Electronic and Atomistic Structures of Clean and Reduc

Journal of Physical Chemistry B 109, 22860-22867

DOI: 10.1021/jp0511698

Citation Report

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                     | IF               | CITATIONS              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|
| 4  | Effects of Zr doping on stoichiometric and reduced ceria: A first-principles study. Journal of Chemical Physics, 2006, 124, 224704.                                                                                                                                                                                                                                                                                         | 1.2              | 131                    |
| 5  | The Surface Dependence of CO Adsorption on Ceria. Journal of Physical Chemistry B, 2006, 110, 16600-16606.                                                                                                                                                                                                                                                                                                                  | 1.2              | 172                    |
| 6  | Interaction of Hydrogen with Cerium Oxide Surfaces:  a Quantum Mechanical Computational Study.<br>Journal of Physical Chemistry B, 2006, 110, 19380-19385.                                                                                                                                                                                                                                                                  | 1.2              | 85                     |
| 7  | Hole localization in Al doped silica: A DFT+U description. Journal of Chemical Physics, 2006, 125, 144701.                                                                                                                                                                                                                                                                                                                  | 1.2              | 113                    |
| 8  | Development of Constraint Algorithm for the Number of Electrons in Molecular Orbitals Consisting Mainly 4fAtomic Orbitals of Rare-Earth Elements and Its Introduction to Tight-Binding Quantum Chemical Molecular Dynamics Method. Japanese Journal of Applied Physics, 2007, 46, 2505-2509.                                                                                                                                | 0.8              | 8                      |
| 9  | Oxygen vacancy formation energy in Pd-doped ceria: A DFT+U study. Journal of Chemical Physics, 2007, 127, 074704.                                                                                                                                                                                                                                                                                                           | 1.2              | 105                    |
| 10 | A First-Principles Analysis for Sulfur Tolerance of CeO <sub>2</sub> in Solid Oxide Fuel Cells. Journal of Physical Chemistry C, 2007, 111, 11117-11122.                                                                                                                                                                                                                                                                    | 1.5              | 63                     |
| 11 | Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria. Journal of Chemical Physics, 2007, 127, 244704.                                                                                                                                                                                                                                                                                          | 1.2              | 313                    |
| 12 | Hybrid functionals applied to rare-earth oxides: The example of ceria. Physical Review B, 2007, 75, .                                                                                                                                                                                                                                                                                                                       | 1.1              | 502                    |
| 13 | Hydrogen Cycle on CeO <sub>2</sub> (111) Surfaces:  Density Functional Theory Calculations. Journal of Physical Chemistry C, 2007, 111, 15337-15341.                                                                                                                                                                                                                                                                        | 1.5              | 131                    |
| 14 | Modeling ofCeO2,Ce2O3, andCeO2â°'xin theLDA+Uformalism. Physical Review B, 2007, 75, .                                                                                                                                                                                                                                                                                                                                      | 1.1              | 333                    |
| 15 | Methanol Adsorption on the Clean CeO2(111) Surface:  A Density Functional Theory Study. Journal of Physical Chemistry C, 2007, 111, 10514-10522.                                                                                                                                                                                                                                                                            | 1.5              | 56                     |
| 16 | Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria: Density functional theory calculations. Physical Review B, 2007, 75, .                                                                                                                                                                                                                                                        | 1.1              | 112                    |
| 17 | Evidence of Subsurface Oxygen Vacancy Ordering on Reduced <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CeO</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>111</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>2.9<br/>207 Td (s</td><td>177<br/>stretchy="falsi</td></mml:mo)></mml:math> | 2.9<br>207 Td (s | 177<br>stretchy="falsi |
| 18 | Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surface Science Reports, 2007, 62, 219-270.                                                                                                                                                                                                                                                            | 3.8              | 1,102                  |
| 19 | Catalysis by doped oxides: CO oxidation by AuxCe1â^3xO2. Journal of Catalysis, 2007, 245, 205-214.                                                                                                                                                                                                                                                                                                                          | 3.1              | 325                    |
| 20 | O2-probe EPR as a method for characterization of surface oxygen vacancies in ceria-based catalysts. Research on Chemical Intermediates, 2007, 33, 775-791.                                                                                                                                                                                                                                                                  | 1.3              | 26                     |
| 21 | A density functional theory study of formaldehyde adsorption on ceria. Surface Science, 2007, 601, 4993-5001.                                                                                                                                                                                                                                                                                                               | 0.8              | 44                     |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IF                 | CITATIONS           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 22 | Adsorption and dissociation of methanol on the fully oxidized and partially reduced (111) cerium oxide surface: Dependence on the configuration of the cerium 4f electrons. Surface Science, 2008, 602, 162-175.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8                | 61                  |
| 23 | Facilitated vacancy formation at Zr-doped ceria(111) surfaces. Surface Science, 2008, 602, 1199-1206.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8                | 68                  |
| 24 | Au on (111) and (110) surfaces of CeO2: A density-functional theory study. Surface Science, 2008, 602, 1736-1741.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8                | 95                  |
| 25 | Growth and structure of epitaxial CeO2 films on yttria-stabilized ZrO2. Thin Solid Films, 2008, 516, 4908-4914.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8                | 18                  |
| 26 | Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials. European Physical Journal B, 2008, 65, 91-98.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6                | 96                  |
| 27 | Modeling doped and defective oxides in catalysis with density functional theory methods: Room for improvements. Journal of Chemical Physics, 2008, 128, 182505.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2                | 221                 |
| 28 | CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations. Journal of Physical Chemistry C, 2008, 112, 8643-8648.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                | 264                 |
| 29 | Structure and optical properties of - and -cerium sesquisulfide. Journal of Alloys and Compounds, 2008, 459, 438-446.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8                | 16                  |
| 30 | Photoemission Spectroscopy Study of Cu/CeO <sub>2</sub> Systems:  Cu/CeO <sub>2</sub> Nanosized Catalyst and CeO <sub>2</sub> (111)/Cu(111) Inverse Model Catalyst. Journal of Physical Chemistry C, 2008, 112, 3751-3758.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                | 40                  |
| 31 | Electronic structure of point defects in controlled self-doping of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mrow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:< td=""><td>&gt;2<b>4/m</b>ml:r</td><td>nn<b>ag</b>nml:ms</td></mml:<></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math> | >2 <b>4/m</b> ml:r | nn <b>ag</b> nml:ms |
| 32 | Density Functional Theory Study of Methanol Decomposition on the CeO2(110) Surface. Journal of Physical Chemistry C, 2008, 112, 4257-4266.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                | 42                  |
| 33 | Methane Dissociation on the Ceria (111) Surface. Journal of Physical Chemistry C, 2008, 112, 17311-17318.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5                | 62                  |
| 34 | First-Principles Study on the Effects of Zr Dopant on the CO Adsorption on Ceria. Journal of Physical Chemistry C, 2008, 112, 15341-15347.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                | 27                  |
| 35 | Structural and electronic properties of NM-doped ceria (NM = Pt, Rh): a first-principles study. Journal of Physics Condensed Matter, 2008, 20, 035210.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7                | 39                  |
| 36 | First-principles local density approximation (generalized gradient approximation) +U study of catalytic CenOm clusters: U value differs from bulk. Journal of Chemical Physics, 2008, 128, 164718.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2                | 21                  |
| 37 | Structure of gold atoms on stoichiometric and defective ceria surfaces. Journal of Chemical Physics, 2008, 129, 194708.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2                | 103                 |
| 38 | Testing Interatomic Potentials for QM/MM Embedded-Cluster Calculations on Ceria Surfaces. E-Journal of Surface Science and Nanotechnology, 2009, 7, 413-420.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1                | 8                   |
| 39 | xmins:mml= http://www.w3.org/1998/Math/Math/ML display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>CeO</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>ThO</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>1.1</td><td>72</td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow>       | 1.1                | 72                  |

