Porphyrinâ "Carbon Nanotube Composites Formed by N

Chemistry of Materials 17, 716-724

DOI: 10.1021/cm048549a

Citation Report

#	Article	IF	CITATIONS
1	A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer, 2005, 46, 10925-10935.	1.8	238
2	Raman scattering analysis of changes induced by chemical treatment of double-walled carbon nanotubes. Chemical Physics Letters, 2005, 412, 449-453.	1.2	9
3	Rational Attachment of Synthetic Triptycene Orthoquinone onto Carbon Nanotubes for Electrocatalysis and Sensitive Detection of Thiols. Analytical Chemistry, 2005, 77, 8158-8165.	3.2	114
4	Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. Journal of the American Chemical Society, 2006, 128, 6626-6635.	6.6	194
5	Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor–acceptor nanohybrid. Journal of Materials Chemistry, 2006, 16, 3021-3030.	6.7	211
6	Multifunctional molecular carbon materialsâ€"from fullerenes to carbon nanotubes. Chemical Society Reviews, 2006, 35, 471.	18.7	388
7	Single-Step in Situ Preparation of Polymer-Grafted Multi-Walled Carbon Nanotube Composites under 60Co \hat{l}^3 -Ray Irradiation. Chemistry of Materials, 2006, 18, 2929-2934.	3.2	82
8	Fullerenes. Annual Reports on the Progress of Chemistry Section A, 2006, 102, 420.	0.8	4
9	Electronic Interplay on Illuminated Aqueous Carbon Nanohornâ^Porphyrin Ensembles. Journal of Physical Chemistry B, 2006, 110, 20729-20732.	1.2	79
10	CNTâ^'CdTe Versatile Donorâ^'Acceptor Nanohybrids. Journal of the American Chemical Society, 2006, 128, 2315-2323.	6.6	219
11	Carbon nanotube-enabled materials., 2006,, 213-274.		12
12	Optical properties and photonic devices of doped carbon nanotubes. Analytica Chimica Acta, 2006, 568, 161-170.	2.6	41
13	Attachment of nickel hexacyanoferrates nanoparticles on carbon nanotubes: Preparation, characterization and bioapplication. Analytica Chimica Acta, 2006, 571, 211-217.	2.6	67
14	Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property. Chemical Physics Letters, 2006, 420, 416-420.	1.2	45
15	Close-conjugation of quantum dots and gold nanoparticles to sidewall functionalized single-walled carbon nanotube templates. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 315-321.	2.0	15
16	Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006, 7, 104-126.	5.6	245
17	Bioinspired Detection of Light Using a Porphyrin-Sensitized Single-Wall Nanotube Field Effect Transistor. Nano Letters, 2006, 6, 2031-2036.	4.5	211
18	Chemistry of Carbon Nanotubes. Chemical Reviews, 2006, 106, 1105-1136.	23.0	3,905

