3.9	6
493	"Russian doll" complexes of [n]cycloparaphenylenes: a theoretical study. 2012 , 18, 4025-32		14
492	Screened hybrid functional applied to 3d0->3d8 transition-metal perovskites LaMO3 (M = Sctu): Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties. 2012 , 86,		124
492 491	Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties.		124
	Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties. 2012, 86, A time-dependent density functional theory study of the structure and electronic spectroscopy of		
491	Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties. 2012 , 86, A time-dependent density functional theory study of the structure and electronic spectroscopy of the group 7 mixed-metal carbonyls: MnTc(CO)10, MnRe(CO)10, and TcRe(CO)10. 2012 , 116, 9295-304 Theoretical Electronic Circular Dichroism Spectroscopy of Large Organic and Supramolecular		4
491 490	Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties. 2012 , 86, A time-dependent density functional theory study of the structure and electronic spectroscopy of the group 7 mixed-metal carbonyls: MnTc(CO)10, MnRe(CO)10, and TcRe(CO)10. 2012 , 116, 9295-304 Theoretical Electronic Circular Dichroism Spectroscopy of Large Organic and Supramolecular Systems. 2012 , 643-673 Density functionals for surface science: Exchange-correlation model development with Bayesian		16
491 490 489	Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties. 2012, 86, A time-dependent density functional theory study of the structure and electronic spectroscopy of the group 7 mixed-metal carbonyls: MnTc(CO)10, MnRe(CO)10, and TcRe(CO)10. 2012, 116, 9295-304 Theoretical Electronic Circular Dichroism Spectroscopy of Large Organic and Supramolecular Systems. 2012, 643-673 Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. 2012, 85, Symmetric Nonlocal Weighted Density Approximations from the Exchange-Correlation Hole of the		4 16 852
491 490 489 488	Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties. 2012, 86, A time-dependent density functional theory study of the structure and electronic spectroscopy of the group 7 mixed-metal carbonyls: MnTc(CO)10, MnRe(CO)10, and TcRe(CO)10. 2012, 116, 9295-304 Theoretical Electronic Circular Dichroism Spectroscopy of Large Organic and Supramolecular Systems. 2012, 643-673 Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. 2012, 85, Symmetric Nonlocal Weighted Density Approximations from the Exchange-Correlation Hole of the Uniform Electron Gas. 2012, 8, 4081-93		4 16 852 19
491 490 489 488 487	Influence of the exchange mixing parameter on the structural, electronic, and magnetic properties. 2012, 86, A time-dependent density functional theory study of the structure and electronic spectroscopy of the group 7 mixed-metal carbonyls: MnTc(CO)10, MnRe(CO)10, and TcRe(CO)10. 2012, 116, 9295-304 Theoretical Electronic Circular Dichroism Spectroscopy of Large Organic and Supramolecular Systems. 2012, 643-673 Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. 2012, 85, Symmetric Nonlocal Weighted Density Approximations from the Exchange-Correlation Hole of the Uniform Electron Gas. 2012, 8, 4081-93 Oxygen vacancy in N-doped Cu 2 O crystals: A density functional theory study. 2012, 21, 087301		4 16 852 19

483	A new meta-GGA exchange functional based on an improved constraint-based GGA. 2012, 543, 179-183	42
482	Improving the modified Becke-Johnson exchange potential. 2012 , 85,	383
481	Density-Functional Approximations for Exchange and Correlation. 2012 , 125-156	9
480	Recent Advances in Nuclear Shielding Calculations. 2012 , 77, 1-80	17
479	Investigating inclusion complexes using quantum chemical methods. 2012, 41, 3119-28	58
478	N?H and N?Cl homolytic bond dissociation energies and radical stabilization energies: An assessment of theoretical procedures through comparison with benchmark-quality W2w data. 2012 , 112, 1862-1878	37
477	Basis set and functional effects on excited-state properties: Three bicyclic chromogens as working examples. 2012 , 112, 2135-2141	35
476	Complexes of C60 with cyclic oligoisothianaphthenes. A theoretical study. 2012 , 112, 2868-2874	
475	The reduced density gradient in atoms. 2012 , 112, 3594-3598	18
474	Hyper-generalized-gradient functionals constructed from the Lieb-Oxford bound: implementation via local hybrids and thermochemical assessment. <i>Journal of Chemical Physics</i> , 2012 , 136, 184102	31
473	Photophysical properties and photochemistry of EE-, EZ-, and ZZ-1,4-dimethoxy-2,5-bis[2-(thien-2-yl)ethenyl] benzene in solution: theory and experiment. 2012 , 116, 924-37	5
472	Thermodynamics of chemical reactions with COSMO-RS: the extreme case of charge separation or recombination. 2012 , 33, 1304-20	23
471	Quantum continuum mechanics made simple. <i>Journal of Chemical Physics</i> , 2012 , 136, 204115 3.9	2
470	The calculation of active Raman modes of Equartz crystal via density functional theory based on B3LYP Hamiltonian in 6B11+G(2d) basis set□ 2012 , 78, 803-810	4
469	Adsorption of successive layers of H2 molecules on a model copper surface: performances of second- to fifth-rung exchange-correlation functionals. 2012 , 131, 1	3
468	Theoretical study on the structures and electronic properties of oligo(p-phenylenevinylene) carboxylic acid and its derivatives: effects of spacer and anchor groups. 2012 , 131, 1	10
467	Can water be a catalyst on the HO2 + H2O + O3 reactive cluster?. 2012 , 399, 17-22	19
466	Seeking for reliable double-hybrid density functionals without fitting parameters: The PBE0-2 functional. 2012 , 538, 121-125	92

465	Some formal properties of ensemble density functionals. 2013 , 113, 1076-1085	2
464	Modeling the electronic and geometric structure of nanoalloys. 2013 , 75-111	2
463	Reactivity and catalysis by nanoalloys. 2013 , 283-344	О
462	Guaranteed convergence of the Kohn-Sham equations. 2013 , 111, 093003	35
461	Avoiding pitfalls of a theoretical approach: the harmonic oscillator measure of aromaticity index from quantum chemistry calculations. 2013 , 24, 1171-1184	27
460	How Theoretical Simulations Can Address the Structure and Activity of Nanoparticles. 2013 , 56, 1262-1272	14
459	Theoretical Toolkits for Inorganic and Bioinorganic Complexes: Their Applications and Insights. 2013 , 1-57	1
458	Do QTAIM metrics correlate with the strength of heavy element-ligand bonds?. 2013 , 42, 13477-86	69
457	On tautomerism of diazinones. 2013 , 1026, 55-64	7
456	More on diphosphadithiatetrazocines and the importance of being bonded. 2013 , 52, 11843-9	5
455	Calculation of Heats of Formation for Zn Complexes: Comparison of Density Functional Theory, Second Order Perturbation Theory, Coupled-Cluster and Complete Active Space Methods. 2013 , 9,	21
454	Testing density functionals for structural phase transitions of solids under pressure: Si, SiO2, and Zr. 2013 , 88,	74
453	First-principles modeling of C60-Cr-graphene nanostructures for supporting metal clusters. 2013 , 15, 19395-404	7
452	Benchmark study of the performance of density functional theory for bond activations with (ni,pd)-based transition-metal catalysts. 2013 , 2, 115-24	118
451	Theoretical approaches to excited-state-related phenomena in oxide surfaces. 2013 , 113, 4456-95	69
450	Exact relations between the electron density and external potential for systems of interacting and noninteracting electrons. 2013 , 113, 1626-1632	5
449	Characterizing and Understanding the Remarkably Slow Basis Set Convergence of Several Minnesota Density Functionals for Intermolecular Interaction Energies. 2013 , 9, 4453-61	66
448	A study on photo-induced intramolecular electron-transfer in fullerene-benzothiadiazole-triphenylamine using time-dependent density functional theory. 2013 , 14, 105-114	2

(2013-2013)

447	Graphene-Cr-Graphene Intercalation Nanostructures: Stability and Magnetic Properties from Density Functional Theory Investigations. 2013 , 117, 3605-3614		19
446	Interplay between solvent models and predicted optical spectra: A TD-DFT study of 7-OH-coumarin. 2013 , 556, 122-126		15
445	Theoretical study on the formation and photolysis of nitrosamines (CH3CH2NHNO and (CH3CH2)2NNO) under atmospheric conditions. 2013 , 117, 126-32		7
444	Theory of variational calculation with a scaling correct moment functional to solve the electronic schrölinger equation directly for ground state one-electron density and electronic energy. 2013 , 113, 1479-1492		3
443	The expanding universe of thiolated gold nanoclusters and beyond. 2013 , 5, 7149-60		153
442	Review of quantitative structure-activity/property relationship studies of dyes: recent advances and perspectives. 2013 , 129, 173-186		14
441	Choosing a Functional for Computing Absorption and Fluorescence Band Shapes with TD-DFT. 2013 , 9, 2749-60		196
440	Density-Functional Theory of Free and Supported Metal Nanoclusters and Nanoalloys. 2013 , 29-79		4
439	QM/MM study on the light emitters of aequorin chemiluminescence, bioluminescence, and fluorescence: a general understanding of the bioluminescence of several marine organisms. 2013 , 19, 8466-72		37
438	Computational approaches to the chemical conversion of carbon dioxide. 2013 , 6, 944-65		126
437	Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme. 2013 , 9, 2654-71		99
436	Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small non-covalent dimers? A benchmark study using Gaussian09. 2013 , 34, 1341-53		92
435	Structure-property relationship and chemical aspects of oxide-metal hybrid nanostructures. 2013 , 113, 4314-72		138
434	TD-DFT benchmarks: A review. 2013 , 113, 2019-2039		715
433	Effect of substituents on the preferred modes of one-electron reductive cleavage of N-Cl and N-Br bonds. 2013 , 117, 460-72		20
432	The Performance of Density Functionals for Sulfate-Water Clusters. 2013 , 9, 1368-80		61
431	Extension of the KLI approximation toward the exact optimized effective potential. <i>Journal of Chemical Physics</i> , 2013 , 138, 094104	3.9	5
430	The Indigo Molecule Revisited Again: Assessment of the Minnesota Family of Density Functionals for the Prediction of Its Maximum Absorption Wavelengths in Various Solvents. 2013 , 2013, 1-4		2

