Pressure Dependence of Fragile-to-Strong Transition and in Supercooled Confined Water

Physical Review Letters 95, 117802 DOI: 10.1103/physrevlett.95.117802

Citation Report

#	Article	IF	CITATIONS
1	Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. Physical Review E, 2005, 72, 051503.	2.1	206
2	Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16558-16562.	7.1	693
3	The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results. Journal of Chemical Physics, 2006, 124, 161102.	3.0	186
4	Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. Physical Review E, 2006, 74, 031108.	2.1	154
5	Dynamical properties of confined supercooled water: an NMR study. Journal of Physics Condensed Matter, 2006, 18, S2285-S2297.	1.8	40
6	The violation of the Stokes-Einstein relation in supercooled water. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12974-12978.	7.1	287
7	Toward Monodispersed Silver Nanoparticles with Unusual Thermal Stability. Journal of the American Chemical Society, 2006, 128, 15756-15764.	13.7	233
8	Glass Transition in Biomolecules and the Liquid-Liquid Critical Point of Water. Physical Review Letters, 2006, 97, 177802.	7.8	199
9	Kinetics of the liquid-liquid transition of triphenyl phosphite. Physical Review B, 2006, 73, .	3.2	32
10	Amorphous ices: experiments and numerical simulations. Journal of Physics Condensed Matter, 2006, 18, R919-R977.	1.8	163
11	Origin of the Dynamic Transition upon Pressurization of Crystalline Proteins. Journal of Physical Chemistry B, 2006, 110, 19619-19624.	2.6	20
12	Neutron scattering and hydrogenous materials. Materials Today, 2006, 9, 34-41.	14.2	25
13	The Puzzling Properties of Supercooled and Glassy Water. Angewandte Chemie - International Edition, 2006, 45, 3402-3405.	13.8	21
15	Percolating networks and liquid–liquid transitions in supercooled water. Journal of Physics Condensed Matter, 2006, 18, S2247-S2259.	1.8	23
16	Relationship between the liquid–liquid phase transition and dynamic behaviour in the Jagla model. Journal of Physics Condensed Matter, 2006, 18, S2239-S2246.	1.8	35
17	Structure and dynamics of water confined in single-wall carbon nanotubes. Journal of Physics Condensed Matter, 2006, 18, S2321-S2334.	1.8	22
18	X-ray-Induced Dissociation of H2O and Formation of an O2-H2 Alloy at High Pressure. Science, 2006, 314, 636-638.	12.6	84
19	Comment on "Pressure Dependence of Fragile-to-Strong Transition and a Possible Second Critical Point in Supercooled Confined Water†Physical Review Letters, 2006, 97, 189802; discussion 189803.	7.8	55

#	ARTICLE	IF	CITATIONS
20	Comment on "Pressure Dependence of Fragile-to-Strong Transition and a Possible Second Critical Point in Supercooled Confined Water― Physical Review Letters, 2006, 97, 189801; discussion 189803.	7.8	58
21	Chen, Liu, and Faraone Reply:. Physical Review Letters, 2006, 97, .	7.8	37
22	Dynamics of water confined in single- and double-wall carbon nanotubes. Journal of Chemical Physics, 2006, 124, 194703.	3.0	117
23	Experimental evidence of fragile-to-strong dynamic crossover in DNA hydration water. Journal of Chemical Physics, 2006, 125, 171103.	3.0	109
24	Molecular dynamics study of orientational cooperativity in water. Physical Review E, 2006, 73, 041505.	2.1	72
25	Observation of fragile-to-strong dynamic crossover in protein hydration water. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9012-9016.	7.1	405
26	Quasielastic and inelastic neutron scattering investigation of fragile-to-strong crossover in deeply supercooled water confined in nanoporous silica matrices. Journal of Physics Condensed Matter, 2006, 18, S2261-S2284.	1.8	67
27	Breakdown of the Stokes-Einstein relation in supercooled water. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12955-12956.	7.1	55
28	Chapter 10 Nano-confined water. Theoretical and Computational Chemistry, 2007, 18, 245-274.	0.4	8
29	Relation between the Widom line and the breakdown of the Stokes-Einstein relation in supercooled water. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9575-9579.	7.1	164
30	Effect of confinement on the liquid-liquid phase transition of supercooled water. Journal of Chemical Physics, 2007, 126, 214701.	3.0	34
31	Observation of the density minimum in deeply supercooled confined water. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9570-9574.	7.1	178
32	Proposed high-pressure calorimetric experiment to probe theoretical predictions on the liquid-liquid critical point hypothesis. Physical Review E, 2007, 76, 021503.	2.1	5
33	Structural properties and liquid spinodal of water confined in a hydrophobic environment. Physical Review E, 2007, 76, 061202.	2.1	40
34	Effect of water-wall interaction potential on the properties of nanoconfined water. Physical Review E, 2007, 75, 011202.	2.1	66
35	Observation of a dynamic crossover in water confined in double-wall carbon nanotubes. Physical Review E, 2007, 76, 021505.	2.1	68
36	Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 424-428.	7.1	273
37	The anomalous behavior of the density of water in the range 30 K < <i>T</i> < 373 K. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18387-18391.	7.1	208

#	Article	IF	CITATIONS
38	Gaussian excitations model for glass-former dynamics and thermodynamics. Journal of Chemical Physics, 2007, 126, 094501.	3.0	50
39	Dielectric properties of water in amorphous mixtures of polymers and other glass forming materials. Journal of Non-Crystalline Solids, 2007, 353, 4523-4527.	3.1	25
40	The structures of normal and supercooled liquid silicon metal and SiGe alloy. Journal of Non-Crystalline Solids, 2007, 353, 2975-2981.	3.1	21
41	Properties of hydration water and its role in protein dynamics. Journal of Physics Condensed Matter, 2007, 19, 205109.	1.8	72
42	Influence of Water Clustering on the Dynamics of Hydration Water at the Surface of a Lysozyme. Biophysical Journal, 2007, 93, 2986-3000.	0.5	64
43	The Widom line of supercooled water. Journal of Physics Condensed Matter, 2007, 19, 205126.	1.8	130
44	Role of the solvent in the dynamical transitions of proteins: The case of the lysozyme-water system. Journal of Chemical Physics, 2007, 127, 045104.	3.0	96
45	New results on water in bulk, nanoconfined, and biological environments. AIP Conference Proceedings, 2007, , .	0.4	2
46	The puzzling unsolved mysteries of liquid water: Some recent progress. Physica A: Statistical Mechanics and Its Applications, 2007, 386, 729-743.	2.6	73
47	Dynamics of confined water in different environments. European Physical Journal: Special Topics, 2007, 141, 49-52.	2.6	24
48	Does confined water exhibit a fragile-to-strong transition?. European Physical Journal: Special Topics, 2007, 141, 53-56.	2.6	61
49	Multiple Phases of Liquid Water. ChemPhysChem, 2008, 9, 2660-2675.	2.1	100
50	Liquid polyamorphism: Possible relation to the anomalous behaviour of water. European Physical Journal: Special Topics, 2008, 161, 1-17.	2.6	52
51	Transport properties of supercooled confined water. European Physical Journal: Special Topics, 2008, 161, 19-33.	2.6	37
53	Dynamics of Hydration Water on Rutile Studied by Backscattering Neutron Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2008, 112, 12334-12341.	3.1	79
54	Clustering Dynamics in Water/Methanol Mixtures: A Nuclear Magnetic Resonance Study at 205 K < <i>T</i> < 295 K. Journal of Physical Chemistry B, 2008, 112, 10449-10454.	2.6	76
55	Water as an Active Constituent in Cell Biology. Chemical Reviews, 2008, 108, 74-108.	47.7	1,814
56	The Low-Temperature Dynamic Crossover Phenomenon in Protein Hydration Water:Â Simulations vs Experiments. Journal of Physical Chemistry B, 2008, 112, 1571-1575.	2.6	81