| #  | ARTICLE Density-Functional Calculations of the Structure of Near-Surface Oxygen Vacancies and Electron                                                                                                                                                                                                                                                                            | IF                | Citations         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 40 | Localization on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CeO</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>111</mml:mn><mml:mo) 0="" 10="" 50="" 727="" etqq0="" overlock="" rgbt="" td="" td<="" tf="" tj=""><td>2.9<br/>(stretchy=</td><td>501<br/>="false"&gt;)</td></mml:mo)></mml:math> | 2.9<br>(stretchy= | 501<br>="false">) |
| 41 | Effect of La doping on CO adsorption at ceria surfaces. Journal of Chemical Physics, 2009, 131, 244702.                                                                                                                                                                                                                                                                           | 1.2               | 40                |
| 42 | Healing of oxygen vacancies on reduced surfaces of gold-doped ceria. Journal of Chemical Physics, 2009, 130, 144702.                                                                                                                                                                                                                                                              | 1.2               | 52                |
| 43 | A GGA+ <i>U</i> study of the reduction of ceria surfaces and their partial reoxidation through NO <sub>2</sub> adsorption. Molecular Simulation, 2009, 35, 577-583.                                                                                                                                                                                                               | 0.9               | 31                |
| 44 | Firstâ€principles calculations on the energetics, electronic structures and magnetism of SrFeO <sub>2</sub> . Journal of Computational Chemistry, 2009, 30, 2684-2693.                                                                                                                                                                                                            | 1.5               | 5                 |
| 47 | Nanofaceted PdO Sites in PdCe Surface Superstructures: Enhanced Activity in Catalytic<br>Combustion of Methane. Angewandte Chemie - International Edition, 2009, 48, 8481-8484.                                                                                                                                                                                                 | 7.2               | 256               |
| 48 | Maximizing the Localized Relaxation: The Origin of the Outstanding Oxygen Storage Capacity of κâ€Ce <sub>2</sub> Zr <sub>2</sub> O <sub>8</sub> . Angewandte Chemie - International Edition, 2009, 48, 8289-8292.                                                                                                                                                                 | 7.2               | 85                |
| 49 | Oxygen vacancy pairs on CeO2(110): A DFT+U study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2786-2792.                                                                                                                                                                                                                                      | 0.9               | 44                |
| 50 | Surface anion vacancies on ceria: Quantum modelling of mutual interactions and oxygen adsorption. Catalysis Today, 2009, 143, 315-325.                                                                                                                                                                                                                                            | 2.2               | 60                |
| 51 | Electron correlation contribution to the /ceria(111) interaction. Chemical Physics, 2009, 362, 91-96.                                                                                                                                                                                                                                                                             | 0.9               | 24                |
| 52 | Anchoring Sites for Initial Au Nucleation on CeO $<$ sub $>$ 2 $<$ /sub $>$ {111}: O Vacancy versus Ce Vacancy. Journal of Physical Chemistry C, 2009, 113, 6411-6417.                                                                                                                                                                                                            | 1.5               | 79                |
| 53 | Structures and Energetics of SrFeO2.875 Calculated within the GGA + U Framework. Journal of Chemical Theory and Computation, 2009, 5, 2787-2797.                                                                                                                                                                                                                                  | 2.3               | 6                 |
| 54 | Origin of Support Effects on the Reactivity of a Ceria Cluster. Journal of Physical Chemistry C, 2009, 113, 18296-18303.                                                                                                                                                                                                                                                          | 1.5               | 7                 |
| 55 | Water adsorption on the stoichiometric and reduced CeO2(111) surface: a first-principles investigation. Physical Chemistry Chemical Physics, 2009, $11$ , $9188$ .                                                                                                                                                                                                                | 1.3               | 229               |
| 56 | Reaction Mechanisms for the CO Oxidation on Au/CeO <sub>2</sub> Catalysts: Activity of Substitutional Au <sup>3+</sup> /Au <sup>+</sup> Cations and Deactivation of Supported Au <sup>+</sup> Adatoms. Journal of the American Chemical Society, 2009, 131, 10473-10483.                                                                                                          | 6.6               | 304               |
| 57 | Reactivity on the (110) Surface of Ceria: A GGA+ $<$ i>UStudy of Surface Reduction and the Adsorption of CO and NO $<$ sub> $2<$ sub>. Journal of Physical Chemistry C, 2009, 113, 11095-11103.                                                                                                                                                                                   | 1.5               | 66                |
| 58 | Point defects in CaF2 and CeO2 investigated by the periodic electrostatic embedded cluster method. Journal of Chemical Physics, 2009, 130, 174710.                                                                                                                                                                                                                                | 1.2               | 88                |
| 59 | Redox properties of gold-substituted zirconia surfaces. Journal of Materials Chemistry, 2009, 19, 710-717.                                                                                                                                                                                                                                                                        | 6.7               | 12                |

| #  | ARTICLE Multiple configurations of the two excess mml:math                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IF                              | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|
| 60 | xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow>4<mml:mi>f</mml:mi></mml:mrow> electrons on defective <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><td>1.1</td><td>233</td></mml:math>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1                             | 233          |
| 61 | Origin and impl. Physical Review B 2009, 79 Cygen vacancy clusters on ceria: Decisive role of cerium <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi>felectrons. Physical Review B, 2009, 79, .</mml:math>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1                             | 103          |
| 62 | Electronic charge transfer between ceria surfaces and gold adatoms: a GGA+U investigation. Physical Chemistry Chemical Physics, 2009, 11, 5246.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3                             | 83           |
| 63 | Stability and morphology of cerium oxide surfaces in an oxidizing environment: A first-principles investigation. Journal of Chemical Physics, 2009, 131, .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2                             | 150          |
| 64 | A Model to Understand the Oxygen Vacancy Formation in Zr-Doped CeO <sub>2</sub> : Electrostatic Interaction and Structural Relaxation. Journal of Physical Chemistry C, 2009, 113, 10229-10232.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5                             | 113          |
| 65 | CO2 activation on single crystal based ceria and magnesia/ceria model catalysts. European Physical Journal B, 2010, 75, 89-100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.6                             | 40           |
| 66 | The main factors influencing the O vacancy formation on the Ir doped ceria surface: A DFT+U study. European Physical Journal B, 2010, 77, 373-380.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                             | 20           |
| 67 | Density functional study of oxygen vacancy formation and spin density distribution in octahedral ceria nanoparticles. Journal of Molecular Modeling, 2010, 16, 1617-1623.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8                             | 22           |
| 68 | O-vacancy and surface on CeO2: A first-principles study. Journal of Physics and Chemistry of Solids, 2010, 71, 788-796.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                             | 29           |
| 69 | A density functional theory study of formaldehyde adsorption and oxidation on CeO2(111) surface. Surface Science, 2010, 604, 68-78.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                             | 64           |
| 70 | Hybrid density functional theory description of oxygen vacancies in the CeO2 (110) and (100) surfaces. Chemical Physics Letters, 2010, 499, 126-130.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2                             | 71           |
| 71 | Interfacial properties of NM/CeO $<$ sub $>$ 2 $<$ /sub $>$ (111) (NM = noble metal atoms or clusters of Pd, Pt and) Tj ETQq1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.77843                         | 14 rgBT /Ove |
| 72 | Enhanced Oxygen Buffering by Substitutional and Interstitial Ni Point Defects in Ceria: A First-Principles DFT+U Study. Journal of Physical Chemistry C, 2010, 114, 10221-10228.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                             | 52           |
| 73 | Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. Journal of Physics Condensed Matter, 2010, 22, 263001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7                             | 67           |
| 74 | Positive Charge States and Possible Polymorphism of Gold Nanoclusters on Reduced Ceria. Journal of the American Chemical Society, 2010, 132, 2175-2182.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.6                             | 109          |
| 75 | xmins:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>M</mml:mi> -doped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>1.1<br/>2<td>112<br/>n&gt;</td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math> | 1.1<br>2 <td>112<br/>n&gt;</td> | 112<br>n>    |
| 76 | The Effect of Environment on the Reaction of Water on the Ceria(111) Surface: A DFT+U Study. Journal of Physical Chemistry C, 2010, 114, 14891-14899.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                             | 105          |
| 77 | Theoretical Confirmation of the Enhanced Facility to Increase Oxygen Vacancy Concentration in TiO <sub>2</sub> by Iron Doping. Journal of Physical Chemistry C, 2010, 114, 6511-6517.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5                             | 78           |

| #  | ARTICLE                                                                                                                                                                                                   | IF  | Citations |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 78 | Oxygen vacancy formation and migration in Ce1â^'xZrxO2 catalyst: A DFT+U calculation. Journal of Chemical Physics, 2010, 132, 214702.                                                                     | 1.2 | 57        |
| 79 | Thermodynamic, electronic and structural properties of Cu/CeO \$_2\$2 surfaces and interfaces from first-principles DFT+U calculations. Journal of Chemical Physics, 2010, 133, 234705.                   | 1.2 | 83        |
| 80 | Doping of ceria surfaces with lanthanum: a DFT + $<$ i>Ustudy. Journal of Physics Condensed Matter, 2010, 22, 135004.                                                                                     | 0.7 | 38        |
| 81 | Structures and vibrational spectroscopy of partially reduced gas-phase cerium oxide clusters. Physical Chemistry Chemical Physics, 2011, 13, 19393.                                                       | 1.3 | 50        |
| 82 | Charge compensation in trivalent cation doped bulk rutile TiO <sub>2</sub> . Journal of Physics Condensed Matter, 2011, 23, 334207.                                                                       | 0.7 | 48        |
| 83 | Exchange between sub-surface and surface oxygen vacancies on CeO2(111): a new surface diffusion mechanism. Chemical Communications, 2011, 47, 6105.                                                       | 2.2 | 58        |
| 84 | Theory of gold on ceria. Physical Chemistry Chemical Physics, 2011, 13, 22-33.                                                                                                                            | 1.3 | 108       |
| 85 | Origin of the High Activity of the Ceria-Supported Copper Catalyst for H <sub>2</sub> O Dissociation. Journal of Physical Chemistry C, 2011, 115, 6730-6740.                                              | 1.5 | 52        |
| 86 | Density Functional Theory Study of Sn Adsorption on the CeO <sub>2</sub> Surface. Journal of Physical Chemistry C, 2011, 115, 16461-16466.                                                                | 1.5 | 30        |
| 87 | Formation of Superoxide Anions on Ceria Nanoparticles by Interaction of Molecular Oxygen with Ce <sup>3+</sup> Sites. Journal of Physical Chemistry C, 2011, 115, 5817-5822.                              | 1.5 | 107       |
| 88 | A dipole polarizable potential for reduced and doped CeO <sub>2</sub> obtained from first principles. Journal of Physics Condensed Matter, 2011, 23, 255402.                                              | 0.7 | 31        |
| 89 | The synergistic effects of the Cu–CeO2(111) catalysts on the adsorption and dissociation of water molecules. Physical Chemistry Chemical Physics, 2011, 13, 9363.                                         | 1.3 | 31        |
| 90 | Enhanced oxygen vacancy formation in ceria $(111)$ and $(110)$ surfaces doped with divalent cations. Journal of Materials Chemistry, 2011, 21, 9160.                                                      | 6.7 | 153       |
| 91 | Electron Localization in Defective Ceria Films: A Study with Scanning-Tunneling Microscopy and Density-Functional Theory. Physical Review Letters, 2011, 106, 246801.                                     | 2.9 | 158       |
| 92 | Electronic Structure and Reactivity of Ce- and Zr-Doped TiO <sub>2</sub> : Assessing the Reliability of Density Functional Theory Approaches. Journal of Physical Chemistry C, 2011, 115, 12995-13007.    | 1.5 | 78        |
| 93 | Computational Investigation of CO Adsorption and Oxidation on Iron-Modified Cerium Oxide. Journal of Physical Chemistry C, 2011, 115, 14745-14753.                                                        | 1.5 | 63        |
| 94 | Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis. Physical Chemistry Chemical Physics, 2011, 13, 18194.          | 1.3 | 50        |
| 95 | Charge Compensation and Ce <sup>3+</sup> Formation in Trivalent Doping of the CeO <sub>2</sub> (110) Surface: The Key Role of Dopant Ionic Radius. Journal of Physical Chemistry C, 2011, 115, 6671-6681. | 1.5 | 95        |

