Synthesis of Au nanoparticle doped SiO2–TiO2 films: position through controlling the refractive index

Journal of Materials Chemistry 15, 3278

DOI: 10.1039/b506399j

Citation Report

#	Article	IF	CITATIONS
1	A New Approach for the Synthesis of Auâ^'Ag Alloy Nanoparticle Incorporated SiO2 Films. Chemistry of Materials, 2005, 17, 6161-6166.	3.2	54
2	Coarsening of Ag nanoparticles in SiO2–PEO hybrid film matrix by UV light. Journal of Materials Chemistry, 2006, 16, 3193-3198.	6.7	21
3	Characterization of laser ablated gold nanoparticles encapsulated in epoxy amine crosslinked sol–gel materials. Journal of Non-Crystalline Solids, 2006, 352, 3879-3886.	1.5	9
4	Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds. Journal of Catalysis, 2006, 242, 227-230.	3.1	180
5	Pump-probe optical switching in prism-coupled Au:SiO2 nanocomposite waveguide film. Applied Physics Letters, 2007, 91, 141905.	1.5	17
6	Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers. Nanotechnology, 2007, 18, 355702.	1.3	52
7	Core–shell nanoparticles based on an oxide metal: ReO3@Au (Ag) and ReO3@SiO2(TiO2). Journal of Materials Chemistry, 2007, 17, 2412-2417.	6.7	30
8	Oriented Au–Cu nanoalloy particle incorporated SiO2films using a new layer by layer deposition technique. Journal of Materials Chemistry, 2007, 17, 493-498.	6.7	23
9	Gold-Nanoparticle-Doped TiO2 Semiconductor Thin Films: Optical Characterization. Advanced Functional Materials, 2007, 17, 347-354.	7.8	143
10	Fabrication and Properties of an Asymmetric Waveguide Containing Nanoparticles. Journal of Electronic Materials, 2008, 37, 135-144.	1.0	4
11	Metal nanoparticle doped coloured coatings on glasses and plastics through tuning of surface plasmon band position. Bulletin of Materials Science, 2008, 31, 479-485.	0.8	13
12	Tuning of Ag-SPR band position in refractive index controlled inorganic-organic hybrid SiO2-PEO-TiO2 films. Journal of Chemical Sciences, 2008, 120, 565-572.	0.7	13
13	In situ Generation of Au Nanoparticles in UV-curable Refractive Index Controlled SiO2â^'TiO2â^'PEO Hybrid Films. Journal of Physical Chemistry C, 2008, 112, 10378-10384.	1.5	18
14	Au nanoparticles in alumina sols and coatings. Journal of Materials Chemistry, 2008, 18, 2816.	6.7	22
15	Formation of Au–Pt bimetallic nanoparticles in a two-layer SiO2 films doped with Au and Pt, respectively, through interlayer diffusion. Physical Chemistry Chemical Physics, 2008, 10, 4062.	1.3	17
16	Electronic excitation induced tuning of surface plasmon resonance of Ag nanoparticles in fullerene C ₇₀ matrix. Journal Physics D: Applied Physics, 2009, 42, 155103.	1.3	55
17	A Single-Step Route Towards Large-Scale Deposition of Nanocomposite Thin Films Using Preformed Gold Nanoparticles. Materials Research Society Symposia Proceedings, 2009, 1174, 13.	0.1	0
18	Reversible transformations of silver oxide and metallic silver nanoparticles inside SiO2 films. Materials Research Bulletin, 2009, 44, 355-359.	2.7	34