#	Article	IF	CITATIONS
57	Thermodynamic, structural, and dynamic properties of supercooled water confined in mesoporous MCM-41 studied with calorimetric, neutron diffraction, and neutron spin echo measurements. Journal of Chemical Physics, 2008, 129, 054702.	3.0	93
58	Density Measurement of 1-D Confined Water by Small Angle Neutron Scattering Method:Â Pore Size and Hydration Level Dependences. Journal of Physical Chemistry B, 2008, 112, 4309-4312.	2.6	36
59	Origins of Apparent Fragile-to-Strong Transitions of Protein Hydration Waters. Physical Review Letters, 2008, 101, 225701.	7.8	111
60	Investigating hydration dependence of dynamics of confined water: Monolayer, hydration water and Maxwell–Wagner processes. Journal of Chemical Physics, 2008, 128, 154503.	3.0	109
61	NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12725-12729.	7.1	130
62	Dynamics and thermodynamics of water. Journal of Physics Condensed Matter, 2008, 20, 244114.	1.8	47
63	Dynamical inhomogeneity of liquid Te near the melting temperature proved by inelastic x-ray scattering measurements. Journal of Physics Condensed Matter, 2008, 20, 494244.	1.8	17
64	Pressure effects in supercooled water: comparison between a 2D model of water and experiments for surface water on a protein. Journal of Physics Condensed Matter, 2008, 20, 494210.	1.8	27
65	Structural transformations in amorphous ice and supercooled water and their relevance to the phase diagram of water. Molecular Physics, 2008, 106, 2053-2076.	1.7	70
66	Water polyamorphism: Reversibility and (dis)continuity. Journal of Chemical Physics, 2008, 128, 044510.	3.0	134
67	Observation of a dynamic crossover in RNA hydration water which triggers a dynamic transition in the biopolymer. Physical Review E, 2008, 77, 011908.	2.1	60
68	Absence of a diffusion anomaly of water in the direction perpendicular to hydrophobic nanoconfining walls. Physical Review E, 2008, 77, 030201.	2.1	33
69	Liquid Polyamorphism: Some Unsolved Puzzles of Water in Bulk, Nanoconfined, and Biological Environments. AIP Conference Proceedings, 2008, , .	0.4	9
70	Observation of dynamic crossover and dynamic heterogeneity in hydration water confined in aged cement paste. Journal of Physics Condensed Matter, 2008, 20, 502101.	1.8	29
71	Suppression of the dynamic transition in surface water at low hydration levels: A study of water on rutile. Physical Review E, 2009, 79, 051504.	2.1	61
72	Low-temperature fluid-phase behavior of ST2 water. Journal of Chemical Physics, 2009, 131, 104508.	3.0	139
73	Understanding Static and Dynamic Heterogeneities in Confined Water. Zeitschrift Fur Physikalische Chemie, 2009, 223, 939-956.	2.8	17
74	ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11448-11453.	7.1	71

#	Article	IF	CITATIONS
75	A possible scenario for the fragile-to-strong dynamic crossover predicted by the extended mode-coupling theory for glass transition. Journal of Physics Condensed Matter, 2009, 21, 504101.	1.8	28
76	Single particle dynamics of water confined in a hydrophobically modified MCM-41-S nanoporous matrix. Journal of Chemical Physics, 2009, 130, 134512.	3.0	46
77	Dynamic transitions in a two dimensional associating lattice gas model. Journal of Chemical Physics, 2009, 130, 184902.	3.0	16
78	A tetrahedral entropy for water. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22130-22134.	7.1	98
79	Diffusion Dynamics of Water Molecules in a LiCl Solution: A Low-Temperature Crossover. Journal of Physical Chemistry B, 2009, 113, 14073-14078.	2.6	36
80	Universality of Separation Behavior of Relaxation Processes in Supercooled Aqueous Solutions As Revealed by Broadband Dielectric Measurements. Journal of Physical Chemistry B, 2009, 113, 11448-11452.	2.6	4
81	Corresponding States of Structural Glass Formers. Journal of Physical Chemistry B, 2009, 113, 5563-5567.	2.6	207
82	Unusual phase behavior of one-component systems with two-scale isotropic interactions. Journal of Physics Condensed Matter, 2009, 21, 504106.	1.8	91
83	Dielectric Relaxations in Confined Hydrated Myoglobin. Journal of Physical Chemistry B, 2009, 113, 9606-9613.	2.6	35
84	Hydrogen-bond dynamics of water in a quasi-two-dimensional hydrophobic nanopore slit. Physical Review E, 2009, 79, 041202.	2.1	38
85	Water Confined in Cement Pastes as a Probe of Cement Microstructure Evolution. Journal of Physical Chemistry B, 2009, 113, 3080-3087.	2.6	51
86	Proteins Remain Soft at Lower Temperatures under Pressure. Journal of Physical Chemistry B, 2009, 113, 5001-5006.	2.6	38
87	A monatomic system with a liquid-liquid critical point and two distinct glassy states. Journal of Chemical Physics, 2009, 130, 054505.	3.0	77
88	Heterogeneities in confined water and protein hydration water. Journal of Physics Condensed Matter, 2009, 21, 504105.	1.8	22
89	Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory. Journal of Physics Condensed Matter, 2009, 21, 504102.	1.8	45
90	Anomalies of water and hydrogen bond dynamics in hydrophobic nanoconfinement. Journal of Physics Condensed Matter, 2009, 21, 504108.	1.8	30
91	Thermodynamic and FTIR studies of supercooled water confined to exterior and interior of mesoporous MCM-41. Physical Chemistry Chemical Physics, 2009, 11, 8538.	2.8	43
92	Temperature-Dependent Mechanisms for the Dynamics of Protein-Hydration Waters: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2009, 113, 9386-9392.	2.6	35

#	Article	IF	CITATIONS
93	Evolution from Surface-Influenced to Bulk-Like Dynamics in Nanoscopically Confined Water. Journal of Physical Chemistry B, 2009, 113, 7973-7976.	2.6	97
94	Structural and mechanical properties of glassy water in nanoscale confinement. Faraday Discussions, 2009, 141, 359-376.	3.2	49
95	The liquid water polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15097-15098.	7.1	81
96	Polyamorphism in water. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2010, 86, 165-175.	3.8	40
97	The Dynamic Response Function <i>χ</i> _T (Q,t) of Confined Supercooled Water and its Relation to the Dynamic Crossover Phenomenon. Zeitschrift Fur Physikalische Chemie, 2010, 224, 109-131.	2.8	2
98	Correlated randomness and switching phenomena. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 2880-2893.	2.6	26
99	Resolution of problems in soft matter dynamics by combining calorimetry and other spectroscopies. Journal of Thermal Analysis and Calorimetry, 2010, 99, 123-138.	3.6	18
100	The Widom line as the crossover between liquid-like and gas-like behaviour in supercriticalÂfluids. Nature Physics, 2010, 6, 503-507.	16.7	418
102	Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22457-22462.	7.1	197
103	The glass transition and relaxation behavior of bulk water and a possible relation to confined water. Journal of Chemical Physics, 2010, 132, 014508.	3.0	73
104	Dynamic transitions in a three dimensional associating lattice gas model. Journal of Chemical Physics, 2010, 132, 134904.	3.0	14
105	Anomalous dynamics of water confined in MCM-41 at different hydrations. Journal of Physics Condensed Matter, 2010, 22, 284102.	1.8	49
106	Phase transitions and dynamics of bulk and interfacial water. Journal of Physics Condensed Matter, 2010, 22, 284103.	1.8	16
107	Liquid-Liquid Phase Transition and Class Transition in a Monoatomic Model System. International Journal of Molecular Sciences, 2010, 11, 5184-5200.	4.1	17
108	Dynamic Crossover in Supercooled Confined Water: Understanding Bulk Properties through Confinement. Journal of Physical Chemistry Letters, 2010, 1, 729-733.	4.6	148
109	Liquid polymorphism: water in nanoconfined and biological environments. Journal of Physics Condensed Matter, 2010, 22, 284101.	1.8	40
110	Calorimetric and Neutron Diffraction Studies on Transitions of Water Confined in Nanoporous Copper Rubeanate. Journal of Physical Chemistry B, 2010, 114, 8405-8409.	2.6	8
111	A Low-Temperature Crossover in Water Dynamics in an Aqueous LiCl Solution: Diffusion Probed by Neutron Spinâ ''Echo and Nuclear Magnetic Resonance. Journal of Physical Chemistry B, 2010, 114, 16737-16743.	2.6	30

