TGF-Î²1 induces human alveolar epithelial to mesenchy:

Respiratory Research 6, 56

DOI: 10.1186/1465-9921-6-56

Citation Report

#	Article	IF	CITATIONS
1	Interstitial lung diseases. , 0, , 366-408.		0
3	Idiopathic Pulmonary Fibrosis. Treatments in Respiratory Medicine, 2006, 5, 325-342.	1.4	45
4	Differential Protein Expression Profiling by iTRAQâ^'2DLCâ^'MS/MS of Lung Cancer Cells Undergoing Epithelial-Mesenchymal Transition Reveals a Migratory/Invasive Phenotype. Journal of Proteome Research, 2006, 5, 1143-1154.	3.7	258
5	Alveolar epithelial cell mesenchymal transition develops <i>in vivo</i> during pulmonary fibrosis and is regulated by the extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13180-13185.	7.1	1,118
6	Insulin-Like Growth Factor-Binding Protein-5 Induces Pulmonary Fibrosis and Triggers Mononuclear Cellular Infiltration. American Journal of Pathology, 2006, 169, 1633-1642.	3.8	92
7	Epithelial–mesenchymal transition occurs after epidermal development in mouse skin. Experimental Cell Research, 2006, 312, 3959-3968.	2.6	16
8	Epithelial Origin of Myofibroblasts during Fibrosis in the Lung. Proceedings of the American Thoracic Society, 2006, 3, 377-382.	3.5	414
9	Functional and phenotypical comparison of myofibroblasts derived from biopsies and bronchoalveolar lavage in mild asthma and scleroderma. Respiratory Research, 2006, 7, 11.	3.6	44
10	Wnt signalling in lung development and diseases. Respiratory Research, 2006, 7, 15.	3.6	191
11	Models of pulmonary fibrosis. Drug Discovery Today: Disease Models, 2006, 3, 243-249.	1.2	24
12	Respiratory Stem Cells and Progenitors: Overview, Derivation, Differentiation, Carcinogenesis, Regeneration and Therapeutic Application. Current Stem Cell Research and Therapy, 2006, 1, 37-46.	1.3	22
13	Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. Journal of Pathology, 2006, 210, 59-66.	4.5	79
14	Lack of evidence for caveolin-1 and CD147 interaction before and after bleomycin-induced lung injury. Histochemistry and Cell Biology, 2006, 126, 563-573.	1.7	17
15	Implication of EMT induced by TGF- \hat{l}^21 in pancreatic cancer. Journal of Huazhong University of Science and Technology [Medical Sciences], 2006, 26, 700-702.	1.0	12
16	Targeting Genes for Treatment in Idiopathic Pulmonary Fibrosis: Challenges and Opportunities, Promises and Pitfalls. Proceedings of the American Thoracic Society, 2006, 3, 389-393.	3.5	76
17	Update in Diffuse Parenchymal Lung Diseases 2005. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1066-1071.	5.6	15
18	Smad3 Signaling Involved in Pulmonary Fibrosis and Emphysema. Proceedings of the American Thoracic Society, 2006, 3, 696-702.	3.5	111
19	Epithelial-Mesenchymal Interactions in Pulmonary Fibrosis. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 600-612.	2.1	109

#	Article	IF	Citations
20	Constitutive activation of prosurvival signaling in alveolar mesenchymal cells isolated from patients with nonresolving acute respiratory distress syndrome. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L415-L425.	2.9	50
21	Opposing roles of leukotrienes and prostaglandins in fibrotic lung disease. Expert Review of Clinical Immunology, 2006, 2, 87-100.	3.0	2
22	TGF- \hat{l}^2 -induced EMT: mechanisms and implications for fibrotic lung disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L525-L534.	2.9	895
23	Transforming Growth Factor-β1 Induces an Epithelial-to-Mesenchymal Transition State in Mouse Hepatocytes in Vitro. Journal of Biological Chemistry, 2007, 282, 22089-22101.	3.4	318
24	Interleukin-31 and Oncostatin-M Mediate Distinct Signaling Reactions and Response Patterns in Lung Epithelial Cells. Journal of Biological Chemistry, 2007, 282, 3014-3026.	3.4	90
25	Hepatocyte growth factor and other fibroblast secretions modulate the phenotype of human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1352-L1360.	2.9	50
26	The role of the receptor for advanced glycation end-products in lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1427-L1436.	2.9	140
27	TGF- \hat{l}^21 Induces Progressive Pleural Scarring and Subpleural Fibrosis. Journal of Immunology, 2007, 179, 6043-6051.	0.8	114
28	Matrix Metalloproteinases in Lung: Multiple, Multifarious, and Multifaceted. Physiological Reviews, 2007, 87, 69-98.	28.8	417
29	lonising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. European Journal of Cancer, 2007, 43, 1214-1224.	2.8	131
30	The plant pathogenesis related protein GLIPR-2 is highly expressed in fibrotic kidney and promotes epithelial to mesenchymal transition in vitro. Matrix Biology, 2007, 26, 20-29.	3.6	29
31	Fibroblast Differentiation in Wound Healing and Fibrosis. International Review of Cytology, 2007, 257, 143-179.	6.2	449
32	Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells. Respiratory Research, 2007, 8, 31.	3.6	37
33	Detection of epithelial to mesenchymal transition in airways of a bleomycin induced pulmonary fibrosis model derived from an \hat{l}_{\pm} -smooth muscle actin-Cre transgenic mouse. Respiratory Research, 2007, 8, 1.	3.6	154
35	Liver fibrosis: cellular mechanisms of progression and resolution. Clinical Science, 2007, 112, 265-280.	4.3	237
36	Transtorming Growth Factor \hat{I}^21 Induces Epithelial-to-Mesenchymal Transition of A549 Cells. Journal of Korean Medical Science, 2007, 22, 898.	2.5	88
37	Host predisposition by endogenous Transforming Growth Factor- \hat{l}^21 overexpression promotes pulmonary fibrosis following bleomycin injury. Journal of Inflammation, 2007, 4, 18.	3.4	6
39	Depsipeptide a histone deacetlyase inhibitor down regulates levels of matrix metalloproteinases 2 and 9 mRNA and protein expressions in lung cancer cells (A549). Chemico-Biological Interactions, 2007, 165, 220-229.	4.0	38

#	ARTICLE	IF	CITATIONS
40	SMAD3 expression is regulated by mitogen-activated protein kinase kinase-1 in epithelial and smooth muscle cells. Cellular Signalling, 2007, 19, 923-931.	3.6	40
41	Injured microenvironment directly guides the differentiation of engrafted Flk-1+ mesenchymal stem cell in lung. Experimental Hematology, 2007, 35, 1466-1475.	0.4	112
42	New Insights into the Pathogenesis and Treatment of Idiopathic Pulmonary Fibrosis: A Potential Role for Stem Cells in the Lung Parenchyma and Implications for Therapy. Pharmaceutical Research, 2007, 24, 819-841.	3.5	93
43	Inflammatory cytokines augments TGFâ€Î²1â€induced epithelialâ€mesenchymal transition in A549 cells by upâ€regulating TβRâ€I. Cytoskeleton, 2008, 65, 935-944.	4.4	68
44	Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn $\hat{E}\frac{1}{4}$ s disease. Inflammatory Bowel Diseases, 2008, 14, 1514-1527.	1.9	117
45	Hepatic fibrogenesis: From within and outwith. Toxicology, 2008, 254, 130-135.	4.2	53
46	Bile acids induce CCN2 production through p38 MAP kinase activation in human bronchial epithelial cells: A factor contributing to airway fibrosis. Respirology, 2008, 13, 983-989.	2.3	14
47	$TGF\hat{I}^2$ stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling. Experimental Cell Research, 2008, 314, 131-142.	2.6	78
48	cAMP-induced Epac-Rap activation inhibits epithelial cell migration by modulating focal adhesion and leading edge dynamics. Cellular Signalling, 2008, 20, 1104-1116.	3.6	48
49	Epigenetic mechanisms silence a disintegrin and metalloprotease 33 expression in bronchial epithelial cells. Journal of Allergy and Clinical Immunology, 2008, 121, 1393-1399.e14.	2.9	65
50	Requirement of HDAC6 for Transforming Growth Factor- \hat{l}^21 -induced Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 2008, 283, 21065-21073.	3.4	143
51	Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-Â in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis, 2008, 29, 2243-2251.	2.8	132
52	Interstitial lung diseases in infants and children. European Respiratory Journal, 2008, 31, 658-666.	6.7	69
53	Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF- \hat{l}^21 . Journal of Cell Science, 2008, 121, 1036-1045.	2.0	113
54	Collagen I Promotes Epithelial-to-Mesenchymal Transition in Lung Cancer Cells via Transforming Growth Factor–β Signaling. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 95-104.	2.9	236
55	TGF- \hat{l}^2 signaling promotes survival and repair in rat alveolar epithelial type 2 cells during recovery after hyperoxic injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L739-L748.	2.9	34
56	Antioxidants as Potential Therapeutics for Lung Fibrosis. Antioxidants and Redox Signaling, 2008, 10, 355-370.	5.4	119
57	The Role of Inflammation in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Antioxidants and Redox Signaling, 2008, 10, 287-302.	5.4	250

#	ARTICLE	IF	CITATIONS
58	Early and Late Changes of MMP-2 and MMP-9 in Bleomycin-Induced Pulmonary Fibrosis. Yonsei Medical Journal, 2009, 50, 68.	2.2	69
59	Cross-Talk Between Pulmonary Injury, Oxidant Stress, and Gap Junctional Communication. Antioxidants and Redox Signaling, 2009, 11, 355-367.	5.4	73
60	Epithelial-mesenchymal transition: potential role in obliterative bronchiolitis?. Thorax, 2009, 64, 742-743.	5.6	16
61	Expression and Activity of Phosphodiesterase Isoforms during Epithelial Mesenchymal Transition: The Role of Phosphodiesterase 4. Molecular Biology of the Cell, 2009, 20, 4751-4765.	2.1	84
62	Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax, 2009, 64, 770-777.	5.6	117
63	New Mechanisms of Pulmonary Fibrosis. Chest, 2009, 136, 1364-1370.	0.8	247
64	Contribution of Epithelial-derived Fibroblasts to Bleomycin-induced Lung Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 657-665.	5.6	361
65	Hepatocyte Growth Factor Inhibits Epithelial to Myofibroblast Transition in Lung Cells via Smad7. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 643-653.	2.9	120
66	c-Jun N-Terminal Kinase 1 Is Required for the Development of Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 422-432.	2.9	85
67	Transcriptional Coactivator with PDZ-binding Motif Is Essential for Normal Alveolarization in Mice. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 326-338.	5.6	87
68	Feasibility and Short-Term Effects of Biphasic Positive Airway Pressure Versus Assist-Control Ventilation in Preterm Lambs. Pediatric Research, 2009, 66, 665-670.	2.3	0
69	Pleural mesothelial cell transformation into myofibroblasts and haptotactic migration in response to $TGF-\hat{l}^21$ in vitro. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L115-L124.	2.9	98
70	Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1120-L1130.	2.9	189
71	Could <i>N</i> -acetylcysteine slow progression of idiopathic pulmonary fibrosis by inhibiting EMT?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L803-L804.	2.9	2
72	JunB mediates enhancer/promoter activity of COL1A2 following TGF- \hat{l}^2 induction. Nucleic Acids Research, 2009, 37, 5378-5389.	14 . 5	27
73	SNAI transcription factors mediate epithelial-mesenchymal transition in lung fibrosis. Thorax, 2009, 64, 1053-1061.	5.6	80
74	Induction of Epithelial–Mesenchymal Transition in Primary Airway Epithelial Cells from Patients with Asthma by Transforming Growth Factor-β1. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 122-133.	5.6	336
7 5	Thyroid Transcription Factor-1 Inhibits Transforming Growth Factor-β–Mediated Epithelial-to-Mesenchymal Transition in Lung Adenocarcinoma Cells. Cancer Research, 2009, 69, 2783-2791.	0.9	123

#	ARTICLE	IF	CITATIONS
76	CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells. Experimental Cell Research, 2009, 315, 1819-1831.	2.6	31
77	Protein expression profiling of primary mammary epithelial cells derived from MMTVâ€∢i>neu∢/i> mice revealed that HER2/NEUâ€driven changes in protein expression are functionally clustered. IUBMB Life, 2010, 62, 41-50.	3.4	4
78	TGF- \hat{l}^21 Induces Human Bronchial Epithelial Cell-to-Mesenchymal Transition in Vitro. Lung, 2009, 187, 187-194.	3. 3	55
79	Roles of Neutrophil Gelatinase-Associated Lipocalin in Continuous Ambulatory Peritoneal Dialysis-Related Peritonitis. Journal of Clinical Immunology, 2009, 29, 365-378.	3.8	24
80	S100A4 mediates endometrial cancer invasion and is a target of TGF- \hat{l}^21 signaling. Laboratory Investigation, 2009, 89, 937-947.	3.7	45
81	Epithelialâ \in mesenchymal transition induced by transforming growth factorâ \in \hat{i}^21 in mouse tracheal epithelial cells. Respirology, 2009, 14, 828-837.	2.3	19
82	Determinants of initiation and progression of idiopathic pulmonary fibrosis. Respirology, 2009, 14, 917-933.	2.3	66
83	Epithelial–Mesenchymal Transition as a Mechanism of Metastasis. , 2009, , 65-92.		0
84	Connective tissue growth factor: Contextâ€dependent functions and mechanisms of regulation. BioFactors, 2009, 35, 200-208.	5.4	125
85	Lung alveolar epithelium and interstitial lung disease. International Journal of Biochemistry and Cell Biology, 2009, 41, 1643-1651.	2.8	50
86	Targeting the airway smooth muscle for asthma treatment. Translational Research, 2009, 154, 165-174.	5.0	41
87	TGF- \hat{l}^21 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL- $\hat{1}^2$ but not abrogated by corticosteroids. Respiratory Research, 2009, 10, 100.	3 . 6	187
88	Down-regulation of the inhibitor of growth family member 4 (ING4) in different forms of pulmonary fibrosis. Respiratory Research, 2009, 10, 14.	3.6	15
89	Emerging Concepts in the Pathogenesis of Lung Fibrosis. American Journal of Pathology, 2009, 175, 3-16.	3.8	204
90	Evaluation of molecular markers of mesenchymal phenotype in melanoma. Melanoma Research, 2010, 20, 485-495.	1.2	34
91	Transforming Growth Factor \hat{l}^21 Alters Calcium Mobilizing Properties and Endogenous ATP Release in A549 Cells: Possible Implications for Cell Migration. Journal of Pharmacological Sciences, 2010, 113, 387-394.	2.5	11
92	Differential susceptibility to epithelial-mesenchymal transition (EMT) of alveolar, bronchial and intestinal epithelial cells in vitro and the effect of angiotensin II receptor inhibition. Cell and Tissue Research, 2010, 342, 39-51.	2.9	38
93	Effects of cigarette smoke extract on A549 cells and human lung fibroblasts treated with transforming growth factor $\hat{l}^2 1$ in a coculture system. Clinical and Experimental Medicine, 2010, 10, 159-167.	3.6	47