#	ARTICLE	IF	CITATIONS
19	Solubilization of Single-Walled Carbon Nanotubes by using Polycyclic Aromatic Ammonium Amphiphiles in Water—Strategy for the Design of High-Performance Solubilizers. Chemistry - A European Journal, 2006, 12, 4027-4034.	1.7	194
20	Triply Fused ZnII–Porphyrin Oligomers: Synthesis, Properties, and Supramolecular Interactions with Single-Walled Carbon Nanotubes (SWNTs). Chemistry - A European Journal, 2006, 12, 6062-6070.	1.7	119
21	Noncovalent Functionalization and Solubilization of Carbon Nanotubes by Using a Conjugated Zn–Porphyrin Polymer. Chemistry - A European Journal, 2006, 12, 5053-5059.	1.7	149
22	Separation of metallic and semiconducting single-walled carbon nanotubes. , 2006, , 255-295.		12
23	Carbon nanotubes and porphyrins: an exciting combination for optoelectronic devices. Journal of Porphyrins and Phthalocyanines, 2007, 11, 348-358.	0.4	20
25	Solubilization of Carbon Nanotubes and Their Applications. Kobunshi Ronbunshu, 2007, 64, 539-552.	0.2	4
26	Fundamentals and Applications of Soluble Carbon Nanotubes. Chemistry Letters, 2007, 36, 692-697.	0.7	110
27	Ferrocene Functionalized Single-Walled Carbon Nanotube Bundles. Hybrid Interdigitated Construction Film for l-Glutamate Detection. Journal of Physical Chemistry C, 2007, 111, 1200-1206.	1.5	64
28	Nondestructive Formation of Supramolecular Nanohybrids of Single-Walled Carbon Nanotubes with Flexible Porphyrinic Polypeptides. Journal of Physical Chemistry C, 2007, 111, 1194-1199.	1.5	75
29	Supramolecular Carbon Nanotube-Fullerene Donorâ [*] Acceptor Hybrids for Photoinduced Electron Transfer. Journal of the American Chemical Society, 2007, 129, 15865-15871.	6.6	144
30	Noncovalent porphyrin-functionalized single-walled carbon nanotubes: solubilization and spectral behaviors. Journal of Porphyrins and Phthalocyanines, 2007, 11, 418-427.	0.4	29
31	A General Route to Prepare One- and Three-Dimensional Carbon Nanotube/Metal Nanoparticle Composite Nanostructures. Langmuir, 2007, 23, 6352-6357.	1.6	53
32	Photoinduced electron-transfer processes of carbon nanohorns with covalently linked pyrene chromophores: charge-separation and electron-migration systems. Journal of Materials Chemistry, 2007, 17, 2540.	6.7	35
33	Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications. Physical Chemistry Chemical Physics, 2007, 9, 1400.	1.3	123
34	Improved Load Transfer in Nanotube/Polymer Composites with Increased Polymer Molecular Weight. Journal of Physical Chemistry C, 2007, 111, 17923-17927.	1.5	42
35	Photoelectrochemistry of Stacked-Cup Carbon Nanotube Films. Tube-Length Dependence and Charge Transfer with Excited Porphyrin. Journal of Physical Chemistry C, 2007, 111, 16626-16634.	1.5	43
36	Catalase Immobilization on Electrospun Nanofibers:  Effects of Porphyrin Pendants and Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 14091-14097.	1.5	52
37	Supramolecular interactions of conjugated Zn - and protonated porphyrin polymer with carbon nanotubes. Journal of Porphyrins and Phthalocyanines, 2007, 11, 198-204.	0.4	11

#	ARTICLE	IF	Citations
38	Synthesis and photoelectrical properties of carbon nanotube–dendritic porphyrin light harvesting molecule systems. Diamond and Related Materials, 2007, 16, 658-663.	1.8	28
39	Aqueous carbon nanohorn–pyrene–porphyrin nanoensembles: Controlling charge-transfer interactions. Diamond and Related Materials, 2007, 16, 1150-1153.	1.8	50
40	Synthesis of Polythiophene-graft-PMMA and Its Role as Compatibilizer for Poly(styrene-co-acrylonitrile)/MWCNT Nanocomposites. Macromolecules, 2007, 40, 3708-3713.	2.2	53
41	Integration of a Self-Assembling Protein Scaffold with Water-Soluble Single-Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 4370-4373.	7.2	47
43	Covalent Functionalization of Carbon Nanohorns with Porphyrins: Nanohybrid Formation and Photoinduced Electron and Energy Transfer. Advanced Functional Materials, 2007, 17, 1705-1711.	7.8	92
44	Nonlinear Optical Properties of Porphyrins. Advanced Materials, 2007, 19, 2737-2774.	11.1	751
45	Fabrication of Fc-SWNTs modified glassy carbon electrode for selective and sensitive determination of dopamine in the presence of AA and UA. Electrochimica Acta, 2007, 52, 5939-5944.	2.6	74
46	Covalent functionalization of multi-walled carbon nanotube surfaces by conjugated polyfluorenes. Polymer, 2007, 48, 7510-7515.	1.8	38
47	Nanofibrous and nanotubular supports for the immobilization of metalloporphyrins as oxidation catalysts. Journal of Colloid and Interface Science, 2007, 315, 142-157.	5.0	39
48	Donorâ-Acceptor Nanohybrids of Zinc Naphthalocyanine or Zinc Porphyrin Noncovalently Linked to Single-Wall Carbon Nanotubes for Photoinduced Electron Transfer. Journal of Physical Chemistry C, 2007, 111, 6947-6955.	1.5	168
49	Multiwalled carbon nanotubes functionalized with PS via emulsion polymerization. Macromolecular Research, 2007, 15, 498-505.	1.0	24
50	Optimization of molecular structure of polythiophene-graft-PMMA for effective compatibilization of SAN/MWCNT composite with superior mechanical properties. Fibers and Polymers, 2008, 9, 544-550.	1.1	6
51	The absorption and diffusion of polyethylene chains on the carbon nanotube: The molecular dynamics study. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 272-280.	2.4	15
52	A Nonâ€Covalent Method to Functionalize Multiâ€Walled Carbon Nanotubes Using Sixâ€Armed Star Poly(<scp>L</scp> â€lactic acid) with a Triphenylene Core. Macromolecular Chemistry and Physics, 2008, 209, 783-793.	1.1	38
53	A Facile Strategy for Preparation of Fluorescent SWNT Complexes with High Quantum Yields Based on lon Exchange. Advanced Functional Materials, 2008, 18, 857-864.	7.8	34
54	Optical study of porphyrin-doped carbon nanotubes. Chemical Physics Letters, 2008, 462, 109-111.	1.2	26
55	Methodology for Homogeneous Dispersion of Single-walled Carbon Nanotubes by Physical Modification. Polymer Journal, 2008, 40, 577-589.	1.3	130
56	Heterocyclic Supramolecular Chemistry of Fullerenes and Carbon Nanotubes. Topics in Heterocyclic Chemistry, 2008, , 161-198.	0.2	4