| #   | Article                                                                                                                                                                                            | IF    | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 96  | Probing the 4f states of ceria by tunneling spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 12646.                                                                                    | 1.3   | 28        |
| 97  | Formation of oxygen active species in Ag-modified CeO2 catalyst for soot oxidation: A DFT study. Catalysis Today, 2011, 177, 31-38.                                                                | 2.2   | 61        |
| 98  | Growth of a Pt film on non-reduced ceria: A density functional theory study. Journal of Chemical Physics, 2012, 136, 044705.                                                                       | 1.2   | 13        |
| 99  | Many competing ceria (110) oxygen vacancy structures: From small to large supercells. Journal of Chemical Physics, 2012, 137, 044705.                                                              | 1,2   | 45        |
| 100 | Oxygen vacancy formation in CeO2 and Ce1â^'xZrxO2 solid solutions: electron localization, electrostatic potential and structural relaxation. Physical Chemistry Chemical Physics, 2012, 14, 16521. | 1.3   | 80        |
| 101 | Interaction of oxygen vacancies in yttrium germanates. Physical Chemistry Chemical Physics, 2012, 14, 14630.                                                                                       | 1.3   | 11        |
| 102 | Distinct Physicochemical Properties of the First Ceria Monolayer on Cu(111). Journal of Physical Chemistry C, 2012, 116, 6677-6684.                                                                | 1.5   | 40        |
| 103 | Insight into the Adsorption of Water on the Clean CeO <sub>2</sub> (111) Surface with van der Waals and Hybrid Density Functionals. Journal of Physical Chemistry C, 2012, 116, 13584-13593.       | 1.5   | 116       |
| 104 | Formation of One-Dimensional Electronic States along the Step Edges of CeO <sub>2</sub> (111). ACS Nano, 2012, 6, 1126-1133.                                                                       | 7.3   | 61        |
| 105 | Oxygen Vacancy-Assisted Coupling and Enolization of Acetaldehyde on CeO <sub>2</sub> (111). Journal of the American Chemical Society, 2012, 134, 18034-18045.                                      | 6.6   | 97        |
| 106 | Nanostructured ceria-based materials: synthesis, properties, and applications. Energy and Environmental Science, 2012, 5, 8475.                                                                    | 15.6  | 984       |
| 107 | A DFT+U study of structure and reducibility of CenO2nâ^'x (n⩽4, 0⩽x⩽n) nanoclusters. Computation Theoretical Chemistry, 2012, 987, 25-31.                                                          | aland | 9         |
| 108 | A theoretical evaluation and comparison of M Ce1 $\hat{a}$ (M = Au, Pd, Pt, and Rh) catalysts. Catalysis Communications, 2012, 27, 63-68.                                                          | 1.6   | 13        |
| 109 | Superoxide and Peroxide Species on CeO $<$ sub $>$ 2 $<$ /sub $>$ (111), and Their Oxidation Roles. Journal of Physical Chemistry C, 2012, 116, 15986-15991.                                       | 1.5   | 94        |
| 110 | Analysis of Intrinsic Defects in CeO <sub>2</sub> Using a Koopmans-Like GGA+ <i>U</i> Approach. Journal of Physical Chemistry C, 2012, 116, 2443-2452.                                             | 1.5   | 144       |
| 111 | First-principles investigation of transition metal atom M (M = Cu, Ag, Au) adsorption on CeO2(110). Physical Chemistry Chemical Physics, 2012, 14, 1923.                                           | 1.3   | 52        |
| 112 | Charge transfer and formation of reduced Ce3+ upon adsorption of metal atoms at the ceria (110) surface. Journal of Chemical Physics, 2012, 136, 134703.                                           | 1.2   | 45        |
| 113 | First principles study of oxygen adsorption on nickel-doped graphite. Molecular Physics, 2012, 110, 1437-1445.                                                                                     | 0.8   | 3         |

| #   | Article                                                                                                                                                                                                                       | IF   | Citations |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 114 | Structures of Defect Clusters on Ceria {111} Surface. Journal of Physical Chemistry C, 2012, 116, 25777-25782.                                                                                                                | 1.5  | 13        |
| 115 | First-Principles Assessment of H <sub>2</sub> S and H <sub>2</sub> O Reaction Mechanisms and the Subsequent Hydrogen Absorption on the CeO <sub>2</sub> (111) Surface. Journal of Physical Chemistry C, 2012, 116, 2411-2424. | 1.5  | 101       |
| 116 | First-Principles Study of CO Adsorption and Oxidation on Ru-Doped CeO <sub>2</sub> (111) Surface. Journal of Physical Chemistry C, 2012, 116, 6239-6246.                                                                      | 1.5  | 90        |
| 117 | On the interaction of Mg with the (111) and (110) surfaces of ceria. Physical Chemistry Chemical Physics, 2012, 14, 1293-1301.                                                                                                | 1.3  | 15        |
| 118 | SO (sub>2 Decomposition on Pt/CeO (sub>2 (111) Model Catalysts: On the Reaction Mechanism and the Influence of H <sub>2</sub> and CO. Journal of Physical Chemistry C, 2012, 116, 10959-10967.                                | 1.5  | 18        |
| 119 | Nature of Ag Islands and Nanoparticles on the CeO <sub>2</sub> (111) Surface. Journal of Physical Chemistry C, 2012, 116, 1122-1132.                                                                                          | 1.5  | 92        |
| 120 | Electrochemistry of Mixed Oxygen Ion and Electron Conducting Electrodes in Solid Electrolyte Cells. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 313-341.                                                 | 3.3  | 83        |
| 121 | A DFT Study of the Structures of Au <sub><i>x</i></sub> Clusters on a CeO <sub>2</sub> (111) Surface. ChemPhysChem, 2012, 13, 1261-1271.                                                                                      | 1.0  | 33        |
| 122 | Highly Enhanced Concentration and Stability of Reactive Ce <sup>3+</sup> on Doped CeO <sub>2</sub> Surface Revealed In Operando. Chemistry of Materials, 2012, 24, 1876-1882.                                                 | 3.2  | 169       |
| 123 | Electronic states of metal (Cu, Ag, Au) atom on CeO2(111) surface: The role of local structural distortion. Journal of Power Sources, 2012, 197, 28-37.                                                                       | 4.0  | 46        |
| 124 | CERIA AND ITS USE IN SOLID OXIDE CELLS AND OXYGEN MEMBRANES. Catalytic Science Series, 2013, , 623-782.                                                                                                                       | 0.6  | 11        |
| 125 | Densely populated mesopores in microcuboid CeO <sub>2</sub> crystal leading to a significant enhancement of catalytic activity. Journal of Materials Chemistry A, 2013, 1, 728-734.                                           | 5.2  | 55        |
| 126 | Promoted Ceria: A Structural, Catalytic, and Computational Study. ACS Catalysis, 2013, 3, 2256-2268.                                                                                                                          | 5.5  | 92        |
| 127 | Copper-ceria interaction: A combined photoemission and DFT study. Applied Surface Science, 2013, 267, 12-16.                                                                                                                  | 3.1  | 37        |
| 128 | Soft chemistry synthesis of high-crystalline orthogermanate CeGeO4: A new photocatalyst. Journal of Solid State Chemistry, 2013, 197, 204-208.                                                                                | 1.4  | 6         |
| 129 | Understanding CeO2 as a Deacon catalyst by probe molecule adsorption and in situ infrared characterisations. Physical Chemistry Chemical Physics, 2013, 15, 3454.                                                             | 1.3  | 47        |
| 130 | Coverage Effect of the CO <sub>2</sub> Adsorption Mechanisms on CeO <sub>2</sub> (111) by First Principles Analysis. Journal of Physical Chemistry C, 2013, 117, 1701-1711.                                                   | 1.5  | 103       |
| 131 | Catalysis by Doped Oxides. Chemical Reviews, 2013, 113, 4391-4427.                                                                                                                                                            | 23.0 | 687       |