#	ARTICLE	IF	CITATIONS
94	Effects of PPAR $\hat{1}^3$ ligands on TGF- $\hat{1}^2$ 1-induced epithelial-mesenchymal transition in alveolar epithelial cells. Respiratory Research, 2010, 11, 21.	3.6	63
95	Epithelial–mesenchymal transition in human lungs with usual interstitial pneumonia: Quantitative immunohistochemistry. Pathology International, 2010, 60, 14-21.	1.3	38
96	Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice. Biochemical Pharmacology, 2010, 80, 920-931.	4.4	72
97	Nickel induces intracellular calcium mobilization and pathophysiological responses in human cultured airway epithelial cells. Chemico-Biological Interactions, 2010, 183, 25-33.	4.0	34
98	Oxidative stress and glutathione in TGF- \hat{l}^2 -mediated fibrogenesis. Free Radical Biology and Medicine, 2010, 48, 1-15.	2.9	384
99	Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radical Biology and Medicine, 2010, 49, 707-717.	2.9	195
100	Inflammation and Epithelial to Mesenchymal Transition in Lung Transplant Recipients: Role in Dysregulated Epithelial Wound Repair. American Journal of Transplantation, 2010, 10, 498-509.	4.7	63
101	Activation of Rac1 promotes hedgehog-mediated acquisition of the myofibroblastic phenotype in rat and human hepatic stellate cells. Hepatology, 2010, 52, 278-290.	7.3	47
102	Histone deacetylase inhibition suppresses the transforming growth factor \hat{l}^21 -induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology, 2010, 52, 1033-1045.	7.3	85
103	Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-α. Fibrogenesis and Tissue Repair, 2010, 3, 2.	3.4	166
104	Induction of EMT-like phenotypes by an active metabolite of leflunomide and its contribution to pulmonary fibrosis. Cell Death and Differentiation, 2010, 17, 1882-1895.	11.2	37
105	Pathological airway remodelling in inflammation. Clinical Respiratory Journal, 2010, 4, 1-8.	1.6	64
106	IPF: new insight on pathogenesis and treatment. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 537-553.	5.7	93
107	Cancer Malignancy Is Enhanced by Glyceraldehyde-Derived Advanced Glycation End-Products. Journal of Oncology, 2010, 2010, 1-8.	1.3	51
108	Tumor necrosis factor- \hat{l} ± enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor- \hat{l}^2 1. Experimental Lung Research, 2010, 36, 12-24.	1.2	67
109	TLR9 Differentiates Rapidly from Slowly Progressing Forms of Idiopathic Pulmonary Fibrosis. Science Translational Medicine, 2010, 2, 57ra82.	12.4	132
110	Signaling pathways in the epithelial origins of pulmonary fibrosis. Cell Cycle, 2010, 9, 2841-2848.	2.6	63
111	Links between Innate Immunity and Normal Tissue Radiobiology. Radiation Research, 2010, 173, 406-417.	1.5	104

#	ARTICLE	IF	CITATIONS
112	Smad3 Regulates Rho Signaling via NET1 in the Transforming Growth Factor- \hat{I}^2 -induced Epithelial-Mesenchymal Transition of Human Retinal Pigment Epithelial Cells. Journal of Biological Chemistry, 2010, 285, 26618-26627.	3.4	49
113	WNT Signaling in Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 21-31.	2.9	243
114	Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFβRI. Cardiovascular Research, 2010, 88, 502-511.	3.8	83
115	FGF-1 reverts epithelial-mesenchymal transition induced by TGF-β1 through MAPK/ERK kinase pathway. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L222-L231.	2.9	116
116	⁶⁸ Ga-DOTANOC PET/CT Allows Somatostatin Receptor Imaging in Idiopathic Pulmonary Fibrosis: Preliminary Results. Journal of Nuclear Medicine, 2010, 51, 1950-1955.	5.0	60
117	House Dust Mite–Promoted Epithelial-to-Mesenchymal Transition in Human Bronchial Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 69-79.	2.9	134
118	Transcription Factor GATA-6 Is Expressed in Quiescent Myofibroblasts in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 626-632.	2.9	44
119	Hydrogen sulfide attenuates epithelial–mesenchymal transition of human alveolar epithelial cells. Pharmacological Research, 2010, 61, 298-305.	7.1	38
120	Interstitial lung diseases in children. Orphanet Journal of Rare Diseases, 2010, 5, 22.	2.7	112
121	Luteolin Ameliorates Experimental Lung Fibrosis Both <i>in Vivo</i> and <i>in Vitro</i> : Implications for Therapy of Lung Fibrosis. Journal of Agricultural and Food Chemistry, 2010, 58, 11653-11661.	5.2	83
122	Epithelial–mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. Journal of Molecular and Cellular Cardiology, 2010, 49, 719-727.	1.9	69
123	Epithelial to Mesenchymal Transition in Gingival Overgrowth. American Journal of Pathology, 2010, 177, 208-218.	3.8	77
124	Effects of Doxycycline on Production of Growth Factors and Matrix Metalloproteinases in Pulmonary Fibrosis. Respiration, 2011, 81, 420-430.	2.6	18
125	Simultaneous Stimulation with TGF- \hat{l}^21 and TNF- \hat{l}^2 Induces Epithelial Mesenchymal Transition in Bronchial Epithelial Cells. International Archives of Allergy and Immunology, 2011, 155, 119-128.	2.1	64
126	Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF- \hat{i}^2 -induced alveolar epithelial to mesenchymal transition. Experimental and Molecular Medicine, 2011, 43, 517.	7.7	33
127	Discoidin domain receptor 2 is a critical regulator of epithelial–mesenchymal transition. Matrix Biology, 2011, 30, 243-247.	3.6	72
128	Incomplete expression of epithelial–mesenchymal transition markers in idiopathic pulmonary fibrosis. Pathology Research and Practice, 2011, 207, 559-567.	2.3	37
129	Inflammatory cytokines regulate endothelial cell survival and tissue repair functions via NF-κB signaling. Journal of Inflammation Research, 2011, 4, 127.	3.5	17

#	Article	IF	CITATIONS
130	Relative Roles of TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle$ and IGFBP-5 in Idiopathic Pulmonary Fibrosis. Pulmonary Medicine, 2011, 2011, 1-6.	1.9	27
131	Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells. Research and Reports in Biology, 2011, 2011, 1.	0.2	38
132	A Novel Network Profiling Analysis Reveals System Changes in Epithelial-Mesenchymal Transition. PLoS ONE, 2011, 6, e20804.	2.5	38
133	Epithelial to Mesenchymal Transition by TGFÎ ² -1 Induction Increases Stemness Characteristics in Primary Non Small Cell Lung Cancer Cell Line. PLoS ONE, 2011, 6, e21548.	2.5	153
134	Inhibition of TGF-Î ² Signaling and Decreased Apoptosis in IUGR-Associated Lung Disease in Rats. PLoS ONE, 2011, 6, e26371.	2.5	36
135	Identifying Inhibitors of Epithelial-Mesenchymal Transition by Connectivity Map–Based Systems Approach. Journal of Thoracic Oncology, 2011, 6, 1784-1792.	1.1	55
136	A novel singleâ€chainâ€Fv antibody against connective tissue growth factor attenuates bleomycinâ€induced pulmonary fibrosis in mice. Respirology, 2011, 16, 500-507.	2.3	42
137	ADAM17 (TACE) regulates TGFÎ ² signaling through the cleavage of vasorin. Oncogene, 2011, 30, 1912-1922.	5.9	75
138	Hepatocyte growth factor in lung repair and pulmonary fibrosis. Acta Pharmacologica Sinica, 2011, 32, 12-20.	6.1	75
139	Cooperative Signaling between Oncostatin M, Hepatocyte Growth Factor and Transforming Growth Factor- \hat{l}^2 Enhances Epithelial to Mesenchymal Transition in Lung and Pancreatic Tumor Models. Cells Tissues Organs, 2011, 193, 114-132.	2.3	28
140	Transforming growth factor- \hat{l}^21 promotes lung adenocarcinoma invasion and metastasis by epithelial-to-mesenchymal transition. Molecular and Cellular Biochemistry, 2011, 355, 309-314.	3.1	74
141	Fibrotic Response of Tissue Remodeling in COPD. Lung, 2011, 189, 101-109.	3.3	58
142	Soluble TNF-α Receptor I Encoded on Plasmid Vector and Its Application in Experimental Gene Therapy of Radiation-Induced Lung Fibrosis. Archivum Immunologiae Et Therapiae Experimentalis, 2011, 59, 315-326.	2.3	17
143	Role of Smad2/3 and p38 MAP kinase in TGFâ€Î²1â€induced epithelial–mesenchymal transition of pulmonary epithelial cells. Journal of Cellular Physiology, 2011, 226, 1248-1254.	4.1	116
144	Scanning electron microscopy with an ionic liquid reveals the loss of mitotic protrusions of cells during the epithelial–mesenchymal transition. Microscopy Research and Technique, 2011, 74, 1024-1031.	2,2	38
145	Potential role for SNAIL family transcription factors in the etiology of Crohn $\hat{E}^{1}/4$ s disease-associated fistulae. Inflammatory Bowel Diseases, 2011, 17, 1907-1916.	1.9	51
146	Organ-derived coatings on electrospun nanofibers as ex vivo microenvironments. Biomaterials, 2011, 32, 538-546.	11.4	22
147	Molecular Imaging of TGF \hat{I}^2 -Induced Smad2/3 Phosphorylation Reveals a Role for Receptor Tyrosine Kinases in Modulating TGF \hat{I}^2 Signaling. Clinical Cancer Research, 2011, 17, 7424-7439.	7.0	40

#	ARTICLE	IF	CITATIONS
148	The Epstein-Barr Virus Latent Membrane Protein 1 and Transforming Growth Factor‑β1 Synergistically Induce Epithelial–Mesenchymal Transition in Lung Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 852-862.	2.9	56
149	Endothelin in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 1-10.	2.9	62
150	Alveolar Epithelial Cells Undergo Epithelial-to-Mesenchymal Transition in Response to Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2011, 286, 30972-30980.	3.4	191
151	Dynamic actin remodeling during epithelial–mesenchymal transition depends on increased moesin expression. Molecular Biology of the Cell, 2011, 22, 4750-4764.	2.1	197
152	Mechanical Stretch Induces Epithelial-Mesenchymal Transition in Alveolar Epithelia via Hyaluronan Activation of Innate Immunity. Journal of Biological Chemistry, 2011, 286, 17435-17444.	3.4	123
153	Pseudomonas aeruginosa accentuates epithelial-to-mesenchymal transition in the airway. European Respiratory Journal, 2011, 37, 1237-1247.	6.7	43
154	Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity. Respiration, 2011, 81, 353-358.	2.6	46
155	FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers. Cell Research, 2011, 21, 316-326.	12.0	127
156	Claudins: Control of Barrier Function and Regulation in Response to Oxidant Stress. Antioxidants and Redox Signaling, 2011, 15, 1179-1193.	5.4	83
157	Interplay between RAGE, CD44, and focal adhesion molecules in epithelial-mesenchymal transition of alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L548-L559.	2.9	49
158	TRIP-1 regulates TGF- \hat{l}^21 -induced epithelial-mesenchymal transition of human lung epithelial cell line A549. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L799-L807.	2.9	20
159	Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L71-L78.	2.9	135
160	Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L193-L205.	2.9	113
161	Induction of epithelial-mesenchymal transition by flagellin in cultured lung epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L1057-L1069.	2.9	20
162	Respiratory syncytial virus potentiates ABCA3 mutation-induced loss of lung epithelial cell differentiation. Human Molecular Genetics, 2012, 21, 2793-2806.	2.9	36
163	Epithelial-mesenchymal transition contributes to SWCNT-induced pulmonary fibrosis. Nanotoxicology, 2012, 6, 600-610.	3.0	41
165	Interactions Between Î ² -Catenin and Transforming Growth Factor-Î ² Signaling Pathways Mediate Epithelial-Mesenchymal Transition and Are Dependent on the Transcriptional Co-activator cAMP-response Element-binding Protein (CREB)-binding Protein (CBP). Journal of Biological Chemistry, 2012, 287, 7026-7038.	3.4	223
166	A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. European Respiratory Journal, 2012, 40, 1475-1482.	6.7	110

