The net of life: Reconstructing the microbial phylogener

Genome Research 15, 954-959

DOI: 10.1101/gr.3666505

Citation Report

#	Article	IF	Citations
1	Genome Trees from Conservation Profiles. PLoS Computational Biology, 2005, 1, e75.	3.2	24
2	Insights on biology and evolution from microbial genome sequencing. Genome Research, 2005, 15, 1603-1610.	5.5	99
3	Ancestral state reconstructions for genomes. Current Opinion in Genetics and Development, 2005, 15, 595-600.	3.3	14
4	The tree of one percent. Genome Biology, 2006, 7, 118.	9.6	313
5	Graph-based methods for analysing networks in cell biology. Briefings in Bioinformatics, 2006, 7, 243-255.	6.5	368
6	Inferring Phylogenetic Networks by the Maximum Parsimony Criterion: A Case Study. Molecular Biology and Evolution, 2006, 24, 324-337.	8.9	74
7	Stepwise evolution of the Sec machinery in Proteobacteria. Trends in Microbiology, 2006, 14, 105-108.	7.7	51
8	Models and Methods in Comparative Genomics. Advances in Computers, 2006, 68, 59-104.	1.6	1
9	Eukaryotic evolution, changes and challenges. Nature, 2006, 440, 623-630.	27.8	805
10	Maps, books and other metaphors for systems biology. BioSystems, 2006, 85, 6-10.	2.0	31
11	Genomics for environmental microbiology. Current Opinion in Biotechnology, 2006, 17, 229-235.	6.6	63
12	New metrics for comparative genomics. Current Opinion in Biotechnology, 2006, 17, 440-447.	6.6	29
13	Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Functional and Integrative Genomics, 2006, 6, 165-185.	3.5	156
14	Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends in Genetics, 2006, 22, 361-366.	6.7	71
15		2.6	71
	22, 361-366. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome		
15	22, 361-366. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences. BMC Bioinformatics, 2006, 7, 350. The Evolutionary Origin of Xanthomonadales Genomes and the Nature of the Horizontal Gene	2.6	76

#	Article	IF	CITATIONS
19	Stepping stones towards a new prokaryotic taxonomy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1911-1916.	4.0	60
20	Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events. Genome Research, 2006, 16, 1099-1108.	5 . 5	278
21	Evolvability of physiological and biochemical traits: evolutionary mechanisms including and beyond single-nucleotide mutation. Journal of Experimental Biology, 2007, 210, 1653-1660.	1.7	31
22	Rate and Polarity of Gene Fusion and Fission in Oryza sativa and Arabidopsis thaliana. Molecular Biology and Evolution, 2007, 24, 110-121.	8.9	21
23	Orthologous Transcription Factors in Bacteria Have Different Functions and Regulate Different Genes. PLoS Computational Biology, 2007, 3, e175.	3.2	86
24	Assessment of phylogenomic and orthology approaches for phylogenetic inference. Bioinformatics, 2007, 23, 815-824.	4.1	87
25	Confounding Factors in HGT Detection: Statistical Error, Coalescent Effects, and Multiple Solutions. Journal of Computational Biology, 2007, 14, 517-535.	1.6	77
26	Pattern pluralism and the Tree of Life hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2043-2049.	7.1	440
27	Similarity and Differences in the Lactobacillus acidophilus Group Identified by Polyphasic Analysis and Comparative Genomics. Journal of Bacteriology, 2007, 189, 1311-1321.	2.2	115
28	The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biology Letters, 2007, 3, 180-184.	2.3	86
29	Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Current Opinion in Microbiology, 2007, 10, 504-509.	5.1	403
30	Evolutionary history of bacteriophages with double-stranded DNA genomes. Biology Direct, 2007, 2, 36.	4.6	33
31	Horizontal gene transfer, gene histories, and the root of the tree of life., 0,, 178-192.		4
32	Science communication media for scientists and the public. EMBO Reports, 2007, 8, 886-887.	4.5	3
33	Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytologist, 2007, 174, 11-25.	7.3	395
34	Modelling disease spread and control in networks: implications for plant sciences. New Phytologist, 2007, 174, 279-297.	7.3	147
35	Polyphasic approach of bacterial classification — An overview of recent advances. Indian Journal of Microbiology, 2007, 47, 98-108.	2.7	85
36	Phylogeny vs genome reshuffling: horizontal gene transfer. Indian Journal of Microbiology, 2008, 48, 228-242.	2.7	24