#	Article	IF	CITATIONS
112	Low-temperature dynamics of water confined in a hydrophobic mesoporous material. Physical Review E, 2010, 82, 020501.	2.1	21
113	Dynamical Crossover and Breakdown of the Stokesâ~'Einstein Relation in Confined Water and in Methanol-Diluted Bulk Water. Journal of Physical Chemistry B, 2010, 114, 1870-1878.	2.6	84
114	Widom line and the liquid–liquid critical point for the TIP4P/2005 water model. Journal of Chemical Physics, 2010, 133, 234502.	3.0	267
115	A route to explain water anomalies from results on an aqueous solution of salt. Journal of Chemical Physics, 2010, 132, 134508.	3.0	99
116	The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment. Journal of Physics Condensed Matter, 2010, 22, 284106.	1.8	41
117	Finite-size scaling study of the vapor-liquid critical properties of confined fluids: Crossover from three dimensions to two dimensions. Journal of Chemical Physics, 2010, 132, 144107.	3.0	29
118	Diffusion anomaly and dynamic transitions in the Bell–Lavis water model. Journal of Chemical Physics, 2010, 133, 104904.	3.0	14
119	Optical Kerr-effect study of trans- and cis-1,2-dichloroethene: liquid–liquid transition or super-Arrhenius relaxation. Physical Chemistry Chemical Physics, 2010, 12, 4191.	2.8	17
120	Fragile-to-strong transition in metallic glass-forming liquids. Journal of Chemical Physics, 2010, 133, 014508.	3.0	136
121	Multiple relaxation processes versus the fragile-to-strong transition in confined water. Physical Chemistry Chemical Physics, 2011, 13, 19773.	2.8	28
122	Polarization induced water molecule dissociation below the first-order electronic-phase transition temperature. Physical Chemistry Chemical Physics, 2011, 13, 15175.	2.8	10
123	Static and pulsed field gradient nuclear magnetic resonance studies of water diffusion in protein matrices. Journal of Chemical Physics, 2011, 135, 164503.	3.0	17
124	Quasi-Elastic Neutron Scattering Studies on Dynamics of Water Confined in Nanoporous Copper Rubeanate Hydrates. Journal of Physical Chemistry B, 2011, 115, 13563-13569.	2.6	25
125	Puzzle of ProteinDynamical Transition. Journal of Physical Chemistry B, 2011, 115, 7736-7743.	2.6	89
126	Excess entropy of water in a supercooled solution of salt. Molecular Physics, 2011, 109, 2969-2979.	1.7	8
127	Anomalies in supercooled NaCl aqueous solutions: A microscopic perspective. Journal of Chemical Physics, 2011, 134, 244510.	3.0	20
128	Thermodynamical properties of glass forming systems: A Nuclear Magnetic Resonance analysis. Journal of Non-Crystalline Solids, 2011, 357, 286-292.	3.1	3
129	Water in nanoconfined and biological environments. Journal of Non-Crystalline Solids, 2011, 357, 629-640.	3.1	25

#	Article	IF	CITATIONS
130	The role of primitive relaxation in the dynamics of aqueous mixtures, nano-confined water and hydrated proteins. Journal of Non-Crystalline Solids, 2011, 357, 641-654.	3.1	40
131	The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. Journal of Chemical Physics, 2011, 135, 134503.	3.0	300
132	Free energy calculations for a flexible water model. Physical Chemistry Chemical Physics, 2011, 13, 19714.	2.8	43
133	Study of the ST2 model of water close to the liquid–liquid critical point. Physical Chemistry Chemical Physics, 2011, 13, 19759.	2.8	117
134	Thermal Behavior, Structure, and Dynamics of Low Temperature Water Confined in Mesoporous Materials MCM-41. Bunseki Kagaku, 2011, 60, 115-130.	0.2	3
135	Resolving the controversy on the glass transition temperature of water?. Journal of Chemical Physics, 2011, 135, 104504.	3.0	95
136	The role of the dynamic crossover temperature and the arrest in glass-forming fluids. European Physical Journal E, 2011, 34, 94.	1.6	33
137	Mesopores provide an amorphous state suitable for studying biomolecular structures at cryogenic temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14145-14150.	7.1	25
138	Anomalous change in the dynamics of a supercritical fluid. Physical Review E, 2011, 84, 051204.	2.1	15
139	Diffusion processes in water on oxide surfaces: Quasielastic neutron scattering study of hydration water in rutile nanopowder. Physical Review E, 2011, 84, 031505.	2.1	7
140	Density minimum in supercooled confined water. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1192; author reply E1193-4.	7.1	20
141	Density hysteresis of heavy water confined in a nanoporous silica matrix. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12206-12211.	7.1	94
142	Effect of hydration on the dielectric properties of C-S-H gel. Journal of Chemical Physics, 2011, 134, 034509.	3.0	49
143	Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution. Journal of Chemical Physics, 2011, 134, 204906.	3.0	37
144	Temperature dependence of structure and density for D ₂ O confined in MCM-41-S. Journal of Physics Condensed Matter, 2012, 24, 064106.	1.8	9
145	Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments. Journal of Chemical Physics, 2012, 137, 114510.	3.0	12
146	Density profile of water confined in cylindrical pores in MCM-41 silica. Journal of Physics Condensed Matter, 2012, 24, 064107.	1.8	27
147	Computer simulations of dynamic crossover phenomena in nanoconfined water. Journal of Physics Condensed Matter, 2012, 24, 064110.	1.8	6

#	Article	IF	CITATIONS
148	Physical Origin of Anharmonic Dynamics in Proteins: New Insights From Resolution-Dependent Neutron Scattering on Homomeric Polypeptides. Physical Review Letters, 2012, 109, 128102.	7.8	57
149	Fragile-to-strong crossover coupled to the liquid-liquid transition in hydrophobic solutions. Physical Review E, 2012, 85, 051503.	2.1	21
150	No fragile-to-strong crossover in LiCl-H2O solution. Journal of Chemical Physics, 2012, 136, 124512.	3.0	38
151	Mode coupling and fragile to strong transition in supercooled TIP4P water. Journal of Chemical Physics, 2012, 137, 164503.	3.0	58
152	Microviscosity of Supercooled Water Confined within Aminopropyl-modified Mesoporous Silica as Studied by Time-resolved Fluorescence Spectroscopy. Analytical Sciences, 2012, 28, 1065-1070.	1.6	15
153	Pore Size Dependent Behavior of Hydrated Ag+ Ions Confined in Mesoporous MCM-41 Materials under Synchrotron X-ray Irradiation. Analytical Sciences, 2012, 28, 639-641.	1.6	2
154	Enhanced translational diffusion of confined water under electric field. Physical Review E, 2012, 86, 021506.	2.1	23
155	Dynamics near a liquid-liquid phase transition in a non-tetrahedral liquid: The case of gallium. Journal of Chemical Physics, 2012, 136, 064513.	3.0	16
156	Widom line and noise-power spectral analysis of a supercritical fluid. Physical Review E, 2012, 85, 051201.	2.1	3
157	A molecular dynamics study of the equation of state and the structure of supercooled aqueous solutions of methanol. Journal of Chemical Physics, 2012, 137, 184503.	3.0	19
158	Effect of pressure on the anomalous response functions of a confined water monolayer at low temperature. Journal of Chemical Physics, 2012, 137, 204502.	3.0	16
159	Dynamics of Water Absorbed in Polyamides. Macromolecules, 2012, 45, 1676-1687.	4.8	61
160	Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization. European Physical Journal E, 2012, 35, 113.	1.6	274
161	Dynamic Behavior of Oligomeric Inorganic Pyrophosphatase Explored by Quasielastic Neutron Scattering. Journal of Physical Chemistry B, 2012, 116, 9917-9921.	2.6	9
162	Computational Studies of Pressure, Temperature, and Surface Effects on the Structure and Thermodynamics of Confined Water. Annual Review of Physical Chemistry, 2012, 63, 179-200.	10.8	120
163	Some Anomalies in the Self-Diffusion of Water in Disordered Carbons. Journal of Physical Chemistry C, 2012, 116, 3667-3676.	3.1	32
164	Phase diagram of supercooled water confined to hydrophilic nanopores. Journal of Chemical Physics, 2012, 137, 044509.	3.0	91
165	How safe is to safely enter in the water no-man's land?. Journal of Molecular Liquids, 2012, 176, 39-43.	4.9	3