#	ARTICLE	IF	CITATIONS
167	An Assessment of Epithelial and Mesenchymal Phenotypes in Experimental and Clinical Pulmonary Fibrosis. ISRN Pulmonology, 2012, 2012, 1-11.	0.3	0
168	Smoking and Idiopathic Pulmonary Fibrosis. Pulmonary Medicine, 2012, 2012, 1-13.	1.9	67
169	Emerging evidence of epithelialâ€ŧoâ€mesenchymal transition in lung carcinogenesis. Respirology, 2012, 17, 1048-1059.	2.3	83
170	miRâ€134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in nonâ€small cell lung cancer cells. FEBS Letters, 2012, 586, 3761-3765.	2.8	129
171	Prognostic significance of transforming growth factor beta (TGF- \hat{l}^2) signaling axis molecules and E-cadherin in colorectal cancer. Tumor Biology, 2012, 33, 1005-1014.	1.8	31
172	Organ fibrosis inhibited by blocking transforming growth factor- \hat{l}^2 signaling via peroxisome proliferator-activated receptor \hat{l}^3 agonists. Hepatobiliary and Pancreatic Diseases International, 2012, 11, 467-478.	1.3	53
173	Mechanical Aspects of Lung Fibrosis. Proceedings of the American Thoracic Society, 2012, 9, 137-147.	3.5	169
174	Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Research, 2012, 22, 1163-1172.	5.5	165
175	TGF-Î ² -induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. Journal of Biochemistry, 2012, 151, 205-216.	1.7	117
176	Automated velocity mapping of migrating cell populations (AVeMap). Nature Methods, 2012, 9, 1081-1083.	19.0	57
177	Chronic inflammation and lung fibrosis: pleotropic syndromes but limited distinct phenotypes. Mucosal Immunology, 2012, 5, 480-484.	6.0	30
178	Commonalities between the pro-fibrotic mechanisms in COPD and IPF. Pulmonary Pharmacology and Therapeutics, 2012, 25, 276-280.	2.6	14
179	Transforming growth factorâ€Î² impairs glucocorticoid activity in the A549 lung adenocarcinoma cell line. British Journal of Pharmacology, 2012, 166, 2036-2048.	5.4	38
180	Participation of miR-200 in Pulmonary Fibrosis. American Journal of Pathology, 2012, 180, 484-493.	3.8	232
181	The Critical Role of TAK1 in Accentuated Epithelial to Mesenchymal Transition in Obliterative Bronchiolitis after Lung Transplantation. American Journal of Pathology, 2012, 180, 2293-2308.	3.8	26
182	Cavitatory lung disease in thoracic transplant recipients receiving sirolimus. Journal of Heart and Lung Transplantation, 2012, 31, 548-551.	0.6	10
183	Notch signaling mediates TGF-β1-induced epithelial–mesenchymal transition through the induction of Snai1. International Journal of Biochemistry and Cell Biology, 2012, 44, 776-789.	2.8	75
184	EGCG Inhibits Transforming Growth Factor- \hat{l}^2 -Mediated Epithelial-to-Mesenchymal Transition via the Inhibition of Smad2 and Erk1/2 Signaling Pathways in Nonsmall Cell Lung Cancer Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 9863-9873.	5.2	62

#	Article	IF	CITATIONS
185	Interleukin-1 beta and transforming growth factor-beta 3 cooperate to activate matrix metalloproteinase expression and invasiveness in A549 lung adenocarcinoma cells. Cancer Letters, 2012, 325, 220-226.	7.2	30
186	Regulation of Transforming Growth Factor-β1–driven Lung Fibrosis by Galectin-3. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 537-546.	5.6	425
187	Heat stress induces epithelial plasticity and cell migration independent of heat shock factor 1. Cell Stress and Chaperones, 2012, 17, 765-778.	2.9	21
188	Pirfenidone inhibits TGF- \hat{l}^21 -induced over-expression of collagen type I and heat shock protein 47 in A549 cells. BMC Pulmonary Medicine, 2012, 12, 24.	2.0	115
189	Regional Differences in Susceptibiity of Bronchial Epithelium to Mesenchymal Transition and Inhibition by the Macrolide Antibiotic Azithromycin. PLoS ONE, 2012, 7, e52309.	2.5	19
190	Epithelial-Mesenchymal Transition Stimulates Human Cancer Cells to Extend Microtubule-based Invasive Protrusions and Suppresses Cell Growth in Collagen Gel. PLoS ONE, 2012, 7, e53209.	2.5	60
191	Podocalyxin in the Diagnosis and Treatment of Cancer. , 2012, , .		2
192	Directing epithelial to mesenchymal transition through engineered microenvironments displaying orthogonal adhesive and mechanical cues. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2119-2127.	4.0	58
193	Asbestos exposure induces alveolar epithelial cell plasticity through MAPK/Erk signaling. Journal of Cellular Biochemistry, 2012, 113, 2234-2247.	2.6	23
194	Transforming Growth Factor-β1 (TGF-β1) Driven Epithelial to Mesenchymal Transition (EMT) is Accentuated by Tumour Necrosis Factor α (TNFα) via Crosstalk Between the SMAD and NF-κB Pathways. Cancer Microenvironment, 2012, 5, 45-57.	3.1	55
195	$ERK/GSK3\hat{l}^2/S$ nail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radical Biology and Medicine, 2012, 52, 983-992.	2.9	111
196	Free radical generation induces epithelial-to-mesenchymal transition in lung epithelium via a TGF-Î ² 1-dependent mechanism. Free Radical Biology and Medicine, 2012, 52, 1024-1032.	2.9	102
197	Cigarette smoke extract stimulates epithelial–mesenchymal transition through Src activation. Free Radical Biology and Medicine, 2012, 52, 1437-1442.	2.9	61
198	Alteration of tight junctions in pulmonary microvascular endothelial cells in bleomycin-treated rats. Experimental and Toxicologic Pathology, 2012, 64, 81-91.	2.1	16
199	Roles for claudins in alveolar epithelial barrier function. Annals of the New York Academy of Sciences, 2012, 1257, 167-174.	3.8	50
200	Cytoskeletal re-arrangement in TGF- \hat{l}^21 -induced alveolar epithelial-mesenchymal transition studied by atomic force microscopy and high-content analysis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 355-364.	3.3	35
201	Transforming growth factor- \hat{l}^21 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways. Molecular Biology Reports, 2012, 39, 3549-3556.	2.3	118
202	Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression. Biochemical and Biophysical Research Communications, 2013, 437, 550-556.	2.1	53

#	Article	IF	CITATIONS
203	Intermediate filaments of the lung. Histochemistry and Cell Biology, 2013, 140, 65-69.	1.7	20
204	FOXM1 (Forkhead box M1) in Tumorigenesis. Advances in Cancer Research, 2013, 119, 191-419.	5.0	146
205	Down-regulation of eIF5A-2 prevents epithelial-mesenchymal transition in non-small-cell lung cancer cells. Journal of Zhejiang University: Science B, 2013, 14, 460-467.	2.8	13
206	Epithelialâ€mesenchymal transition leads to crizotinib resistance in H2228 lung cancer cells with EML4â€ALK translocation. Molecular Oncology, 2013, 7, 1093-1102.	4.6	101
207	Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. EMBO Journal, 2013, 32, 231-244.	7.8	155
208	Luteolin attenuates TGF-β1-induced epithelial–mesenchymal transition of lung cancer cells by interfering in the PI3K/Akt–NF-κB–Snail pathway. Life Sciences, 2013, 93, 924-933.	4.3	92
209	Breast cancer stem cells and epithelial mesenchymal plasticity $\hat{a} \in$ Implications for chemoresistance. Cancer Letters, 2013, 341, 56-62.	7.2	108
210	Selective Cox-2 inhibitor celecoxib induces epithelial-mesenchymal transition in human lung cancer cells via activating MEK-ERK signaling. Carcinogenesis, 2013, 34, 638-646.	2.8	70
211	Astaxanthin ameliorates lung fibrosis in vivo and in vitro by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells. Food and Chemical Toxicology, 2013, 56, 450-458.	3.6	38
212	TGF-Î ² regulation of gene expression at early and late stages of HPV16-mediated transformation of human keratinocytes. Virology, 2013, 447, 63-73.	2.4	21
213	Epigenetic coordination of signaling pathways during the epithelial-mesenchymal transition. Epigenetics and Chromatin, 2013, 6, 28.	3.9	42
214	Oxidative stress and pulmonary fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1028-1040.	3.8	367
215	Screening therapeutic EMT blocking agents in a three-dimensional microenvironment. Integrative Biology (United Kingdom), 2013, 5, 381-389.	1.3	150
216	Propolis inhibits TGF-β1-induced epithelial–mesenchymal transition in human alveolar epithelial cells via PPARγ activation. International Immunopharmacology, 2013, 15, 565-574.	3.8	40
217	nm23-H1 is a negative regulator of TGF-β1-dependent induction of epithelial–mesenchymal transition. Experimental Cell Research, 2013, 319, 740-749.	2.6	28
218	Epithelialâ€toâ€mesenchymal transition of human lung alveolar epithelial cells in a microfluidic gradient device. Electrophoresis, 2013, 34, 441-447.	2.4	10
219	Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosisâ€associated epithelialâ€toâ€mesenchymal transitions. Journal of Pathology, 2013, 229, 25-35.	4.5	125
220	ERK5 Inhibition Ameliorates Pulmonary Fibrosis via Regulating Smad3 Acetylation. American Journal of Pathology, 2013, 183, 1758-1768.	3.8	35

#	Article	IF	CITATIONS
221	Activated Alveolar Epithelial Cells Initiate Fibrosis through Secretion of Mesenchymal Proteins. American Journal of Pathology, 2013, 183, 1559-1570.	3.8	75
222	Roles of p38 MAPK and JNK in TGF- \hat{l}^21 -induced Human Alveolar Epithelial to Mesenchymal Transition. Archives of Medical Research, 2013, 44, 93-98.	3.3	63
223	Cytokine mediated tissue fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1049-1060.	3.8	292
224	Hepatocyte growth factor is an attractive target for the treatment of pulmonary fibrosis . Expert Opinion on Investigational Drugs, 2013, 22, 499-515.	4.1	48
225	Morphophenotype of floating colonies derived from a single cancer cell has a critical impact on tumorâ€forming activity. Pathology International, 2013, 63, 29-36.	1.3	3
226	Neonatal Hyperoxia Increases Sensitivity of Adult Mice to Bleomycin-Induced Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 258-266.	2.9	22
227	Antifibrotic Effects of Focal Adhesion Kinase Inhibitor in Bleomycin-Induced Pulmonary Fibrosis in Mice. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 536-543.	2.9	48
228	Claudin Heterogeneity and Control of Lung Tight Junctions. Annual Review of Physiology, 2013, 75, 551-567.	13.1	116
229	KDM5B histone demethylase controls epithelial-mesenchymal transition of cancer cells by regulating the expression of the microRNA-200 family. Cell Cycle, 2013, 12, 2100-2112.	2.6	63
230	Knockdown of N-Acetylglucosaminyl Transferase V Ameliorates Hepatotoxin-Induced Liver Fibrosis in Mice. Toxicological Sciences, 2013, 135, 144-155.	3.1	14
231	Nicotine-induced epithelial-mesenchymal transition via Wnt/ \hat{l}^2 -catenin signaling in human airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L199-L209.	2.9	94
232	Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 630-635.	7.1	214
233	Systems Approaches to Modeling Chronic Mucosal Inflammation. BioMed Research International, 2013, 2013, 1-17.	1.9	34
234	Overexpression of Sulf2 in idiopathic pulmonary fibrosis. Glycobiology, 2013, 23, 709-719.	2.5	29
235	Disruption of the transforming growth factor \hat{l}^2 pathway by tolfenamic acid via the ERK MAP kinase pathway. Carcinogenesis, 2013, 34, 2900-2907.	2.8	13
236	Atypical Protein Kinase C Phosphorylates Par6 and Facilitates Transforming Growth Factor \hat{I}^2 -Induced Epithelial-to-Mesenchymal Transition. Molecular and Cellular Biology, 2013, 33, 874-886.	2.3	74
237	Expression and significance of HIF- $1\hat{l}_{\pm}$ in pulmonary fibrosis induced by paraquat. Experimental Biology and Medicine, 2013, 238, 1062-1068.	2.4	18
238	Simvastatin Attenuates TGF-�1-Induced Epithelial-Mesenchymal Transition in Human Alveolar Epithelial Cells. Cellular Physiology and Biochemistry, 2013, 31, 863-874.	1.6	78

#	Article	IF	Citations
239	Targeted Gene Transfer of Hepatocyte Growth Factor to Alveolar Type II Epithelial Cells Reduces Lung Fibrosis in Rats. Human Gene Therapy, 2013, 24, 105-116.	2.7	36
240	TGF- \hat{l}^21 exposure induces epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, leading to an increase of migration ability in the CD133+ A549 cell fraction. Cell Death and Disease, 2013, 4, e620-e620.	6.3	108
241	Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation. FASEB Journal, 2013, 27, 1549-1560.	0.5	95
242	Sorafenib ameliorates bleomycin-induced pulmonary fibrosis: potential roles in the inhibition of epithelial–mesenchymal transition and fibroblast activation. Cell Death and Disease, 2013, 4, e665-e665.	6.3	81
243	TGF-β1 regulates cell fate during epithelial–mesenchymal transition by upregulating survivin. Cell Death and Disease, 2013, 4, e714-e714.	6.3	72
244	Interleukin-13 and transforming growth factor \hat{l}^2 synergise in the pathogenesis of human intestinal fistulae. Gut, 2013, 62, 63-72.	12.1	108
245	Kinase inhibitors fail to induce mesenchymal-epithelial transition in fibroblasts from fibrotic lung tissue. International Journal of Molecular Medicine, 2013, 32, 430-438.	4.0	8
246	Induction and Analysis of Epithelial to Mesenchymal Transition. Journal of Visualized Experiments, 2013, , .	0.3	11
247	The Role of Alveolar Epithelium in Radiation-Induced Lung Injury. PLoS ONE, 2013, 8, e53628.	2.5	68
248	An Integrated Expression Profiling Reveals Target Genes of TGF- \hat{l}^2 and TNF- \hat{l}^{\pm} Possibly Mediated by MicroRNAs in Lung Cancer Cells. PLoS ONE, 2013, 8, e56587.	2.5	64
249	miR-204 Targeting of Ankrd13A Controls Both Mesenchymal Neural Crest and Lens Cell Migration. PLoS ONE, 2013, 8, e61099.	2.5	30
250	Sorafenib Inhibits Epithelial-Mesenchymal Transition through an Epigenetic-Based Mechanism in Human Lung Epithelial Cells. PLoS ONE, 2013, 8, e64954.	2.5	30
251	Lung Myofibroblasts Are Characterized by Down-Regulated Cyclooxygenase-2 and Its Main Metabolite, Prostaglandin E2. PLoS ONE, 2013, 8, e65445.	2.5	36
252	Protease-activated receptors (PAR)-1 and -3 drive epithelial-mesenchymal transition of alveolar epithelial cells $\hat{a} \in \text{``potential role in lung fibrosis. Thrombosis and Haemostasis, 2013, 110, 295-307.}$	3.4	27
253	Trim28 Contributes to EMT via Regulation of E-Cadherin and N-Cadherin in Lung Cancer Cell Lines. PLoS ONE, 2014, 9, e101040.	2.5	54
254	MicroRNA-147 Induces a Mesenchymal-To-Epithelial Transition (MET) and Reverses EGFR Inhibitor Resistance. PLoS ONE, 2014, 9, e84597.	2.5	62
255	Inhibitory Role of the KEAP1-NRF2 Pathway in TGF \hat{l}^2 1-Stimulated Renal Epithelial Transition to Fibroblastic Cells: A Modulatory Effect on SMAD Signaling. PLoS ONE, 2014, 9, e93265.	2.5	65
256	Environmental Particulate (PM2.5) Augments Stiffness-Induced Alveolar Epithelial Cell Mechanoactivation of Transforming Growth Factor Beta. PLoS ONE, 2014, 9, e106821.	2.5	44

