Modified BINAP:â€% The How and the Why

Chemical Reviews 105, 1801-1836 DOI: 10.1021/cr040652w

Citation Report

#	Article	IF	CITATIONS
1	Modified BINAP: The How and the Why. ChemInform, 2005, 36, no.	0.1	0
2	Highly Efficient Chromatographic Resolution of α,αâ€~-Dihydroxybiaryls. Organic Letters, 2005, 7, 5821-5823.	2.4	4
3	Facile Preparation of a New BINAP-Based Building Block, 5,5â€~-DiiodoBINAP, and Its Synthetic Application. Journal of Organic Chemistry, 2005, 70, 10178-10181.	1.7	34
4	3,3â€~-Disubstituted BINAP Ligands:  Synthesis, Resolution, and Applications in Asymmetric Hydrogenation. Organic Letters, 2005, 7, 3765-3768.	2.4	37
5	2,2′-Disubstituted F12binaphthyl derivatives: stannanes, boranes, and (R)-F12BINOL. Chemical Communications, 2006, , 2875-2877.	2.2	19
6	New Ru Complexes Containing the N-Tridentate bpea and Phosphine Ligands:Â Consequences of Meridional vs Facial Geometry. Inorganic Chemistry, 2006, 45, 10520-10529.	1.9	41
7	High-Throughput and Parallel Screening Methods in Asymmetric Hydrogenation. Chemical Reviews, 2006, 106, 2912-2942.	23.0	216
8	CyclicC-Amino Phosphorus Ylides as a Source of Bidentate Heteroditopic Ligands (Phosphine/Aminocarbene) for Transition Metals. Journal of the American Chemical Society, 2006, 128, 14810-14811.	6.6	33
9	Diastereospecific Intramolecular Ullmann Couplings:  Unique Chiral Auxiliary for the Preparation of 3,3â€~-Disubstituted MeO-BIPHEP Derivatives. Organic Letters, 2006, 8, 1483-1485.	2.4	18
10	In the Arena of Enantioselective Synthesis, Titanium Complexes Wear the Laurel Wreath. Chemical Reviews, 2006, 106, 2126-2208.	23.0	254
11	Synthesis and characterization of polybinaphthalene incorporating chiral (R) or (S)-1,1′-binaphthalene and oxadiazole units by Heck reaction. European Polymer Journal, 2006, 42, 663-669.	2.6	34
12	Dendritic BIPHEP: Synthesis and application in asymmetric hydrogenation of Î ² -ketoesters. Journal of Molecular Catalysis A, 2006, 244, 118-123.	4.8	22
13	Non-Biaryl Atropisomers in Organocatalysis. Chemistry - A European Journal, 2006, 12, 6039-6052.	1.7	206
14	A Hole-Transporting Material with Controllable Morphology Containing Binaphthyl and Triphenylamine Chromophores. Advanced Functional Materials, 2006, 16, 1343-1348.	7.8	47
15	Facile and Practical Synthesis of (R)â€6â€Brâ€2,2â€2â€bis(diphenylphosphino)â€1,1â€2â€binaphthyl. Synthetic Communications, 2006, 36, 1057-1062.	1.1	0
16	Chapter 6. Asymmetric Synthesis with Stereodynamic Compounds: Introduction, Conversion and Transfer of Chirality. , 2007, , 204-330.		0
17	Configurationally stable propeller-like triarylphosphine and triarylphosphine oxide. Chemical Communications, 2007, , 3711.	2.2	39
18	Synthesis and properties of the chiral oligonaphthalenes. Organic and Biomolecular Chemistry, 2007, 5, 2179.	1.5	39

ATION REDO

#	Article	IF	CITATIONS
19	Sulfonated N-heterocyclic carbenes for Suzuki coupling in water. Chemical Communications, 2007, , 2870-2872.	2.2	161
20	Highly Enantioselective Hydrogenation of βâ€Alkyl and βâ€(ωâ€Chloroalkyl) Substituted βâ€Keto Esters. Synth Communications, 2007, 37, 1067-1076.	netic 1.1	8
21	Rhodium-Catalyzed Double [2 + 2 + 2] Cycloaddition of 1,4-Bis(diphenylphosphinoyl)buta-1,3-diyne with Tethered Diynes:  A Modular, Highly Versatile Single-Pot Synthesis of NU-BIPHEP Biaryl Diphosphines. Organic Letters, 2007, 9, 4925-4928.	2.4	59
22	Synthesis and Determination of the Absolute Configuration of Chiral Tetracosanaphthalenes. Journal of Organic Chemistry, 2007, 72, 4238-4241.	1.7	12
23	Syntheses and Applications of 2-Phosphino-2â€~-alkoxy-1,1â€~-binaphthyl Ligands. Development of a Working Model for Asymmetric Induction in Hydrovinylation Reactions. Journal of Organic Chemistry, 2007, 72, 2357-2363.	1.7	48
24	Enantioselective Proteins: Selection, Binding Studies and Molecular Modeling of Antibodies with Affinity towards Hydrophobic BINOL Derivatives. ChemBioChem, 2007, 8, 1974-1980.	1.3	9
25	Asymmetric Hydrogenations One by One: Differentiation of up to Three βâ€Ketocarboxylic Acid Derivatives Based on Ruthenium(II)–Binap Catalysis. Chemistry - A European Journal, 2007, 13, 9076-9086.	1.7	25
26	The Enantioselective Morita–Baylis–Hillman Reaction and Its Aza Counterpart. Angewandte Chemie - International Edition, 2007, 46, 4614-4628.	7.2	458
27	Base Dependence in Copper-Catalyzed Huisgen Reactions: Efficient Formation of Bistriazoles. Angewandte Chemie - International Edition, 2007, 46, 3649-3651.	7.2	113
28	Synthesis, structure, and activity of (PhCH2NH2)2CuCl2 for oxidative coupling of 2-naphthylamine. Applied Organometallic Chemistry, 2007, 21, 177-182.	1.7	21
31	Synthesis, Structures and Comparison of Neutral Complexes Formed by2-(2′-Pyridyl)indole and d6 Transition Metals. European Journal of Inorganic Chemistry, 2007, 2007, 472-480.	1.0	9
32	Modular P-Chirogenic Aminophosphane-Phosphinite Ligands for Rh-Catalyzed Asymmetric Hydrogenation: A New Model for Prediction of Enantioselectivity. European Journal of Organic Chemistry, 2007, 2007, 2078-2090.	1.2	39
33	Repetitive Application of a Fluorous Chiral BINAP–Ru Complex in the Asymmetric Hydrogenation of Olefins. European Journal of Organic Chemistry, 2007, 2007, 2058-2063.	1.2	23
34	Synthesis and dynamics of atropisomeric (S)-N-(α-phenylethyl)benzamides. Tetrahedron, 2007, 63, 12655-12664.	1.0	5
35	Asymmetric hydrogenation of aromatic ketones with new P-chirogenic monophosphine ligands. Tetrahedron: Asymmetry, 2007, 18, 1224-1232.	1.8	16
36	An unusual norcaradiene/tropylium rearrangement from a persistent amino-phosphonio-carbene. Tetrahedron Letters, 2007, 48, 685-687.	0.7	12
37	Modification of ligand properties of phosphine ligands for C–C and C–N bond-forming reactions. Tetrahedron Letters, 2007, 48, 949-953.	0.7	12
38	Analysis of the stereodynamics of 2,2′-disubstituted biphenyls by dynamic chromatography. Tetrahedron Letters, 2007, 48, 6886-6889.	0.7	17

#	Article	IF	CITATIONS
39	New 5,5′-disubstituted BINAP derivatives: Syntheses and pressure and electronic effects in Rh asymmetric hydrogenation. Journal of Molecular Catalysis A, 2007, 268, 205-212.	4.8	12
40	2,2′-Bis-[bis(4-substituted-phenyl)phosphino]-1,1′-binaphthyl derivatives in Rh(I)-catalyzed hydrogenation of acetamidoacrylic acid derivatives: Electronic effects. Journal of Molecular Catalysis A, 2007, 271, 18-24.	4.8	17
41	Horseradish peroxidase in ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2007, 44, 144-148.	1.8	67
42	Easily Accessible Benzamide-Derived P,O Ligands (Bphos) for Palladium-Catalyzed Carbon–Nitrogen Bond-Forming Reactions. Chemistry - an Asian Journal, 2007, 2, 306-313.	1.7	54
43	Enhanced enantioselectivity of chiral hydrogenation catalysts after immobilisation in thin films of ionic liquid. Journal of Molecular Catalysis A, 2008, 279, 239-247.	4.8	29
44	Ab initio multireference study of Hetero-Diels-Alder reaction of buta-1,3-diene with alkyl glyoxylates. Journal of Molecular Modeling, 2008, 14, 727-733.	0.8	5
45	Catalytic Asymmetric Synthesis of Chiral Phosphanes. Chemistry - A European Journal, 2008, 14, 7108-7117.	1.7	227
46	Deracemization of a Macrocyclic 1,1′â€Biisoquinoline. Helvetica Chimica Acta, 2008, 91, 904-913.	1.0	3
47	Synthesis of Biaryl Compounds through Threeâ€Component Assembly: Ambidentate Effect of the <i>tert</i> â€Butyldimethylsilyl Group for Regioselective Diels–Alder and Hiyama Coupling Reactions. Angewandte Chemie - International Edition, 2008, 47, 7673-7676.	7.2	89
48	Binaphthylâ€Containing Green―and Redâ€Emitting Molecules for Solutionâ€Processable Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 3299-3306.	7.8	108
49	Extensive Reâ€Investigations of Pressure Effects in Rhodium―Catalyzed Asymmetric Hydrogenations. Advanced Synthesis and Catalysis, 2008, 350, 898-908.	2.1	26
51	Synthesis and characterization of ruthenium(II) azoimine-diphosphine mixed-ligand complexes. Polyhedron, 2008, 27, 2698-2704.	1.0	12
52	Synthesis and characteristic stereostructure of a biphenanthryl ether. Tetrahedron: Asymmetry, 2008, 19, 1407-1410.	1.8	10
53	Efficient Synthesis of Sterically Crowded Biaryls by Palladium-Phosphinous Acid-Catalyzed Cross-Coupling of Aryl Halides and Aryl Grignards. Journal of Organic Chemistry, 2008, 73, 162-167.	1.7	87
54	Synthesis of Bisquinolone-Based Mono- and Diphosphine Ligands of the Aza-BINAP Type. Journal of Organic Chemistry, 2008, 73, 4755-4758.	1.7	25
55	Catalytic Enantioselective Addition of Diorganozinc Reagents to Vinyl Sulfones. Organic Letters, 2008, 10, 2315-2318.	2.4	53
56	Separation and Optical Resolution of a Pair of atrop Diastereomers of the Octahedral Rhodium(III) Complex with a Nine-Membered <i>S</i> , <i>S</i> -Chelate Ring. Inorganic Chemistry, 2008, 47, 7450-7452.	1.9	15
57	Lanthanide and group 4 metal complexes with new chiral biaryl-based NNO-donor ligands. Dalton Transactions, 2008, , 5930.	1.6	75