#	Article	IF	CITATIONS
166	Water confined in MCM-41: a mode coupling theory analysis. Journal of Physics Condensed Matter, 2012, 24, 064109.	1.8	43
167	Diffusion enhancement in core-softened fluid confined in nanotubes. Journal of Chemical Physics, 2012, 137, 084504.	3.0	40
168	A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water. Scientific Reports, 2012, 2, 993.	3.3	90
169	Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. Physical Chemistry Chemical Physics, 2012, 14, 3852.	2.8	76
170	Water–protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions. Physical Chemistry Chemical Physics, 2012, 14, 11573.	2.8	46
171	Apparent Decoupling of the Dynamics of a Protein from the Dynamics of its Aqueous Solvent. Journal of Physical Chemistry Letters, 2012, 3, 380-385.	4.6	24
172	The dynamical crossover phenomenon in bulk water, confined water and protein hydration water. Journal of Physics Condensed Matter, 2012, 24, 064103.	1.8	48
173	Water dynamics in a lithium chloride aqueous solution probed by Brillouin neutron and x-ray scattering. Journal of Physics Condensed Matter, 2012, 24, 064102.	1.8	14
174	Common features in the microscopic dynamics of hydration water on organic and inorganic surfaces. Journal of Physics Condensed Matter, 2012, 24, 064104.	1.8	8
175	Liquid–liquid transition without macroscopic phase separation in a water–glycerol mixture. Nature Materials, 2012, 11, 436-443.	27.5	169
176	Liquid–liquid transition in a strong bulk metallic glass-forming liquid. Nature Communications, 2013, 4, 2083.	12.8	169
177	Water at Biological and Inorganic Interfaces. Food Biophysics, 2013, 8, 153-169.	3.0	28
178	Radical re-appraisal of water structure in hydrophilic confinement. Chemical Physics Letters, 2013, 590, 1-15.	2.6	40
179	Anharmonic onsets in polypeptides revealed by neutron scattering: Experimental evidences and quantitative description of energy resolution dependence. Biophysical Chemistry, 2013, 180-181, 29-36.	2.8	9
180	Amorphous water in three-dimensional confinement of zeolite-templated carbon. Chemical Physics Letters, 2013, 571, 54-60.	2.6	15
181	Importance of many-body orientational correlations in the physical description of liquids. Faraday Discussions, 2013, 167, 9.	3.2	77
182	Concurrent Observation of Bulk and Protein Hydration Water by Spin-Label ESR under Nanoconfinement. Langmuir, 2013, 29, 13865-13872.	3.5	8
183	Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water. Journal of Chemical Physics, 2013, 139, 044509.	3.0	11

#	Article	IF	CITATIONS
184	The thermodynamical response functions and the origin of the anomalous behavior of liquid water. Faraday Discussions, 2013, 167, 95.	3.2	40
185	Effects of surface structure and solvophilicity on the crystallization of confined liquids. Soft Matter, 2013, 9, 11374.	2.7	12
186	Deeply-cooled water under strong confinement: neutron scattering investigations and the liquid–liquid critical point hypothesis. Physical Chemistry Chemical Physics, 2013, 15, 721-745.	2.8	70
187	Protein dynamics by neutron scattering: The protein dynamical transition and the fragile-to-strong dynamical crossover in hydrated lysozyme. Chemical Physics, 2013, 424, 26-31.	1.9	9
189	First-Order Liquid-Liquid Phase Transition in Cerium. Physical Review Letters, 2013, 110, 125503.	7.8	111
190	Breakdown of the Stokes-Einstein relation in two, three, and four dimensions. Journal of Chemical Physics, 2013, 138, 12A548.	3.0	108
191	Structure and dynamics of supercooled water in neutral confinements. Journal of Chemical Physics, 2013, 138, 134503.	3.0	40
192	Hydration-dependent dynamics of deeply cooled water under strong confinement. Physical Review E, 2013, 87, 042312.	2.1	19
193	Relation Between Flow Enhancement Factor and Structure for Core-Softened Fluids Inside Nanotubes. Journal of Physical Chemistry B, 2013, 117, 7047-7056.	2.6	40
195	The Boson peak in supercooled water. Scientific Reports, 2013, 3, 1980.	3.3	47
196	Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl. Journal of Chemical Physics, 2013, 139, 204503.	3.0	30
197	Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water. Journal of Chemical Physics, 2013, 139, 121102.	3.0	37
198	Sudden switchover between the polyamorphic phase separation and the glass-to-liquid transition in glassy LiCl aqueous solutions. Journal of Chemical Physics, 2013, 138, 084507.	3.0	28
199	Distinct dynamical and structural properties of a core-softened fluid when confined between fluctuating and fixed walls. Journal of Chemical Physics, 2013, 139, 154502.	3.0	28
200	Cause of the fragile-to-strong transition observed in water confined in C-S-H gel. Journal of Chemical Physics, 2013, 139, 164714.	3.0	23
201	Core-softened fluids as a model for water and the hydrophobic effect. Journal of Chemical Physics, 2013, 139, 114504.	3.0	24
202	Liquid–liquid transition in supercooled water suggested by microsecond simulations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12209-12212.	7.1	71