#	Article	IF	CITATIONS
257	Cigarette Smoke Extract Induces a Phenotypic Shift in Epithelial Cells; Involvement of HIF1 \hat{l}_{\pm} in Mesenchymal Transition. PLoS ONE, 2014, 9, e107757.	2.5	34
258	Sustained Induction of Collagen Synthesis by TGF- \hat{l}^2 Requires Regulated Intramembrane Proteolysis of CREB3L1. PLoS ONE, 2014, 9, e108528.	2.5	47
259	JARID2 Is Involved in Transforming Growth Factor-Beta-Induced Epithelial-Mesenchymal Transition of Lung and Colon Cancer Cell Lines. PLoS ONE, 2014, 9, e115684.	2.5	50
260	Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget, 2014, 5, 7328-7341.	1.8	120
261	Rho GTPases RhoA and Rac1 Mediate Effects of Dietary Folate on Metastatic Potential of A549 Cancer Cells through the Control of Cofilin Phosphorylation. Journal of Biological Chemistry, 2014, 289, 26383-26394.	3.4	44
262	Cisplatin sensitivity is enhanced in non-small cell lung cancer cells by regulating epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2. BMC Pulmonary Medicine, 2014, 14, 174.	2.0	47
263	MicroRNAs in Human Pituitary Adenomas. International Journal of Endocrinology, 2014, 2014, 1-11.	1.5	25
264	Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Review of Respiratory Medicine, 2014, 8, 547-559.	2.5	82
265	Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. European Respiratory Review, 2014, 23, 118-130.	7.1	166
266	P130cas is required for TGF- \hat{l}^2 1-mediated epithelial-mesenchymal transition in lung cancer. Oncology Letters, 2014, 8, 454-460.	1.8	14
267	Hyperoxia induces alveolar epithelial-to-mesenchymal cell transition. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L326-L340.	2.9	39
268	MicroRNAâ€27b Targets Gremlin 1 to Modulate Fibrotic Responses in Pulmonary Cells. Journal of Cellular Biochemistry, 2014, 115, 1539-1548.	2.6	43
269	The atypical chemokine receptor CCX KR regulates metastasis of mammary carcinoma via an effect on EMT. Immunology and Cell Biology, 2014, 92, 815-824.	2.3	18
270	Retinoic acid induced repair in the lung of adult hyperoxic mice, reducing transforming growth factor- \hat{l}^21 (TGF- \hat{l}^21) mediated abnormal alterations. Acta Histochemica, 2014, 116, 810-819.	1.8	16
271	TGFâ€Î²1Âinduces EMT reprogramming of porcine bladder urothelial cells into collagen producing fibroblastsâ€like cells in a Smad2/Smad3â€dependent manner. Journal of Cell Communication and Signaling, 2014, 8, 39-58.	3.4	53
272	Cigarette smoke-induced alveolar epithelial–mesenchymal transition is mediated by Rac1 activation. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1838-1849.	2.4	54
273	37-kDa laminin receptor precursor promotes lung adenocarcinoma cell invasion and metastasis by epithelial-to-mesenchymal transition. Cancer Gene Therapy, 2014, 21, 150-157.	4.6	10
274	A Novel Molecular Pathway for Snail-Dependent, SPARC-Mediated Invasion in Non–Small Cell Lung Cancer Pathogenesis. Cancer Prevention Research, 2014, 7, 150-160.	1.5	33

#	ARTICLE	IF	Citations
275	Saponins from the Roots of <i> Platycodon grandiflorum </i> Suppresses TGF \hat{i}^2 1-Induced Epithelial-Mesenchymal Transition Via Repression of Pl3K/Akt, ERK1/2 and Smad2/3 Pathway in Human Lung Carcinoma A549 Cells. Nutrition and Cancer, 2014, 66, 140-151.	2.0	28
276	Loss of \hat{l}^3 -cytoplasmic actin triggers myofibroblast transition of human epithelial cells. Molecular Biology of the Cell, 2014, 25, 3133-3146.	2.1	35
277	Usual interstitial pneumonia and smoking-related interstitial fibrosis display epithelial to mesenchymal transition in fibroblastic foci. Respiratory Medicine, 2014, 108, 1377-1386.	2.9	6
278	Reviews and prospectives of signaling pathway analysis in idiopathic pulmonary fibrosis. Autoimmunity Reviews, 2014, 13, 1020-1025.	5.8	72
279	Fibrocytes Are Not an Essential Source of Type I Collagen during Lung Fibrosis. Journal of Immunology, 2014, 193, 5229-5239.	0.8	74
280	Collagen mimetic peptide engineered M13 bacteriophage for collagen targeting and imaging in cancer. Biomaterials, 2014, 35, 9236-9245.	11.4	41
281	EED regulates epithelial–mesenchymal transition of cancer cells induced by TGF-β. Biochemical and Biophysical Research Communications, 2014, 453, 124-130.	2.1	23
282	Systems biology approaches to understanding Epithelial Mesenchymal Transition (EMT) in mucosal remodeling and signaling in asthma. World Allergy Organization Journal, 2014, 7, 13.	3.5	94
283	Redox processes inform multivariate transdifferentiation trajectories associated with TGFβ-induced epithelial–mesenchymal transition. Free Radical Biology and Medicine, 2014, 76, 1-13.	2.9	8
284	Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-β–SMAD3 pathway in non-small cell lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3775-84.	7.1	87
285	Ac-SDKP suppresses epithelial–mesenchymal transition in A549 cells via HSP27 signaling. Experimental and Molecular Pathology, 2014, 97, 176-183.	2.1	16
286	The effect of sesamin on airway fibrosis in vitro and in vivo. International Immunopharmacology, 2014, 22, 141-150.	3.8	9
287	Context-dependent adaption of EpCAM expression in early systemic esophageal cancer. Oncogene, 2014, 33, 4904-4915.	5.9	74
288	Expression and Mechanism of BRP-39 in Bleomycin-Induced Pulmonary Fibrosis in Rat. Cell Biochemistry and Biophysics, 2014, 70, 251-257.	1.8	0
289	mAChRs activation induces epithelial-mesenchymal transition on lung epithelial cells. BMC Pulmonary Medicine, 2014, 14, 53.	2.0	26
290	Deficient repair response of IPF fibroblasts in a co-culture model of epithelial injury and repair. Fibrogenesis and Tissue Repair, 2014, 7, 7.	3.4	46
291	Epithelial–mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicology Letters, 2014, 226, 150-162.	0.8	100
292	<scp>SMAD</scp> inhibition attenuates epithelial to mesenchymal transition by primary keratinocytes <i>i>in vitro</i> . Experimental Dermatology, 2014, 23, 497-503.	2.9	21

#	Article	IF	CITATIONS
293	The effects of diosgenin in the Regulation of renal proximal tubular fibrosis. Experimental Cell Research, 2014, 323, 255-262.	2.6	35
294	Activation of histamine H4 receptors decreases epithelial-to-mesenchymal transition progress by inhibiting transforming growth factor- \hat{l}^21 signalling pathway in non-small cell lung cancer. European Journal of Cancer, 2014, 50, 1195-1206.	2.8	28
295	18:1/18:1-Dioleoyl-phosphatidylglycerol prevents alveolar epithelial apoptosis and profibrotic stimulus in a neonatal piglet model of acute respiratory distress syndrome. Pulmonary Pharmacology and Therapeutics, 2014, 28, 25-34.	2.6	14
296	Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-β1-induced epithelial–mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology, 2014, 322, 23-33.	4.2	96
297	Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition. Oncogene, 2014, 33, 1649-1657.	5.9	199
298	Targeting Smad2 and Smad3 by miR-136 Suppresses Metastasis-Associated Traits of Lung Adenocarcinoma Cells. Oncology Research, 2014, 21, 345-352.	1.5	38
299	Induction of fibronectin in response to epidermal growth factor is suppressed by silibinin through the inhibition of STAT3 in triple negative breast cancer cells. Oncology Reports, 2014, 32, 2230-2236.	2.6	27
300	Transforming growth factor- \hat{l}^21 -induced epithelial to mesenchymal transition increases mitochondrial content in the A549 non-small cell lung cancer cell line. Molecular Medicine Reports, 2015, 11, 417-421.	2.4	13
301	\hat{l}^2 -catenin induces A549 alveolar epithelial cell mesenchymal transition during pulmonary fibrosis. Molecular Medicine Reports, 2015, 11, 2703-2710.	2.4	11
302	Suitable parameter choice on quantitative morphology of A549 cell in epithelial–mesenchymal transition. Bioscience Reports, 2015, 35, .	2.4	34
303	RalB regulates contractility-driven cancer dissemination upon $TGF\hat{l}^2$ stimulation via the RhoGEF GEF-H1. Scientific Reports, 2015, 5, 11759.	3.3	31
304	Smoking p66Shc Knocked Out Mice Develop Respiratory Bronchiolitis with Fibrosis but Not Emphysema. PLoS ONE, 2015, 10, e0119797.	2.5	19
305	Ferulic Acid Attenuates TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle 1$ -Induced Renal Cellular Fibrosis in NRK-52E Cells by Inhibiting Smad/ILK/Snail Pathway. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-7.	1.2	39
306	The kinase activity of the Ser/Thr kinase BUB1 promotes TGF- \hat{l}^2 signaling. Science Signaling, 2015, 8, ra1.	3.6	72
307	MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicology and Applied Pharmacology, 2015, 284, 16-32.	2.8	159
308	Decreased elF3e Expression Can Mediate Epithelial-to-Mesenchymal Transition through Activation of the $TGF\hat{l}^2$ Signaling Pathway. Molecular Cancer Research, 2015, 13, 1421-1430.	3.4	18
309	Involvement of epithelial-to-mesenchymal transition and associated transforming growth factor \hat{l}^2/S mad signaling in paraquat-induced pulmonary fibrosis. Molecular Medicine Reports, 2015, 12, 7979-7984.	2.4	31
310	Analysis of the TGF \hat{l}^2 -induced program in primary airway epithelial cells shows essential role of NF- \hat{l}^2 B/RelA signaling network in type II epithelial mesenchymal transition. BMC Genomics, 2015, 16, 529.	2.8	83

#	Article	IF	CITATIONS
311	High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1354-L1366.	2.9	42
312	Telomerase Deficiency Causes Alveolar Stem Cell Senescence-associated Low-grade Inflammation in Lungs. Journal of Biological Chemistry, 2015, 290, 30813-30829.	3.4	72
313	Differential deposition of fibronectin by asthmatic bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1093-L1102.	2.9	15
314	Regulation of Gene Expression by Sodium Valproate in Epithelial-to-Mesenchymal Transition. Lung, 2015, 193, 691-700.	3.3	24
315	CXCL9 Regulates TGF-β1–Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells. Journal of Immunology, 2015, 195, 2788-2796.	0.8	26
316	Role of matrix metalloproteinases in radiation-induced lung injury in alveolar epithelial cells of Bama minipigs. Experimental and Therapeutic Medicine, 2015, 10, 1437-1444.	1.8	13
317	Transcription factor glioma-associated oncogene homolog 1 is required for transforming growth factor- \hat{l}^21 -induced epithelial-mesenchymal transition of non-small cell lung cancer cells. Molecular Medicine Reports, 2015, 11, 3259-3268.	2.4	11
318	Profibrosing Effect of Angiotensin Converting Enzyme Inhibitors in Human Lung Fibroblasts. Lung, 2015, 193, 199-202.	3.3	4
319	Translationally Controlled Tumor Protein induces epithelial to mesenchymal transition and promotes cell migration, invasion and metastasis. Scientific Reports, 2015, 5, 8061.	3.3	49
320	Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nature Protocols, 2015, 10, 363-381.	12.0	67
321	TGF-β may control the switch between tumorigenic growth and "stem cell/mesenchymal―potentially drug-resistant states. Dermatologic Therapy, 2015, 28, 177-178.	1.7	3
322	Time-dependent and somatically acquired mitochondrial DNA mutagenesis and respiratory chain dysfunction in a scleroderma model of lung fibrosis. Scientific Reports, 2014, 4, 5336.	3.3	35
323	Geraniin inhibits TGF-β1-induced epithelial–mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3529-3534.	2.2	50
324	Zerumbone attenuates TGF-β1-mediated epithelial–mesenchymal transition via upregulated E-cadherin expression and downregulated Smad2 signalling pathways in non-small cell lung cancer (A549) cells. Journal of Functional Foods, 2015, 18, 58-72.	3.4	19
325	Mixed-effects model of epithelial–mesenchymal transition reveals rewiring of signaling networks. Cellular Signalling, 2015, 27, 1413-1425.	3.6	25
326	Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β–dependent epithelial to mesenchymal transition. Journal of Surgical Research, 2015, 197, 167-175.	1.6	48
327	Sanguiin H6 suppresses TGF-β induction of the epithelial–mesenchymal transition and inhibits migration and invasion in A549 lung cancer. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5508-5513.	2.2	39
328	Regulation of myofibroblast differentiation by miR-424 during epithelial-to-mesenchymal transition. Archives of Biochemistry and Biophysics, 2015, 566, 49-57.	3.0	50