#	Article	IF	CITATIONS
58	Axial 4,4′,6,6′-Tetrakis-trifluoromethyl-biphenyl-2,2′-diamine (TF-BIPHAM): Resolution and Applications in Asymmetric Hydrogenation. Organic Letters, 2008, 10, 4711-4714.	2.4	30
59	Biaryl-Like CATPHOS Diphosphines via Double Diels–Alder Cycloaddition between 1,4-Bis(diphenylphosphinoyl)buta-1,3-diyne and Anthracenes: Efficient Ligands for the Palladium-Catalyzed Amination of Aromatic Bromides and α-Arylation of Ketones. Organometallics, 2008. 27. 1679-1682.	1.1	23
60	Enantioselective Arylative Cyclization of Allenyl Aldehydes with Arylboronic Acids under Pd(II)-diphosphine Catalysis. Organic Letters, 2008, 10, 1047-1050.	2.4	45
61	Highly Enantioselective Synthesis of Pseudo- <i>C</i> ₂ -Symmetric Axially Chiral Biaryl Diphosphines via Rhodium-Catalyzed Double [2 + 2 + 2] Cycloaddition. Organometallics, 2008, 27, 4837-4840.	1.1	43
62	Facile Synthesis of Structurally Diverse 3,3′-Disubstituted 1,1′-Binaphthyl-2,2′-diamines in Optically Pure Forms. Journal of Organic Chemistry, 2008, 73, 7387-7389.	1.7	25
63	Facile Photochemical Synthesis of 1,1?-Binaphthyls. Australian Journal of Chemistry, 2008, 61, 569.	0.5	16
64	Asymmetric Hydrogenation of α,βâ€Unsaturated Ester―Phosphonates. Advanced Synthesis and Catalysis, 2009, 351, 1423-1430.	2.1	20
66	1,1′â€Binaphthylâ€2â€methylpyridiniumâ€Based Peroxophosphotungstate Salts: Synthesis, Characterization, Their Use as Oxidation Catalysts. European Journal of Inorganic Chemistry, 2009, 2009, 5148-5155.	and 1.0	7
67	A Series of Novel <i>N</i> , <i>N</i> â€Donor Ligands with Binaphthyl Backbones. European Journal of Organic Chemistry, 2009, 2009, 1445-1452.	1.2	12
69	Unprecedented Selectivity via Electronic Substrate Recognition in the 1,4â€Addition to Cyclic Olefins Using a Chiral Disulfoxide Rhodium Catalyst. Angewandte Chemie - International Edition, 2009, 48, 2768-2771.	7.2	97
70	Atropisomerism at CS Bonds: Asymmetric Synthesis of Diaryl Sulfones by Dynamic Resolution Under Thermodynamic Control. Angewandte Chemie - International Édition, 2009, 48, 6270-6273.	7.2	42
71	Indirect regioselective heteroarylation of indoles through a Friedel–Crafts reaction with (E)-1,4-diaryl-2-buten-1,4-diones. Tetrahedron, 2009, 65, 9264-9270.	1.0	13
72	A class of readily available optically pure 7,7′-disubstituted BINAPs for asymmetric catalysis. Tetrahedron, 2009, 65, 4130-4141.	1.0	26
73	Development of P-stereogenic 2-phenyl-1,3,2-oxazaphosphorine ligands and their unexpected sensitivity to oxidation. Tetrahedron: Asymmetry, 2009, 20, 69-77.	1.8	10
74	New perfluorinated rhodium–BINAP catalysts and hydrogenation of styrene in supercritical CO2. Journal of Supercritical Fluids, 2009, 51, 202-208.	1.6	13
75	Synthesis and characterisation of two new binaphthyl trisilanes. Journal of Organometallic Chemistry, 2009, 694, 137-141.	0.8	5
76	Cross-Coupling Reactions of Aromatic and Heteroaromatic Silanolates with Aromatic and Heteroaromatic Halides. Journal of the American Chemical Society, 2009, 131, 3104-3118.	6.6	152
77	Synthesis and Characterization of NH-triazole-Bound Rhodium(I) Complexes: Substituted-Group-Controlled Regioselective Coordination. Organometallics, 2009, 28, 2352-2355.	1.1	45

#	Article	IF	CITATIONS
78	Concise Synthesis of Enantiopure (S)-(+)-2,2′-Bis(tert-butyldimethylsilyl)-1,1′-diphosphaferrocene: Anion-Dependence of Its Coordination to Palladium(II) Centers. Organometallics, 2009, 28, 370-373.	1.1	15
79	Electron-Poor Chiral Diphosphine Ligands: High Performance for Rh-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids at Room Temperature. Organic Letters, 2009, 11, 2325-2328.	2.4	84
80	Chiral Separation of Underivatized Amino Acids by Reactive Extraction with Palladiumâ [~] 'BINAP Complexes. Journal of Organic Chemistry, 2009, 74, 6526-6533.	1.7	75
81	Synthesis of Biaryl Diphosphines via a Stepwise Regioselective Double Dielsâ^Alder Cycloadditionâ^Elimination Sequence: Efficient Ligands for the Palladium-Catalyzed Amination of Aromatic Bromides. Organometallics, 2009, 28, 5273-5276.	1.1	16
82	N-Heterocyclic Carbene-Based Nickel Complexes: Synthesis and Catalysis in Cross-Couplings of Aryl Chlorides with ArMX (M = Mg or Zn). Organometallics, 2009, 28, 6507-6514.	1.1	63
83	Optically Active (<i>aR</i>)- and (<i>aS</i>)-Linear and Vaulted Biaryl Ligands: Deracemization versus Oxidative Dimerization. Journal of the American Chemical Society, 2009, 131, 14355-14364.	6.6	40
84	Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chemical Society Reviews, 2009, 38, 3193.	18.7	729
85	Designing Metal-Organic Frameworks for Catalytic Applications. Topics in Current Chemistry, 2009, 293, 175-205.	4.0	100
86	Michael Addition. , 0, , 17-99.		3
87	Original use of the same heterogeneous chiral catalyst batch to promote different asymmetric reactions. Chemical Communications, 2009, , 6574.	2.2	29
88	Sulfonate- or carboxylate-functionalized N-heterocyclic bis-carbene ligands and related water soluble silver complexes. Dalton Transactions, 2009, , 6985.	1.6	55
89	Can a Butadiene-Based Architecture Compete with its Biaryl Counterpart in Asymmetric Catalysis? Enantiopure Me-CATPHOS, a Remarkably Efficient Ligand for Asymmetric Hydrogenation. Organometallics, 2009, 28, 888-895.	1.1	26
90	Glucose as a Clean and Renewable Reductant in the Pd-Nanoparticle-Catalyzed Reductive Homocoupling of Bromo- and Chloroarenes in Water. Journal of Organic Chemistry, 2010, 75, 3908-3911.	1.7	78
91	Axial [6,6′-(2,4-pentadioxy)]-1,1′-biphenyl-2,2′-diamine (PD-BIPHAM): practical synthesis and applications asymmetric hydrogenation. Tetrahedron, 2010, 66, 3702-3706.	in 1.0	14
92	Recent progress in homogeneous supported asymmetric catalysis: example of the BINAP and the BOX ligands. Tetrahedron: Asymmetry, 2010, 21, 1110-1124.	1.8	36
93	Privileged chiral catalysts in asymmetric Morita-Baylis-Hillman/aza-Morita-Baylis-Hillman reaction. Science Bulletin, 2010, 55, 1699-1711.	1.7	17
94	CuO-2,2′-Diamino-6,6′-Dimethylbiphenyl Catalyzed Suzuki–Miyaura Coupling Reactions of Arylboronic Acids with Aryl lodides and Bromides. Catalysis Letters, 2010, 139, 141-144.	1.4	24
95	Atropochiral C,X―and C,Câ€Chelating Carbon Ligands. European Journal of Inorganic Chemistry, 2010, 2010, 2325-2335.	1.0	61

~			-		
CIT	⁻ AT	ION	RE	FPO	RT

#	Article	IF	CITATIONS
96	Hexahydropyrrolo[2,3â€ <i>b</i>]indoles: A New Class of Structurally Rigid Tricyclic Skeleton for Oxazaborolidineâ€Catalyzed Asymmetric Borane Reduction. Advanced Synthesis and Catalysis, 2010, 352, 1107-1112.	2.1	13
98	Ionicâ€Liquidâ€Supported (ILS) Catalysts for Asymmetric Organic Synthesis. Chemistry - A European Journal, 2010, 16, 4426-4436.	1.7	129
100	Biocatalytic Desymmetrization of an Atropisomer with both an Enantioselective Oxidase and Ketoreductases. Angewandte Chemie - International Edition, 2010, 49, 7010-7013.	7.2	73
101	Probing effects of alternatelyâ€embedded phenoxy phenyl lateral groups on properties of novel aromatic poly(etherâ€urea)s. Journal of Applied Polymer Science, 2010, 118, 1887-1893.	1.3	0
102	Regioselective synthesis of highly-substituted biaryls by reaction of vinyl malononitriles with acetylenic esters. Tetrahedron, 2010, 66, 3575-3578.	1.0	19
103	BINAP: rhodium–diolefin complexes in asymmetric hydrogenation. Tetrahedron: Asymmetry, 2010, 21, 1226-1231.	1.8	29
104	Hindered diarylether and diarylsulfone bisphosphine ligands: atropisomerism and palladium complexes. Tetrahedron: Asymmetry, 2010, 21, 1355-1360.	1.8	12
105	Asymmetric activation of tropos species in the achievement of chiral inducers for enantioselective catalysis. Tetrahedron: Asymmetry, 2010, 21, 1943-1958.	1.8	14
106	From C2- to D2-symmetry: atropos phosphoramidites with a D2-symmetric backbone as highly efficient ligands in Cu-catalyzed conjugate additions. Tetrahedron Letters, 2010, 51, 3119-3122.	0.7	27
107	Enantiodivergent synthesis of P-chirogenic phosphines. Comptes Rendus Chimie, 2010, 13, 1213-1226.	0.2	48
108	Enantioselective Synthesis of Axially Chiral Biaryls by the Pd-Catalyzed Suzukiâ^'Miyaura Reaction: Substrate Scope and Quantum Mechanical Investigations. Journal of the American Chemical Society, 2010, 132, 11278-11287.	6.6	249
109	Electrophilic Trifluoromethylation of Primary Phosphines: Synthesis of a <i>P</i> -Bis(trifluoromethyl) Derivative of BINAP. Organometallics, 2010, 29, 1771-1777.	1.1	44
110	Pd(II)-Catalyzed Câ^'H Activation/Arylâ^'Aryl Coupling of Phenol Esters. Journal of the American Chemical Society, 2010, 132, 468-469.	6.6	354
111	Enantioselective Hydrogenation Catalysis Aided by a σ-Bonded Calix[4]arene to a <i>P</i> -Chirogenic Aminophosphane Phosphinite Rhodium Complex. Organometallics, 2010, 29, 3622-3631.	1.1	34
113	Pushing the limits of steric demand around a biaryl axis: synthesis of tetra-ortho-substituted biaryl naphthalenes. Chemical Communications, 2011, 47, 286-288.	2.2	9
114	Efficient Route to Atropisomeric Ligands – Application to the Synthesis of MeOBIPHEP Analogues. Organic Letters, 2011, 13, 3250-3253.	2.4	28
115	Cationic Rhodium-BINAP Complexes: Full Characterization of Solvate- and Arene-Bridged Dimeric Species. Organometallics, 2011, 30, 5155-5159.	1.1	34
116	Room-Temperature Rh-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to Maleimides and Enones in the Presence of CF ₃ -Substituted MeOBIPHEP Analogues. Journal of Organic Chemistry, 2011, 76, 6925-6930.	1.7	29