#	Article	lF	CITATIONS
204	Observation of nanophase segregation in LiCl aqueous solutions from transient grating experiments. Journal of Chemical Physics, 2013, 139, 044501.	3.0	17
205	Dynamics of nanoconfined water under pressure. Physical Review E, 2013, 88, 022316.	2.1	7
206	Density and anomalous thermal expansion of deeply cooled water confined in mesoporous silica investigated by synchrotron X-ray diffraction. Journal of Chemical Physics, 2013, 139, 064502.	3.0	35
207	Revisiting dynamics near a liquid-liquid phase transition in Si and Ga: The fragile-to-strong transition. Journal of Chemical Physics, 2013, 139, 224504.	3.0	8
209	Possible relation of water structural relaxation to water anomalies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4899-4904.	7.1	64
210	Anomalies in a waterlike model confined between plates. Journal of Chemical Physics, 2013, 138, 084505.	3.0	49
211	Thermal Behavior and Structure of Low-temperature Water Confined in Sephadex G15 Gel by Differential Scanning Calorimetry and X-ray Diffraction Method. Analytical Sciences, 2013, 29, 353-359.	1.6	17
212	Finding of a Liquid–Liquid Phase Transition in the Nanopore Water Doped with Hydroxylamine of a Small Amount. Journal of the Physical Society of Japan, 2013, 82, 124606.	1.6	3
213	Dynamics of the Fast Component of Nano-Confined Water Under Electric Field. Journal of the Physical Society of Japan, 2013, 82, SA007.	1.6	1
214	Anomalies of water. , 2013, , 13-26.		3
215	Structural Regulation of Mesoporous Silica and Characterization of the Microenvironment Inside a Silica Mesopore. Bunseki Kagaku, 2013, 62, 581-588.	0.2	1
216	Distinct Properties of Nanofibrous Amorphous Ice. Materials, 2014, 7, 7653-7661.	2.9	1
217	Pressure Dependence of the Liquid–Liquid Phase Transition of Nanopore Water Doped Slightly with Hydroxylamine, and a Phase Behavior Predicted for Pure Water. Journal of the Physical Society of Japan, 2014, 83, 094601.	1.6	4
218	Model of waterlike fluid under confinement for hydrophobic and hydrophilic particle-plate interaction potentials. Physical Review E, 2014, 89, 012110.	2.1	41
219	Dynamics and thermodynamics of polymer glasses. Journal of Physics Condensed Matter, 2014, 26, 153101.	1.8	92
220	The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid-liquid crossover. Journal of Chemical Physics, 2014, 141, 18C510.	3.0	19
221	Dynamics of Nanoscale Polarization Fluctuations in a Uniaxial Relaxor. Physical Review Letters, 2014, 113, 167601.	7.8	13
	,		

#	Article	IF	CITATIONS
223	Phase separation during freezing upon warming of aqueous solutions. Journal of Chemical Physics, 2014, 141, 18C533.	3.0	7
224	Existence of a liquid-liquid phase transition in methanol. Physical Review E, 2014, 90, 062306.	2.1	19
225	Enzymes immobilized in mesoporous silica: A physical–chemical perspective. Advances in Colloid and Interface Science, 2014, 205, 339-360.	14.7	198
226	Behavior of the Widom Line in Critical Phenomena. Physical Review Letters, 2014, 112, 135701.	7.8	51
227	The hydrophobic effect in a simple isotropic water-like model: Monte Carlo study. Journal of Chemical Physics, 2014, 140, 144904.	3.0	10
228	Experimental Evidence for a Liquid-Liquid Crossover in Deeply Cooled Confined Water. Physical Review Letters, 2014, 113, 215701.	7.8	19
229	Local Orientational Order in Liquids Revealed by Resonant Vibrational Energy Transfer. Physical Review Letters, 2014, 113, 207801.	7.8	13
230	Possibility of H2O2 decomposition in thin liquid films on Mars. Planetary and Space Science, 2014, 103, 153-166.	1.7	12
231	A Direct Link between the Fragile-to-Strong Transition and Relaxation in Supercooled Liquids. Journal of Physical Chemistry Letters, 2014, 5, 1170-1174.	4.6	49
232	NMR studies on the temperature-dependent dynamics of confined water. Physical Chemistry Chemical Physics, 2014, 16, 19229-19240.	2.8	60
233	Thermodynamic properties of bulk and confined water. Journal of Chemical Physics, 2014, 141, 18C504.	3.0	35
234	Dynamic Crossovers and Stepwise Solidification of Confined Water: A ² H NMR Study. Journal of Physical Chemistry Letters, 2014, 5, 174-178.	4.6	70
235	Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids. Journal of Physical Chemistry B, 2014, 118, 10258-10265.	2.6	14
236	Dynamics of lysozyme and its hydration water under an electric field. Journal of Biological Physics, 2014, 40, 167-178.	1.5	9
237	Continuous trends. Nature Materials, 2014, 13, 671-673.	27.5	23
238	Liquid-liquid phase transition in water. Science China: Physics, Mechanics and Astronomy, 2014, 57, 810-818.	5.1	14
239	Boson Peak in Deeply Cooled Confined Water: A Possible Way to Explore the Existence of the Liquid-to-Liquid Transition in Water. Physical Review Letters, 2014, 112, 237802.	7.8	24
240	Thermodynamics and the hydrophobic effect in a core-softened model and comparison with experiments. Physical Review E, 2014, 90, 022115.	2.1	8

#	Article	IF	CITATIONS
241	Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy. Biophysical Chemistry, 2014, 185, 25-31.	2.8	23
242	Slow dynamics of a tagged particle in a supercooled liquid. Physical Review E, 2015, 92, 062309.	2.1	8
243	Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition. Physical Review Letters, 2015, 115, 235701.	7.8	13
244	Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water. Scientific Reports, 2015, 5, 15714.	3.3	28
245	The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments. Journal of Chemical Physics, 2015, 143, 114502.	3.0	35
246	Confinement effects on the liquid-liquid phase transition and anomalous properties of a monatomic water-like liquid. Journal of Chemical Physics, 2015, 143, 244503.	3.0	9
247	Density of hydrophobically confined deeply cooled water investigated by small angle X-ray scattering. Journal of Chemical Physics, 2015, 143, 094704.	3.0	4
248	Metal-organic frameworks as host materials of confined supercooled liquids. Journal of Chemical Physics, 2015, 143, 154505.	3.0	14
249	Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis. Journal of Chemical Physics, 2015, 143, 114508.	3.0	24
250	Anomalous dielectric relaxation of water confined in graphite oxide. Journal of Applied Physics, 2015, 118, 124104.	2.5	11
251	The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis. Frontiers of Physics, 2015, 10, 1.	5.0	10
252	Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids. Journal of Chemical Physics, 2015, 142, 064508.	3.0	51
253	Probing the structure of a liquid metal during vitrification. Acta Materialia, 2015, 87, 174-186.	7.9	38
254	Crossing the Widom-line – Supercritical pseudo-boiling. Journal of Supercritical Fluids, 2015, 98, 12-16.	3.2	256
255	Quantum effects in the dynamics of deeply supercooled water. Physical Review E, 2015, 91, 022312.	2.1	21
256	The associating lattice gas in the presence of interacting solutes. Journal of Chemical Physics, 2015, 142, 094502.	3.0	2
257	Continuous and Discontinuous Dynamic Crossover in Supercooled Water in Computer Simulations. Journal of Physical Chemistry Letters, 2015, 6, 3170-3174.	4.6	8
258	Liquid–Liquid Phase Transition and Its Phase Diagram in Deeply-Cooled Heavy Water Confined in a Nanoporous Silica Matrix. Journal of Physical Chemistry Letters, 2015, 6, 2009-2014.	4.6	27