#	Article	IF	CITATIONS
329	AEG-1 3′-untranslated region functions as a ceRNA in inducing epithelial–mesenchymal transition of human non-small cell lung cancer by regulating miR-30a activity. European Journal of Cell Biology, 2015, 94, 22-31.	3.6	50
330	Role of the Urokinase-Fibrinolytic System in Epithelial–Mesenchymal Transition during Lung Injury. American Journal of Pathology, 2015, 185, 55-68.	3.8	40
331	Involvement of Nrf2-GSH signaling in $TGF\hat{l}^21$ -stimulated epithelial-to-mesenchymal transition changes in rat renal tubular cells. Archives of Pharmacal Research, 2015, 38, 272-281.	6.3	39
332	Analysis of TGF-β1- and drug-induced epithelial–mesenchymal transition in cultured alveolar epithelial cell line RLE/Abca3. Drug Metabolism and Pharmacokinetics, 2015, 30, 111-118.	2.2	28
333	<scp>PI</scp> 3K signalling is required for a <scp>TGF</scp> <i>i>î²</i> â€induced epithelial–mesenchymalâ€like transition (<scp>EMT</scp> â€like) in human melanoma cells. Experimental Dermatology, 2015, 24, 22-28.	2.9	67
334	Prostaglandin E2 switches from a stimulator to an inhibitor of cell migration after epithelial-to-mesenchymal transition. Prostaglandins and Other Lipid Mediators, 2015, 116-117, 1-9.	1.9	16
335	Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF- \hat{l}^21 signaling. Oncotarget, 2016, 7, 47082-47094.	1.8	24
336	Bleomycin (BLM) Induces Epithelial-to-Mesenchymal Transition in Cultured A549 Cells via the TGF-β/Smad Signaling Pathway. Journal of Cancer, 2016, 7, 1557-1564.	2.5	29
337	Apolipoprotein A1 Inhibits TGF-β1–Induced Epithelial-to-Mesenchymal Transition of Alveolar Epithelial Cells. Tuberculosis and Respiratory Diseases, 2016, 79, 143.	1.8	15
338	Pathogenesis of Type 2 Epithelial to Mesenchymal Transition (EMT) in Renal and Hepatic Fibrosis. Journal of Clinical Medicine, 2016, 5, 4.	2.4	43
339	From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling. Frontiers in Pediatrics, 2016, 4, 80.	1.9	8
340	Signal Transduction Pathways of EMT Induced by TGF- \hat{l}^2 , SHH, and WNT and Their Crosstalks. Journal of Clinical Medicine, 2016, 5, 41.	2.4	249
341	Latent cytomegalovirus infection exacerbates experimental pulmonary fibrosis by activating TGF- \hat{l}^21 . Molecular Medicine Reports, 2016, 14, 1297-1301.	2.4	18
342	Cold-inducible RNA-binding protein promotes epithelial-mesenchymal transition by activating ERK and p38 pathways. Biochemical and Biophysical Research Communications, 2016, 477, 1038-1044.	2.1	13
343	MAPK pathway mediates epithelialâ€mesenchymal transition induced by paraquat in alveolar epithelial cells. Environmental Toxicology, 2016, 31, 1407-1414.	4.0	31
344	Single cell dual adherent-suspension co-culture micro-environment for studying tumor–stromal interactions with functionally selected cancer stem-like cells. Lab on A Chip, 2016, 16, 2935-2945.	6.0	30
345	Inflammation and lung injury in an ovine model of extracorporeal membrane oxygenation support. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L1202-L1212.	2.9	17
346	Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics. BMC Cancer, 2016, 16, 614.	2.6	23

#	Article	IF	CITATIONS
347	Regulation of transforming growth factor-beta1 (TGF- \hat{i}^21)-induced pro-fibrotic activities by circadian clock gene BMAL1. Respiratory Research, 2016, 17, 4.	3.6	74
348	Confluence-dependent resistance to cisplatin in lung cancer cells is regulated by transforming growth factor-beta. Experimental Lung Research, 2016, 42, 175-181.	1.2	14
349	Methotrexate-Induced Epithelial–Mesenchymal Transition in the Alveolar Epithelial Cell Line A549. Lung, 2016, 194, 923-930.	3.3	31
350	D-4F, an apolipoprotein A-I mimetic, inhibits TGF- \hat{l}^21 induced epithelial-mesenchymal transition in human alveolar epithelial cell. Experimental and Toxicologic Pathology, 2016, 68, 533-541.	2.1	14
351	Epithelial-mesenchymal transition promotes reactivity of human lung adenocarcinoma A549 cells to CpG ODN. Allergology International, 2016, 65, S45-S52.	3.3	10
352	Regulatory mechanisms of <scp>TGF</scp> â€Î²1â€induced fibrogenesis of human alveolar epithelial cells. Journal of Cellular and Molecular Medicine, 2016, 20, 2183-2193.	3.6	39
353	Earthworm extract attenuates silica-induced pulmonary fibrosis through Nrf2-dependent mechanisms. Laboratory Investigation, 2016, 96, 1279-1300.	3.7	26
354	Effect of RhoC on the epithelial-mesenchymal transition process induced by TGF- \hat{l}^21 in lung adenocarcinoma cells. Oncology Reports, 2016, 36, 3105-3112.	2.6	15
355	Development of an In Vitro Assay to Evaluate Contractile Function of Mesenchymal Cells that Underwent Epithelial-Mesenchymal Transition. Journal of Visualized Experiments, 2016, , .	0.3	11
356	Surfactant dysfunction during overexpression of TGF- \hat{l}^21 precedes profibrotic lung remodeling in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1260-L1271.	2.9	49
357	Transforming growth factor beta 1 induced endothelin-1 release is peroxisome proliferator-activated receptor gamma dependent in A549 cells. Journal of Inflammation, 2016, 13, 19.	3.4	1
358	The transcription factor scleraxis is a critical regulator of cardiac fibroblast phenotype. BMC Biology, 2016, 14, 21.	3.8	61
359	IL-27 inhibits the TGF- \hat{l}^21 -induced epithelial-mesenchymal transition in alveolar epithelial cells. BMC Cell Biology, 2016, 17, 7.	3.0	34
360	Impact of idiopathic pulmonary fibrosis on advanced non-small cell lung cancer survival. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1855-1865.	2.5	56
361	Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial-mesenchymal transition and cancer stem cells-like properties in breast cancer cells. Cell and Bioscience, 2016, 6, 44.	4.8	57
362	Modeling continuum of epithelial mesenchymal transition plasticity. Integrative Biology (United) Tj ETQq $1\ 1\ 0.7$	84314 rgE 1.3	BT /Qverlock
363	Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype. Free Radical Biology and Medicine, 2016, 92, 110-125.	2.9	29
364	Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF- \hat{l}^2 1/ROCK1 pathway in silicosis in rat. Toxicology and Applied Pharmacology, 2016, 294, 1-10.	2.8	31

#	Article	IF	CITATIONS
365	<i>miR-1343</i> attenuates pathways of fibrosis by targeting the TGF- \hat{I}^2 receptors. Biochemical Journal, 2016, 473, 245-256.	3.7	72
366	Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. International Journal of Biochemistry and Cell Biology, 2016, 74, 18-32.	2.8	15
367	Paraquat induce pulmonary epithelial–mesenchymal transition through transforming growth factor-β1-dependent mechanism. Experimental and Toxicologic Pathology, 2016, 68, 69-76.	2.1	22
368	A TGFÎ ² -PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene, 2017, 36, 373-386.	5.9	150
369	Role of insulin like growth factor axis in the bleomycin induced lung injury in rats. Experimental and Molecular Pathology, 2017, 102, 86-96.	2.1	11
370	C-phycocyanin suppresses transforming growth factor $\hat{1}^21$ -induced epithelial mesenchymal transition in human epithelial cells. Pharmacological Reports, 2017, 69, 426-431.	3.3	31
371	Maternal exposure to fine particulate air pollution induces epithelial-to-mesenchymal transition resulting in postnatal pulmonary dysfunction mediated by transforming growth factor- \hat{l}^2/S mad3 signaling. Toxicology Letters, 2017, 267, 11-20.	0.8	32
373	Anti-fibrotic effects of chronic treatment with the selective FXR agonist obeticholic acid in the bleomycin-induced rat model of pulmonary fibrosis. Journal of Steroid Biochemistry and Molecular Biology, 2017, 168, 26-37.	2.5	44
374	Fibroblast-led cancer cell invasion is activated by epithelial–mesenchymal transition through platelet-derived growth factor BB secretion of lung adenocarcinoma. Cancer Letters, 2017, 395, 20-30.	7.2	44
375	The mechanism of epithelial-mesenchymal transition induced by TGF-β1 in neuroblastoma cells. International Journal of Oncology, 2017, 50, 1623-1633.	3.3	26
376	Antifibrotic effects of cyclosporine A on TGFâ€Î²1–treated lung fibroblasts and lungs from bleomycinâ€treated mice: role of hypoxiaâ€inducible factorâ€1α. FASEB Journal, 2017, 31, 3359-3371.	0.5	30
377	Dioscin suppresses TGF- \hat{l}^21 -induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration and invasion. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3342-3348.	2.2	51
378	Glucocorticoids ameliorate TGF-β1-mediated epithelial-to-mesenchymal transition of airway epithelium through MAPK and Snail/Slug signaling pathways. Scientific Reports, 2017, 7, 3486.	3.3	43
379	Cigarette smoke extract induces the epithelial-to-mesenchymal transition via the PLTP/TGF- \hat{l}^2 1/Smad2 pathway in RLE-6TN cells. Toxicology Research, 2017, 6, 215-222.	2.1	4
380	Focal adhesion kinase signaling determines the fate of lung epithelial cells in response to TGF- $\hat{1}^2$. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L926-L935.	2.9	22
381	The Role of miRâ€497/EIF3A Axis in TGFβ1â€Induced Epithelial–Mesenchymal Transition and Extracellular Matrix in Rat Alveolar Epithelial Cells and Pulmonary Fibroblasts. Journal of Cellular Biochemistry, 2017, 118, 3401-3408.	2.6	12
382	Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opinion on Investigational Drugs, 2017, 26, 1215-1228.	4.1	18
383	Arctigenin represses TGF-Î ² -induced epithelial mesenchymal transition in human lung cancer cells. Biochemical and Biophysical Research Communications, 2017, 493, 934-939.	2.1	43

#	Article	IF	CITATIONS
384	Telomere Damage Response and Low-Grade Inflammation. Advances in Experimental Medicine and Biology, 2017, 1024, 213-224.	1.6	7
385	Epithelial-mesenchymal transition of human lung adenocarcinoma A549 cells up-regulates cytokine production upon LPS stimulation. Allergology International, 2017, 66, S56-S58.	3.3	1
386	TGF-Î ² inhibits alveolar protein transport by promoting shedding, regulated intramembrane proteolysis, and transcriptional downregulation of megalin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L807-L824.	2.9	11
387	Thalidomide Inhibits TGF-β1-induced Epithelial to Mesenchymal Transition in Alveolar Epithelial Cells via Smad-Dependent and Smad-Independent Signaling Pathways. Scientific Reports, 2017, 7, 14727.	3.3	35
388	The protective effects of bone morphogenetic protein-7 against epithelial injury and matrix metalloproteases upregulation induced by silica in vitro. Human and Experimental Toxicology, 2017, 36, 892-900.	2.2	3
389	Analysis of Epithelial Injury and Repair. Respiratory Medicine, 2017, , 69-83.	0.1	1
390	MEG3 Long Noncoding RNA Contributes to the Epigenetic Regulation of Epithelial-Mesenchymal Transition in Lung Cancer Cell Lines. Journal of Biological Chemistry, 2017, 292, 82-99.	3.4	157
391	Manganese Superoxide Dismutase Gene–Modified Mesenchymal Stem Cells Attenuate Acute Radiation-Induced Lung Injury. Human Gene Therapy, 2017, 28, 523-532.	2.7	37
392	Human Lung Spheroids as In Vitro Niches of Lung Progenitor Cells with Distinctive Paracrine and Plasticity Properties. Stem Cells Translational Medicine, 2017, 6, 767-777.	3.3	23
393	Nickel oxide nanoparticles induced pulmonary fibrosis via TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle 1$ activation in rats. Human and Experimental Toxicology, 2017, 36, 802-812.	2.2	40
394	Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Research, 2017, 45, 1687-1702.	14.5	58
395	Leucine-rich $\langle i \rangle \hat{l} \pm \langle i \rangle$ -2 glycoprotein promotes lung fibrosis by modulating TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle$ signaling in fibroblasts. Physiological Reports, 2017, 5, e13556.	1.7	38
396	Knocking down MiR-15a expression promotes the occurrence and development and induces the EMT of NSCLC cells in vitro. Saudi Journal of Biological Sciences, 2017, 24, 1859-1865.	3.8	17
397	Mesenchymal stem cells in idiopathic pulmonary fibrosis. Oncotarget, 2017, 8, 102600-102616.	1.8	59
398	Vitamin C in Stem Cell Biology: Impact on Extracellular Matrix Homeostasis and Epigenetics. Stem Cells International, 2017, 2017, 1-16.	2.5	76
399	Ginsenoside Rg1 Attenuates Cigarette Smoke-Induced Pulmonary Epithelial-Mesenchymal Transition via Inhibition of the TGF- $\langle i \rangle \hat{l}^2 \langle j \rangle 1$ /Smad Pathway. BioMed Research International, 2017, 2017, 1-12.	1.9	36
400	Inflammatory Mediators in Tracheal Aspirates of Preterm Infants Participating in a Randomized Trial of Inhaled Nitric Oxide. PLoS ONE, 2017, 12, e0169352.	2.5	13
401	HPIP silencing inhibits TGF- \hat{l}^21 -induced EMT in lung cancer cells. International Journal of Molecular Medicine, 2017, 39, 479-483.	4.0	23