| #   | Article                                                                                                                                                                                                                                                                                                                                         | IF                 | CITATIONS     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 132 | Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: Characterization and performance as a function of the exposed face present in the CeO2 support. Applied Catalysis B: Environmental, 2013, 130-131, 224-238.                                                                                                                  | 10.8               | 146           |
| 133 | Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Physical Chemistry Chemical Physics, 2013, 15, 1737.                                                                                                                                                                                                | 1.3                | 203           |
| 134 | Carbon dioxide activation and dissociation on ceria (110): A density functional theory study. Journal of Chemical Physics, 2013, 138, 014702.                                                                                                                                                                                                   | 1.2                | 141           |
| 135 | xmlns:mml="http://www.w3.org/1998/Math/MathML"<br>display="inline"> <mml:msub><mml:mi>CeO</mml:mi><mml:mn>2</mml:mn></mml:msub> <mml:mo<br>stretchy="false"&gt;(<mml:mn>111</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>6<b>72</b>°Td (s</td><td>stretchy="fal</td></mml:mo)></mml:mo<br> | 6 <b>72</b> °Td (s | stretchy="fal |
| 136 | Fluxionality of Au Clusters at Ceria Surfaces during CO Oxidation: Relationships among Reactivity, Size, Cohesion, and Surface Defects from DFT Simulations. Journal of Physical Chemistry Letters, 2013, 4, 2256-2263.                                                                                                                         | 2.1                | 76            |
| 137 | Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. Chemical Reviews, 2013, 113, 3949-3985.                                                                                                                                                                                                         | 23.0               | 849           |
| 138 | Computational Investigation of CO Adsorption and Oxidation on Mn/CeO <sub>2</sub> (111) Surface. Journal of Physical Chemistry C, 2013, 117, 433-441.                                                                                                                                                                                           | 1.5                | 75            |
| 140 | Challenges in the use of density functional theory to examine catalysis by M-doped ceria surfaces. International Journal of Quantum Chemistry, 2014, 114, 8-13.                                                                                                                                                                                 | 1.0                | 30            |
| 141 | Rationalization of the Hubbard $\langle i\rangle U\langle i\rangle$ parameter in CeOx from first principles: Unveiling the role of local structure in screening. Journal of Chemical Physics, 2014, 140, 084101.                                                                                                                                | 1.2                | 36            |
| 142 | Carbon dioxide reforming of methane over promoted NixMg1 $\hat{a}$ °xO (111) platelet catalyst derived from solvothermal synthesis. Applied Catalysis B: Environmental, 2014, 148-149, 177-190.                                                                                                                                                 | 10.8               | 94            |
| 143 | Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems. International Journal of Quantum Chemistry, 2014, 114, 14-49.                                                                                                                                                                                            | 1.0                | 533           |
| 144 | Unraveling the Nature of the Oxide–Metal Interaction in Ceria-Based Noble Metal Inverse Catalysts.<br>Journal of Physical Chemistry C, 2014, 118, 26931-26938.                                                                                                                                                                                  | 1.5                | 33            |
| 145 | Valence States in CeVO <sub>4</sub> and Ce <sub>0.5</sub> Bi <sub>0.5</sub> VO <sub>4</sub> Probed by Density Functional Theory Calculations and X-ray Photoemission Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 25330-25339.                                                                                                     | 1.5                | 14            |
| 146 | Defect Structure Guided Room Temperature Ferromagnetism of Y-Doped CeO <sub>2</sub> Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 26359-26367.                                                                                                                                                                                     | 1.5                | 57            |
| 147 | Study of CeO <sub>2</sub> and Its Native Defects by Density Functional Theory with Repulsive Potential. Journal of Physical Chemistry C, 2014, 118, 24248-24256.                                                                                                                                                                                | 1.5                | 86            |
| 148 | O vacancies on steps on the CeO2(111) surface. Physical Chemistry Chemical Physics, 2014, 16, 7823.                                                                                                                                                                                                                                             | 1.3                | 33            |
| 149 | Mechanisms of enhanced sulfur tolerance on samarium (Sm)-doped cerium oxide (CeO <sub>2</sub> ) from first principles. Physical Chemistry Chemical Physics, 2014, 16, 10727-10733.                                                                                                                                                              | 1.3                | 16            |
| 150 | Role of Cluster Morphology in the Dynamics and Reactivity of Subnanometer Pt Clusters Supported on Ceria Surfaces. Journal of Physical Chemistry C, 2014, 118, 21014-21020.                                                                                                                                                                     | 1.5                | 47            |

| #   | ARTICLE  Ordering of oxygen vacancies and excess charge localization in bulk ceria: A <mml:math< th=""><th>IF</th><th>Citations</th></mml:math<>                                                    | IF                 | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| 151 | xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">DFT</mml:mi><mml:mo>+</mml:mo><mml:mi>U</mml:mi></mml:mrow> st Physical Review B, 2014, 90, .                | <b>1,1</b><br>udy. | 71        |
| 152 | First-principles calculations of electronic and optical properties of C-doped and F, C-codoped cubic ZrO 2. Journal of Alloys and Compounds, 2014, 617, 86-92.                                      | 2.8                | 6         |
| 153 | Theoretical Investigation of Small Transition-Metal Clusters Supported on the CeO <sub>2</sub> (111) Surface. Journal of Physical Chemistry C, 2014, 118, 21438-21446.                              | 1.5                | 35        |
| 154 | Effect of lattice strain on the oxygen vacancy formation and hydrogen adsorption at CeO2(111) surface. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2570-2575.   | 0.9                | 82        |
| 155 | Computational Investigation of NO <sub>2</sub> Adsorption and Reduction on Ceria and M-Doped CeO <sub>2</sub> (111) (M = Mn, Fe) Surfaces. Journal of Physical Chemistry C, 2014, 118, 10043-10052. | 1.5                | 20        |
| 156 | Computational Simulation of Rare Earth Catalysis. Advances in Chemical Engineering, 2014, , 1-60.                                                                                                   | 0.5                | 6         |
| 157 | Support Effect in Oxide Catalysis: Methanol Oxidation on Vanadia/Ceria. Journal of the American Chemical Society, 2014, 136, 14616-14625.                                                           | 6.6                | 101       |
| 158 | Reactions of Methanol with Pristine and Defective Ceria (111) Surfaces: A Comparison of Density Functionals. Journal of Physical Chemistry C, 2014, 118, 23690-23700.                               | 1.5                | 33        |
| 159 | Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface. Nature Communications, 2014, 5, 4374.                                                                | 5.8                | 160       |
| 160 | RHEED and XPS study of cerium interaction with SnO2 (110) surface. Ceramics International, 2014, 40, 323-329.                                                                                       | 2.3                | 13        |
| 161 | First-principles calculations of electronic and optical properties of Mn-doped cubic HfO2. Journal of Alloys and Compounds, 2014, 609, 107-110.                                                     | 2.8                | 14        |
| 162 | Stereo―and Chemoselective Character of Supported CeO <sub>2</sub> Catalysts for Continuousâ€Flow Threeâ€Phase Alkyne Hydrogenation. ChemCatChem, 2014, 6, 1928-1934.                                | 1.8                | 50        |
| 163 | STM and XPS study of CeO2(111) reduction by atomic hydrogen. Surface Science, 2014, 628, 30-35.                                                                                                     | 0.8                | 44        |
| 164 | Volume-dependent electron localization in ceria. Physical Review B, 2015, 91, .                                                                                                                     | 1.1                | 16        |
| 165 | Unraveling the Dynamic Nanoscale Reducibility (Ce <sup>4+</sup> â†' Ce <sup>3+</sup> ) of CeO <i><sub>x</sub></i> ê"Ru in Hydrogen Activation. Advanced Materials Interfaces, 2015, 2, 1500314.     | 1.9                | 42        |
| 166 | Surface-Structure Sensitivity of CeO <sub>2</sub> Nanocrystals in Photocatalysis and Enhancing the Reactivity with Nanogold. ACS Catalysis, 2015, 5, 4385-4393.                                     | <b>5.</b> 5        | 158       |
| 167 | Atomic Scale Characterization of Defects on Oxide Surfaces. Springer Series in Surface Sciences, 2015, , 29-80.                                                                                     | 0.3                | 9         |
| 168 | Initial reduction of CO <sub>2</sub> on perfect and O-defective CeO <sub>2</sub> (111) surfaces: towards CO or COOH?. RSC Advances, 2015, 5, 97528-97535.                                           | 1.7                | 36        |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 169 | Gadolinium-Vacancy Clusters in the (111) Surface of Gadolinium-Doped Ceria: A Density Functional Theory Study. Chemistry of Materials, 2015, 27, 7910-7917.                                                                               | 3.2  | 26        |
| 170 | Effects of Fe doping on oxygen vacancy formation and CO adsorption and oxidation at the ceria(111) surface. Catalysis Communications, 2015, 63, 35-40.                                                                                    | 1.6  | 28        |
| 171 | Water Adsorption and Dissociation at Metal-Supported Ceria Thin Films: Thickness and Interface-Proximity Effects Studied with DFT+U Calculations. Journal of Physical Chemistry C, 2015, 119, 2537-2544.                                  | 1.5  | 16        |
| 172 | Role of oxygen vacancies in the surface evolution of H at CeO <sub>2</sub> (111): a charge modification effect. Physical Chemistry Chemical Physics, 2015, 17, 3544-3549.                                                                 | 1.3  | 73        |
| 173 | CO 2 Reduction to Methanol on CeO 2 (110) Surface: a Density Functional Theory Study. Electrochimica Acta, 2015, 177, 21-29.                                                                                                              | 2.6  | 53        |
| 174 | First-principles calculations of electronic and optical properties of F, Mn-codoped cubic ZrO2. Solid State Sciences, 2015, 40, 101-104.                                                                                                  | 1.5  | 1         |
| 175 | Theoretical studies on the monomeric vanadium oxides supported by ceria: the atomic structures and oxidative dehydrogenation activities. RSC Advances, 2015, 5, 52259-52263.                                                              | 1.7  | 8         |
| 176 | The role of charge transfer in the oxidation state change of Ce atoms in the TM <sub>13</sub> –CeO <sub>2</sub> (111) systems (TM = Pd, Ag, Pt, Au): a DFT + U investigation. Physical Chemistry Chemical Physics, 2015, 17, 13520-13530. | 1.3  | 41        |
| 177 | Oxygen Defects at Reducible Oxide Surfaces: The Example of Ceria and Vanadia. Springer Series in Surface Sciences, 2015, , 149-190.                                                                                                       | 0.3  | 10        |
| 178 | Surface Effects in the Reactivity of Ceria. , 2015, , 159-192.                                                                                                                                                                            |      | 3         |
| 179 | Theoretic Insight into the Desulfurization Mechanism: Removal of H <sub>2</sub> S by Ceria (110). Journal of Physical Chemistry C, 2015, 119, 7678-7688.                                                                                  | 1.5  | 11        |
| 180 | The non-innocent role of cerium oxide in heterogeneous catalysis: A theoretical perspective. Catalysis Today, 2015, 253, 20-32.                                                                                                           | 2.2  | 50        |
| 181 | Activity versus Selectivity of the Methanol Oxidation at Ceria Surfaces: A Comparative First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 23021-23031.                                                                   | 1.5  | 31        |
| 182 | Energy of Supported Metal Catalysts: From Single Atoms to Large Metal Nanoparticles. ACS Catalysis, 2015, 5, 5673-5678.                                                                                                                   | 5.5  | 78        |
| 183 | Effects of Thermal Fluctuations on the Hydroxylation and Reduction of Ceria Surfaces by Molecular H <sub>2</sub> . Journal of Physical Chemistry C, 2015, 119, 21567-21573.                                                               | 1.5  | 50        |
| 184 | An experimental and DFT study of the adsorption and oxidation of NH3 on a CeO2 catalyst modified by Fe, Mn, La and Y. Catalysis Today, 2015, 242, 300-307.                                                                                | 2.2  | 51        |
| 185 | Catalytic effects of Zr doping ion on ceria-based catalyst. Fuel Processing Technology, 2015, 131, 1-6.                                                                                                                                   | 3.7  | 19        |
| 186 | The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction. Applied Catalysis B: Environmental, 2015, 165, 43-56.                                                                                                       | 10.8 | 140       |