#	Article	IF	CITATIONS
259	Relation between the two-body entropy and the relaxation time in supercooled water. Physical Review E, 2015, 91, 012107.	2.1	18
260	Effects of confinement on anomalies and phase transitions of core-softened fluids. Journal of Chemical Physics, 2015, 142, 134502.	3.0	21
261	The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study. Journal of Chemical Physics, 2015, 142, 244507.	3.0	4
262	Terahertz dynamics of water before and after water shedding from reverse micelles. Journal of Molecular Liquids, 2015, 210, 37-43.	4.9	9
263	Physics of the Jagla model as the liquid-liquid coexistence line slope varies. Journal of Chemical Physics, 2015, 142, 224501.	3.0	19
264	Relaxation dynamics of deeply supercooled confined water in <scp>l,l</scp> -diphenylalanine micro/nanotubes. Physical Chemistry Chemical Physics, 2015, 17, 32126-32131.	2.8	7
265	Phase diagram of water confined in MCM-41 up to 700 MPa. Journal of Chemical Physics, 2015, 142, 084505.	3.0	5
266	Dynamics of Ice/Water Confined in Nanoporous Alumina. Journal of Physical Chemistry B, 2015, 119, 14814-14820.	2.6	27
267	Probing the molecular connectivity of water confined in polymer hydrogels. Journal of Chemical Physics, 2015, 142, 014901.	3.0	13
268	Some thermodynamical aspects of protein hydration water. Journal of Chemical Physics, 2015, 142, 215103.	3.0	22
269	Viscosity of deeply supercooled water and its coupling to molecular diffusion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12020-12025.	7.1	168
270	Supercritical phenomenon of hydrogen beyond the liquid–liquid phase transition. New Journal of Physics, 2015, 17, 063023.	2.9	12
271	Glass transition and positional ordering of hydrogen in bulk and nanocrystalline palladium. Physical Review B, 2015, 92, .	3.2	23
272	Escaping the no man's land: Recent experiments on metastable liquid water. Journal of Non-Crystalline Solids, 2015, 407, 441-448.	3.1	73
273	Dynamics of interfacial water. Journal of Non-Crystalline Solids, 2015, 407, 449-458.	3.1	40
274	Dynamics of deeply supercooled interfacial water. Journal of Physics Condensed Matter, 2015, 27, 033102.	1.8	58
275	Water: A Tale of Two Liquids. Chemical Reviews, 2016, 116, 7463-7500.	47.7	627
276	Effect of water polyamorphism on the molecular vibrations of glycerol in its glassy aqueous solutions. Journal of Chemical Physics, 2016, 145, 024501.	3.0	10

		CITATION RE	PORT	
#	Article		IF	CITATIONS
277	Some Considerations on Confined Water: The Thermal Behavior of Transport Properties Water-Glycerol and Water-Methanol Mixtures. MRS Advances, 2016, 1, 1891-1902.	in	0.9	2
278	Two structural relaxations in protein hydration water and their dynamic crossovers. Journ Chemical Physics, 2016, 145, 044503.	nal of	3.0	36
279	Improved oil recovery in nanopores: NanolOR. Scientific Reports, 2016, 6, 28128.		3.3	29
280	Effects of confinement between attractive and repulsive walls on the thermodynamics or anomalous fluid. Physical Review E, 2016, 94, 062604.	fan	2.1	14
281	NMR spectroscopy study of local correlations in water. Journal of Chemical Physics, 2016	5, 145, 214503.	3.0	9
282	Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water. Chemical Physics, 2016, 144, 074503.	Journal of	3.0	63
283	Some considerations on the transport properties of water-glycerol suspensions. Journal o Physics, 2016, 144, 014501.	of Chemical	3.0	7
284	Dynamical properties of water-methanol solutions. Journal of Chemical Physics, 2016, 14	4, 064506.	3.0	31
285	Anomalous properties and the liquid-liquid phase transition in gallium. Journal of Chemic 2016, 145, 054506.	al Physics,	3.0	24
286	Vibrational signatures of the water behaviour upon confinement in nanoporous hydroge Chemistry Chemical Physics, 2016, 18, 12252-12259.	ls. Physical	2.8	10
287	Dynamical and orientational structural crossovers in low-temperature glycerol. Physical F 2016, 94, 012616.	leview E,	2.1	6
288	Dynamic mechanical analysis of supercooled water in nanoporous confinement. Europhy 2016, 115, 46001.	rsics Letters,	2.0	10
289	Competing coexisting phases in 2D water. Scientific Reports, 2016, 6, 25938.		3.3	25
290	Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Scientific Reports, 2016, 6, 33284.	Water.	3.3	13
291	Liquid-liquid critical point in a simple analytical model of water. Physical Review E, 2016,	94, 042126.	2.1	14
292	Quasielastic Neutron Scattering: An Advanced Technique for Studying the Relaxation Pro Condensed Matter. , 2016, , 761-813.	ocesses in		2
293	Experimental Verification of Liquid-liquid Critical Point Hypothesis from the View Point of 'Fluctuations'. Review of High Pressure Science and Technology/Koatsuryc To Gijutsu, 2016, 26, 288-296.	f oku No Kagaku	0.0	2
294	Glass Transition and Dynamics of the Polymer and Water in the Poly(vinylpyrrolidone)â€ Mixtures Studied by Dielectric Relaxation Spectroscopy. Journal of Physical Chemistry B, 6882-6889.	"Water 2016, 120,	2.6	18

#	Article	IF	CITATIONS
295	Low-Density Water Structure Observed in a Nanosegregated Cryoprotectant Solution at Low Temperatures from 285 to 238 K. Journal of Physical Chemistry B, 2016, 120, 4439-4448.	2.6	26
296	Glass polymorphism in glycerol–water mixtures: I. A computer simulation study. Physical Chemistry Chemical Physics, 2016, 18, 11042-11057.	2.8	26
297	Dynamical behaviors of structural, constrained and free water in calcium- and magnesium-silicate-hydrate gels. Journal of Colloid and Interface Science, 2016, 469, 157-163.	9.4	15
298	Confined Water as Model of Supercooled Water. Chemical Reviews, 2016, 116, 7608-7625.	47.7	250
299	Structural properties and fragile to strong transition in confined water. Journal of Chemical Physics, 2017, 146, 084505.	3.0	24
301	Pressure Profile for an Associating Lennard-Jones Fluid Confined in a Spherical Cavity. Journal of Physical Chemistry B, 2017, 121, 2142-2152.	2.6	7
302	Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes. Journal of Chemical Physics, 2017, 146, 084502.	3.0	38
303	Disruption of Hydrogen-Bonding Network Eliminates Water Anomalies Normally Observed on Cooling to Its Calorimetric Glass Transition. Journal of Physical Chemistry B, 2017, 121, 4168-4173.	2.6	3
304	Connecting diffusion and entropy of bulk water at the single particle level. Journal of Chemical Sciences, 2017, 129, 825-832.	1.5	3
305	Density profile of nitrogen in cylindrical pores of MCM-41. Chemical Physics Letters, 2017, 683, 529-535.	2.6	17
306	Neutron scattering observation of quasi-free rotations of water confined in carbon nanotubes. Scientific Reports, 2017, 7, 45021.	3.3	22
307	Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses. Nature Communications, 2017, 8, 14679.	12.8	109
308	Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2017, 121, 10371-10381.	2.6	28
309	Similarity law for Widom lines and coexistence lines. Physical Review E, 2017, 95, 052120.	2.1	55
310	Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water. Science Advances, 2017, 3, e1700399.	10.3	75
311	Self-intermediate scattering function analysis of supercooled water confined in hydrophilic silica nanopores. Journal of Chemical Physics, 2017, 146, 214501.	3.0	20
312	Widom Lines in Binary Mixtures of Supercritical Fluids. Scientific Reports, 2017, 7, 3027.	3.3	71
313	On the hydrogen-bond network and the non-Arrhenius transport properties of water. Journal of Physics Condensed Matter, 2017, 29, 015101.	1.8	28