3

#	ARTICLE	IF	Citations
37	Influence of industrial contamination on mobile genetic elements: class 1 integron abundance and gene cassette structure in aquatic bacterial communities. ISME Journal, 2008, 2, 417-428.	9.8	191
38	General functions to transform associate data to host data, and their use in phylogenetic inference from sequences with intra-individual variability. BMC Evolutionary Biology, 2008, 8, 86.	3.2	43
39	The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Systematic and Applied Microbiology, 2008, 31, 241-250.	2.8	884
40	The quest for orthologs: finding the corresponding gene across genomes. Trends in Genetics, 2008, 24, 539-551.	6.7	258
41	Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Genome Biology, 2008, 9, R4.	9.6	116
42	Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Research, 2008, 36, 6688-6719.	14.5	642
43	Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10039-10044.	7.1	366
44	The Impact of Reticulate Evolution on Genome Phylogeny. Systematic Biology, 2008, 57, 844-856.	5.6	47
45	Estimation of Phylogenetic Inconsistencies in the Three Domains of Life. Molecular Biology and Evolution, 2008, 25, 2319-2329.	8.9	18
46	Dealing with incongruence in phylogenomic analyses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 4023-4029.	4.0	203
47	Minimum Contradiction Matrices in Whole Genome Phylogenies. Evolutionary Bioinformatics, 2008, 4, EBO.S909.	1.2	7
48	Are Protein Domains Modules of Lateral Genetic Transfer?. PLoS ONE, 2009, 4, e4524.	2.5	60
49	Getting a better picture of microbial evolution en route to a network of genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2187-2196.	4.0	71
50	Streamlining and Large Ancestral Genomes in Archaea Inferred with a Phylogenetic Birth-and-Death Model. Molecular Biology and Evolution, 2009, 26, 2087-2095.	8.9	114
51	Microarray Comparative Genomic Hybridisation Analysis Incorporating Genomic Organisation, and Application to Enterobacterial Plant Pathogens. PLoS Computational Biology, 2009, 5, e1000473.	3.2	9
52	The biogeographic history of beech trees. Review of Palaeobotany and Palynology, 2009, 158, 83-100.	1.5	70
53	Revisiting the concept of lineage in prokaryotes: a phylogenetic perspective. BioEssays, 2009, 31, 526-536.	2.5	25
54	Informed Generation: Physical origin and biological evolution of genetic codescript interpreters. Journal of Theoretical Biology, 2009, 257, 345-358.	1.7	17