429 Electronic Structure Calculations in Molecules. **2013**, 183-230

428	Magnetic, electronic, and vibrational properties of metal and fluorinated metal phthalocyanines. 2013 , 87,		34
427	Functional derivatives of meta-generalized gradient approximation (meta-GGA) type exchange-correlation density functionals. <i>Journal of Chemical Physics</i> , 2013 , 138, 244108	3.9	20
426	FIRST-PRINCIPLES STUDY OF TI-CATALYZED HYDROGEN ADSORPTION ON LIB (001) SURFACE. 2013 , 12, 1350065		2
425	An Introduction to the Theory of Crystalline Elemental Solids and their Surfaces. 2013, 13-72		5
424	Description of electronic excited states using electron correlation operator. <i>Journal of Chemical Physics</i> , 2013 , 139, 104111	3.9	4
423	Applications of density functional theory to iron-containing molecules of bioinorganic interest. 2014 , 2, 14		16
422	Theory of Gold-Mediated Reactions: From Single Metal Site to Cluster. 2014 , 1-30		
421	Microstructural Design of Ceramics: Theory and Experiment. 2014 , 231-295		
420	Assessment of theoretical procedures for a diverse set of isomerization reactions involving double-bond migration in conjugated dienes. 2014 , 441, 166-177		39
419	Hydrogen Storage Mechanism of Fe3O4: A First-Principles Study. 2014 , 936, 515-522		
418	Spin projection with double hybrid density functional theory. <i>Journal of Chemical Physics</i> , 2014 , 141, 034	1.0 /8	16
417	Electron avoidance: A nonlocal radius for strong correlation. 2014 , 90,		21
416	A self-interaction-free local hybrid functional: accurate binding energies vis-^-vis accurate ionization potentials from Kohn-Sham eigenvalues. <i>Journal of Chemical Physics</i> , 2014 , 140, 18A510	3.9	50
415	Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number. <i>Journal of Chemical Physics</i> , 2014 , 140, 18A538	3.9	9
4 ¹ 4	First-principles calculations of NO and NO2adsorption on a spinel ZnGaAlO4(100) surface. 2014 , 89, 075	401	7
413	mBEEF: an accurate semi-local Bayesian error estimation density functional. <i>Journal of Chemical Physics</i> , 2014 , 140, 144107	3.9	101
412	Kinetics of radical-molecule reactions in aqueous solution: a benchmark study of the performance of density functional methods. 2014 , 35, 2019-26		151

411	Coupled-cluster reaction barriers of HO2+H2O+O3: An application of the coupled-cluster//Kohn-Sham density functional theory model chemistry. 2014 , 35, 507-17	15
410	Structure and photochemistry of a bio-inspired model for photocatalytic H2O splitting: Improved calculations of the Sobolewski and Domcke's Chlorophyll-Imidazole-Benzoquinone model complex. 2014 , 112, 863-867	1
409	Odd-hydrogen: An account on electronic structure, kinetics, and role of water in mediating reactions with atmospheric ozone. Just a catalyst or far beyond?. 2014 , 114, 1327-1349	21
408	Energy density functionals from the strong-coupling limit applied to the anions of the He isoelectronic series. <i>Journal of Chemical Physics</i> , 2014 , 140, 18A532	15
407	Migrations of oxygen vacancy in tungsten oxide (WO3): A density functional theory study. 2014 , 90, 171-176	17
406	Symmetry-adapted perturbation theory based on density functional theory for noncovalent interactions. 2014 , 4, 127-144	142
405	Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. 2014 , 372, 20120476	514
404	How Do DFT-DCP, DFT-NL, and DFT-D3 Compare for the Description of London-Dispersion Effects in Conformers and General Thermochemistry?. 2014 , 10, 968-80	69
403	RETRACTED: DFT flavor of coordination chemistry. 2014 , 272, 1-29	145
402	Accurate Thermochemistry for Large Molecules with Modern Density Functionals. 2014 , 1-23	15
401	Assessing electronic structure approaches for gas-ligand interactions in metal-organic frameworks: the CO2-benzene complex. <i>Journal of Chemical Physics</i> , 2014 , 140, 104707	18
400	Construction of a parameter-free doubly hybrid density functional from adiabatic connection. <i>Journal of Chemical Physics</i> , 2014 , 140, 18A512	48
399	Multiscale Modeling of Electrochemical Systems. 2014 , 1-74	4
398	Quantum Mechanics for Organic Chemistry. 2014 , 1-60	1
397	Influence of Supramolecular Interactions on Electron-Transfer Photochromism of the Crystalline Adducts of 4,4?-Bipyridine and Carboxylic Acids. 2014 , 14, 2527-2531	42
396	Understanding bacterial bioluminescence: a theoretical study of the entire process, from reduced flavin to light emission. 2014 , 20, 7979-86	35
395	Dye chemistry with time-dependent density functional theory. 2014 , 16, 14334-56	225
394	Disciplines, models, and computers: the path to computational quantum chemistry. 2014 , 48, 89-96	12

393	Variational, Self-Consistent Implementation of the Perdew-Zunger Self-Interaction Correction with Complex Optimal Orbitals. 2014 , 10, 5324-37	59
392	Substrate, Molecular Structure, and Solvent Effects in 2D Self-Assembly via Hydrogen and Halogen Bonding. 2014 , 118, 25505-25516	51
391	Density functional theory and Bader's atoms-in-molecules theory: towards a vivid dialogue. 2014 , 16, 14539-50	73
390	Solvatochromic Shift of Brooker's Merocyanine: Hartree-Fock Exchange in Time Dependent Density Functional Calculation and Hydrogen Bonding Effect. 2014 , 10, 4535-47	19
389	B 97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. 2014 , 16, 9904-24	384
388	Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution. 2014 , 146, 733-740	29
387	A thorough understanding of the DielsAlder reaction of 1,3-butadiene and ethylene. 2014 , 27, 652-660	15
386	Carbon kagome lattice and orbital-frustration-induced metal-insulator transition for optoelectronics. 2014 , 113, 085501	38
385	Double-hybrid density functionals. 2014 , 4, 576-600	227
384	Exchange-correlation functionals from the strong interaction limit of DFT: applications to model chemical systems. 2014 , 16, 14551-8	26
383	Accurate simulation of geometry, singlet-singlet and triplet-singlet excitation of cyclometalated iridium(III) complex. 2014 , 20, 2108	5
382	Kohn-Sham calculations with the exact functional. 2014 , 90,	29
381	Density functional theory: Foundations reviewed. 2014 , 544, 123-239	64
380	Alternative approach to chemical accuracy: a neural networks-based first-principles method for heat of formation of molecules made of H, C, N, O, F, S, and Cl. 2014 , 118, 9120-31	31
379	Isomerism and structural fluxionality in the Au26 and Au26(-) nanoclusters. 2014 , 8, 7413-22	40
378	Accurate Prediction of Hyperfine Coupling Constants in Muoniated and Hydrogenated Ethyl Radicals: Ab Initio Path Integral Simulation Study with Density Functional Theory Method. 2014 , 10, 2005-15	12
377	Hybrid functionals applied to perovskites. 2014 , 26, 253202	58
376	Effects of xenon insertion into hydrogen bromide. Comparison of the electronic structure of the HBrIICO2 and HXeBrIICO2 complexes using quantum chemical topology methods: electron localization function, atoms in molecules and symmetry adapted perturbation theory. 2014 , 118, 3980-9	4