#	Article	IF	CITATIONS
57	Self-assembled tetrapyrrole–fullerene and tetrapyrrole–carbon nanotube donor–acceptor hybrids for light induced electron transfer applications. Journal of Materials Chemistry, 2008, 18, 1440.	6.7	153
58	Ruthenium Porphyrin Functionalized Single-Walled Carbon Nanotube Arrays—A Step Toward Light Harvesting Antenna and Multibit Information Storage. Journal of the American Chemical Society, 2008, 130, 8788-8796.	6.6	93
59	Interactions between tripodal porphyrin hosts and single walled carbon nanotubes: an experimental and theoretical (DFT) account. Journal of Materials Chemistry, 2008, 18, 2781.	6.7	17
60	Noncovalent Assembly of Carbon Nanotubes and Single-Stranded DNA: An Effective Sensing Platform for Probing Biomolecular Interactions. Analytical Chemistry, 2008, 80, 7408-7413.	3.2	303
61	Pyrene-tetrathiafulvalene supramolecular assembly with different types of carbon nanotubes. Journal of Materials Chemistry, 2008, $18,1498.$	6.7	63
62	Functionalization of Single-Walled Carbon Nanotubes with Metalloporphyrin Complexes: A Theoretical Study. Journal of Physical Chemistry C, 2008, 112, 11130-11134.	1.5	24
63	Porphyrin-functionalized single-walled nanotubes solution for DMMP detection. , 2008, , .		0
64	A Novel Light Harvesting System: Synthesis, Characterization, and Photophysical Properties of Covalently Porphyrin-Modified Single-Walled Carbon Nanotubes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 553-561.	0.6	3
65	Noncovalent Functionalization of Single-Walled Carbon Nanotube by Porphyrin: Dispersion of Carbon Nanotubes in Water and Formation of Self-Assembly Donor-Acceptor Nanoensemble. Journal of Dispersion Science and Technology, 2009, 31, 57-61.	1.3	13
66	Electrochemical Characteristics of Vitamin K[sub 3] Incorporated in Carbon Nanotubes–Chitosan Hybrid Films and the Electrocatalytic Oxidation of Dopamine. Journal of the Electrochemical Society, 2009, 156, K134.	1.3	12
67	Advanced technology for functionalization of carbon nanotubes. Progress in Natural Science: Materials International, 2009, 19, 801-810.	1.8	285
68	Synthesis of Novel Porphyrin and its Complexes Covalently Linked to Multi-Walled Carbon Nanotubes and Study of their Spectroscopy. Nanoscale Research Letters, 2009, 4, 578-583.	3.1	16
69	Photoinduced Charge Separation in Ion-Paired Porphyrinâ'Single-Wall Carbon Nanotube Donorâ'Acceptor Hybrids. Journal of Physical Chemistry C, 2009, 113, 13425-13432.	1.5	56
70	Functional Polyacetylenes Carrying Mesogenic and Polynuclear Aromatic Pendants: Polymer Synthesis, Hybridization with Carbon Nanotubes, Liquid Crystallinity, Light Emission, and Electrical Conductivity. Macromolecules, 2009, 42, 2523-2531.	2.2	30
71	Shape-Memory Polymer Composites. Advances in Polymer Science, 2009, , 41-95.	0.4	78
72	Zinc Porphyrins Covalently Bound to the Side Walls of Single-Walled Carbon Nanotubes via Flexible Bonds: Photoinduced Electron Transfer in Polar Solvent. Journal of Physical Chemistry C, 2009, 113, 14493-14499.	1.5	39
73	Carbon nanotubesâ€"electronic/electrochemical properties and application for nanoelectronics and photonics. Chemical Society Reviews, 2009, 38, 165-184.	18.7	502
74	Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications. Journal of the American Chemical Society, 2009, 131, 671-679.	6.6	598