#	Article	IF	CITATIONS
55	Trade-Offs Between Efficiency and Robustness in Bacterial Metabolic Networks Are Associated with Niche Breadth. Journal of Molecular Evolution, 2009, 68, 506-515.	1.8	9
56	The Conflict Between Horizontal Gene Transfer and the Safeguard of Identity: Origin of Meiotic Sexuality. Journal of Molecular Evolution, 2009, 69, 470-480.	1.8	14
57	Search for a 'Tree of Life' in the thicket of the phylogenetic forest. Journal of Biology, 2009, 8, 59.	2.7	234
58	Of trees and networks. Nature Reviews Microbiology, 2009, 7, 691-691.	28.6	1
59	Evolution of Genes and Organisms. Annals of the New York Academy of Sciences, 2009, 1178, 137-145.	3.8	29
60	Trees and networks before and after Darwin. Biology Direct, 2009, 4, 43.	4.6	94
61	Principles of speciation of the plague causative agent Versinia pestis: Gradualism or saltation?. Biology Bulletin, 2009, 36, 547-554.	0.5	5
62	Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?. Trends in Microbiology, 2009, 17, 458-466.	7.7	533
63	The Tree of Life Viewed Through the Contents of Genomes. Methods in Molecular Biology, 2009, 532, 141-161.	0.9	16
64	Phylogenomic Dating—A Method of Constraining the Age of Microbial Taxa That Lack a Conventional Fossil Record. Astrobiology, 2009, 9, 173-191.	3.0	22
65	The fundamental units, processes and patterns of evolution, and the Tree of Life conundrum. Biology Direct, 2009, 4, 33.	4.6	52
66	Prokaryotic evolution and the tree of life are two different things. Biology Direct, 2009, 4, 34.	4.6	188
67	Ancient Gene Transfer as a Tool in Phylogenetic Reconstruction. Methods in Molecular Biology, 2009, 532, 127-139.	0.9	20
68	Lateral genetic transfer: open issues. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2241-2251.	4.0	77
69	The Tree and Net Components of Prokaryote Evolution. Genome Biology and Evolution, 2010, 2, 745-756.	2.5	221
70	Structure, evolution and dynamics of transcriptional regulatory networks. Biochemical Society Transactions, 2010, 38, 1155-1178.	3.4	21
71	Stochasticity Versus Determinism: Consequences for Realistic Gene Regulatory Network Modelling and Evolution. Journal of Molecular Evolution, 2010, 70, 215-231.	1.8	12
72	Gene sharing and genome evolution: networks in trees and trees in networks. Biology and Philosophy, 2010, 25, 659-673.	1.4	8

#	Article	IF	Citations
73	En route to a genome-based classification of Archaea and Bacteria?. Systematic and Applied Microbiology, 2010, 33, 175-182.	2.8	279
74	Lineage-specific expansion of DNA-binding transcription factor families. Trends in Genetics, 2010, 26, 388-393.	6.7	40
75	GIGA: a simple, efficient algorithm for gene tree inference in the genomic age. BMC Bioinformatics, 2010, 11, 312.	2.6	34
76	Assembling networks of microbial genomes using linear programming. BMC Evolutionary Biology, 2010, 10, 360.	3.2	4
77	A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes. BMC Genomics, 2010, 11, 430.	2.8	15
79	Worst-case optimal approximation algorithms for maximizing triplet consistency within phylogenetic networks. Journal of Discrete Algorithms, 2010, 8, 65-75.	0.7	22
80	Species, clusters and the â€~Tree of life': A graph-theoretic perspective. Journal of Theoretical Biology, 2010, 265, 535-542.	1.7	21
82	Species, Genes, and the Tree of Life. British Journal for the Philosophy of Science, 2010, 61, 599-619.	2.3	9
83	Engineering Nodulation Competitiveness of Rhizobial Bioinoculants in Soils., 2010,, 157-194.		6
84	Interplay of heritage and habitat in the distribution of bacterial signal transduction systems. Molecular BioSystems, 2010, 6, 721.	2.9	87
85	Network model and efficient method for detecting relative duplications or horizontal gene transfers. , $2011, , .$		4
87	Trends and barriers to lateral gene transfer in prokaryotes. Current Opinion in Microbiology, 2011, 14, 615-623.	5.1	214
88	Phylogenomic networks. Trends in Microbiology, 2011, 19, 483-491.	7.7	66
89	Biorepositories and Their Foundationsâ€"Microbial Forensic Considerations., 2011,, 581-601.		2
90	A Genomic Approach to Examine the Complex Evolution of Laurasiatherian Mammals. PLoS ONE, 2011, 6, e28199.	2.5	32
91	Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiology Reviews, 2011, 35, 707-735.	8.6	137
92	Statistical Mechanics of Horizontal Gene Transfer inÂEvolutionary Ecology. Journal of Statistical Physics, 2011, 142, 1287-1301.	1,2	9
93	Telling the whole story in a 10,000-genome world. Biology Direct, 2011, 6, 34.	4.6	45