| #   | Article                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 187 | First-principles calculations of electronic and optical properties of F, C-codoped cubic HfO2. Journal of Magnetism and Magnetic Materials, 2015, 375, 61-64.   | 1.0  | 11        |
| 188 | Substrate-dependent Au cluster: A new insight into Au /CeO2. Applied Surface Science, 2016, 387, 557-568.                                                       | 3.1  | 13        |
| 189 | Microwave synthesis of pure and doped cerium (IV) oxide (CeO2) nanoparticles for methylene blue degradation. Water Science and Technology, 2016, 74, 2325-2336. | 1.2  | 34        |
| 190 | Hybrid Density Functionals Applied to Complex Solid Catalysts: Successes, Limitations, and Prospects.<br>Catalysis Letters, 2016, 146, 861-885.                 | 1.4  | 31        |
| 191 | Ceria-Based Materials in Catalysis. Fundamental Theories of Physics, 2016, 50, 209-242.                                                                         | 0.1  | 37        |
| 192 | Surface-structure effect of nano-crystalline CeO 2 support on low temperature CO oxidation. Journal of Molecular Catalysis A, 2016, 424, 304-310.               | 4.8  | 28        |
| 193 | Structure and Reducibility of CeO <sub>2</sub> Doped with Trivalent Cations. Journal of Physical Chemistry C, 2016, 120, 23430-23440.                           | 1.5  | 66        |
| 194 | Charge Transport over the Defective CeO <sub>2</sub> (111) Surface. Chemistry of Materials, 2016, 28, 5652-5658.                                                | 3.2  | 52        |
| 195 | Effects of strong interactions between Ti and ceria on the structures of Ti/CeO <sub>2</sub> . Physical Chemistry Chemical Physics, 2016, 18, 32494-32502.      | 1.3  | 6         |
| 196 | Catalytic Proton Dynamics at the Water/Solid Interface of Ceria-Supported Pt Clusters. Journal of the American Chemical Society, 2016, 138, 11560-11567.        | 6.6  | 82        |
| 197 | Creating single-atom Pt-ceria catalysts by surface step decoration. Nature Communications, 2016, 7, 10801.                                                      | 5.8  | 388       |
| 198 | Acid–Base Interactions in Halobenzene–Ceria Systems: Insights into Oxidative Addition from Theory.<br>Journal of Physical Chemistry C, 2016, 120, 25436-25444.  | 1.5  | 2         |
| 199 | Oxygen Vacancy Ordering and Electron Localization in CeO <sub>2</sub> : Hybrid Functional Study. Journal of Physical Chemistry C, 2016, 120, 13325-13331.       | 1.5  | 37        |
| 200 | Enhanced oxidation activity from modified ceria: MnOx–ceria, CrOx–ceria and Mg doped VOx–ceria. Applied Catalysis B: Environmental, 2016, 197, 313-323.         | 10.8 | 12        |
| 201 | Theoretical Study of Trimethylacetic Acid Adsorption on CeO <sub>2</sub> (111) Surface. Journal of Physical Chemistry C, 2016, 120, 2655-2666.                  | 1.5  | 12        |
| 202 | Do Au Atoms Titrate Ce <sup>3+</sup> lons at the CeO <sub>2–<i>x</i></sub> (111) Surface?. Journal of Physical Chemistry C, 2016, 120, 927-933.                 | 1.5  | 14        |
| 203 | The acid–base and redox reactivity of CeO2 nanoparticles: Influence of the Hubbard U term in DFT + U studies. Surface Science, 2016, 648, 212-219.              | 0.8  | 18        |
| 204 | Lattice Strain Defects in a Ceria Nanolayer. Journal of Physical Chemistry Letters, 2016, 7, 1303-1309.                                                         | 2.1  | 17        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 205 | Performance of cubic ZrO2 doped CeO2: First-principles investigation on elastic, electronic and optical properties of Ce1â° Zr O2. Journal of Alloys and Compounds, 2016, 671, 208-219.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8 | 39        |
| 206 | Reactivity of metal oxide nanocluster modified rutile and anatase TiO2: Oxygen vacancy formation and CO2 interaction. Applied Catalysis A: General, 2016, 521, 240-249.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2 | 51        |
| 207 | First-principle study of CO adsorption and oxidation on Sm-doped CeO <sub>2</sub> (111) surface. RSC Advances, 2016, 6, 20349-20356.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.7 | 24        |
| 208 | High Catalytic Activity and Chemoselectivity of Sub-nanometric Pd Clusters on Porous Nanorods of CeO <sub>2</sub> for Hydrogenation of Nitroarenes. Journal of the American Chemical Society, 2016, 138, 2629-2637.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.6 | 387       |
| 209 | Reactivity of atomically dispersed Pt <sup>2+</sup> species towards H <sub>2</sub> : model Pt–CeO <sub>2</sub> fuel cell catalyst. Physical Chemistry Chemical Physics, 2016, 18, 7672-7679.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3 | 61        |
| 210 | Towards highly active Pd/CeO <sub>2</sub> for alkene hydrogenation by tuning Pd dispersion and surface properties of the catalysts. Nanoscale, 2017, 9, 3140-3149.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.8 | 35        |
| 211 | Fluorine impurities at $CeO2(111)$ : Effects on oxygen vacancy formation, molecular adsorption, and surface re-oxidation. Journal of Chemical Physics, 2017, 146, 044703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2 | 17        |
| 212 | Lead-Free Sn-Ce-O Composite Coating on Cu Produced by Pulse Electrodeposition from an Aqueous Acidic Sulfate Electrolyte. Journal of Electronic Materials, 2017, 46, 5855-5865.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0 | 4         |
| 213 | Adsorption of C <sub>2</sub> gases over CeO <sub>2</sub> -based catalysts: synergism of cationic sites and anionic vacancies. Physical Chemistry Chemical Physics, 2017, 19, 14148-14159.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3 | 9         |
| 214 | Surface Stabilizes Ceria in Unexpected Stoichiometry. Journal of Physical Chemistry C, 2017, 121, 6844-6851.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5 | 40        |
| 215 | Redox behavior of a low-doped Pr-CeO2(111) surface. A DFT+U study. Applied Surface Science, 2017, 401, 206-217.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.1 | 22        |
| 216 | <i>Ab initio</i> study of ceria films for resistive switching memory applications. Materials Research Express, 2017, 4, 106301.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8 | 11        |
| 217 | Scaling reducibility of metal oxides. Theoretical Chemistry Accounts, 2017, 136, 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5 | 67        |
| 218 | <i>Ab Initio</i> Thermodynamic Investigation of Monolayer Stability of Multicomponent Metal Oxides: M <sub><i>x</i> Csub&gt;<i>x</i> Csub&gt; Csub&gt;</sub> | 1.5 | 5         |
| 219 | Interactions of Water with the (111) and (100) Surfaces of Ceria. Journal of Physical Chemistry C, 2017, 121, 21571-21578.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5 | 33        |
| 220 | Formation of a New, Strongly Basic Nitrogen Anion by Metal Oxide Modification. Journal of the American Chemical Society, 2017, 139, 11857-11867.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.6 | 27        |
| 221 | Quasi-zero-dimensional cobalt-doped CeO <sub>2</sub> dots on Pd catalysts for alcohol electro-oxidation with enhanced poisoning-tolerance. Nanoscale, 2017, 9, 12565-12572.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.8 | 38        |
| 222 | Toward an Understanding of Selective Alkyne Hydrogenation on Ceria: On the Impact of O Vacancies on H $<$ sub $>2sub>1nteraction with CeO<sub>2sub>(111). Journal of the American Chemical Society, 2017, 139, 17608-17616.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.6 | 120       |