#	Article	IF	CITATIONS
75	Polysiloxane Surfactants for the Dispersion of Carbon Nanotubes in Nonpolar Organic Solvents. Langmuir, 2009, 25, 12325-12331.	1.6	49
76	Solvent-dependent fluorescence property of multi-walled carbon nanotubes noncovalently functionalized by pyrene-derivatized polymer. Nanotechnology, 2009, 20, 135705.	1.3	16
77	Melamine-Bridged Bis(porphyrin-ZnII) Receptors: Molecular Recognition Properties. Journal of Organic Chemistry, 2009, 74, 9034-9043.	1.7	28
78	Sensitive Efficiency of Photoinduced Electron Transfer to Band Gaps of Semiconductive Single-Walled Carbon Nanotubes with Supramolecularly Attached Zinc Porphyrin Bearing Pyrene Glues. Journal of the American Chemical Society, 2010, 132, 8158-8164.	6.6	109
79	Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110, 5790-5844.	23.0	889
81	A Carbon NanohornPorphyrin Supramolecular Assembly for Photoinduced Electronâ€Transfer Processes. Chemistry - A European Journal, 2010, 16, 10752-10763.	1.7	45
82	New anthracene–tetrathiafulvalene derivative-encapsulated SWNT nanocomposite and its application for biosensing. Journal of Colloid and Interface Science, 2010, 343, 48-51.	5.0	6
83	Meso-meso linked diporphyrin functionalized single-walled carbon nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 15-23.	2.0	13
84	Preparation and mechanical characterization of laser ablated single-walled carbon-nanotubes/polyurethane nanocomposite microbeams. Composites Science and Technology, 2010, 70, 518-524.	3.8	34
85	Functional Graphene Oxide as a Nanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small, 2010, 6, 537-544.	5.2	1,544
89	Carbon Nanotubeâ^'Inorganic Hybrids. Chemical Reviews, 2010, 110, 1348-1385.	23.0	762
90	4 Tetrapyrrole–Nanocarbon Hybrids: Self-Assembly and Photoinduced Electron Transfer. Handbook of Porphyrin Science, 2010, , 307-437.	0.3	14
91	Measuring the electronic properties of single-walled carbon nanotubes with adsorbed porphyrins using optical transitions. Journal of Porphyrins and Phthalocyanines, 2010, 14, 885-890.	0.4	7
92	Macromolecular multi-chromophoric scaffolding. Chemical Society Reviews, 2010, 39, 1576.	18.7	113
93	Phthalocyanineâ^'Pyrene Conjugates: A Powerful Approach toward Carbon Nanotube Solar Cells. Journal of the American Chemical Society, 2010, 132, 16202-16211.	6.6	131
94	A Facile Approach for the Fabrication of Highly Stable Superhydrophobic Cotton Fabric with Multi-Walled Carbon Nanotubesâ^'Azide Polymer Composites. Langmuir, 2010, 26, 7529-7534.	1.6	71
95	Sorting of Single-Walled Carbon Nanotubes Based on Metallicity by Selective Precipitation with Polyvinylpyrrolidone. Journal of Physical Chemistry C, 2011, 115, 5199-5206.	1.5	14
96	Well dispersed single-walled carbon nanotubes with strong visible fluorescence in water for metal ions sensing. Chemical Communications, 2011, 47, 7167.	2.2	23