#	Article	IF	CITATIONS
117	Capturing Axially Chiral Conformations of 2,2′-bipyridine in [Mn(II)(2,2′-bpy)(HCO ₂) _{2–<i>x</i>} (N ₃) _{<i>x</i>}] <i>via</i> Spontaneous Resolution. Crystal Growth and Design, 2011, 11, 2398-2403.	1.4	29
118	Process Research on the Asymmetric Hydrogenation of a Benzophenone for Developing the Manufacturing Process of the Squalene Synthase Inhibitor TAK-475. Organic Process Research and Development, 2011, 15, 1178-1184.	1.3	24
119	A Highly Reusable Rhodium Catalyst-Organic Framework for the Intramolecular Cycloisomerization of 1,6-Enynes. Organic Letters, 2011, 13, 3522-3525.	2.4	25
121	Synthesis of 5-(2-methoxy-1-naphthyl)- and 5-[2-(methoxymethyl)-1-naphthyl]-11H-benzo[b]fluorene as 2,2'-disubstituted 1,1'-binaphthyls via benzannulated enyne–allenes. Beilstein Journal of Organic Chemistry, 2011, 7, 496-502.	1.3	11
122	Synthesis and Conformation of Substituted Chiral Binaphthyl-Azobenzene Cyclic Dyads with Chiroptical Switching Capabilities. Molecules, 2011, 16, 1603-1624.	1.7	21
123	Catalytic anti-selective asymmetric Henry (nitroaldol) reaction catalyzed by Cu(I)–amine–imine complexes. Tetrahedron: Asymmetry, 2011, 22, 2065-2070.	1.8	18
124	Environmentally friendly homocoupling reaction of functionalized potassium aryl trifluoroborates salts in aqueous media. Tetrahedron Letters, 2011, 52, 5288-5291.	0.7	21
125	A Simple Method To Determine the <i>R</i> or <i>S</i> Configuration of Molecules with an Axis of Chirality. Journal of Chemical Education, 2011, 88, 299-301.	1.1	7
126	Synthesis, structure, and catalytic activity of chiral silver(I) and copper(II) complexes with biaryl-based nitrogen-containing ligands. Inorganica Chimica Acta, 2011, 366, 320-336.	1.2	31
127	Highly Enantioselective Henry Reaction Catalyzed by <i>C</i> ₂ â€Symmetric Modular BINOLâ€Oxazoline Schiff Base Copper(II) Complexes Generated in Situ. European Journal of Organic Chemistry, 2011, 2011, 1552-1556.	1.2	29
128	Arâ€BINMOLs with Axial and sp ³ Central Chirality – Characterization, Chiroptical Properties, and Application in Asymmetric Catalysis. European Journal of Organic Chemistry, 2011, 2011, 5039-5046.	1.2	36
130	Highly Enantioselective Synthesis of Axially Chiral Biarylphosphonates: Asymmetric Suzuki–Miyaura Coupling Using Highâ€Molecularâ€Weight, Helically Chiral Polyquinoxalineâ€Based Phosphines. Angewandte Chemie - International Edition, 2011, 50, 8844-8847.	7.2	209
131	An Unexpected and Easy Way of Freezing the Configuration of a Triaryl Phosphane Oxide. Chemistry - A European Journal, 2011, 17, 8643-8647.	1.7	8
132	Neighboring Lithiumâ€Assisted [1,2]â€Wittig Rearrangement: Practical Access to Diarylmethanolâ€Based 1,4â€Diols and Optically Active BINOL Derivatives with Axial and sp ³ â€Central Chirality. Chemistry - A European Journal, 2011, 17, 2698-2703.	1.7	55
133	Improved Syntheses of Phosphine Ligands by Direct Coupling of Diarylbromophosphine with Organometallic Reagents. Chemistry - A European Journal, 2011, 17, 10828-10831.	1.7	18
134	Catalytic Palladium Phosphination: Modular Synthesis of <i>C</i> ₁ â€&ymmetric Biarylâ€Based Diphosphines. Chemistry - A European Journal, 2011, 17, 11008-11016.	1.7	34
135	Synthesis and structure of lanthanide complexes with large-bite diphosphine dioxide ligands. Polyhedron, 2011, 30, 1620-1627.	1.0	12
136	Equilibrium Studies on Enantioselective Liquid–Liquid Extraction of Phenylalanine Enantiomers Using BINAP–Metal Complexes. Journal of Chemical & Engineering Data, 2012, 57, 3628-3635.	1.0	15

#	Article	IF	CITATIONS
137	Measurement of Atropisomer Racemization Kinetics Using Segmented Flow Technology. ACS Medicinal Chemistry Letters, 2012, 3, 433-435.	1.3	17
138	Bis(perfluoroalkyl) Phosphino-Oxazoline: A Modular, Stable, Strongly π-Accepting Ligand for Asymmetric Catalysis. Journal of Organic Chemistry, 2012, 77, 7957-7967.	1.7	35
139	Experimental and Model Study on Enantioselective Extraction of Phenylglycine Enantiomers with BINAP–Metal Complexes. Industrial & Engineering Chemistry Research, 2012, 51, 15233-15241.	1.8	11
140	3,3′-Substituted BINAP derivatives containing C-bound substituents: applications in asymmetric hydrogenation reactions. Tetrahedron: Asymmetry, 2012, 23, 754-763.	1.8	7
141	Synthesis and resolution of the biaryl-like diphosphine (S)-Me2-CATPHOS, preparation of a derived rhodium precatalyst and applications in asymmetric hydrogenation. Nature Protocols, 2012, 7, 1884-1896.	5.5	9
142	Advances in the Rational Design of Rhodium Nanoparticle Catalysts: Control via Manipulation of the Nanoparticle Core and Stabilizer. ACS Catalysis, 2012, 2, 1057-1069.	5.5	163
143	Highly Diastereoselective Synthesis of Atropisomeric Bridged P,N‣igands and Their Applications in Asymmetric Suzuki–Miyaura Coupling Reaction. Advanced Synthesis and Catalysis, 2012, 354, 2395-2402.	2.1	39
144	Synthesis of an electron-rich KITPHOS monophosphine, preparation of derived metal complexes and applications in catalysis. Nature Protocols, 2012, 7, 1870-1883.	5.5	25
147	Photoinversion of Cisoid/Transoid Binaphthyls. Organic Letters, 2012, 14, 276-279.	2.4	26
149	Synthesis of 5-halogenated 1,2,3-triazoles under stoichiometric Cu(I)-mediated azide–alkyne cycloaddition (CuAAC or †Click Chemistry'). Carbohydrate Research, 2012, 362, 79-83.	1.1	20
150	Promotion of Henry reactions using Cu(OTf)2 and a sterically hindered Schiff base: access to enantioenriched β-hydroxynitroalkanes. Tetrahedron, 2012, 68, 9119-9124.	1.0	45
151	New C2-symmetry diols accumulating one stereogenic axis and two stereogenic centers. Tetrahedron, 2012, 68, 9645-9651.	1.0	7
152	Amino acid- and imidazolium-tagged chiral pyrrolidinodiphosphine ligands and their applications in catalytic asymmetric hydrogenations in ionic liquid systems. Tetrahedron: Asymmetry, 2012, 23, 1058-1067.	1.8	14
153	Equilibrium studies on enantioselective liquid–liquid extraction of homophenylalanine enantiomers with metal-BINAP complexes. Process Biochemistry, 2012, 47, 2275-2283.	1.8	14
154	Efficient Chiral Monophosphorus Ligands for Asymmetric Suzuki–Miyaura Coupling Reactions. Organic Letters, 2012, 14, 2258-2261.	2.4	142
155	Experimental and Theoretical Studies on Regiocontrol of Benzyne Reactions Using Silyl and Boryl Directing Groups. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 1123-1133.	0.0	17
156	Cationic <i>η</i> ⁶ â€Coordinated BINAP Rhodium Complexes with Benzene and Toluene. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 907-908.	0.6	3
158	An Improved and Safer Synthesis of (<i>R</i>)―and (<i>S</i>)â€4,4′â€Diaminomethylâ€BINAP. European Jou of Organic Chemistry, 2012, 2012, 3074-3078.	ırnal 1.2	9