#	Article	IF	Citations
402	Deficiency of $\hat{l}\pm7$ Nicotinic Acetylcholine Receptor Attenuates Bleomycin-Induced Lung Fibrosis in Mice. Molecular Medicine, 2017, 23, 34-49.	4.4	18
403	Hydrogen sulfide inhibits epithelial-mesenchymal transition in peritoneal mesothelial cells. Scientific Reports, 2018, 8, 5863.	3.3	18
404	PD-L1 expression is regulated by both DNA methylation and NF-kB during EMT signaling in non-small cell lung carcinoma. Oncolmmunology, 2018, 7, e1423170.	4.6	150
405	TGF \hat{l}^21 -induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells. Biochemical and Biophysical Research Communications, 2018, 496, 1169-1175.	2.1	21
406	Quercetin restrains TGF-β1-induced epithelial–mesenchymal transition by inhibiting Twist1 and regulating E-cadherin expression. Biochemical and Biophysical Research Communications, 2018, 498, 132-138.	2.1	50
407	Inhibition of Epithelial–Mesenchymal Transition and Tissue Regeneration by Waterborne Titanium Dioxide Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 3449-3458.	8.0	22
408	<i>Echinococcus granulosus</i> cyst fluid enhances epithelialâ€mesenchymal transition. Parasite Immunology, 2018, 40, e12533.	1.5	4
409	Anti-fibrotic effects of pirfenidone and rapamycin in primary IPF fibroblasts and human alveolar epithelial cells. BMC Pulmonary Medicine, 2018, 18, 63.	2.0	59
410	Mesenchymal stem cell-based therapy for radiation-induced lung injury. Stem Cell Research and Therapy, 2018, 9, 18.	5.5	48
411	Low-dose cadmium exposure exacerbates polyhexamethylene guanidine-induced lung fibrosis in mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 384-396.	2.3	11
412	Petroleum coke exposure leads to altered secretome profiles in human lung models. Human and Experimental Toxicology, 2018, 37, 1215-1232.	2.2	2
413	TGF-Î ² Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harbor Perspectives in Biology, 2018, 10, a031997.	5.5	21
414	Lung Adenocarcinoma Cell Responses in a 3D in Vitro Tumor Angiogenesis Model Correlate with Metastatic Capacity. ACS Biomaterials Science and Engineering, 2018, 4, 368-377.	5.2	11
415	Preference of Aerosolized Pirfenidone to Oral Intake: An Experimental Model of Pulmonary Fibrosis by Paraquat. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 25-32.	1.4	16
416	Fabrication and characterization of TGF- \hat{l}^2 1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures. Colloids and Surfaces B: Biointerfaces, 2018, 161, 331-338.	5.0	28
417	MicroRNA-145 Antagonism Reverses TGF- \hat{l}^2 Inhibition of F508del CFTR Correction in Airway Epithelia. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 632-643.	5.6	68
418	FAM13A is a modifier gene of cystic fibrosis lung phenotype regulating rhoa activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition. Journal of Cystic Fibrosis, 2018, 17, 190-203.	0.7	45
419	Deficiency of protein-L-isoaspartate (D-aspartate) <i>O</i> -methyl-transferase expression under endoplasmic reticulum stress promotes epithelial mesenchymal transition in lung adenocarcinoma. Oncotarget, 2018, 9, 13287-13300.	1.8	8

#	Article	IF	CITATIONS
420	The protective and therapeutic effects of total flavonoids of Astragalus against bleomycin-induced pulmonary fibrosis are through the enhancement of autophagy. Journal of Traditional Chinese Medical Sciences, 2018, 5, 380-389.	0.2	5
421	The TGF- <i>β</i> 1 Signaling Pathway as an Attractive Target in the Fibrosis Pathogenesis of Sjögren's Syndrome. Mediators of Inflammation, 2018, 2018, 1-14.	3.0	47
422	Optogenetic control of epithelial-mesenchymal transition in cancer cells. Scientific Reports, 2018, 8, 14098.	3.3	13
423	Leptin induces epithelial-to-mesenchymal transition via activation of the ERK signaling pathway in lung cancer cells. Oncology Letters, 2018, 16, 4782-4788.	1.8	26
424	Design of Large-Scale Reporter Construct Arrays for Dynamic, Live Cell Systems Biology. ACS Synthetic Biology, 2018, 7, 2063-2073.	3.8	3
425	Protein kinase CK2 activation is required for transforming growth factor βâ€induced epithelial–mesenchymal transition. Molecular Oncology, 2018, 12, 1811-1826.	4.6	25
426	Micropillarâ€based culture platform induces epithelial–mesenchymal transition in the alveolar epithelial cell line. Journal of Biomedical Materials Research - Part A, 2018, 106, 3165-3174.	4.0	12
427	The potential of Olea europaea extracts to prevent $TGF\hat{l}^21$ -induced epithelial to mesenchymal transition in human nasal respiratory epithelial cells. BMC Complementary and Alternative Medicine, 2018, 18, 197.	3.7	9
428	Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respiratory Research, 2018, 19, 160.	3.6	34
429	Downregulation of microRNA‑30a in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients. Molecular Medicine Reports, 2018, 18, 5799-5806.	2.4	23
430	Astragaloside <scp>IV</scp> modulates <scp>TGF</scp> â€Î²1â€dependent epithelialâ€mesenchymal transition in bleomycinâ€induced pulmonary fibrosis. Journal of Cellular and Molecular Medicine, 2018, 22, 4354-4365.	3.6	109
431	Toosendanin, a natural product, inhibited TGFâ€Î²1â€induced epithelialâ€mesenchymal transition through ERK/Snail pathway. Phytotherapy Research, 2018, 32, 2009-2020.	5.8	26
432	Molecular Detection of EMT Markers in Circulating Tumor Cells from Metastatic Non-Small Cell Lung Cancer Patients: Potential Role in Clinical Practice. Analytical Cellular Pathology, 2018, 2018, 1-12.	1.4	22
433	Dasatinib Suppresses TGFβ-Mediated Epithelial–Mesenchymal Transition in Alveolar Epithelial Cells and Inhibits Pulmonary Fibrosis. Lung, 2018, 196, 531-541.	3.3	18
434	Casein Kinase $1\hat{l}'\hat{l}\mu$ Inhibitor, PF670462 Attenuates the Fibrogenic Effects of Transforming Growth Factor- \hat{l}^2 in Pulmonary Fibrosis. Frontiers in Pharmacology, 2018, 9, 738.	3.5	28
435	An Adaptogen: Withaferin A Ameliorates in Vitro and in Vivo Pulmonary Fibrosis by Modulating the Interplay of Fibrotic, Matricelluar Proteins, and Cytokines. Frontiers in Pharmacology, 2018, 9, 248.	3.5	53
436	Human alveolar epithelial cells type II are capable of $TGF\hat{l}^2$ -dependent epithelial-mesenchymal-transition and collagen-synthesis. Respiratory Research, 2018, 19, 138.	3.6	52
437	Bergamottin Suppresses Metastasis of Lung Cancer Cells through Abrogation of Diverse Oncogenic Signaling Cascades and Epithelial-to-Mesenchymal Transition. Molecules, 2018, 23, 1601.	3.8	69

#	Article	IF	CITATIONS
438	Protein kinase CK2 modulation of pyruvate kinase M isoforms augments the Warburg effect in cancer cells. Journal of Cellular Biochemistry, 2018, 119, 8501-8510.	2.6	14
439	Checkpoint suppressor 1 suppresses transcriptional activity of $ER\hat{l}_{\pm}$ and breast cancer cell proliferation via deacetylase SIRT1. Cell Death and Disease, 2018, 9, 559.	6.3	32
440	AEBP1 promotes epithelial-mesenchymal transition of gastric cancer cells by activating the NF-κB pathway and predicts poor outcome of the patients. Scientific Reports, 2018, 8, 11955.	3.3	35
441	Oleanolic acid attenuates TGF- \hat{l}^21 -induced epithelial-mesenchymal transition in NRK-52E cells. BMC Complementary and Alternative Medicine, 2018, 18, 205.	3.7	11
442	Antifibrotic action of Yifei Sanjie formula enhanced autophagy via PI3K-AKT-mTOR signaling pathway in mouse model of pulmonary fibrosis. Biomedicine and Pharmacotherapy, 2019, 118, 109293.	5.6	26
443	Effects of β-Sitosterol from Corn Silk on TGF-β1-Induced Epithelial–Mesenchymal Transition in Lung Alveolar Epithelial Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 9789-9795.	5.2	35
444	Inhibitory Effect of Chebulic Acid on Alveolar Epithelial to Mesenchymal Transition in Response to Urban Particulate Matter Using Co-treatment and Post-treatment Exposure. Biological and Pharmaceutical Bulletin, 2019, 42, 1322-1331.	1.4	6
445	The Anti-Fibrotic Effects of CG-745, an HDAC Inhibitor, in Bleomycin and PHMG-Induced Mouse Models. Molecules, 2019, 24, 2792.	3.8	12
446	High amplitude stretching of ATII cells and fibroblasts results in profibrotic effects. Experimental Lung Research, 2019, 45, 167-174.	1.2	9
447	Modulation of Epithelial to Mesenchymal Transition Signaling Pathways by Olea Europaea and Its Active Compounds. International Journal of Molecular Sciences, 2019, 20, 3492.	4.1	14
448	D-4F, an apolipoprotein A-I mimetic, suppresses IL-4 induced macrophage alternative activation and pro-fibrotic TGF-I ² 1 expression. Pharmaceutical Biology, 2019, 57, 470-476.	2.9	15
449	Akt and Notch pathways mediate polyhexamethylene guanidine phosphate-induced epithelial-mesenchymal transition via ZEB2. Toxicology and Applied Pharmacology, 2019, 380, 114691.	2.8	24
450	RBM47-regulated alternative splicing of TJP1 promotes actin stress fiber assembly during epithelial-to-mesenchymal transition. Oncogene, 2019, 38, 6521-6536.	5.9	31
451	Schisandrin B inhibits TGF- \hat{I}^21 -induced epithelial-mesenchymal transition in human A549 cells through epigenetic silencing of ZEB1. Experimental Lung Research, 2019, 45, 157-166.	1.2	19
452	Magnolol Suppresses TGF- \hat{l}^2 -Induced Epithelial-to-Mesenchymal Transition in Human Colorectal Cancer Cells. Frontiers in Oncology, 2019, 9, 752.	2.8	32
453	Reversion of in vivo fibrogenesis by novel chromone scaffolds. EBioMedicine, 2019, 39, 484-496.	6.1	9
454	P27 Promotes TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Mediated Pulmonary Fibrosis via Interacting with MTORC2. Canadian Respiratory Journal, 2019, 2019, 1-9.	1.6	7
455	ALI multilayered co-cultures mimic biochemical mechanisms of the cancer cell-fibroblast cross-talk involved in NSCLC MultiDrug Resistance. BMC Cancer, 2019, 19, 854.	2.6	18

#	Article	IF	CITATIONS
456	YKL-40/CHI3L1 facilitates migration and invasion in HER2 overexpressing breast epithelial progenitor cells and generates a niche for capillary-like network formation. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 838-853.	1.5	10
457	Pathological Study on Epithelial-Mesenchymal Transition in Silicotic Lung Lesions in Rat. Veterinary Sciences, 2019, 6, 70.	1.7	8
458	Antifibrotic Mechanism of Cinobufagin in Bleomycin-Induced Pulmonary Fibrosis in Mice. Frontiers in Pharmacology, 2019, 10, 1021.	3.5	32
459	Idiopathic Pulmonary Fibrosis and Lung Cancer: Mechanisms and Molecular Targets. International Journal of Molecular Sciences, 2019, 20, 593.	4.1	201
460	Dioscin Inhibits the Invasion and Migration of Hepatocellular Carcinoma HepG2 Cells by Reversing TGF-Î ² 1-Induced Epithelial-Mesenchymal Transition. Molecules, 2019, 24, 2222.	3.8	27
461	Bronchopulmonary Dysplasia: Crosstalk Between PPARγ, WNT/β-Catenin and TGF-β Pathways; The Potential Therapeutic Role of PPARγ Agonists. Frontiers in Pediatrics, 2019, 7, 176.	1.9	29
462	TGF- \hat{l}^2 inducible epithelial-to-mesenchymal transition in renal cell carcinoma. Oncotarget, 2019, 10, 1507-1524.	1.8	19
463	The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Molecular Cytogenetics, 2019, 12, 17.	0.9	83
464	Development of Adverse Outcome Pathway for PPARÎ ³ Antagonism Leading to Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast Database and a Deep Learning Artificial Neural Network Model-Based Approach. Chemical Research in Toxicology, 2019, 32, 1212-1222.	3.3	36
465	Role of the Hippo Pathway in Fibrosis and Cancer. Cells, 2019, 8, 468.	4.1	77
466	3,3′-Diindolylmethane Inhibits TNF-α- and TGF-β-Induced Epithelial–Mesenchymal Transition in Breast Cancer Cells. Nutrition and Cancer, 2019, 71, 992-1006.	2.0	39
467	Blocking TBK1 alleviated radiation-induced pulmonary fibrosis and epithelial-mesenchymal transition through Akt-Erk inactivation. Experimental and Molecular Medicine, 2019, 51, 1-17.	7.7	25
468	Curcumin Modulates Paraquat-Induced Epithelial to Mesenchymal Transition by Regulating Transforming Growth Factor- \hat{l}^2 (TGF- \hat{l}^2) in A549 Cells. Inflammation, 2019, 42, 1441-1455.	3.8	14
469	Tetraspanin 1 as a mediator of fibrosis inhibits EMT process and Smad2/3 and betaâ€catenin pathway in human pulmonary fibrosis. Journal of Cellular and Molecular Medicine, 2019, 23, 3583-3596.	3.6	20
470	Epithelial–Mesenchymal Transition in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Medicina (Lithuania), 2019, 55, 83.	2.0	140
471	Mitochondrial DNA mutations and respiratory chain dysfunction in idiopathic and connective tissue disease-related lung fibrosis. Scientific Reports, 2019, 9, 5500.	3.3	32
472	Optimization of the adipose-derived mesenchymal stem cell delivery time for radiation-induced lung fibrosis treatment in rats. Scientific Reports, 2019, 9, 5589.	3.3	21
473	TGFâ \in Î 2 1 mediated MAPK signaling pathway promotes collagen formation induced by Nano NiO in A549 cells. Environmental Toxicology, 2019, 34, 719-727.	4.0	16

#	ARTICLE	IF	CITATIONS
474	RASSF10 Is a $TGF\hat{1}^2$ -Target That Regulates ASPP2 and E-Cadherin Expression and Acts as Tumor Suppressor That Is Epigenetically Downregulated in Advanced Cancer. Cancers, 2019, 11, 1976.	3.7	8
475	Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin \hat{l}^23 /FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics, 2019, 9, 265-278.	10.0	141
476	Pathogenesis of Fibrosis—The Lung as a Model. , 2019, , 261-268.		0
477	TGF- \hat{l}^21 promotes cell migration in hepatocellular carcinoma by suppressing reelin expression. Gene, 2019, 688, 19-25.	2.2	16
478	New therapeutics based on emerging concepts in pulmonary fibrosis. Expert Opinion on Therapeutic Targets, 2019, 23, 69-81.	3 . 4	26
479	Inhibition of BAP31 expression inhibits cervical cancer progression by suppressing metastasis and inducing intrinsic and extrinsic apoptosis. Biochemical and Biophysical Research Communications, 2019, 508, 499-506.	2.1	22
480	Innate Immunity and Pulmonary Inflammation: A Balance Between Protection and Disease. , 2019, , 153-175.		2
481	TGF- \hat{l}^2 orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature, 2020, 577, 566-571.	27.8	271
482	\hat{l}^3 -Glutamyl cyclotransferase contributes to endometrial carcinoma malignant progression and upregulation of PD-L1 expression during activation of epithelial-mesenchymal transition. International Immunopharmacology, 2020, 81, 106039.	3.8	1
483	Ma Xing Shi Gan Decoction Protects against PM2.5-Induced Lung Injury through Suppression of Epithelial-to-Mesenchymal Transition (EMT) and Epithelial Barrier Disruption. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-17.	1.2	4
484	Artesunate inhibits epithelial-mesenchymal transition in non-small-cell lung cancer (NSCLC) cells by down-regulating the expression of <i>BTBD7</i> . Bioengineered, 2020, 11, 1197-1207.	3.2	11
485	Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: state of the art and critical review of the <i>in vitro</i> studies. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2020, 23, 293-318.	6.5	23
486	Paracrine stimulation of perinatal lung functional and structural maturation by mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 525.	5 . 5	14
487	<p>Tranilast Inhibits Pulmonary Fibrosis by Suppressing TGFβ/SMAD2 Pathway</p> . Drug Design, Development and Therapy, 2020, Volume 14, 4593-4603.	4.3	16
488	Context specificity of the EMT transcriptional response. Nature Communications, 2020, 11, 2142.	12.8	156
489	Extracellular vesicles from mast cells induce mesenchymal transition in airway epithelial cells. Respiratory Research, 2020, 21, 101.	3.6	26
490	Nintedanib inhibits epithelial-mesenchymal transition in A549 alveolar epithelial cells through regulation of the TGF-β/Smad pathway. Respiratory Investigation, 2020, 58, 275-284.	1.8	17
491	Expression dynamics of integrin $\hat{l}\pm 2$, $\hat{l}\pm 3$, and $\hat{l}\pm V$ upon osteogenic differentiation of human mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 210.	5.5	13