#	Article	IF	Citations
97	Synthesis of Pyrene-Substituted Poly(3-hexylthiophene) via Postpolymerization and Its Noncovalent Interactions with Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 4584-4593.	1.5	32
98	Hierarchical polymer assemblies constructed by the mutual template effect of cationic polymer complex and anionic supramolecular nanofiber. Organic and Biomolecular Chemistry, 2011, 9, 146-153.	1.5	13
99	Panchromatic light harvesting in single wall carbon nanotube hybridsâ€"immobilization of porphyrinâ€"phthalocyanine conjugates. Chemical Communications, 2011, 47, 3490.	2.2	34
100	Materials and Devices for Organic Electronics. Journal of Nanotechnology, 2011, 2011, 1-2.	1.5	5
101	Carbon Nanotubes and Carbon Nanotubes/Metal Oxide Heterostructures: Synthesis, Characterization and Electrochemical Property. , 2011, , .		9
102	Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films. Electrochimica Acta, 2011, 56, 9015-9019.	2.6	16
103	One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers. Biosensors and Bioelectronics, 2011, 26, 3505-3510.	5. 3	21
104	The use of water-soluble pyrene derivatives to probe the surface of carbon nanotubes. Carbon, 2011, 49, 2935-2943.	5.4	11
105	Molecular Engineering of Nonplanar Porphyrin and Carbon Nanotube Assemblies: A Linear and Nonlinear Spectroscopic and Modeling Study. Journal of Nanotechnology, 2011, 2011, 1-12.	1.5	67
106	Synthesis, characterization, and photophysical properties of covalent-linked ferrocene–porphyrin–single-walled carbon nanotube triad hybrid. Carbon, 2012, 50, 4894-4902.	5.4	27
107	Water redissoluble chiral porphyrin–carbon nanotube composites. Journal of Materials Chemistry, 2012, 22, 5764.	6.7	12
108	Ruthenium Complex Containing Block Copolymer For the Enhancement of Carbon Nanotube Photoconductivity. ACS Applied Materials & Samp; Interfaces, 2012, 4, 74-80.	4.0	16
110	One-step synthesis of fluorescein modified nano-carbon for Pd(ii) detection via fluorescence quenching. Analyst, The, 2012, 137, 2054.	1.7	61
111	Preparation and Characterization of Ternary Composite Composed by Chitosan, Porphyrin Derivative and Single-Walled Carbon Nanotubes (SWCNTs). Advanced Materials Research, 2012, 535-537, 1591-1596.	0.3	0
112	Synthesis and characterization of pyrene bearing amphiphilic miktoarm star polymer and its noncovalent interactions with multiwalled carbon nanotubes. Journal of Polymer Science Part A, 2012, 50, 2406-2414.	2.5	28
113	Multiwalled carbon nanotubes functionalized with maleated poly(propylene) by a dry mechano-chemical process. Polymer, 2012, 53, 291-299.	1.8	35
114	Low dimensional nanocarbons – chemistry and energy/electron transfer reactions. Chemical Science, 2013, 4, 4335.	3.7	102
116	Carbon nanotube reinforced shape memory polyurethane foam. Polymer Bulletin, 2013, 70, 885-893.	1.7	29

#	Article	IF	CITATIONS
118	Carbon nanotube solar cells., 2013,, 241-269.		13
119	Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 736-743.	1.7	179
120	Supramolecular Chemistry of Carbon Nanotubes. Topics in Current Chemistry, 2013, 348, 95-126.	4.0	21
121	Nanocomposite fibers., 0,, 191-238.		O
122	Preparation and dielectric properties of poly(ε aprolactone) compounded with "bucky gelsâ€ê€ike mixture. Journal of Applied Polymer Science, 2014, 131, .	1.3	1
123	Surface Modification of Multiwalled Carbon Nanotubes with Engineered Self-Assembled RAFT Diblock Coatings. Australian Journal of Chemistry, 2014, 67, 151.	0.5	7
124	Interactions of porphyrins and single walled carbon nanotubes: A fine duet. Synthetic Metals, 2014, 193, 64-70.	2.1	12
125	Supracolloidal Multivalent Interactions and Wrapping of Dendronized Glycopolymers on Native Cellulose Nanocrystals. Journal of the American Chemical Society, 2014, 136, 866-869.	6.6	72
126	Single-Walled Carbon Nanotube–Poly(porphyrin) Hybrid for Volatile Organic Compounds Detection. Journal of Physical Chemistry C, 2014, 118, 1602-1610.	1.5	51
127	Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 122, 638-644.	2.5	268
128	The interaction between unique hyperbranched polyaniline and carbon nanotubes, and its influence on the dielectric behavior of hyperbranched polyaniline/carbon nanotube/epoxy resin composites. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	19
129	Noncovalent Functionalization of Boron Nitride Nanotubes in Aqueous Media Opens Application Roads in Nanobiomedicine. Nanobiomedicine, 2014, 1, 7.	4.4	44
130	Selecting Semiconducting Singleâ€Walled Carbon Nanotubes with Narrow Bandgap Naphthalene Diimideâ€Based Polymers. Advanced Electronic Materials, 2015, 1, 1500074.	2.6	27
131	Dielectric properties of poly(vinylidene fluoride) composites based on Bucky gels of carbon nanotubes with ionic liquids. Polymer Composites, 2015, 36, 94-101.	2.3	31
132	Synthesis of carbon nanotube-supported metallo carboxyporphyrin as a novel nanocatalyst for the mercaptan removal. Journal of Natural Gas Science and Engineering, 2015, 25, 103-109.	2.1	29
133	Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via a pyrene derivative. Journal of Materials Chemistry A, 2015, 3, 12413-12426.	5.2	81
134	Singleâ€Walled Carbon Nanotube/Metalloporphyrin Composites for the Chemiresistive Detection of Amines and Meat Spoilage. Angewandte Chemie - International Edition, 2015, 54, 6554-6557.	7.2	159
136	Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube. Applied Surface Science, 2015, 340, 64-71.	3.1	25