375	Adsorption of small aromatic molecules on gold: a DFT localized basis set study including van der Waals effects. 2014 , 133, 1		28
374	Understanding Magnetic Exchange in Molecule-Based Magnets from an Electronic Structure Point of View. 2015 , 203-246		
373	Application of Density Functional and Density Functional Based Ligand Field Theory to Spin States. 2015 , 7-34		6
372	Electronic structure of CuCl1N Br x solid solutions: First-principles calculations in the meta-GGA approximation. 2015 , 57, 1972-1977		7
371	Comparison between exact and semilocal exchange potentials: An all-electron study for solids. 2015 , 91,		25
370	SN2 Reaction of IOD+ CH3Cl: An Ab Initio and DFT Benchmark Study. 2015 , 88, 110-116		4
369	One-electron reduced density matrices of strongly correlated harmonium atoms. <i>Journal of Chemical Physics</i> , 2015 , 142, 114104	3.9	9
368	Design of exchange-correlation functionals through the correlation factor approach. <i>Journal of Chemical Physics</i> , 2015 , 143, 144102	3.9	25
367	Efficient implementation of quantum materials simulations on distributed CPU-GPU systems. 2015,		8
366	Probing the structural and dynamical properties of liquid water with models including non-local electron correlation. <i>Journal of Chemical Physics</i> , 2015 , 143, 054506	3.9	78
365	Computational Insights into Excited-State Proton-Transfer Reactions in Azo and Azomethine Dyes. 2015 , 16, 3966-73		18
364	Generalized gradient approximation exchange energy functional with correct asymptotic behavior of the corresponding potential. <i>Journal of Chemical Physics</i> , 2015 , 142, 054105	3.9	39
363	Computational Study of Structure and Stability of Polymeric Complexes of [Fe4(Htrz)8(trz)4]4+ and [Fe4(Htrz)12]8+. 2015 , 17, 9-15		2
362	The Nonlocal Correlation Density Functional VV10. 2015 , 11, 37-102		17
361	The reduced basis method in all-electron calculations with finite elements. 2015, 41, 1035-1047		8
360	NTChem: A high-performance software package for quantum molecular simulation. 2015 , 115, 349-359		45
359	Total energy equation leading to exchange-correlation functional. 2015 , 58, 1-6		
358	Stable kagome lattices from group IV elements. 2015 , 91,		10

357	Effect of O2 on reduction of NO2 with CH4 over gallium-modified ZnAl2O4 spinel-oxide catalyst by first principle analysis. 2015 , 349, 138-146	8
356	Hydrogen Molecule Dissociation Curve with Functionals Based on the Strictly Correlated Regime. 2015 , 11, 3153-62	24
355	Theoretical analysis of the SP bond in a family of compounds that involve a P2S2 ring: role of the PBE0-1/5 exchangedorrelation functional. 2015 , 1062, 36-43	3
354	Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. 2015 , 115, 6051-111	197
353	Spin contamination analogy, Kramers pairs symmetry and spin density representations at the 2-component unrestricted Hartreeflock level of theory. 2015 , 1065, 27-41	10
352	Mapping the genome of meta-generalized gradient approximation density functionals: the search for B97M-V. <i>Journal of Chemical Physics</i> , 2015 , 142, 074111	213
351	Beyond Energies: Geometries of Nonbonded Molecular Complexes as Metrics for Assessing Electronic Structure Approaches. 2015 , 11, 1481-92	63
350	Theoretical chemical kinetics in tropospheric chemistry: methodologies and applications. 2015 , 115, 4063-114	1 139
349	Structural isomerism in gold nanoparticles revealed by X-ray crystallography. [Corrected]. 2015, 6, 8667	208
348	Ab initio studies of Cs on GaAs (100) and (110) surfaces. 2015 , 91,	10
347	What Exactly Is the Light Emitter of a Firefly?. 2015 , 11, 5360-70	46
346	How close are the Slater and Becke-Roussel potentials in solids?. 2015 , 11, 4717-26	15
345	Toward the construction of parameter-free doubly hybrid density functionals. 2015 , 115, 589-595	18
344	An assessment of theoretical procedures for Łonjugation stabilisation energies in enones. 2015 , 113, 1284-1296	16
343	Enabling simulation at the fifth rung of DFT: Large scale RPA calculations with excellent time to solution. 2015 , 187, 120-129	35
342	Computational Isotope Geochemistry. 2016 , 12, 117-156	1
341	Computational Tools for the Study of Biomolecules. 2016 , 583-648	5
340	On the nature of interactions in the F2 OXe(I) NCCH3 complex: Is there the Xe(IV)?N bond?. 2016 , 37, 1876-86	13

(2016-2016)

339	theory calculations. 2016 , 116, 852-861		3
338	Density functional theory of the CuA -like Cu2 S2 diamond core in Cu 2II(NGuaS)2 Cl2. 2016 , 37, 1005-1	8	12
337	Excited-State Proton Transfer and Intramolecular Charge Transfer in 1,3-Diketone Molecules. 2016 , 17, 1530-8		10
336	Hartree potential dependent exchange functional. <i>Journal of Chemical Physics</i> , 2016 , 145, 084110	3.9	10
335	Spintronic and Electronic Phenomena in Organic Molecules Measured with SR. 2016 , 85, 091011		6
334	Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package. <i>Journal of Chemical Physics</i> , 2016 , 145, 204114	3.9	11
333	SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters. <i>Journal of Chemical Physics</i> , 2016 , 144, 044114	3.9	97
332	Rungs 1 to 4 of DFT Jacob's ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. <i>Journal of Chemical Physics</i> , 2016 , 144, 204120	3.9	142
331	Short- and long-range corrected hybrid density functionals with the D3 dispersion corrections. Journal of Chemical Physics, 2016 , 145, 204101	3.9	21
330	B 97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. <i>Journal of Chemical Physics</i> , 2016 , 144, 214110	3.9	332
330		3.9	332
	VV10 nonlocal correlation. <i>Journal of Chemical Physics</i> , 2016 , 144, 214110	3.9	
329	VV10 nonlocal correlation. <i>Journal of Chemical Physics</i> , 2016 , 144, 214110 Role of (H2O)(n) (n = 2-3) Clusters on the HO2 + O3 Reaction: A Theoretical Study. 2016 , 120, 1560-8	3.9	
329	VV10 nonlocal correlation. <i>Journal of Chemical Physics</i> , 2016 , 144, 214110 Role of (H2O)(n) (n = 2-3) Clusters on the HO2 + O3 Reaction: A Theoretical Study. 2016 , 120, 1560-8 Atomistic and Electronic Structure Methods for Nanostructured Oxide Interfaces. 2016 , 39-90 Assessment of the LFAs-PBE exchange@orrelation potential for high-order harmonic generation of	3.9	21
329 328 327	VV10 nonlocal correlation. <i>Journal of Chemical Physics</i> , 2016 , 144, 214110 Role of (H2O)(n) (n = 2-3) Clusters on the HO2 + O3 Reaction: A Theoretical Study. 2016 , 120, 1560-8 Atomistic and Electronic Structure Methods for Nanostructured Oxide Interfaces. 2016 , 39-90 Assessment of the LFAs-PBE exchangedorrelation potential for high-order harmonic generation of aligned H2+ molecules. 2016 , 6, 33318-33325	3.9	21 3 2
329 328 327 326	Role of (H2O)(n) (n = 2-3) Clusters on the HO2 + O3 Reaction: A Theoretical Study. 2016, 120, 1560-8 Atomistic and Electronic Structure Methods for Nanostructured Oxide Interfaces. 2016, 39-90 Assessment of the LFAs-PBE exchangeflorrelation potential for high-order harmonic generation of aligned H2+ molecules. 2016, 6, 33318-33325 Challenging the Lieb®xford bound in a systematic way. 2016, 114, 1076-1085 Spin-Unrestricted Second-Order Miler-Plesset (MP2) Forces for the Condensed Phase: From	3.9	21 3 2
329 328 327 326 325	Role of (H2O)(n) (n = 2-3) Clusters on the HO2 + O3 Reaction: A Theoretical Study. 2016, 120, 1560-8 Atomistic and Electronic Structure Methods for Nanostructured Oxide Interfaces. 2016, 39-90 Assessment of the LFAs-PBE exchangellorrelation potential for high-order harmonic generation of aligned H2+ molecules. 2016, 6, 33318-33325 Challenging the Lieb®xford bound in a systematic way. 2016, 114, 1076-1085 Spin-Unrestricted Second-Order Mller-Plesset (MP2) Forces for the Condensed Phase: From Molecular Radicals to F-Centers in Solids. 2016, 12, 2214-23 Global hybrid exchange energy functional with correct asymptotic behavior of the corresponding	3.9	21 3 2 15 23