#	Article	IF	CITATIONS
159	Silylcyanation of Aldehydes, Ketones, and Imines Catalyzed by a 6,6′â€Bisâ€sulfonamide Derivative of 7,7′â€Dihydroxyâ€8,8′â€biquinolyl (azaBINOL). European Journal of Organic Chemistry, 2012, 2012, 3249-3	3260.	6
160	Nanosheetâ€Enhanced Enantioselectivity in the Vanadiumâ€Catalyzed Asymmetric Epoxidation of Allylic Alcohols. Chemistry - A European Journal, 2012, 18, 9911-9918.	1.7	25
161	Stereoselective Synthesis of <i>o</i> -Bromo (or Iodo)aryl P-Chirogenic Phosphines Based on Aryne Chemistry. Journal of Organic Chemistry, 2012, 77, 5759-5769.	1.7	52
162	Immobilization of chiral catalysts on magnetite nanoparticles for highly enantioselective asymmetric hydrogenation of aromatic ketones. RSC Advances, 2012, 2, 2576.	1.7	50
163	Reduction of phosphine oxides to phosphines with the InBr3/TMDS system. Tetrahedron, 2012, 68, 3151-3155.	1.0	44
164	Synthesis and use of chiral substituted benzenes containing 1,2-diols protected as cyclic acetals. Tetrahedron Letters, 2012, 53, 637-640.	0.7	10
165	Highly sterically hindered binaphthalene-based monophosphane ligands: synthesis and application in stereoselective Suzuki–Miyaura reactions. Tetrahedron: Asymmetry, 2013, 24, 894-902.	1.8	10
166	Zn2+-induced conformational changes in a binaphthyl-pyrene derivative monitored by using fluorescence and CD spectroscopy. Chemical Communications, 2013, 49, 7228.	2.2	83
168	Atropisomeric Chiral Dienes in Asymmetric Catalysis: <i>C</i> ₂ â€Symmetric (<i>Z</i> , <i>Z</i>)ã€2,3â€Bis[1â€(diphenylphosphinyl)ethylidene]tetralin as a Highly Active Lewis Base Organocatalyst. Angewandte Chemie - International Edition, 2013, 52, 13798-13802.	7.2	27
169	Synthesis of 6,6′â€Bis(dimethylamino)―and 6,6′â€Dibromoâ€Substituted 2,2′â€Diphosphanylbiphenyls Palladium Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 4858-4866.	s and Their 1.0	r ₃
170	Design, Preparation, and Implementation of an Imidazole-Based Chiral Biaryl P,N-Ligand for Asymmetric Catalysis. Journal of the American Chemical Society, 2013, 135, 14548-14551.	6.6	117
171	A continuing tale of chirality: metal coordination extended axial chirality of 4,4′-bipy to 1D infinite chain under cooperation of a nucleotide ligand. CrystEngComm, 2013, 15, 8430.	1.3	31
172	π-Excess σ2P ligands: synthesis of biaryl-type 1,3-benzazaphosphole hybrid ligands and formation of P^P′–M(CO)4 chelate complexes. Dalton Transactions, 2013, 42, 9523.	1.6	26
173	An Efficient Method for Sterically Demanding Suzuki–Miyaura Coupling Reactions. Chemistry - A European Journal, 2013, 19, 2261-2265.	1.7	95
174	The Supramolecular Balance for Transitionâ€Metal Complexes: Assessment of Noncovalent Interactions in Phosphoramidite Palladium Complexes. Angewandte Chemie - International Edition, 2013, 52, 2350-2354.	7.2	17
176	Synthesis of BINAP ligands with imidazole tags for highly enantioselective Ru-catalyzed asymmetric hydrogenation of β-keto esters in ionic liquid systems. Journal of Molecular Catalysis A, 2013, 374-375, 22-26.	4.8	9
177	Modulation of Multifunctional N,O,P Ligands for Enantioselective Copper atalyzed Conjugate Addition of Diethylzinc and Trapping of the Zinc Enolate. Chemistry - an Asian Journal, 2013, 8, 2242-2253.	1.7	35
178	Synthesis of binaphthyl based phosphine and phosphite ligands. Chemical Society Reviews, 2013, 42, 6990.	18.7	138

#	Article	IF	CITATIONS
179	Luminescent P-Chirogenic Copper Clusters. Inorganic Chemistry, 2013, 52, 7958-7967.	1.9	37
180	Highly enantioselective hydrogenation of N-unprotected indoles using (S)-C10–BridgePHOS as the chiral ligand. Tetrahedron, 2013, 69, 6839-6844.	1.0	58
181	Protectingâ€groupâ€free palladiumâ€catalyzed hydroxylation, C–O and C–N coupling of chiral 6â€bromo―a 6,6'â€dibromo―1,1'â€binaphthols. Applied Organometallic Chemistry, 2013, 27, 337-340.	ind 1.7	7
182	Enantioselective Synthesis of Axially Chiral Multifunctionalized Biaryls via Asymmetric Suzuki–Miyaura Coupling. Organic Letters, 2013, 15, 5508-5511.	2.4	66
183	Enantioselective liquid–liquid extraction of (D,ÂL)â€valine using metal– <scp>BINAP</scp> complex as chiral extractant. Journal of Chemical Technology and Biotechnology, 2013, 88, 1920-1929.	1.6	12
185	4, 4′―and 5, 5′â€Functionalized (<i>S</i>)―and (<i>R</i>)â€2, 2â€2â€Bis(diphenylphosphanyl)â€1, 1â€2 Derivatives. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2589-2596.	â€binaph 0.8	thyl Oxide
189	Enantiomerization Pathway and Atropochiral Stability of the BINAP Ligand: A Density Functional Theory Study. Chemistry - an Asian Journal, 2014, 9, 462-465.	1.7	9
190	Efficient Atropodiastereoselective Access to 5,5′â€Bisâ€1,2,3â€triazoles: Studies on 1â€Glucosylated 5â€Halog 1,2,3â€Triazoles and Their 5â€Substituted Derivatives as Glycogen Phosphorylase Inhibitors. Chemistry - A European Journal, 2014, 20, 5423-5432.	geno 1.7	31
191	Asymmetric Synthesis of Atropisomeric Compounds with an N‒C Chiral Axis. Organic Preparations and Procedures International, 2014, 46, 1-23.	0.6	81
192	Electron-Deficient Diphosphines: The Impact of DIFLUORPHOS in Asymmetric Catalysis. Chemical Reviews, 2014, 114, 2824-2880.	23.0	121
193	A Planarâ€Chiral Phosphino(alkenyl)ferrocene for Suzuki–Miyaura C–C Coupling Reactions. European Journal of Organic Chemistry, 2014, 2014, 6676-6685.	1.2	32
194	Noble Metal Complexes with 4, 4′―and 5, 5′â€Pyridylâ€Functionalized (<i>S</i>)â€2, 2′â€Bis(diphenylp 1′â€binaphthyl Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1589-1595.	hosphany 0.6	۱)â€ 1 ,
195	Synthesis and Characterization of Cationic Synphosâ€Rhodium Complexes. European Journal of Inorganic Chemistry, 2014, 2014, 4836-4842.	1.0	7
196	A Theoretical Study On Rh(I) Catalyzed Enantioselective Conjugate Addition Reactions of Fluoroalkylated Olefins. Organometallics, 2014, 33, 5111-5119.	1.1	8
197	Palladium-Catalyzed Cross-Coupling Reactions of Arylsiloxanes with Aryl Halides: Application to Solid-Supported Organic Synthesis. ACS Combinatorial Science, 2014, 16, 211-214.	3.8	15
198	<i>Tropos </i> Amino Alcohol Mediated Enantioselective Aryl Transfer Reactions to Aromatic Aldehydes. European Journal of Organic Chemistry, 2014, 2014, 5939-5945.	1.2	18
199	Nitroalkenes in the synthesis of carbocyclic compounds. RSC Advances, 2014, 4, 31261.	1.7	78
200	Directed <i>ortho</i> Metalation Strategies. Effective Regioselective Routes to 1,2-, 2,3-, and 1,2,3-Substituted Naphthalenes. Organic Letters, 2014, 16, 2378-2381.	2.4	35

#	Article	IF	CITATIONS
201	Metal-free reduction of tertiary phosphine oxides with Hantzsch ester. Chinese Chemical Letters, 2014, 25, 176-178.	4.8	9
202	Non-Precious Metals Catalyze Formal [4 + 2] Cycloaddition Reactions of 1,2-Diazines and Siloxyalkynes under Ambient Conditions. Organic Letters, 2014, 16, 3236-3239.	2.4	46
203	Copper atalyzed Regioselective <i>ortho</i> Cï£;H Cyanation of Vinylarenes. Angewandte Chemie - International Edition, 2014, 53, 8677-8681.	7.2	131
204	Highly Regio- and Enantioselective Synthesis of Polysubstituted 2 <i>H</i> -Pyrroles via Pd-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Pyrroles. Journal of the American Chemical Society, 2014, 136, 6590-6593.	6.6	78
205	Facile Synthesis of 3,3′-Disubstituted 2,2′-Binaphthyls by Transition-metal-catalyzed Double Benzannulation. Chemistry Letters, 2014, 43, 883-884.	0.7	16
206	Stereochemical Stability Differences between Axially Chiral 6-Aryl-Substituted Picolinic Esters and Their Benzoic Ester Derivatives: sp2N: vs. sp2CH in CH3, C6H5, and CH3O ortho-Substitution Effect. Bulletin of the Chemical Society of Japan, 2015, 88, 1726-1734.	2.0	2
207	Asymmetric Hydrogenation of βâ€Secondary Amino Ketones Catalyzed by a Ruthenocenyl Phosphinoâ€oxazolineâ€ruthenium Complex (RuPHOXâ€Ru): the Synthesis of γâ€Secondary Amino Alcohols. Advanced Synthesis and Catalysis, 2015, 357, 3262-3272.	2.1	45
209	Development of <scp>A</scp> râ€ <scp>BINMOL</scp> â€Derived Atropisomeric Ligands with Matched Axial and sp ³ Central Chirality for Catalytic Asymmetric Transformations. Chemical Record, 2015, 15, 925-948.	2.9	22
210	Atropisomerism of 2,2′â€Điarylâ€1,1′â€binaphthalenes Containing Three StereoÂgenic Axes: Experimental Computational Study. European Journal of Organic Chemistry, 2015, 2015, 7935-7942.	and 1.2	8
211	An Enantiopure 5,5′â€Bitetracene. European Journal of Organic Chemistry, 2015, 2015, 7648-7651.	1.2	6
212	Platinum functionalized multiwall carbon nanotube composites as recyclable catalyst for highly efficient asymmetric hydrogenation of methyl pyruvate. RSC Advances, 2015, 5, 102481-102487.	1.7	15
213	Synthesis and Structure of Phosphanylated Bis-Triazoles as Potential Ligands for Chiral Catalysts. Chemistry of Heterocyclic Compounds, 2015, 50, 1559-1566.	0.6	5
214	In-depth structure–selectivity investigations on asymmetric, copper-catalyzed oxidative biaryl coupling in the presence of 5-cis-substituted prolinamines. Catalysis Science and Technology, 2015, 5, 2215-2226.	2.1	22
215	Chiral N-(tert-butyl)-N-methylaniline type ligands: synthesis and application to palladium-catalyzed asymmetric allylic alkylation. Tetrahedron, 2015, 71, 5985-5993.	1.0	20
216	Rhodium catalyzed hydroformylation assisted by cyclodextrins in biphasic medium: Can sulfonated naphthylphosphanes lead to active, selective and recyclable catalytic species?. Catalysis Today, 2015, 247, 47-54.	2.2	15
217	Rhodiumâ€Catalyzed Enantioselective Intramolecular CH Silylation for the Syntheses of Planarâ€Chiral Metallocene Siloles. Angewandte Chemie - International Edition, 2015, 54, 6918-6921.	7.2	157
218	Bulky Monodentate Biphenylarsine Ligands: Synthesis and Evaluation of Their Structure Effects in the Palladium atalyzed Heck Reaction. European Journal of Organic Chemistry, 2015, 2015, 2698-2705.	1.2	16
219	Asymmetric Suzuki–Miyaura cross-coupling of 1-bromo-2-naphthoates using the helically chiral polymer ligand PQXphos. Chemical Communications, 2015, 51, 7211-7214.	2.2	37