#	ARTICLE	IF	CITATIONS
137	Single-Walled Carbon Nanotube–Metalloporphyrin Chemiresistive Gas Sensor Arrays for Volatile Organic Compounds. Chemistry of Materials, 2015, 27, 3560-3563.	3.2	130
138	A carbon nanotube/poly [Ni-(Protoporphyrin IX)] composite for amperometric detection of long chain aliphatic amines. Bioelectrochemistry, 2015, 104, 51-57.	2.4	6
139	Plant Oil-Based Nanocomposites., 2016,, 149-165.		0
140	Surface Modification Chemistries of Materials Used in Diagnostic Platforms with Biomolecules. Journal of Chemistry, 2016, 2016, 1-19.	0.9	51
141	Asphaltene Aggregation: Influence of Composition of Copolymers Based on Styrene-Stearyl Methacrylate and Styrene-Stearyl Cinnamate Containing Sulfate Groups. Energy & Dels, 2016, 30, 3941-3946.	2.5	18
142	Structural and photophysical studies of few layers of reduced graphene oxide functionalized with Sn(IV) tetrakis (4-pyridyl)porphyrin dichloride. Synthetic Metals, 2016, 221, 247-252.	2.1	8
143	Synthesis and characterization of multiwalled carbon nanotubes-protoporphyrin IX composites using acid functionalized or nitrogen doped carbon nanotubes. Diamond and Related Materials, 2016, 70, 65-75.	1.8	4
144	Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method. Polymer Bulletin, 2016, 73, 2121-2128.	1.7	17
145	Effective approaches for the preparation of organo-modified multi-walled carbon nanotubes and the corresponding MWCNT/polymer nanocomposites. Polymer Journal, 2016, 48, 351-358.	1.3	36
146	Copper supported on MWCNT-guanidine acetic acid@Fe ₃ O ₄ : synthesis, characterization and application as a novel multi-task nanocatalyst for preparation of triazoles and bis(indolyl)methanes in water. RSC Advances, 2016, 6, 18113-18125.	1.7	44
147	High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer, 2016, 84, 398-419.	1.8	191
148	Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Applied Catalysis B: Environmental, 2017, 200, 141-149.	10.8	198
149	Light Control of Charge Transfer and Excitonic Transitions in a Carbon Nanotube/Porphyrin Hybrid. Advanced Materials, 2017, 29, 1605745.	11.1	11
150	Graphene quantum dots supported by graphene oxide as a sensitive fluorescence nanosensor for cytochrome c detection and intracellular imaging. Journal of Materials Chemistry B, 2017, 5, 6300-6306.	2.9	20
151	Calixarene-functionalized single-walled carbon nanotubes for sensitive detection of volatile amines. Sensors and Actuators B: Chemical, 2018, 268, 115-122.	4.0	20
152	pH and concentration effect on the optical absorption properties of Sn(V) tetrakis (4-pirydyl) porphyrin functionalized graphene oxide Journal of Physics: Conference Series, 2018, 984, 012004.	0.3	3
153	Functionalized CNTs-Based Gas Sensors for BTX-Type Gases: How Functional Peripheral Groups Can Affect the Time Response through Surface Reactivity. Journal of Physical Chemistry C, 2018, 122, 21632-21643.	1.5	13
154	Core–shell porphyrin·multi-walled carbon nanotube hybrids linked by multiple hydrogen bonds: nanostructure and electronic communication. Journal of Materials Science, 2018, 53, 10835-10845.	1.7	4