321	On the crystalline structure of orthorhombic SrRuO3: A benchmark study of DFT functionals. 2016 , 124, 78-86		4
320	Bioluminophore and Flavin Mononucleotide Fluorescence Quenching of Bacterial Bioluminescence-A Theoretical Study. 2016 , 22, 16243-16249		13
319	Surface Adsorption Energetics Studied with "Gold Standard" Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO(110). 2016 , 7, 4207-4212		70
318	Relativistic and electron correlation effects on NMR J-coupling of Sn and Pb containing molecules. 2016 , 135, 1		14
317	Resistivity plateau and extremely large magnetoresistance in NbAs2 and TaAs2. 2016 , 94,		77
316	Kinetic-energy-density dependent semilocal exchange-correlation functionals. 2016 , 116, 1641-1694		62
315	Empirically Fitted Parameters for Calculating pKa Values with Small Deviations from Experiments Using a Simple Computational Strategy. 2016 , 56, 1714-24		59
314	Accurate van der Waals coefficients between fullerenes and fullerene-alkali atoms and clusters: Modified single-frequency approximation. 2016 , 94,		11
313	Variationally fitting the total electron-electron interaction. 2016 , 93,		3
312	Charge compensation in extremely large magnetoresistance materials LaSb and LaBi revealed by first-principles calculations. 2016 , 93,		67
311	The XYG3 type of doubly hybrid density functionals. 2016 , 6, 721-747		40
310	Time-dependent density-functional description of nuclear dynamics. 2016, 88,		113
309	Kernel-corrected random-phase approximation for the uniform electron gas and jellium surface energy. 2016 , 94,		13
308	Does the DFT Self-Interaction Error Affect Energies Calculated in Proteins with Large QM Systems?. 2016 , 12, 5667-5679		12
307	Systematic construction of density functionals based on matrix product state computations. 2016 , 18, 083039		10
306	Absorption and Emission Spectra of Anthracene-9-Carboxylic Acid in Solution Within the Polarizable Continuum Model: A Long-Range Corrected Time Dependent Density Functional Study. 2016 , 72, 61-94		1
305	Communication: Two types of flat-planes conditions in density functional theory. <i>Journal of Chemical Physics</i> , 2016 , 145, 031102	3.9	10
304	Vibrationally Resolved Absorption and Fluorescence Spectra of Firefly Luciferin: A Theoretical Simulation in the Gas Phase and in Solution. 2016 , 92, 552-60		9

303	A computationally efficient double hybrid density functional based on the random phase approximation. 2016 , 18, 20926-37		51
302	The HO2 + (H2O)n + O3 reaction: an overview and recent developments. 2016 , 70, 1		9
301	Long-range interactions from the many-pair expansion: A different avenue to dispersion in DFT. <i>Journal of Chemical Physics</i> , 2017 , 146, 024111	9	6
300	Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. 2017 , 117, 6696-6754		137
299	In search of the best DFT functional for dealing with organic anionic species. 2017 , 19, 9189-9198		25
298	[Cu(H2O) n]2+ (n = 1日) complexes in solution phase: a DFT hierarchical study. 2017 , 136, 1		13
297	Ironing out the photochemical and spin-crossover behavior of Fe(II) coordination compounds with computational chemistry. 2017 , 337, 97-111		81
296	Comparing the performance of TD-DFT and SAC-CI methods in the description of excited states potential energy surfaces: An excited state proton transfer reaction as case study. 2017 , 38, 1084-1092		13
295	Toward the Balance between the Reductionist and Systems Approaches in Computational Catalysis: Model versus Method Accuracy for the Description of Catalytic Systems. 2017 , 7, 4230-4234		50
294	Multiscale Studies on Ionic Liquids. 2017 , 117, 6636-6695		410
294	Exchange functionals based on finite uniform electron gases. <i>Journal of Chemical Physics</i> , 2017 ,	9	410
	Exchange functionals based on finite uniform electron gases. <i>Journal of Chemical Physics</i> , 2017 ,	9	
293	Exchange functionals based on finite uniform electron gases. <i>Journal of Chemical Physics</i> , 2017 , 146, 114108 The influence of correlation effects on the electronic structure of double-decker	9	
293 292	Exchange functionals based on finite uniform electron gases. <i>Journal of Chemical Physics</i> , 2017 , 146, 114108 The influence of correlation effects on the electronic structure of double-decker bis(phthalocyaninato)-Dy, Tb complexes. 2017 , 1112, 104-110	9	11
293 292 291	Exchange functionals based on finite uniform electron gases. <i>Journal of Chemical Physics</i> , 2017 , 146, 114108 The influence of correlation effects on the electronic structure of double-decker bis(phthalocyaninato)-Dy, Tb complexes. 2017 , 1112, 104-110 Uncertainties in Theoretical Description of Well-Defined Heterogeneous Catalysts. 2017 , 177, 541-565 Thirty years of density functional theory in computational chemistry: an overview and extensive	9	11
293 292 291 290	Exchange functionals based on finite uniform electron gases. <i>Journal of Chemical Physics</i> , 2017 , 146, 114108 The influence of correlation effects on the electronic structure of double-decker bis(phthalocyaninato)-Dy, Tb complexes. 2017 , 1112, 104-110 Uncertainties in Theoretical Description of Well-Defined Heterogeneous Catalysts. 2017 , 177, 541-565 Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. 2017 , 115, 2315-2372	9	11 891
293 292 291 290 289	Exchange functionals based on finite uniform electron gases. <i>Journal of Chemical Physics</i> , 2017 , 146, 114108 The influence of correlation effects on the electronic structure of double-decker bis(phthalocyaninato)-Dy, Tb complexes. 2017 , 1112, 104-110 Uncertainties in Theoretical Description of Well-Defined Heterogeneous Catalysts. 2017 , 177, 541-565 Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. 2017 , 115, 2315-2372 Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy. 2017 , 8, 2799-2805 Dimeric nature of N-coordinated Mg and Ca ions in metaloorganic compounds. The topological	9	11 1 891 26
293 292 291 290 289	Exchange functionals based on finite uniform electron gases. <i>Journal of Chemical Physics</i> , 2017 , 146, 114108 The influence of correlation effects on the electronic structure of double-decker bis(phthalocyaninato)-Dy, Tb complexes. 2017 , 1112, 104-110 Uncertainties in Theoretical Description of Well-Defined Heterogeneous Catalysts. 2017 , 177, 541-565 Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. 2017 , 115, 2315-2372 Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy. 2017 , 8, 2799-2805 Dimeric nature of N-coordinated Mg and Ca ions in metaloorganic compounds. The topological analysis of ELF functions for MgMg and Cata bonds. 2017 , 129, 22-29 Practical principles of density functional theory for catalytic reaction simulations on metal surfaces	9	11 1 891 26

285	Insights into electrochemical CO2 reduction on tin oxides from first-principles calculations. 2017 , 2, 168-171	26
284	Exact exchange with non-orthogonal generalized Wannier functions. <i>Journal of Chemical Physics</i> , 2017 , 146, 104108	6
283	Multi-fidelity machine learning models for accurate bandgap predictions of solids. 2017, 129, 156-163	169
282	First-principles modeling of metal (ii) ferrocyanide: electronic property, magnetism, bulk moduli, and the role of C? Ndefect. 2017 , 50, 035004	3
281	Exchange-correlation energies of atoms from efficient density functionals: influence of the electron density. 2017 , 50, 245004	
2 80	Two-point weighted density approximations for the kinetic energy density functional. 2017, 136, 1	3
279	Assessment of DFT functionals for calculating intermolecular interaction of nitrogen-containing heterocyclic complexes. 2017 , 136, 1	2
278	Theoretical study of the pressure-induced topological phase transition in LaSb. 2017 , 96,	17
277	Challenges for semilocal density functionals with asymptotically nonvanishing potentials. 2017 , 96,	12
276	Electron Density Errors and Density-Driven Exchange-Correlation Energy Errors in Approximate Density Functional Calculations. 2017 , 13, 4753-4764	33
275	Theoretical assessment of TD-DFT applied to a ferrocene-based complex. 2017 , 1118, 65-74	5
274	TD-DFT Study on Thiacalix[4]arene, the Receptor of a Fluorescent Chemosensor for Cu. 2017 , 121, 6942-6948	4
273	Theoretical Simulation of the Vibrationally Resolved UV Absorption Spectrum of Acryloyl Fluoride. 2017 , 35, 733-741	1
272	Plane-wave pseudopotential implementation and performance of SCAN meta-GGA exchange-correlation functional for extended systems. <i>Journal of Chemical Physics</i> , 2017 , 146, 224105 ^{3.9}	34
271	Performance of a nonempirical exchange functional from density matrix expansion: comparative study with different correlations. 2017 , 19, 21707-21713	17
270	Optical Behaviors and Electronic Properties of Mo2Mo2Mixed-Valence Complexes within or beyond the Class III Regime: Testing the Limits of the Two-State Model. 2017 , 121, 27860-27873	8
269	Synthesis meets theory: Past, present and future of rational chemistry. 2017 , 2,	2
268	Computational Plasmonics: Numerical Techniques. 2017 , 341-368	1