| #   | Article                                                                                                                                                                                                              | IF          | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 223 | Ceriaâ€based nanomaterials as catalysts for CO oxidation and soot combustion: Effect of Zrâ€Pr doping and structural properties on the catalytic activity. AICHE Journal, 2017, 63, 216-225.                         | 1.8         | 44        |
| 224 | Platinum adsorption on ceria: A comparative theoretical study of different surfaces. Applied Surface Science, 2017, 394, 47-57.                                                                                      | 3.1         | 11        |
| 225 | Simulated Temperature Programmed Desorption of Acetaldehyde on CeO2(111): Evidence for the Role of Oxygen Vacancy and Hydrogen Transfer. Topics in Catalysis, 2017, 60, 446-458.                                     | 1.3         | 15        |
| 226 | Unraveling the Negative Role of Oxygen-Vacancy Cluster in Ionic Conductivity in CeO <sub>2</sub> : Hybrid Functional Study. Journal of Physical Chemistry C, 2018, 122, 5871-5880.                                   | 1.5         | 6         |
| 227 | Oxygen Vacancy Formation and Water Adsorption on Reduced AnO $<$ sub $>$ 2 $<$ /sub $>$ {111}, {110}, and {100} Surfaces (An = U, Pu): A Computational Study. Journal of Physical Chemistry C, 2018, 122, 7149-7165. | 1.5         | 45        |
| 228 | A facile method for the synthesis of graphene-like 2D metal oxides and their excellent catalytic application in the hydrogenation of nitroarenes. Journal of Materials Chemistry A, 2018, 6, 9948-9961.              | 5.2         | 33        |
| 229 | Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catalysis, 2018, 8, 4354-4363.                                                              | <b>5.</b> 5 | 52        |
| 230 | A first-principles study of stability of surface confined mixed metal oxides with corundum structure (Fe2O3, Cr2O3, V2O3). Physical Chemistry Chemical Physics, 2018, 20, 7073-7081.                                 | 1.3         | 7         |
| 231 | Understanding the ionic conductivity maximum in doped ceria: trapping and blocking. Physical Chemistry Chemical Physics, 2018, 20, 14291-14321.                                                                      | 1.3         | 116       |
| 232 | <i>Ab initio</i> calculation of the migration free energy of oxygen diffusion in pure and samarium-doped ceria. Physical Review B, 2018, 97, .                                                                       | 1.1         | 26        |
| 233 | Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems. Chemical Society Reviews, 2018, 47, 8474-8502.                                                                     | 18.7        | 155       |
| 234 | DFT insights into oxygen vacancy formation and CH <sub>4</sub> activation over CeO <sub>2</sub> surfaces modified by transition metals (Fe, Co and Ni). Physical Chemistry Chemical Physics, 2018, 20, 11912-11929.  | 1.3         | 64        |
| 235 | Lanthanide atom substitutionally doped blue phosphorene: electronic and magnetic behaviors. Physical Chemistry Chemical Physics, 2018, 20, 11003-11012.                                                              | 1.3         | 27        |
| 236 | Noble metal-free CeO 2 -based mixed oxides for CO and soot oxidation. Catalysis Today, 2018, 309, 227-235.                                                                                                           | 2.2         | 63        |
| 237 | Interaction of Pd single atoms with different CeO 2 crystal planes: A first-principles study. Applied Surface Science, 2018, 433, 1036-1048.                                                                         | 3.1         | 17        |
| 238 | Static force fields simulations of reduced CeO 2 (110) surface: Structure and adsorption of H 2 O molecule. Surface Science, 2018, 668, 7-16.                                                                        | 0.8         | 1         |
| 239 | A new insight into the theoretical design of highly dispersed and stable ceria supported metal nanoparticles. Journal of Colloid and Interface Science, 2018, 512, 775-783.                                          | 5.0         | 8         |
| 240 | Understanding All-Solid Frustrated-Lewis-Pair Sites on CeO <sub>2</sub> from Theoretical Perspectives. ACS Catalysis, 2018, 8, 546-554.                                                                              | 5.5         | 135       |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 241 | A method to explore the quantitative interactions between metal and ceria for $M/CeO2$ catalysts. Surface Science, 2018, 669, 79-86.                                                                               | 0.8 | 7         |
| 242 | Effect of U Content on the Activation of H <sub>2</sub> O on Ce <sub>1â€"<i>x</i></sub> U <i><sub>x</sub></i> O <sub>2+Î</sub> Surfaces. Chemistry of Materials, 2018, 30, 8650-8660.                              | 3.2 | 8         |
| 243 | Dynamical Solvent Effects on the Charge and Reactivity of Ceria-Supported Pt Nanoclusters. Journal of Physical Chemistry C, 2018, 122, 27507-27515.                                                                | 1.5 | 10        |
| 244 | <i>Ab initio</i> investigation of the formation of ZrO2-like structures upon the adsorption of Zr <i>n</i> on the CeO2(111) surface. Journal of Chemical Physics, 2018, 149, 244702.                               | 1.2 | 7         |
| 245 | High Sensitivity Plasmonic Sensing of Hydrogen over a Broad Dynamic Range Using Catalytic Au-CeO <sub>2</sub> Thin Film Nanocomposites. ACS Sensors, 2018, 3, 2684-2692.                                           | 4.0 | 15        |
| 246 | How to design models for ceria nanoparticles: Challenges and strategies for describing nanostructured reducible oxides. Frontiers of Nanoscience, 2018, 12, 55-99.                                                 | 0.3 | 6         |
| 247 | Discovery of Descriptors for Stable Monolayer Oxide Coatings through Machine Learning. ACS Applied Energy Materials, 2018, 1, 6217-6226.                                                                           | 2.5 | 13        |
| 248 | Rare Earth Doped Ceria: The Complex Connection Between Structure and Properties. Frontiers in Chemistry, 2018, 6, 526.                                                                                             | 1.8 | 88        |
| 249 | Design of Effective Catalysts for Selective Alkyne Hydrogenation by Doping of Ceria with a Single-Atom Promotor. Journal of the American Chemical Society, 2018, 140, 12964-12973.                                 | 6.6 | 204       |
| 250 | Predicting Monolayer Oxide Stability over Low-Index Surfaces of TiO <sub>2</sub> Polymorphs Using ab Initio Thermodynamics. Langmuir, 2018, 34, 11685-11694.                                                       | 1.6 | 8         |
| 251 | First-principles study of electronic structure, magnetic and optical properties of Mg-doped CeO2 (1†1†1) surface. Computational Materials Science, 2018, 155, 325-330.                                             | 1.4 | 7         |
| 252 | Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal–Support Interactions and Water-Enabled Catalytic Conversion by Site Blocking. Journal of the American Chemical Society, 2018, 140, 7681-7687. | 6.6 | 141       |
| 253 | Promoted methane activation on doped ceria via occupation of Pr(4f) states. Applied Surface Science, 2018, 458, 397-404.                                                                                           | 3.1 | 9         |
| 254 | Probing the Reactivity of Pt/Ceria Nanocatalysts toward Methanol Oxidation: From Ionic Single-Atom Sites to Metallic Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 17917-17927.                       | 1.5 | 22        |
| 255 | Structure and electronic properties of Si-doped CeO2 (111) surface by the first principle method. Solid State Communications, 2018, 277, 45-49.                                                                    | 0.9 | 11        |
| 256 | Assessment of Density Functional Approximations for Highly Correlated Oxides: The Case of CeO <sub>2</sub> and Ce <sub>2</sub> O <sub>3</sub> . Journal of Chemical Theory and Computation, 2018, 14, 4914-4927.   | 2.3 | 27        |
| 257 | Oxidation of Reduced Ceria by Incorporation of Hydrogen. Angewandte Chemie, 2019, 131, 14828-14835.                                                                                                                | 1.6 | 25        |
| 258 | Oxidation of Reduced Ceria by Incorporation of Hydrogen. Angewandte Chemie - International Edition, 2019, 58, 14686-14693.                                                                                         | 7.2 | 112       |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 259 | Aerobic Oxidation of Alcohols over Isolated Single Au Atoms Supported on CeO2 Nanorods: Catalysis of Interfacial [O–Ov–Ce–O–Au] Sites. ACS Applied Nano Materials, 2019, 2, 5214-5223.                             | 2.4  | 36        |
| 260 | On the mechanism of alkyne hydrogenation catalyzed by Ga-doped ceria. Journal of Catalysis, 2019, 375, 410-418.                                                                                                    | 3.1  | 43        |
| 261 | Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEM. Journal of the American Chemical Society, 2019, 141, 18395-18399.                                          | 6.6  | 27        |
| 262 | Ultrasmall Au clusters supported on pristine and defected CeO2: Structure and stability. Journal of Chemical Physics, 2019, 151, 174702.                                                                           | 1.2  | 8         |
| 263 | Synergy of the catalytic activation on Ni and the CeO <sub>2</sub> 27 stoichiometric redox cycle for dramatically enhanced solar fuel production. Energy and Environmental Science, 2019, 12, 767-779.             | 15.6 | 90        |
| 264 | Promotional effect of oxygen storage capacity on oxy-dehydrogenation of ethylbenzene with CO2 over κ-Ce2Zr2O8(111). Applied Surface Science, 2019, 486, 411-419.                                                   | 3.1  | 9         |
| 265 | Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Nanoscale, 2019, 11, 13289-13299.       | 2.8  | 100       |
| 266 | Dynamic Frustrated Lewis Pairs on Ceria for Direct Nonoxidative Coupling of Methane. ACS Catalysis, 2019, 9, 5523-5536.                                                                                            | 5.5  | 54        |
| 267 | Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au/CeO <sub>2</sub> catalysts: the morphology effect of CeO <sub>2</sub> . Catalysis Science and Technology, 2019, 9, 1570-1580. | 2.1  | 77        |
| 268 | H <sub>2</sub> Dissociation on Noble Metal Single Atom Catalysts Adsorbed on and Doped into CeO <sub>2</sub> (111). Journal of Physical Chemistry C, 2019, 123, 9875-9883.                                         | 1.5  | 33        |
| 269 | Catalytic Properties of Selected Transition Metal Oxidesâ€"Computational Studies. Challenges and Advances in Computational Chemistry and Physics, 2019, , 345-408.                                                 | 0.6  | 2         |
| 270 | Insight into the effect of morphology on catalytic performance of porous CeO2 nanocrystals for H2S selective oxidation. Applied Catalysis B: Environmental, 2019, 252, 98-110.                                     | 10.8 | 213       |
| 271 | Structure of the catalytically active copper–ceria interfacial perimeter. Nature Catalysis, 2019, 2, 334-341.                                                                                                      | 16.1 | 368       |
| 272 | Water interaction and dissociation on stoichiometric and defective Mn- and Fe-doped CeO2 surfaces. Materials Today Communications, 2019, 21, 100703.                                                               | 0.9  | 2         |
| 273 | Materials with the CrVO <sub>4</sub> structure type as candidate superprotonic conductors. RSC Advances, 2019, 9, 31999-32009.                                                                                     | 1.7  | 10        |
| 274 | Synthesis of Nickelâ€Doped Ceria Catalysts for Selective Acetylene Hydrogenation. ChemCatChem, 2019, 11, 1526-1533.                                                                                                | 1.8  | 30        |
| 276 | Impact of V, Hf and Si on oxidation processes in Ti–Al–N: Insights from ab initio molecular dynamics. Surface and Coatings Technology, 2020, 381, 125125.                                                          | 2.2  | 21        |
| 277 | Controllable design, synthesis and characterization of nanostructured rare earth metal oxides. Physical Sciences Reviews, 2020, 5, .                                                                               | 0.8  | 4         |