	CITATION REL	CITATION REPORT		
#	Article	IF	CITATIONS	
220	Catalytic Kinetic Resolution of Biaryl Compounds. Chemistry - A European Journal, 2015, 21, 11644-11657.	1.7	166	
221	Rare-Earth Complexes Supported by Tripodal Tetradentate Bis(phenolate) Ligands: A Privileged Class of Catalysts for Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2015, 34, 4175-4189.	1.1	154	
222	The Future of Catalysis by Chiral Lewis Acids. Topics in Organometallic Chemistry, 2015, , 1-25.	0.7	2	
223	Atroposelective Synthesis of Axially Chiral Biaryldiols via Organocatalytic Arylation of 2-Naphthols. Journal of the American Chemical Society, 2015, 137, 15062-15065.	6.6	242	
224	The first 4,4′-imidazolium-tagged C2-symmetric bis(oxazolines): application in the asymmetric Henry reaction. RSC Advances, 2015, 5, 4758-4765.	1.7	11	
225	Modeling and experimental evaluation of enantioselective liquid-liquid extraction of (D,) Tj ETQq1 1 0.784314 rgB 290-300.	T /Overloc 2.7	ck 10 Tf 50 15	
226	Heterogeneous asymmetric hydrogenation over chiral molecule-modified metal particles. Catalysis Science and Technology, 2015, 5, 650-659.	2.1	34	
227	Ringâ€Opening/Expansion Rearrangement of Cycloprop[2,3]indenâ€1â€ols Catalyzed by <i>pâ€</i> Toluenesulfonic Acid. Advanced Synthesis and Catalysis, 2016, 358, 2088-2092.	2.1	5	
228	Ru coordinated with BINAP in knitting aryl network polymers for heterogeneous asymmetric hydrogenation of methyl acetoacetate. RSC Advances, 2016, 6, 28447-28450.	1.7	19	
229	Rh ^{III} â€Catalyzed Directed Câ^'H Bromination and Iodination to Synthesize Atropisomeric Biaryls. Asian Journal of Organic Chemistry, 2016, 5, 1107-1110.	1.3	7	
230	Zirconium-mediated selective synthesis of 1,4-dialkyl(aryl)-hexa-substituted benzenes from two silyl-substituted alkynes and one internal alkyne. Chemical Research in Chinese Universities, 2016, 32, 366-372.	1.3	1	
231	An efficient indenyl-derived phosphine ligand for the Suzuki–Miyaura coupling of sterically hindered aryl halides. Organic and Biomolecular Chemistry, 2016, 14, 4664-4668.	1.5	14	
232	Development of Axially Chiral Cycloâ€Biaryldiol Ligands with Adjustable Dihedral Angles. Chemistry - A European Journal, 2016, 22, 17477-17484.	1.7	15	
233	Facile palladium–catalyzed homocoupling of aryl halides using 1,4â€butanediol as solvent, reductant and <i>O,O</i> â€ligand. ChemistrySelect, 2016, 1, 630-634.	0.7	18	
235	Enantiomerization Kinetics of 2,2′â€Disubstituted Biphenyls: A Dynamic Chiral HPLC Investigation. Israel Journal of Chemistry, 2016, 56, 1052-1056.	1.0	5	
236	Enantioselective Oxidative Homocoupling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes. Journal of the American Chemical Society, 2016, 138, 16553-16560.	6.6	209	
237	Asymmetric Hydrogenation of Nonaromatic Cyclic Substrates. Chemical Reviews, 2016, 116, 14769-14827.	23.0	284	
238	Enantioselective synthesis of axially chiral 3-bromo-4-alkoxy-2,6-dimethyl-5-(naphthalen-1-yl)pyridines via an asymmetric Suzuki–Miyaura cross-coupling reaction. Tetrahedron Letters, 2016, 57, 4713-4717.	0.7	11	

#	Article	IF	CITATIONS
239	Readily available catalysts for demanding Suzuki–Miyaura couplings under mild conditions. Tetrahedron, 2016, 72, 6668-6677.	1.0	24
240	Quinine atalyzed Asymmetric Synthesis of 2,2′â€Binaphtholâ€Type Biaryls under Mild Reaction Conditions. Angewandte Chemie, 2016, 128, 6635-6639.	1.6	44
241	Quinine atalyzed Asymmetric Synthesis of 2,2′â€Binaphtholâ€Type Biaryls under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2016, 55, 6525-6529.	7.2	132
242	Oxidative coupling of 2-naphthol catalyzed by a new methoxido bridged dinuclear oxidovanadium(V) complex. Polyhedron, 2016, 111, 167-172.	1.0	36
243	Efficient synthesis of chiral biaryls via asymmetric Suzuki-Miyaura cross-coupling of ortho-bromo aryl triflates. Tetrahedron, 2016, 72, 5178-5183.	1.0	26
244	Asymmetric Diels–Alder reaction between 3,4-dimethyl-1-phenylphosphole and (Z/E)-diphenyl-1-styrylphosphine. Journal of Organometallic Chemistry, 2016, 806, 1-4.	0.8	2
245	Research on the design, synthesis, and catalytic activity of chiral N-heterocyclic carbene ligand–metal complexes. Tetrahedron: Asymmetry, 2016, 27, 107-113.	1.8	14
246	Synthesis of bridged biarylbisquinones and effects of biaryl dihedral angles on photo- and electro-chemical properties. Tetrahedron, 2016, 72, 1533-1540.	1.0	7
247	Synthesis and photocatalytic activity of a naphthyl-substituted photosensitizing BINAP–palladium complex. Dalton Transactions, 2016, 45, 1331-1334.	1.6	12
248	The deoxygenation of phosphine oxides under green chemical conditions. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 359-366.	0.8	19
249	Enantioselective Alkyne Conjugate Addition Enabled by Readily Tuned Atropisomeric <i>P</i> , <i>N</i> -Ligands. Journal of the American Chemical Society, 2017, 139, 3352-3355.	6.6	59
250	Incorporation of Axial Chirality into Phosphino-Imidazoline Ligands for Enantioselective Catalysis. ACS Catalysis, 2017, 7, 2133-2138.	5.5	55
251	An Efficient and Modular Route to C3*-TunePhos-Type Ligands. Synthesis, 2017, 49, 3726-3730.	1.2	1
252	Porous Rh/BINAP polymers as efficient heterogeneous catalysts for asymmetric hydroformylation of styrene: Enhanced enantioselectivity realized by flexible chiral nanopockets. Chinese Journal of Catalysis, 2017, 38, 691-698.	6.9	21
253	Synthesis of 2,3-dihydro-1H-phosphindole-1-oxides via the t-BuLi-mediated rearrangement of vinyl bromides and phosphine oxides. Organic Chemistry Frontiers, 2017, 4, 1854-1857.	2.3	4
254	Atropisomerism in Tertiary Biaryl 2-Amides: A Study of Ar–CO and Ar–Ar′ Rotational Barriers. Journal of Organic Chemistry, 2017, 82, 7300-7308.	1.7	13
255	Palladium atalyzed Enantioselective Synthesis of 2â€Aryl Cyclohexâ€2â€enone Atropisomers: Platform Molecules for the Divergent Synthesis of Axially Chiral Biaryl Compounds. Angewandte Chemie - International Edition, 2017, 56, 4777-4781.	7.2	90
256	Direct Chiral Separation of Binaphthyl Derivatives Using Atroposelective Antibodies. ChemistrySelect, 2017, 2, 2622-2625.	0.7	5