#	Article	IF	CITATIONS
94	Early evolution without a tree of life. Biology Direct, 2011, 6, 36.	4.6	57
95	The public goods hypothesis for the evolution of life on Earth. Biology Direct, 2011, 6, 41.	4.6	74
96	Result verification, code verification and computation of support values in phylogenetics. Briefings in Bioinformatics, 2011, 12, 270-279.	6.5	5
97	Networks of Gene Sharing among 329 Proteobacterial Genomes Reveal Differences in Lateral Gene Transfer Frequency at Different Phylogenetic Depths. Molecular Biology and Evolution, 2011, 28, 1057-1074.	8.9	147
98	IDENTIFYING AND RECONSTRUCTING LATERAL TRANSFERS FROM DISTANCE MATRICES BY COMBINING THE MINIMUM CONTRADICTION METHOD AND NEIGHBOR-NET. Journal of Bioinformatics and Computational Biology, 2011, 09, 453-470.	0.8	4
99	Darwin's Theory of Descent with Modification, versus the Biblical Tree of Life. PLoS Biology, 2011, 9, e1001096.	5.6	22
100	Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Frontiers in Cellular and Infection Microbiology, 2012, 2, 98.	3.9	30
101	Spirochaetes and their twisted ways. Gut Microbes, 2012, 3, 399-400.	9.8	6
102	Meta-Analysis of General Bacterial Subclades in Whole-Genome Phylogenies Using Tree Topology Profiling. Evolutionary Bioinformatics, 2012, 8, EBO.S9642.	1.2	0
103	Contrasting recombination patterns and demographic histories of the plant pathogen <i>Ralstonia solanacearum</i>) inferred from MLSA. ISME Journal, 2012, 6, 961-974.	9.8	180
104	How microbiology helps define the rhizome of life. Frontiers in Cellular and Infection Microbiology, 2012, 2, 60.	3.9	11
105	Evolution of microbes and viruses: a paradigm shift in evolutionary biology?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 119.	3.9	119
106	The human microbiome: A hot spot of microbial horizontal gene transfer. Genomics, 2012, 100, 265-270.	2.9	109
107	Genome-Wide Comparative Analysis of Phylogenetic Trees: The Prokaryotic Forest of Life. Methods in Molecular Biology, 2012, 856, 53-79.	0.9	15
108	The Role of Secretion Systems and Small Molecules in Soft-Rot <i>Enterobacteriaceae</i> Pathogenicity. Annual Review of Phytopathology, 2012, 50, 425-449.	7.8	217
109	Horizontal gene transfer in fungi. FEMS Microbiology Letters, 2012, 329, 1-8.	1.8	262
110	Microbial systematics in the post-genomics era. Antonie Van Leeuwenhoek, 2012, 101, 45-54.	1.7	51
111	Romance of the three domains: how cladistics transformed the classification of cellular organisms. Protein and Cell, 2013, 4, 664-676.	11.0	4