	267	exchange term percentage and basis set on the performance. 2017 , 138, 70-76	27
:	266	How reliable is DFT in predicting relative energies of polycyclic aromatic hydrocarbon isomers? comparison of functionals from different rungs of jacob's ladder. 2017 , 38, 370-382	23
i	265	Theoretical Study of Dinoflagellate Bioluminescence. 2017 , 93, 511-518	13
:	264	RETRACTED: DFT challenge of intermetallic interactions: From metallophilicity and metallaromaticity to sextuple bonding. 2017 , 345, 229-262	27
:	263	On electronic structure and geometry of MoX2 (X = S, Se, Te) and black phosphorus by ab initio Simulation with various van der waals corrections. 2017 ,	1
:	262	A Diagonally Updated Limited-Memory Quasi-Newton Method for the Weighted Density Approximation. 2017 , 5, 42	2
:	261	Energy vs. density on paths toward more exact density functionals. 2018 , 20, 7538-7548	12
:	2 60	Chemi- and Bioluminescence of Cyclic Peroxides. 2018 , 118, 6927-6974	172
į	259	Ab initio quantum chemical calculations of the interaction between radioactive elements and imidazolium based ionic liquids. 2018 ,	
	258	Molecular Dynamics Simulation and Molecular Orbital Method. 2018 , 1-38	
;	257	Electronic structure and optical properties of SnO2:F from PBE0 hybrid functional calculations. 2018 , 29, 15423-15435	4
	256	Multiscale modeling of enzymes: QM-cluster, QM/MM, and QM/MM/MD: A tutorial review. 2018 , 118, e25558	56
į	255	Theoretical Insight into the Emission Properties of the Luciferin and Oxyluciferin of Latia. 2018, 94, 540-544	7
;	254	Evaluations of the accuracies of DMol3 density functionals for calculations of experimental binding enthalpies of N2, CO, H2, C2H2 at catalytic metal sites. 2018 , 44, 568-581	18
	253	Free Energy Profile of NaCl in Water: First-Principles Molecular Dynamics with SCAN and B 97X-V Exchange-Correlation Functionals. 2018 , 14, 884-893	33
	252	Organometallic Actinide Complexes with Novel Oxidation States and Ligand Types. 2018 , 181-236	8
	251	Simple Modifications of the SCAN Meta-Generalized Gradient Approximation Functional. 2018 , 14, 2469-2479	23
	250	Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions. 2018 , 14, 2596-2608	122

249	Observations of non-linear plasmon damping in dense plasmas. 2018 , 25, 056901	24
248	The performance of density functional theory for the description of ground and excited state properties of inorganic and organometallic uranium compounds. 2018 , 857, 58-74	22
247	Estimation of empirically fitted parameters for calculating pK a values of thiols in a fast and reliable way. 2018 , 137, 1	10
246	Building bridges: matching density functional theory with experiment. 2018 , 59, 377-390	
245	Borderline Magnetism: How Adding Mg to Paramagnetic CeCo3 Makes a 450-K Ferromagnet with Large Magnetic Anisotropy. 2018 , 10,	9
244	Direct inversion of the iterative subspace with contracted planewave basis functions. 2018 , 39, 1890-1901	2
243	Fermi-Ltwdin orbital self-interaction corrected density functional theory: Ionization potentials and enthalpies of formation. 2018 , 39, 2463-2471	30
242	On-top density in the nonlinear metallic screening and its implication on the exchange-correlation energy functional. 2018 , 91, 1	1
241	From one to three, exploring the rungs of Jacob® ladder in magnetic alloys. 2018, 91, 1	11
240	Contribution of Density Functional Theory to Microporous Materials for Carbon Capture. 2018 , 319-343	2
239	Performance of various density-functional approximations for cohesive properties of 64 bulk solids. 2018 , 20, 063020	110
239		110
	2018 , 20, 063020 Exploring conformational preferences of alanine tetrapeptide by CCSD(T), MP2, and	
238	2018, 20, 063020 Exploring conformational preferences of alanine tetrapeptide by CCSD(T), MP2, and dispersion-corrected DFT methods. 2018, 702, 69-75 Benchmarking DFT methods on linear and nonlinear electric properties of spatially confined	6
238 237	Exploring conformational preferences of alanine tetrapeptide by CCSD(T), MP2, and dispersion-corrected DFT methods. 2018, 702, 69-75 Benchmarking DFT methods on linear and nonlinear electric properties of spatially confined molecules. 2018, 118, e25666 Guest Editorial: Special Topic on Data-Enabled Theoretical Chemistry. Journal of Chemical Physics,	11
238 237 236	Exploring conformational preferences of alanine tetrapeptide by CCSD(T), MP2, and dispersion-corrected DFT methods. 2018, 702, 69-75 Benchmarking DFT methods on linear and nonlinear electric properties of spatially confined molecules. 2018, 118, e25666 Guest Editorial: Special Topic on Data-Enabled Theoretical Chemistry. Journal of Chemical Physics, 2018, 148, 241401 Synthesis, crystal structure, magnetic properties and DFT calculations of a mononuclear copper(II)	6 11 56
238 237 236 235	Exploring conformational preferences of alanine tetrapeptide by CCSD(T), MP2, and dispersion-corrected DFT methods. 2018, 702, 69-75 Benchmarking DFT methods on linear and nonlinear electric properties of spatially confined molecules. 2018, 118, e25666 Guest Editorial: Special Topic on Data-Enabled Theoretical Chemistry. Journal of Chemical Physics, 2018, 148, 241401 Synthesis, crystal structure, magnetic properties and DFT calculations of a mononuclear copper(II) complex: Relevance of halogen bonding for magnetic interaction. 2018, 482, 395-401 Response Potential in the Strong-Interaction Limit of Density Functional Theory: Analysis and	6 11 56 6

231	MP2- and RPA-Based Ab Initio Molecular Dynamics and Monte Carlo Sampling. 2018, 1-21		1
230	Predicting vapor liquid equilibria using density functional theory: A case study of argon. <i>Journal of Chemical Physics</i> , 2018 , 148, 224501	3.9	8
229	Survival of the most transferable at the top of Jacob's ladder: Defining and testing the B 97M(2) double hybrid density functional. <i>Journal of Chemical Physics</i> , 2018 , 148, 241736	3.9	97
228	Molecular Dynamics Simulation and Molecular Orbital Method. 2018 , 1559-1595		
227	Structural and physical properties of intermetallic compounds Re3Pd2Sn2, (Re= Yb, Eu). 2019 , 21, e004	22	
226	What Is the Accuracy Limit of Adiabatic Linear-Response TDDFT Using Exact Exchange-Correlation Potentials and Approximate Kernels?. 2019 , 15, 4956-4964		4
225	Accuracy and Resource Estimations for Quantum Chemistry on a Near-Term Quantum Computer. 2019 , 15, 4764-4780		21
224	Rationalizing accurate structure prediction in the meta-GGA SCAN functional. 2019, 100,		27
223	Optical Properties of Isolated and Covalent Organic Framework-Embedded Ruthenium Complexes. 2019 , 123, 6854-6867		5
222	Density functional methods for the magnetism of transition metals: SCAN in relation to other functionals. 2019 , 100,		20
221	How Does Holism Challenge the Validation of Computer Simulation?. 2019, 943-960		2
220	DFT and spatial confinement: a benchmark study on the structural and electrical properties of hydrogen bonded complexes. 2019 , 21, 17253-17273		4
219	The Reliability of the Density-Functional Theory in Actinide Endohedral Systems. 2019 , 2, 1900138		4
218	What Electronic Structure Method Can Be Used in the Global Optimization of Nanoclusters?. 2019 , 123, 10454-10462		12
217	Relativistic quantum crystallography of diphenyl- and dicyanomercury. Theoretical structure factors and Hirshfeld atom refinement. 2019 , 75, 705-717		16
216	Application of quantum chemical methods in polymer chemistry. 2019 , 38, 343-403		10
215	Density Functional Theory Meta GGA Study of Water Adsorption in MIL-53(Cr). 2019, 34,		4
214	Semilocal exchange-correlation potentials for solid-state calculations: Current status and future directions. 2019 , 126, 110902		21

213	Implementation of the Many-Pair Expansion for Systematically Improving Density Functional Calculations of Molecules. 2019 , 15, 1089-1101	3
212	Benchmarking DFT approaches for the calculation of polarizability inputs for refractive index predictions in organic polymers. 2019 , 21, 4452-4460	14
211	Reassessment of the Mechanisms of Thermal C-H Bond Activation of Methane by Cationic Magnesium Oxides: A Critical Evaluation of the Suitability of Different Density Functionals. 2019 , 20, 1812-1821	4
21 0	Implementation of a mathematical model for the photochemical kinetics of a solid form active pharmaceutical ingredient. 2019 , 566, 500-512	3
209	Density Functionals from the Multiple-Radii Approach: Analysis and Recovery of the Kinetic Correlation Energy. 2019 , 15, 3580-3590	4
208	Density functional orbitals in quantum Monte Carlo: The importance of accurate densities. <i>Journal of Chemical Physics</i> , 2019 , 150, 184101	5
207	A Density-Based Basis-Set Correction for Wave Function Theory. 2019 , 10, 2931-2937	18
206	Luciferin Regeneration in Firefly Bioluminescence via Proton-Transfer-Facilitated Hydrolysis, Condensation and Chiral Inversion. 2019 , 20, 1719-1727	9
205	Sarin chemisorbent based on cobalt-doped graphene. 2019 , 480, 759-764	3
204	Aggregation-induced emission enhancement (AIEE) of N,N?-Bis(Salicylidene)-p-Phenylenediamine Schiff base: Synthesis, photophysical properties and its DFT studies. 2019 , 210, 493-500	12
203	Challenges and Opportunities in Modeling Oxides for Energy and Information Devices. 2019, 1-13	
202	The Lowest-Energy Isomer of C2Si2H4 Is a Bridged Ring: Reinterpretation of the Spectroscopic Data Based on DFT and Coupled-Cluster Calculations. 2019 , 7, 51	
201	Recent Developments in Using Computational Materials Design for High-Performance Li4Ti5O12 Anode Material for Lithium-Ion Batteries. 2019 , 1, 87-107	6
200	Remarkable Structural Effect on the Gold-Hydrogen Analogy in Hydrogen-Doped Gold Cluster. 2019 , 123, 1973-1982	2
199	Ab Initio Molecular Dynamics Simulation and Energetics of the Ribulose-1,5-biphosphate Carboxylation Reaction Catalyzed by Rubisco: Toward Elucidating the Stereospecific Protonation Mechanism. 2019 , 123, 2679-2686	8
198	Effect of the exchange-correlation functional on the synchronicity/nonsynchronicity in bond formation in Diels-Alder reactions: a reaction force constant analysis. 2019 , 21, 7412-7428	23
197	Correlation energy functionals from adiabatic connection formalism. 2019 , 99,	12
196	Machine learning density functional theory for the Hubbard model. 2019 , 99,	21