#	Article	IF	CITATIONS
257	Palladiumâ€Catalyzed Enantioselective Synthesis of 2â€Aryl Cyclohexâ€2â€enone Atropisomers: Platform Molecules for the Divergent Synthesis of Axially Chiral Biaryl Compounds. Angewandte Chemie, 2017, 129, 4855-4859.	1.6	25
258	Synthesis of Chiralâ€Bridged Atropisomeric Monophosphine Ligands with Tunable Dihedral Angles and their Applications in Asymmetric Suzuki–Miyaura Coupling Reactions. Advanced Synthesis and Catalysis, 2017, 359, 1656-1662.	2.1	24
259	Phosphonium Salts in Asymmetric Catalysis: A Journey in a Decade's Extensive Research Work. Advanced Synthesis and Catalysis, 2017, 359, 3676-3706.	2.1	77
260	Chiral benzimidazoles and their applications in stereodiscrimination processes. Tetrahedron: Asymmetry, 2017, 28, 1233-1289.	1.8	21
261	Enantioselective hydrogenation of N-heteroaromatics catalyzed by chiral diphosphine modified binaphthyl palladium nanoparticles. Catalysis Science and Technology, 2017, 7, 5515-5520.	2.1	21
262	Synthesis of CuPF ₆ â€(<i>S</i>)â€BINAP loaded resin and its enantioselectivity toward phenylalanine enantiomers. Chirality, 2017, 29, 541-549.	1.3	10
263	Atropisomeric Chiral Diiododienes (Z,Z)-2,3-Di(1-iodoalkylidene)tetralins: Synthesis, Enantiomeric Resolution, and Application in Asymmetric Catalysis. Organic Letters, 2017, 19, 4102-4105.	2.4	34
264	Benzo/Naphthoâ€Anellated Dihydroâ€1,2â€oxaphosphinines and Ringâ€Opening to Pâ€Tertiary 2â€Phosphanylâ€1,1′â€biarylâ€2â€ol Derivatives – Syntheses and Structures. European Journal of Inorganic Chemistry, 2017, 2017, 3580-3586.	1.0	2
265	Synthesis of helical shaped 1,1′-bibenzo[c]phenanthrene-2,2′-diol (HEBPOL) derivatives by reduction of helical quinones. Tetrahedron Letters, 2017, 58, 3704-3707.	0.7	8
266	Reducing Diastereomorphous Bis(phosphane oxide) Atropisomers to One Atropisomerically Pure Diphosphane: A New Ligand and a Novel Ligandâ€Preparation Design. Chemistry - A European Journal, 2017, 23, 17463-17468.	1.7	4
267	The Reduction of Tertiary Phosphine Oxides by Silanes. Current Organic Chemistry, 2017, 21, 569-585.	0.9	41
268	Inducing Axial Chirality in a Supramolecular Catalyst. Angewandte Chemie - International Edition, 2018, 57, 5100-5104.	7.2	32
269	Catalyst-Controlled Stereoselective Synthesis of Atropisomers. ACS Catalysis, 2018, 8, 2981-2988.	5.5	222
270	Synthesis and application of a new hexamethyl-1,1′-spirobiindane-based chiral bisphosphine (HMSI-PHOS) ligand in asymmetric allylic alkylation. Organic and Biomolecular Chemistry, 2018, 16, 2239-2247.	1.5	14
271	Design, Synthesis, and Application of Chiral <i>C</i> ₂ â€5ymmetric Spiroketalâ€Containing Ligands in Transitionâ€Metal Catalysis. Angewandte Chemie - International Edition, 2018, 57, 5325-5329.	7.2	38
272	Design, Synthesis, and Application of Chiral <i>C</i> ₂ ‣ymmetric Spiroketalâ€Containing Ligands in Transitionâ€Metal Catalysis. Angewandte Chemie, 2018, 130, 5423-5427.	1.6	5
273	Inducing Axial Chirality in a Supramolecular Catalyst. Angewandte Chemie, 2018, 130, 5194-5198.	1.6	11
274	BABIPhos Family of Biaryl Dihydrobenzooxaphosphole Ligands for Asymmetric Hydrogenation. Organic Letters, 2018, 20, 1725-1729.	2.4	18

#	Article	IF	CITATIONS
275	Coordination determined chemo- and enantioselectivities in asymmetric hydrogenation of multi-functionalized ketones. Coordination Chemistry Reviews, 2018, 355, 39-53.	9.5	39
276	An <i>Atropos</i> Chiral Biphenyl Bisphosphine Ligand Bearing Only 2,2â€2â€Substituents and Its Application in Rhâ€Catalyzed Asymmetric Hydrogenation. Advanced Synthesis and Catalysis, 2018, 360, 738-743.	2.1	27
277	Efficient P hiral Biaryl Bisphosphorus Ligands for Palladium atalyzed Asymmetric Hydrogenation. Chinese Journal of Chemistry, 2018, 36, 153-156.	2.6	19
278	Featuring Xantphos. Catalysis Science and Technology, 2018, 8, 26-113.	2.1	97
279	One-pot two-step stannylation/Stille homocoupling of aryl bromides and iodides under solvent-free conditions. Mendeleev Communications, 2018, 28, 323-325.	0.6	8
280	Synthesis and Catalytic Activity of Chiral Linker-Bridged Bis-N-Heterocyclic Carbene Dipalladium Complexes. Journal of Chemical Research, 2018, 42, 320-325.	0.6	3
281	Enantioselective and Regioselective Hydroetherification of Alkynes by Gold-Catalyzed Desymmetrization of Prochiral Phenols with P-Stereogenic Centers. Organic Letters, 2018, 20, 7039-7043.	2.4	54
282	Remote Control of Axial Chirality: Synthesis of Spirooxindole–Urazoles via Desymmetrization of ATAD. Organic Letters, 2018, 20, 6022-6026.	2.4	43
283	Enantioselective synthesis of axially chiral vinyl arenes through palladium-catalyzed C–H olefination. Chemical Communications, 2018, 54, 10706-10709.	2.2	53
284	Enantioselective Synthesis of Biaryl Atropisomers via Pd/Norbornene-Catalyzed Three-Component Cross-Couplings. ACS Catalysis, 2018, 8, 5630-5635.	5.5	97
285	Helicene-Based Chiral Auxiliaries and Chirogenesis. Symmetry, 2018, 10, 10.	1.1	44
286	Access to Arylâ€Naphthaquinone Atropisomers by Phosphineâ€Catalyzed Atroposelective (4+2) Annulations of Î'â€Acetoxy Allenoates with 2â€Hydroxyquinone Derivatives. Angewandte Chemie, 2019, 131, 15478-15482.	1.6	14
287	Access to Arylâ€Naphthaquinone Atropisomers by Phosphineâ€Catalyzed Atroposelective (4+2) Annulations of Î′â€Acetoxy Allenoates with 2â€Hydroxyquinone Derivatives. Angewandte Chemie - International Edition, 2019, 58, 15334-15338.	7.2	41
288	Synthesis and application of axially chiral biscarbolines with functional N-O and sulfone for 1,2-transfer hydrogenations of ketimines. Tetrahedron, 2019, 75, 130495.	1.0	7
289	Highly atroposelective synthesis of nonbiaryl naphthalene-1,2-diamine N-C atropisomers through direct enantioselective C-H amination. Nature Communications, 2019, 10, 3063.	5.8	75
290	New Developments on the Hirao Reactions, Especially from "Green―Point of View. Current Organic Synthesis, 2019, 16, 523-545.	0.7	32
291	Catalytic Mechanism Study on the 1,2―and 1,4â€Transfer Hydrogenation of Ketimines and βâ€Enamino Esters Catalyzed by Axially Chiral Biscarbolineâ€Based Alcohols. Advanced Synthesis and Catalysis, 2019, 361, 4602-4610.	2.1	9
292	Enantioselective synthesis of α-amino esters through Petasis borono-Mannich multicomponent reaction of potassium trifluoroborate salts. Journal of Chemical Research, 2019, 43, 557-564.	0.6	5

ARTICLE IF CITATIONS Adamantyl-BINOL as platform for chiral porous polymer aromatic frameworks. Multiple applications 293 3.1 15 as recyclable catalysts. Journal of Catalysis, 2019, 377, 609-618. Copperâ€Complexâ€Catalyzed Asymmetric Aerobic Oxidative Crossâ€Coupling of 2â€Naphthols: 294 Enantioselective Synthesis of 3,3â€2â€Substituted C 1 â€Symmetric BINOLs. Ångewandte Chemie, 2019, 131, 1.6 11139-11143. Copperâ€Complexâ€Catalyzed Asymmetric Aerobic Oxidative Crossâ€Coupling of 2â€Naphthols: Enantioselective Synthesis of 3,3â€2â€Substituted <i>C₁</i>à€Symmetric BINOLs. Angewandte 295 7.2 73 Chemie - International Edition, 2019, 58, 11023-11027. An Atropo-enantioselective Synthesis of Benzo-Linked Axially Chiral Indoles via Hydrogen-Bond 2.4 Catalysis. Organic Letters, 2019, 21, 5219-5224. Stereochemistry, Stereodynamics, and Redox and Complexation Behaviors of 2,2′â€Diarylâ€1,1′â€Biazulenes 297 6 ChemPlusChem, 2019, 84, 1659-1667. Recent advances in the synthesis of axially chiral biaryls<i>via</i>transition metal-catalysed 298 2.2 asymmetric C–H functionalization. Chemical Communications, 2019, 55, 8514-8523 Synthesis and Photocatalytic Activities of Dinuclear Iridium Polyhydride Complexes Bearing BINAP 299 1.1 2 Ligands. Organometallics, 2019, 38, 2408-2411. Kinetic Resolution of Axially Chiral 2â€Nitrovinyl Biaryls Catalyzed by a Bifunctional 300 2.1 Thiophosphinamide. Advanced Synthesis and Catalysis, 2019, 361, 3575-3581. Catalytic Asymmetric C–H Arylation of (η⁶-Arene)Chromium Complexes: Facile Access to 301 5.5 37 Planar-Chiral Phosphines. ACS Catalysis, 2019, 9, 5268-5278. Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy. 16.1 Nature Catalysis, 2019, 2, 314-323. Utilization of BozPhos as an Effective Ligand in Enantioselective Câ€"H Functionalization of Cyclopropanes: Synthesis of Dihydroisoquinolones and Dihydroquinolones. Organic Letters, 2019, 21, 303 2.4 15 2639-2644. Selective fluorescent recognition of Zn2+ by using chiral binaphthol-pyrene probes. Dyes and 2.0 30 Pigments, 2019, 167, 29-35. Chiral extraction of amino acid and mandelic acid enantiomers using chiral diphosphine ligands with 305 3.9 17 tunable dihedral angles. Separation and Purification Technology, 2019, 221, 159-165. Cascade Approach to Highly Functionalized Biaryls by a Nucleophilic Aromatic Substitution with Arylhydroxylamines. Organic Letters, 2019, 21, 2894-2898. 306 2.4 38 Transition metal-mediated metathesis between P–C and M–C bonds: Beyond a side reaction. 307 9.5 42 Coordination Chemistry Reviews, 2019, 386, 96-118. Stereochemistry, Stereodynamics, and Redox and Complexation Behaviors of $2,2\hat{a}\in \hat{a}\in D$ iaryl $\hat{a}\in 1,1\hat{a}\in \hat{a}\in B$ iazulenes ChemPlusChem, 2019, 84, 1647-1647. 308 An enantioselective oxidative coupling reaction of 2-naphthol derivatives catalyzed by chiral 309 2.238 diphosphine oxideâ€"iron(<scp>ii</scp>) complexes. Chemical Communications, 2019, 55, 13677-13680. Arylpyridines: A Review from Selective Synthesis to Atropisomerism. Synthesis, 2019, 51, 587-611. 1.2