#	Article	IF	Citations
113	Systematic inference of highways of horizontal gene transfer in prokaryotes. Bioinformatics, 2013, 29, 571-579.	4.1	31
114	The evolutionary ecology of technological innovations. Complexity, 2013, 18, 15-27.	1.6	75
115	The effects of model choice and mitigating bias on the ribosomal tree of life. Molecular Phylogenetics and Evolution, 2013, 69, 17-38.	2.7	53
116	Quartet-Net: A Quartet-Based Method to Reconstruct Phylogenetic Networks. Molecular Biology and Evolution, 2013, 30, 1206-1217.	8.9	24
117	From \hat{l}^2 - to \hat{l} ±-Proteobacteria: The Origin and Evolution of Rhizobial Nodulation Genes nodlJ. Molecular Biology and Evolution, 2013, 30, 2494-2508.	8.9	53
118	Structure and Evolution of Transcriptional Regulatory Networks. , 2014, , 1-16.		1
119	Star network analysis of sequence based identified Yarrowia lipolytica strains. Turkish Journal of Biochemistry, 2014, 39, 78-86.	0.5	1
120	Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biology, 2014, 12, 66.	3.8	170
121	Biological Network Modeling and Analysis. , 2014, , 203-244.		0
122	Horizontal Gene Transfer and the Role of Restriction-Modification Systems in Bacterial Population Dynamics., 2014,, 169-190.		1
124	Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiology Reviews, 2014, 38, 90-118.	8.6	174
125	Quartet Analysis of Putative Horizontal Gene Transfer in Crenarchaeota. Journal of Molecular Evolution, 2014, 78, 163-170.	1.8	1
126	Bacterial Genome Instability. Microbiology and Molecular Biology Reviews, 2014, 78, 1-39.	6.6	372
127	Supertrees Based on the Subtree Prune-and-Regraft Distance. Systematic Biology, 2014, 63, 566-581.	5.6	63
128	The impact of HGT on phylogenomic reconstruction methods. Briefings in Bioinformatics, 2014, 15, 79-90.	6.5	25
129	Quartet-based methods to reconstruct phylogenetic networks. BMC Systems Biology, 2014, 8, 21.	3.0	17
130	Phylogenomic Networks of Microbial Genome Evolution. , 2015, , 4.1.1-1-4.1.1-18.		0
132	Contrasting Inter- and Intraspecies Recombination Patterns in the "Harveyi Clade―Vibrio Collected over Large Spatial and Temporal Scales. Genome Biology and Evolution, 2015, 7, 71-80.	2.5	19

#	Article	IF	CITATIONS
133	Historical and Epistemological Perspectives on What Horizontal Gene Transfer Mechanisms Contribute to Our Understanding of Evolution. Interdisciplinary Evolution Research, 2015, , 121-178.	0.3	4
134	The evolution of WRKY transcription factors. BMC Plant Biology, 2015, 15, 66.	3.6	204
135	The phylogenomics of protein structures: The backstory. Biochimie, 2015, 119, 284-302.	2.6	15
136	Horizontal gene transfer in an acid mine drainage microbial community. BMC Genomics, 2015, 16, 496.	2.8	20
137	How Much Information is Needed to Infer Reticulate Evolutionary Histories?. Systematic Biology, 2015, 64, 102-111.	5.6	23
138	Ten years of pan-genome analyses. Current Opinion in Microbiology, 2015, 23, 148-154.	5.1	498
139	Parallel or convergent evolution in human population genomic data revealed by genotype networks. BMC Evolutionary Biology, 2016, 16, 154.	3.2	9
140	Evolution of the Genomic Universe. , 2016, , 413-440.		1
141	Cyanobacterial evolution during the Precambrian. International Journal of Astrobiology, 2016, 15, 187-204.	1.6	108
142	Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers. Annual Review of Earth and Planetary Sciences, 2016, 44, 493-522.	11.0	39
143	Estimating the Frequency of Horizontal Gene Transfer Using Phylogenetic Models of Gene Gain and Loss. Molecular Biology and Evolution, 2016, 33, 1843-1857.	8.9	48
144	Birds in a bush: Toward an avian phylogenetic network. Auk, 2016, 133, 577-582.	1.4	19
145	Recombination in Bacterial Populations. , 2016, , 425-432.		0
146	Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Analytical Methods, 2016, 8, 12-24.	2.7	991
147	Structure and Evolution of WRKY Transcription Factors. , 2016, , 163-181.		4
148	Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction. ISME Journal, 2017, 11, 543-554.	9.8	81
149	Recent speciation of plague microbe Yersinia pestis in the heterothermal (heteroimmune) environment of marmotâ€"flea (Marmota sibiricaâ€"Oropsylla silantiewi): Biogeocenotic preconditions and preadaptations. Biology Bulletin Reviews, 2017, 7, 299-311.	0.9	5
150	Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF. Frontiers in Microbiology, 2017, 8, 21.	3.5	14