Molecular Simulation of Interaction between Graphene Doped with Iron and Coenzyme A. **2019**, 4, 3523-3536

194	Theoretical Insights into the Mechanism of Wavelength Regulation in Blue-Absorbing Proteorhodopsin. 2019 , 123, 10631-10641		2
193	A step in the direction of resolving the paradox of Perdew-Zunger self-interaction correction. <i>Journal of Chemical Physics</i> , 2019 , 151, 214108	3.9	34
192	ACCDB: A collection of chemistry databases for broad computational purposes. 2019 , 40, 839-848		25
191	Evaluating Density Functionals by Examining Molecular Structures, Chemical Bonding, and Relative Energies of Mononuclear Ru-Cl-H-PR Isomers. 2019 , 123, 343-358		1
190	Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. 2019 , 119, 2453-2523		157
189	Hydrogen Activation by Silica-Supported Metal Ion Catalysts: Catalytic Properties of Metals and Performance of DFT Functionals. 2019 , 123, 171-186		2
188	Personal computers in computational chemistry. 2019 , 219-260		2
187	Sampling Potential Energy Surfaces in the Condensed Phase with Many-Body Electronic Structure Methods. 2020 , 26, 362-368		5
186	Pseudodiagonalization-based wavefunction optimization with contracted planewave basis functions. 2020 , 41, 184-193		
185	Prediction of pK s of Late Transition-Metal Hydrides via a QM/QM Approach. 2020, 41, 171-183		O
184	Quantifying the hydration structure of sodium and potassium ions: taking additional steps on Jacob's Ladder. 2020 , 22, 10641-10652		24
183	Benchmark study of DFT and composite methods for bond dissociation energies in argon compounds. 2020 , 531, 110676		3
182	Functional and Basis Set Dependence for Time-Dependent Density Functional Theory Trajectory Surface Hopping Molecular Dynamics: Cis-Azobenzene Photoisomerization. 2020 , 41, 635-645		6
181	Benchmark Study of Ground-State Raman Spectra in Conjugated Molecules. 2020 , 16, 612-620		4
180	Conformational preferences of cationic 即eptide in water studied by CCSD(T), MP2, and DFT methods. 2020 , 6, e04721		3
179	Structural and Photophysical Properties of Various Polypyridyl Ligands: A Combined Experimental and Computational Study. 2020 , 21, 2489-2505		1
178	Time-Dependent Density Functional Theory Investigation of the UVI∕s Spectra of Organonitrogen Chromophores in Brown Carbon. 2020 , 4, 311-320		3

177	Density Functional Theories and Coordination Chemistry. 2020 ,	2
176	Effective Molecular Descriptors for Chemical Accuracy at DFT Cost: Fragmentation, Error-Cancellation, and Machine Learning. 2020 , 16, 4938-4950	8
175	Pyrroles and Their Benzo Derivatives: Structure. 2020 ,	
174	Modeling the Electronic and Geometric Structure of Nanoalloys. 2020, 75-113	3
173	The Fermi-LWdin self-interaction correction for ionization energies of organic molecules. <i>Journal of Chemical Physics</i> , 2020 , 153, 184303	9
172	Efficient Calculation of Small Molecule Binding in Metal©rganic Frameworks and Porous Organic Cages. 2020 , 124, 27529-27541	13
171	Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional. <i>Journal of Chemical Physics</i> , 2020 , 153, 044114	13
170	Machine learning accurate exchange and correlation functionals of the electronic density. 2020 , 11, 3509	55
169	Ab initio studies of propane dehydrogenation to propene with graphene. 2020 , 118, e1798527	1
168	Implementation of Orbital Functionals in the Context of Time-Dependent Density-Functional Theory. 2020 , 50, 699-710	1
167	Localization in the SCAN meta-generalized gradient approximation functional leading to broken symmetry ground states for graphene and benzene. 2020 , 22, 19585-19591	4
166	Efficient yet accurate dispersion-corrected semilocal exchange-correlation functionals for non-covalent interactions. <i>Journal of Chemical Physics</i> , 2020 , 153, 084117	8
165	Color Differences Highlight Concomitant Polymorphism of Chalcones. 2020 , 20, 6346-6355	5
164	Interfacial Properties of Water on Hydrogenated and Fluorinated Graphene Surfaces: Parametrization of Nonbonded Interactions. 2020 , 124, 21467-21475	8
163	Exploiting a CE Activation Strategy to Generate Novel Tris(pyrazolyl)methane Ligands. 2020, 646, 1886-1891	0
162	The ONETEP linear-scaling density functional theory program. <i>Journal of Chemical Physics</i> , 2020 , 152, 174111	45
161	Strain effects on the electronic, optical and electrical properties of CuZnSnS: DFT study. 2020 , 6, e03713	2
160	Substitutional Mechanisms and Structural Relaxations for Manganese in SrTiO3: Bridging the Concentration Gap for Point-Defect Metrology. 2020 , 32, 4651-4662	10

(2021-2020)

159	Understanding plasmon dispersion in nearly free electron metals: Relevance of exact constraints for exchange-correlation kernels within time-dependent density functional theory. 2020 , 101,	2
158	Luminescence Activity Decreases When v-coelenterazine Replaces Coelenterazine in Calcium-Regulated Photoprotein-A Theoretical and Experimental Study. 2020 , 96, 1047-1060	5
157	The Electronic Level I. 2020 , 171-212	
156	Compressed intramolecular dispersion interactions. <i>Journal of Chemical Physics</i> , 2020 , 152, 024112 3.9	1
155	Data-Based Methods for Materials Design and Discovery: Basic Ideas and General Methods. 2020 , 1, 1-188	5
154	TD-DFT benchmark for UV-visible spectra of fused-ring electron acceptors using global and range-separated hybrids. 2020 , 22, 7864-7874	23
153	Adsorption and activation of CO on Zr (n = 2-7) clusters. 2020 , 22, 16877-16886	5
152	Density Functionals for Hydrogen Storage: Defining the H2Bind275 Test Set with Ab Initio Benchmarks and Assessment of 55 Functionals. 2020 , 16, 4963-4982	7
151	Projector Augmented Wave Method with Gauss-Type Atomic Orbital Basis: Implementation of the Generalized Gradient Approximation and Mesh Grid Quadrature. 2020 , 16, 4883-4898	1
150	Asymptotic Behavior of the Exchange-Correlation Energy Density and the Kohn-Sham Potential in Density Functional Theory: Exact Results and Strategy for Approximations. 2020 , 60, 805-822	5
149	Reversible, Two-Step Single-Crystal to Single-Crystal Phase Transitions between Desloratadine Forms I, II, and III. 2020 , 20, 1800-1810	16
148	SrPd, a candidate material with extremely large magnetoresistance. 2020 , 101,	2
147	Comprehensive Benchmark Study on the Calculation of Si NMR Chemical Shifts. 2021 , 60, 272-285	9
146	Review: Simulation Models for Materials and Biomolecules. 2021 , 27-82	1
145	On the relationship between spectroscopic constants of diatomic molecules: a machine learning approach 2021 , 11, 14552-14561	1
144	Doping dependence of electronic structure of infinite-layer NdNiO2. 2021 , 103,	10
143	Electronic and geometric determinants of adsorption: fundamentals and applications. 2021, 3, 022001	6
142	Computing gold cluster energies with density functional theory: the importance of correlation. 2021 , 23, 14830-14835	2

Performance of SCAN Meta-GGA Functionals on Nonlinear Mechanics of Graphene-Like g-SiC. **2021**, 11, 120