#	Article	IF	CITATIONS
312	Axially Chiral Biaryl Monophosphine Oxides Enabled by Palladium/WJ-Phos-Catalyzed Asymmetric Suzuki–Miyaura Cross-coupling. ACS Catalysis, 2020, 10, 1548-1554.	5.5	51
313	Study and modular synthesis of unsymmetrical bis(phosphino)pyrrole ligands. Dalton Transactions, 2020, 49, 9957-9960.	1.6	5
314	Binaphthyl-based chiral ligands: design, synthesis and evaluation of their performance in enantioselective addition of diethylzinc to aromatic aldehydes. Organic and Biomolecular Chemistry, 2020, 18, 9712-9725.	1.5	16
315	Synthesis of Axially Chiral Olefin–Oxazoline Ligands via Pd-Catalyzed Multiple C–H Functionalization. Organic Letters, 2020, 22, 9169-9173.	2.4	8
316	Isosterically designed chiral catalysts: Rationale, optimization and their application in enantioselective nucleophilic addition to aldehydes. Tetrahedron, 2020, 76, 131648.	1.0	6
317	Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates. Beilstein Journal of Organic Chemistry, 2020, 16, 3008-3014.	1.3	2
318	New Directions in the Modeling of Organometallic Reactions. Topics in Organometallic Chemistry, 2020, , .	0.7	1
319	The C–H Activation/Bidirecting Group Strategy for Selective Direct Synthesis of Diverse 1,1′-Biisoquinolines. Organic Letters, 2020, 22, 4207-4212.	2.4	20
320	Synthesis of Concave and Vaulted 2 <i>H</i> -Pyran-Fused BINOLs and Corresponding [5] and [7]-Oxa-helicenoids: Regioselective Cascade-Concerted Route and DFT Studies. Journal of Organic Chemistry, 2020, 85, 7739-7747.	1.7	4
321	Rapid Synthesis of Alkenylated BINOL Derivatives via Rh(III)-Catalyzed C–H Bond Activation. Organic Letters, 2020, 22, 4648-4652.	2.4	7
322	Atroposelective Synthesis of Axially Chiral 3-Arylindoles by Copper-Catalyzed Asymmetric Cross-Coupling of Indoles with Quinones and Naphthoquinones. Organic Letters, 2020, 22, 4995-5000.	2.4	49
323	JoyaPhos: An Atropisomeric Teraryl Monophosphine Ligand. Chemistry - A European Journal, 2020, 26, 9864-9868.	1.7	7
324	Diastereoselective Synthesis of Pâ€Chirogenic and Atropisomeric 2,2′â€Bisphosphinoâ€1,1′â€binaphthyls I by Internal Phosphine Oxide Directing Groups. Angewandte Chemie - International Edition, 2020, 59, 8153-8159.	Enabled 7.2	7
325	Organocatalytic Enantioselective Construction of Heterocycle-Substituted Styrenes with Chiral Atropisomerism. Organic Letters, 2020, 22, 2448-2453.	2.4	43
326	Enantioselective Iron/Bisquinolyldiamine Ligand-Catalyzed Oxidative Coupling Reaction of 2-Naphthols. Molecules, 2020, 25, 852.	1.7	9
327	DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene. CheM, 2020, 6, 2046-2059.	5.8	83
328	Ligand Design for Asymmetric Catalysis: Combining Mechanistic and Chemoinformatics Approaches. Topics in Organometallic Chemistry, 2020, , 153-189.	0.7	1
329	Tailored Palladium Catalysts for Selective Synthesis of Conjugated Enynes by Monocarbonylation of 1,3â€Diynes. Angewandte Chemie, 2020, 132, 9117-9125.	1.6	15

#	Article	IF	CITATIONS
330	Intermolecular Palladium(0)-Catalyzed Atropo-enantioselective C–H Arylation of Heteroarenes. Journal of the American Chemical Society, 2020, 142, 2161-2167.	6.6	112
331	Synthesis, Characterization, and Application of Segphos Derivative Having Diferrocenylphosphino-Donor Moieties. Organometallics, 2020, 39, 788-792.	1.1	4
332	Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl―p â€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie, 2020, 132, 11470-11474.	1.6	23
333	Organocatalytic Enantioselective Synthesis of Atropisomeric Arylâ€ <i>p</i> â€Quinones: Platform Molecules for Diversityâ€Oriented Synthesis of Biaryldiols. Angewandte Chemie - International Edition, 2020, 59, 11374-11378.	7.2	85
334	Enantioseparation of 4-Nitrophenylalanine using (S)-SDP-metal complex as chiral extractant. Separation and Purification Technology, 2020, 239, 116547.	3.9	10
335	Michael Reaction Inspired Atroposelective Construction of Axially Chiral Biaryls. Journal of the American Chemical Society, 2020, 142, 7322-7327.	6.6	57
336	Diastereoselective Synthesis of Pâ€Chirogenic and Atropisomeric 2,2′â€Bisphosphinoâ€1,1′â€binaphthyls E by Internal Phosphine Oxide Directing Groups. Angewandte Chemie, 2020, 132, 8230-8236.	inabled	0
337	Construction of Partially Protected Nonsymmetrical Biaryldiols via Semipinacol Rearrangement of <i>o</i> -NQM Derived from Enynones. Organic Letters, 2021, 23, 71-75.	2.4	2
338	Enantioseparation of 3-Chlorophenylglycine enantiomers using Mandyphos-Pd as chiral extractant. Chinese Journal of Chemical Engineering, 2021, 33, 96-103.	1.7	4
339	Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation. Organic Chemistry Frontiers, 2021, 8, 2772-2785.	2.3	35
340	Phosphorus Ligands. , 2021, , 32-59.		3
341	Slight structural modulation around a pivotal bond: high impact on enantiomeric stability. New Journal of Chemistry, 2021, 45, 16039-16047.	1.4	0
342	Chiral bis(benzo[1,2-b:4,3-b′]dithiophene) atropisomers: experimental and theoretical investigations of the stereochemical and chiroptical properties. New Journal of Chemistry, 2021, 45, 16442-16451.	1.4	0
343	Synthesis of Axially Chiral 2,2′-Bisphosphobiarenes via a Nickel-Catalyzed Asymmetric Ullmann Coupling: General Access to Privileged Chiral Ligands without Optical Resolution. Journal of the American Chemical Society, 2021, 143, 1328-1333.	6.6	55
344	Synthesis of homochiral sulfanyl- and sulfoxide-substituted naphthyltriazoles and study of the conformational stability. Organic and Biomolecular Chemistry, 2021, 19, 6521-6526.	1.5	5
345	The chemistry of phosphines in constrained, well-defined microenvironments. Chemical Society Reviews, 2021, 50, 4411-4431.	18.7	27
346	Combined Dynamic Kinetic Resolution and Câ~'H Functionalization for Facile Synthesis of Nonâ€Biarylâ€Atropisomerâ€Type Axially Chiral Organosilanes. Chemistry - A European Journal, 2021, 27, 4336-4340.	1.7	19
347	Enantioselective Synthesis of 3,3′â€Disubstituted 2â€Aminoâ€2′â€hydroxyâ€1,1′â€binaphthyls by Copp	erâ€Cata 1.6	lyzed

Aerobic Oxidative Crossâ€Coupling. Angewandte Chemie, 2021, 133, 7137-7141. pperae 347

#	Article	IF	CITATIONS
348	Enantioselective Synthesis of 3,3′â€Disubstituted 2â€Aminoâ€2′â€hydroxyâ€1,1′â€binaphthyls by Copp Aerobic Oxidative Crossâ€Coupling. Angewandte Chemie - International Edition, 2021, 60, 7061-7065.	oerâ€Cata 7.2	lyzed
349	Investigation of Taniaphos as a chiral selector in chiral extraction of amino acid enantiomers. Chirality, 2021, 33, 292-302.	1.3	7
350	Advances in Chiral Metal–Organic and Covalent Organic Frameworks for Asymmetric Catalysis. Small, 2021, 17, e2005686.	5.2	41
351	Backbone-Modified <i>C</i> ₂ -Symmetrical Chiral Bisphosphine TMS-QuinoxP*: Asymmetric Borylation of Racemic Allyl Electrophiles. Journal of the American Chemical Society, 2021, 143, 6413-6422.	6.6	28
352	Nickel-Catalyzed Ring-Opening C–O Functionalization of <i>peri</i> -Xanthenoxanthenes for 8-Substituted Binaphthol Synthesis. Organic Letters, 2021, 23, 3908-3912.	2.4	2
353	C1-Symmetric Binap Derivative Featuring Single Diferrocenylphosphino-Donor Moiety. Organometallics, 2021, 40, 1020-1024.	1.1	1
354	Synthesis and characterization of a high-purity chiral 5,5'-disulfonato-BINAP ligand and its application in asymmetric hydrogenation of β-keto esters. Molecular Catalysis, 2021, 507, 111562.	1.0	2
355	Atropoâ€Enantioselective Oxidationâ€Enabled Iridium(III)â€Catalyzed Câ^'H Arylations with Aryl Boronic Esters. Angewandte Chemie, 2021, 133, 18680-18684.	1.6	3
356	The Efficient Synthesis of 2-(3-Carbamoylpyridine-2-yl) nicotinamide Pyridine Salts. Letters in Organic Chemistry, 2021, 18, .	0.2	0
357	Atropoâ€Enantioselective Oxidationâ€Enabled Iridium(III)â€Catalyzed Câ^'H Arylations with Aryl Boronic Esters. Angewandte Chemie - International Edition, 2021, 60, 18532-18536.	7.2	33
358	Palladium-Catalyzed Desymmetric Intermolecular C–N Coupling Enabled by a Chiral Monophosphine Ligand Derived from Anthracene Photodimer. Organic Letters, 2021, 23, 5485-5490.	2.4	7
359	Structural and catalytic properties of the [Ni(BIPHEP)X2] complexes, BIPHEPÂ=Â2,2-diphenylphosphino-1,1-biphenyl; XÂ=ÂCl, Br. Inorganica Chimica Acta, 2021, 522, 120300.	1.2	0
360	Configuration Sampling With Fiveâ€Membered Atropisomeric P , N â€Ligands. Angewandte Chemie - International Edition, 2021, 60, 19604-19608.	7.2	9
361	SPHENOL, A New Chiral Framework for Asymmetric Synthesis. Journal of the American Chemical Society, 2021, 143, 12445-12449.	6.6	21
362	Nickel Complexes in C‒P Bond Formation. Molecules, 2021, 26, 5283.	1.7	11
363	Configuration Sampling With Fiveâ€Membered Atropisomeric P , N â€Ligands. Angewandte Chemie, 2021, 133, 19756-19760.	1.6	1
364	Newâ€Generation Ligand Design for the Gold atalyzed Asymmetric Activation of Alkynes. ChemPlusChem, 2021, 86, 1283-1296.	1.3	40
365	Towards Dataâ€Driven Design of Asymmetric Hydrogenation of Olefins: Database and Hierarchical Learning. Angewandte Chemie, 2021, 133, 22986-22993.	1.6	3