#	Article	IF	Citations
151	Bipartite Network Analysis of Gene Sharings in the Microbial World. Molecular Biology and Evolution, 2018, 35, 899-913.	8.9	31
152	Demystifying Eukaryote Lateral Gene Transfer (Response to Martin 2017 DOI: 10.1002/bies.201700115). BioEssays, 2018, 40, e1700242.	2.5	64
153	<i>k</i> -mer Similarity, Networks of Microbial Genomes, and Taxonomic Rank. MSystems, 2018, 3, .	3.8	30
154	Comparison of complex networks and tree-based methods of phylogenetic analysis and proposal of a bootstrap method. PeerJ, 2018, 6, e4349.	2.0	4
155	Microbial Metagenomics for Industrial and Environmental Bioprospecting: The Unknown Envoy. , 2018, , 327-352.		8
156	The last universal common ancestor between ancient Earth chemistry and the onset of genetics. PLoS Genetics, 2018, 14, e1007518.	3.5	120
157	Phylogenetic Clustering of Genes Reveals Shared Evolutionary Trajectories and Putative Gene Functions. Genome Biology and Evolution, 2018, 10, 2255-2265.	2.5	19
158	In the beginning was the word: How terminology drives our understanding of endosymbiotic organelles. Microbial Cell, 2019, 6, 134-141.	3.2	10
159	Implications of Mobile Genetic Elements for <i>Salmonella enterica</i> Single-Nucleotide Polymorphism Subtyping and Source Tracking Investigations. Applied and Environmental Microbiology, 2019, 85, .	3.1	14
160	Taxa hold little information about organisms: Some inferential problems in biological systematics. History and Philosophy of the Life Sciences, 2019, 41, 40.	1.1	2
161	A Mutation Network Method for Transmission Analysis of Human Influenza H3N2. Viruses, 2020, 12, 1125.	3.3	3
162	Understanding Horizontal Gene Transfer network in human gut microbiota. Gut Pathogens, 2020, 12, 33.	3.4	14
163	Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. Diversity, 2020, 12, 289.	1.7	37
164	When imprecision is a good thing, or how imprecise concepts facilitate integration in biology. Biology and Philosophy, 2020, 35, 1.	1.4	16
165	Symbiogenesis as a driving force of evolution: The legacy of Boris Kozo-Polyansky. BioSystems, 2021, 199, 104302.	2.0	9
166	The past, present and future of the tree of life. Current Biology, 2021, 31, R314-R321.	3.9	18
168	A power law network in an evolutionary hawk–dove game. Chaos, Solitons and Fractals, 2021, 146, 110932.	5.1	9
169	From idealizations to social practices in science: the case of phylogenetic trees. Synth $ ilde{A}$ 'se, 0 , , 1 .	1.1	1

#	Article	IF	Citations
170	Timing the evolution of antioxidant enzymes in cyanobacteria. Nature Communications, 2021, 12, 4742.	12.8	57
171	An Efficient, Nonphylogenetic Method for Detecting Genes Sharing Evolutionary Signals in Phylogenomic Data Sets. Genome Biology and Evolution, 2021, 13, .	2.5	1
173	A Probabilistic Model for Gene Content Evolution with Duplication, Loss, and Horizontal Transfer. Lecture Notes in Computer Science, 2006, , 206-220.	1.3	31
174	Identifiability Issues in Phylogeny-Based Detection of Horizontal Gene Transfer. Lecture Notes in Computer Science, 2006, , 215-229.	1.3	7
175	Lateral Genetic Transfer and Cellular Networks. , 2013, , 123-135.		1
176	Genome-Wide Comparative Analysis of Phylogenetic Trees: The Prokaryotic Forest of Life. Methods in Molecular Biology, 2019, 1910, 241-269.	0.9	5
177	Experimental Evolution of an Essential Bacillus Gene in an E. coli Host. Methods in Molecular Biology, 2009, 532, 269-287.	0.9	2
178	Reticulate Classification of Mosaic Microbial Genomes Using NeAT Website. Methods in Molecular Biology, 2012, 804, 81-91.	0.9	7
180	Transcription Factor-Mediated Gene Regulation in Archaea. Nucleic Acids and Molecular Biology, 2017, , 27-69.	0.2	7
181	Integrating Sequence and Topology for Efficient and Accurate Detection of Horizontal Gene Transfer. Lecture Notes in Computer Science, 2008, , 113-127.	1.3	6
183	The Phylogenetic Forest and the Quest for the Elusive Tree of Life. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 205-13.	1.1	24
184	Genomes in turmoil: Quantification of genome dynamics in prokaryote supergenomes. BMC Biology, 2014, 12, 66.	3.8	1
185	Recapitulating phylogenies using k-mers: from trees to networks. F1000Research, 2016, 5, 2789.	1.6	22
186	The Vein Patterning 1 (VEP1) Gene Family Laterally Spread through an Ecological Network. PLoS ONE, 2011, 6, e22279.	2.5	16
187	Bio-Communication of Bacteria and their Evolutionary Roots in Natural Genome Editing Competences of Viruses. The Open Evolution Journal, 2008, 2, 44-54.	0.2	9
188	Uniform categorization of biocommunication in bacteria, fungi and plants. World Journal of Biological Chemistry, 2010, 1, 160.	4.3	11
189	Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ, 2019, 7, e6399.	2.0	111
190	Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microbial Genomics, 2021, 7, .	2.0	13

