Stresses Generated During Convective and Microwave

Drying Technology 23, 1875-1893

DOI: 10.1080/07373930500210226

Citation Report

#	Article	IF	CITATIONS
1	Analysis of Effectiveness and Stress Development during Convective and Microwave Drying. Drying Technology, 2007, 26, 64-77.	3.1	28
2	Residual Stresses in Dried Bodies. Drying Technology, 2007, 25, 629-637.	3.1	11
3	Heat and mass transfer during microwaveâ€convective drying. AICHE Journal, 2010, 56, 24-35.	3.6	12
4	CONVECTIVE DRYING OF PUMPKIN: INFLUENCE OF PRETREATMENT AND DRYING TEMPERATURE. Journal of Food Process Engineering, 2009, 32, 88-103.	2.9	41
5	Effectiveness of hybrid drying. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1302-1309.	3.6	14
6	Cohesive Strength of Materials during Drying Processes. Drying Technology, 2009, 27, 863-869.	3.1	13
7	Drying-Induced Stresses during Convective and Combined Microwave and Convective Drying of Saturated Porous Media. Drying Technology, 2009, 27, 851-856.	3.1	35
8	Control of mechanical processes in drying. Theory and experiment. Chemical Engineering Science, 2010, 65, 890-899.	3.8	21
9	A Model for Drying of Porous Materials: From Generality to Specific Applications. Drying Technology, 2011, 29, 1542-1555.	3.1	6
10	Comparative Study of Two Methods of Drying an Electro-Porcelain Paste. Drying Technology, 2012, 30, 37-43.	3.1	3
11	Modeling of heat and moisture transfers with stress–strain formation during convective air drying of deformable media. Heat and Mass Transfer, 2012, 48, 1697-1705.	2.1	21
12	Fracturing of Clay During Drying: Modelling and Numerical Simulation. Transport in Porous Media, 2012, 95, 465-481.	2.6	17
13	Damage analysis of microwaveâ€dried materials. AICHE Journal, 2012, 58, 2097-2104.	3.6	14
14	Combined Convective and Microwave Drying of Agglomerated Sand: Internal Transfer Modeling with the Gas Pressure Effect. Drying Technology, 2013, 31, 898-904.	3.1	6
15	Optimal control of convective drying of saturated porous materials. AICHE Journal, 2013, 59, 4846-4857.	3.6	5
16	Comparisons of the REA with Fickian-type drying theories, Luikov's and Whitaker's approaches. , 0, , $169-211$.		O
17	Strain–Stress Formation During Stationary and Intermittent Drying of Deformable Media. Drying Technology, 2014, 32, 1245-1255.	3.1	16
18	Modelling of drying induced stress of clay: elastic and viscoelastic behaviours. Mechanics of Time-Dependent Materials, 2014, 18, 97-111.	4.4	20

#	Article	IF	Citations
19	Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes. Energy Conversion and Management, 2014, 87, 832-839.	9.2	26
21	2-D Hydro-Viscoelastic Model for Convective Drying of Highly Deformable Saturated Product. Drying Technology, 2015, 33, 1872-1882.	3.1	4
22	Drying of granular medium by hot air and microwaves. Modeling and prediction of internal gas pressure and binder distribution. Powder Technology, 2015, 286, 636-644.	4.2	9
23	Evolution of mechanical properties of parboiled brown rice kernels during impinging stream drying. Drying Technology, 2016, 34, 1843-1853.	3.1	4
24	2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material. Comptes Rendus - Mecanique, 2017, 345, 248-258.	2.1	1
25	Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel. LWT - Food Science and Technology, 2017, 77, 110-118.	5.2	51
26	Effect of Microwave Power Coupled with Hot Air Drying on Sorption Isotherms and Microstructure of Orange Peel. Food and Bioprocess Technology, 2018, 11, 723-734.	4.7	19
27	Numerical modeling assessment of mechanical effect in bovine leather drying process. Drying Technology, 2018, 36, 1313-1325.	3.1	2
28	Effect of microwave-vacuum, ultrasonication, and freezing on mass transfer kinetics and diffusivity during osmotic dehydration of cranberries. Drying Technology, 2018, 36, 1158-1169.	3.1	32
29	Microwave drying of wet clay with intermittent heating. Drying Technology, 2019, 37, 664-678.	3.1	9
30	Stress fissuring and process duration during rough rice convective drying affected by continuous and stepwise changes in air temperature. Drying Technology, 2019, 37, 198-207.	3.1	14
31	Mechanical properties changes in oak (Quersus canariensis) and stone pine (Pinus pinea) wood subjected to various convective drying conditions. European Journal of Environmental and Civil Engineering, 2020, 24, 2117-2129.	2.1	2
32	Sensitivity analysis of intermittent microwave convective drying based on multiphase porous media models. International Journal of Thermal Sciences, 2020, 153, 106344.	4.9	17
35	Effects of drying temperature on drying kinetics and eurycomanone content of Eurycoma longifolia roots. Food Research, 2017, 1, 270-275.	0.8	2
36	Processo de secagem de materiais cer \tilde{A}^{\sharp} micos argilosos: uma revis \tilde{A}^{\sharp} o. Research, Society and Development, 2020, 9, e78591110300.	0.1	1
39	Lowâ€temperature microwaveâ€assisted drying of sliced bitter melon: Drying kinetics and rehydration characteristics. Journal of Food Process Engineering, 2022, 45, .	2.9	3