#	Article	IF	CITATIONS
492	IL-6 Deficiency Exacerbates Allergic Asthma and Abrogates the Protective Effect of Allergic Inflammation against <i>Streptococcus pneumoniae</i> Pathogenesis. Journal of Immunology, 2020, 205, 469-479.	0.8	29
493	Gastrin-releasing peptide induces fibrotic response in MRC5s and proliferation in A549s. Cell Communication and Signaling, 2020, 18, 96.	6.5	13
494	Fluidity of Poly (Î μ -Caprolactone)-Based Material Induces Epithelial-to-Mesenchymal Transition. International Journal of Molecular Sciences, 2020, 21, 1757.	4.1	2
495	Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacological Research, 2020, 155, 104738.	7.1	20
496	Low dose HSP90 inhibition with AUY922 blunts rapid evolution of metastatic and drug resistant phenotypes induced by TGF- \hat{l}^2 and paclitaxel in A549 cells. Biomedicine and Pharmacotherapy, 2020, 129, 110434.	5.6	5
497	ldentification of universal and cell-type specific p53 DNA binding. BMC Molecular and Cell Biology, 2020, 21, 5.	2.0	14
498	Pirfenidone: Molecular Mechanisms and Potential Clinical Applications in Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 413-422.	2.9	128
499	Piperine Inhibits TGF- \hat{l}^2 Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells. Medicines (Basel, Switzerland), 2020, 7, 19.	1.4	21
500	Progress in research into the role of abnormal glycosylation modification in tumor immunity. Immunology Letters, 2021, 229, 8-17.	2.5	12
501	<i>S100A2</i> Silencing Relieves Epithelial–Mesenchymal Transition in Pulmonary Fibrosis by Inhibiting the Wnt/β-Catenin Signaling Pathway. DNA and Cell Biology, 2021, 40, 18-25.	1.9	9
502	A prolonged exposure of human lung carcinoma epithelial cells to benzo[a]pyrene induces p21-dependent epithelial-to-mesenchymal transition (EMT)-like phenotype. Chemosphere, 2021, 263, 128126.	8.2	6
503	Combustion-derived particles from biomass sources differently promote epithelial-to-mesenchymal transition on A549 cells. Archives of Toxicology, 2021, 95, 1379-1390.	4.2	4
504	TGF-Î ² 1 increases permeability of ciliated airway epithelia via redistribution of claudin 3 from tight junction into cell nuclei. Pflugers Archiv European Journal of Physiology, 2021, 473, 287-311.	2.8	14
505	Identification of Gene Signatures and Expression Patterns During Epithelial-to-Mesenchymal Transition From Single-Cell Expression Atlas. Frontiers in Genetics, 2020, 11, 605012.	2.3	5
506	Lotus leaf extract inhibits ERâ^' breast cancer cell migration and metastasis. Nutrition and Metabolism, 2021, 18, 20.	3.0	3
507	The involvement of leucine-rich $\hat{l}\pm -2$ glycoprotein in the progression of skin and lung fibrosis in bleomycin-induced systemic sclerosis model. Modern Rheumatology, 2021, 31, 1120-1128.	1.8	8
508	Lung cancer and epithelial-mesenchymal transition. General Thoracic and Cardiovascular Surgery, 2021, 69, 781-789.	0.9	20
509	Quantitative Proteomic Analysis in Alveolar Type II Cells Reveals the Different Capacities of RAS and TGF-β to Induce Epithelial–Mesenchymal Transition. Frontiers in Molecular Biosciences, 2021, 8, 595712.	3.5	5

#	Article	IF	CITATIONS
510	The Epithelial-to-Mesenchymal Transition-Like Process Induced by TGF- $\hat{1}^21$ Enhances Rubella Virus Binding and Infection in A549 Cells via the Smad Pathway. Microorganisms, 2021, 9, 662.	3.6	5
511	HGF-Modified Dental Pulp Stem Cells Mitigate the Inflammatory and Fibrotic Responses in Paraquat-Induced Acute Respiratory Distress Syndrome. Stem Cells International, 2021, 2021, 1-15.	2.5	9
512	Membrane particles from mesenchymal stromal cells reduce the expression of fibrotic markers on pulmonary cells. PLoS ONE, 2021, 16, e0248415.	2.5	1
513	<i>Haemophilus influenza</i> e causes cellular trans-differentiation in human bronchial epithelia. Innate Immunity, 2021, 27, 251-259.	2.4	3
514	EGF Induces Migration Independent of EMT or Invasion in A549 Lung Adenocarcinoma Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 634371.	3.7	13
515	Plasma S100β and neuron-specific enolase, but not neuroglobin, are associated with early cognitive dysfunction after total arch replacement surgery. Medicine (United States), 2021, 100, e25446.	1.0	8
516	Downregulation of miRâ€'483â€'5p inhibits TGFâ€'β1â€'induced EMT by targeting RhoGDI1 in pulmonary fibrosis. Molecular Medicine Reports, 2021, 24, .	2.4	5
517	TGFâ \in Î21: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). International Journal of Molecular Medicine, 2021, 48, .	4.0	72
518	Ameliorative Effect of Thymoquinone-Loaded PLGA Nanoparticles on Chronic Lung Injury Induced by Repetitive Intratracheal Instillation of Lipopolysaccharide in Rats. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-12.	4.0	5
519	MUC16 Is Overexpressed in Idiopathic Pulmonary Fibrosis and Induces Fibrotic Responses Mediated by Transforming Growth Factor- \hat{I}^21 Canonical Pathway. International Journal of Molecular Sciences, 2021, 22, 6502.	4.1	6
520	TRIM37 orchestrates renal cell carcinoma progression via histone H2A ubiquitination-dependent manner. Journal of Experimental and Clinical Cancer Research, 2021, 40, 195.	8.6	16
521	Biomimetic analyses of interactions between macrophages and palmar fascia myofibroblasts derived from Dupuytren's disease reveal distinct inflammatory cytokine responses. Wound Repair and Regeneration, 2021, 29, 627-636.	3.0	5
522	Tumorâ€Associated Protrusion Fluctuations as a Signature of Cancer Invasiveness. Advanced Biology, 2021, 5, e2101019.	2.5	11
523	Inflammatory mediators in various molecular pathways involved in the development of pulmonary fibrosis. International Immunopharmacology, 2021, 96, 107608.	3.8	11
524	Cancer-Associated Fibroblasts in Conversation with Tumor Cells in Endometrial Cancers: A Partner in Crime. International Journal of Molecular Sciences, 2021, 22, 9121.	4.1	16
525	Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis. Molecular and Cellular Biochemistry, 2021, 476, 4405-4419.	3.1	14
526	Kurarinone Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting TGF-Î ² Signaling Pathways. International Journal of Molecular Sciences, 2021, 22, 8388.	4.1	15
527	PPM1A as a key target of the application of <i>Jiaweiâ€'Maxingâ€'Shigan</i> decoction for the attenuation of radiationâ€'induced epithelialâ€'mesenchymal transition in typeÂll alveolar epithelial cells. Molecular Medicine Reports, 2021, 24, .	2.4	3

#	Article	IF	CITATIONS
528	Chrysin Ameliorates Cyclosporine-A-Induced Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial–Mesenchymal Transition. International Journal of Molecular Sciences, 2021, 22, 10252.	4.1	13
529	Brilliant glycans and glycosylation: Seq and ye shall find. International Journal of Biological Macromolecules, 2021, 189, 279-291.	7.5	33
530	Peptide DR8 analogs alleviate pulmonary fibrosis via suppressing TGF- \hat{l}^21 mediated epithelial-mesenchymal transition and ERK1/2 pathway in vivo and in vitro. European Journal of Pharmaceutical Sciences, 2021, 167, 106009.	4.0	11
531	Probing TGF \hat{l}^2 1-induced cytoskeletal rearrangement by fluorescent-labeled silica nanoparticle uptake assay. Biochemistry and Biophysics Reports, 2021, 28, 101137.	1.3	0
532	Low molecular weight fucoidan attenuating pulmonary fibrosis by relieving inflammatory reaction and progression of epithelial-mesenchymal transition. Carbohydrate Polymers, 2021, 273, 118567.	10.2	25
533	Usual Interstitial Pneumonia. Molecular Pathology Library, 2008, , 607-615.	0.1	3
534	Oxidative Stress and Pulmonary Fibrosis. , 2014, , 1611-1631.		3
535	Experimental Models of Asbestos-Related Diseases. , 2014, , 215-251.		4
536	Therapeutic effects of obeticholic acid (OCA) treatment in a bleomycin-induced pulmonary fibrosis rat model. Journal of Endocrinological Investigation, 2019, 42, 283-294.	3.3	17
538	BMP-7 Does Not Protect against Bleomycin-Induced Lung or Skin Fibrosis. PLoS ONE, 2008, 3, e4039.	2.5	52
539	Up-Regulation of Sonic Hedgehog Contributes to TGF- \hat{l}^21 -Induced Epithelial to Mesenchymal Transition in NSCLC Cells. PLoS ONE, 2011, 6, e16068.	2.5	119
540	Requirement of Podocalyxin in TGF-Beta Induced Epithelial Mesenchymal Transition. PLoS ONE, 2011, 6, e18715.	2.5	62
541	Suppression of Expression of Heat Shock Protein 70 by Gefitinib and Its Contribution to Pulmonary Fibrosis. PLoS ONE, 2011, 6, e27296.	2.5	43
542	Inhibition of Plasminogen Activator Inhibitor-1 Attenuates Transforming Growth Factor- \hat{l}^2 -Dependent Epithelial Mesenchymal Transition and Differentiation of Fibroblasts to Myofibroblasts. PLoS ONE, 2016, 11, e0148969.	2.5	57
543	Downregulation of TGF- $\hat{1}^2$ Receptor-2 Expression and Signaling through Inhibition of Na/K-ATPase. PLoS ONE, 2016, 11, e0168363.	2.5	19
544	Fibroblast Growth Factor 2 Augments Transforming Growth Factor Beta 1 Induced Epithelial-mesenchymal Transition in Lung Cell Culture Model. Iranian Journal of Allergy, Asthma and Immunology, 2020, 19, 348-361.	0.4	6
545	TGFÎ ² upregulates PAR-1 expression and signalling responses in A549 lung adenocarcinoma cells. Oncotarget, 2016, 7, 65471-65484.	1.8	12
546	Characterization of epithelial-mesenchymal transition intermediate/hybrid phenotypes associated to resistance to EGFR inhibitors in non-small cell lung cancer cell lines. Oncotarget, 2017, 8, 103340-103363.	1.8	44

#	Article	IF	CITATIONS
547	Trichostatin A inhibits radiation-induced epithelial-to-mesenchymal transition in the alveolar epithelial cells. Oncotarget, 2017, 8, 101745-101759.	1.8	12
548	Transforming growth factor \hat{l}^2 -induced epithelial-to-mesenchymal signature predicts metastasis-free survival in non-small cell lung cancer. Oncotarget, 2019, 10, 810-824.	1.8	22
549	Secretome of pleural effusions associated with non-small cell lung cancer (NSCLC) and malignant mesothelioma: therapeutic implications. Oncotarget, 2019, 10, 6456-6465.	1.8	8
550	AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF- \hat{l}^2 1-triggered epithelial-mesenchymal transition. Oncotarget, 2016, 7, 13122-13138.	1.8	40
551	A Truncated Snail1 Transcription Factor Alters the Expression of Essential EMT Markers and Suppresses Tumor Cell Migration in a Human Lung Cancer Cell Line. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 158-169.	1.6	19
552	An Update on the Mechanisms of Phenytoin Induced Gingival Overgrowth. Open Dentistry Journal, 2019, 13, 430-435.	0.5	8
553	Biomarkers of Fibroproliferative Healing in Fibrosing Idiopathic Interstitial Pneumonias. Open Respiratory Medicine Journal, 2012, 6, 160-164.	0.4	1
554	The Alveolar Epithelium and Pulmonary Fibrosis. Journal of Epithelial Biology & Pharmacology, 2009, 2, 30-35.	1.2	3
556	Identification and characterization of glycine decarboxylase as a direct target of snail in the epithelial $\hat{\epsilon}$ mesenchymal transition of cancer cells. Tumor & Microenvironment, 2018, 1, 55.	0.7	2
557	TGF-Î ² 1 Protein Expression in Non-Small Cell Lung Cancers is Correlated with Prognosis. Asian Pacific Journal of Cancer Prevention, 2014, 15, 8143-8147.	1.2	32
558	Autophagy in pulmonary fibrosis: friend or foe?. Genes and Diseases, 2022, 9, 1594-1607.	3.4	14
559	Idiopathic Pulmonary Comorbidities and Mechanisms. International Journal of Inflammation, 2021, 2021, 1-11.	1.5	1
560	Inhibition of Matrix Metalloproteinases and Cancer Cell Detachment by Ru(II) Polypyridyl Complexes Containing 4,7-Diphenyl-1,10-phenanthroline Ligandsâ€"New Candidates for Antimetastatic Agents. Pharmaceuticals, 2021, 14, 1014.	3.8	8
561	MicroSPECT Imaging-Guided Treatment of Idiopathic Pulmonary Fibrosis in Mice with a Vimentin-Targeting $\langle \sup 99m 100 \text{ Jps} \rangle$ Vimentin-Targeting $\langle \sup 99m 100 \text{ Jps} \rangle$ Molecular Pharmaceutics, 2021, 18, 4140-4147.	4.6	3
562	The Asbestos Model of Interstitial Pulmonary Fibrosis. , 2006, , 227-244.		0
563	Stem Cells in Respiratory Diseases. Tuberculosis and Respiratory Diseases, 2007, 63, 121.	1.8	0
564	TGF-Î ² in Pulmonary Fibrosis. , 2008, , 569-580.		0
565	Proteases and Fibrosis., 2011,, 145-172.		0