#	Article	IF	CITATIONS
191	Comparando genomas: bancos de dados e ferramentas computacionais para a an \tilde{A}_i lise comparativa de genomas procari \tilde{A}^3 ticos. Revista Electronica De Comunicacao, Informacao & Inovacao Em Saude: RECIIS, 2007, 1, .	0.2	2
192	Why Phylogenetic Trees are Often Quite Robust Against Lateral Transfers. , 2009, , 269-283.		2
193	Molecular Phylogenetics: Testing Evolutionary Hypotheses. Methods in Molecular Biology, 2009, 502, 131-168.	0.9	2
194	Bacteria Communication. , 2010, , 109-128.		0
195	Introduction: Key Levels of Biocommunication of Bacteria. Soil Biology, 2011, , 1-34.	0.8	1
196	The Actinobacteria. , 2015, , 505-546.		0
197	Recapitulating phylogenies using k-mers: from trees to networks. F1000Research, 2016, 5, 2789.	1.6	13
198	Ancestral sequences of a large promiscuous enzyme family correspond to bridges in sequence space in a network representation. Journal of the Royal Society Interface, 2021, 18, 20210389.	3.4	0
200	Phylogenomic Dating and the Relative Ancestry of Prokaryotic Metabolisms. Cellular Origin and Life in Extreme Habitats, 2009, , 275-295.	0.3	3
202	Ancestral state reconstruction of metabolic pathways across pangenome ensembles. Microbial Genomics, 2020, 6, .	2.0	3
203	The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms, 2022, 10, 1040.	3.6	11
204	A Comparative Analysis of the Core Proteomes within and among the Bacillus subtilis and Bacillus cereus Evolutionary Groups Reveals the Patterns of Lineage- and Species-Specific Adaptations. Microorganisms, 2022, 10, 1720.	3 . 6	5
205	Forest-Based Networks. Bulletin of Mathematical Biology, 2022, 84, .	1.9	0
206	The word wide web*. Journal of Pidgin and Creole Languages, 2022, 37, 395-415.	0.3	0
207	Reconstructing horizontal gene flow network to understand prokaryotic evolution. Open Biology, 2022, 12, .	3.6	2
208	Deep reticulation: the long legacy of hybridization in vascular plant evolution. Plant Journal, 2023, 114, 743-766.	5.7	23
209	Dissecting the HGT network of carbon metabolic genes in soil-borne microbiota. Frontiers in Microbiology, 0, 14 , .	3 . 5	1
210	Pan-genomic comparison of a potential solvent-tolerant alkaline protease-producing Exiguobacterium sp. TBG-PICH-001 isolated from a marine habitat. 3 Biotech, 2023, 13, .	2.2	0

#	Article	IF	CITATIONS
211	CGC toolkit: Software components for computational genomics. PLoS Computational Biology, 2023, 19, e1011498.	3.2	0