#	Article	IF	CITATIONS
314	Molecular dynamics simulation study on the structure and the dynamic properties of nano-confined alcohols between graphene surfaces. Fluid Phase Equilibria, 2017, 431, 8-15.	2.5	4
315	The Structure of Water and Aqueous Systems. Experimental Methods in the Physical Sciences, 2017, 49, 135-211.	0.1	8
316	Slow Dynamics and Structure of Supercooled Water in Confinement. Entropy, 2017, 19, 185.	2.2	5
317	Experimental evidence of low-density liquid water upon rapid decompression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2010-2015.	7.1	39
318	The evaluation of the hydrophilic–hydrophobic interactions and their effect in water–methanol solutions: A study in terms of the thermodynamic state functions in the frame of the transition state theory. Colloids and Surfaces B: Biointerfaces, 2018, 168, 193-200.	5.0	1
319	² H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1059-1087.	2.8	36
320	² H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1041-1058.	2.8	14
321	Properties of Hydrogen-Bonded Liquids at Interfaces. Zeitschrift Fur Physikalische Chemie, 2018, 232, 937-972.	2.8	16
322	Fragile to strong crossover and Widom line in supercooled water: A comparative study. Frontiers of Physics, 2018, 13, 1.	5.0	18
323	High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials. Frontiers of Physics, 2018, 13, 1.	5.0	7
324	Dynamics of supercooled confined water measured by deep inelastic neutron scattering. Frontiers of Physics, 2018, 13, 1.	5.0	11
325	Experimental estimation of the location of liquid-liquid critical point for polyol aqueous solutions. Journal of Chemical Physics, 2018, 149, 204501.	3.0	12
326	Crucial role of fragmented and isolated defects in persistent relaxation of deeply supercooled water. Journal of Chemical Physics, 2018, 149, 124504.	3.0	46
327	Effects of Partial Crystallization on the Dynamics of Water in Mesoporous Silica. Journal of Physical Chemistry C, 2018, 122, 15427-15434.	3.1	33
328	Molecular dynamics simulations for optical Kerr effect of TIP4P/2005 water in liquid and supercooled states. Journal of Molecular Liquids, 2018, 269, 38-46.	4.9	5
329	Lubricating properties of single metal ions at interfaces. Nanoscale, 2018, 10, 11831-11840.	5.6	21
330	Specific properties of supercooled water in light of water anomalies. Molecular Simulation, 2019, 45, 304-309.	2.0	3
331	Glassy dynamics of water at interface with biomolecules: A Mode Coupling Theory test. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	10

#	Article	IF	CITATIONS
332	Solidification and melting phase change behavior of eutectic gallium-indium-tin. Materialia, 2019, 8, 100512.	2.7	30
333	The Proton Density of States in Confined Water (H2O). International Journal of Molecular Sciences, 2019, 20, 5373.	4.1	1
334	The Widom Line and the Lennard-Jones Potential. Journal of Physical Chemistry B, 2019, 123, 8268-8273.	2.6	19
335	Anionic effects on the structure and dynamics of water in superconcentrated aqueous electrolytes. RSC Advances, 2019, 9, 609-619.	3.6	28
336	Translational and rotational dynamics of high and low density TIP4P/2005 water. Journal of Chemical Physics, 2019, 150, 224507.	3.0	20
337	Vibrational dynamics of confined supercooled water. Journal of Chemical Physics, 2019, 150, 224504.	3.0	13
338	Hysteresis in the temperature dependence of the IR bending vibration of deeply cooled confined water. Journal of Chemical Physics, 2019, 150, 224509.	3.0	5
339	Simulations of supercooled water under passive or active stimuli. Journal of Chemical Physics, 2019, 150, 214505.	3.0	4
340	Liquid-liquid separation of aqueous solutions: A molecular dynamics study. Journal of Chemical Physics, 2019, 150, 214506.	3.0	17
341	A study of the hydrogen bonds effect on the water density and the liquid-liquid transition. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	5
342	The Boson peak interpretation and evolution in confined amorphous water. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	7
343	Dewetting in associating lattice gas model confined by hydrophobic walls. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	3
344	Pseudophase change effects in turbulent channel flow under transcritical temperature conditions. Journal of Fluid Mechanics, 2019, 871, 52-91.	3.4	34
345	On H-dynamics of supercooled water confined in nanoporous silica. Chemical Physics, 2019, 523, 83-86.	1.9	2
346	Unravelling the contribution of local structures to the anomalies of water: The synergistic action of several factors. Journal of Chemical Physics, 2019, 150, 094506.	3.0	52
347	Slow dynamics of hydration water and the trehalose dynamical transition. Journal of Molecular Liquids, 2019, 282, 617-625.	4.9	17
348	Crystallization and Dynamics of Water Confined in Model Mesoporous Silica Particles: Two Ice Nuclei and Two Fractions of Water. Langmuir, 2019, 35, 5890-5901.	3.5	34
349	Thermodynamic picture of vitrification of water through complex specific heat and entropy: A journey through "no man's land†Journal of Chemical Physics, 2019, 150, 054502.	3.0	24

#	Article	IF	CITATIONS
350	Reorientation of Deeply Cooled Water in Mesoporous Silica: NMR Studies of the Pore-Size Dependence. Journal of Physical Chemistry B, 2019, 123, 2123-2134.	2.6	40
351	Antifreeze Hydrogels from Amphiphilic Statistical Copolymers. Chemistry of Materials, 2019, 31, 135-145.	6.7	39
352	Liquid–liquid transition and polyamorphism. Journal of Chemical Physics, 2020, 153, 130901.	3.0	87
353	Fast increase of nanofluidic slip in supercooled water: the key role of dynamics. Nanoscale, 2020, 12, 20396-20403.	5.6	20
354	Effect of Paclitaxel in the Water Dynamics of MCF-7 Breast Cancer Cells Revealed by Dielectric Spectroscopy. ACS Omega, 2020, 5, 18602-18607.	3.5	4
355	Supercooled water confined in a metal-organic framework. Communications Physics, 2020, 3, .	5.3	11
356	Gold nanochannels oxidation by confined water. RSC Advances, 2020, 10, 36980-36987.	3.6	0
357	Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement. Accounts of Chemical Research, 2020, 53, 2869-2878.	15.6	10
358	Experimental tests for a liquid-liquid critical point in water. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	11
359	Nuclear Magnetic Resonance and Broadband Dielectric Spectroscopy Studies on the Dynamics of Ethylene Glycol in Mesoporous Silica. Journal of Physical Chemistry C, 2020, 124, 20998-21012.	3.1	12
360	Some Aspects of the Liquid Water Thermodynamic Behavior: From The Stable to the Deep Supercooled Regime. International Journal of Molecular Sciences, 2020, 21, 7269.	4.1	4
361	Heterogeneous Solvent Dielectric Relaxation in Polymer Solutions of Water and Alcohols. Frontiers in Physics, 2020, 8, .	2.1	2
362	Water above the spinodal. Journal of Chemical Physics, 2020, 152, 174501.	3.0	10
363	Dynamical Transitions of Supercooled Water in Graphene Oxide Nanopores: Influence of Surface Hydrophilicity. Journal of Physical Chemistry B, 2020, 124, 4805-4820.	2.6	7
364	Static field gradient NMR studies of water diffusion in mesoporous silica. Physical Chemistry Chemical Physics, 2020, 22, 13989-13998.	2.8	31
365	Role of many-body correlation in slow dynamics of glass-forming liquids: intrinsic or perturbative. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 034003.	2.3	7
366	A mixed radial, angular, three-body distribution function as a tool for local structure characterization: Application to single-component structures. Journal of Chemical Physics, 2020, 152, 194502.	3.0	8
367	Quasi-Elastic Neutron Scattering Studies on Hydration Water in Phospholipid Membranes. Frontiers in Chemistry, 2020, 8, 8.	3.6	20