| #   | Article                                                                                                                                                                                                            | IF           | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 278 | Relative Stability of Near-Surface Oxygen Vacancies at the CeO <sub>2</sub> (111) Surface upon Zirconium Doping. Journal of Physical Chemistry C, 2020, 124, 625-638.                                              | 1.5          | 16        |
| 279 | Formaldehyde oxidation on Co-doped reduced CeO2(111): First-principles calculations. Surface Science, 2020, 701, 121693.                                                                                           | 0.8          | 11        |
| 280 | Hydrodeoxygenation of Guaiacol to Phenol over Ceria-Supported Iron Catalysts. ACS Catalysis, 2020, 10, 14624-14639.                                                                                                | 5 <b>.</b> 5 | 55        |
| 281 | Structures and reactivities of the $CeO2/Pt(111)$ reverse catalyst: A DFT+U study. Chinese Journal of Catalysis, 2020, 41, 1360-1368.                                                                              | 6.9          | 9         |
| 282 | Assessment of PBE+U and HSE06 methods and determination of optimal parameter U for the structural and energetic properties of rare earth oxides. Journal of Chemical Physics, 2020, 153, 164710.                   | 1.2          | 13        |
| 283 | CeO <sub>2</sub> (111) Surface with Oxygen Vacancy for Radical Scavenging: A Density Functional Theory Approach. Journal of Physical Chemistry C, 2020, 124, 20950-20959.                                          | 1.5          | 18        |
| 284 | Dynamics of gold clusters on ceria during CO oxidation. Journal of Catalysis, 2020, 392, 39-47.                                                                                                                    | 3.1          | 20        |
| 285 | Methane Nonoxidative Direct Conversion to C <sub>2</sub> Hydrogenations over CeO <sub>2</sub> -Supported Pt Catalysts: A Density Functional Theory Study. Journal of Physical Chemistry C, 2020, 124, 13249-13262. | 1.5          | 16        |
| 286 | Influence of gold on the reactivity behaviour of ceria nanorods in CO oxidation: combining <i>operando</i> spectroscopies and DFT calculations. Catalysis Science and Technology, 2020, 10, 3720-3730.             | 2.1          | 19        |
| 287 | Role of surface frustrated Lewis pairs on reduced CeO2(110) in direct conversion of syngas. Chinese Journal of Catalysis, 2020, 41, 1906-1915.                                                                     | 6.9          | 23        |
| 288 | Insight into anomalous hydrogen adsorption on rare earth metal decorated on 2-dimensional hexagonal boron nitride: a density functional theory study. RSC Advances, 2020, 10, 12929-12940.                         | 1.7          | 6         |
| 289 | Facet-dependent electrocatalytic water splitting reaction on CeO2: A DFTÂ+ÂU study. Journal of Catalysis, 2020, 388, 1-10.                                                                                         | 3.1          | 32        |
| 290 | Potential Control of Oxygen Non-Stoichiometry in Cerium Oxide and Phase Transition Away from Equilibrium. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31514-31521.                                         | 4.0          | 12        |
| 291 | Surface Reactivity of Ag-Modified Ceria to Hydrogen: A Combined Experimental and Theoretical Investigation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27682-27690.                                       | 4.0          | 6         |
| 292 | Atomic structure and electronic properties of Zr adsorption on CeO2 (111) surface by the first-principles method. Physica B: Condensed Matter, 2020, 585, 412060.                                                  | 1.3          | 6         |
| 293 | Ni Nanoparticles on CeO <sub>2</sub> (111): Energetics, Electron Transfer, and Structure by Ni Adsorption Calorimetry, Spectroscopies, and Density Functional Theory. ACS Catalysis, 2020, 10, 5101-5114.          | 5.5          | 42        |
| 294 | Unraveling the Origin of Ceria Activity in Water–Gas Shift by First-Principles Microkinetic Modeling. Journal of Physical Chemistry C, 2020, 124, 7823-7834.                                                       | 1.5          | 21        |
| 295 | Cu, Sm co-doping effect on the CO oxidation activity of CeO2. A combined experimental and density functional study. Applied Surface Science, 2020, 521, 146305.                                                    | 3.1          | 61        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF             | CITATIONS                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|
| 296 | Oxygen vacancies and alkaline metal boost CeO2 catalyst for enhanced soot combustion activity: A first-principles evidence. Applied Catalysis B: Environmental, 2021, 281, 119468.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.8           | 28                       |
| 297 | A computational investigation of the adsorption of small copper clusters on the CeO <sub>2</sub> (110) surface. Physical Chemistry Chemical Physics, 2021, 23, 19329-19342.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3            | 7                        |
| 298 | Atomistic Insights into the Hydrogen Oxidation Reaction of Palladium-Ceria Bifunctional Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catalysis, 2021, 11, 2561-2571.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.5            | 30                       |
| 299 | Influence of doping concentration on the elastic properties and electronic structure of the reduced Ce1â^'xMx O1.785 (M = Ti, Zr) from first principles. International Journal of Modern Physics B, 2021, 35, 2150123.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0            | 1                        |
| 300 | Metastable Ce-terminated (1 1 1) surface of ceria. Applied Surface Science, 2021, 546, 148972.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.1            | 7                        |
| 301 | Synthesis, characterization and visible light-responsive photocatalysis properties of Ce doped CuO nanoparticles: A combined experimental and DFT+U study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126386.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3            | 45                       |
| 302 | Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO⟨sub⟩2⟨/sub⟩ Catalyst: Active Sites and the Role of Metal–Support Interactions. ACS Catalysis, 2021, 11, 8327-8337.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5            | 39                       |
| 303 | Electronic structure of reduced CeO2(111) surfaces interacting with hydrogen as revealed through electron energy loss spectroscopy in comparison with theoretical investigations. Journal of Electron Spectroscopy and Related Phenomena, 2021, , 147088.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8            | 6                        |
| 304 | Cerium Oxides without $\langle i \rangle$ U $\langle i \rangle$ : The Role of Many-Electron Correlation. Journal of Physical Chemistry Letters, 2021, 12, 6277-6283.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1            | 12                       |
| 305 | Nature of the Active Sites on Ni/CeO <sub>2</sub> Catalysts for Methane Conversions. ACS Catalysis, 2021, 11, 10604-10613.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 <b>.</b> 5   | 37                       |
| 306 | Facet-dependent stability of near-surface oxygen vacancies and excess charge localization at CeO <sub>2</sub> surfaces. Journal of Physics Condensed Matter, 2021, 33, 504003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7            | 14                       |
| 307 | Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia. Journal of Energy Chemistry, 2021, 60, 249-258.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.1            | 29                       |
| 308 | In situ spectroscopic insights into the redox and acid-base properties of ceria catalysts. Chinese Journal of Catalysis, 2021, 42, 2122-2140.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.9            | 12                       |
| 309 | A novel CeO2 Hollow-Shell sensor constructed for high sensitivity of acetone gas detection. Applied Surface Science, 2022, 571, 151337.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.1            | 36                       |
| 310 | Vibrational Frequencies of Cerium-Oxide-Bound CO: A Challenge for Conventional DFT Methods. Physical Review Letters, 2020, 125, 256101.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9            | 13                       |
| 311 | Unraveling the oxygen vacancy structures at the reduced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ce</mml:mi><mml:msub><mml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:mo><nml:m< td=""><td>ni<br/>nml:mn&gt;1</td><td>11<sup>38</sup>mml:mms</td></nml:m<></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></nml:mo></mml:mo></mml:msub></mml:mrow></mml:math> | ni<br>nml:mn>1 | 11 <sup>38</sup> mml:mms |
| 312 | ReducedPommhhatbiew Materials, 2018, 2, xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>CeO</mml:mi><mml <mml:math="" as="" bulk="" introducing="" of="" ordered="" phases="" structure="" terminations:="" the="" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><mml:mrow><mml:msub><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi>Ce</mml:mi><mml:mi><mml:mi><mml:mi>Ce</mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><m< td=""><td></td><td></td></m<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:msub></mml:mrow></mml></mml:msub></mml:mrow>                                                                                                                                                                                                                                                                                                                                                                                                             |                |                          |
| 313 | mathvariant="normal">O <mml:mn></mml:mn> <td>5.5</td> <td>24</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5            | 24                       |