#	ARTICLE	IF	Citations
19	Defect-free nanostructured alumina coating doped with noble metal nanoparticles. Applied Surface Science, 2009, 256, S9-S11.	3.1	3
20	Etching-Resistant Silver Nanoprisms by Epitaxial Deposition of a Protecting Layer of Gold at the Edges. Langmuir, 2009, 25, 10165-10173.	1.6	69
21	Nanotechnology in Construction 3. , 2009, , .		44
22	The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. Journal of Materials Chemistry, 2009, 19, 574-590.	6.7	173
23	The photoinduced formation of gold nanoparticles in a mesoporous titania gel monolith. Nanotechnology, 2009, 20, 105605.	1.3	9
24	Hydrogen Production over Titaniaâ€Based Photocatalysts. ChemSusChem, 2010, 3, 681-694.	3.6	404
25	Preparation and characterization of $Ga2xln2(1\hat{a}^{2}x)O3$ films deposited on ZrO2 (100) substrates by MOCVD. Journal of Alloys and Compounds, 2010, 499, 75-79.	2.8	31
26	Anisotropic Gold Nanoparticle Doped Mesoporous Boehmite Films and Their Use as Reusable Catalysts in Electron Transfer Reactions. Langmuir, 2010, 26, 12177-12184.	1.6	85
27	Au nanoparticles doped ZrTiO4 films and hydrogen gas induced Au-plasmon shifting. Journal of Materials Chemistry, 2010, 20, 9081.	6.7	8
28	Spontaneous generation and shape conversion of silver nanoparticles in alumina sol, and shaped silver nanoparticle incorporated alumina films. Journal of Materials Chemistry, 2011, 21, 6072.	6.7	27
29	Real-Time Monitoring of Plasmonic Evolution in Thick Ag:SiO2Films: Nanocomposite Optical Tuning. ACS Applied Materials & Description (2011), 3, 447-454.	4.0	22
30	In situ optical microspectroscopy of the growth and oxidation of silver nanoparticles in silica thin films on soda-lime glass. Materials Research Bulletin, 2011, 46, 158-165.	2.7	21
31	Strength of the interactions between light-scattering particles and resins affects the haze of anti-glare films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389, 138-143.	2.3	25
32	Cu x Ni $1\hat{a}$ 'x alloy nanoparticles embedded SiO2 films: synthesis and structure. Journal of Nanoparticle Research, 2011, 13, 321-329.	0.8	10
33	Novel Method of Preparation of Goldâ€Nanoparticleâ€Doped TiO ₂ and SiO ₂ Plasmonic Thin Films: Optical Characterization and Comparison with Maxwell–Garnett Modeling. Advanced Functional Materials, 2011, 21, 3502-3507.	7.8	55
35	Rational Design of Functional Oxide Thin Films with Embedded Magnetic or Plasmonic Metallic Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 9957-9960.	7.2	25
37	H ₂ Production by Renewables Photoreforming on Pt–Au/TiO ₂ Catalysts Activated by Reduction. ChemSusChem, 2012, 5, 1800-1811.	3.6	102
38	Transparent, Homogeneous Tin Oxide (SnO ₂) Thin Films Containing SnO ₂ -Coated Gold Nanoparticles. Chemistry of Materials, 2013, 25, 4697-4702.	3.2	25

#	Article	IF	Citations
39	Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem, 2013, 5, 513-518.	1.8	28
40	Wavelength Selective Antireflective Coatings on Plastics with Hydrophobic Surfaces. Industrial & Engineering Chemistry Research, 2013, 52, 7737-7745.	1.8	12
41	Synthesis of a novel Cul/Cull-containing sandwich-type cluster and its catalytic electron transfer property. RSC Advances, 2014, 4, 63670-63676.	1.7	12
42	Enhanced luminescence of quantum dot/dielectric layer/metal colloid multilayer thin films. Applied Surface Science, 2014, 292, 615-619.	3.1	9
43	Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles. Journal of Luminescence, 2014, 146, 247-255.	1.5	24
44	Electrospun anatase TiO ₂ nanofibers with ordered mesoporosity. Journal of Materials Chemistry A, 2014, 2, 19029-19035.	5.2	36
45	Crystal structure tailoring of Au–Cu alloy NPs using the embedding film matrix as template. CrystEngComm, 2014, 16, 56-63.	1.3	12
46	High-performance biofilm photobioreactor based on a GeO2–SiO2–chitosan-medium-coated hollow optical fiber. International Journal of Hydrogen Energy, 2014, 39, 10016-10027.	3.8	11
47	Understanding the Enhancement Mechanisms of Surface Plasmonâ€Mediated Photoelectrochemical Electrodes: A Case Study on Au Nanoparticle Decorated TiO ₂ Nanotubes. Advanced Materials Interfaces, 2015, 2, 1500169.	1.9	73
48	Effect of size and morphology of Au nanostructures on boosting performance of organic photovoltaic devices: Plasmonic and non-plasmonic effects. Current Applied Physics, 2015, 15, 1090-1094.	1.1	0
49	Facile deposition and plasmonic resonance of Ag–Au nanoparticles in titania thin film. New Journal of Chemistry, 2015, 39, 6522-6530.	1.4	23
50	Switched photocurrent direction in Au/TiO2 bilayer thin films. Scientific Reports, 2015, 5, 10852.	1.6	58
51	Enhanced Optoelectronic Conversion Efficiency of CdSe/ZnS Quantum Dot/Graphene/Silver Nanowire Hybrid Thin Films. Nanoscale Research Letters, 2016, 11, 388.	3.1	7
52	Phthalocyanine–Gold Nanoparticle Hybrids: Modulating Quenching with a Silica Matrix Shell ChemPhysChem, 2016, 17, 1579-1585.	1.0	12
53	Sol-Gel Synthesis of Metal Nanoparticle Incorporated Oxide Films on Glass., 2016,, 145-163.		13
54	Extremely fast Au–Ag alloy–dealloy associated reversible plasmonic modifications in SiO ₂ films. Journal of Materials Chemistry C, 2016, 4, 3571-3580.	2.7	15
55	Polyanionic Clusters [M(P4Mo6)2] (M = Ni, Cd) as Effective Molecular Catalysts for the Electron-Transfer Reaction of Ferricyanide to Ferrocyanide. Inorganic Chemistry, 2016, 55, 6435-6442.	1.9	28
56	Spectroscopic properties of B2O3–PbO–Bi2O3–GeO2 glass doped with Sm3+ and gold nanoparticles. Optical Materials, 2016, 52, 230-236.	1.7	22