#	Article	IF	CITATIONS
	Organocatalytic Asymmetric Arylation of <i>p</i> -Quinone Phosphonates: A Green Access to Biaryl		
366	Monophosphorus Ligands. Organic Letters, 2021, 23, 7630-7634.	2.4	6
367	Ag-catalyzed Multicomponent Synthesis of Heterocyclic Compounds: A Review. Current Organic Synthesis, 2022, 19, 484-506.	0.7	3
368	Towards Dataâ€Ðriven Design of Asymmetric Hydrogenation of Olefins: Database and Hierarchical Learning. Angewandte Chemie - International Edition, 2021, 60, 22804-22811.	7.2	21
369	Rhodiumâ€Catalyzed Asymmetric Hydrogenation of 3â€Benzoylaminocoumarins for the Synthesis of Chiral 3â€Amino Dihydrocoumarins. Angewandte Chemie - International Edition, 2021, 60, 23602-23607.	7.2	22
370	Rhodium atalyzed Asymmetric Hydrogenation of 3â€Benzoylaminocoumarins for the Synthesis of Chiral 3â€Amino Dihydrocoumarins. Angewandte Chemie, 2021, 133, 23794.	1.6	4
371	Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coordination Chemistry Reviews, 2021, 446, 214120.	9.5	45
373	Tailored Palladium Catalysts for Selective Synthesis of Conjugated Enynes by Monocarbonylation of 1,3â€Ðiynes. Angewandte Chemie - International Edition, 2020, 59, 9032-9040.	7.2	45
374	The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers. Accounts of Chemical Research, 2021, 54, 452-470.	7.6	67
375	Electronic and Steric Effects in Diamine Recognition with a Highly Rigid Zn(II) Complex. Bulletin of the Korean Chemical Society, 2007, 28, 133-135.	1.0	1
376	Catalytic Enantioselective Synthesis of Novel Atropisomeric Compounds having an N-C Chiral Axis and Their Application to Asymmetric Reaction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 985-993.	0.0	15
377	Aerobic Dehydrogenative Coupling of Naphthols and Phenols with a Ru(OH) x /Al 2 O 3 Catalyst under Continuousâ€Flow Conditions. ChemistrySelect, 2021, 6, 10106-10110.	0.7	0
378	Through a Glass Darkly—Some Thoughts on Symmetry and Chemistry. Symmetry, 2021, 13, 1891.	1.1	4
379	Palladium-catalyzed relay C–H functionalization to construct novel hybrid-arylcyclophosphorus ligand precursors. Chinese Chemical Letters, 2022, 33, 2397-2401.	4.8	12
380	"Green―Asymmetric Synthesis: The Catalysts. Springer Briefs in Molecular Science, 2011, , 29-66.	0.1	0
381	Highly Efficient Transition Metal-Catalyzed Reactions using Highly Electron-poor Arylphosphines bearing Fluoro-functional Groups. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 51-61.	0.0	0
382	One-pot synthesis of binaphthyl-based phosphines via direct modification of BINAP. Tetrahedron Letters, 2021, 86, 153489.	0.7	1
383	Organocatalytic cycloaddition–elimination cascade for atroposelective construction of heterobiaryls. Chemical Science, 2021, 12, 14920-14926.	3.7	36
385	Enantioselective Cobalt-Catalyzed Reductive Cross-Coupling for the Synthesis of Axially Chiral Phosphine–Olefin Ligands. ACS Catalysis, 2021, 11, 14008-14015.	5.5	29

#	Article	IF	CITATIONS
386	Tuning StackPhim Ligands: Applications in Enantioselective Borylation and Alkynylation. Synthesis, 2022, 54, 2157-2164.	1.2	1
387	Preparation of enantioenriched helical- and axial-chiral molecules by dynamic asymmetric induction. Chemical Communications, 2022, 58, 1605-1608.	2.2	5
388	Gold-catalyzed enantioselective cyclizations and cycloadditions. Advances in Organometallic Chemistry, 2022, , 1-42.	0.5	3
389	Pyreneâ€Fused Furan: Simple Synthesis of Ï€â€Expanded Heterohelicene. ChemistrySelect, 2022, 7, .	0.7	Ο
390	Visible-Light-Promoted Unsymmetrical Phosphine Synthesis from Benzylamines. Organic Letters, 2022, 24, 1566-1570.	2.4	6
391	Atroposelective Synthesis of 1,1′â€Bipyrroles Bearing a Chiral Nâ^'N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	54
392	Atroposelective Synthesis of 1,1′â€Bipyrroles Bearing a Chiral Nâ^'N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angewandte Chemie, 2022, 134, .	1.6	10
393	Chiral Metal–Organic Frameworks. Chemical Reviews, 2022, 122, 9078-9144.	23.0	175
394	Development of Novel <scp>Phosphinoâ€Oxazoline</scp> Ligands and Their Application in Asymmetric Alkynlylation of Benzylic Halides. Chinese Journal of Chemistry, 2022, 40, 1337-1345.	2.6	14
395	Virtual Ligand-Assisted Screening Strategy to Discover Enabling Ligands for Transition Metal Catalysis. ACS Catalysis, 2022, 12, 3752-3766.	5.5	8
396	Asymmetric Azide–Alkyne Cycloaddition with Ir(I)/Squaramide Cooperative Catalysis: Atroposelective Synthesis of Axially Chiral Aryltriazoles. Journal of the American Chemical Society, 2022, 144, 6200-6207.	6.6	38
398	Magnetically Recoverable Palladium Nanocatalyst [Pd(II)-Benz-Am-Fe3O4@SiO2] for Ullmann Type Homocoupling of Aryl halides with N2H4 as an Efficient Reductant. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3053-3066.	1.9	1
399	Conformationally Fixed Chiral Bisphosphine Ligands by Steric Modulators on the Ligand Backbone: Selective Synthesis of Strained 1,2-Disubstituted Chiral <i>cis</i> -Cyclopropanes. Journal of the American Chemical Society, 2022, 144, 10483-10494.	6.6	20
400	Synthesis and Stereochemical Characterization of a Novel Chiral α-Tetrazole Binaphthylazepine Organocatalyst. Molecules, 2022, 27, 5113.	1.7	1
401	Conformational enantiodiscrimination for asymmetric construction of atropisomers. Nature Communications, 2022, 13, .	5.8	14
402	Transition Metal Catalyzed Hiyama Cross-Coupling: Recent Methodology Developments and Synthetic Applications. Molecules, 2022, 27, 5654.	1.7	8
403	Phosphorous NMR Analysis and Activity of Chiral BINAPâ€Silver Complexes. ChemPlusChem, 0, , .	1.3	0
404	Binaphthyl-Proline Hybrid Chiral Ligands: Modular Design, Synthesis, and Enantioswitching in Cu(II)-Catalyzed Enantioselective Henry Reactions. Journal of Organic Chemistry, 2023, 88, 7651-7659.	1.7	8

#	Article	IF	CITATIONS
405	10 Gram-scale synthesis of TY-Phos ligand and its application in carbene insertion of Si-H bonds. Tetrahedron Letters, 2022, 107, 154120.	0.7	1
408	Atroposelective Synthesis of 2,2′â€Bis(arylamino)â€1,1′â€biaryls by Oxidative Iron(III)―and Phosphoric Acidâ€Catalyzed Câ^'C Coupling of Diarylamines**. Chemistry - A European Journal, 2023, 29, .	1.7	7
409	Recent Advances in Catalytic Asymmetric Syntheses of Functionalized Heterocycles <i>via</i> Halogenation/Chalcogenation of Carbonâ€Carbon Unsaturated Bonds. Advanced Synthesis and Catalysis, 2022, 364, 3974-4005.	2.1	10
410	Rh(III)-Catalyzed One-Pot Three-Component Diannulation of Benzils, Ammonium Acetate, and Alkynes to Build 1,1′-Biisoquinolines. Journal of Organic Chemistry, 2022, 87, 16019-16025.	1.7	1
411	Copper Powder and Pd(II) Salts Triggered One-Pot Aromatic Halide Homocoupling via a Radical Pathway. Journal of Organic Chemistry, 2023, 88, 2306-2313.	1.7	3
412	Enantioseparation of amino acid and mandelic acid enantiomers using Josiphosâ€metal complexes as chiral extractants. Chirality, 2023, 35, 256-265.	1.3	1
413	Spin polarization through axially chiral linkers: Length dependence and correlation with the dissymmetry factor. Chirality, 2023, 35, 562-568.	1.3	13
414	An Efficient Asymmetric Cross-Coupling Reaction in Aqueous Media Mediated by Chiral Chelating Mono Phosphane Atropisomeric Biaryl Ligand. Catalysts, 2023, 13, 353.	1.6	1
415	Enantioselective Access to Triaryl-2-pyrones with Monoaxial or Contiguous C–C Diaxes via Oxidative NHC Catalysis. ACS Catalysis, 2023, 13, 2565-2575.	5.5	18
416	Chiral Acid-Catalyzed Atroposelective Indolization Enables Access to 1,1′-Indole-Pyrroles and Bisindoles Bearing a Chiral N–N Axis. Organic Letters, 2023, 25, 1553-1557.	2.4	19
417	Development of diverse adjustable axially chiral biphenyl ligands and catalysts. IScience, 2023, 26, 106344.	1.9	1
418	Construction of Monophosphine–Metal Complexes in Privileged Diphosphine-Based Covalent Organic Frameworks for Catalytic Asymmetric Hydrogenation. Journal of the American Chemical Society, 2023, 145, 6100-6111.	6.6	23
419	Jumping in the Chiral Pool: Asymmetric Hydroaminations with Early Metals. Molecules, 2023, 28, 2702.	1.7	1
420	Highly chemoselective ligands for Suzuki–Miyaura cross-coupling reaction based on virtual ligand-assisted screening. Organic and Biomolecular Chemistry, 2023, 21, 3132-3142.	1.5	2
421	Hydrazone-oxime Selectively Directed Redox-Neutral [4 + 2] Annulations Cascade with Alkynes and Iodonium Ylides to Build 1,1′-Biisoquinoline Mono- <i>N</i> -oxides. Organic Letters, 2023, 25, 2616-2621.	2.4	7
422	Synthesis of atropisomeric phosphino-triazoles and their corresponding gold(I) complexes. Organic Chemistry Frontiers, 0, , .	2.3	0
426	Modification of QuinoxP*-Type Bisphosphine Ligands for High-Performance Asymmetric Boryl Substitution of Racemic Allyl Electrophiles. Springer Theses, 2023, , 19-112.	0.0	0