#	Article	IF	Citations
368	Slow dynamics of supercooled hydration water in contact with lysozyme: examining the cage effect at different length scales. Philosophical Magazine, 2020, 100, 2582-2595.	1.6	6
369	Instantaneous normal mode analysis for OKE reduced spectra of liquid and supercooled water: Contributions of low-density and high-density liquids. Journal of Molecular Liquids, 2020, 301, 112363.	4.9	2
370	Layer-by-Layer Freezing of Nanoconfined Water. Scientific Reports, 2020, 10, 5327.	3.3	11
371	Electron Paramagnetic Resonance Measurements of Four Nitroxide Probes in Supercooled Water Explained by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2020, 124, 3962-3972.	2.6	1
372	Experimental study of water thermodynamics up to 1.2 GPa and 473 K. Journal of Chemical Physics, 2020, 152, 154501.	3.0	6
373	Bulk supercooled water <i>versus</i> adsorbed films on silica surfaces: specific heat by Monte Carlo simulation. Physical Chemistry Chemical Physics, 2021, 23, 2275-2285.	2.8	0
374	Supercooled Water. Soft and Biological Matter, 2021, , 301-321.	0.3	0
375	Relations between thermodynamics, structures, and dynamics for modified water models in their supercooled regimes. Journal of Chemical Physics, 2021, 154, 054502.	3.0	5
376	2H NMR study on temperature-dependent water dynamics in amino-acid functionalized silica nanopores. Journal of Chemical Physics, 2021, 154, 114702.	3.0	4
377	Structural relaxation and crystallization in supercooled water from 170 to 260 K. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
379	Influence of Pore Surface Chemistry on the Rotational Dynamics of Nanoconfined Water. Journal of Physical Chemistry C, 2021, 125, 16864-16874.	3.1	13
380	The Water Polymorphism and the Liquid–Liquid Transition from Transport Data. Physchem, 2021, 1, 202-214.	1.1	4
381	Dynamical crossover and its connection to the Widom line in supercooled TIP4P/Ice water. Journal of Chemical Physics, 2021, 155, 054502.	3.0	14
382	Probing Water State during Lipidic Mesophases Phase Transitions. Angewandte Chemie, 2021, 133, 25478-25484.	2.0	2
383	The Anomalous Behavior of Thermodynamic Parameters in the Three Widom Deltas of Carbon Dioxide-Ethanol Mixture. International Journal of Molecular Sciences, 2021, 22, 9813.	4.1	8
384	Segregation on the nanoscale coupled to liquid water polyamorphism in supercooled aqueous ionic-liquid solution. Journal of Chemical Physics, 2021, 155, 104502.	3.0	3
385	Probing Water State during Lipidic Mesophases Phase Transitions. Angewandte Chemie - International Edition, 2021, 60, 25274-25280.	13.8	10
386	Using molecular simulations to investigate how intermolecular interactions dictate liquid structure. , 2021, , 71-91.		1

#	Article	IF	CITATIONS
389	Dynamic crossover and liquid-liquid critical point in the TIP5P model of water. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 23-33.	0.1	2
390	Dynamics of Water at Low Temperatures and Implications for Biomolecules. Lecture Notes in Physics, 2009, , 3-22.	0.7	7
391	Anomalous Behaviour of Supercooled Water and Its Implication for Protein Dynamics. Lecture Notes in Physics, 2009, , 23-42.	0.7	4
392	Liquid Polyamorphism and the Anomalous Behavior of Water. Advances in Solid State Physics, 2009, , 249-266.	0.8	3
393	Structuring and Behaviour of Water in Nanochannels and Confined Spaces. , 2010, , 241-255.		21
394	Metastable Water Under Pressure. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 197-216.	0.5	4
398	Widom line and the liquidâ \in ʻʻliquid critical point for the TIP4P/2005 water model. , 0, .		1
399	Water diffusion in carbon nanotubes: Interplay between confinement, surface deformation, and temperature. Journal of Chemical Physics, 2020, 153, 244504.	3.0	14
400	Effect of trehalose on protein cryoprotection: Insights into the mechanism of slowing down of hydration water. Journal of Chemical Physics, 2020, 153, 224503.	3.0	13
401	NMR studies on the influence of silica confinements on local and diffusive dynamics in LiCl aqueous solutions approaching their glass transitions. Journal of Chemical Physics, 2020, 153, 244501.	3.0	7
402	Quasidiscontinuous change of the density correlation length at the fragile-to-strong transition in a bulk-metallic-glass forming melt. Physical Review Materials, 2018, 2, .	2.4	4
403	Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations. Spectroscopy, 2010, 24, 1-24.	0.8	23
406	Complex phase diagrams of systems with isotropic potentials: results of computer simulations. Physics-Uspekhi, 2020, 63, 417-439.	2.2	23
407	Supercooled nano-droplets of water confined in hydrophobic rubber. Physical Chemistry Chemical Physics, 2021, 23, 25347-25355.	2.8	3
409	Neutron Spin Echo Studies on Dynamics of Confined Water. Hamon, 2010, 20, 302-306.	0.0	0
410	Protein Dynamics and Hydration Water. , 2010, , 23-47.		3
411	Water in biological and chemical processes: from structure and dynamics to function. Choice Reviews, 2014, 52, 52-0258-52-0258.	0.2	0
412	Fragile-to-strong transition in metallic glass-forming liquids. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 176403.	0.5	0

#	Article	IF	CITATIONS
413	Molecular dynamics simulation combined with smallâ€angle Xâ€ray/neutron scattering defining <scp>solutionâ€state</scp> protein structures. Journal of the Chinese Chemical Society, 2021, 68, 403-408.	1.4	2
415	Structure and dynamics of nanoconfined water and aqueous solutions. European Physical Journal E, 2021, 44, 136.	1.6	38
416	Advances in the study of supercooled water. European Physical Journal E, 2021, 44, 143.	1.6	40
418	Pressure-induced liquid-liquid transition in a family of ionic materials. Nature Communications, 2022, 13, 1342.	12.8	11
419	Phase diagram and critical properties of a two-dimensional associating lattice gas. Physical Review E, 2021, 104, 064120.	2.1	0
422	The Interplay between the Theories of Mode Coupling and of Percolation Transition in Attractive Colloidal Systems. International Journal of Molecular Sciences, 2022, 23, 5316.	4.1	1
423	Low- and High-Density Unknown Waters at Ice–Water Interfaces. Journal of Physical Chemistry Letters, 2022, 13, 4251-4256.	4.6	4
424	Structural and Dynamical Properties of Liquids in Confinements: A Review of Molecular Dynamics Simulation Studies. Langmuir, 2022, 38, 6506-6522.	3.5	15
425	Equation of state for confined fluids. Journal of Chemical Physics, 2022, 156, .	3.0	4
426	Revealing the three-component structure of water with principal component analysis (PCA) of X-ray spectra. Soft Matter, 2022, 18, 7486-7496.	2.7	3
428	Experimental observation of mesoscopic fluctuations to identify origin of thermodynamic anomalies of ambient liquid water. Physical Review Research, 2023, 5, .	3.6	1
429	Entropy-driven atomic activation in supercooled liquids and its link to the fragile-to-strong transition. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	5.1	2
430	A Unified Description of the Liquid Structure, Static and Dynamic Anomalies, and Criticality of TIP4P/2005 Water by a Hierarchical Two-State Model. Journal of Physical Chemistry B, 2023, 127, 3452-3462.	2.6	3
431	Thermodynamic response functions and Stokes-Einstein breakdown in superheated water under gigapascal pressure. Theoretical Chemistry Accounts, 2023, 142, .	1.4	1
432	Dynamical Susceptibilities of Confined Water from Room Temperature to the Glass Transition. Journal of Physical Chemistry Letters, 2023, 14, 4104-4112.	4.6	3
433	Hydrogen-bonded structures and low temperature transitions of the confined water in subnano channels. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 302, 122912.	3.9	2
434	A perspective on metallic liquids and glasses. Journal of Applied Physics, 2023, 134, .	2.5	3
435	2H NMR studies on the dynamics of supercooled water in a metal–organic framework. Journal of Chemical Physics, 2023, 159, .	3.0	0

#	Article	IF	CITATIONS
436	Diffusion Dynamics of Water and Ethanol in Graphene Oxide. Journal of Physical Chemistry B, 2023, 127, 7384-7393.	2.6	0
437	Neutron scattering investigation of liquid–liquid transition in confined water. MRS Advances, 2023, 8, 715-722.	0.9	0
438	Anisotropy in spinodal-like dynamics of unknown water at ice V–water interface. Scientific Reports, 2023, 13, .	3.3	1
439	Ice-Water Equilibrium in Nanoscale Confinement. Physical Review Letters, 2024, 132, .	7.8	1