	11, 120	
140	Electronic Structure for Multielectronic Molecules near a Metal Surface. 2021 , 125, 2884-2899	1
139	Revisiting the structural, electronic and photocatalytic properties of Ti and Zr based perovskites with meta-GGA functionals of DFT. 2021 , 9, 4862-4876	7
138	Thermochemistry of Tungsten-3p Elements for Density Functional Theory, !. 2021 , 125, 681-690	
137	Analysis of the kinetic energy functional in the generalized gradient approximation. <i>Journal of Chemical Physics</i> , 2021 , 154, 084107	1
136	CLB18: A new structural database with unusual carbonflarbon long bonds. 2021 , 765, 138281	5
135	Density Functional Theory in Heterogeneous Catalysis. 2021 , 405-418	О
134	Adsorption and Activation of CO on Small-Sized Cu-Zr Bimetallic Clusters. 2021 , 125, 2558-2572	8
133	A post-HF approach to the sunscreen octyl methoxycinnamate. <i>Journal of Chemical Physics</i> , 2021 , 154, 144304	O
132	Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. 2021 , 34, 959-987	2
131	Benchmarking density functional theory methods for modelling cationic metal gon complexes. 2021 , 140, 1	6
130	Revealing the nature of electron correlation in transition metal complexes with symmetry breaking and chemical intuition. <i>Journal of Chemical Physics</i> , 2021 , 154, 194109	9
129	Opening band gaps of low-dimensional materials at the meta-GGA level of density functional approximations. 2021 , 5,	8
128	Inverse Kohn-Sham Density Functional Theory: Progress and Challenges. 2021 , 12, 5308-5318	9
127	A Dirac-Fermions functional for Coulomb interaction on arbitrary (fractional) dimension: Energy and pressure. 2021 , 402, 127363	О
126	Hydricity of 3d Transition Metal Complexes from Density Functional Theory: A Benchmarking Study. 2021 , 26,	4
125	Quasi-dimensional models applied to kinetic and exchange energy density functionals. 2021 , 94, 1	
124	Benchmarking of Density Functionals for -Azoarene Half-Lives via Automated Transition State Search. 2021 , 125, 6474-6485	1

123	Solving the strong-correlation problem in materials. 2021 , 44, 597	О
122	Energy components in spin-density functional theory. 2021 , 104,	
121	Density Functional Theory for Electrocatalysis.	12
120	Density functional theory calculation of the Renner Teller effect in NCO: Preliminary assessment of exact exchange energy on the accuracy of the Renner coefficient. 2021 , 121, e26804	O
119	Dependence of the substituent energy on the level of theory. 2021 , 42, 2079-2088	3
118	DFT Functionals for Modeling of Polyethylene Chains Cross-Linked by Metal Atoms. DLPNO-CCSD(T) Benchmark Calculations. 2021 , 125, 7382-7395	1
117	Influence of functional groups on low-temperature combustion chemistry of biofuels. 2021 , 86, 100925	14
116	Computational Revolutions in Lattice Thermal Conductivity. 324, 181-187	
115	HO-Bridged Proton-Transfer Channel in Emitter Species Formation in Obelin Bioluminescence. 2021 , 125, 10452-10458	2
114	Accurate total energies from the adiabatic-connection fluctuation-dissipation theorem. 2021, 104,	1
113	Peroxymonosulfate activation by FeO-MnO/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: Performance and mechanism. 2022 , 423, 127111	11
112	Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage. 2021 , 17, 804-817	3
111	Forecasting System of Computational Time of DFT/TDDFT Calculations under the Multiverse Ansatz via Machine Learning and Cheminformatics. 2021 , 6, 2001-2024	3
110	Kohn-Sham Equations as Regularizer: Building Prior Knowledge into Machine-Learned Physics. 2021 , 126, 036401	33
109	Hohenberg-Kohn-Sham Density Functional Theory. 2007 , 153-201	1
108	Quantum mechanical methods for the investigation of metalloproteins and related bioinorganic compounds. 2014 , 1122, 207-68	2
107	QM/MM Study of Bioluminescent Systems. 2021 , 227-270	1
106	Density Functional Calculations. 2016 , 483-563	1

105	A New Generation of Doubly Hybrid Density Functionals (DHDFs). 2014 , 25-45		2
104	Exchange-Correlation Functionals. 2014 , 101-124		1
103	First Steps Towards Quantum Refinement of Protein X-Ray Structures. 2012, 87-120		6
102	Reactivity and Catalysis by Nanoalloys. 2020 , 267-345		1
101	Toward a Resolution of the Static Correlation Problem in Density Functional Theory from Semidefinite Programming. 2021 , 12, 385-391		6
100	Theoretical and physical aspects of nuclear shielding. 2012 , 38-55		2
99	Screened range-separated hybrid by balancing the compact and slowly varying density regimes: Satisfaction of local density linear response. <i>Journal of Chemical Physics</i> , 2020 , 152, 044111	3.9	11
98	Nonlocal rung-3.5 correlation from the density matrix expansion: Flat-plane condition, thermochemistry, and kinetics. <i>Journal of Chemical Physics</i> , 2020 , 153, 164116	3.9	1
97	Degenerate antiferromagnetic states in spinel oxide LiV2O4. 2020 , 29, 077508		1
96	Performance of the strongly constrained and appropriately normed density functional for solid-state materials. 2018 , 2,		106
95	Accurate band alignment at the amorphous Al2O3/p-Ge(100) interface determined by hard x-ray photoelectron spectroscopy and density functional theory. 2018 , 2,		2
94	Accurate electronic and optical properties of hexagonal germanium for optoelectronic applications. 2019 , 3,		19
93	Crystal structure, Hirshfeld surface analysis and computational study of 2-chloro[4-(methyl-sulfan-yl)phen-yl]acetamide. 2020 , 76, 594-598		2
92	On Occupied-orbital Dependent Exchange-correlation Functionals: From Local Hybrids to Beckes B05 Model. 2010 , 255-277		1
92 91			4
	B05 Model. 2010 , 255-277		
91	B05 Model. 2010 , 255-277 Comparison of Functionals for Metal Hexaboride Band Structure Calculations. 2014 , 04, 53-69 An electroactive single-atom copper anchored MXene nanohybrid filter for ultrafast water	3.9	4

(2021-2021)

87	Asymptotics of the metal-surface Kohn-Sham exact exchange potential revisited. 2021, 104,	0
86	Highly accurate and constrained density functional obtained with differentiable programming. 2021 , 104,	8
85	Adsorption of successive layers of H2 molecules on a model copper surface: performances of second- to fifth-rung exchange-correlation functionals. 2013 , 281-289	
84	An Overview of Modern Density Functional Theory. 2014 , 1-24	
83	Density Functional Theory for Strongly-Interacting Electrons. 2014 , 153-168	
82	First-Principles Simulations of Bulk Crystal and Nanolayer Properties. 2015 , 113-214	
81	First-Principles Approaches to Understanding Heterogeneous Catalysis. 115-138	
80	Tầh chat lên tu cua cau trổ siữ mang dua trñ dỹ di chat ZnO/GaN kieu armchair. 2017 , 52, 22	
79	Advances in Theoretical Studies on Solid Catalysts for Renewable Energy Production. 2018 , 1-32	
78	Encyclopedia of Geochemistry. 2018 , 347-352	
77	A Gradient Corrected Two-Point Weighted Density Approximation for Exchange Energies. 2018, 209-218	
76	MP2- and RPA-Based Ab Initio Molecular Dynamics and Monte Carlo Sampling. 2020 , 523-543	
75	First-Principles Simulations of Bulk Crystal and Nanolayer Properties. 2020 , 123-219	
74	Understanding the charge storage mechanism of supercapacitors: in situ/operando spectroscopic approaches and theoretical investigations.	13
73	Challenges and Opportunities in Modeling Oxides for Energy and Information Devices. 2020 , 1001-1012	2
72	Molecular Modelling. 2020 , 3-48	
71	Theoretical Methods. 2020 , 31-39	
70	Structural and Energetic Properties of Amino Acids and Peptides Benchmarked by Accurate Theoretical and Experimental Data. 2021 , 125, 9826-9837	1