#	Article	IF	CITATIONS
57	Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst. Chemical Physics Letters, 2016, 643, 53-60.	1.2	28
58	In-situ fabrication of metal–semiconductor (M–S) plasmonic thin films by a chemical spray pyrolysis technique: Optical properties. Solar Energy Materials and Solar Cells, 2016, 144, 352-358.	3.0	3
59	Phosphomolybdate assembly as a low-cost catalyst for the reduction of toxic Cr(<scp>vi</scp>) in aqueous solution. Dalton Transactions, 2017, 46, 7917-7925.	1.6	23
60	Effect of gold nanoparticles in broadband near-infrared emission of Pr3+ doped B2O3–PbO–Bi2O3–GeO2 glass. Journal of Luminescence, 2017, 181, 147-152.	1.5	17
61	Low energy ion irradiation studies of fullerene C 70 thin films – An emphasis on mapping the local structure modifications. Journal of Physics and Chemistry of Solids, 2018, 117, 204-214.	1.9	9
62	Structural Evolution of Silicon Carbide Phase from the Polycarbosilane Cured with Iodine: NMR Study. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2221-2230.	1.9	10
63	Achieving Color and Function with Structure: Optical and Catalytic Support Properties of ZrO ₂ Inverse Opal Thin Films. ACS Omega, 2018, 3, 9658-9674.	1.6	27
64	In Situ Synthesis of Mesoporous TiO ₂ Nanofibers Surface-Decorated with AuAg Alloy Nanoparticles Anchored by Heterojunction Exhibiting Enhanced Solar Active Photocatalysis. Langmuir, 2019, 35, 14364-14375.	1.6	21
65	ZrO2 incorporated TiO2 based solar reflective nanocomposite coatings on glass to be used as energy saving building components. SN Applied Sciences, 2019, 1, 1.	1.5	4
66	Thermally induced plasmonic resonance of Cu nanoparticles in fullerene C70 matrix. Vacuum, 2019, 159, 423-429.	1.6	5
67	Enhanced photoelectric response of plasmon-active ZnO nanorods by spatial modulation of dielectric environment. Journal of Alloys and Compounds, 2019, 776, 149-155.	2.8	2
68	Enhancing Non-linear Response of Fullerene via Incorporation of Gold Nanoparticles. Plasmonics, 2020, 15, 361-370.	1.8	1
69	Influencing the Electron Density of Nanosized Au Colloids via Immobilization on MgO to Stimulate Surface Reaction Activities. Langmuir, 2020, 36, 14203-14213.	1.6	1
70	Direct co-deposition of mono-sized nanoparticles during sputtering. Scripta Materialia, 2020, 186, 387-391.	2.6	8
71	Photocatalytic Evaluation of Anatase TiO ₂ Coating on Ceramic Tiles by Raman Spectroscopy. Transactions of the Indian Ceramic Society, 2020, 79, 13-17.	0.4	7
72	Au-WO3 Nanocomposite Coatings for Localized Surface Plasmon Resonance Sensing. Materials, 2020, 13, 246.	1.3	12
74	Ptâ€V ₂ O ₅ /NT and Ptâ€WO ₃ /NT Titanate Nanotubes with Strong Photocatalytic Activity under Visible Light. ChemistrySelect, 2019, 4, 1023-1030.	0.7	7
75	Spray Deposition of Au/TiO2 Composite Thin Films Using Preformed Nanoparticles., 2009,, 395-401.		7

#	Article	lF	CITATIONS
76	A Preparative Approach of TiO ₂ -ZrO ₂ Coating Using Aquo-Based TiO ₂ Precursor Useful for Light Reflective Application. Transactions of the Indian Ceramic Society, 2021, 80, 227-233.	0.4	2
77	Plasmon Mediated Electron Transfer and Temperature Dependent Electronâ€Phonon Scattering in Gold Nanoparticles Embedded in Dielectric Films. ChemPhysChem, 2022, 23, .	1.0	5