Lightning optical pulse statistics from storm overflights Electrification Study

Atmospheric Research 76, 386-401 DOI: 10.1016/j.atmosres.2004.11.039

Citation Report

	EDODT	
Article	IF	CITATIONS
General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms. Journal of Atmospheric and Oceanic Technology, 2007, 24, 1576-1587.	1.3	25
Improving GLM design capabilities with high fidelity analytic and simulation tools. Proceedings of SPIE, 2007, , .	0.8	0
Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Journal of Geophysical Research, 2007, 112, .	3.3	153
A small unmanned aerial vehicle for polar research. , 2008, , .		5
A small unmanned aerial vehicle for oil-gas field surveillance. , 2008, , .		2
An integrated navigation system for a small UAV using low-cost sensors. , 2008, , .		1
A gyro drift error compensation algorithm for a small unmanned aerial vehicle system. , 2009, , .		1
Electric fields, conductivity, and estimated currents from aircraft overflights of electrified clouds. Journal of Geophysical Research, 2009, 114, .	3.3	47
Comparisons of total currents based on storm location, polarity, and flash rates derived from highâ€altitude aircraft overflights. Journal of Geophysical Research, 2010, 115, .	3.3	46
Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. Journal of Geophysical Research, 2011, 116, .	3.3	85
A small unmanned polar research aerial vehicle based on the composite control method. Mechatronics, 2011, 21, 821-830.	3.3	15
The NASA SIERRA science demonstration programme and the role of small–medium unmanned aircraft for earth science investigations. Geocarto International, 2011, 26, 157-163.	3.5	29
The Collaborative Colorado–Nebraska Unmanned Aircraft System Experiment. Bulletin of the American Meteorological Society, 2012, 93, 39-54.	3.3	65
Application of a Mini Unmanned Aircraft System for In Situ Monitoring of Fire Plume Thermodynamic Properties. Journal of Atmospheric and Oceanic Technology, 2012, 29, 309-315.	1.3	14
Optical power and energy radiated by natural lightning. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1868-1879.	3.3	22

16	The GOES-R Geostationary Lightning Mapper (GLM). Atmospheric Research, 2013, 125-126, 34-49.	4.1	342
17	Seasonal variations in the lightning diurnal cycle and implications for the global electric circuit. Atmospheric Research, 2014, 135-136, 228-243.	4.1	86
18	Parameterizing total storm conduction currents in the Community Earth System Model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,715.	3.3	9

#

#	Article	IF	CITATIONS
19	The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) and its operations from an unmanned aerial vehicle (UAV) during the AROMAT campaign. Atmospheric Measurement Techniques, 2018, 11, 551-567.	3.1	13
20	A Framework for Efficient Calculation of Photoionization and Photodetachment Rates With Application toÂtheÂLower Ionosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027979.	2.4	7
21	A Retrospective of Findings From the FORTE Satellite Mission. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032264.	3.3	10
22	Changes to the Appearance of Optical Lightning Flashes Observed From Space According to Thunderstorm Organization and Structure. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031087.	3.3	17
23	Remote Sensing of Electric Fields Observed Within Winter Precipitation During the 2020 Investigation of Microphysics and Precipitation for Atlantic Coastâ€Threatening Snowstorms (IMPACTS) Field Campaign. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034704.	3.3	4
24	Optical Detection of Lightning from Space. , 2009, , 271-286.		2
25	Airborne radiometric validation of the geostationary lightning mapper using the Fly's Eye GLM Simulator. Journal of Applied Remote Sensing, 2020, 14, .	1.3	0
26	FORTE Measurements of Global Optical Lightning Waveforms and Implications for Optical Lightning Detection. Earth and Space Science, 0, , .	2.6	2
27	A Brief Review of Uncrewed Aircraft Systems in Support of NASA Earth Science. , 2022, , .		0
28	Lightning Research in Arizona. , 2023, , 175-227.		0