#	ARTICLE	IF	Citations
155	Interfacial characteristics of carbon nanotube-polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2018, 114, 149-169.	3.8	142
156	Singleâ€walled Carbon Nanotubeâ€Calixarene Based Chemiresistor for Volatile Organic Compounds. Electroanalysis, 2018, 30, 2077-2084.	1.5	16
157	Ultrafast, asymmetric charge transfer and slow charge recombination in porphyrin/CNT composites demonstrated by time-domain atomistic simulation. Nanoscale, 2018, 10, 12683-12694.	2.8	25
158	Theoretical Approach for Nanocarbon-Based Energy Catalyst Design. Nanostructure Science and Technology, 2019, , 159-174.	0.1	0
159	A Candidate for Multitopic Probes for Ligand Discovery in Dynamic Combinatorial Chemistry. Molecules, 2019, 24, 2166.	1.7	5
160	Facile and cost-effective strategy for fabrication of polyamide 6 wrapped multi-walled carbon nanotube via anionic melt polymerization of Îμ-caprolactam. Chemical Engineering Journal, 2019, 373, 251-258.	6.6	21
161	Interactions Between Nanoparticles and Carbon Nanotubes: Directing the Self-Assembly of One-Dimensional Superstructures. , 2019, , 219-236.		0
162	Poly(1,4-phenylene vinylene) Derivatives with Ether Substituents to Improve Polymer Solubility for Use in Organic Light-Emitting Diode Devices. ACS Omega, 2019, 4, 22332-22344.	1.6	4
163	Templating Porphyrin Anisotropy via Magnetically Aligned Carbon Nanotubes. ChemPlusChem, 2019, 84, 1270-1278.	1.3	9
165	Enhanced electrical and electromagnetic interference shielding properties of uniformly dispersed carbon nanotubes filled composite films via solvent-free process using ring-opening polymerization of cyclic butylene terephthalate. Polymer, 2020, 186, 122030.	1.8	22
166	Fullerene nanostructures: how the oblong shape of C ₇₀ forms a cocrystal with an enormous asymmetric unit and related cocrystals. Nanoscale, 2020, 12, 20356-20363.	2.8	7
167	Aryl Radical Addition to Curvatures of Carbon Nanohorns for Single-Molecule-Level Molecular Imaging. Bulletin of the Chemical Society of Japan, 2020, 93, 1603-1608.	2.0	22
168	Carbon nanotube dielectrophoresis: Theory and applications. Electrophoresis, 2020, 41, 1893-1914.	1.3	16
170	Photoinduced electron transfer processes of single-wall carbon nanotube (SWCNT)–based hybrids. Nanophotonics, 2020, 9, 4689-4701.	2.9	10
171	Application of Carbon Nanotubes in Nanomedicine. Advances in Chemical and Materials Engineering Book Series, 2015, , 90-128.	0.2	2
172	Improving dispersion of multi-walled carbon nanotubes and graphene using a common non-covalent modifier. Carbon Letters, 2016, 20, 53-61.	3.3	8
174	Multiscale Manufacturing of Three-Dimensional Polymer-Based Nanocomposite Structures. , 0, , .		1
176	Application of Carbon Nanotubes in Nanomedicine. , 2017, , 2021-2062.		3

CITATION REPORT

#	Article	IF	CITATIONS
178	Graphene quantum dot-porphyrin/phthalocyanine multifunctional hybrid systems: from interfacial dialogue to application. Biomaterials Science, 2022, 10, 1647-1679.	2.6	10
179	Metal–Organic-Framework-Decorated Carbon Nanofibers with Enhanced Gas Sensitivity When Incorporated into an Organic Semiconductor-Based Gas Sensor. ACS Applied Materials & Discrete Semiconductor-Based Gas Sensor. ACS Applie	4.0	18
180	Synthesis and application of carbon-based nanocomposite. , 2023, , 169-203.		0
181	Electrochemical impedance spectroscopy analysis of plasma-treated, spray-coated single-walled carbon-nanotube film electrodes for chemical and electrochemical devices. Microchemical Journal, 2023, 188, 108446.	2.3	5