#	Article	IF	Citations
566	Cytokeratin 8: The Dominant Type II Intermediate Filament Protein in Lung Cancer. , 0, , .		1
567	Mechanisms Promoting Chronic Lung Diseases: Will Targeting Stromal Cells Cure COPD and IPF?., 0,,.		0
568	Role of Proteases in Inflammatory Lung Diseases. , 2013, , 361-385.		5
569	Pulmonary Fibrosis and Oxidative Stress. Oxidative Stress in Applied Basic Research and Clinical Practice, 2014, , 163-190.	0.4	0
572	\hat{l}^2 2-microglobulin as a biomarker of pulmonary fibrosis development in COPD patients. Aging, 2021, 13, 1251-1263.	3.1	7
573	Conditioned Media of Adipose-Derived Stem Cells Suppresses Sidestream Cigarette Smoke Extract Induced Cell Death and Epithelial-Mesenchymal Transition in Lung Epithelial Cells. International Journal of Molecular Sciences, 2021, 22, 12069.	4.1	4
575	Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Molecular Vision, 2012, 18, 1983-90.	1.1	38
576	MiR-5100 targets TOB2 to drive epithelial-mesenchymal transition associated with activating smad2/3 in lung epithelial cells. American Journal of Translational Research (discontinued), 2017, 9, 4694-4706.	0.0	6
579	Low-molecular-weight fucoidan attenuates bleomycin-induced pulmonary fibrosis: possible role in inhibiting TGF- \hat{l}^21 -induced epithelial-mesenchymal transition through ERK pathway. American Journal of Translational Research (discontinued), 2019, 11, 2590-2602.	0.0	11
581	Histone methyltransferase SETDB1 inhibits TGF-β-induced epithelial–mesenchymal transition in pulmonary fibrosis by regulating SNAI1 expression and the ferroptosis signaling pathway. Archives of Biochemistry and Biophysics, 2022, 715, 109087.	3.0	33
582	Involvement of the ACE2/Ang-($1\hat{a}\in$ "7)/MasR Axis in Pulmonary Fibrosis: Implications for COVID-19. International Journal of Molecular Sciences, 2021, 22, 12955.	4.1	11
584	Novel role for tumor suppressor gene, liver kinase B1, in epithelial–mesenchymal transition leading to chronic lung allograft dysfunction. American Journal of Transplantation, 2022, 22, 843-852.	4.7	7
585	Synthesis and anti-inflammatory activities of glycyrrhetinic acid derivatives containing disulfide bond. Bioorganic Chemistry, 2022, 119, 105542.	4.1	5
586	Fibrosis Is a Basement Membrane-Related Disease in the Cornea: Injury and Defective Regeneration of Basement Membranes May Underlie Fibrosis in Other Organs. Cells, 2022, 11, 309.	4.1	14
587	The differentiation of embryonic stem cells and induced pluripotent stem cells into airway and alveolar epithelial cells., 2022,, 95-127.		0
588	A Focused Review on Molecular Signalling Mechanisms of Ginsenosides Anti-Lung Cancer and Anti-inflammatory Activities. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 3-14.	1.7	8
589	Targeting Chitinase 1 and Chitinase 3-Like 1 as Novel Therapeutic Strategy of Pulmonary Fibrosis. Frontiers in Pharmacology, 2022, 13, 826471.	3.5	7
590	Pan-Phosphodiesterase Inhibitors Attenuate TGF-Î ² -Induced Pro-Fibrotic Phenotype in Alveolar Epithelial Type II Cells by Downregulating Smad-2 Phosphorylation. Pharmaceuticals, 2022, 15, 423.	3.8	4

#	Article	IF	CITATIONS
591	SFRP4 Expression Is Linked to Immune-Driven Fibrotic Conditions, Correlates with Skin and Lung Fibrosis in SSc and a Potential EMT Biomarker. Journal of Clinical Medicine, 2021, 10, 5820.	2.4	10
597	The low density lipoprotein receptor-related protein (LRP) 1 and its function in lung diseases. Histology and Histopathology, 2016, 31, 733-45.	0.7	7
601	Collagen 3D matrices as a model for the study of cell behavior in pulmonary fibrosis. Experimental Lung Research, 0 , $1-11$.	1.2	0
602	Fructose Induces Pulmonary Fibrotic Phenotype Through Promoting Epithelial-Mesenchymal Transition Mediated by ROS-Activated Latent TGF- \hat{l}^21 . Frontiers in Nutrition, 2022, 9, .	3.7	3
603	Connective Tissue Growth Factor in Idiopathic Pulmonary Fibrosis: Breaking the Bridge. International Journal of Molecular Sciences, 2022, 23, 6064.	4.1	23
605	Role of MicroRNAs in Signaling Pathways Associated with the Pathogenesis of Idiopathic Pulmonary Fibrosis: A Focus on Epithelial-Mesenchymal Transition. International Journal of Molecular Sciences, 2022, 23, 6613.	4.1	5
606	A New Immortalized Human Alveolar Epithelial Cell Model to Study Lung Injury and Toxicity on a Breathing Lung-On-Chip System. Frontiers in Toxicology, 0, 4, .	3.1	17
607	Panax Notoginseng Saponins Regulate Transforming Growth Factor \hat{l}^21 through MAPK and Snail/TWIST1 Signaling Pathway to Inhibit Epithelial-Mesenchymal Transition of Pulmonary Fibrosis in A549 Cells. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-10.	1.2	3
608	Study on the molecular mechanisms of tetrandrine against pulmonary fibrosis based on network pharmacology, molecular docking and experimental verification. Heliyon, 2022, 8, e10201.	3.2	3
610	High-content screening of active components of Traditional Chinese Medicine inhibiting TGF-Î ² -induced cell EMT. Heliyon, 2022, 8, e10238.	3.2	0
611	NHLRC2 expression is increased in idiopathic pulmonary fibrosis. Respiratory Research, 2022, 23, .	3.6	1
612	A TGF \hat{l}^2 R inhibitor represses keratin-7 expression in 3D cultures of human salivary gland progenitor cells. Scientific Reports, 2022, 12, .	3.3	4
613	The effects of epithelial–mesenchymal transitions in COPD induced by cigarette smoke: an update. Respiratory Research, 2022, 23, .	3.6	14
614	Effect of high-pathogenicity island (HPI) on TGF- \hat{l}^21/S mad3 pathway in mouse model of E. coli strains causing diarrhea in calf. Research in Veterinary Science, 2023, 156, 1-6.	1.9	3
615	CGRP induces myofibroblast differentiation and the production of extracellular matrix in MRC5s via autocrine and paracrine signalings. Journal of Biochemical and Molecular Toxicology, 2022, 36, .	3.0	1
616	A systems biology investigation of curcumin potency against TGF- \hat{l}^2 -induced EMT signaling in lung cancer. 3 Biotech, 2022, 12, .	2.2	2
617	Cathelicidin Treatment Silences Epithelial–Mesenchymal Transition Involved in Pulmonary Fibrosis in a Murine Model of Hypersensitivity Pneumonitis. International Journal of Molecular Sciences, 2022, 23, 13039.	4.1	0
618	Regulation of TGF- \hat{l}^21 -Induced EMT by Autophagy-Dependent Energy Metabolism in Cancer Cells. Cancers, 2022, 14, 4845.	3.7	4

#	ARTICLE	IF	CITATIONS
619	The Role of Tî ² 4-POP-Ac-SDKP Axis in Organ Fibrosis. International Journal of Molecular Sciences, 2022, 23, 13282.	4.1	2
620	TGF- \hat{l}^21 promotes human breast cancer angiogenesis and malignant behavior by regulating endothelial-mesenchymal transition. Frontiers in Oncology, 0, 12, .	2.8	3
621	Inhibitors of the Sialidase NEU3 as Potential Therapeutics for Fibrosis. International Journal of Molecular Sciences, 2023, 24, 239.	4.1	1
622	Comparing species-different responses in pulmonary fibrosis research: Current understanding of in vitro lung cell models and nanomaterials. European Journal of Pharmaceutical Sciences, 2023, , 106387.	4.0	1
623	Theophylline Attenuates BLM-Induced Pulmonary Fibrosis by Inhibiting Th17 Differentiation. International Journal of Molecular Sciences, 2023, 24, 1019.	4.1	7
624	Nintedanib-αVβ6 Integrin Ligand Conjugates Reduce TGFβ-Induced EMT in Human Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 2023, 24, 1475.	4.1	0
625	Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: A review. International Journal of Biochemistry and Cell Biology, 2023, 155, 106361.	2.8	5
627	The Effect of Hydroxytyrosol in Type II Epithelial-Mesenchymal Transition in Human Skin Wound Healing. Molecules, 2023, 28, 2652.	3.8	2
628	Inhibitory Effects of 3-Cyclopropylmethoxy-4-(difluoromethoxy) Benzoic Acid on TGF-β1-Induced Epithelial–Mesenchymal Transformation of In Vitro and Bleomycin-Induced Pulmonary Fibrosis In Vivo. International Journal of Molecular Sciences, 2023, 24, 6172.	4.1	2
629	Origins of pathological myofibroblasts in lung fibrosis: insights from lineage tracing mouse models in the single-cell RNA sequencing era. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2023, 324, L737-L746.	2.9	2
631	MiR-26a-5p from HucMSC-derived extracellular vesicles inhibits epithelial mesenchymal transition by targeting Adam17 in silica-induced lung fibrosis. Ecotoxicology and Environmental Safety, 2023, 257, 114950.	6.0	9
633	Vincamine Ameliorates Epithelial-Mesenchymal Transition in Bleomycin-Induced Pulmonary Fibrosis in Rats; Targeting TGF-β/MAPK/Snai1 Pathway. Molecules, 2023, 28, 4665.	3.8	1
634	Reelin through the years: From brain development to inflammation. Cell Reports, 2023, 42, 112669.	6.4	9
635	Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. Journal of Scleroderma and Related Disorders, 2024, 9, 7-15.	1.7	1
636	Respiratory Syncytial Virus Infection Does Not Induce Epithelial-Mesenchymal Transition. Journal of Virology, 0, , .	3.4	0
637	Mesenchymal Stem Cells Inhibit Epithelial-to-Mesenchymal Transition by Modulating the IRE1α Branch of the Endoplasmic Reticulum Stress Response. Stem Cells International, 2023, 2023, 1-19.	2.5	0
638	Epithelial–Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target?. International Journal of Molecular Sciences, 2023, 24, 12412.	4.1	2
639	LZTR1 deficiency exerts high metastatic potential by enhancing sensitivity to EMT induction and controlling KLHL12-mediated collagen secretion. Cell Death and Disease, 2023, 14, .	6.3	1

#	Article	IF	CITATIONS
640	Longitudinal assessment of bleomycin-induced pulmonary fibrosis by evaluating TGF-β1/Smad2, Nrf2 signaling and metabolomic analysis in mice. Life Sciences, 2023, 331, 122064.	4.3	3
641	Transforming growth factor β1 upregulates 6â€phosphofructoâ€2â€kinase/fructose 2,6â€bisphosphataseâ€4 expression in A549 and MCFâ€10A cells. Cell Biochemistry and Function, 2023, 41, 1220-1229.	2.9	0
642	Exploring the role and mechanism of Astragalus membranaceus and radix paeoniae rubra in idiopathic pulmonary fibrosis through network pharmacology and experimental validation. Scientific Reports, 2023, 13, .	3.3	0
643	Pharmacological targeting of netrin-1 inhibits EMT in cancer. Nature, 2023, 620, 402-408.	27.8	15
644	Voluntary wheel-running improved pulmonary fibrosis by reducing epithelial mesenchymal transformation. Life Sciences, 2023, 331, 122066.	4.3	0
645	Catch your breath: The protective role of the angiotensin AT2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochemical Pharmacology, 2023, 217, 115839.	4.4	1
646	Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2023, , 109248.	9.0	0
647	The compound artemisinin-hydroxychloroquine ameliorates bleomycin-induced pulmonary fibrosis in rats by inhibiting TGF- \hat{l}^2 1/Smad2/3 signaling pathway. Pulmonary Pharmacology and Therapeutics, 2023, 83, 102268.	2.6	0
648	Mapping the genetic architecture of idiopathic pulmonary fibrosis: Meta-analysis and epidemiological evidence of case-control studies. Gene, 2024, 895, 147993.	2.2	0
649	Approach for Elucidating the Molecular Mechanism of Epithelial to Mesenchymal Transition in Fibrosis of Asthmatic Airway Remodeling Focusing on Clâ^' Channels. International Journal of Molecular Sciences, 2024, 25, 289.	4.1	0
650	The evolution of in vitro in v	7.1	1
652	Kv3.4 regulates cell migration and invasion through TGF-β-induced epithelial–mesenchymal transition in A549 cells. Scientific Reports, 2024, 14, .	3.3	0
653	Collagen type IV alpha 1 chain (COL4A1) expression in the developing human lung. BMC Pulmonary Medicine, 2024, 24, .	2.0	0
654	TGF-Î ² 1, pSmad-2/3, Smad-7, and Î ² -Catenin Are Augmented in the Pulmonary Arteries from Patients with Idiopathic Pulmonary Fibrosis (IPF): Role in Driving Endothelial-to-Mesenchymal Transition (EndMT). Journal of Clinical Medicine, 2024, 13, 1160.	2.4	0
655	Qingkailing granule alleviates pulmonary fibrosis by inhibiting PI3K/AKT and SRC/STAT3 signaling pathways. Bioorganic Chemistry, 2024, 146, 107286.	4.1	0