69	Readdressing molecular dissociation within the KohnBham formalism of density-functional theory: simple models and a different point of view.	
68	Ab initio composite methodologies: Their significance for the chemistry community. 2021 , 17, 113-161	1
67	Strain modulation on the spin transport properties of PTB junctions with MoC electrodes 2022,	O
66	Site-specific scaling relations observed during methanol-to-olefin conversion over ZSM-5 catalysts. 2022 , 251, 117424	1
65	A journey toward the heaven of chemical fidelity of intermolecular force fields.	1
64	Acid-resistant thin-film composite nanofiltration membrane prepared from polyamide-polyurea and the behavior of density functional theory study. 2022 , 645, 120175	O
63	Improving Density Functional Prediction of Molecular Thermochemical Properties with a Machine-Learning-Corrected Generalized Gradient Approximation 2022 ,	2
62	The duhka of DFT: a noble path to better functionals via a point electron approximation for the exchange \Box or relation hole \Box , \Box 2022,	O
61	Effects of Non-Local Exchange Functionals in the Density Functional Theories for the Description of Molecular Vibrations.	
60	Theoretical studies of gas-phase decomposition of single-source precursors. 2022 , 123-161	
59	Theoretical studies of gas-phase decomposition of single-source precursors. 2022 , 123-161 Benchmark Study on the Calculation of Sn NMR Chemical Shifts 2022 , 61, 3903-3917	1
		2
59	Benchmark Study on the Calculation of Sn NMR Chemical Shifts 2022 , 61, 3903-3917	
59 58	Benchmark Study on the Calculation of Sn NMR Chemical Shifts 2022 , 61, 3903-3917 How Well Does Kohn-Sham Regularizer Work for Weakly Correlated Systems?. 2022 , 2540-2547 CIDER: An Expressive, Nonlocal Feature Set for Machine Learning Density Functionals with Exact	2
59 58 57	Benchmark Study on the Calculation of Sn NMR Chemical Shifts 2022, 61, 3903-3917 How Well Does Kohn-Sham Regularizer Work for Weakly Correlated Systems?. 2022, 2540-2547 CIDER: An Expressive, Nonlocal Feature Set for Machine Learning Density Functionals with Exact Constraints 2022, n2v: A density-to-potential inversion suite. A sandbox for creating, testing, and benchmarking	2
59 58 57 56	Benchmark Study on the Calculation of Sn NMR Chemical Shifts 2022, 61, 3903-3917 How Well Does Kohn-Sham Regularizer Work for Weakly Correlated Systems?. 2022, 2540-2547 CIDER: An Expressive, Nonlocal Feature Set for Machine Learning Density Functionals with Exact Constraints 2022, n2v: A density-to-potential inversion suite. A sandbox for creating, testing, and benchmarking density functional theory inversion methods.	2 1 2
59 58 57 56 55	Benchmark Study on the Calculation of Sn NMR Chemical Shifts 2022, 61, 3903-3917 How Well Does Kohn-Sham Regularizer Work for Weakly Correlated Systems?. 2022, 2540-2547 CIDER: An Expressive, Nonlocal Feature Set for Machine Learning Density Functionals with Exact Constraints 2022, n2v: A density-to-potential inversion suite. A sandbox for creating, testing, and benchmarking density functional theory inversion methods. Spin-Forbidden Carbon-Carbon Bond Formation in Vibrationally Excited ECO 2022,	2 1 2
59 58 57 56 55	Benchmark Study on the Calculation of Sn NMR Chemical Shifts 2022, 61, 3903-3917 How Well Does Kohn-Sham Regularizer Work for Weakly Correlated Systems?. 2022, 2540-2547 CIDER: An Expressive, Nonlocal Feature Set for Machine Learning Density Functionals with Exact Constraints 2022, n2v: A density-to-potential inversion suite. A sandbox for creating, testing, and benchmarking density functional theory inversion methods. Spin-Forbidden Carbon-Carbon Bond Formation in Vibrationally Excited ECO 2022, Evolution of ultraflat band in the van der Waals kagome semiconductor Pd3P2(S1\(\mathbb{R}\)Sex. 2022, 105, An account of chronological computational investigations to ascertain the role of ptp[bonding in influencing the Lewis acidity of BX3 (X'=T, Cl, Br and I): Evolution of novel parameters and	2 1 2 0

51	Designing 3d metal oxides: selecting optimal density functionals for strongly correlated materials 2022 ,	O
50	Revisiting the Performance of Time-Dependent Density Functional Theory for Electronic Excitations: Assessment of 43 Popular and Recently Developed Functionals from Rungs One to Four 2022 ,	4
49	Exploring the exemplary structural, electronic, optical and elastic nature of inorganic ternary cubic fluoroperovskites XBaF3 (X= Al and Tl) employing the accurate TB-mBJ approach.	0
48	Electronic band structure and chemical bonding in trigonal Se and Te. 2022, 12, 055110	
47	3d Transition Metal Doping Induced Charge Rearrangement And Transfer In Ni3s2 [101] Facet For Overall Water-Splitting.	
46	Refined GFN1-xTB Parameters for Engineering Phase-Stable CsPbX3 Perovskites.	1
45	Implementation of self-consistent MGGA functionals in augmented plane wave based methods. 2022 , 105,	1
44	Charge Carrier Management in Semiconductors: Modeling Charge Transport and Recombination. 2022 , 365-398	1
43	Effects of non-local exchange functionals in the density functional theories for the description of molecular vibrations. 2022 , 134,	
42	Nuclear Density Functional Theory (DFT). 2022 , 1-30	
41	Dearomatization of Benzenoid Arenes Triggered by Triplet Excited State Intramolecular Proton Transfer. 2022 , 126, 4424-4431	О
40	A litmus test for the balanced description of dispersion interactions and coordination chemistry of lanthanoids.	
39	Uniting Nonempirical and Empirical Density Functional Approximation Strategies Using Constraint-Based Regularization. 2022 , 13, 6896-6904	О
38	TTDFT: A GPU accelerated Tucker tensor DFT code for large-scale Kohn-Sham DFT calculations. 2023 , 282, 108516	O
37	Redesigning density functional theory with machine learning. 2023 , 531-558	О
36	Multi-Fidelity Learning. 2020 , 135-152	O
35	3d Transition metal doping induced charge rearrangement and transfer to enhance overall water-splitting on Ni3S2 (101) facet: a first-principles calculation study. 2022 , 12, 26866-26874	О
34	Computational aspects to design iridium complexes as emitters for OLEDs. 2022 , 7, 1172-1206	O

33	The spin magnetic order of Con+ (n 區) clusters. 2022 , 24, 23128-23134	1
32	Geometries, molecular Rayleigh scattering, Raman and infrared frequencies of polycyclic aromatic hydrocarbons and subunits of graphite studied by DFT methods. 2022 , 2, 1023-1031	O
31	Bottom-up Coarse-Graining: Principles and Perspectives.	6
30	Vibrationally resolved absorption and fluorescence spectra of flavins: A theoretical simulation in the gas phase.	O
29	Exact two-component Hamiltonians for relativistic quantum chemistry: Two-electron picture-change corrections made simple. 2022 , 157, 114106	2
28	Magnetic ground state of plutonium dioxide: DFT+U calculations.	O
27	The electronic, mechanical properties and in-plane negative Poisson ratio in novel pentagonal NiX2 (X´=´S, Se, Te) monolayers with strong anisotropy: A first-principles prediction. 2023 , 216, 111873	O
26	Half-metallicity and perfect spin-filtering effect based on vacancy interference in boron-phosphide nanoribbon: A first-principle study. 2023 , 610, 155475	O
25	A critical comparison of CHIVersus Interactions in the benzene dimer: obtaining benchmarks at the CCSD(T) level and assessing the accuracy of lower scaling methods.	0
24	Ab intio methods for the computation of physical properties and performance parameters of electrochemical energy storage devices.	O
23	Theoretical Study on Hydrogen Transfer in the Dissociation of Dimethyl Disulfide Radical Cation.	O
22	Testing of Exchange-Correlation Functionals of DFT for a Reliable Description of the Electron Density Distribution in Organic Molecules. 2022 , 23, 14719	1
21	Double Hybrid Density Functionals for the Electronic Excitation Energies of Linear Cyanines.	0
20	Building on the Strengths of a Double-Hybrid Density Functional for Excitation Energies and Inverted Singlet-Triplet Energy Gaps.	O
19	B 97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-lbasis set.	1
18	Interexcited State Photophysics I: Benchmarking Density Functionals for Computing Nonadiabatic Couplings and Internal Conversion Rate Constants.	O
17	Efficient Calculation of NMR Shielding Constants Using Composite Method Approximations and Locally Dense Basis Sets.	0
16	Improving the accuracy of 31P NMR chemical shift calculations by use of scaling methods. 19, 36-56	O

CITATION REPORT

15	Theoretical proposal and material realization of ferromagnetic negative charge-transfer energy insulator. 2023 , 107,	0
14	Emergence of Wigner oscillations in a model of real time cooling process: a time-dependent density-functional theory approach. 2023 , 35, 115602	O
13	Application of a Simple Density-Functional Approximation to Non-identical Fermions in One-dimensional Confinement. 2023 , 53,	O
12	Inversion Theory Leveling as a New Methodological Approach to Antioxidant Thermodynamics: A Case Study on Phenol. 2023 , 12, 282	O
11	Systematic Theoretical Study on the pH-Dependent Absorption and Fluorescence Spectra of Flavins. 2023 , 28, 3315	O
10	Biological determination, molecular docking and Hirshfeld surface analysis of rhoduim(I)-N-heterocyclic carbene complex: Synthesis, crystal structure, DFT calculations, optical and non linear optical properties. 2023 , 551, 121459	0
9	Spin transport property of Cr2C based nanoscale devices: A first principle study. 2023 , 45, 106228	0
8	Recent progress of theoretical research on inorganic solid state electrolytes for Li metal batteries. 2023 , 561, 232720	1
7	Performance of Density Functionals and Semiempirical 3c Methods for Small GoldII hiolate Clusters. 2023 , 127, 2242-2257	0
6	Recent advances in density functional theory approach for optoelectronics properties of graphene. 2023 , 9, e14279	O
5	Quantum Chemical Approaches to Treat Mixed-Valence Systems Realistically for Delocalized and Localized Situations. 2023 , 93-120	O
4	Ligand Control in Co-Catalyzed Regio- and Enantioselective Hydroboration: Homoallyl Secondary Boronates via Uncommon 4,3-Hydroboration of 1,3-Dienes. 2023 , 145, 7462-7481	O
3	Substituent and redox effects on the second-order NLO response of Ru(ii) complexes with polypyridine ligands: a theoretical study. 2023 , 47, 7326-7334	0
2	Benchmark Study on Phosphorescence Energies of Anthraquinone Compounds: Comparison between TDDFT and UDFT. 2023 , 28, 3257	O
1	Performance of Functionals and Basis Sets in Calculating Redox Potentials of Nitrile Alkenes and Aromatic Molecules using Density Functional Theory. 2023 , 8,	0