| #   | ARTICLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IF               | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 315 | $\mbox{Cu/O}$ Frustrated Lewis Pairs on Cu Doped CeO2(111) for Acetylene Hydrogenation: A First-Principles Study. Catalysts, 2022, 12, 74.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.6              | 8         |
| 316 | DFT-based microkinetic model analysis of dry reforming of methane over Ru <sub>7</sub> /CeO <sub>2</sub> (111) and Ru <sub>7</sub> /CeO <sub>2</sub> (110): key role of surface lattice oxygen vacancy. Catalysis Science and Technology, 2022, 12, 1880-1891.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.1              | 10        |
| 317 | Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: a review. Catalysis Reviews - Science and Engineering, 2023, 65, 1468-1520.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.7              | 13        |
| 318 | Eliminating Delocalization Error to Improve Heterogeneous Catalysis Predictions with Molecular DFT $+ \langle i \rangle U \langle j \rangle$ . Journal of Chemical Theory and Computation, 2022, 18, 1142-1155.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3              | 7         |
| 319 | Investigation of the structural and electronic differences between silver and copper doped ceria using the density functional theory. Journal of Physics Condensed Matter, 2022, 34, 204010.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7              | 4         |
| 320 | display="inline" id="d1e2091" altimg="si147.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub> /CeO <mml:math altimg="si326.svg" display="inline" id="d1e2099" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>3.1</td><td>2</td></mml:mrow<></mml:msub></mml:math>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.1              | 2         |
| 321 | Acetylene hydrogenation catalyzed by bare and Ni doped CeO <sub>2</sub> (110): the role of frustrated Lewis pairs. Physical Chemistry Chemical Physics, 2022, 24, 11295-11304.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <td>ith&gt;</td> | ith>      |
| 322 | Photosensitized Peroxidase Mimicry at the Hierarchical 0D/2D Heterojunctionâ€Like Quasi Metalâ€Organic Framework Interface for Boosting Biocatalytic Disinfection. Small, 2022, 18, e2200178.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.2              | 62        |
| 323 | Khalifa University of Science and Technology. SSRN Electronic Journal, 0, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4              | 0         |
| 324 | Mechanisms of temperature-dependent oxygen absorption/release and appearance of intermediate phase in $\hat{l}^2$ -Ce <sub>2</sub> Zr <sub>2</sub> O <sub>8</sub> : study based on oxygen vacancy formation energy computations. RSC Advances, 2022, 12, 16717-16722.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7              | 0         |
| 325 | Tuning the selectivity of cerium oxide for ethanol dehydration to ethylene. Applied Surface Science, 2022, 599, 153963.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.1              | 7         |
| 326 | CO <sub>2</sub> Activation over Nanoshaped CeO <sub>2</sub> Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated With Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated With Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated With Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Decorated With Nickel for Low-Temperature Methane Dry Reforming | 4.0              | 16        |
| 327 | Reaction Mechanism of Deoxydehydration by Ceria-Supported Monomeric Rhenium Catalysts: A Computational Study. Journal of Physical Chemistry C, 2022, 126, 11566-11573.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5              | 6         |
| 328 | Decoupling the Chemical and Mechanical Strain Effect on Steering the CO <sub>2</sub> Activation over CeO <sub>2</sub> -Based Oxides: An Experimental and DFT Approach. ACS Applied Materials & linterfaces, 2022, 14, 33094-33119.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.0              | 17        |
| 329 | DFT insight into the adsorption behavior of H2PO2 on the reduced Ce0.899M0.111O1.785(111) (M = Ti, Zr) surface. Materials Today Communications, 2022, 32, 103940.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9              | 0         |
| 330 | Controlling the Electronic and Magnetic Properties of Zno Monolayer by Rare-Earth Atoms Substitutional Doping. SSRN Electronic Journal, 0, , .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4              | 0         |
| 331 | Shape-Controlled Pathways in the Hydrogen Production from Ethanol Steam Reforming over Ceria Nanoparticles. ACS Catalysis, 2022, 12, 10482-10498.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.5              | 10        |
| 332 | Effect of 3.7Âat% F doping on the atomic structure and reducibility of CeO2(111) surface: A first principles calculation. Current Applied Physics, 2022, 43, 9-14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1              | 3         |

| #   | Article                                                                                                                                                                                                                           | IF                               | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|
| 333 | Theoretical insight into the strong size-dependence of dry reforming of methane over Ru/CeO2. Journal of CO2 Utilization, 2022, 65, 102221.                                                                                       | 3.3                              | 9         |
| 334 | Reduction Mechanism for CeO <sub>2</sub> Revealed by Direct Observation of the Oxygen Vacancy Distribution in Shapeâ€Controlled CeO <sub>2</sub> . Advanced Materials Interfaces, 2023, 10, .                                     | 1.9                              | 2         |
| 335 | Defects disorder of lanthanum cerium oxide. , 2023, , 83-127.                                                                                                                                                                     |                                  | 0         |
| 336 | Controlling the electronic and magnetic properties of ZnO monolayer by rare-earth atoms substitutional doping. Physica B: Condensed Matter, 2023, 652, 414661.                                                                    | 1.3                              | 4         |
| 337 | CeO <sub>2</sub> -based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: extended application and key catalytic properties. Catalysis Reviews - Science and Engineering, 0, , 1-84. | 5.7                              | 26        |
| 338 | Compositional disorder and its effect on optical and photocatalytic properties of Ce1â^'xGdxO2 (0 â‰â€‰x â‰â€‰0.20) nanostructures. Journal of Materials Science: Materials in Electronics, 2023,                                 | 3 <sup>1</sup> 4 <sup>1</sup> ,. | 1         |